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Summary

Two important approaches to the verification of security protocols are
known under the general names of symbolic and computational, respec-
tively. In the symbolic approach messages are terms of an algebra and the
cryptographic primitives are ideally secure; in the computational approach
messages are bitstrings and the cryptographic primitives are secure with
overwhelming probability. This means, for example, that in the symbolic
approach only who knows the decryption key can decrypt a ciphertext,
while in the computational approach the probability to decrypt a cipher-
text without knowing the decryption key is negligible.

Usually, the cryptographic protocols are the outcome of the interaction
of several components: some of them are based on cryptographic primitives,
other components on other principles. In general, the result is a complex
system that we would like to analyse in a modular way instead of studying
it as a single system.

A similar situation can be found in the context of distributed systems,
where there are several probabilistic components that interact with each
other implementing a distributed algorithm. In this context, the analysis
of the correctness of a complex system is very rigorous and it is based on
tools from information theory such as the simulation method that allows
us to decompose large problems into smaller problems and to verify sys-
tems hierarchically and compositionally. The simulation method consists
of establishing relations between the states of two automata, called simu-
lation relations, and to verify that such relations satisfy appropriate step
conditions: each transition of the simulated system can be matched by the
simulating system up to the given relation. Using a compositional approach
we can study the properties of each small problem independently from the
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each other, deriving the properties of the overall system. Furthermore, the
hierarchical verification allows us to build several intermediate refinements
between specification and implementation. Often hierarchical and compo-
sitional verification is simpler and cleaner than direct one-step verification,
since each refinement may focus on specific homogeneous aspects of the
implementation.

In this thesis we introduce a new simulation relation, that we call poly-
nomially accurate simulation, or approximated simulation, that is composi-
tional and that allows us to adopt the hierarchical approach in our analyses.
The polynomially accurate simulations extend the simulation relations of
the distributed systems context in both strong and weak cases taking into
account the lengths of the computations and of the computational proper-
ties of the cryptographic primitives.

Besides the polynomially accurate simulations, we provide other tools
that can simplify the analysis of cryptographic protocols: the first one is the
concept of conditional automaton, that permits to safely remove events that
occur with negligible probability. Starting from a machine that is attackable
with negligible probability, if we build an automaton that is conditional to
the absence of these attacks, then there exists a simulation. And this allows
us to work with the simulation relations all the time and in particular we
can also prove in a compositional way that the elimination of negligible
events from an automaton is safe. This property is justified by the condi-
tional automaton theorem that states that events are negligible if and only
if the identity relation is an approximated simulation from the automaton
and its conditional counterpart. Another tool is the execution correspon-
dence theorem, that extends the one of the distributed systems context,
that allows us to use the hierarchical approach. In fact, the theorem states
that if we have several automata and a chain of simulations between them,
then with overwhelming probability each execution of the first automaton
is related to an execution of the last automaton. In other words, we have
that the probability that the last automaton is not able to simulate an
execution of the first one is negligible.

Finally, we use the polynomially accurate simulation framework to pro-
vide families of automata that implement commonly used cryptographic
primitives and to prove that the symbolic approach is sound with respect
to the computational approach.
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Introduction

1.1 Cryptography and Security

Cryptography and Security are two closely related fields of Computer Sci-
ence that have a big impact on the real world. Security usually is based
on cryptography, because secrecy, authenticity, anonymity and other simi-
lar properties are insured by cryptographic protocols, if they respect some
well-defined requirements. For example, we can say that a protocol ensures
anonymity of messages if nobody, except who has generated it, is able to
say who is the sender of such message. Theoretic cryptographic protocols
are the base of real protocols like AES, SSL, WEP, etc. that are used for
passwords storage, secure web communications, secure wireless connections
and other cases where it is required some kind of secrecy or authenticity. If
a theoretical protocol contains errors that make it breakable, then all real
implementations can be broken exploiting such errors.

To reduce the possibility of an attack, for example that an intruder can
obtain secret informations, we must be sure that at least the theoretical
protocol is correct. If we are sure that this happens, then we can concentrate
all our attention on protocol implementation.

We can say that a cryptographical protocol is safe only when we are
able to check that any adversary is not able to attack it successfully. This
requirement is really strong, since it imposes that no adversary can attack
the protocol, and not only adversaries we can conceive during the analysis
of the protocol.

We can classify adversaries into two big classes, based on their capabili-
ties: the first one is the class of passive adversaries that can only eavesdrop
messages that are transmitted between participants of the protocol. The
main aim of these adversaries is to worm out some information that can be
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used for other purposes. For example, in [48] Fluhrer, Mantin and Shamir
analyze the RC4 algorithm and as a side effect they show that in a wireless
network protected by the WEP protocol an eavesdropper who can sniff a
sufficient number of packets can then derive the WEP key. Once the ad-
versary knows the key, it can collect sensible data as passwords or credit
card numbers. The eavesdropper needs from one to four millions packets to
obtain a 40-bit key while for a 128-bit key it spends some hours to break the
WEP protocol (time depends on computational power and network load;
see [108] for details).

The second class is composed by active adversaries that can interact
with the protocol participants. This implies that an active attacker can
intercept a message, modify it and then deliver the alterated message. The
man in the middle attack is based on this capability, and protocols that are
prone to this problem are, for example, SSL (during the exchange of public
keys) and the Needham-Schroeder public key protocol [70,71,87].

When we start to analyze the security of a cryptographic protocol, the
first thing we must consider is which kind of adversary can try to attack
the protocol. We may consider only passive adversaries, for example; in this
case the analysis is simpler but the guarantees are weaker. On the contrary,
if we consider all adversaries, passive and active ones, then the analysis is
more difficult but the guarantees are stronger. Since adversaries in the real
life are usually active, then it is reasonable to prove the correctness of a
protocol considering active adversaries.

The second thing we must consider when we design a new protocol is
if we want to use randomization. In fact, we can define protocols that are
deterministic or that involve random choices. If we decide to design our
protocol using only deterministic primitives, then the proposed protocol
could be prone to the replay attack, where a legal message m from the
participant A can be sent to B more than once and each time B receives
m, B supposes that m comes from A even when A is offline. In addition,
an eavesdropper is able to understand when a message is repeated, even
when it is sent encrypted. In fact, if we do not use randomization, then each
time a message is encrypted, the resulting ciphertext is the same. Another
problem of non-randomized protocols is the following: consider a public-key
encryption scheme [49] and suppose that the set of plaintexts is prefixed
and small. An adversary A can attack the protocol in the following way: it
encrypts all plaintexts using the public key of a participant P producing a
table with the associations cyphertext - plaintext. When another partici-
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pant sends a message m encrypted with the public key of P , A obtains m

looking for c in the table, where c is the ciphertexts corresponding to m.
To avoid such problems, one usually uses probabilistic elements like

nonces (values that are used at most once) or randomized encryptions.
Probabilistic elements enforce the quality of protocols but they do not
ensures that resulting protocols are actually secure. In fact, we can define
protocols that are malleable [50]: given one or more valid messages, the
adversary can generate a new message that is valid and that it is not one
of the messages produced by the participants. RSA [100], for example, is
malleable.

As we have seen, we can use random values and randomized primitives
to avoid some attacks. But this implies that when analyze the correctness
of a protocol we must consider also all probabilistic aspects that occur in
the protocol. If we omit some subtlety about probability, then later we can
discover that the protocol is flawed. Consider, for example, the problem of
dining cryptographers [39]. The situation is the following: there are three
cryptographers that work for NSA and there is the bill to pay. NSA can
decide to pay the bill or can tell to one of cryptographers to pay. In the
former, everyone knows that the bill is payed by the NSA but in the latter
no one (except the cryprographer that settles the bill) knows who is the
payer. To achieve this result cryptographers perform this protocol: they are
around the table and each one shares a coin with each neighbor. They flip
coins, so each cryptographer can see two coins but not the value of the
third one and he says agree or disagree if coins he see show the same side
or not. The payer lies, hence he says disagree if coins are same and agree if
they are different. If the number of disagrees is odd, then a cryptographer
pays the dinner, else the bill is settled by NSA. If we analyze the protocol
without probability (or under the hypothesis that coins are fair), then we
can affirm that it is correct because each adversary can not guess the payer
with a probability that is bigger that one third. If coins are not fair, then the
adversary can iterate protocol a sufficient number of times with the same
payer and if it knows the probability of head of each coin (but without
knowing the actual values of coin tosses), then the adversary is able to
identify with high probability the cryptographer that has settled the bill.

The dining cryptographers protocol is very easy to analyze manually,
without using a formal model. But there exist other protocols that are more
complex and a correct manual verification is infeasible, since there are too
many details to consider. This situation can lead to proofs that are not very
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rigorous and that contain informal reasoning that can be correct but that
may hide problematic cases. So, if we want to be sure about cryptographic
protocols correctness, it is better if we perform our analysis using a formal,
rigorous model that ensures the correctness of our reasoning.

1.2 The Main Approaches of Protocol Verification

Several authors have studied the problem of cryptographic protocol ver-
ification, producing a large literature. We can identify basically two ap-
proaches: the first one is based on a symbolic model [3, 28,45–47,57,64,65,
70,71,77,83,85,90,91,109] where messages are symbols and all underlying
cryptographic components satisfy the requirements, axiomatically. Further-
more, the adversary can try to attack the protocol using a restricted set
of actions that usually does not include the possibility to guess secrets
(such as private keys). The second approach is based on a computational
model [20–22, 26, 49–55, 112] where the exchanged messages are bitstrings
and the adversary is limited only to work with bounded resources. This
means that it can do what it wants to messages: it can try to guess secrets
and to generate new messages, as well as modify or drop received ones.

1.2.1 The Symbolic Model Approach

The start point of symbolic model approach is the paper of Dolev and
Yao [46]. In this model, cryptographic primitives used by protocol are mod-
eled as symbolic operations or ideal boxes, which represent the security
properties of the primitives in an idealized way. This means that if we
have a protocol that is based on symmetric encryption, no one is able to
obtain m from the encrypted message Enc(m, k) without the knowledge
of the key k. Basically, in the Dolev-Yao model, the cryptographic opera-
tions are replaced by term algebras with cancellation rules. For example,
the encryption operation Enc(m, k) becomes the term Ek(m) and a typical
cancellation rule is Dk(Ek( · )) =id ( · ) where Dk is the decryption term
associated with the key k and id is the identity function on messages.

Dolev-Yao model was extended in many papers, e.g. [43,45,47,79], and it
is used in the automatic formal protocol verification, using tools like model
checkers, theorem proovers, etc. [23, 27, 56, 64, 78, 82, 83, 85, 90]. Moreover,
other formalisms are developed on Dolev-Yao model, like logics [29, 57,
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80, 81], process algebras [68], π-calculus extensions [1–3], term rewriting
systems [76], strand spaces [110,111] and others [65,77].

When we prove that there exists an attack against a protocol in the
Dolev-Yao model, the same attack can be used also against all real imple-
mentations of the protocol, implementations based on real cryptographic
primitives. This is possible since all attacks on this model use only poly-
nomial time operations that can be replayed by a feasible real attacker.
Using a Dolev-Yao representation of the public key authentication protocol
of Needham and Schroeder [87], Lowe [70] has discovered that the protocol
is prone to the man in the middle attack and later he proposed a repaired
version [71] that is secure in the Dolev-Yao model. However, a correctness
proof in the symbolic model is not enough to be sure that the protocol is
correct when it is implemented using actual cryptographic primitives. In
fact, consider an actual encryption algorithm: it is not ideal when imple-
mented, since the adversary might guess the plaintext, so it can “decrypt”
a ciphertext without knowing the corresponding decryption key, and this
event is not captured by the symbolic model approach. This means that
an analysis in a pure symbolic model is not enough to capture all possible
attacks and thus we should consider also actual cryptographic aspects.

1.2.2 The Computational Model Approach

In the computational model, also known as the cryptographic model, a pro-
tocol is analyzed as it is. The correctness proofs for protocols are developed
mainly following one of these two directions: in the first, it is proved that
the probability of an attack to the protocol is negligible (e.g., exponentially
low with respect to a security parameter); in the second, it is proved that
if the attacker can break the protocol with non-negligible probability, then
such attack can be used against an underlying cryptographic primitive that
is supposed to satisfy required properties (for example, indistinguishability
of encryptions and unforgeability of signatures).

This approach is widely used in cryptographic literature [20–22, 26, 49–
55, 112] but we must be careful during the security analysis of a protocol.
In fact, we must consider all possible scenarios and all adversaries to be
sure that the correctness proof is complete. Moreover, we must consider
all probabilistic details in the analysis, because if we omit some of them,
then it is possible that we do not discover an attack when the adversary
uses exactly such details to exploit an attack. The main problem in the
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correctness proofs of computational model is that this kind of proofs is
hand-made, it is long and very tedious since the prover must consider a lot
of different cases and particulars. So he tends to take shortcuts counting on
their validity but these can lead to incorrect proofs as showed, for example,
in [44,93].

Another problem is that it is quite difficult to reuse the correctness proof
of one protocol inside the verification of another one. Hence, when a new
protocol is developed, we must provide a complete verification, starting
again from the beginning. Moreover, generally it is not possible to split
proof into several steps using a hierarchical approach to analyze and verify
a single cryptographic aspect at each level of the hierarchy.

1.3 A Similar Situation: The Context of Distributed System

As we have seen previously, the correctness proofs in the computational
model are quite difficult and error prone. This is due to several causes, like
the lack of rigour that comes from the need to take shortcuts and the im-
possibility of being thorough. Another cause is that it is not so easy to take
into account the interaction of several entities that are based on (proba-
bilistic) cryptographic primitives or on other principles. In fact, probability
is involved into the generation of nonces and cryptographic keys, the en-
cryption algorithm, and possibly the signing algorithm. Other sources of
probability are, for example, the adversary and the network but in this
case is not so easy to know which are the actual measures that describe
such sources of probability.

The analysis of systems that can be modelled as several (probabilis-
tic) machine that interact with each other is a problem already studied in
the context of randomized distributed algorithms [72,98,99]. In particular,
there are several common aspect between cryptography and distributed al-
gorithms; for example, in both cases we have to consider probabilistic and
nondeterministic behaviors and the analysis is usually performed comparing
the executions of two systems that behave in a similar way or transforming
the execution of one system to the execution of another one that represents
an attacker. One example of the last case is the analysis of indistinguishabil-
ity property: given an attacker, we build another machine whose behavior is
very close to the one of the original attacker and that it is able to break the
indistinguishability property. One formal model that is used into the con-
currency theory to model and to study randomized distributed algorithms
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is the Probabilistic Automata model [73,102–106]. This model provides the
mathematical rigor that is necessary to study rigorously randomized sys-
tems and also provides the tools to relate executions of different systems:
simulations and bisimulations allow us to compare the computations of two
systems and to say if they behave in the same way or if their behaviors are
not similar.

Moreover, concurrency theory allows us to prove properties of random-
ized distributed algorithm in an hierarchical and compositional way: the
possibility to work hierarchically permits to model the problem at several
level of abstraction, and each level represents the algorithm in a more or less
detailed way. This means, for example, that we can define an abstract level
where for example almost all probabilistic aspects are missing and where
we can focus our attention on the specification of the problem, studying its
properties to see if the specification satisfies our requirements. If it is the
case, then we can define other levels where we detail the single components
that form the overall algorithm. The compositionality allows us to study
each single component independently from the others and to extends its
properties to the overall system. This means that if we prove that a com-
ponent at level i is an implementation of the same component in the level
i + 1, then we can say that the overall system at level i is an implementa-
tion of the system at level i + 1. So this implies that whenever we generate
a chain of implementations from the fully detailed system to the abstract
system, by transitivity we can conclude that the fully detailed system is
an implementation of the abstract system and thus it satisfies the same
properties of the specification.

Compositionality is useful since it permits to consider small indepen-
dent components instead of a big system with several interacting modules.
Moreover we can reuse already known results in several proofs. So, if we
already know that a functionality is implemented by a specific component,
then we simply replace the functionality with it and by compositionality
we derive that the new system is an implementation of the old one without
proving it a second time.

In the context of distributed systems, the implementation is typically
a form of behavioral inclusion: it can be based on traces, computations or
traces that keep other informations like failures or tests. Failures usually
are traces that are followed by actions that the system refuses to perform
like the generation of forged signatures; tests are traces where a specific
event occurs in an appropriate context like the generation of a repeated
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nonce. It is proved that the implementation relation has nice properties: it
is transitive and compositional and moreover it has logical characterization
and this permits to know which kind of properties the implementation
relation preserves.

One problem of the implementation relation is that it is difficult to check.
In fact, consider the case of trace inclusion: a trace of the real system can
be a huge object, possibly infinite, and it could be very hard to verify if it
is also a trace of the abstract system; for example, language inclusion is a
PSPACE-complete problem. Fortunately, the simulation and bisimulation
relations allow us to derive global properties of traces checking the proper-
ties preserved by each computational step of the system independently from
other steps like in the Hoare-style logical reasoning [60]. In fact, usually we
reason about the properties that are satisfied in a state and the ones that
are satisfied after performing an execution step. Then, just composing all
reasoning we derive the properties that are valid in the global trace.

1.4 Our Proposal

As we have seen, concurrency theory and cryptography study systems that
involve probabilistic behaviors and interaction between several entities and
that present similar problems. Since probabilistic automata are an useful
framework that help the analysis of randomized distributed system, we want
to check if the probabilistic automata can help the verification of crypto-
graphic protocols. To do this, we propose to use the probabilistic automata
directly in the computational model and to utilize the mathematical rigor
and the simulation relations of the framework to study the correctness of
cryptographic protocols. We decide to model the protocol in a Dolev-Yao
style [46]: participants (or agents) of the protocol are fair and they com-
municate using an adversarially controlled network. The adversary tries to
break the protocol generating, intercepting or modifying the messages that
are sent from a participant to another one.

To verify security properties of a protocol, we would like to work hierar-
chically, defining several adversaries that model different levels of security
abstraction and then establishing some relation between adversaries. In
particular, we would like to define an adversary that can be seen as an
attacker inside the symbolic model and another adversary that stands for
an attacker inside the cryptographic model. So, for example, we can have
the adversary that ensures the correctness by construction (in particular,
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it represents a network that simply forwards messages between agents or
it never sends messages that can break the protocol) and the adversary
that represents a possible real attacker that generates messages using some
(probabilistic) function on previous messages.

In the computational model, a real adversary can always generate a mes-
sage that breaks the protocol: it simply chooses a random sequence of bits
of the right length and if it is lucky, then such bitstring is a message that
violates the protocol. Security requirements usually impose that a message
generated by the adversary breaks the protocol with a negligible proba-
bility with respect to some security parameter. In the symbolic model the
adversary can not generate a message randomly, but it can only derive new
messages from old ones, so we can not model the generation of a new ran-
dom message in the symbolic model. This implies that standard simulation
relations of probabilistic automata model can not be used to relate real and
ideal adversaries, because a real attacker can generate messages and hence
it can perform actions that an ideal adversary can not simulate. This means
that we need to define a new extension of simulation relations, extension
that permits to match the step condition up to some error. Moreover, we
must take into account the fact that in the computational model both the
security of the protocol and the computational power of the adversary de-
pend on a security parameter: given a cryptographic protocol, usually its
security is defined as “for each probabilistic polynomial time adversary, the
probability of an attack is negligible” that means that for each constant c

and polynomial p, there exists a security parameter k̄ such that for each
k > k̄ if the adversary A runs for at most p(k) steps, then the probability
that A performs a successful attack is less than k−c. The security parameter
usually is used to establish the length of nonces and of cryptographic keys
and thus the protocol depends on such parameter. For example, consider
the Needham-Schroeder-Lowe protocol [70,71,87]:

A → B : {Na.A}Eb

B → A : {Na.Nb.B}Ea

A → B : {Nb}Eb

Given the security parameter k, a concrete implementation of such proto-
col can require that nonces Na, Nb belong to {0, 1}k as well as the agent
identities A and B and the encryption keys Ea and Eb.

As we have seen, in the computational model both agents and adver-
saries are parameterized by a security parameter. This means that for each
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value of security parameter, we have different adversaries and agents that
work always in the same way but using different values (for example, the
length of nonces) and usually the security parameter is used to fix the
computational power of adversaries. Hence we should extend the simula-
tion relation to consider also families of automata (and not only single
automata), families that are parameterized by the security parameter. To
consider the computational power of adversary, we can extend ordinary
simulations adding some information about how many steps we have spent
to reach a particular state of the automaton. To do this, we can base our
simulation on automaton executions instead of automaton states, because
an execution describes the sequence of states and actions that has led to
its final state. In this way we are able to provide an upperbound to the
computational power of an adversary bounding the execution lengths, that
can be related to the security parameter via a polynomial, for example.

As we said previously, a real adversary can generate messages that an
ideal adversary can not simulate but such messages must have negligible
probability (otherwise the protocol is not secure). To consider these mes-
sages, we can extend simulations permitting that the matching transition
matches up to an error. If we relate such error to the security parame-
ter, then we can provide an upperbound to the global error made by a
real adversary with respect to an ideal adversary after a given number of
steps. In this way, if we force the number of steps to be polynomial with
respect to the security parameter and the step error to be negligible, then
the global error is negligible and hence the protocol is secure with respect
to the computational model meaning.

The main contribution of this thesis is the definition of the polynomi-
ally accurate simulation relation: an extension of the simulation relation of
probabilistic automata that takes into account the computational aspects
of cryptographic primitives, the length of executions, and the errors we ac-
cept. Main advantages of this simulation are that we can fix an upperbound
to the adversary’s computational power bounding the length of executions;
we can decide if the probability of unmatched executions is negligible and
hence to decide if there exist attacks such that their probabilities of success
are not negligible. Moreover, the verification of the protocol correctness is
local, step-based and not global. In this way we can focalize our attention to
a restricted set of adversarial actions and this permits to simplify the veri-
fication. This holds because the check of the step condition reduces directly
to the statement of correctness of the underlying cryptographic protocols
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and if we have considered enough level of abstractions, for each simulation
we can analyze a single cryptographic aspect: a simulation considers only
that nonces are not repeated, another considers only signs, and so on. On
the contrary, when the analysis is global, we must consider all computa-
tional aspects at the same time and this makes the correctness proof more
difficult.

We also prove several properties of the polynomially accurate simula-
tions: the first one is that it is compositional, that is given the automata A
and B, if A is polynomially accurate simulated by B, then for each context
C compatible with both A and B, it holds that A composed C is polynomi-
ally accurate simulated by B composed C. Since the polynomially accurate
simulation is compositional, we can study complex cryptographic protocols
as the composition of several automata that model the cryptographic prim-
itives, the agents, the adversary, and so on. Moreover, the compositionality
allows us to model real and ideal cryptographic primitives using automata
relating them using our new simulation, defining a library of basic results
that can be used in all other security analysis of cryptographic protocols
without having to prove again the existence of the simulation.

Another result that is related to the hierarchical verification is the ex-
ecution correspondence theorem, that extends the one of the distributed
systems context. In fact, the theorem states that if we have several au-
tomata and a chain of simulations between them, then with overwhelming
probability each execution of the first automaton is related to an execution
of the last automaton. In other words, we have that the probability that the
last automaton is not able to simulate an execution of the first one is negli-
gible. The execution correspondence theorem provides a formal justification
of the use of the hierarchical verification of the security of cryptographic
protocols: given the model of the concrete protocol, using compositionality
we replace a different primitive at each level of refinement and we are sure
that with overwhelming probability each execution of the concrete protocol
is related to an execution of the idealized protocol.

The second main contribution of this thesis is the concept of conditional
automaton that permits to safely remove events that occur with negligible
probability. Starting from a machine that is attackable with negligible prob-
ability, if we build an automaton that is conditional to the absence of these
attacks, then there exists a simulation. And this allows us to work with
the simulation relations all the time and in particular we can also prove
in a compositional way that the elimination of negligible events from an
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automaton is safe. This property is justified by the conditional automaton
theorem that states that events are negligible if and only if the identity rela-
tion is an approximated simulation from the automaton and its conditional
counterpart.

1.5 Related Work

As we have seen, when we adopt the symbolic model, we have rigorous
proofs but we do not take into account the computational aspects; on the
other hand, the cryptographic model permits to consider the computational
aspects of the protocols, but proofs are quite complex and they may be not
so rigorous. Hence it seems to be interesting to have a way to use rigour
and simplicity of symbolic model and obtain results in the cryptographic
model.

In literature there are find several papers that are focused on the proof
of the soundness of symbolic analysis. This correctness is achieved using dif-
ferent approaches: some author prefers to use a logic-like description of the
protocol and the analysis is based on the adversary’s ability to manipulate
the terms that model the exchanged messages to attack the protocol and to
induce the participants to complete the protocol with the adversary without
realizing that they are interacting with it and not with another participant.
Once the protocol is proven to be correct within the provided model, the
soundness results permit to extend the correctness to the computational
model, provided that cryptographic primitives respect the hypotheses of
the soundness theorems.

Other groups of authors base their papers directly in the computational
model and each group provides a framework that can be used to describe
the protocol. In these frameworks, the protocol, the cryptographic compo-
nents and the adversary are modelled using interactive Turing machines. To
prove the correctness of the protocol, two or more systems are considered:
one of these systems is the composition of the protocol, the adversary, and
the actual cryptographic primitives; another of these systems is the com-
position of the protocol, another adversary that can be different from the
first one, and the cryptographic primitives that ensure their correctness by
construction. A protocol is said to be correct if it is not possible to dis-
tinguish between an execution of the first system and an execution of the
second system except for a negligible set of cases. All these frameworks
provide a compositional theorem that permits to compose several proto-
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cols together or to split the analysis into several sub-problems in order to
simplify the actual correctness proof reusing previous results or focusing on
smaller components.

1.5.1 The Abadi and Rogaway Work

A first work on the correctness proofs is the one of Abadi and Rogaway [6,7]
and subsequent works [4,62,80,81]. In these papers it is provided a formal
model based on data expressions and an equivalence relation over them and
the model is used to analyze the correctness of protocols that are based on
symmetric encryption and the attacker is a passive adversary. Recall that a
passive adversary can eavesdrop messages but it can not generate, modify
or drop messages sent by participants of the protocol. Each expression
represents a message that is exchanged between participants of the security
protocol and such message is built up from bits and keys by pairing and
encryption. The equivalence relation captures when two pieces of data “look
the same” to an adversary that has no prior knowledge of the keys that
are used to generate the data. The expressions are defined using a context
free grammar and two expression are equivalent if their patterns are the
same up to key renaming. A pattern of an expression is another expression
that is the same of the original except for those encrypted components for
which the key is unknown to the adversary. An example is the following:
denote by K1, K2 two different keys, by ( · , · ) the pairing and by {v}k the
encryption of the value v under the key k. An adversary can recover the
key K1 from the expression M = ({{(0, 1)}K2}K1 , K1) and then the value
{(0, 1)}K2 but it can not obtain K2 nor (0, 1). The pattern of M is the
expression ({¤}K1 , K1) where ¤ denotes an arbitrary undecryptable value.

The computational model they provide is based on indistinguishabil-
ity [53, 112] over sets of strings. In particular, two distributions S1 and S2

are (computationally) indistinguishable if for each probabilistic polynomial
time adversary A, |p1 − p2| is negligible, where for i = 1, 2, pi is the prob-
ability that A returns 1 when it receives strings chosen accordingly to Si.
In other words, the probability that A declares that the strings are chosen
accordingly to S1 when they are actually chosen from the support of S1

is essentially the same of the probability that A declares that strings are
chosen accordingly to S1 instead of S2.

Given an encryption scheme and a security parameter η, Abadi and Ro-
gaway show how to map an expression to a string (the map is probabilistic,
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because the used encryption scheme is probabilistic) and then they prove a
soundness theorem for their formal model. Soundness theorem states that,
given two acyclic expressions and a type-0 secure encryption scheme, if
expressions are equivalent, then their maps into computational model are
indistinguishable. An encryption scheme is type-0 secure if it does not re-
veal message repetitions, which key is used in encryption and the message
length; an expression E is acyclic if it is not cyclic: an expression E is cyclic
if there exists a pair of keys K1, K2 that occur in E, such that there exist
two sub-expression E1, E2 of E such that E1 is encrypted with K1 and it
contains K2 as plain text and, similarly, E2 is encrypted with K2 and it
contains K1 as plain text. Cycles, such as encrypting a key under itself,
are a source of errors in practice; they also lead to weakness in common
computational models.

In [6, 7], authors provide a counter example to show that formal model
is not complete. Such example is based on the fact that it is possible to
generate two different messages that are mapped outside the set of input
messages of encryption scheme and hence they are both consider as invalid
messages and they are associated to the same string set.

Other papers [59, 62, 80, 81] extend the result of Abadi and Rogaway in
several ways: they consider active adversaries instead of passive ones; they
provide a more meaningful counter example and a limited completeness
theorem for the logic of Abadi and Rogaway. [80] presents and proves the
completeness theorem under the hypothesis of acyclic expressions and type-
0 confusion free encryption scheme: an encryption scheme is confusion free
if for each pair of keys k1, k2, if c is the ciphertext obtained encrypting the
message m under k1 and m′ is the result of decrypting c using k2, then the
probability that m′ is not a failure message is negligible. Other papers [62,
81] consider active adversaries and prove that the symbolic model is a safe
abstraction of the computational one using hypothesis on the cryptographic
primitives that are less restrictive than in [80]. [4] extends [6] defining a more
complex language that considers a system of programs that communicate
synchronously and hence proving a similar soundness theorem for the new
language.

1.5.2 The Backes and Pfitzmann Work

A second work that considers the security analysis of cryptographic pro-
tocols and the soundness of the symbolic approach with respect to the
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computational approach is the one of Backes and Pfitzmann. The authors
have defined a general system model for cryptographic protocols, includ-
ing a model of what adversaries and honest users can do [8, 9, 91, 92]. The
model (founded on [94]) is based on reactive systems. A reactive system
is a probabilistic extended finite machine which input can change during
execution. Such machines are similar to the probabilistic I/O automata of
Segala [102] but input actions can be ignored. To consider computational
aspects, reactive systems are implemented with interactive probabilistic
Turing Machines [49].

The standard way to prove the correctness of a protocol is the following:
consider an adversary, a set of honest users and at least two reactive sys-
tems. The adversary and the honest users can interact arbitrarily and both
communicate with one of the reactive systems. In particular, one of the
reactive systems is a real system that uses actual cryptographic primitives
and another is an ideal system that ensures the correctness of cryptographic
primitives by definition. The verification is performed checking if the com-
position of adversary, honest users and the real system is as secure as the
composition of another adversary, honest users and the ideal system.

The “as secure as” relation is also said reactive simulatability [95, 97]
and it is defined as follows: take two systems S1, S2 with the same set H

of honest users, an adversary A1 for S1 and consider which attacks A1 can
perform against H in S1. S1 is as secure as S2 if there exists A2 for S2 such
that A2 can perform the same attacks of A1 against H essentially with the
same probability. This means that honest users are not able to distinguish
when they are interacting with the first system or with the second system,
except for a negligible set of cases.

The model is defined for both synchronous [95] and asynchronous [18,96,
97] cases and main results are the reactive simulatability and a composition
theorem [18], that can be used to replace a sub-system A with another
system B and, if A is as secure as B, the overall system does not modify
its security properties.

Authors have used the model to verify security properties of protocols
like integrity [11, 95], liveness [15, 16] and secrecy [13, 14] and they have
also developed a cryptographic library [10,12,19] in a Dolev-Yao style that
can be used to prove the correctness of protocols like the one of Needham,
Schroeder and Lowe [71] and the Otway-Rees protocol [89] for efficient
mutual authentication (via a mutually trusted third party).
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1.5.3 The Canetti Work

A third work that provides a tool to verify a cryptographic protocol is
the one of Canetti. The main paper is [31] (together with the preliminary
technical report [30]) that is extended by [36–38, 61, 88]. The Universally
Composable (UC) security framework of Canetti is based on the same idea
of the model of Backes and Pfitzmann: define two systems, one ideal and
one real, and show that they are not distinguishable.

In particular, first it is formulated a model representing the process of
protocol execution in the real-life. This is called the real-life model. Next, in
order to capture the security requirements of a given task, it is formulated
an ideal process for carrying out the task. It is then possible to say that
a protocol securely realizes the task at hand if running the protocol in the
real-life model amounts to “emulating” the ideal process for that task.

To capture the computational aspects of a protocol, the real-life model
consists of a set of Interacting Turing Machines (ITMs), each one repre-
senting a party involved in the protocol, plus an ITM that plays the role
of the adversary. These machines are composed with another ITM that
represents the environment that is whatever is external to the current pro-
tocol execution, like other protocols runs, other adversaries, etc. Security is
proved by showing that the environment is not able not distinguish when
it is composed with the adversary and the real system or when it is com-
posed with another adversary and the ideal system. Multiple instances of
the modelled protocol can run in parallel and the environment can inter-
act with other parties not only at the beginning of the execution, but also
during the protocol run.

The main result of this framework, that justifies the Universally Com-
posable name, is the universal composition theorem. Standard composition
theorems permit to decompose a complex task into two or more sub-tasks
that are usually simpler to design and analyze. This means that once it is
designed the protocols that securely realizes the sub-tasks, it is possible to
provide a protocol that implements the given task assuming that the evalu-
ation of the sub-task is possible. Finally, the composition theorem permits
to argue that the protocol composed by the already-designed sub-protocols
securely realizes the given task. The composition theorem provided in the
UC security framework is used as a tool for gaining confidence about the
level of security of a protocol with respect to arbitrary environments. In-
deed, protocols that satisfy a UC definition are ensured to maintain their
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security within each protocol environment we can consider, known or un-
known.

1.5.4 The Warinschi Work

Besides the previous works, in literature we find authors that provide
soundness results that permit to relate the symbolic and the computa-
tional model. These soundness results are very useful in the analysis of the
correctness of a protocol since they permit to study the protocol in the
symbolic model and then they permit to extend the results to the compu-
tational case, provided that cryptographic primitives such as encryptions
and signatures satisfy cryptographic assumptions like unforgeability of sig-
natures or indistinguishability of encryption. We can find such results in
the papers of Warinschi et al. [40–42]. In these works, authors define a lan-
guage that is used to describe the protocol; then two models are provided:
a formal execution one where messages are terms of an algebra, crypto-
graphic primitives are correct by definition, and the attacker is a Dolev-Yao
style adversary [46]; the second model is a concrete execution model where
messages are bitstrings, cryptographic primitives satisfy standard require-
ments, and the attacker is probabilistic polynomial time adversary that
can generate, intercept, drop and modify messages. To prove the sound-
ness theorem, they consider an execution of the protocol in the concrete
model and then they show that with overwhelming probability it is pos-
sible to map such execution into a symbolic one and that such symbolic
execution is valid, that is, a symbolic adversary is able to generate it per-
forming only allowed operations on the terms that represent the exchanged
messages. The soundness results permit to relate several properties of the
protocols, such as trace properties like entity and message authentication,
and secrecy properties of nonces. Related work that obtain similar result
are, for example, [6,7,17,67,81]. The main differences between these works
are on the type of adversary (passive in [6, 7] and active in the other pa-
pers), the number of protocol session (priorly fixed in [67]), and the kind
of cryptographic primitives (symmetric encryption [6, 7, 17, 67], public key
encryption [40–42,81], signatures [41,42], and hash functions [40]).
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1.5.5 Other Work

Other papers that provide tools to establish the correctness of crypto-
graphic protocols are based on strand spaces, on a process calculus that
is a variant of CCS or on probabilistic automata.

Strand spaces [58,110,111] are collections of strands, which are sequences
of events that represent either an execution of a legitimate party of a pro-
tocol or a sequence of actions of the adversary. Strands are used to model
messages that each participant expects or wants to send during a protocol
run; an adversary performs a successful attack when it is able to gener-
ate a new, fresh message that leads a protocol participant to complete its
strand. [58] presents a way to fix a security parameter to respect a given
bound for the probability of successful attacks. Computational aspects are
considered as they are, in an ordinary cryptographic point of view, not
inside the strand spaces model.

In the process calculus defined by Mitchell et al. [68, 69, 75, 84, 86] they
consider only expressions that are probabilistic polynomial time in the sense
that evaluation of each process expression halts in probabilistic polynomial
time. They define a probabilistic bisimulation to relate expressions, bisim-
ulation based on an observational equivalence that is a standard relation
from programming language theory that involves quantifying over all pos-
sible environments that might interact with the protocol. The probabilistic
bisimulation is used to establish a soundness result for an equational proof
system based on such observational equivalences. Protocol computational
aspects are captured directly in the definition of the calculus.

The last approach we consider is the one based on Probabilistic Au-
tomata. The main group that works with probabilistic automata is com-
posed by Canetti et al. [32–35]. They model the protocol participants as
probabilistic I/O automata [72,73,102,106] and the relations between them
are obtained using simulation relations [74]. Within the framework they
propose, they formalize the notion of “implementing a specification” along
the lines of the notion of “realizing an ideal functionality” within the uni-
versally composable security framework of Canetti [30]. In particular, their
idea is to assert the security of a protocol directly in a concrete model with-
out abstracting the cryptographic primitives (unlike the Dolev-Yao based
models). The security of a protocol usually holds only when adversaries
are computationally bounded machines and only under computational as-
sumptions (as happens in cryptographic models). Then, correctness of a
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protocol is proved establishing a simulation between a real adversary and
an automaton that ensures the ideal functionality by construction.

1.6 Overview of the Thesis

This thesis is structured as follows. In Chapter 2 we introduce some prelim-
inary notions about mathematical background, probabilistic automata and
cryptography that we will use throughout the thesis. In particular, we recall
the concepts that are used in probability theory like measurable spaces and
functions and probability measures; for probabilistic automata, we recall
the definition of the automata, the parallel composition and the simulation
relation, that uses the concept of lifting of relations to probability mea-
sure; finally, we recall some cryptographic primitives like oracle machines,
nonces, (pseudo-)random functions, message authentication codes, public
key encryption schemes and public key signature schemes.

In Chapter 3 we introduce a new simulation relation, the polynomially
accurate simulation. We define such simulation starting from the ordinary
simulation between probabilistic automata and modifying it to take into ac-
count the lengths of executions, the fact that in the computational model
the adversary, the participants and the cryptographic primitives are pa-
rameterized on a security parameter, and the fact that it is possible to
perform some successful attack but the probability of such attack should
be negligible.

In Chapter 4 we consider the relation that exists between an automaton
A and its variants. In particular, we focus our attention on the automata
obtained from A adding some history variable and extending its set of
external actions under the hypothesis that the effect of the new actions
does not interfere with the original actions. Then we define the notion of
G-conditional automaton A|G that is the automaton obtained from A in
the following way: each transition of A|G is a transition of A which target
measure is conditioned to reach states in G. This means that the probability
to reach states of A|G that belong to B = S\G is zero. Finally, we prove our
Conditional Automaton Theorem: A is polynomially accurate simulated by
A|G if and only if the probability to reach states in B is negligible.

In Chapter 5 we analyze the polynomially accurate simulation pointing
out some limitations it presents. The first limitation is that we are not
sure that it is transitive: the naive way to define transitivity does not lead
to a polynomially accurate simulation but anyway we are able to prove
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the Execution Correspondence Theorem that allows us to relate executions
of a family of automata to executions of another one whenever we are
able to find a sequence of intermediate families of automata starting with
the first family and ending with the last one that are related by a chain
of simulations. The second limitation is that the polynomially accurate
simulation is not compositional. We overcome this problem defining a new
polynomially accurate simulation, based on states instead of on execution,
that implies the approximated simulation defined on executions and that is
compositional. We are able to prove the two main theorems of polynomially
accurate simulation also for this new notion of simulation, so we can use the
first definition or the second one according to the result we want to achieve.
Finally, we extend the simulation based on states to the weak case, simply
replacing the matching combined transition with a weak bounded combined
transition.

In Chapter 6 we apply the two notions of polynomially accurate sim-
ulations to the analysis of the cryptographic primitives. In particular, we
show how the real implementation of the primitive is polynomially accu-
rate simulated by its ideal counterpart. We obtain such simulations starting
from the real implementation, modifying it by adding history variables and
actions and taking the G-conditional automaton. If we look at this chain
of automata and simulations, then we can observe that the we use the ar-
gumentation about the properties of the cryptographic primitive such as
negligibility of repeated nonces and unforgeability of signatures only when
we consider the G-conditional automaton, where we define the set B = S\G
as the set of states where an attack occur, that is, a nonce is repeated or a
signature is forged.

In Chapter 7 we use the results on cryptographic primitives to study
the security of the MAP1 protocol of Bellare and Rogaway [22]. In this
case study, we provide two proofs that involve the polynomially accurate
simulation: the first one allows us to replace the real nonce generator with
its ideal counterpart and that we perform using previous results; the second
one involves the message authentication codes and we directly apply the
definition of polynomially accurate simulation to point out that the nega-
tion of the step condition (that is the non-existence of the simulation) leads
to the negation of the security property of the cryptographic primitive.

In Chapter 8 we consider a more complex case study: we recast the
soundness result of Cortier and Warinschi [41] and we show how polyno-
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mially accurate simulations can be used as a sanity check tool for existing
proofs.

Finally, in Chapter 9 we sum up the major contributions of the thesis
and we briefly describe future works that we would like to explore.
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Preliminaries

In this chapter we recall some basic concepts that are used inside this the-
sis. In particular, we recall concepts from Probability Theory, Probabilistic
Automata and Cryptography.

2.1 Probability Theory

2.1.1 Measurable Spaces

Consider a set Ω. A σ-field on Ω is a set F ⊆ 2Ω that includes Ω and
is closed under complement and countable union. A measurable space is a
pair (Ω,F) where Ω is a set, also called sample space, and F is a σ-field
over Ω. A measurable space (Ω,F) is called discrete if F = 2Ω.

2.1.2 Probability Measures and Spaces

A measure over a measurable space (Ω,F) is a function ρ : F → R>0 such
that, for each countable collection {Ωi}i∈I of pairwise disjoint elements of
F , ρ(∪IΩi) =

∑
I ρ(Ωi). A probability measure over a measurable space

(Ω,F) is a measure ρ over (Ω,F) such that ρ(Ω) = 1. A sub-probability
measure over (Ω,F) is a measure over (Ω,F) such that ρ(Ω) 6 1. A mea-
sure over a discrete measurable space (Ω, 2Ω) is called a discrete measure
over Ω. The support of a measure ρ over (Ω,F), denoted by Supp(ρ), is
the set {ω ∈ Ω | ρ(ω) > 0}.

A probability space is a triple (Ω,F , ρ), where (Ω,F) is a measurable
space and ρ is a probability measure on (Ω,F).

Given a set X, denote by Disc(X) the set of discrete probability mea-
sures over X, and by SubDisc(X) the set of discrete sub-probability mea-
sures over X. We call a discrete probability measure a Dirac measure if it
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assigns measure 1 to exactly one object x (denote this measure by δx). We
also call Dirac a sub-probability measure that assigns measure 0 to all ob-
jects. In the sequel discrete sub-probability measures are used to describe
progress. If the measure of a sample space is not 1, then it means that with
some non-zero probability the system does not progress.

Given a set X, a set G ⊆ X, and a measure ρ ∈ Disc(X) such that
ρ(G) > 0, we call the measure ρ′ ∈ Disc(X) the G-conditional measure of
ρ, denoted by ρ|G, if for each x ∈ X,

ρ′(x) =

{
ρ(x)/ρ(G) if x ∈ Supp(ρ) ∩G

0 otherwise

2.1.3 Measurable Functions and Image Measures

Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. A function f : Ω1 →
Ω2 is said to be a measurable function from (Ω1,F1) to (Ω2,F2) if the
inverse image under f of any element of F2 is an element of F1. In this
case, given a measure ρ on (Ω1,F1) it is possible to define a measure on
(Ω2,F2) via f , called the image measure of ρ under f and denoted by f(ρ),
as follows: for each X ∈ F2, f(ρ)(X) = ρ(f−1(X)). In other words, the
measure of X in F2 is the measure in F1 of those elements whose f -image
is in X. The measurability of f ensures that f(ρ) is indeed a well defined
measure.

2.2 Relations and Lifting of a Relation to Measures

Let R1 be a relation from a set X to a set Y and R2 be a relation from
a set Y to a set Z. The composition of R1 and R2, denoted by R1 ◦ R2,
is a relation from X to Z defined as R1 ◦ R2= {(x, z) | ∃y ∈ Y.(x, y) ∈R1

∧(y, z) ∈R2}. The extension to n relation is straightforward: given n re-
lations R1, . . . ,Rn such that for each 1 6 i 6 n, Ri is a relation from a
set Xi to Xi+1, the relation R1 ◦ . . . ◦ Rn is the relation from X1 to Xn+1

defined as (. . . ((R1 ◦ R2)◦ R3) ◦ . . . )◦ Rn.
Let R1 be a relation from W to X and R2 be a relation from Y to

Z. The cross-product of R1 and R2, denoted by R1 × R2, is the relation
R⊆ (W ×Y )× (X ×Z) such that (w, y) R (x, z) if and only if w R1 x and
y R2 z.
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Let R be a relation from a set X to a set Y . The lifting of R, denoted
by L(R) [105], is a relation from Disc(X) to Disc(Y ) such that ρx L(R) ρy

if and only if there exists a weighting function w : X ×Y → [0, 1] such that

1. w(u, v) > 0 implies u R v,
2.

∑
u∈X w(u, v) = ρy(v), and

3.
∑

v∈Y w(u, v) = ρx(u).

An alternative definition of lifting given in a more probabilistic style
states that ρ1 L(R) ρ2 if and only if there exists a joint measure w with
marginal measures ρ1 and ρ2 such that the support of w is included in R.

Note that if R is an equivalence relation, then ρ1 L(R) ρ2 if and only
if, for each equivalence class C of R, ρ1(C) = ρ2(C).

The lifting of a relations has some interesting properties:

Property 2.1. Let R and S be two relations.

1. x R y if and only if δx L(R) δy.
2. R= ∅ if and only if L(R)= ∅.
3. If R⊆S, then L(R)⊆L(S).
4. If R is reflexive, then L(R) is reflexive.
5. If R is symmetric, then L(R) is symmetric.
6. Let ρ1, ρ2, ρ3 be three probability measures. If ρ1 L(R) ρ2 and ρ2 L(S)

ρ3, then ρ1 L(R ◦ S) ρ3.
7. If R is transitive, then L(R) is transitive.
8. Let ρx, ρy, ρz be three probability measures. If ρx L(R) ρy, then ρx ×

ρz L(R × id) ρy × ρz.

Proof. 1. Let R be a relation from X to Y .
(⇒) Define w : X × Y → [0, 1] as: for each u ∈ X, v ∈ Y ,

w(u, v) =

{
1 if u = x and v = y,

0 otherwise.

w is a weighing function for δx and δy. In fact:
– w(u, v) > 0 implies that u = x and v = y and thus (u, v) =

(x, y) ∈R;
– for each u ∈ X,

∑
v∈Y

w(u, v) =

{
1 if u = x

0 otherwise
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By definition of Dirac measure, we have that

δx(u) =

{
1 if u = x

0 otherwise

and thus
∑

v∈Y w(u, v) = δx(u);
– for each v ∈ Y ,

∑
u∈X

w(u, v) =

{
1 if v = y

0 otherwise

By definition of Dirac measure, we have that

δy(v) =

{
1 if v = y

0 otherwise

and thus
∑

u∈X w(u, v) = δy(v).
(⇐) δx L(R) δy implies that there exists w : X × Y → [0, 1] such that

– for each u ∈ X, v ∈ Y , w(u, v) > 0 =⇒ u R v;
– for each u ∈ X, δx(u) =

∑
v∈Y w(u, v); and

– for each v ∈ Y , δy(v) =
∑

u∈X w(u, v).
For each u 6= x, we have that δx(u) = 0 and thus for each v ∈ Y ,
w(u, v) = 0. So, only for u = x we can have w(x, v) > 0. For each
v 6= y, we have that δy(v) = 0 and thus for each u ∈ X, w(u, v) = 0.
This implies that only for u = x and v = y we have w(x, y) > 0 and
thus x R y.

2. Let R be a relation from X to Y .
(⇒) Suppose, for the sake of contradiction, that R= ∅ while L(R) 6= ∅.

L(R) 6= ∅ implies that there exist measures ρx ∈ Disc(X) and ρy ∈
Disc(Y ) such that ρx L(R) ρy and thus there exists a weighting
function w : X × Y → [0, 1]. Since ρx(X) = 1, then there exists
u ∈ X such that ρx(u) > 0. By condition 3 of lifting, we have that
ρx(u) =

∑
v∈Y w(u, v) > 0 and thus there exists v ∈ Y such that

w(u, v) > 0. By condition 1 of lifting, we have that w(u, v) > 0
implies (u, v) ∈R. This contradicts the hypothesis R= ∅ and thus
R= ∅ =⇒ L(R)= ∅.

(⇐) We prove R6= ∅ =⇒ L(R)6= ∅ that is equivalent to L(R)= ∅ =⇒
R= ∅. So, suppose that R6= ∅. This implies that there exist x ∈ X,
y ∈ Y such that (x, y) ∈R. By Property 1, it follows that δx L(R) δy

and thus L(R) 6= ∅.
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3. Let R,S be two relations from X to Y such that R⊆S. Let ρx ∈
Disc(X) and ρy ∈ Disc(Y ) be two measures such that ρx L(R) ρy.
This implies that there exists w : X × Y → [0, 1] such that
– for each u ∈ X, v ∈ Y , w(u, v) > 0 =⇒ (u, v) ∈R;
– for each u ∈ X, δx(u) =

∑
v∈Y w(u, v); and

– for each v ∈ Y , δy(v) =
∑

u∈X w(u, v).
For each u ∈ X and v ∈ Y , if w(u, v) > 0 then (u, v) ∈R⊆S and thus
(u, v) ∈S. This implies that w is also a weighting function with respect
to S and thus ρx L(S) ρy. This means that for each ρx ∈ Disc(X)
and ρy ∈ Disc(Y ), if (ρx, ρy) ∈L(R) then (ρx, ρy) ∈L(S) and thus
L(R)⊆L(S).

4. Let R be a reflexive relation on X and ρ ∈ Disc(X) be a measure.
Define w : X ×X → [0, 1] as

w(u, v) =

{
ρ(u) if v = u,

0 otherwise.

w is a weighting function:
– for each u, v ∈ X, w(u, v) > 0 implies that v = u and since R is

reflexive, we have that (u, u) ∈R;
– for each u ∈ X,

∑
v∈X w(u, v) = w(u, u) = ρ(u);

– for each v ∈ X,
∑

u∈X w(u, v) = w(v, v) = ρ(v).
5. Let R be a symmetric relation on X and ρ1, ρ2 ∈ Disc(X) be two

measures such that ρ1 L(R) ρ2. This means that there exists w : X ×
X → [0, 1] such that
– for each u ∈ X, v ∈ Y , w(u, v) > 0 =⇒ (u, v) ∈R;
– for each u ∈ X,

∑
v∈X w(u, v) = ρ1(u); and

– for each v ∈ X,
∑

u∈X w(u, v) = ρ2(v).
Define w′ : X ×X → [0, 1] as w′(u, v) = w(v, u) w′ is a weighting func-
tion:
– for each u, v ∈ X, w′(u, v) > 0 implies that w(v, u) > 0, thus v R u

and since R is symmetric, we have that u R v;
– for each u ∈ X,

∑
v∈X w′(u, v) =

∑
v∈X w(v, u) = ρ2(u);

– for each v ∈ X,
∑

u∈X w′(u, v) =
∑

u∈X w(v, u) = ρ1(v).
This implies that ρ2 L(R) ρ1.

6. Let R, S be two relations from X to Y and from Y to Z, respectively.
Let ρx ∈ Disc(X), ρy ∈ Disc(Y ), ρz ∈ Disc(Z) be three probability
measures such that ρx L(R) ρy and ρy L(S) ρz. This implies that there
exist wr : X × Y → [0, 1] and ws : Y × Z → [0, 1] such that
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– for each u ∈ X, v ∈ Y , wr(u, v) > 0 =⇒ (u, v) ∈R;
– for each u ∈ X,

∑
v∈Y wr(u, v) = ρx(u); and

– for each v ∈ Y ,
∑

u∈X wr(u, v) = ρy(v).
and
– for each u ∈ Y , v ∈ Z, ws(u, v) > 0 =⇒ (u, v) ∈S;
– for each u ∈ Y ,

∑
v∈Z ws(u, v) = ρy(u); and

– for each v ∈ Z,
∑

u∈Y ws(u, v) = ρz(v).

Define wrs : X × Z → [0, 1] as wrs(u, v) =
∑

t∈Y,ρy(t)6=0

wr(u, t)ws(t, v)
ρy(t)

.

wrs is a weighting function:
– for each u ∈ X and v ∈ Z, since wrs(u, v) > 0 we have that∑

t∈Y,ρy(t)6=0

wr(u, t)ws(t, v)
ρy(t)

> 0 and thus there exists q ∈ Y such

that ρy(q) 6= 0 and
wr(u, q)ws(q, v)

ρy(q)
> 0. Since ρy is a probability

measure, it follows that ρy(q) ° 0 and thus wr(u, q)ws(q, v) > 0 that
implies wr(u, q) > 0 and ws(q, v) > 0. Hence we have that (u, q) ∈R
and (q, v) ∈S and thus (u, v) ∈R ◦ S;

– for each u ∈ X,∑
v∈Z

wrs(u, v) =
∑
v∈Z

∑
t∈Y,ρy(t)6=0

wr(u, t)ws(t, v)
ρy(t)

=
∑

t∈Y,ρy(t) 6=0

∑
v∈Z

wr(u, t)ws(t, v)
ρy(t)

=
∑

t∈Y,ρy(t) 6=0

wr(u, t)
ρy(t)

∑
v∈Z

ws(t, v)

=
∑

t∈Y,ρy(t) 6=0

wr(u, t)
ρy(t)

ρy(t)

=
∑

t∈Y,ρy(t)6=0

wr(u, t)

=
∑
t∈Y

wr(u, t)

= ρx(u)

We can remove the condition on ρy(t) 6= 0 from the summa-
tion since by definition of weighting function, if ρy(t) = 0, then∑

u∈X wr(u, t) = 0 and thus for each u ∈ X, wr(u, t) = 0;
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– for each v ∈ Z,∑
u∈X

wrs(u, v) =
∑
u∈X

∑
t∈Y,ρy(t)6=0

wr(u, t)ws(t, v)
ρy(t)

=
∑

t∈Y,ρy(t)6=0

∑
u∈X

wr(u, t)ws(t, v)
ρy(t)

=
∑

t∈Y,ρy(t)6=0

ws(t, v)
ρy(t)

∑
u∈X

wr(u, t)

=
∑

t∈Y,ρy(t)6=0

ws(t, v)
ρy(t)

ρy(t)

=
∑

t∈Y,ρy(t)6=0

ws(t, v)

=
∑
t∈Y

ws(t, v)

= ρz(v)

We can remove the condition on ρy(t) 6= 0 from the sum since by
definition of weighting function, if ρy(t) = 0, then

∑
v∈Z ws(t, v) = 0

and thus for each v ∈ Z, ws(t, v) = 0.
This implies that wrs is a weighting function from ρx to ρz and thus
ρx L(R ◦ S) ρz.

7. Let R be a transitive relation on X and let ρ1, ρ2, ρ3 ∈ Disc(X) be
three probability measures such that ρ1 L(R) ρ2 and ρ2 L(R) ρ3. By
the Property 6, we have that ρ1 L(R ◦ R) ρ1. If R ◦ R⊆R, then by
Property 3 we have that ρ1 L(R) ρ3, as required. So, let x, z ∈ X be two
states such that (x, z) ∈R ◦ R. By definition of composition, it follows
that there exists y ∈ X such that (x, y) ∈R and (y, z) ∈R. Since R is
transitive, we have that (x, z) ∈R and thus R ◦ R⊆R.

8. Let R be a relation from X to Y and id be the identity relation on Z.
Let ρx, ρy, ρz be three probability measures in Disc(X), Disc(Y ), and
Disc(Z), respectively. Suppose that ρx L(R) ρy. This implies that there
exists a weighting function w : X × Y → [0, 1] such that
– for each u ∈ X, v ∈ Y , w(u, v) > 0 implies u R v,
– for each u ∈ X,

∑
v∈Y w(u, v) = ρx(u), and

– for each v ∈ Y ,
∑

u∈X w(u, v) = ρy(v).
Let w′ : (X × Z)× (Y × Z) → [0, 1] be a function defined as:
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w′((u, s), (v, t)) =

{
w(u, v)ρz(s) if u R v and s id t

0 otherwise

w′ is a weighting function from ρx × ρz to ρy × ρz. In fact,
– for each (u, s) ∈ X × Z, (v, t) ∈ Y × Z, w′((u, s), (v, t)) > 0 implies

u R v and s id t and thus (u, s) R × id (v, t),
– for each (u, s) ∈ X × Z,∑

(v,t)∈Y×Z

w′((u, s), (v, t)) =
∑

(v,t)∈Y×Z,uRv,sidt

w(u, v)ρz(s)

= ρz(s)
∑

v∈Y,uRv

w(u, v)

= ρz(s)
∑
v∈Y

w(u, v)

= ρz(s)ρx(u)

= ρx × ρz(u, s)

– for each (v, t) ∈ Y × Z,∑
(u,s)∈X×Z

w′((u, s), (v, t)) =
∑

(u,s)∈X×Z,uRv,sidt

w(u, v)ρz(s)

= ρz(t)
∑

u∈X,uRv

w(u, v)

= ρz(t)
∑
u∈X

w(u, v)

= ρz(t)ρy(v)

= ρy × ρz(v, t)

ut

2.3 Compatible Mappings

Let σ : X → Y be a partial mapping function. We denote by Dom(σ) the
set of all x ∈ X such that σ(x) is defined.

Two partial mapping functions σ : X → Y and σ′ : X ′ → Y ′ are com-
patible if and only if for each x ∈ Dom(σ) ∩Dom(σ′), σ(x) = σ′(x).

In other words, two mappings are compatible if they assign the same
value to the common points.
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2.4 Probabilistic I/O Automata

A Probabilistic Automaton is a tuple (S, s̄, A,D) where S is a set of states,
s̄ ∈ S is the start state, A is a set of actions, and D ⊆ S × A× Disc(S) is
a transition relation. The set of actions A is further partitioned into three
sets I, O, H of input, output and internal (hidden) actions, respectively.
We call the set E = I ∪O the set of external actions.

Throughout the thesis we let A range over probabilistic automata, q, r, s

range over states, a, b, c range over actions, and µ range over discrete mea-
sures over states. We also denote the generic elements of a probabilistic
automaton A by S, s̄, A, D, and we propagate primes and indices when
necessary. Thus, for example, the probabilistic automaton A′i has states S′i,
start state s̄′i, actions A′

i and transition relation D′
i. We also denote the

start state of a probabilistic automaton A, B, . . . by ā, b̄, . . . , respectively.
An element of a transition relation D is called a transition or a step.

A transition tr = (s, a, µ), denoted alternatively by s
a−→ µ, is said to

leave from state s, denoted also by src(tr), to be labeled by a, denoted by
action(tr), and to lead to µ, denoted by trg(tr) or µtr . We also say that
state s enables action a, that action a is enabled from s, and that (s, a, µ)
is enabled from s.

Given an action a, we denote by D(a) the set of all transitions labeled
by a, that is D(a) = {tr ∈| action(tr) = a}.

Given a state s and an action a, we say that there exists a com-
bined transition s

a−→C µ if there exists a countable family of transi-
tions {(s, a, µi)}i∈I of A and a family of probabilities {pi}i∈I such that∑

i∈I pi = 1 and µ =
∑

i∈I piµi

Let A be a probabilistic automaton and let µ ∈ Disc(S). For each
s ∈ Supp(µ), let s

a−→ µs be a combined transition of A. Let µ′ be∑
s∈Supp(µ) µ(s)µs. Then µ

a−→ µ′ is called a hyper-transition of A.
We adopt the notation used by Lynch in [72] to describe automata (see,

for example, the coin flipper automaton of Figure 2.1). Each automaton is
described by three parts: signature, states, and transitions. The signature
lists the actions of the automaton, partitioned into input, output, and inter-
nal. Each action has a name, a sequence of parameters, and a set of values
each parameter can assume. The states are described by a set of variables.
Each variable assumes values in a given set, and the start state is identi-
fied by the initial value of each variable. Transitions describe the transition
relation of the automaton. We provide a transition for each action of the
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Coin Flipper

Signature:

Output:

coin value(v), v ∈ {H, T}
Input:

flip

Internal:

coin flip

State:

value ∈ {H, T} ∪ {F,⊥}, initially ⊥

Transitions:

Input flip

Effect:

value := F

Internal coin flip

Precondition:

value = F

Effect:

value := c where c ∈R {H, T}

Output coin value(v)

Precondition:

v = value

Effect:

value := ⊥

Fig. 2.1. A coin flipper

signature: it contains the kind of the action (input, output, or internal),
the name and the effect. Output and internal actions have also a precon-
dition that specifies when they are enabled. Input actions are assumed to
be always enabled, and thus no precondition is specified for them. The ef-
fect characterizes the states that are reached performing the transition: if
we consider the action flip of the coin flipper of Figure 2.1, the next state
is unique and it is the one with value = F . On the contrary, performing
a coin flip action, we can reach both states identified by value = T and
value = H with probability one half. In particular, we use the symbol ∈
to denote the fact that a value is chosen arbitrarily from some set, and we
use the symbol ∈R to denote the fact that a value is chosen randomly and
uniformly from a finite set.
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2.4.1 Executions, Traces and Schedulers

An execution fragment of a probabilistic automaton A is a sequence of
alternating states and actions, α = s0a1s1 . . . , starting with a state and,
if the sequence is finite, ending with a state, such that, for each non final
index i, there exists a transition (si, ai+1, µi+1) in D with µi+1(si+1) > 0.
We denote the first state s0 of α by fstate(α). We say that an execution
fragment is finite if it is a finite sequence, and we denote the last state
of a finite execution fragment α by lstate(α). We define the length of an
execution fragment α, denoted by |α|, to be the number of occurrences of
actions in α. The trace of an execution fragment α, denoted by trace(α),
is the subsequence of external actions that occur in α. An execution of
a probabilistic automaton A is an execution fragment of A whose first
state is s̄. We denote by Frags∗(A) the set of finite execution fragments
of A, by Frags(A) the set of finite or infinite execution fragments, and
by Execs∗(A), Execs(A) the corresponding sets of executions. We let ν, υ

range over discrete probability measures over finite executions of A, that
is, ν, υ ∈ Disc(Execs∗(A)). A scheduler for a probabilistic automaton A is
a function σ : Frags∗(A) → SubDisc(D) such that, for each finite execution
fragment α and each transition tr with σ(α)(tr) > 0, src(tr) = lstate(α).
A scheduler σ is deterministic if, for each finite execution fragment α, σ(α)
is a Dirac sub-measure.

A scheduler σ can be used to describe the result of resolving nondeter-
minism starting from some state s. Specifically, a scheduler σ and a state
s induce a probability measure εσ,s over execution fragments as follows.
The basic measurable events are the cones of finite execution fragments,
where the cone of a finite execution fragment α, denoted by Cα, is the
set {α′ ∈ Frags(A) | α 6 α′}, where 6 is the standard prefix preorder
on sequences. The probability εσ,s of a cone Cα is defined recursively as
follows:

εσ,s(Cα) =


0 if α = q with q 6= s

1 if α = s

εσ,s(Cα′)
∑

tr∈D(a) σ(α)(tr)µtr (q) if α = α′aq

Standard measure theoretical arguments ensure that εσ,s extends uniquely
to the σ-field generated by cones. We call the measure εσ,s a probabilistic
execution fragment of A and we say that it is generated by σ from s. If s

is the start state of A, then we say that εσ,s is a probabilistic execution.
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2.4.2 Parallel Composition

Given two probabilistic automata, it is possible to define their composition,
that is the automaton that behaves as the two automata when they run in
parallel. We adopt the definition of [102], where automata are synchronized
on their common actions.

Two probabilistic automata A1, A2 are compatible if H1 ∩ A2 = ∅ and
A1∩H2 = ∅, that is, the internal actions of each automaton are not actions
of the other automaton.

The composition of two compatible probabilistic automata A1, A2, de-
noted by A1||A2, is a probabilistic automaton A where

– S = S1 × S2,
– s̄ = (s̄1, s̄2),
– E = E1 ∪ E2, H = H1 ∪H2, and
– D is defined as follows: ((s1, s2), a, µ1 × µ2) ∈ D if and only if, for each

i ∈ {1, 2},
– either a ∈ Ai and (si, a, µi) ∈ Di,
– or a /∈ Ai and µi = δsi ,
where µ1 × µ2((s′1, s

′
2)) is defined as µ1(s′1)µ2(s′2).

Given a probabilistic automaton A, we say that the probabilistic au-
tomaton A′ is a context for A if A and A′ are compatible.

Given the composed automaton A1||A2 and the measure µ ∈ Disc(S1×
S2), we denote by µdA1 and µdA2 the two measures on S1 and S2, respec-
tively, defined as:

• for each s1 ∈ S1, µdA1(s1) =
∑

s2∈S2
µ(s1, s2);

• for each s2 ∈ S2, µdA2(s1) =
∑

s1∈S1
µ(s1, s2).

2.4.3 Action Hiding

Given an automaton, it is possible to hide some of its external actions from
the environment. This permits to make hidden actions private and available
only for specific automata. For example, consider a dice roller that models
the following algorithm:

1. Flip a coin; let s the result.
2. If s = H, then roll a fair dice,
3. Otherwise, roll an unfair dice.
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with the constraint that the value s is not revealed to the environment.
The dice roller can either flip the coin internally or require it to the coin

flipper. In the latter case, we need to keep secret the communication of s

between the two automata. If we want to comply to the given constraint,
then we must hide the coin value(v) action, otherwise the value of the coin
is revealed to each automaton that provides the action coin value(v).

We adopt the definition of [102]: let A be a probabilistic automaton
with external actions EA and internal actions HA. Let I be a set of actions.
Then HideI(A) is defined to be the probabilistic automaton B that is the
same as A except that EB = EA \ I and HB = HA ∪ I. That is, the actions
in the set I are hidden from the external environment.

2.4.4 Simulation and Weak Simulation

A simulation from a probabilistic automaton A1 to probabilistic automaton
A2 is a relation R from S1 to S2 such that

– s̄1 R s̄2 and
– for each pair (s1, s2) ∈R, if (s1, a, µ1) ∈ D1, then there exists (s2, a, µ2) ∈

D2 such that µ1 L(R) µ2.

We say that A1 is simulated by A2, denoted by A1 ¹ A2, if there exists
a simulation from A1 to A2.

Before defining the notion of weak simulation, we need to introduce the
weak transition: given a probabilistic automaton A, we say that there is a
weak combined transition from a state s to a measure over states µ labeled
by an action a, denoted by s

a=⇒Cµ, if there is a scheduler σ such that the
following holds for the induced measure εσ,s:

1. εσ,s(Frags∗(A)) = 1;
2. for each α ∈ Frags∗(A), if εσ,s(α) > 0, then trace(α) = trace(a);
3. for each q ∈ S, εσ,s({α ∈ Frags∗(α) | lstate(α) = q}) = µ(q).

A weak simulation from a probabilistic automaton A1 to probabilistic
automaton A2 is a relation R from S1 to S2 such that

– s̄1 R s̄2 and
– for each pair (s1, s2) ∈R, if s1

a−→ µ1, then there exists s2
a=⇒Cµ2 such

that µ1 L(R) µ2.

We say that A1 is weakly simulated by A2, denoted by A1 4 A2, if there
exists a weak simulation from A1 to A2.
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It is straightforward to define the bounded weak simulation: given a
probabilistic automaton A and a bound l ∈ N, we say that there is a weak
l-bounded combined transition from a state s to a measure over states µ

labeled by an action a, denoted by s
a=⇒l

C µ, if there is a scheduler σ such
that the following holds for the induced measure εσ,s:

1. εσ,s(Frags∗(A)) = 1;
2. for each α ∈ Frags∗(A), if εσ,s(α) > 0, then trace(α) = trace(a) and
|α| 6 l;

3. for each q ∈ S, εσ,s({α ∈ Frags∗(α) | lstate(α) = q}) = µ(q).

A weak l-bounded simulation from a probabilistic automatonA1 to prob-
abilistic automaton A2 is a relation R from S1 to S2 such that

– s̄1 R s̄2 and
– for each pair (s1, s2) ∈R, if s1

a−→ µ1, then there exists s2
a=⇒l

C µ2 such
that µ1 L(R) µ2.

We say that A1 is weakly l-bounded simulated by A2, denoted by A1 4l

A2, if there exists a weak l-bounded simulation from A1 to A2. Note that
the weak l-bounded simulation is a special case of the weak simulation.

It is known that relations ¹, 4, and 4l are transitive and preserved
by action hiding and parallel composition of probabilistic automata [102].
This is the key feature that enables hierarchical and modular verification.

2.5 Cryptography

In the following we assume that k is a security parameter and that Poly is
the set of positive polynomials over N.

Given f : N → R>0, we say that f is negligible if for each c ∈ N there
exists n̄ ∈ N such that for each n > n̄, f(n) < n−c.

2.5.1 Oracle Machines

A probabilistic oracle machine is a probabilistic Turing machine with an
additional tape, called the oracle tape, and two special states, called oracle
invocation and oracle appeared. The computation of the probabilistic oracle
machine M on input x and with access to the oracle f : {0, 1}∗ → {0, 1}∗
is defined by the successive-configuration relation. For configurations with
states different from oracle invocation, the next configuration is defined as
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usual. Let γ be a configuration in which the state is oracle invocation and
the content of the oracle tape is q. Then the configuration following γ is
identical to γ, except that the state is oracle appeared, and the content of
the oracle tape is f(q). The string q is called M ’s query, and f(q) is called
the oracle reply. The output measure of the oracle machine M , on input x

and with access to the oracle f , is denoted Mf (x).
We remark that the running time of an oracle machine is the number

of steps made during its computation and that the oracle’s reply to each
query is obtained in a single step.

2.5.2 Nonce

A nonce of length k is an element of {0, 1}k that is meant to be used at
most once. An ideal way to satisfy unicity of nonces is to use a repository
that keeps track of the nonces distributed in the past and that responds
to all requests by returning a new value each time. The practical way to
satisfy the unicity of nonces is to choose them randomly from {0, 1}k. In
this way, if we choose randomly one nonce of length k, the probability that
it is the same of some previously chosen nonce is at most 2−k. This means
that:

Proposition 2.2. For each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such
that for each k > k̄, if values n1, . . . , np(k) ∈ {0, 1}k are given and a value
n is chosen randomly from {0, 1}k, then Pr[n = ni | 1 6 i 6 p(k)] < k−c.

Proof. Since for each i = 1, . . . , p(k) the probability that n is equal to ni is
2−k, then

Pr[n = ni | 1 6 i 6 p(k)] 6 Pr[n = n1] + · · ·+ Pr[n = np(k)]
6 2−k + · · ·+ 2−k︸ ︷︷ ︸

p(k) times

= p(k)2−k

< k−c

The last step is justified by the following argument: let c′ be a constants such
that p(k)k−c′ < k−c (that is, k−c′ < k−c/p(k)). Now, each time 2−k < k−c′

is satisfied, then p(k)2−k < k−c holds too. 2−k < k−c′ is true for each k

such that k/ log(k) > c′/ log(2). ut
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2.5.3 Pseudorandom Functions

A pseudorandom function P is a function that can not be distinguished
from a truly random function R by any efficient procedure (e.g., proba-
bilistic polynomial time algorithm). More precisely, given a pseudorandom
function P and a truly random function R, if we evaluate them on a poly-
nomial number of values, then the probability to distinguish between the
interaction with P and the interaction with R is negligible.

Formally, we say that {fs : {0, 1}∗ → {0, 1}k}s∈{0,1}∗ is a pseudorandom
function if the following two conditions hold:

1. There exists a polynomial time algorithm that on input s and x ∈ {0, 1}∗
returns fs(x).

2. For every probabilistic polynomial time machine M that samples values
from a function f and returns a value in {0, 1}, every p ∈ Poly , there
exists n̄ ∈ N such that for each n > n̄,

|Pr[MFn(1n) = 1]−Pr[MHn(1n) = 1]| < 1
p(n)

where Fn is a random variable uniformly distributed over the multi-
set {fs}s∈{0,1}n , Hn is a random variable uniformly distributed among
all functions mapping arbitrarily long strings to strings of length k,
Pr[MFn(1n) = 1] is the probability that the machine M , on in-
put 1n, answers 1 provided that f is chosen according to Fn, and
Pr[MHn(1n) = 1] is the probability that the machine M , on input
1n, answers 1 provided that f is chosen according to Hn.

This definition of pseudorandom function conceals technical aspects that
are out the scope of this thesis. Interested readers can find a justification of
such technicalities and a generalized definition of pseudorandom functions
in Section 3.6 of [49].

2.5.4 Message Authentication Code

A message authentication scheme is a triple (G, A, V ) of probabilistic poly-
nomial time algorithms satisfying the following two conditions:

1. On input 1k, algorithm G (called the key-generator) outputs a bit string.
2. For every s in the range of G(1k) and for every α ∈ {0, 1}∗, algorithms

A (authentication) and V (verification) satisfy Pr[V (s, α, A(s, α)) =
1] = 1 where the probability is taken over the internal coin tosses of
algorithms A and V .
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We call A(s, α) a message authentication code (MAC) to the document α

produced using the key s.
A forger is a process that, on input 1k, can obtain message authentica-

tion codes to strings of its choice, relative to a key s that is generated by
G(1k) and that the forger does not know. It can also verify pairs of the form
(α, β) querying the verification algorithm. Such a forger is said to succeed
(in existential forgery) if it outputs a valid MAC to a string for which it
has not requested an authentication during the attack. That is, the forger
is successful if it outputs a pair (α, β) such that V (s, α, β) = 1 and α is dif-
ferent from all strings for which an authentication has been required during
the attack. A message authentication scheme is secure (or unforgeable) if
every feasible forger succeeds with at most negligible probability.

A way to construct message authentication schemes is to use pseudo-
random functions, using the following construction (cf. Construction 6.3.1
of [50]): let {fs}s∈{0,1}∗ be a pseudorandom function. We define a message
authentication scheme (G, A, V ) as follows:

• Key generation with G: on input 1k, we uniformly select s ∈ {0, 1}k and
output the key s.

• Authentication with A: on input a key s ∈ {0, 1}k and a string α ∈
{0, 1}∗, we compute and output fs(α) as an authentication of α.

• Verification with V: on input a key s ∈ {0, 1}k, a string α ∈ {0, 1}∗, and
an alleged authentication β, we accept if and only if β = fs(α).

Given a key s, we say that fs(m) is the message authentication code of
m with respect to the key s and that fs is a MAC value generator.

Proposition 2.3 (cf. Proposition 6.3.2 [50]). Suppose that {fs}s∈{0,1}∗

is a pseudorandom function. Then the given construction constitutes a se-
cure message authentication scheme.

A message authentication code can be used when an entity A wants to
prove its identity to another entity B. If A and B share a secret key s and
a pseudorandom function, then A can provide evidence of its identity by
sending a message of the form (a.m, fs(a.m)) to B, where m is some random
value, a is a coding of the identity of A, and a.m is the concatenation of
a and m. B can rely on A’s identity by verifying the correctness of the
received message.
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2.5.5 Signature Scheme

A signature scheme is a triple (G, S, V ) of probabilistic polynomial time
algorithms satisfying the following two conditions:

1. On input 1k, algorithm G (called the key-generator) outputs a pair of
bit strings.

2. For every pair (s, v) in the range of G(1k) and for every α ∈ {0, 1}∗,
algorithms S (signing) and V (verification) satisfy Pr[V (v, α, S(s, α)) =
1] = 1 where the probability is taken over the internal coin tosses of
algorithms S and V .

We call S(s, α) a signature to the document α produced using the signing
key s. Likewise, when V (v, α, β) = 1, we say that β is a valid signature to
α with respect to the verification key v.

Given a pair of keys (s, v) generated by G(1k), a forger for signatures
is a process that, on input v, can obtain signatures to strings of its choice,
produced using the key s that the forger does not know. Such a forger is
said to succeed (in existential forgery) if it outputs a valid signature to a
string for which it has not requested a signature during the attack. That is,
the forger is successful if it outputs a pair (α, β) such that V (v, α, β) = 1
and α is different from all strings for which a signature has been required
during the attack. A signature scheme is secure (or unforgeable) if every
feasible forger succeeds with at most negligible probability.

Message authentication schemes and signature schemes are very similar.
The main difference between them is about keys generated by key generator
G: a single key for message authentication schemes; a pair of keys for sig-
nature schemes. In particular, message authentication scheme can be seen
as an instantiation of a signature scheme where v = s and the value 1k is
provided to the forger instead of v.

2.5.6 Encryption Scheme

An encryption scheme is a triple (G, E, D) of probabilistic polynomial time
algorithms satisfying the following two conditions:

1. On input 1k, algorithm G (called the key-generator) outputs a pair of
bit strings.

2. For every pair (e, d) in the range of G(1k), and for every α ∈ {0, 1}∗, al-
gorithms E (encryption) and D (decryption) satisfy Pr[D(d, E(e, α)) =
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α] = 1 where the probability is taken over the internal coin tosses of
algorithms E and D.

The integer k serves as the security parameter of the scheme. Each (e, d) in
the range of G(1k) constitutes a pair of corresponding encryption/decryption
keys. The string E(e, α) (denoted also Ee(α)) is the encryption of the plain-
text α ∈ {0, 1}∗ using the encryption key e, whereas D(d, β) (denoted also
Dd(β)) is the decryption of the ciphertext β using the decryption key d.

A public key encryption scheme is an encryption scheme where the de-
cryption key d differs from encryption key e, d is kept secret while e is
published, and it is infeasible to find d given e.

A public key encryption scheme (G, E, D) is said to have the indistin-
guishable encryptions under (a posteriori) chosen ciphertext attacks (or
public key encryption scheme (G, D, E) is IND-CCA) if for every pair
of probabilistic polynomial time oracle machine, A1 and A2, for every
p ∈ Poly , there exist q ∈ Poly , n̄ ∈ N such that for each n > n̄ and
z ∈ {0, 1}q(n) it holds that

|p1,n,z − p2,n,z| < 1
p(n)

where

pi,n,z
def= Pr


v = 1 where

(e, d) := G(1n)
((x1, x2), σ) := AEe,Dd

1 (e, z)
c := Ee(xi)
v := AEe,Dd

2 (σ, c)


where |x1| = |x2| and A2 is not allowed to make the query c to the oracle
Dd.

The definition of IND-CCA is based on two oracle machines A1 and A2:
A1 interacts with encryption and decryption collecting information inside
σ and then generates two strings x1 and x2 of the same length. Only one
of these two strings is encrypted by the encryption algorithm. Finally, A2

tries to discover which string corresponds to the ciphertext c. To do this, it
interacts with encryption and decryption using the initial knowledge σ and
c. We impose that A2 can not require the decryption of c (since if it can
invoke Dd on c, then it is immediate to know when c is the encryption of
x1 or the encryption of x2). Note that the IND-CCA security easily implies
that it is infeasible to derive d from e and that d is kept secret. In fact, if
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it is feasible to derive d from e, then it is feasible for A2 to decrypt c and
correctly distinguish between an encryption of x1 and x2.

Proposition 2.4. Let E = (G, E, D) be an encryption scheme and let
Ciphertext be the set of messages that can be generated by E.

If E is IND-CCA, then for each g ∈ N and p ∈ Poly, there exists k̄ ∈ N
such that for each k > k̄, if values c1, . . . , cp(k) ∈ Ciphertext are given and
a value c is obtained invoking Ee(m) for a message m and a key e generated
by G(1k), then Pr[c = ci | 1 6 i 6 p(k)] < k−g.

Proof. Suppose, for the sake of contradiction, that Pr[c = ci | 1 6 i 6
p(k)] > k−g. We now define a distinguisher for the encryption scheme E.

Let B a machine that is initialized with a value b chosen randomly in
{0, 1} and that, on input encrypt(e, m0, m1), returns Ee(mb) and, on input
get enc key , returns e where (e, d) = G(1k).

Let A be an attacker that interacts with B as follows: it sends to B an
get enc key request, obtaining an encryption key e. Then, it chooses two
different messages m0 and m1 of the same length and then it sends to B

p(k) times the request encrypt(e, m0, m1). Let C = {c1, . . . , cp(k)} be the
set of returned values. Finally, A sends to B the request encrypt(e, m0, m0);
let c be the returned value. If c ∈ C, then A output 0, 1 otherwise.

A is a distinguisher for B and hence for the encryption scheme. In fact,
if b = 1, then A outputs 1 with probability 1, since C contains only en-
cryptions of message m1. This implies that we can not find ci ∈ C such
that ci is the encryption of m0 since by definition of encryption scheme,
there does not exist two messages α and β such that α 6= β and given the
pair of encryption keys (e, d) = G(1k), Dd(Ee(α)) = β. If b = 0, then C

contains only encryptions of m0 and, by hypothesis, c ∈ C with probability
p > k−c. So, with probability p > k−c, A outputs 0 and with probability
1− p 6 1− k−c A outputs 1.

This implies that the |Pr[A outputs 1 | b = 1] − Pr[A outputs 1 | b =
0]| = |1 − (1 − p)| = p > k−c and this contradicts the IND-CCA property
of E. ut
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Polynomially Accurate Simulations

In this chapter we define our notion of polynomially accurate simulation
relation. Our aim is to define a relation where transitions are matched up to
some error that is smaller than any polynomial in some security parameter
k provided that computations are of polynomial length. This means that we
need a relation that can “see” lengths of computations, a notion of lifting
that accounts for errors, and a notion of security parameter. Furthermore,
since we will also need ways to match sequences of steps, we need a way
to bound the amount of extra error introduced by each step. We try to
address one issue at a time, getting closer and closer to our desired notion
of simulation.

The first step is to define a relation that can “see” lengths of compu-
tation. For this purpose, we define a relation on sets of executions rather
than sets of states. This definition is based on a derived notion of transition
that shows how finite executions evolve in a single step.

Definition 3.1. We say that there is a step from a finite execution α to
a measure ν ∈ Disc(Execs∗(A)), denoted by α −→ ν, if there exists a
transition (lstate(α), a, µ) such that, for each finite execution αas, ν(αas) =
µ(s).

Now we are able to define a simulation that relates executions instead of
single states. This allows us to know how many steps we have performed in
a computation, since we can obtain them from the length of the execution.

Definition 3.2. An execution simulation from a probabilistic automaton
A1 to a probabilistic automaton A2 is a relation R from Execs∗(A1) to
Execs∗(A2) such that:

• s̄1 R s̄2 and
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• for each pair (α1, α2) ∈R, if α1 −→ ν1, then there exists ν2 such that
α2 −→ ν2 and ν1 L(R) ν2.

We say that A1 is execution simulated by A2, denoted by A1 ¹e A2, if
there exists an execution simulation from A1 to A2.

It is interesting to observe that so far we have not introduced anything
new since ¹ and ¹e coincide.

Proposition 3.3. Let A1, A2 be two probabilistic automata. Then A1 ¹e

A2 if and only if A1 ¹ A2.

Proof. (⇐) Given a simulation relation R from S1 to S2, define a relation
R′ from Execs∗(A1) to Execs∗(A2) such that α1 R′ α2 if and only if
lstate(α1) R lstate(α2).
Start state condition is trivially true, since by hypothesis s̄1 R s̄2 and
thus s̄1 R′ s̄2 (with α1 = s̄1 and α2 = s̄2).
For the step condition, take α1, α2, ν1 such that α1 R′ α2 and α1 −→ ν1.
We must find ν2 such that α2 −→ ν2 and ν1 L(R′) ν2. By definition of
α −→ ν, it follows that there exists a transition (lstate(α1), a, µ1) such
that, for each finite execution α1as, ν1(α1as) = µ1(s). Since α1 R′ α2,
then lstate(α1) R lstate(α2) and thus there must exist a transition
(lstate(α2), a, µ2) such that µ1 L(R) µ2. This means that there exists
ν2 such that α2 −→ ν2 and for each finite execution α2as, ν2(α2as) =
µ2(s). To complete the proof, we must verify that ν1 L(R′) ν2. To do
this, let w be the weighting function that justifies µ1 L(R) µ2 and define

w′(β1, β2) =

{
w(s1, s2) if β1 = α1as1 and β2 = α2as2

0 otherwise

for each pair of executions (β1, β2).
Condition 1 of lifting is satisfied by w′. In fact if w′(β1, β2) > 0, then
w(lstate(β1), lstate(β2)) > 0, thus lstate(β1) R lstate(β2) and hence
β1 R′ β2.
Condition 2 of lifting is also satisfied by w′. In fact, given β2 = α2as2

ν2(β2) = by definition of ν2

µ2(s2)

= by µ1 L(R) µ2∑
s1∈S1

w(s1, s2)
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= by definition of w′∑
β1∈Execs∗(A1)

w(β1, β2)

Condition 3 of lifting is also satisfied by w′. In fact, given β1 = α1as1

ν1(β1) = by definition of ν1

µ1(s1)

= by µ1 L(R) µ2∑
s2∈S2

w(s1, s2)

= by definition of w′∑
β2∈Execs∗(A2)

w(β1, β2)

(⇒) Conversely, given an execution simulation R from Execs∗(A1) to
Execs∗(A2), define a relation R′ from S1 to S2 such that s1 R′ s2 if
and only if there exist α1 and α2 such that α1 R α2, lstate(α1) = s1,
and lstate(α2) = s2.
Start state condition is trivially true, since by hypothesis s̄1 R s̄2 and
thus s̄1 R′ s̄2.
For the step condition, take s1, s2, µ1 such that s1 R′ s2 and s1 −→ µ1.
We must find µ2 such that s2 −→ µ2 and µ1 L(R′) µ2. Since s1 R′ s2, by
definition of R′ there exist α1 and α2 such that α1 R α2, lstate(α1) = s1

and lstate(α2) = s2. Since s1 −→ µ1, then there exists ν1 such that
α1 −→ ν1 and for each finite execution α1as, ν1(α1as) = µ1(s). Since
α1 R α2, then there exists ν2 such that α2 −→ ν2 that implies that
there exists µ2 such that s2 −→ µ2 and for each finite execution α2as,
ν2(α2as) = µ2(s).
To complete the proof, we must verify that µ1 L(R′) µ2. To do this, let
w be the weighting function that justifies ν1 L(R) ν2 and define

w′(s1, s2) =

{
w(β1, β2) if β1 = α1as1 and β2 = α2as2

0 otherwise

for each pair of executions (s1, s2).
Condition 1 of lifting is satisfied by w′. In fact if w′(s1, s2) > 0, then
w(α1as1, α2as2) > 0, thus α1as1 R α2as2 and hence s1 R′ s2.
Condition 2 of lifting is also satisfied by w′. In fact, given a state s′2
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µ2(s′2) = by definition of ν2

ν2(α2as′2)

= by ν1 L(R) ν2∑
α1as′1∈Execs∗(A1)

w(α1as′1, α2as′2)

= by definition of w′∑
β1∈Execs∗(A1)

w(β1, β2)

Condition 3 of lifting is also satisfied by w′. In fact, given s1

µ1(s′1) = by definition of ν1

ν1(α1as′1)

= by ν1 L(R) ν2∑
α2as′2∈Execs∗(A2)

w(α1as′1, α2as′2)

= by definition of w′∑
β2∈Execs∗(A2)

w(β1, β2)

ut

We now generalize the notion of lifting so that two measures are not
related exactly, but up to some error ε. Our definition states that two
measures are related up to ε if some (1− ε) fractions of the two measures
are related exactly. So, for example, suppose we have two coins: a fair coin
and an unfair coin that chooses head with probability 1/3 and tail with
probability 2/3. The two probability measures described by the two coins
are not related by the identity relation, since the probability of head (as
well as of tail) do not match. But if we admit an error of 1/3, for example,
then they are related by the identity relation.

Definition 3.4. Let R be a relation from X to Y and let ε > 0. The ε-
lifting of R, denoted by L(R, ε) is a relation from Disc(X) to Disc(Y )
defined as follows: for each pair ρx and ρy of probability measures on X

and Y , respectively,

• if ε > 1, then ρx L(R, ε) ρy;
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• if ε ∈ [0, 1), then ρx L(R, ε) ρy if there exist ρ′x, ρ′′x ∈ Disc(X) and
ρ′y, ρ

′′
y ∈ Disc(Y ) such that

– ρx = (1− ε)ρ′x + ερ′′x,
– ρy = (1− ε)ρ′y + ερ′′y,
– ρ′x L(R) ρ′y.

It is interesting to observe that ε-lifting has many properties:

Property 3.5. The ε-lifting satisfies the following properties:

1. For each relation R from X to Y , L(R, 0)=L(R).
2. For each relation R from X to Y , and each ε, ε′ > 0, if ε 6 ε′, then
L(R, ε)⊆L(R, ε′).

3. For each ρ, ρ1, ρ2 ∈ Disc(X) and each ε1, ε2 > 0, if ρ = (1−ε1)ρ1+ε1ρ2

and ε2 > ε1, then there exists ρ3 ∈ Disc(X) such that ρ = (1− ε2)ρ1 +

ε2ρ3 and ρ3 =
(

1− ε1

ε2

)
ρ1 +

ε1

ε2
ρ2.

4. For each relation R on X, and each ε > 0, if R is reflexive then L(R, ε)
is reflexive.

5. For each relation R from X to Y , and each ε > 0, if R is symmetric
then L(R, ε) is symmetric.

6. For each relation R from X to Y , each ε ∈ [0, 1], and each measure
ρx, ρ′x, ρ′′x, ρy, if ρx = (1 − ε)ρ′x + ερ′′x and ρx L(R) ρy, then there exist
measures ρ′y, ρ

′′
y such that ρy = (1−ε)ρ′y +ερ′′y, ρ′x L(R) ρ′y and ρ′′x L(R)

ρ′′y.
7. For each relation R from X to Y , each ε ∈ [0, 1], and each measure

ρx, ρy, ρ
′
y, ρ

′′
y, if ρy = (1 − ε)ρ′y + ερ′′y and ρx L(R) ρy, then there exist

measures ρ′x, ρ′′x such that ρx = (1−ε)ρ′x +ερ′′x, ρ′x L(R) ρ′y and ρ′′x L(R)
ρ′′y.

8. For each relation R from X to Y , each relation S from Y to Z, each
εxy, εyz > 0, and for each measure ρx, ρy, ρz such that if ρx L(R, εxy) ρy

and ρy L(S, εyz) ρz, then ρx L(R ◦ S, εxy + εyz) ρz.
9. For each relation R from X to Y , each relation S from Y to Z, each

ε12, ε23 > 0, and for each measure ρ1, ρ2, ρ3 such that there exist ρ′1, ρ′′1,
ρ1
2, ρ2

2, ρ3
2, ρ4

2, ρ′3, ρ′′3 such that
– ρ1 = (1− ε12)ρ′1 + ε12ρ

′′
1,

– ρ2 = (1− ε12)ρ1
2 + ε12ρ

2
2,

– ρ′1 L(R) ρ1
2,

and
– ρ2 = (1− ε23)ρ3

2 + ε23ρ
4
2,
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– ρ3 = (1− ε23)ρ′3 + ε23ρ
′′
3,

– ρ3
2 L(S) ρ′3,

if ρ1
2 = ρ3

2, then ρ1 L(R ◦ S, max{ε12, ε23}) ρ3.
10. For each relation R from X to Y , each ε > 0, and each measure ρx ∈

Disc(X) and ρy ∈ Disc(Y ), if ρx L(R, ε) ρy, then for each measure
ρz ∈ Disc(Z), ρx × ρz L(R × id , ε) ρy × ρz where id is the identity
relation on Z.

Proof. Let R be a relation from X to Y .

1. (⇒) Let ρx ∈ Disc(X) and ρy ∈ Disc(Y ) be two distributions such that
ρx L(R, 0) ρy. By definition of 0-lifting, there exist ρ′x, ρ′′x ∈ Disc(X)
and ρ′y, ρ

′′
y ∈ Disc(Y ) such that

– ρx = (1− 0)ρ′x + 0ρ′′x,
– ρy = (1− 0)ρ′y + 0ρ′′y, and
– ρ′x L(R) ρ′y.
Since ρx = ρ′x and ρy = ρ′y, then ρx L(R) ρy.

(⇐) Let ρx ∈ Disc(X) and ρy ∈ Disc(Y ) be two distributions such that
ρx L(R) ρy. Define ρ′x = ρ′′x = ρx and ρ′y = ρ′′y = ρy. This implies
that ρx = (1− 0)ρ′x + 0ρ′′x, and ρy = (1− 0)ρ′y + 0ρ′′y. Since ρ′x = ρx

and ρ′y = ρy, then ρ′x L(R) ρ′y and thus ρx L(R, 0) ρy.
2. Let ε > 0 and let ρx ∈ Disc(X) and ρy ∈ Disc(Y ) be two distributions

such that ρx L(R, ε) ρy. Let ε′ > ε. If ε′ > 1, then by definition of
ε′-lifting, ρx L(R, ε′) ρy. Suppose that ε′ < 1 and denote by γ the value
ε′ − ε > 0. By definition of ε-lifting, ρx L(R, ε) ρy implies that there
exist ρ′x, ρ′′x, ρ′y and ρ′′y such that
– ρx = (1− ε)ρ′x + ερ′′x,
– ρy = (1− ε)ρ′y + ερ′′y, and
– ρ′x L(R) ρ′y.
Define θ′x = ρ′x and θ′′x = (γρ′x + ερ′′x)/(γ + ε). This implies that

ρx = (1− ε)ρ′x + ερ′′x

= (1− ε− γ)ρ′x + γρ′x + ερ′′x

= (1− ε− γ)ρ′x + (γ + ε)(γρ′x + ερ′′x)/(γ + ε)

= (1− (ε + γ))θ′x + (γ + ε)θ′′x
= (1− ε′)θ′x + ε′θ′′x

In a similar way, define θ′y = ρ′y and θ′′y = (γρ′y + ερ′′y)/(γ + ε). This
implies that
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ρy = (1− ε)ρ′y + ερ′′y

= (1− ε− γ)ρ′y + γρ′y + ερ′′y

= (1− ε− γ)ρ′y + (γ + ε)(γρ′y + ερ′′y)/(γ + ε)

= (1− (ε + γ))θ′y + (γ + ε)θ′′y
= (1− ε′)θ′y + ε′θ′′y

This implies that there exist θ′x, θ′′x ∈ Disc(X), θ′y, θ
′′
y ∈ Disc(Y ) such

that
– ρx = (1− ε′)θ′x + ε′θ′′x,
– ρy = (1− ε′)θ′y + ε′θ′′y ,
– θ′x L(R) θ′y since θ′x = ρ′x, θ′y = ρ′y and ρ′x L(R) ρ′y
and thus ρx L(R, ε′) ρy.

3. If ε2 = ε1, then ρ3 = ρ2 satisfies the required properties.
Suppose that ε2 > ε1, then let ε3 = ε2 − ε1 and thus ε1 = ε2 − ε3.
Replacing ε1 in the decomposition of ρ, we have that

ρ = (1− (ε2 − ε3))ρ1 + (ε2 − ε3)ρ2

= (1− ε2)ρ1 + ε3))ρ1 + ε2ρ2 − ε3ρ2

= (1− ε2)ρ1 + ε2

(
ρ2 − ε3

ε2
ρ2 +

ε3

ε2
ρ1

)
= (1− ε2)ρ1 + ε2ρ3

where ε2 > 0 since ε2 > ε1 > 0 and ρ3 is a probability measure defined
as

ρ3 =
(

1− ε3

ε2

)
ρ2 +

ε3

ε2
ρ1

=
(

1− ε2 − ε1

ε2

)
ρ2 +

ε2 − ε1

ε2
ρ1

=
(

1− 1 +
ε1

ε2

)
ρ2 +

(
1− ε1

ε2

)
ρ1

=
(

1− ε1

ε2

)
ρ1 +

ε1

ε2
ρ2

ρ3 is a probability measure since ρ1 and ρ2 are probability measures
and 0 6 ε1

ε2
< 1.

4. Let ε > 0 and consider a measure ρ ∈ Disc(X). If ε > 1, then by
definition of ε-lifting, it follows that ρ L(R, ε) ρ. If 0 6 ε < 1, then we
have that ρ = (1− ε)ρ + ερ. Since by Property 2.1(4), the reflexivity of
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R implies the reflexivity of L(R), then we have that ρ L(R) ρ and thus
ρ L(R, ε) ρ.

5. Let ε > 0 and consider two measures ρx ∈ Disc(X) and ρy ∈ Disc(Y )
such that ρx L(R, ε) ρy. If ε > 1, then by definition of ε-lifting, it
follows that ρy L(R, ε) ρx. If 0 6 ε < 1, then we have that there exist
ρ′x, ρ′′x, ρ′y, ρ

′′
y such that

– ρx = (1− ε)ρ′x + ερ′′x,
– ρy = (1− ε)ρ′y + ερ′′y, and
– ρ′x L(R) ρ′y.
Since R is symmetric, by Property 2.1(5) we have that ρ′y L(R) ρ′x and
thus ρy L(R, ε) ρx.

6. Fix ε ∈ [0, 1] and let ρx, ρ′x, ρ′′x ∈ Disc(X), ρy ∈ Disc(Y ) be four mea-
sures such that ρx = (1− ε)ρ′x + ερ′′x and ρx L(R) ρy. This implies that
there exists w : X × Y → [0, 1] such that
– for each u ∈ X, v ∈ Y , w(u, v) > 0 =⇒ (u, v) ∈R;
– for each u ∈ X,

∑
v∈Y w(u, v) = ρx(u); and

– for each v ∈ Y ,
∑

u∈X w(u, v) = ρy(v).
Let w′ : X × Y → [0, 1] be the function defined as: for each u ∈ X,
v ∈ Y ,

w′(u, v) =


ρ′x(u)w(u, v)

ρx(u)
if ρx(u) 6= 0

0 otherwise

Let ρ′y be the function defined as: for each v ∈ Y ,

ρ′y(v) =
∑
u∈X

w′(u, v) =
∑

u∈X,ρx(u) 6=0

ρ′x(u)w(u, v)
ρx(u)

It is easy to see that ρ′y ∈ Disc(Y ). In fact, for each v ∈ Y , we have
ρ′y(v) > 0 since ρ′y(v) is the sum of non-negative values; furthermore,

ρ′y(Y ) =
∑
v∈Y

ρ′y(v)

=
∑
v∈Y

∑
u∈X,ρx(u) 6=0

ρ′x(u)w(u, v)
ρx(u)

=
∑

u∈X,ρx(u) 6=0

ρ′x(u)
ρx(u)

∑
v∈Y

w(u, v)

=
∑

u∈X,ρx(u) 6=0

ρ′x(u)
ρx(u)

ρx(u)
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=
∑
u∈X

ρ′x(u)

= 1

w′ is a weighting function from ρ′x to ρ′y. In fact,

– for each u ∈ X, v ∈ Y , w′(u, v) > 0 =⇒ ρ′x(u)w(u, v)
ρx(u)

> 0 =⇒
w(u, v) > 0 =⇒ (u, v) ∈R;

– for each u ∈ X, if ρx(u) 6= 0,
∑

v∈Y w′(u, v) =
∑

v∈Y

ρ′x(u)w(u, v)
ρx(u)

=

ρ′x(u)
ρx(u)

∑
v∈Y w(u, v) =

ρ′x(u)
ρx(u)

ρx(u) = ρ′x(u). If ρx(u) = 0, then also

ρ′x(u) = 0 and by definition of w′ we have that
∑

v∈Y w′(u, v) =∑
v∈Y 0 = 0. Thus, for each u ∈ X,

∑
v∈Y w′(u, v) = ρ′x(u);

– for each v ∈ Y ,
∑

u∈X w′(u, v) = ρ′y(v) by definition of ρ′y(v).
Let w′′ : X × Y → [0, 1] be the function defined as: for each u ∈ X,
v ∈ Y ,

w′′(u, v) =


ρ′′x(u)w(u, v)

ρx(u)
if ρx(u) 6= 0

0 otherwise

Let ρ′′y be the function defined as: for each v ∈ Y ,

ρ′′y(v) =
∑
u∈X

w′′(u, v) =
∑

u∈X,ρx(u)6=0

ρ′′x(u)w(u, v)
ρx(u)

It is easy to see that ρ′′y ∈ Disc(Y ). In fact, for each v ∈ Y , we have
ρ′′y(v) > 0 since ρ′′y(v) is the sum of non-negative values; furthermore,

ρ′′y(Y ) =
∑
v∈Y

ρ′′y(v)

=
∑
v∈Y

∑
u∈X,ρx(u) 6=0

ρ′′x(u)w(u, v)
ρx(u)

=
∑

u∈X,ρx(u) 6=0

ρ′′x(u)
ρx(u)

∑
v∈Y

w(u, v)

=
∑

u∈X,ρx(u) 6=0

ρ′′x(u)
ρx(u)

ρx(u)

=
∑
u∈X

ρ′′x(u)
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= 1

w′′ is a weighting function from ρ′′x to ρ′′y. In fact,

– for each u ∈ X, v ∈ Y , w′′(u, v) > 0 =⇒ ρ′′x(u)w(u, v)
ρx(u)

> 0 =⇒
w(u, v) > 0 =⇒ (u, v) ∈R;

– for each u ∈ X, if ρx(u) 6= 0,
∑

v∈Y w′′(u, v) =
∑

v∈Y

ρ′′x(u)w(u, v)
ρx(u)

=

ρ′′x(u)
ρx(u)

∑
v∈Y w(u, v) =

ρ′′x(u)
ρx(u)

ρx(u) = ρ′′x(u). If ρx(u) = 0, then also

ρ′′x(u) = 0 and by definition of w′′ we have that
∑

v∈Y w′′(u, v) =∑
v∈Y 0 = 0. Thus, for each u ∈ X,

∑
v∈Y w′′(u, v) = ρ′′x(u);

– for each v ∈ Y ,
∑

u∈X w′′(u, v) = ρ′′y(v) by definition of ρ′′y(v).
Finally, we must verify that (1−ε)ρ′y +ερ′′y = ρy. In fact, for each v ∈ Y ,

(1− ε)ρ′y(v) + ερ′′y(v) = (1− ε)
∑
u∈X

w′(u, v) + ε
∑
u∈X

w′′(u, v)

= (1− ε)
∑

u∈X,ρx(u) 6=0

ρ′x(u)w(u, v)
ρx(u)

+ ε
∑

u∈X,ρx(u)6=0

ρ′′x(u)w(u, v)
ρx(u)

=
∑

u∈X,ρx(u) 6=0

w(u, v)
(1− ε)ρ′x(u) + ερ′′x(u)

ρx(u)

=
∑

u∈X,ρx(u) 6=0

w(u, v)
ρx(u)
ρx(u)

=
∑
u∈X

w(u, v)

= ρy(v)

7. Fix ε ∈ [0, 1] and let ρx ∈ Disc(X), ρy, ρ
′
y, ρ

′′
y ∈ Disc(Y ) be four mea-

sures such that ρy = (1− ε)ρ′y + ερ′′y and ρx L(R) ρy. This implies that
there exists w : X × Y → [0, 1] such that
– for each u ∈ X, v ∈ Y , w(u, v) > 0 =⇒ (u, v) ∈R;
– for each u ∈ X,

∑
v∈Y w(u, v) = ρx(u); and

– for each v ∈ Y ,
∑

u∈X w(u, v) = ρy(v).
Let w′ : X × Y → [0, 1] be the function defined as: for each u ∈ X,
v ∈ Y ,
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w′(u, v) =


ρ′y(v)w(u, v)

ρy(v)
if ρy(v) 6= 0

0 otherwise

Let ρ′x be the function defined as: for each u ∈ X,

ρ′x(u) =
∑
v∈Y

w′(u, v) =
∑

v∈Y,ρy(v)6=0

ρ′y(v)w(u, v)
ρy(v)

It is easy to see that ρ′x ∈ Disc(X). In fact, for each u ∈ X, we have
ρ′x(u) > 0 since ρ′x(u) is the sum of non-negative values; furthermore,

ρ′x(X) =
∑
u∈X

ρ′x(u)

=
∑
u∈X

∑
v∈Y,ρy(v)6=0

ρ′y(v)w(u, v)
ρy(v)

=
∑

v∈Y,ρy(v)6=0

ρ′y(v)
ρy(v)

∑
u∈X

w(u, v)

=
∑

v∈Y,ρy(v)6=0

ρ′y(v)
ρy(v)

ρy(v)

=
∑
v∈Y

ρ′y(v)

= 1

w′ is a weighting function from ρ′x to ρ′y. In fact,

– for each u ∈ X, v ∈ Y , w′(u, v) > 0 =⇒ ρ′y(v)w(u, v)
ρy(v)

> 0 =⇒
w(u, v) > 0 =⇒ (u, v) ∈R;

– for each u ∈ X,
∑

v∈Y w′(u, v) = ρ′x(u) by definition of ρ′x(u);

– for each v ∈ Y , if ρy(v) 6= 0,
∑

u∈X w′(u, v) =
∑

u∈X

ρ′y(v)w(u, v)
ρy(v)

=

ρ′y(v)
ρy(v)

∑
u∈X w(u, v) =

ρ′y(v)
ρy(v)

ρy(v) = ρ′y(v). If ρy(v) = 0, then also

ρ′y(v) = 0 and by definition of w′ we have that
∑

u∈X w′(u, v) =∑
u∈X 0 = 0. Thus, for each v ∈ Y ,

∑
u∈X w′(u, v) = ρ′y(v).

Let w′′ : X × Y → [0, 1] be the function defined as: for each u ∈ X,
v ∈ Y ,

w′′(u, v) =


ρ′′y(v)w(u, v)

ρy(v)
if ρy(v) 6= 0

0 otherwise
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Let ρ′′x be the function defined as: for each u ∈ X,

ρ′′x(u) =
∑
v∈Y

w′′(u, v) =
∑

v∈Y,ρy(v) 6=0

ρ′′y(v)w(u, v)
ρy(v)

It is easy to see that ρ′′x ∈ Disc(X). In fact, for each u ∈ X, we have
ρ′′x(u) > 0 since ρ′′x(u) is the sum of non-negative values; furthermore,

ρ′′x(X) =
∑
u∈X

ρ′′x(u)

=
∑
u∈X

∑
v∈Y,ρy(v)6=0

ρ′′y(v)w(u, v)
ρy(v)

=
∑

v∈Y,ρy(v)6=0

ρ′′y(v)
ρy(v)

∑
u∈X

w(u, v)

=
∑

v∈Y,ρy(v)6=0

ρ′′y(v)
ρy(v)

ρy(v)

=
∑
v∈Y

ρ′′y(v)

= 1

w′′ is a weighting function from ρ′′x to ρ′′y. In fact,

– for each u ∈ X, v ∈ Y , w′′(u, v) > 0 =⇒ ρ′′y(v)w(u, v)
ρy(v)

> 0 =⇒
w(u, v) > 0 =⇒ (u, v) ∈R;

– for each u ∈ X,
∑

v∈Y w′′(u, v) = ρ′′x(u) by definition of ρ′′x(u);

– for each v ∈ Y , if ρy(v) 6= 0,
∑

u∈X w′′(u, v) =
∑

u∈X

ρ′′y(v)w(u, v)
ρy(v)

=

ρ′′y(v)
ρy(v)

∑
u∈X w(u, v) =

ρ′′y(v)
ρy(v)

ρy(v) = ρ′′y(v). If ρy(v) = 0, then also

ρ′′y(v) = 0 and by definition of w′′ we have that
∑

u∈X w′′(u, v) =∑
u∈X 0 = 0. Thus, for each v ∈ Y ,

∑
u∈X w′′(u, v) = ρ′′y(v).

Finally, we must verify that (1−ε)ρ′x+ερ′′x = ρx. In fact, for each u ∈ X,

(1− ε)ρ′x(u) + ερ′′x(u) = (1− ε)
∑
v∈Y

w′(u, v) + ε
∑
v∈Y

w′′(u, v)

= (1− ε)
∑

v∈Y,ρy(v)6=0

ρ′y(v)w(u, v)
ρy(v)

+ ε
∑

v∈Y,ρy(v) 6=0

ρ′′y(v)w(u, v)
ρy(v)
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=
∑

v∈Y,ρy(v)6=0

w(u, v)
(1− ε)ρ′y(v) + ερ′′y(v)

ρy(v)

=
∑

v∈Y,ρy(v)6=0

w(u, v)
ρy(v)
ρy(v)

=
∑
v∈Y

w(u, v)

= ρx(u)

8. Let R be a relation from X to Y and S be a relation from Y to Z. If
εxy + εyz > 1, then ρx L(R ◦ S, εxy + εyz) ρz derives directly from the
definition of ε-lifting.
If εxy = εyz = 0, then we have that ρx L(R, 0) ρy and ρy L(S, 0) ρz.
This implies, by Property 1, that ρx L(R) ρy and ρy L(S) ρz and
thus, by Property 2.1(6), ρx L(R ◦ S) ρz. By Property 1, we have that
ρx L(R ◦ S, 0) ρz and thus ρx L(R ◦ S, εxy + εyz) ρz.
If εxy = 0 and εyz ∈ (0, 1), then we have that ρx L(R, 0) ρy and
ρy L(S, εyz) ρz imply that ρx L(R) ρy and that there exist ρ′y, ρ

′′
y ∈

Disc(Y ), ρ′z, ρ
′′
z ∈ Disc(Z) such that

– ρy = (1− εyz)ρ′y + εyzρ
′′
y,

– ρz = (1− εyz)ρ′z + εyzρ
′′
z , and

– ρ′y L(S) ρ′z.
Since ρy = (1− εyz)ρ′y + εyzρ

′′
y and ρx L(R) ρy, by Property 7 we have

that there exist ρ′x, ρ′′x ∈ Disc(X) such that
– ρx = (1− εyz)ρ′x + εyzρ

′′
x,

– ρ′x L(R) ρ′y, and
– ρ′′x L(R) ρ′′y.
By Property 2.1(6), ρ′x L(R) ρ′y and ρ′y L(S) ρ′z implies that ρ′x L(R ◦ S)
ρ′z. Summing up, we have that
– ρx = (1− εyz)ρ′x + εyzρ

′′
x,

– ρz = (1− εyz)ρ′z + εyzρ
′′
z , and

– ρ′x L(R ◦ S) ρ′z
and thus ρx L(R ◦ S, εyz) ρz that is ρx L(R ◦ S, εxy + εyz) ρz since
εxy = 0.
If εxy ∈ (0, 1) and εyz = 0, then we have that ρx L(R, εxy) ρy and
ρy L(S, 0) ρz imply that ρy L(S) ρz and that there exist ρ′x, ρ′′x ∈
Disc(X), ρ′y, ρ

′′
y ∈ Disc(Y ) such that

– ρx = (1− εxy)ρ′x + εxyρ
′′
x,
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– ρy = (1− εyz)ρ′y + εyzρ
′′
y, and

– ρ′x L(R) ρ′y.
Since ρy = (1− εxy)ρ′y + εxyρ

′′
y and ρy L(S) ρz, by Property 6 we have

that there exist ρ′z, ρ
′′
z ∈ Disc(Z) such that

– ρz = (1− εxy)ρ′z + εxyρ
′′
z ,

– ρ′y L(S) ρ′z, and
– ρ′′z L(S) ρ′′z .
By Property 2.1(6), ρ′x L(R) ρ′y and ρ′y L(S) ρ′z implies that ρ′x L(R ◦ S)
ρ′z. Summing up, we have that
– ρx = (1− εxy)ρ′x + εxyρ

′′
x,

– ρz = (1− εxy)ρ′z + εxyρ
′′
z , and

– ρ′x L(R ◦ S) ρ′z
and thus ρx L(R ◦ S, εxy) ρz that is ρx L(R ◦ S, εxy + εyz) ρz since
εyz = 0.
Now, suppose that εxy+εyz < 1 (and thus 0 < εxy < 1 and 0 < εyz < 1).
By hypothesis, we have that
– ρx = (1− εxy)ρ1

x + εxyρ
2
x,

– ρy = (1− εxy)ρ1
y + εxyρ

2
y, and

– ρ1
x L(R) ρ1

y,
and
– ρy = (1− εyz)ρ3

y + εyzρ
4
y,

– ρz = (1− εyz)ρ1
z + εyzρ

2
z, and

– ρ3
y L(S) ρ1

z.
Now from the decompositions of ρy, we want to obtain a new decom-
position of ρy with some specific property. So, let ε = max εxy, εyz and
let ρ5

y, ρ6
y be two functions defined as

ρ5
y =

min{(1− εxy)ρ1
y, (1− εyz)ρ3

y}
1− ε

and

ρ6
y =

max{εxyρ
2
y, εyzρ

4
y}

ε

ρ5
y and ρ6

y are two probability measures. In fact, for each v ∈ Y , ρ5
y(v) >

0 since we have that (1−εxy)ρ1
y(u) > 0, (1−εyz)ρ3

y(u) > 0, and 1−ε > 0
(since εxy < 1, εyz < 1 and thus ε = max{εxy, εyz} < 1).

ρ5
y(∅) =

min{(1− εxy)ρ1
y(∅), (1− εyz)ρ3

y(∅)}
1− ε
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=
min{(1− εxy)0, (1− εyz)0}

1− ε

= 0

and

ρ5
y(Y ) =

min{(1− εxy)ρ1
y(Y ), (1− εyz)ρ3

y(Y )}
1− ε

=
min{(1− εxy)1, (1− εyz)1}

1− ε

=
1−max{εxy, εyz}

1− ε

=
1− ε

1− ε
= 1

Analogously, for each v ∈ Y , ρ6
y(v) > 0 since we have that εxyρ

2
y(u) > 0,

εyzρ
4
y(u) > 0, and ε > 0 (since εxy + εyz > 0, and hence at least one

between εzy and εyz is greater than 0 and thus ε = max{εxy, εyz} > 0).

ρ6
y(∅) =

max{εxyρ
2
y(∅), εyzρ

4
y(∅)}

ε

=
max{εxy0, εyz0}

ε

= 0

and

ρ6
y(Y ) =

max{εxyρ
2
y(Y ), εyzρ

4
y(Y )}

ε

=
max{εxy1, εyz1}

ε

=
ε

ε
= 1

By definition of ρ5
y and ρ6

y it is easy to verify that ρy = (1− ε)ρ5
y + ερ6

y

since for each v ∈ Y we have that min{(1− εxy)ρ1
y(v), (1− εyz)ρ3

y(v)} =
(1−εxy)ρ1

y(v) if and only if max{εxyρ
2
y(v), εyzρ

4
y(v)} = εxyρ

2
y(v). In fact,

(1− εxy)ρ1
y(v) + εxyρ

2
y(v) = (1− εyz)ρ3

y(v) + εyzρ
4
y(v)

(1− εxy)ρ1
y(v)− (1− εyz)ρ3

y(v) = εyzρ
4
y(v)− εxyρ

2
y(v)

(1− εxy)ρ1
y(v)− (1− εyz)ρ3

y(v) 6 0 ⇐⇒ εyzρ
4
y(v)− εxyρ

2
y(v) 6 0

(1− εxy)ρ1
y(v) 6 (1− εyz)ρ3

y(v) ⇐⇒ εyzρ
4
y(v) 6 εxyρ

2
y(v)
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(1− εxy)ρ1
y(v) 6 (1− εyz)ρ3

y(v) ⇐⇒ εxyρ
2
y(v) > εyzρ

4
y(v)

Let ε1 = εxy+εyz. This implies that ε1 > ε and thus, by Property 3, ρy =

(1−ε1)ρ5
y+ε1ρ

7
y where ρ7

y is the probability measure ρ7
y =

(
1− ε

ε1

)
ρ5

y+
ε

ε1
ρ6

y. Combining the decompositions of ρy, we have that

(1− εxy)ρ1
y + εxyρ

2
y = (1− ε1)ρ5

y + ε1ρ
7
y

and thus

ρ1
y =

(1− ε1)ρ5
y + ε1ρ

7
y − εxyρ

2
y

1− εxy

=
1− ε1

1− εxy
ρ5

y +
εyz

1− εxy

(
ε1

εyz
ρ7

y −
εxy

εyz
ρ2

y

)
=

1− εxy − εyz

1− εxy
ρ5

y +
εyz

1− εxy

(
ε1

εyz
ρ7

y +
εyz − ε1

εyz
ρ2

y

)
=

(
1− εyz

1− εxy

)
ρ5

y +
εyz

1− εxy

((
1− ε1

εyz

)
ρ2

y +
ε1

εyz
ρ7

y

)
= (1− ε2)ρ5

y + ε2ρ
8
y

where ε2 and ρ8
y are defined as

ε2 =
εyz

1− εxy
ρ8

y =
(

1− ε1

εyz

)
ρ2

y +
ε1

εyz
ρ7

y

Since εxy < 1, we have that 1− εxy > 0 and thus ε2 > 0 (since εyz > 0).
εxy + εyz < 1 implies that εyz < 1 − εxy and hence ε2 =

εyz

1− εxy
< 1.

ρ8
y is a probability measure since ρ8

y(∅) =
(

1− ε1

εyz

)
ρ2

y(∅)+
ε1

εyz
ρ7

y(∅) =(
1− ε1

εyz

)
0 +

ε1

εyz
0 = 0; ρ8

y(Y ) =
(

1− ε1

εyz

)
ρ2

y(Y ) +
ε1

εyz
ρ7

y(Y ) =(
1− ε1

εyz

)
1 +

ε1

εyz
1 = 1. The last condition ρ8

y must satisfy to be a

probability measure is that ρ8
y > 0:

ρ8
y > 0 ⇐⇒

(
1− ε1

εyz

)
ρ2

y +
ε1

εyz
ρ7

y > 0

⇐⇒ ρ7
y > εyz

ε1

(
ε1

εyz
− 1

)
ρ2

y
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⇐⇒ ρ7
y >

(
1− εyz

ε1

)
ρ2

y

⇐⇒ ρ7
y > εxy

ε1
ρ2

y

where the last equivalence is justified by

1− εyz

ε1
=

ε1 − εyz

ε1
=

εxy + εyz − εyz

ε1
=

εxy

ε1

We prove the condition ρ7
y > εxy

ε1
ρ2

y as follows:

εxy + εyx > max{εxy, εyx} =⇒ ε1 > ε

=⇒ ε1 − ε > 0

=⇒ (ε1 − ε)ρ5
y > 0

max{εxyρ
2
y, εyzρ

4
y} > εxyρ

2
y =⇒ (ε1 − ε)ρ5

y

+ ε
max{εxyρ

2
y, εyzρ

4
y}

ε
> εxyρ

2
y

=⇒ (ε1 − ε)ρ5
y + ερ6

y > εxyρ
2
y

=⇒ ε1

((
1− ε

ε1

)
ρ5

y +
ε

ε1
ρ6

y

)
> εxyρ

2
y

=⇒ ε1ρ
7
y > εxyρ

2
y

=⇒ ρ7
y > εxy

ε1
ρ2

y

Thus ρ1
y = (1−ε2)ρ5

y +ε2ρ
8
y is a probability measure. Analogously, from

(1− εyz)ρ3
y + εyzρ

4
y = (1− ε1)ρ5

y + ε1ρ
7
y

we obtain

ρ3
y =

(1− ε1)ρ5
y + ε1ρ

7
y − εyzρ

4
y

1− εyz

=
1− ε1

1− εyz
ρ5

y +
εxy

1− εyz

(
ε1

εxy
ρ7

y −
εyz

εxy
ρ4

y

)
=

1− εyz − εxy

1− εyz
ρ5

y +
εxy

1− εyz

(
ε1

εxy
ρ7

y +
εxy − ε1

εxy
ρ4

y

)
=

(
1− εxy

1− εyz

)
ρ5

y +
εxy

1− εyz

((
1− ε1

εxy

)
ρ4

y +
ε1

εxy
ρ7

y

)
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= (1− ε3)ρ5
y + ε3ρ

9
y

where ε3 and ρ9
y are defined as

ε3 =
εxy

1− εyz
ρ9

y =
(

1− ε1

εxy

)
ρ4

y +
ε1

εxy
ρ7

y

Since εyz < 1, we have that 1− εyz > 0 and thus ε3 > 0 (since εxy > 0).
εxy + εyz < 1 implies that εxy < 1− εyz and hence ε3 =

εxy

1− εyz
< 1. ρ9

y

is a probability measure since ρ9
y(∅) =

(
1− ε1

εxy

)
ρ4

y(∅) +
ε1

εxy
ρ7

y(∅) =(
1− ε1

εxy

)
0 +

ε1

εxy
0 = 0; ρ9

y(Y ) =
(

1− ε1

εxy

)
ρ4

y(Y ) +
ε1

εxy
ρ7

y(Y ) =(
1− ε1

εxy

)
1 +

ε1

εyz
1 = 1. The last condition ρ9

y must satisfy to be a

probability measure is that ρ9
y > 0:

ρ9
y > 0 ⇐⇒

(
1− ε1

εxy

)
ρ4

y +
ε1

εxy
ρ7

y > 0

⇐⇒ ρ7
y > εxy

ε1

(
ε1

εxy
− 1

)
ρ4

y

⇐⇒ ρ7
y >

(
1− εxy

ε1

)
ρ4

y

⇐⇒ ρ7
y > εyz

ε1
ρ4

y

where the last equivalence is justified by

1− εxy

ε1
=

ε1 − εxy

ε1
=

εxy + εyz − εxy

ε1
=

εyz

ε1

We prove the condition ρ7
y > εyz

ε1
ρ4

y as follows:

εxy + εyx > max{εxy, εyx} =⇒ ε1 > ε

=⇒ ε1 − ε > 0

=⇒ (ε1 − ε)ρ5
y > 0

max{εxyρ
2
y, εyzρ

4
y} > εyzρ

4
y =⇒ (ε1 − ε)ρ5

y

+ ε
max{εxyρ

2
y, εyzρ

4
y}

ε
> εyzρ

4
y
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=⇒ (ε1 − ε)ρ5
y + ερ6

y > εyzρ
4
y

=⇒ ε1

((
1− ε

ε1

)
ρ5

y +
ε

ε1
ρ6

y

)
> εyzρ

4
y

=⇒ ε1ρ
7
y > εyzρ

4
y

=⇒ ρ7
y > εyz

ε1
ρ4

y

Thus ρ3
y = (1 − ε3)ρ5

y + ε3ρ
9
y is a probability measure. Since ρ1

y = (1 −
ε2)ρ5

y + ε2ρ
8
y and ρ1

x L(R) ρ1
y, by Property 7 we have that there exist

ρ3
x, ρ4

x ∈ Disc(X) such that ρ1
x = (1 − ε2)ρ3

x + ε2ρ
4
x and ρ3

x L(R) ρ5
y.

Replacing ρ1
x into the definition of ρx, we have that

ρx = (1− εxy)ρ1
x + εxyρ

2
x

= (1− εxy)(1− ε2)ρ3
x + (1− εxy)ε2ρ

4
x + εxyρ

2
x

= (1− εxy)
1− εxy − εyz

1− εxy
ρ3

x + (1− εxy)
εyz

1− εxy
ρ4

x + εxyρ
2
x

= (1− εxy − εyz)ρ3
x + εyzρ

4
x + εxyρ

2
x

= (1− ε1)ρ3
x + ε1

(
εyz

ε1
ρ4

x +
εxy

ε1
ρ2

x

)
= (1− ε1)ρ3

x + ε1ρ
5
x

where ρ5
x is the probability measure

ρ5
x =

εyz

ε1
ρ4

x +
εxy

ε1
ρ2

x =
ε1 − εxy

ε1
ρ4

x +
εxy

ε1
ρ2

x =
(

1− εxy

ε1

)
ρ4

x +
εxy

ε1
ρ2

x

Since ρ3
y = (1 − ε3)ρ5

y + ε3ρ
9
y and ρ3

y L(S) ρ1
z, by Property 6 we have

that there exist ρ3
z, ρ

4
z ∈ Disc(Z) such that ρ1

z = (1 − ε3)ρ3
z + ε3ρ

4
z and

ρ5
y L(S) ρ3

z. Replacing ρ1
z into the definition of ρz, we have that

ρz = (1− εyz)ρ1
z + εyzρ

2
z

= (1− εyz)(1− ε3)ρ3
z + (1− εyz)ε3ρ

4
z + εyzρ

2
z

= (1− εyz)
1− εxy − εyz

1− εyz
ρ3

z + (1− εyz)
εxy

1− εyz
ρ4

z + εyzρ
2
z

= (1− εxy − εyz)ρ3
z + εxyρ

4
z + εyzρ

2
z

= (1− ε1)ρ3
z + ε1

(
εxy

ε1
ρ4

z +
εyz

ε1
ρ2

z

)
= (1− ε1)ρ3

z + ε1ρ
5
z

where ρ5
z is the probability measure
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ρ5
z =

εxy

ε1
ρ4

z +
εyx

ε1
ρ2

z =
ε1 − εyz

ε1
ρ4

z +
εyz

ε1
ρ2

z =
(

1− εyz

ε1

)
ρ4

z +
εyz

ε1
ρ2

z

Since ρ3
x L(R) ρ5

y and ρ5
y L(S) ρ3

z, then by Property 2.1(6) we have that
ρ3

xρ3
z) ∈L(R ◦ S) and thus

ρx = (1− ε1)ρ3
x + ε1ρ

5
x

ρz = (1− ε1)ρ3
z + ε1ρ

5
z

(ρ3
x, ρ3

z) ∈L(R ◦ S)
ε1 = εxy + εyz

 =⇒ (ρx, ρz) ∈L(R ◦ S, εxy + εyz) .

9. Let ε = max{ε12, ε23}. This implies that
– ρ1 = (1− ε)ρ′1 + (ε− ε12)ρ′1 + ε12ρ

′′
1,

– ρ2 = (1− ε)ρ1
2 + (ε− ε12)ρ1

2 + ε12ρ
2
2,

– ρ′1 L(R) ρ1
2

and
– ρ2 = (1− ε)ρ3

2 + (ε− ε23)ρ3
2 + ε23ρ

4
2,

– ρ3 = (1− ε)ρ′3 + (ε− ε23)ρ′3 + ε23ρ
′′
3,

– ρ3
2 L(S) ρ′3.

Since ρ1
2 = ρ3

2, by Property 2.1(6) it follows that ρ′1 L(R ◦ S) ρ′3 and
thus ρ1 L(R ◦ S, ε) ρ3, that is ρ1 L(R ◦ S, max{ε12, ε23}) ρ3.

10. LetR be a relation from X to Y , ε > 0, ρx ∈ Disc(X) and ρy ∈ Disc(Y )
such that ρx L(R, ε) ρy. This implies that there exist ρ′x, ρ′′x, ρ′y, ρ

′′
y such

that ρx = (1 − ε)ρ′x + ερ′′x, ρy = (1 − ε)ρ′y + ερ′′y, and ρ′x L(R) ρ′y. By
Property 2.1(8), it follows that ρ′x × ρz L(R × id) ρ′y × ρz. Since for
each (u, s) ∈ X × Z, we have that

(1− ε)ρ′x × ρz(u, s) + ερ′′x × ρz(u, s) = (1− ε)ρ′x(u)ρz(s) + ερ′′x(u)ρz(s)

= ((1− ε)ρ′x(u) + ερ′′x(u))ρz(s)

= ρx(u)ρz(s)

= ρx × ρz(u, s)

and for each (v, t) ∈ Y × Z, we have that

(1− ε)ρ′y × ρz(v, t) + ερ′′y × ρz(v, t) = (1− ε)ρ′y(v)ρz(t) + ερ′′y(v)ρz(t)

= ((1− ε)ρ′y(v) + ερ′′y(v))ρz(t)

= ρy(v)ρz(t)

= ρy × ρz(v, t)
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we have that ρx×ρz = (1−ε)ρ′x×ρz +ερ′′x×ρz and ρy×ρz = (1−ε)ρ′y×
ρz + ερ′′y × ρz. This implies, together with ρ′x × ρz L(R × id) ρ′y × ρz,
that ρx × ρz L(R × id , ε) ρy × ρz. ut

The Property 8 of ε-lifting can be easily extended to any number of
measures and relations:

Proposition 3.6. Let n ∈ N, n > 2 and for each 0 6 i < n, let Ri be a
relation from a set Xi to Xi+1 and εi ∈ R, εi > 0. For each 0 6 i 6 n, let
ρi be a measure in Disc(Xi). Let R=R1 ◦ . . . ◦ Rn−1.

If for each 0 6 i < n, ρi L(Ri, εi) ρi+1 then ρ0 L(R,
∑n−1

i=0 εi) ρn.

Proof. The proof is a classical inductive argument on the number of rela-
tions.

Case n = 2: the result is immediate. In fact, by hypothesis we have two
relations: R0 from X0 to X1, and R1 from X1 to X2, two values
ε0 > 0 and ε1 > 0, and three measures ρ0 ∈ Disc(X0), ρ1 ∈ Disc(X1),
and ρ2 ∈ Disc(X2). If ρ0 L(R0, ε0) ρ1 and ρ1 L(R1, ε1) ρ2, then,
by Property 3.5(8), we have that ρ0 L(R0 ◦ R1, ε0 + ε1) ρ2 and thus
ρ0 L(R,

∑1
i=0 εi) ρ2.

Case n > 2: for each 0 6 i < n, let Ri be a relation from a set Xi to
Xi+1 and take εi ∈ R, εi > 0. For each 0 6 i 6 n, let ρi be a
measure in Disc(Xi). Suppose that for each 0 6 i < n, ρi L(Ri, εi)
ρi+1. Let R′=R1 ◦ . . . ◦ Rn−2. By inductive hypothesis, we have that
ρ0 L(R′,

∑n−2
i=0 εi) ρn−1. Since ρn−1 L(Rn−1, εn−1) ρn, Property 3.5(8)

implies that ρ0 L(R′ ◦ Rn−1, (
∑n−2

i=0 εi) + εn−1) ρn.R′=R1 ◦ . . . ◦ Rn−2

implies that R′ ◦ Rn−1=R1 ◦ . . . ◦ Rn−2 ◦ Rn−1=R and hence
ρ0 L(R,

∑n−1
i=0 εi) ρn, as required. ut

The introduction of errors in execution simulations is then straightfor-
ward.

Definition 3.7. An ε-simulation from a probabilistic automaton A1 to a
probabilistic automaton A2 is a relation R from Execs∗(A1) to Execs∗(A2)
such that:

• s̄1 R s̄2 and
• for each pair (α1, α2) ∈R, if α1 −→ ν1, then there exists ν2 such that

α2 −→ ν2 and ν1 L(R, ε) ν2.
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The above definition is still not adequate for handling cryptographic
protocols. The point is that we desire to reach a point where the parts of
transitions that cannot be matched correspond to bad behavior like guess-
ing a key or forging a signature. Given a finite execution α there is always
a way to resolve nondeterminism so that a key is guessed; what is difficult
to do is to guess a key once we have a probability measure over executions
obtained by generating a key. This suggests that our step conditions should
be based on measures over executions rather than single executions. Fur-
thermore, it is convenient to consider also pairs of measures that are related
up to some error γ and limit the increment of the error. This leads to a
new proposal of simulation relation that we define below. However, we first
need to extend the notation for transitions to measures over executions.

Definition 3.8. Given a probabilistic automaton A and two probability
measures ν, υ ∈ Disc(Execs∗(A)), we say that there exists a transition from
ν to υ, denoted by ν −→ υ, if there exists a scheduler σ such that for each
finite execution αas, υ(Cαas) = ν(Cαas) + ν(α)

∑
tr∈D(a) σ(α)(tr) · µtr (s).

We recall that D(a) denotes the set of transitions labelled by action a

and µtr denotes the target measure of transition tr .

Definition 3.9. Let A1, A2 be two probabilistic automata and let R be a
relation from Execs∗(A1) to Execs∗(A2). We say that R is an ε-execution
simulation from A1 to A2 if

1. s̄1 R s̄2; and
2. for each γ > 0, ν1 ∈ Disc(Execs∗(A1)) and ν2 ∈ Disc(Execs∗(A2)), if

– ν1 L(R, γ) ν2,
– ν1 −→ υ1

then there exists υ2 such that
– ν2 −→ υ2,
– υ1 L(R, γ + ε) υ2.

We say that A1 is ε-execution simulated by A2, denoted by A1 ¹ε
e A2,

if there exists an ε-execution simulation from A1 to A2.

One meaningful property of the ε-execution simulation is that sequences
of n steps can be matched up to an error nε. This means that we can extend
the bound on the error for a single step to the bound on the error for any
number of steps. Before stating this property, we have to define what it
means to reach a measure within n steps.
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Definition 3.10. Let A be a probabilistic automaton and σ be a scheduler
for A.

We say that ν is a probability measure reached in at most n steps via σ

if there is a sequence of probability measures ν0, . . . , νn such that ν0(s̄) = 1,
νn = ν and for each 0 6 i < n, σ schedules the transition νi −→ νi+1.

Proposition 3.11. Let A1, A2 be two probabilistic automata such that
A1 ¹ε

e A2 for some ε > 0. Let R be an ε-execution simulation from A1

to A2.
For each scheduler σ1 for A1, if ν1 is reached via σ1 within n steps, then

there exists a scheduler σ2 for A2 that reaches, within n steps, a probability
measure ν2 such that ν1 L(R, nε) ν2.

Proof. The proof is a classical inductive argument on the number of steps.

Case n = 0: within 0 steps, it is not possible to reach states different from
start state of A1. This means that within 0 steps, reached measure is
δs̄1 . Analogously, for A2 δs̄2 is reached within 0 steps. Since s̄1 R s̄2,
then δs̄1 L(R, 0) δs̄2 .

Case n > 0: let ν1 and ν2 be two measures such that there exist schedulers
σ1 and σ2 such that ν1 is reached via σ1 within n steps, ν2 is reached
via σ2 within n steps, and ν1 L(R, nε) ν2.
Suppose that there exists υ1 such that ν1 −→ υ1. Let σ′1 be the scheduler
that acts as σ1 until ν1 is reached within n steps and then it induces the
step ν1 −→ υ1. By hypothesis, there exists a scheduler θ that induces
the transition ν2 −→ υ2 with υ1 L(R, nε + ε) υ2. This implies that there
exists a scheduler σ′2 for A2 that reaches within n + 1 steps a measure
υ2 such that υ1 L(R, nε + ε) υ2, that is υ1 L(R, (n + 1)ε) υ2. ut
We are now left with the computational aspects of our definition. For

the purpose we talk about families of probabilistic automata and families
of relations parameterized over a security parameter k. Furthermore, we
impose the step condition only for measures that are reachable within a
number of steps that is polynomial in k.

Definition 3.12. Let {A1
k}k∈K and {A2

k}k∈K be two families of probabilis-
tic automata; let R= {Rk}k∈K be a family of relations such that, for each
k ∈ K, Rk is a relation from Execs∗(A1

k) to Execs∗(A2
k); let Poly be the

set of positive polynomials over N.
We say that R is a polynomially accurate simulation from {A1

k}k∈K to
{A2

k}k∈K if
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1. for each k, it holds that s̄1
k Rk s̄2

k;
2. for each c ∈ N and for each p ∈ Poly, there exists k̄ ∈ N such that for

each k > k̄, for all probability measures ν1 and ν2 and for each γ > 0,
if
– ν1 is reached in at most p(k) steps in A1

k,
– ν1 L(Rk, γ) ν2,
– ν1 −→ υ1

then there exists υ2 such that
– ν2 −→ υ2,
– υ1 L(Rk, γ + k−c) υ2.

We write {A1
k}k∈K . {A2

k}k∈K if there exists a polynomially accurate
simulation R from {A1

k}k∈K to {A2
k}k∈K .

The definition of polynomially accurate simulation satisfies a few impor-
tant properties. The first property is that the existence of a polynomially
accurate simulation allows us to match any polynomial number of steps
with an error that is bounded by any polynomial; the second property is
that execution simulation implies polynomially accurate simulation; and
the third property is the execution correspondence.

Theorem 3.13. Let {A1
k}k∈K and {A1

k}k∈K be two families of probabilistic
automata such that {A1

k}k∈K . {A2
k}k∈K . Let R= {Rk}k∈K be a polyno-

mially accurate simulation from {A1
k}k∈K to {A2

k}k∈K .
For each c ∈ N, p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄

and each scheduler σ1 for A1
k, if ν1 is the probability measure induced by σ1

after n steps, n 6 p(k), then there exists a scheduler σ2 for A2
k that reaches,

after n steps, a probability measure ν2 such that ν1 L(Rk, nk−c) ν2.

Proof. The proof is a classical inductive argument on the number of steps.

Case n = 0: for each c ∈ N, p ∈ Poly , and k ∈ N after 0 steps, it is not
possible to reach states different from start state of A1

k. This means that
after 0 steps, reached measure is δs̄1 . Analogously, for A2

k δs̄2 is reached
after 0 steps. Since s̄1 Rk s̄2, we have that δs̄1 L(Rk, 0) δs̄2 and thus
δs̄1 L(Rk, 0k−c) δs̄2 .

Case n > 0: fix c ∈ N, p ∈ Poly . Let k̄ ∈ N be a value such that for each
k > k̄, n < p(k). Let ν1 and ν2 be two measures such that there exist
schedulers σ1 and σ2 such that ν1 is reached via σ1 after n steps, ν2 is
reached via σ2 after n steps, and ν1 L(Rk, nk−c) ν2.
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Suppose that there exists υ1 such that ν1 −→ υ1. Since n < p(k) and ν1

is reached after n steps, it follows that υ1 is reached after n + 1 6 p(k)
steps. By hypothesis, {A1

k}k∈K . {A2
k}k∈K and thus there exists k̄′ ∈ N

such that for each k > k̄′ there exists a scheduler θ that induces the
transition ν2 −→ υ2 with υ1 L(R, nk−c + k−c) υ2. This implies that
there exists a scheduler σ′2 forA2 that reaches after n+1 steps a measure
υ2 such that υ1 L(Rk, nk−c + k−c) υ2, that is υ1 L(Rk, (n + 1)k−c)
υ2. ut

The second property of polynomially accurate simulation is that it is
implied by the ordinary simulation of probabilistic automata:

Proposition 3.14. Let A1
n and A2

n be two automata parameterized on n ∈
N.

If for each n ∈ N A1
n ¹ A2

n, then {A1
k}k∈N . {A2

k}k∈N.

Proof. For each n ∈ N, let Rn be the simulation that justifies A1
n ¹ A2

n and
let R′

n be the relation from Execs∗(A1
n) to Execs∗(A2

n) defined as α1 R′
n α2

if |α1| = |α2| and for each 0 6 i 6 |α1|, s1
i R s2

i where sj
i denotes the

i-th state of αj . R= {R′
k}k∈N is a polynomially accurate simulation from

{A1
k}k∈N to {A2

k}k∈N.
The condition on start states is trivially true, since by definition of

ordinary simulation, it follows that for each k ∈ N, s̄1
k Rk s̄2

k.
For the step condition, let c ∈ N and p ∈ Poly fixed and suppose that

there exists k̄ ∈ N such that for each k > k̄ and γ > 0, we have that the
measures ν1, υ1 and ν2 satisfy ν1 L(Rk, γ) ν2 and ν1 −→ υ1. We must find
υ2 such that ν2 −→ υ2 and υ1 L(Rk, γ + k−c) υ2.

If γ > 1−k−c, then for each measure υ2 such that ν2 −→ υ2, υ2 satisfies
υ1 L(Rk, γ + k−c) υ2. In fact, γ > 1− k−c implies that γ + k−c > 1 and by
definition of L(Rk, γ + k−c), it follows that υ1 L(Rk, γ + k−c) υ2.

So, suppose that 0 6 γ < 1 − k−c and let σ1 be the scheduler that
induces the transition ν1 −→ υ1.

Let σ2 be the scheduler for A2 defined as: for each α2 ∈ Execs∗(A2
k)

and each transition tr2 ∈ D2, σ2(α2)(tr2) = σ1(α1)(tr1) if α1 R′
k α2 and

µtr1 L(Rk) µtr2 , 0 otherwise. Let wtr1 be the weighting function that jus-
tifies µtr1 L(Rk) µtr2 .

Let υ2 be the measure induced from ν2 by σ2. Then υ1 L(R, γ) υ2 and
thus, by Property 3.5(2), υ1 L(R, γ + k−c) υ2.
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In fact, let υ1
1 and υ1

2 be the two measures induced by σ1 and σ2 from ν ′1
and ν ′2, respectively, and let υ2

1 and υ2
2 be the two measures induced by σ1

and σ2 from ν ′′1 and ν ′′2 , respectively. By definition of transition, it follows
that υ1 = (1 − γ)υ1

1 + γυ2
1 and υ2 = (1 − γ)υ1

2 + γυ2
2. Once we prove that

υ1
1 L(R′

k) υ1
2, we complete the proof.

Let w be the weighting function that justifies ν ′1 L(Rk) ν ′2 and let w′ be
the function defined as: for each α1as ∈ Execs∗(A1

k) and α2bt ∈ Execs∗(A2
k),

w′(α1as, α2bt) =


w(α1as, α2bt) + w(α1, α2)

∑
tr∈D1(a) σ1(α1)(tr)wtr (s, t)

if α1as R′
k α2bt

0
otherwise

Condition 1 is trivially verified: let α1 and α2 be two executions such
that w′(α1, α2) > 0. By definition of w′, it follows that α1 R′

k α2.
Condition 2 is also satisfied: for each α1as,

υ1
1(α1as) = ν ′1(α1as) + ν ′1(α1)

∑
tr∈D1(a)

σ1(α1)(tr) · µtr (s)

=
∑
α2

(w(α1as, α2) + w(α1, α2)
∑

tr∈D1(a)

σ1(α1)(tr) · µtr (s))

=
∑
α2bt

(w(α1as, α2bt) + w(α1, α2)
∑

tr∈D1(a)

σ1(α1)(tr) · wtr (s, t))

=
∑
α2bt

w′(α1as, α2bt)

Condition 3 is also satisfied: for each α2as,

υ1
2(α2bt) = ν ′2(α2bt) + ν ′2(α2)

∑
tr∈D2(b)

σ2(α2)(tr) · µtr (t)

=
∑
α1

(w(α1, α2bt) + w(α1, α2)
∑

tr∈D2(b)

σ2(α2)(tr) · µtr (t))

=
∑
α1as

(w(α1as, α2bt) + w(α1, α2)
∑

tr∈D2(b)

σ2(α2)(tr) · µtr (t))

=
∑
α1as

(w(α1as, α2bt) + w(α1, α2)
∑

tr∈D1(b)

σ1(α1)(tr) · wtr (s, t))

=
∑
α1as

w′(α1as, α2bt)

ut
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Corollary 3.15. Let A1
n and A2

n be two automata parameterized on n ∈ N.
If for each n ∈ N A1

n ¹e A2
n, then {A1

k}k∈N . {A2
k}k∈N.

Proof. By Proposition 3.3, for each k ∈ N, A1
k ¹e A2

k implies that A1
k ¹ A2

k.
By Proposition 3.14, we have that {A1

k}k∈N . {A2
k}k∈N. ut

The third property of polynomially accurate simulation is the execution
correspondence:

Theorem 3.16 (Execution Correspondence Theorem). Let {A1
k}k∈N,

{A2
k}k∈N, . . . , {An

k}k∈N be n families of probabilistic automata such that
there exist n− 1 families of relations {R1

k}k∈N, {R2
k}k∈N, . . . , {Rn−1

k }
k∈N

such for each 0 < i < n, {Ri
k}k∈N is a polynomially accurate simulation

from {Ai
k}k∈N to {Ai+1

k }
k∈N.

For each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄

and each probability measure ν1 ∈ Disc(Execs∗(A1
k)), if ν1 is reachable

within p(k) steps in A1
k, then there exists νn ∈ Disc(Execs∗(An

k)) such that
νn is reachable within p(k) steps in An

k and ν1 L(R1
k ◦ . . . ◦ Rn−1

k , p(k)k−c)
νn.

Proof. Fix c ∈ N, p ∈ Poly and suppose that there exists k̄′ ∈ N such that
for each k > k̄′, ν1 ∈ Disc(Execs∗(A1

k)) is reachable within p(k) steps in
A1

k. Let s the actual number of steps performed to reach ν1.
By Theorem 3.13, it follows that for each c′1 ∈ N, there exists k̄1 ∈ N

such that for each k > k̄1, there exists a measure ν2 ∈ Disc(Execs∗(A2
k))

such that ν2 is reachable in s steps and ν1 L(R1
k, sk

−c′1) ν2.
Since ν2 is reachable in A2

k in s steps, s 6 p(k), it follows that for
each c′2 ∈ N, there exists k̄2 ∈ N such that for each k > k̄2, there exists
a measure ν3 ∈ Disc(Execs∗(A3

k)) such that ν3 is reachable in s steps and
ν2 L(R2

k, sk
−c′2) ν3.

Iterating this reasoning, we obtain that for each 1 < i < n and each
c′i ∈ N, there exists k̄i ∈ N such that for each k > k̄i, there exists a
measure νi+1 ∈ Disc(Execs∗(Ai+1

k )) such that νi is reachable in s steps and
νi L(Ri

k, sk
−c′i) νi+1.

Let k̄ = max{k̄′, k̄1, . . . , k̄n−1}. Since k̄ > k̄′, for each k > k̄ the measure
ν1 is still reachable within p(k) steps and s 6 p(k). Since for each 0 < i < n

k̄ > k̄i, we still have that for each c′i ∈ N, and each k > k̄, there exists a
measure νi+1 ∈ Disc(Execs∗(Ai+1

k )) such that νi+1 is reachable in s steps
and νi L(Ri

k, sk
−c′i) νi+1. Since for each 0 < i < n we can choose the value

of c′i, let c′ ∈ N be a value such that for each l ∈ N, l > k̄, we have that
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(n−1)l−c′ 6 l−c; for each 0 < i < n, take c′i = c′. This implies that for each
k > k̄, there exists a measure νi+1 ∈ Disc(Execs∗(Ai+1

k )) such that νi+1 is
reachable in s steps and νi L(Ri

k, sk
−c′) νi+1.

By Proposition 3.6, it follows that ν1 L(R1
k ◦ . . . ◦ Rn−1

k ,
∑n−1

i=1 sk−c′)
νn. Consider

∑n−1
i=1 sk−c′ . We have that

∑n−1
i=1 sk−c′ = s

∑n−1
i=1 k−c′ = s(n−

1)k−c′ 6 sk−c 6 p(k)k−c. By Property 3.5(2), it follows that νn is reachable
in s 6 p(k) steps and ν1 L(R1

k ◦ . . . ◦ Rn−1
k , p(k)k−c) νn, as required. ut



4

Derived Automata and Approximated Simulations

In this chapter we study two extensions of probabilistic automata that
are induced by the notion of simulation. In particular, the first extension
considers the adding history variables [5] and further actions that modify
only the new variables while the second extension is the generalization of
a result induced by our notion of polynomially accurate simulations.

4.1 Extending Automata with Actions and Variables

Given an automatonA, we can define several automata that are very similar
to A but that provide more actions or whose states are described by the
same variables of states of A plus some other variables. For example, given
the coin flipper of Figure 2.1 on page 32, we can consider the automaton that
remembers the sequence of heads and tails it has returned. The sequence of
heads and tails can be seen as a history of the execution of the coin flipper
that is updated internally.

We can also add some actions that are used by other automata to com-
municate information to A, information that are stored inside the state.
For example, we can put in parallel a coin flipper and a dice roller and we
want that the coin flipper keeps as history the sequence of heads, tails, and
values of the dice. In this case, we modify the coin flipper adding an input
action that is used by the dice roller to communicate the value of the dice
and the effect of such action is to add the dice value to the history.

In addition, we want to communicate information kept inside an au-
tomaton to the outside. To do this, we can add some output action that
sends information to the environment. For example, the coin flipper can
output the sequence of heads and tails each time it flips the coin; such in-
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formation can be received by an automaton that uses the sequence of heads
and tails to control its own behavior.

As we will see in the next chapters (in particular, in Chapter 6 where
we talk about properties of cryptographic primitives with respect to sim-
ulations), during a hierarchical verification we define an automaton and
then we modify it adding information about the history of internal choices
and about external actions. Resulting automata allow us to state properties
about the exchanged values that are useful to prove our results. For this
reason, we want to formalize the notion of extension of an automaton and
then we prove some properties of extended automata.

The first problem we find in the formalization of extension is that given
two states, it is easy to say when they share some information when they are
described by variables, since we can simply compare the values of variables
of interest. The problem is that the definition of probabilistic automaton
does not impose to use variables to characterize a state, so given two states
that at least one is not described by variables, it is not easy to find a general
way to say that they share some information.

Since our aim is to consider automata that are obtained adding actions
or information to the states of another automaton, we suppose that states
of all automata are described using variables.

Definition 4.1. Let s be a state that is described by a set of variables V .
For each v ∈ V , we define the projection of s on v, denoted as s.v, as the
value of variable v in s.

Given an automaton A, if states are not described by variables, then
we assume that states are characterized by the variable state that assumes
values that belong to States and we define · .state as s.state = s for each
state s.

Now we are able to say when two states share the same information.

Definition 4.2. Let s1 and s2 be two states described by sets of variables
V1 and V2, respectively and let V be V1 ∩ V2. We say that s1 and s2 are
equal on common variables if for each variable v ∈ V , s1.v = s2.v.

If V1 ⊆ V2, then we say that s1 is equal to s2 on common variables
(denoted by s1 = s2¹s1) if s1 and s2 are equal on common variables.

The notion of equality of states can be easily extended to measures over
states:

Definition 4.3. Let A1, A2 be two automata whose states are described by
variables V1 and V2, respectively. Suppose that V1 ⊆ V2.
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Given µ1 ∈ Disc(States1) and µ2 ∈ Disc(States2), we say that µ1 is
equal to µ2 on common variables (denoted by µ1 = µ2¹µ1) if for each s1 ∈
Supp(µ1), µ1(s1) = µ2(E(s1)) where E(s1) = {s2 ∈ States2 | s1 = s2¹s1}.

Now it is straightforward to extend the notion of equality to transitions:

Definition 4.4. Let A1, A2 be two automata whose states are described by
variables V1 and V2, respectively. Suppose that V1 ⊆ V2.

Given two transitions tr1 = (s1, a1, µ1) ∈ D1 and tr2 = (s2, a2, µ2) ∈
D2, we say that tr1 is equal to tr2 on common variables (denoted by tr1 =
tr2¹tr1) if

– s1 = s2¹s1

– a1 = a2, and
– µ1 = µ2¹µ1.

Now we can define our notion of extention of automata:

Definition 4.5. Let A be an automaton and let V be the set of variables
that describes states of A.

Let W be a set of variables such that W ∩ V = ∅ and let B be a set of
actions such that B ∩A = ∅.

Given the automaton A′ we say that A′ extends A with state variables
W and actions B (also denoted by A′ ∈ ExtW

B (A)) if A′ is an automaton
(S′, s̄′, A′, D′) that satisfies the following conditions:

compatible states: states of A′ are described by variables V ∪W ;
compatible start state: s̄′ satisfies s̄ = s̄′¹s̄;
compatible actions: A′ = A ∪B and H ′ = H; and
compatible transitions: for each transition tr ∈ D, there exists tr ′ ∈ D′ such

that tr = tr ′¹tr , and for each transition tr ′ = (s′, a′, µ′) ∈ D′,
– either a′ ∈ B and there exists s ∈ States such that s = s′¹s and

δs = µ′¹δs,
– or a′ ∈ A and there exists tr ∈ D such that tr = tr ′¹tr .

Informally, an automaton A′ is an extension of an automaton A each
time their behavior is the same on common parts. This means, for example,
that the extra information kept by A′ does not affect the actions that are
also provided by A, that is, we do not base our choices on the information
we have in A′ but not in A. In a similar way, the new actions we provide
in A′ do not modify the variables that are also variables of A. In general,
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given an automaton A if we add history variable and actions that modify
only them, then the resulting automaton is an extension of A.

The above consideration allows us to suppose that an automaton A is
simulated by its extension A′, since each transition of A can be matched
by the corresponding transition of A′. In fact,

Lemma 4.6. Let A1 and A2 be two automata such that there exists a set
of variables W and a set of actions B such that A2 ∈ ExtW

B (A1). Let V the
set of variables that describe states of A1.

If C is a context compatible with A2 such that B is contained into actions
of C, then A1||C ¹ A2||C.

Proof. Before proving the existence of the simulation, we must be sure that
A1 is compatible with C. This is true since, by hypothesis,

– A2 ∩HC = ∅ and thus A1 ∩HC = ∅ since A2 = A1 ∪B; and
– H2 ∩AC = ∅ and thus H1 ∩AC = ∅ since H2 = H1.

Let SC the set of states of context C and R be a relation from S × SC

to S′×SC such that (s1, c1) R (s2, c2) if and only if c2 = c1 and s1 = s2¹s1 .
R is a simulation from A1||C to A2||C.
Condition on start states is trivially true: let c̄ be the start state of C;

since by definition of ExtW
B (A1) s̄1 = s̄2¹s̄1 , then (s̄1, c̄) R (s̄2, c̄).

For the step condition, let (s1, c1), (s2, c2) be two states of A1||C and
A2||C respectively such that (s1, c1) R (s2, c2) (and thus, c2 = c1 and
s1 = s2¹s1). Let a be an action and µ1 a probability measure such that
((s1, c1), a, µ1) is a transition of A1||C; let µA1 and µC be the two measures
such that µ1 = µA1 × µC . There are three cases:

– a is an action of C but not of A2: definition of composition implies
that µ1 = δs1 × µC . Let µ2 = δs2 × µC . By definition of composition,
((s2, c1), a, µ2) is a transition of A2||C and µ1 L(R) µ2. In fact, for each
pair of composed states (s′1, c

′
1), (s′2, c

′
2), define

w((s′1, c
′
1), (s

′
2, c

′
2)) =

{
δs1(s

′
1)δs2(s

′
2)µC(c′1) if (s′1, c

′
1) R (s′2, c

′
2)

0 otherwise.

w is a weighting function:
1. if w((s′1, c

′
1), (s

′
2, c

′
2)) > 0, then (s′1, c

′
1) R (s′2, c

′
2) by definition of w;

2. for each (s′2, c
′
2),
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(s′1,c′1)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)δs2(s

′
2)µC(c′1)

= by definition of R∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)δs2(s

′
2)µC(c′2)

= δs1(s1)δs2(s
′
2)µC(c′2)

+
∑

(s′1,c′1)R(s′2,c′2),s′1 6=s1

δs1(s
′
1)δs2(s

′
2)µC(c′2)

= by definition of δs1

δs2(s
′
2)µC(c′2)

= by definition of µ2

µ2(s′2, c
′
2).

3. for each (s′1, c
′
1),∑

(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)δs2(s

′
2)µC(c′1)

= δs1(s
′
1)δs2(s2)µC(c′2)
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+
∑

(s′1,c′1)R(s′2,c′2),s′2 6=s2

δs1(s
′
1)δs2(s

′
2)µC(c′2)

= by definition of δs2

δs1(s
′
1)µC(c′1)

= by definition of µ1

µ1(s′1, c
′
1).

– a is an action of A1: by definition of composition, we have that tr1 =
(s1, a, µA1) is a transition of A1. By definition of extension, it follows
that there exists a transition tr2 = (s2, a, µA2) such that tr1 = tr2¹tr1 .
Let µ2 be the distribution µA2 × µC . By definition of composition, it
follows that ((s2, c2), a, µ2) is a transition of A2||C and µ1 L(R) µ2. In
fact, for each pair of composed states (s′1, c

′
1), (s′2, c

′
2), define

w((s′1, c
′
1), (s

′
2, c

′
2)) =

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′2) if (s′1, c

′
1) R (s′2, c

′
2)

0 otherwise.

w is a weighting function:
1. if w((s′1, c

′
1), (s

′
2, c

′
2)) > 0, then (s′1, c

′
1) R (s′2, c

′
2) by definition of w;

2. for each (s′2, c
′
2),∑

(s′1,c′1)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′2)

= by definition of R∑
s′1 s.t. s′1=s′2�s′1

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′2)

= µC(c′2)µA2(s
′
2)

∑
s′1 s.t. s′1=s′2�s′1

µA1(s
′
1)

µA2(E(s′1))
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= by definition of extending automaton

µC(c′2)µA2(s
′
2)

µA1(s
′
2ºV )

µA2(E(s′2ºV ))

= by definition of extending automaton

µC(c′2)µA2(s
′
2)

µA2(E(s′2ºV ))
µA2(E(s′2ºV ))

= µA2(s
′
2)µC(c′2)

= by definition of µ2

µ2(s′2, c
′
2).

where t2ºV ) denotes the single state t1 of A1 such that t1 = t2¹t1 .
3. for each (s′1, c

′
1),∑

(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′2)

= by definition of R∑
(s′1,c′1)R(s′2,c′2)

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′1)

= by definition of R∑
s′2 s.t. s′1=s′2�s′1

µA1(s
′
1)

µA2(s
′
2)

µA2(E(s′1))
µC(c′1)

= µA1(s
′
1)µC(c′1)

∑
s′2 s.t. s′1=s′2�s′1

µA2(s
′
2)

µA2(E(s′1))

= by definition of E(s′1)

µA1(s
′
1)µC(c′1)

µA2(E(s′1))
µA2(E(s′1))
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= µA1(s
′
1)µC(c′1)

= by definition of µ1

µ1(s′1, c
′
1).

– a is an action of A2 but not of A1: by definition of composition, we
have that µ1 = δs1 × µC . Let µ2 = µA2 × µC where µA2 is a measure
such that (s2, a, µA2) is a transition of A2. By definition of composition,
((s2, c1), a, µ2) is a transition of A2||C and µ1 L(R) µ2. In fact, for each
pair of composed states (s′1, c

′
1), (s′2, c

′
2), define

w((s′1, c
′
1), (s

′
2, c

′
2)) =

{
δs1(s

′
1)µA2(s

′
2)µC(c′2) if (s′1, c

′
1) R (s′2, c

′
2)

0 otherwise.

w is a weighting function:
1. if w((s′1, c

′
1), (s

′
2, c

′
2)) > 0, then (s′1, c

′
1) R (s′2, c

′
2) by definition of w;

2. for each (s′2, c
′
2),∑

(s′1,c′1)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)µA2(s

′
2)µC(c′2)

= δs1(s1)µA2(s
′
2)µC(c′2)

+
∑

(s′1,c′1)R(s′2,c′2),s′1 6=s1

δs1(s
′
1)µA2(s

′
2)µC(c′2)

= by definition of δs1

µA2(s
′
2)µC(c′2)

= by definition of µ2

µ2(s′2, c
′
2).

3. for each (s′1, c
′
1),
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(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2)) =

∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

+
∑

(s′1,c′1)¬R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

w((s′1, c
′
1), (s

′
2, c

′
2))

= by definition of w∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)µA2(s

′
2)µC(c′2)

= by definition of R∑
(s′1,c′1)R(s′2,c′2)

δs1(s
′
1)µA2(s

′
2)µC(c′1)

= by definition of R∑
s′2 s.t. s′1=s′2�s′1

δs1(s
′
1)µA2(s

′
2)µC(c′1)

= δs1(s
′
1)µC(c′1)

∑
s′2 s.t. s′1=s′2�s′1

µA2(s
′
2)

= by definition of µA2

δs1(s
′
1)µC(c′1)

= by definition of µ1

µ1(s′1, c
′
1).

ut

4.2 Simulations between Conditional Automata

With the definition of polynomially accurate simulation, we have a tool
that allows us to say when two (families of) automata present a behavior
that differs only on a negligible set of cases. This is very important during
the verification of the security of a protocol, since given two automata that
are related by a polynomially accurate simulation, then we can replace
the first one with the second one and the overall behavior of the system
changes only on a set of executions that occur with negligible probability.
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In particular, the second one can ensure by construction that bad states
can not be reached, that is, the probability to reach such states is zero.

In the previous sentence, we have called some states bad : given an au-
tomaton, we say that a state is bad when it represents an event we do not
want to reach. For example, we say that a state s of a nonce generator is
bad when in s we have a repeated nonce. In the same way, given a coin
flipper that takes the history of the returned values, we may say that a
state is bad when the history contains a sequence of five heads followed by
two tails. We remark the fact that the classification of a state as bad or
good depends on the context we are considering: if we are analyzing a cryp-
tographic protocol, it is obvious to say that states where repeated nonces
occur are bad while in the same context, it is difficult to find a general
motivation to say when the states of the coin flipper are good and when
they are bad.

Given a bad state or a set of bad states, we can consider the probability
to reach them: if it is high, then the corresponding situations we want to
avoid can occur with a probability that is too high for our purpose and
that it is not acceptable. For example, consider a cryptographic protocol
and label a state as bad when in such state the adversary has performed
a successful attack. If we can reach such states with high probability, then
we can consider the protocol not secure, since the adversary can break it
with high probability.

The probability to reach bad states is usually related to the length of
the execution we are analyzing. For example, consider again the case of
the generation of nonces: by the main property of the nonces, we know
that the probability to generate a nonce of length k that belongs a set N

is negligible each time N has a polynomial size. If we add other values
to N , then the probability to generate a nonce already in N grows. If N

contains all nonces we have chosen during an execution, then an execution
of exponential length could generate almost all available nonces and thus
the probability to generate a repeated nonce grows and is 1 when N =
{0, 1}k. In this case, all values we will choose are already in N and thus we
will generate only repeated nonces. At the same manner, if we allow the
adversary to run for an exponential time, then it is obvious that it attacks
the protocol, since it can try all possible secrets until it finds the right ones.
Once the adversary knows the secrets, the protocol is easily broken.

The above considerations lead us to define the probability of “bad”
states with respect to the length of the execution. In particular, since our
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aim is to analyse cryptographic protocols and since usually a protocol is
said to be secure if the probability to attack it is negligible provided that
the adversary is polynomially bounded, then we base our definition on
negligible probabilities and executions of polynomial length.

Before providing such definition, we need to introduce some preliminary
notions.

Definition 4.7. We say that a state s of probabilistic automaton A is
reachable if there exists α ∈ Execs∗(A) such that lstate(α) = s.

Definition 4.8. Let A be an automaton and s be a state of A.
We say that s is reachable with probability p in A if p is equal to

supσ{
∑

{α∈Execs∗(A)|lstate(α)=s} εσ,s̄(α)}.
We say that s is reachable with probability q within l steps in A if q =

supσ{
∑

{α∈Execs∗(A)||α|6l∧lstate(α)=s} εσ,s̄(α)}.

Definition 4.9. For a family {Ak}k∈N of probabilistic automata and a fam-
ily {Bk}k∈N of states, we say that {Bk}k∈N is polynomially reachable with
negligible probability in {Ak}k∈N if and only if for each c ∈ N, each
p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄ the probability to
reach states of Bk within p(k) steps in Ak is at most k−c.

We say alternatively that {Bk}k∈N is negligible in {Ak}k∈N.

As we have said at the beginning of this section, polynomially accurate
simulations allow us to say when two (families of) automata present quite
the same behavior. Such definition considers two families of automata that
can be very different but when we prove the existence of a polynomially
accurate simulation from the first family to the second one, then we can
say that they behave almost in the same way.

Now, consider the two families of automata: it is true that we can con-
sider two families whose automata are completely different but usually the
second ones are obtained from the first ones removing the bad cases. For
example, the first family models a nonce generator that can return repeated
nonces while the second family ensures that each nonce is actually fresh.

One way to avoid to reach bad cases is the following: we identify the
states that correspond to the bad cases and then we impose that the prob-
ability to reach such states is zero. We can obtain such situation taking as
the target measure of each transition tr the measure µtr conditioned to the
set of states that are not bad. Formally,
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Definition 4.10. For a probabilistic automaton A = (S, s̄, A,D) and a set
of states G, define the G-conditional of A, denoted by A|G, to be the
probabilistic automaton (S, s̄, A,D′) where D′ = {(s, a, µ)|G | (s, a, µ) ∈
D,µtr (G) > 0} where (s, a, µ)|G is the transition (s, a, µ|G).

One important property of the G-conditional automaton is that each
reachable state is in G whenever s̄ ∈ G or, in other words, the probability
to reach states in S \G is zero.

Proposition 4.11. Let A be a probabilistic automaton and G be a set of
states such that s̄ ∈ G. Let A′ be the automaton A|G.

For each state s ∈ S, if s is reachable in A′, then s ∈ G.

Proof. Let s be a state of A that is reachable. If s = s̄, then s ∈ G by
hypothesis. Consider the case s 6= s̄: since s is reachable, there exists a
finite execution α ∈ Execs∗(A′) such that lstate(α) = s. Since s 6= s̄, let
β a finite execution and a an action such that α = βas. By definition
of execution, it follows that there exists (lstate(β), a, µ′) ∈ D′ such that
µ′(s) > 0. By definition of D′, it follows that µ′ = µ|G for a measure µ

such that (lstate(β), a, µ) ∈ D. Since µ′(s) > 0, definition of conditional
measure implies that s ∈ G. ut

The extension of G-conditional automaton to families of automata is
now straightforward.

Definition 4.12. For a family {Ak}k∈N of probabilistic automata and a
family {Gk}k∈N of states, define the G-conditional of {Ak}k∈N, denoted by
{Ak}k∈N|{Gk}k∈N, to be the family {Ak|Gk}k∈N.

Given an automaton A, we can easily define a G-conditional A′ of it.
The set of states G is arbitrary: if G is S, then it is immediate to see that
A′ = A; if G is the empty set, then A′ does not perform transitions, since
for each transition tr of A we have that µtr (∅) = 0. For intermediate cases,
A′ is more or less similar to A: it depends on how different is G with respect
to S.

We can choose G as we want: for example, G can be the set of states that
enables a particular action, or that are reachable within an odd number of
steps, and so on. One case we consider more interesting than the others is
when G contains all states that are not considered bad, that is, G = S \B

where B is the set of bad states that we want to avoid. Given A and its
bad states B, we can analyze the relation between it and its G-condition
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version, that is, the relation between A and one possible another automaton
G that ensures that states of B are never reached.

Since there are several automata A′ that can ensure that states of B are
never reached and that such automata can be very different, it is difficult
to establish a general result about the relation between A and A′. In fact,
A′ can be designed in a way that it makes very difficult to compare it with
A. On the contrary, comparing A and G is quite simple, since they provide
the same set of states, the same set of actions and transitions are almost
the same. In fact, from the definition of G-conditional of an automaton, we
know that target measures are the original ones conditioned to G and that
we keep only transitions that leave from states of G.

As we have seen previously, A and G are more or less similar and this
depends on how G is similar to S. In particular, the main condition is on
the probability to reach states that are not in G: we have a polynomially
accurate simulation from A to G each time the probability to reach states
not in G is negligible and vice versa. Formally,

Theorem 4.13 (Conditional Automaton Theorem). Let {Ak}k∈N be
a family of probabilistic automata and {Gk}k∈N be a family of states such
that, for each k ∈ N, s̄k ∈ Gk. For each k ∈ N let Bk be the set Sk \ Gk.
Then the family of identity relations is a polynomially accurate simulation
from {Ak}k∈N to {Ak}k∈N|{Gk}k∈N if and only if {Bk}k∈N is negligible in
{Ak}k∈N.

Proof. To simplify the notation, denote by A1
k the automaton Ak and by A2

k

the automaton Ak|Gk, and hence by {A2
k}k∈N the family {Ak}k∈N|{Gk}k∈N.

(⇒) Suppose, for the sake of contradiction, that {Bk}k∈N is not negligible
in {A1

k}k∈N. This means that there exist c ∈ N, p ∈ Poly such that for
each k̄ ∈ N there exists k > k̄ and a measure ν1 reached after j 6 p(k)
steps such that ν1(Bk) > k−c. By hypothesis, s̄1

k ∈ Gk and thus s̄1
k /∈ Bk,

hence ν1 is reached performing at least one step.
Since {A1

k}k∈N . {A2
k}k∈N, by Theorem 3.13, it follows that there exists

a scheduler σ for {A2
k}k∈N that reaches, after j steps, a probability

measure ν2 such that for each c′ > 0 there exists k̄′ ∈ N such that
for each k > k̄′ ν1 L(idk, jk

−c′) ν2. In particular, we can choose c′

such that jk−c′ < k−c, that is c′ > − logk(k−c/j). By definition of
L(idk, jk

−c′), it follows that there exist ν ′1, ν ′′1 , ν ′2, and ν ′′2 such that
ν1 = (1−jk−c′)ν ′1+jk−c′ν ′′1 , ν2 = (1−jk−c′)ν ′2+jk−c′ν ′′2 , and ν ′1 L(idk)
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ν ′2. By Proposition 4.11, we have that ν2(Bk) = 0 and thus ν ′1(Bk) = 0.
This implies that Bk ⊆ Supp(ν ′′1 ) and that ν1(Bk) = jk−c′ν ′′1 (Bk) <

k−cν ′′1 (Bk) 6 k−c. This contradicts the hypothesis that ν1(Bk) > k−c.
Absurd.

(⇐) Let R= {idk}k∈N be the family of identity relations.
The condition on the start states is trivially true: by definition of con-
ditional automaton, the start state is the same, thus for each k ∈ N,
s̄1
k idk s̄2

k.
For the step condition, fix c ∈ N, p ∈ Poly , k̄ ∈ N, k > k̄, γ, ν1, ν2, υ1

such that ν1 is reached within p(k) steps in A1
k, ν1 L(idk, γ) ν2, ν1 −→

υ1. We must find υ2 such that ν2 −→ υ2 and υ1 L(idk, γ + k−c) υ2.
If γ > 1−k−c, then for each measure υ2 such that ν2 −→ υ2, υ2 satisfies
υ1 L(idk, γ + k−c) υ2. In fact, γ > 1− k−c implies that γ + k−c > 1 and
by definition of L(idk, γ + k−c), it follows that υ1 L(idk, γ + k−c) υ2.
So, suppose that 0 6 γ < 1− k−c. Let σ1 be the scheduler for A1

k that
induces the transition ν1 −→ υ1 and σ2 be the scheduler for A2

k defined
as σ2(s, a, µ|Gk) = σ1(s, a, µ) when µ(Gk) > 0. Let υ2 be the measure
induced by σ2 from ν2. We have that υ1 L(idk, γ + k−c) υ2. In fact, by
definition of L(idk, γ), it follows that there exist ν ′1, ν ′′1 , ν ′2, and ν ′′2 such
that ν1 = (1− γ)ν ′1 + γν ′′1 , ν2 = (1− γ)ν ′2 + γν ′′2 , and ν ′1 L(idk) ν ′2. By
definition of L(idk), it follows that for each α ∈ Execs∗(A1

k), ν ′1(α) =
ν ′2(α).
If lstate(α) /∈ Gk, then α /∈ Supp(ν ′1) and thus α ∈ Supp(ν ′′1 ). In fact,
suppose for the sake of contradiction that α ∈ Supp(ν ′1). This implies
that ν ′1(α) > 0, thus ν ′2(α) > 0 and hence lstate(α) is reachable in
A2

k. This implies, by Proposition 4.11, that lstate(α) ∈ Gk. Absurd.
Moreover, for each α ∈ Supp(ν ′1), each state of α is in Gk.
Let υ1

1 and υ1
2 be the two parts of υ1 and υ2 that are induced by σ1

and σ2 from ν ′1 and ν ′2, respectively; analogously, let υ2
1 and υ2

2 be the
two measures induced from ν ′′1 and ν ′′2 , respectively. This implies that
υ1 = (1− γ)υ1

1 + γυ2
1 and υ2 = (1− γ)υ1

2 + γυ2
2. Now, consider αas such

that αas ∈ Supp(υ1
1). By definition of ν −→ υ, it follows that

υ1
1(Cαas) = ν ′1(Cαas)

+ ν ′1(α)
∑

tr∈D1(a)

σ1(α)(tr) · µtr (s)

= ν ′1(Cαas)
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+ ν ′1(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

= ν ′2(Cαas)

+ ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

= ν ′2(Cαas)

+ ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ2(α)(tr |Gk) · µtr (s)
µtr (Gk)

· µtr (Gk)

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

= ν ′2(Cαas)

+ ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ2(α)(tr |Gk) · µtr (s)
µtr (Gk)
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− ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ2(α)(tr |Gk) · µtr (s)
µtr (Gk)

· (1− µtr (Gk))

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

= ν ′2(Cαas)

+ ν ′2(α)
∑

tr∈D2(a)
s∈Gk

σ2(α)(tr) · µtr (s)

− ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ2(α)(tr |Gk) · µtr (s)
µtr (Gk)

· (1− µtr (Gk))

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

= υ1
2(Cαas)

− ν ′2(α)
∑

tr∈D1(a)
s∈Gk

µtr (Gk)>0

σ2(α)(tr |Gk) · µtr (s)
µtr (Gk)

· (1− µtr (Gk))

+ ν ′1(α)
∑

tr∈D1(a)
s/∈Gk

µtr (Gk)>0

σ1(α)(tr) · µtr (s)

+ ν ′1(α)
∑

tr∈D1(a)
µtr (Gk)=0

σ1(α)(tr) · µtr (s)

Now, there are two cases: either s ∈ Gk, or s /∈ Gk.
If s ∈ Gk, then
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– ν ′1(α)
∑

tr∈D1(a),µtr (Gk)=0 σ1(α)(tr) · µtr (s) = 0 since for each tr ∈
D1(a) such that µtr (Gk) = 0, µtr (s) = 0 (otherwise we have
µtr (Gk) > µtr (s) > 0 that contradicts µtr (Gk) = 0), and

– ν ′1(α)
∑

tr∈D1(a),s/∈Gk,µtr (Gk)>0 σ1(α)(tr) · µtr (s) = 0 since the sum-
mation is empty.

This implies that if s ∈ Gk, then υ1
1(Cαas) = υ1

2(Cαas) − ν ′2(α) ·∑
tr∈D1(a),µtr (Gk)>0 σ2(α)(tr |Gk) · µtr (s)

µtr (Gk)
· (1 − µtr (Gk)) and hence

υ1
1(Cαas) 6 υ1

2(Cαas).
If s /∈ Gk, then
– υ1

2(Cαas) = 0 otherwise s can be reached in A2
k and thus, by Prop-

erty 4.11, s ∈ Gk, and

– ν ′2(α)
∑

tr∈D1(a),s∈Gk,µtr (Gk)>0 σ2(α)(tr |Gk)· µtr (s)
µtr (Gk)

·(1−µtr (Gk)) =

0 since the summation is empty.
That is, if s /∈ Gk, then υ1

1(Cαas) = ν ′1(α)
∑

tr∈D1(a),µtr (Gk)>0 σ1(α)(tr) ·
µtr (s) + ν ′1(α)

∑
tr∈D1(a),µtr (Gk)=0 σ1(α)(tr) · µtr (s).

Let B∗
k ⊆ Supp(υ1

1) be the set of finite executions β such that lstate(β) ∈
Bk. Let G∗

k be Supp(υ1
1) \ B∗

k (that is, the set of finite executions β

such that lstate(β) ∈ Gk). By hypothesis, {Bk}k∈N = {S1
k \Gk}k∈N

is negligible in {A1
k}k∈N and this implies that υ1

1(B
∗
k) < k−c and thus

υ1
1(G

∗
k) > 1−k−c. Suppose, for the sake of contradiction, that υ1

1(B
∗
k) >

k−c. This implies that υ1(B∗
k) = (1−γ)υ1

1(B
∗
k) > k−cυ1

1(B
∗
k) > k−ck−c =

k−2c. Since υ1 is reached within p(k)+1 steps and υ1(B∗
k) > k−2c, then

{Bk}k∈N is not negligible in {A1
k}k∈N. Absurd.

Since υ1
1(G

∗
k) > 1 − k−c, we have that υ1(G∗

k) = (1 − γ)υ1
1(G

∗
k) >

(1 − γ)(1 − k−c) = (1 − (γ + k−c)) + γk−c. Let υ′1 be the distribution
υ1

1|G∗
k. Define υ′′1 as the measure (γ + k−c)(υ1 − (1− (γ + k−c))υ′1). So,

υ1 = (1− (γ + k−c))υ′1 + (γ + k−c)υ′′1 .
Analogously, define υ′2 = υ′1 and υ′′2 = (γ + k−c)(υ2− (1− (γ + k−c))υ′2)
and thus υ2 = (1 − (γ + k−c))υ′2 + (γ + k−c)υ′′2 . Since υ′2 = υ′1, then
υ′1 L(id) υ′2 and thus conditions of the step of the polynomially accurate
simulations are satisfied. ut

The above result allows us to conditionate an automaton with respect
to several set of states.

Corollary 4.14. Let Ak be a family of probabilistic automata and G1
k,

G2
k be two families of states such that for each k ∈ N, s̄k ∈ G1

k ∩ G2
k.
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If {Ak}k∈N . {Ak}k∈N|{G1
k}k∈N and {Ak}k∈N . {Ak}k∈N|{G2

k}k∈N, then
{Ak}k∈N . {Ak}k∈N|{G1

k ∩G2
k}k∈N.

Proof. To simplify the notation, denote by A1
k and A2

k the automata Ak|G1
k

and Ak|G2
k, respectively.

By Theorem 4.13, {Ak}k∈N . {A1
k}k∈N implies that the set of states

B1
k = Sk \G1

k of Ak is negligible in Ak. Analogously, B2
k = Sk \G2

k is also
negligible in Ak. By definition of negligibility of Bi

k in Ak for i = 1, 2, it
follows that for each c′ ∈ N and p ∈ Poly , there exist k̄1 ∈ N and k̄2 ∈ N
such that for each k > max(k̄1, k̄2), the probability to reach states of B1

k

within p(k) steps is less than k−c′ as well as the probability to reach states
of B2

k within p(k) steps is less than k−c′ . This implies that the probability
to reach states of B1

k ∪ B2
k is less than 2k−c′ . Since c′ is arbitrary, given

c ∈ N, we can choose c′ such that there exists k̄ ∈ N such that for each
k > k̄ 2k−c′ 6 k−c and thus the probability to reach states of B1

k ∪ B2
k

within p(k) is less than k−c. This implies that B1
k ∪ B2

k is negligible in Ak

and thus, by Theorem 4.13, {Ak}k∈N . {Ak}k∈N|{G1
k ∩G2

k}k∈N. ut



5

Polynomially Accurate Simulations: Limitations

and Solutions

The definition of polynomially accurate simulations we have provided in
the previous chapters allows us to study the security of cryptographic pro-
tocols, as we will see in Chapters 7 and 8, but it does not provide one
important property: it is not compositional. Moreover, it does not seem to
be transitive but actually the Execution Correspondence Theorem allows us
to relate executions of two automata whenever we are able to prove a chain
of polynomially accurate simulations starting from the first automaton and
ending into the second one.

Compositionality is a fundamental property if we want to split an au-
tomaton into several subpieces and then to analyze each subcomponent
independently from the others. Unfortunately, the polynomial accurate sim-
ulation is not compositional: consider the two automata of Figure 5.1.

Let S be the set {s1, . . . s2k} and U be the uniform measure over S.
Suppose that for each µ1 ∈ Disc(S1

k) that is reached performing an hy-
pertransition from U , if µ1(S) > 2 · 2−k, then there exists a transition
(t, τ, µ2) such that for each i = 1, . . . , 2k, µ2(ti) = µ1(si)/µ1(S). It is easy
to observe that {A1

k}k∈N is polynomially accurate simulated by {A2
k}k∈N.

In fact, given that ai 6= aj whenever i 6= j, we can consider the relation
Rk such that (s̄, t̄) ∈Rk, and for each i = 1, . . . , 2k, (s̄τs1,i, t̄τ t) ∈Rk,
(s̄τs1,iτsi, t̄τ tτ ti) ∈Rk, and (s̄τs1,iτsiais2,i, t̄τ tτ tiait2,i) ∈Rk. {Rk}k∈N is
a polynomially accurate simulation: for each k ∈ N, s̄ Rk t̄. For the step
condition, we distinguish between the case we start from δs̄ or from another
measure.

If δs̄ −→ υ1, then by definition of transition, it follows that υ1 =
σ1(s̄)(⊥) + σ(s̄)(tr1)U where tr1 = (s̄, τ, U) and σ1 is the scheduler that
induces δs̄ −→ υ1. To match this transition, it is sufficient to choose the
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τ

ττ

a1 a2k

2−k 2−k

t

t̄s̄

a1 a1a2k a2k

τ

ττ

s1,1 s1,2k

s2ks1 t1 t2k t1 t2k

A1
k A2

k

s2,1 s2,2k t2,1 t2,2k t2,2kt2,1

Fig. 5.1. Counter-example for compositionality of polynomially accurate simulation.

scheduler σ2 defined as: σ2(t̄)(⊥) = σ1(s̄)(⊥) and σ(t̄)(tr2) = σ(s̄)(tr1)
where tr2 = (t̄, τ, δt). Let υ2 be the measure induced by σ2 from δt̄. It is
immediate to see that υ1 L(Rk, 0) υ2 and thus υ1 L(Rk, k

−c) υ2.
If ν1 −→ υ1 with ν1 6= δs̄, then we have that for each α ∈ Supp(ν1),

|α| > 1. This implies that for each α1as, υ1(α1as) = ν1(α1as)σ1(α1as)(⊥)+∑
tr∈D1

k(a) ν1σ(α1)(tr)µtr (t). We can partition the support of υ1 in sev-
eral pieces: we have the set of executions α such that σ1 does not sched-
ule a transition. These executions can be matched exactly by A2

k without
performing a transition from the executions β such that α Rk β; then
we have the set of executions s̄τs1,iτsiais2,i that are reached perform-
ing the transition si

ai−→ δs2,i . These executions can be matched exactly
performing the transition ti

ai−→ δt2,i from the execution t̄τ tτ ti and thus
s̄τs1,iτsiais2,i Rk t̄τ tτ tiait2,i; finally, we have the executions s̄τs1,iτsi that
are obtained performing a transition s1,i

τ−→ δsi . Let tr be the normal-
ized hypertransition corresponding to such transitions and let ζ be the
normalization factor. Then there are two cases: either µtr (S) > 2 · 2−k or
µtr (S) 6 2 · 2−k. In the former case, we have that there exists a transition
tr2 = t

τ−→ µ2 such that for each i = 1, . . . , 2k µ2(ti) = µtr (si)/µtr (S). We
can match exactly such hypertransition choosing the transition tr2 with
probability ζµtr (S). In fact, for each s̄τs1,iτsi we have that υ1(s̄τs1,iτsi) =
ν1(s̄τs1,i)µtr (si)ζ = ν2(t̄τ t)µ2(ti)µtr (S)ζ = υ2(t̄τ tτ ti)ζµtr (S). In the latter
case, µtr (S) 6 2 · 2−k implies that υ1(s̄τs1,iτS) 6 2 · 2−k and thus there is
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nothing to match since 2 · 2−k < k−c for all sufficiently large k and thus
such executions can be placed into the piece of the probability measure
that represents the accepted error. Summing up, we are able to perform an
hypertransition ν2 −→ υ2 such that υ1 L(Rk, k

−c) υ2.
Now, consider the context Ck such that for each i = 1, . . . , 2k, it provides

a transition c̄
bi−→ δci . Suppose that whenever i 6= j, we have that bi 6= bj

and ci 6= cj and that given ci 6= cj , they enable incompatible transitions

(for example, from each ci it is enabled the transition ci
di−→ δei where for

each i 6= j, di 6= dj).
{A1

k||Ck}k∈N is not polynomially accurate simulated by {A2
k||Ck}k∈N.

Suppose, for the sake of contradiction, that {A1
k||Ck}k∈N . {A2

k||Ck}k∈N.
Then the relation R′= {R′

k}k∈N where for each k ∈ N, R′
k=Rk × idk is a

polynomially accurate simulation from {A1
k||Ck}k∈N to {A2

k||Ck}k∈N.
The condition on start states is trivially satisfied, since s̄ Rk t̄ and thus

(s̄, c̄) R′
k (t̄, c̄).

For the step condition, fix c ∈ N and p ∈ Poly . Then there exists k̄ ∈ N
such that for each k > k̄ and γ = 0, the step condition holds.

Now, consider the following case: from (s̄, c̄), the scheduler σ1 schedules
with probability 1 the transition δs̄

τ−→ U while no transition is scheduled
for Ck. The reached measure is the uniform measure U1 on {(s̄, c̄)τ(s1,i, c̄) |
1 6 i 6 2k}. Such transition can be matched by A2

k||Ck performing only the
transition δt̄

τ−→ δt for A2
k, obtaining the measure δ(t̄,c̄)τ(t,c̄). So, we have

that U1 L(R′
k, 0) δ(t̄,c̄)τ(t,c̄) and thus U1 L(R′

k, k
−c) δ(t̄,c̄)τ(t,c̄).

Now, given the execution (s̄, c̄)τ(si, c̄), σ1 schedules with probability 1

the transition c̄
bi−→ δci . This means that from the uniform measure on

{(s̄, c̄)τ(s1,i, c̄) | 1 6 i 6 2k}, σ1 induces an hypertransition that leads to
the uniform measure U1 on {(s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci) | 1 6 i 6 2k}. To match
such transition in A2

k||Ck, starting from the measure δ(t̄,c̄)τ(t,c̄) we schedule

uniformly the transitions c̄
bi−→ δci reaching the uniform measure U2 on the

set {(t̄, c̄)τ(t, c̄)bi(t, ci) | 1 6 i 6 2k}. This implies that U1 L(R′
k, 0) U2 and

thus U1 L(R′
k, k

−c) U2.
Now, from the uniform measure on {(s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci) | 1 6 i 6

2k}, σ1 schedules for each execution (s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci) the transition
(s1,i, τ, δsi) with probability 1 and no transition for Ck. This implies that
from the uniform measure ν1 on {(s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci) | 1 6 i 6 2k},
σ1 induces an hypertransition that leads to the uniform measure υ1 on
{(s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci)τ(si, ci) | 1 6 i 6 2k}.
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To match such transition, we must find an hypertransition from the uni-
form measure ν2 on {(t̄, c̄)τ(t, c̄)bi(t, ci) | 1 6 i 6 2k} that leads to some
measure υ2 such that υ1 L(R′

k, k
−c) υ2. Such measure does not exist. In

fact, by the definition of A2
1, from the state t we have a transition t

τ−→ µ

where the measure µ is defined as µ(ti) = µ1(si)/µ1(S) where µ1 is the
target of an hypertransition from U such that µ1(S) > 2 · 2−k. By def-
inition of A1

k, it follows that S contains at least two states: if S = {si}
for some 1 6 i 6 2k, then µ1(s) 6 2−k since si can be reached only from
the state s1,i through the transition tr = s1,i

τ−→ δsi and U(s1,i) = 2−k,
so µ1({si}) 6 U(s1,i)σ1(s̄τsi)(tr)δsi(si) 6 2−k. Moreover, this implies that
for each ti, µ(ti) 6 1/2. So, we have that for each transition t

τ−→ µ

at least two states are reached with probability greater than 0 and each
one with probability at most 1/2. This implies that for each transition
t

τ−→ µ we choose, starting from (t̄, c̄)τ(t, c̄)bi(t, ci) we obtain the execu-
tions (t̄, c̄)τ(t, c̄)bi(t, ci)τ(tj , ci) with tj ∈ Supp(µ). By definition of R′

k, only
(t̄, c̄)τ(t, c̄)bi(t, ci)τ(ti, ci) can be related to (s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci)τ(si, ci)
while (s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci)τ(si, ci)¬ R′

k (t̄, c̄)τ(t, c̄)bi(t, ci)τ(tj , ci) for all
j 6= i. Since this happens for all executions, if we fix the execution α1 to be
(s̄, c̄)τ(s1,i, c̄)bi(s1,i, ci), then we have that for each scheduler σ2 for A2

k||Ck,∑
{υ2(α2τ(ti, ci)) | α1τ(si, ci) R′

k α2τ(ti, ci)}
=

∑
{ν2(α2)σ2(α2)(tr)µtr (ti) | α1τ(si, ci) R′

k α2τ(ti, ci)}

6
∑

{ν2(α2)σ2(α2)(tr)
1
2
| α1τ(si, ci) R′

k α2τ(ti, ci)}

=
1
2

∑
{ν2(α2)σ2(α2)(tr) | α1τ(si, ci) R′

k α2τ(ti, ci)}

=
1
2

∑
{ν2(α2) | α1τ(si, ci) R′

k α2τ(ti, ci)}

=
1
2
· 2−k

Thus, we are not able to match the transition ν1 −→ υ1 with an error
at most k−c since

∑
α1τ(si,ci)

{υ2(α2τ(ti, ci)) | α1τ(si, ci) R′
k α2τ(ti, ci)} =∑

α1τ(si,ci)
{1
2
· 2−k | α1τ(si, ci) R′

k α2τ(ti, ci)} =
1
2

while we have that∑
α1τ(si,ci)

{υ1(α1τ(si, ci))} = 1. ut
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5.1 The State Polynomially Accurate Simulation

Since A2
k||Ck is not able to match the transition performed by A1

k||Ck,
we have that {A1

k||Ck}k∈N can not be polynomially accurate simulated by
{A2

k||Ck}k∈N.
Since the definition of polynomially accurate simulation does not ensure

the compositionality, we modify it to achieve such property preserving the
results of the polynomially accurate simulation: the Execution Correspon-
dence Theorem and the Conditional Automaton Theorem.

The first thing we consider is the notion of approximated lifting: the
definition 3.4 states that ρ1 L(R, ε) ρ2 if there exist ρ′1, ρ′′1, ρ′2, and ρ′′2 such
that ρ1 = (1 − ε)ρ′1 + ερ′′1, ρ2 = (1 − ε)ρ′2 + ερ′′2 and ρ′1 L(R) ρ′2. Now
we want to define an equivalent notion of approximated lifting that is not
based on the decomposition of the measures, but only on a different notion
of weighting function:

Definition 5.1. Let R be a relation from X to Y and let ρx, ρy be two
measures in Disc(X) and Disc(Y ), respectively. Given ε ∈ R>0, we say
that ρx Lw(R, ε) ρy if and only if ε > 1 or, when ε ∈ [0, 1), there exists an
ε-weighting function wε : X × Y → [0, 1] such that

1. Supp(wε) ⊆R, that is for each u ∈ X, v ∈ Y , wε(u, v) > 0 =⇒ u R v,
2. wε(u, Y ) 6 ρx(u), that is for each u ∈ X,

∑
v∈Y wε(u, v) 6 ρx(u),

3. wε(X, v) 6 ρy(v), that is for each v ∈ Y ,
∑

u∈X wε(u, v) 6 ρy(v), and
4. wε(X, Y ) > 1− ε, that is

∑
u∈X,v∈Y wε(u, v) > 1− ε.

Note that conditions 2 and 3 impose that
∑

u∈X,v∈Y wε(u, v) 6 1.
It is interesting to observe that so far we have not introduced anything

new since the two notions of approximated lifting coincide.
Before proving the equivalence between the two notions of approximated

lifting, we want to prove that for each ε-weighting function wε, there exists
another ε-weighting function w′

ε such that w′
ε(X, Y ) = 1− ε.

Lemma 5.2. Let R be a relation from X to Y , ε ∈ R>0 and ρx ∈ Disc(X),
ρy ∈ Disc(Y ) be two probability measures such that ρx Lw(R, ε) ρy. Let
wε : X×Y → [0, 1] be an ε-weighting function that witnesses ρx Lw(R, ε) ρy.

Then there exists another ε-weighting function w′
ε : X × Y → [0, 1] that

witnesses ρx Lw(R, ε) ρy and w′
ε(X, Y ) = 1− ε.

Proof. Given wε, let ζ be wε(X, Y ) and γ be the value
1− ε

ζ
. If ζ = 0,

then by condition 4 follows that ε = 1 and there is nothing to prove,
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since we already have that wε(X, Y ) = 1 − ε. So suppose that ζ > 0.
This implies that γ 6 1 since by hypothesis ζ = wε(X,Y ) > 1 − ε.
If γ = 1, then it follows that ζ = 1 − ε and again there is noth-
ing to prove, since wε(X, Y ) = 1 − ε. Suppose that 0 < γ < 1 and
define w′

ε as w′
ε(u, v) = γwε(u, v) for each pair (u, v). The condition

1 is trivially verified since w′
ε(u, v) > 0 =⇒ γwε(u, v) > 0 =⇒

wε(u, v) > 0 =⇒ u R v; conditions 2 and 3 are also satisfied:∑
v∈Y w′

ε(u, v) =
∑

v∈Y γwε(u, v) = γ
∑

v∈Y wε(u, v) 6 γρx(u) 6 ρx(u)
and

∑
u∈X w′

ε(u, v) =
∑

u∈X γwε(u, v) = γ
∑

u∈X wε(u, v) 6 γρy(v) 6
ρy(v); for the condition 4,

∑
u∈X,v∈Y w′

ε(u, v) =
∑

u∈X,v∈Y γwε(u, v) =

γ
∑

u∈X,v∈Y wε(u, v) = γζ =
1− ε

ζ
ζ = 1− ε.

Since
∑

u∈X,v∈Y wε(u, v) = 1 − ε implies
∑

u∈X,v∈Y wε(u, v) > 1 − ε,
then the two definitions of wε are equivalent. ut

Proposition 5.3. Let R be a relation from X to Y and let ρx ∈ Disc(X),
ρy ∈ Disc(Y ) be two measures.

For each ε ∈ R>0, ρx L(R, ε) ρy if and only if ρx Lw(R, ε) ρy.

Proof. (⇒) Suppose that ρx L(R, ε) ρy. If ε > 1, then there is nothing to
prove since by definition of Lw(R, ε), we have that ρx Lw(R, ε) ρy.
So, suppose that ε ∈ [0, 1). By definition of L(R, ε), it follows that there
exist ρ′x, ρ′′x, ρ′y, and ρ′′y such that ρx = (1−ε)ρ′x+ερ′′x, ρy = (1−ε)ρ′y+ερ′′y,
and ρ′x L(R) ρ′y. This implies that there exists a weighting function
w : X×Y → [0, 1] such that w(x, y) > 0 implies x R y,

∑
u∈X w(u, v) =

ρy(v), and
∑

v∈Y w(u, v) = ρx(u). Define w′ : X×Y → [0, 1] as: for each
pair (u, v), w′(u, v) = (1− ε)w(u, v).
w′ is an ε-weighting function from ρx to ρy. In fact,
– condition 1 is trivially satisfied:

w′(u, v) > 0 =⇒ (1− ε)w(u, v) > 0

=⇒ w(u, v) > 0

=⇒ u R v

– condition 2 is verified:∑
u∈X

w′(u, v) =
∑
u∈X

(1− ε)w(u, v)

= (1− ε)
∑
u∈X

w(u, v)
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= (1− ε)ρy(v)

6 ρy(v)

– also condition 3 is satisfied:∑
v∈Y

w′(u, v) =
∑
v∈Y

(1− ε)w(u, v)

= (1− ε)
∑
v∈Y

w(u, v)

= (1− ε)ρx(u)

6 ρx(u)

– and finally, condition 4 is verified:∑
u∈X
v∈Y

w′(u, v) =
∑
u∈X
v∈Y

(1− ε)w(u, v)

= (1− ε)
∑
u∈X
v∈Y

w(u, v)

= (1− ε)
∑
u∈X

ρx(u)

= (1− ε)1

= 1− ε

(⇐) Suppose that ρx Lw(R, ε) ρy. If ε > 1, then there is nothing to prove
since by definition of L(R, ε), we have that ρx L(R, ε) ρy. So, suppose
that ε ∈ (0, 1). By definition of Lw(R, ε), it follows that there exists an
ε-weighting function wε such that
1. wε(u, v) > 0 =⇒ u R v,
2.

∑
u∈X wε(u, v) 6 ρy(v),

3.
∑

v∈Y wε(u, v) 6 ρx(u), and
4.

∑
u∈X,v∈Y wε(u, v) = 1− ε.

If ε = 0, then condition 4 implies that
∑

u∈X wε(u, v) = ρy(v) and∑
v∈Y wε(u, v) = ρx(u). This means that wε is an ordinary weighting

function and thus ρx L(R) ρy. Since ρx = (1 − ε)ρx + ερx and ρy =
(1− ε)ρy + ερy, we have that ρx L(R, ε) ρy.
Now, suppose that ε ∈ (0, 1). Let µx and µy be the two marginals
of wε (that is, for each u ∈ X, µx(u) =

∑
v∈Y wε(u, v) and for each
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v ∈ Y , µy(v) =
∑

u∈X wε(u, v)) and define ρ′x =
µx

1− ε
, ρ′′x =

ρx − µx

ε
,

ρ′y =
µy

1− ε
, and ρ′′y =

ρy − µy

ε
.

It follows that (1−ε)ρ′x+ερ′′x = (1−ε)
µx

1− ε
+ε

ρx − µx

ε
= µx+ρx−µx =

ρx and (1− ε)ρ′y + ερ′′y = (1− ε)
µy

1− ε
+ ε

ρy − µy

ε
= µy + ρy − µy = ρy.

To prove ρx L(R, ε) ρy, we must verify that ρ′x L(R) ρ′y. So, let w′ : X×
Y → [0, 1] be defined as: w(u, v) =

wε(u, v)
1− ε

. We must verify that w′ is

a weighting function from ρ′x to ρ′y:
– condition 1 is trivially verified:

w′(u, v) > 0 =⇒ wε(u, v)
1− ε

> 0

=⇒ wε(u, v) > 0

=⇒ u R v

– condition 2 is verified:∑
u∈X

w′(u, v) =
∑
u∈X

wε(u, v)
1− ε

=
∑

u∈X wε(u, v)
1− ε

=
µy(v)
1− ε

= ρ′y(v)

– also condition 3 is satisfied:∑
v∈Y

w′(u, v) =
∑
v∈Y

wε(u, v)
1− ε

=
∑

v∈Y wε(u, v)
1− ε

=
µx(u)
1− ε

= ρ′x(u)

ut

Let A1, A2 be two probabilistic automata, ζ ∈ R>0 and R be a relation
from S1 to S2. Given two states s1 and s2, we say that s1 R(ζ) s2 if s1 R s2
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and for each transition (s1, a, µ1) ∈ D1, there exists a combined transition
(s2, a, µ2) such that µ1 Lw(R, ζ) µ2.

Proposition 5.4. Let A1 and A2 be two automata and let R be a relation
from S1 to S2. Let ε, γ ∈ R>0 be two values and µ1, µ2 be two distributions
in Disc(S1) and Disc(S2), respectively, such that there exists an ε-weighting
function wε that justifies µ1 Lw(R, ε) µ2.

If
∑{wε(s1, s2) | s1¬ R(γ) s2} < γ, and µ1 −→ ϕ1 then there exists ϕ2

such that ϕ1 Lw(R, ε + γ) ϕ2 and µ2 −→ ϕ2.

Proof. Given two states s1 and s2 such that s1 R(γ) s2 and a transition
tr1 = (s1, a, ρ1), denote by m(s2, tr1) the combined transition (s2, a, ρ2)
such that ρ1 Lw(R, γ) ρ2 and by ws2,tr1

γ the ε-weighting function that jus-
tifies ρ1 Lw(R, γ) ρ2.

By definition of µ1 −→ ϕ1, it follows that there exists a family
of probabilities {ptr1}tr1∈D1

such that for each state s1 ∈ Supp(µ1),∑
tr1∈D1,src(tr1)=s1

ptr1 = 1 and ϕ1 =
∑

tr1∈D1
ptr1µ1(src(tr1))µtr1 . Let

{pm(s2,tr1)}s2∈S2,tr1∈D1
be the family of values for each for each s2 ∈ S2,

pm(s2,tr1) = ptr1 . Let ϕ2 be defined as: for each s′2 ∈ S2, ϕ2(s′2) =∑
tr1∈D1

∑
s2∈Supp(µ2) pm(s2,tr1)wε(src(tr1), s2)

∑
s′1∈Supp(µtr1 ) ws2,tr1

γ (s′1, s
′
2).

Now, we need to verify that ϕ1 Lw(R, ε + γ) ϕ2. To do this, consider
the function wε+γ defined as:

wε+γ(s′1, s
′
2) =

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1) · wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

wε+γ is an ε-weighting function from ϕ1 to ϕ2:

– wε+γ(s′1, s
′
2) > 0 implies that there exists tr1 ∈ D1, s2 ∈ Supp(µ2)

such that pm(s2,tr1)wε(src(tr1), s2)w
s2,tr1
γ (s′1, s

′
2) > 0 and this means that

ws2,tr1
γ (s′1, s

′
2) > 0. By definition of ws2,tr1

γ , it follows that s′1 R s′2;
– for each s′2 ∈ S2,∑

s′1∈S1

wε+γ(s′1, s
′
2)

=
∑

s′1∈S1

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈S1

ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈Supp(µtr1 )

ws2,tr1
γ (s′1, s

′
2)
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= ϕ2(s′2)

6 ϕ2(s′2)

– for each s′1 ∈ S1,∑
s′2∈S2

wε+γ(s′1, s
′
2)

=
∑

s′2∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′2∈S2

ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)µtr (s′1)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

ptr1wε(src(tr1), s2)µtr (s′1)

=
∑

tr1∈D1

ptr1µtr (s′1)
∑

s2∈Supp(µ2)

wε(src(tr1), s2)

6
∑

tr1∈D1

ptr1µtr (s′1)µ1(src(tr1))

6 ϕ1(s′1)

– finally,∑
s′1∈S2

∑
s′2∈S2

wε+γ(s′1, s
′
2)

=
∑

s′1∈S2

∑
s′2∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈S2

∑
s′2∈S2

ws2,tr1
γ (s′1, s

′
2)

>
∑

s′1∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)(1− γ)

= (1− γ)
∑

tr1∈D1

∑
s2∈Supp(µ2)

ptr1wε(src(tr1), s2)

= (1− γ)
∑

tr1∈D1

ptr1

∑
s2∈Supp(µ2)

wε(src(tr1), s2)

> (1− γ)
∑

tr1∈D1

ptr1(1− ε)
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= (1− γ)(1− ε)
∑

tr1∈D1

ptr1

= (1− γ)(1− ε)

= (1− γ − ε) + γε

> 1− γ − ε

This implies that wε+γ is an ε-weighting function from ϕ1 to ϕ2 and thus
ϕ1 Lw(R, ε + γ) ϕ2. ut

Now we are able to define the new notion of polynomially accurate
simulation:

Definition 5.5. Let {A1
k}k∈N and {A2

k}k∈N be two families of probabilistic
automata; let R= {Rk}k∈N be a family of relations such that, for each
k ∈ N, Rk is a relation from S1

k to S2
k; let Poly be the set of positive

polynomials over N.
We say that R is a state polynomially accurate simulation from {A1

k}k∈N
to {A2

k}k∈N if

1. for each k, it holds that s̄1
k Rk s̄2

k;
2. for each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄,

for all probability measures µ1 and µ2 and for each γ > 0, if µ1 is reached
within p(k) steps in A1

k, then there exists an ε-weighting function wγ

for µ1 Lw(Rk, γ) µ2 such that
∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} < k−c.

We write {A1
k}k∈N .s {A2

k}k∈N if there exists a state polynomially accurate
simulation R from {A1

k}k∈K to {A2
k}k∈N.

It is quite easy to see that the state polynomially accurate simulation
relation is implied by the ordinary simulation of probabilistic automata:

Proposition 5.6. Let A1
n and A2

n be two automata parameterized on n ∈
N.

If for each n ∈ N A1
n ¹ A2

n, then {A1
k}k∈N .s {A2

k}k∈N.

Proof. For each n ∈ N, let Rn be the simulation that justifies A1
n ¹ A2

n.
R= {Rk}k∈N is a state polynomially accurate simulation from {A1

k}k∈N to
{A2

k}k∈N.
The condition on start states is trivially true, since by definition of

ordinary simulation, it follows that for each k ∈ N, s̄1
k Rk s̄2

k.
Suppose, for the sake of contradiction, that the step condition does not

hold. This means that there exists c ∈ N and p ∈ Poly such that for each
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k̄ ∈ N there exists k > k̄ such that there exist µ1, µ2, and γ > 0 such that
µ1 is reached within p(k) steps in A1

k and for each ε-weighting function wγ

for µ1 Lw(Rk, γ) µ2 we have that
∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} > k−c.

s1¬ Rk(k−c) s2 implies that either s1¬ Rk s2 or s1 Rk s2 and there
exists tr1 = (s1, a, ρ1) ∈ D1

k such that for each combined transition
tr2 = (s2, a, ρ2), ρ1¬ Lw(Rk, k

−c) ρ2. In the former case, s1¬ Rk s2 im-
plies that wγ(s1, s2) = 0. Otherwise, if wγ(s1, s2) > 0, then by property
1 of the definition of ε-weighting function, we have that s1 Rk s2. So,∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} > k−c is due to pair of states (s1, s2)
such that s1 Rk s2 and there exists tr1 = (s1, a, ρ1) ∈ D1

k such that for
each combined transition tr2 = (s2, a, ρ2), ρ1¬ Lw(Rk, k

−c) ρ2. Take a pair
of such states, say (s1, s2). Since A1

k ¹ A2
k, s1 Rk s2 and s1

a−→ ρ1 im-
plies that there exists a transition (s2, a, ρ2) such that ρ1 L(Rk) ρ2. By
definition of combined transition, it follows that (s2, a, ρ2) is also a com-
bined transition and by Property 3.5(1) we have that ρ1 L(Rk, 0) ρ2. This
implies, by Property 3.5(2), that ρ1 L(Rk, k

−c) ρ2 and thus, by Proposi-
tion 5.3, that ρ1 Lw(Rk, k

−c) ρ2. Summing up, we have that for each pair of
states (s1, s2) such that wγ(s1, s2) > 0, it holds that s1 Rk(k−c) s2. Thus,∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} = 0 < k−c. Absurd. ut

The two definitions of polynomially accurate simulation are quite differ-
ent: we consider measures over executions for . while we base the definition
of .s on measures over states; anyway, we are able to prove that the state
polynomially accurate simulation relation implies the polynomially accu-
rate simulation relation:

Proposition 5.7. Let {A1
k}k∈N and {A2

k}k∈N be two families of automata.
If {A1

k}k∈N .s {A2
k}k∈N, then {A1

k}k∈N . {A2
k}k∈N.

Proof. Let {Rk}k∈N be a state polynomially accurate simulation that jus-
tifies {A1

k}k∈N .s {A2
k}k∈N. Define {R′

k}k∈N as the family of relations R′
k

such that each R′
k is a relation from Execs∗(A1

k) to Execs∗(A2
k) and given

two executions α1 = s0a1s1 . . . amsm and α2 = t0b1t1 . . . bntn, α1 R′
k α2 if

– m = n,
– s0 Rk t0, and
– for each 0 < i 6 n, ai = bi and si Rk ti.

{R′
k}k∈N is a polynomially accurate simulation from {A1

k}k∈N to {A2
k}k∈N.
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Condition on start states is trivially true: by definition of .s, it follows
that for each k ∈ N, s̄1

k Rk s̄2
k and thus, by definition of R′

k, we have that
s̄1
k R′

k s̄2
k.

Suppose, for the sake of contradiction, that the step condition does not
hold. This implies that there exist c ∈ N, p ∈ Poly such that for each k̄ ∈ N,
there exists k > k̄, ν1, ν2 and γ > 0 such that ν1 is reached within p(k)
steps in A1

k, ν1 L(R′
k, γ) ν2, and ν1 −→ υ1 and there does not exist υ2 such

that ν2 −→ υ2 and υ1 L(R′
k, γ + k−c) υ2.

Now, consider ν1 and ν2 and the measures µ1 and µ2 defined as:
µi(s) =

∑{νi(α) | lstate(α) = s}. Since ν1 L(R′
k, γ) ν2, it is easy to

check that µ1 L(Rk, γ) µ2 and thus there exists an ε-weighting func-
tion wγ such that µ1 Lw(Rk, γ) µ2. In fact, ν1 L(R′

k, γ) ν2 implies that
there exists a weighting function w between ν ′1 and ν ′2 where ν ′1 L(R′

k) ν ′2,
ν1 = (1−γ)ν ′1+γν ′′1 and ν2 = (1−γ)ν ′2+γν ′′2 . Let w′ be the function defined
as: w′(s1, s2) = (1− γ)

∑{w(α1, α2) | lstate(α1) = s1 ∧ lstate(α2) = s2}. w′

is an ε-weighting function from µ1 to µ2:

– w′(s1, s2) > 0 implies that (1 − γ)
∑{w(α1, α2) | lstate(α1) = s1 ∧

lstate(α2) = s2} > 0 and thus there exists α1, α2 such that w(α1, α2) >

0, lstate(α1) = s1 and lstate(α2) = s2. This implies that α1 R′
k α2 and

hence lstate(α1) Rk lstate(α2) that is s1 Rk s2;
– for each s2 ∈ S2

k ,∑
s1∈S1

k

w′(s1, s2)

=
∑

s1∈S1
k

(1− γ)
∑

{w(α1, α2) | lstate(α1) = s1 ∧ lstate(α2) = s2}

= (1− γ)
∑

lstate(α2)=s2

∑
s1∈S1

k

{w(α1, α2) | lstate(α1) = s1}

= (1− γ)
∑

lstate(α2)=s2

∑
{w(α1, α2)}

= (1− γ)
∑

lstate(α2)=s2

ν ′2(α2)

= (1− γ)
∑

{ν ′2(α2) | lstate(α2) = s2}
6 (1− γ)µ2(s2)

6 µ2(s2)

– for each s1 ∈ S1
k ,
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s2∈S2

k

w′(s1, s2)

=
∑

s2∈S2
k

(1− γ)
∑

{w(α1, α2) | lstate(α1) = s1 ∧ lstate(α2) = s2}

= (1− γ)
∑

lstate(α1)=s1

∑
s2∈S2

k

{w(α1, α2) | lstate(α2) = s2}

= (1− γ)
∑

lstate(α1)=s1

∑
{w(α1, α2)}

= (1− γ)
∑

lstate(α1)=s1

ν ′1(α1)

= (1− γ)
∑

{ν ′1(α1) | lstate(α1) = s1}
6 (1− γ)µ1(s1)

6 µ1(s1)

– finally, ∑
s1∈S1

k

s2∈S2
k

w′(s1, s2)

=
∑

s1∈S1
k

s2∈S2
k

(1− γ)
∑

{w(α1, α2) | lstate(α1) = s1 ∧ lstate(α2) = s2}

= (1− γ)
∑

s1∈S1
k

s2∈S2
k

{w(α1, α2) | lstate(α1) = s1 ∧ lstate(α2) = s2}

= (1− γ)
∑

α1∈Execs∗(A1
k)

α2∈Execs∗(A2
k)

{w(α1, α2)}

= (1− γ)1

= 1− γ

This means that w′ is an ε-weighting function from µ1 to µ2 and thus
µ1 Lw(Rk, γ) µ2.

Since µ1 Lw(Rk, γ) µ2 and µ1 is reachable within p(k) steps in A1
k, we

have that there exists an ε-weighting function wγ from µ1 to µ2 such that∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} < k−c.
Let ηα,tr be the measure defined as: for each βas,
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ηα,tr (βas) =

{
ρtr (s) if β = α, lstate(α) = src(tr) and a = action(tr),

0 otherwise.

By definition of ν1 −→ υ1, it follows that there exists a scheduler σ1 such
that υ1 =

∑
α1

(σ1(α1)(⊥) +
∑

tr σ1(α1)(tr)ηα1,tr )ν1(α1).
Given two executions α1 and α2 such that lstate(α1) Rk lstate(α2) and

a transition tr = (lstate(α1), a, ρ1), denote by m(α1, tr , α2) the combined
transition (lstate(α2), a, ρ2) such that ρ1 Lw(Rk, ζ) ρ2 and by w

m(α1,tr ,α2)
ζ

the ε-weighting function that justifies ρ1 Lw(Rk, ζ) ρ2 for some ζ ∈ R>0.
Define w

∗m(α1,tr ,α2)
ζ as

w
∗m(α1,tr ,α2)
ζ (α′1, α

′
2) =


w

m(α1,tr ,α2)
ζ (s1, s2)

if α′1 = α1as1, α′2 = α2as2, a = action(tr),
0

otherwise.

Since ν1 L(R′
k, γ) ν2, denote by w∗

γ the ε-weighting function that justifies
ν1 L(R′

k, γ) ν2.
Now, define the scheduler σ2 for A2

k as σ2(α2) =
∑

α1Rk(ε)α2
w∗

γ(α1, α2) ·∑
tr∈Supp(σ1(α1)) σ(α1)(tr)δm(α1,tr ,α2). Denote by σ2(α2)(⊥) the value 1 −∑
tr2

σ2(α2)(tr2).
Let ηα1,tr1,α2 be the measure defined as: for each β2as,

ηα1,tr1,α2(β2as) =

{
ρm(α1,tr1,α2)(s) if β2 = α2 and a = action(tr1),

0 otherwise

and define the measure υ2 as: υ2 =
∑

α2

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2 +∑

tr1∈Supp(σ1(α1)) σ1(α1)(tr1)ηα1,tr1,α2). Finally, define the function wγ+k−c

as
∑

α2

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2 +

∑
tr1

σ1(α1)(tr1)w
∗m(α1,tr1,α2)
k−c ).

wγ+k−c is an ε-weighting function from υ1 to υ2. In fact,

– wγ+k−c(α′1, α
′
2) > 0 implies

∑
α2

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2) +∑

tr1
σ1(α1)(tr1)w

∗m(α1,tr1,α2)
k−c (α′1, α

′
2)) > 0. This implies that there ex-

ist α1, α2 such that w∗
γ(α1, α2) > 0 and thus α1 R′

k α2. Now, we have

that at least one between the addends σ1(α1)(tr1)w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

and σ1(α1)(⊥)δα2(α
′
2) is greater than 0. In the former case, there ex-

ists tr1 such that σ(α1)(tr1) > 0. By definition of w
∗m(α1,tr1,α2)
k−c it fol-

lows that there exist states s1 and s2 such that α′1 = α1action(tr1)s1,
α′2 = α2action(tr1)s2 and w

∗m(α1,tr1,α2)
k−c (α′1, α

′
2) > 0 that implies that
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w
m(α1,tr1,α2)
k−c (s1, s2) > 0 and thus, by definition of w

m(α1,tr1,α2)
k−c , it fol-

lows that s Rk t and thus, by definition of R′
k, α′1 R′

k α′2. In the latter
case (that is, σ1(α1)(⊥)δα2(α

′
2) > 0), we have that α′1 = α1 and that

α′2 = α2. Since α1 R′
k α2, it follows that α′1 R′

k α′2.
– for each α′1,∑

α′2

wγ+k−c(α′1, α
′
2)

=
∑
α′2

∑
α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)

+
∑
tr1

σ1(α1)(tr1)w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)

+
∑
tr1

σ1(α1)(tr1)
∑
α′2

w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)

+
∑
tr1

σ1(α1)(tr1)
∑
α2as

w
m(α1,tr1,α2)
k−c (lstate(α′1), s))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2) +

∑
tr1

σ1(α1)(tr1)µtr1(lstate(α′1)))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥) +

∑
tr1

σ1(α1)(tr1)ηα1,tr1(α
′
1))

=
∑
α1

∑
α2∈Supp(ν2)

w∗
γ(α1, α2)(σ1(α1)(⊥) +

∑
tr1

σ1(α1)(tr1)ηα1,tr1(α
′
1))

=
∑
α1

(σ1(α1)(⊥) +
∑
tr1

σ1(α1)(tr1)ηα1,tr1(α
′
1))

∑
α2∈Supp(ν2)

w∗
γ(α1, α2)

=
∑
α1

(σ1(α1)(⊥) +
∑
tr1

σ1(α1)(tr1)ηα1,tr1(α
′
1))ν1(α1)

= υ1(α′1)

– for each α′2,∑
α′1

wγ+k−c(α′1, α
′
2)

=
∑
α′1

∑
α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)
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+
∑
tr1

σ1(α1)(tr1)w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2α

′
2

+
∑
tr1

σ1(α1)(tr1)
∑
α′1

w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)

+
∑
tr1

σ1(α1)(tr1)
∑
α1as

w
m(α1,tr1,α2)
k−c (s, lstate(α′2)))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)

+
∑
tr1

σ1(α1)(tr1)ρm(α1,tr1,α2)(lstate(α′2)))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)

+
∑
tr1

σ1(α1)(tr1)ηα1,tr1,α2(α
′
2))

= ν2(α′2)

– finally,∑
α′1

∑
α′2

wγ+k−c(α′1, α
′
2)

=
∑
α′1

∑
α′2

∑
α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)δα2(α

′
2)

+
∑
tr1

σ1(α1)(tr1)w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

=
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)

+
∑
tr1

σ1(α1)(tr1)
∑
α′1

∑
α′2

w
∗m(α1,tr1,α2)
k−c (α′1, α

′
2))

>
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥)

+
∑
tr1

σ1(α1)(tr1)(1− k−c))
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>
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)((1− k−c)σ1(α1)(⊥)

+
∑
tr1

σ1(α1)(tr1)(1− k−c))

= (1− k−c)
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)(σ1(α1)(⊥) +

∑
tr1

σ1(α1)(tr1))

= (1− k−c)
∑

α2∈Supp(ν2)

∑
α1

w∗
γ(α1, α2)

> (1− k−c)(1− γ)

= (1− γ − k−c) + γk−c

> 1− γ − k−c

ut

As we have seen, the polynomially accurate simulation defined over
states implies the one defined over executions. An important result of the
simulations is that a set of states is negligible in an automaton A if and
only if A is simulated by its G-conditional automaton. We can prove the
same result using the state polynomially accurate simulations.

Theorem 5.8 (Conditional Automaton Theorem). Let {Ak}k∈N be
a family of probabilistic automata and {Gk}k∈N be a family of states such
that, for each k ∈ N, s̄k ∈ Gk. For each k ∈ N let Bk be the set Sk\Gk. Then
the family of identity relations is a state polynomially accurate simulation
from {Ak}k∈N to {Ak}k∈N|{Gk}k∈N if and only if {Bk}k∈N is negligible in
{Ak}k∈N.

Proof. To simplify the notation, denote by A1
k the automaton Ak and by A2

k

the automaton Ak|Gk, and hence by {A2
k}k∈N the family {Ak}k∈N|{Gk}k∈N.

(⇒) Since {Ak}k∈N .s {Ak}k∈N|{Gk}k∈N, by Proposition 5.7 we have that
{Ak}k∈N . {Ak}k∈N|{Gk}k∈N and thus, by Theorem 4.13, {Bk}k∈N is
negligible in {Ak}k∈N.

(⇐) Let R= {idk}k∈N be the family of identity relations.
The condition on the start states is trivially true: by definition of con-
ditional automaton, the start state is the same, thus for each k ∈ N,
s̄1
k idk s̄2

k.
For the step condition, fix c ∈ N, p ∈ Poly , k̄ ∈ N, k > k̄, γ, µ1, µ2 such
that µ1 is reached in at most p(k) steps in A1

k, and µ1 Lw(idk, γ) µ2. Let
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wγ the γ-weighting function that justifies µ1 Lw(idk, γ) µ2. We must
verify that

∑{wγ(s1, s2) | (s1, s2) /∈idk(k−c)} < k−c.
Suppose that

∑{wγ(s1, s2) | (s1, s2) /∈idk(k−c)} > k−c. The condition
(s1, s2) /∈idk(k−c) implies that either (s1, s2) /∈idk or (s1, s2) ∈idk and
there exists s1

a−→ ρ1 such that for each s2
a−→ ρ2, ρ1¬ Lw(idk, k

−c) ρ2.
By definition of wγ , it follows that (s1, s2) /∈idk implies wγ(s1, s2) =
0 and thus

∑{wγ(s1, s2) | (s1, s2) /∈idk(k−c)} =
∑{wγ(s1, s2) |

(s1, s2) /∈idk(k−c) ∧(s1, s2) ∈idk}.
Since A2

k is the Gk-conditional of A1
k, it follows that for each transition

(s1, a, µ1), in A2
k there is a transition (s2, a, ρ2) where ρ2 = ρ1|Gk if

ρ1(Gk) > 0. Since (s1, s2) /∈idk(k−c), it follows that there exists a tran-
sition (s1, a, ρ1), denoted by trs1 , such that ρ1(Bk) > k−c (otherwise we
can satisfy ρ1 Lw(idk, k

−c) ρ1|Gk). This implies that there exists a set
S of states, S ⊆ Supp(µ1), such that

∑
s1∈S,s2∈S2

k
{w(s1, s2)} > k−c and

s1 ∈ S enables the transition trs1 . Let σ be a scheduler for A1
k such that

induces the measure µ1 and for each execution α1 such that lstate(α1) =
s1 ∈ S, σ(α1) = δtrs1

, that is, the scheduler chooses with probability 1
the transition that can not be simulated by A2

k. With this scheduler, the
probability to reach states of Bk is

∑
s1∈S,s2∈S2

k
{wγ(s1, s2)µtrs1

(Bk)} >∑
s1∈S,s2∈S2

k
{k−cwγ(s1, s2)} > k−c

∑
s1∈S,s2∈S2

k
{wγ(s1, s2)} > k−ck−c =

k−2c. This implies that within p(k) + 1 steps, states of Bk are reached
with probability at least k−2c but this contradicts the negligibility of
{Bk}k∈N in {A1

k}k∈N. Since we have obtained an absurd, it follows that∑{wγ(s1, s2) | (s1, s2) /∈idk(k−c)} < k−c. ut

The definition state polynomially accurate simulation satisfies few im-
portant properties. The first property is that sequences of n steps can be
matched up to an error nk−c; the second one is the compositionality; the
third property is the execution correspondence.

Theorem 5.9. Let {A1
k}k∈N and {A1

k}k∈N be two families of probabilistic
automata such that {A1

k}k∈N .s {A2
k}k∈N. Let R= {Rk}k∈N be a state

polynomially accurate simulation from {A1
k}k∈N to {A2

k}k∈N.
For each c ∈ N, p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄

and each scheduler σ1 for A1
k, if µ1 is the probability measure induced by σ1

after n steps, n 6 p(k), then there exists a scheduler σ2 for A2
k that reaches,

after n steps, a probability measure µ2 such that µ1 Lw(Rk, nk−c) µ2.

Proof. The proof is a classical inductive argument on the number of steps.
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Case n = 0: for each c ∈ N, p ∈ Poly , and k ∈ N after 0 steps, it is not
possible to reach states different from start state of A1

k. This means that
after 0 steps, reached measure is δs̄1 . Analogously, for A2

k δs̄2 is reached
after 0 steps. Since s̄1 Rk s̄2, we have that δs̄1 Lw(Rk, 0) δs̄2 and thus
δs̄1 Lw(Rk, 0k−c) δs̄2 .

Case n > 0: fix c ∈ N, p ∈ Poly . Let k̄ ∈ N be a value such that for each
k > k̄, n < p(k). Let µ1 and µ2 be two measures such that there exist
schedulers σ1 and σ2 such that µ1 is reached via σ1 after n steps, µ2 is
reached via σ2 after n steps, and µ1 Lw(Rk, nk−c) µ2. Let wnk−c be the
ε-weighting function that justifies µ1 Lw(Rk, nk−c) µ2.
Suppose that there exists ϕ1 such that µ1 −→ ϕ1. Since n < p(k) and µ1

is reached after n steps, it follows that ϕ1 is reached after n + 1 6 p(k)
steps. By hypothesis, {A1

k}k∈K .s {A2
k}k∈K and thus there exists k̄′ ∈ N

such that for each k > k̄′
∑{wnk−c(s1, s2) | s1¬ Rk(k−c) s2} < k−c

and this implies, by Proposition 5.4, that there exists ϕ2 such that
ϕ1 Lw(Rk, nk−c + k−c) ϕ2, that is ϕ1 Lw(Rk, (n + 1)k−c) ϕ2. ut

We now turn to compositionality:

Theorem 5.10. Let {A1
k}k∈N and {A2

k}k∈N be two families of automata
such that {A1

k}k∈N .s {A2
k}k∈N.

For each context Ck compatible with both A1
k and A2

k,

{A1
k||Ck}k∈N .s {A2

k||Ck}k∈N

Before proving the theorem, we need the following result:

Lemma 5.11. Let {A1
k}k∈N and {A2

k}k∈N be two families of automata such
that {A1

k}k∈N .s {A2
k}k∈N. Let {Rk}k∈N be a state polynomially accurate

simulation that justifies {A1
k}k∈N .s {A2

k}k∈N. For each context Ck com-
patible with both A1

k and A2
k, define {R′

k}k∈N as the family of relations
R′

k⊆ (S1
k × Sc

k) × (S2
k × Sc

k), where Sc
k is the set of states of Ck, such that

for each measure µ1 and µ2, µ1 Lw(R′
k, γ) µ2 if and only if

– µ1 Lw(Rk × idk, γ) µ2,
– µ1dA1

k Lw(Rk, γ) µ2dA2
k, and

– µ1dCk = µ2dCk.

For each s1 ∈ S1
k, s2 ∈ S2

k, and sc ∈ Sc
k, if s1 Rk(ε) s2, then

(s1, sc) R′
k(ε) (s2, sc).
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Proof. Consider (s1, sc) and two transitions s1
a−→ µ1 and sc

b−→ µc.
By hypothesis, there exists a combined transition s2

a−→c µ2 such that
µ1 L(Rk, ε) µ2. Property 3.5(10) implies that µ1×µc L(Rk × idk, ε) µ2×µc

and thus (s1, sc) R′
k(ε) (s2, sc). Observe that (s1, sc)¬ R′

k(ε) (s2, sc) implies
that s1¬ Rk(ε) s2. ut
of Theorem 5.10. Let {Rk}k∈N be a state polynomially accurate simula-
tion that justifies {A1

k}k∈N .s {A2
k}k∈N. Define {R′

k}k∈N as the family of
relations R′

k⊆ (S1
k × Sc

k) × (S2
k × Sc

k), where Sc
k is the set of states of Ck,

such that for each measure µ1 and µ2, µ1 Lw(R′
k, γ) µ2 if and only if

– µ1 Lw(Rk × idk, γ) µ2,
– µ1dA1

k Lw(Rk, γ) µ2dA2
k, and

– µ1dCk = µ2dCk.

We now show that {R′
k}k∈N is a state polynomially accurate from

{A1
k||Ck}k∈N to {A2

k||Ck}k∈N.
Condition on start states is trivially true: let s̄c

k be the start state of
Ck. By hypothesis, we know that s̄1

k Rk s̄2
k and thus δs̄1

k
L(Rk) δs̄2

k
. Since

δs̄c
k

= δs̄c
k
, it follows that (δs̄1

k
× δs̄c

k
) L(R′

k) (δs̄2
k
× δs̄c

k
) and thus (s̄1

k, s̄
c
k) R′

k

(s̄2
k, s̄

c
k).

For the step condition, let c ∈ N and p ∈ Poly and suppose that there
exists k̄ ∈ N such that for each k > k̄, each γ > 0, and each measure
µ1 ∈ Disc(S1

k × Sc
k) and µ2 ∈ Disc(S2

k × Sc
k), it holds that µ1 Lw(R′

k, γ)
µ2. Let w′

γ be the ε-weighting function that justifies µ1 Lw(R′
k, γ) µ2.

To prove the step condition, we must show that
∑{w′

γ((s1, sc), (s2, sc)) |
(s1, sc)¬ R′

k(k
−c) (s2, sc)} < k−c. In fact, denoted by wγ(s1, s2) the value∑

sc∈Sc
k
w′

γ((s1, sc), (s2, sc)),∑
(s1,s1

c)∈S1
k×Sc

k

(s2,s2
c)∈S2

k×Sc
k

{w′
γ((s1, s

1
c), (s2, s

2
c)) | (s1, sc)¬ R′

k(k
−c) (s2, s

2
c)}

=
∑

(s1,sc)∈S1
k×Sc

k

(s2,sc)∈S2
k×Sc

k

{w′
γ((s1, sc), (s2, sc)) | (s1, sc)¬ R′

k(k
−c) (s2, sc)}

=
∑

s1∈S1
k

s2∈S2
k

{
∑

sc∈Sc
k

w′
γ((s1, sc), (s2, sc)) | s1¬ Rk(k−c) s2}

=
∑

s1∈S1
k

s2∈S2
k

{wγ(s1, s2) | s1¬ Rk(k−c) s2}
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< k−c

where the first step is justified by the fact that for each (s1, s
1
c) ∈ S1

k × Sc
k

and each (s2, s
2
c) ∈ S2

k × Sc
k, if s1

c 6= s2
c , then w′

γ((s1, s
1
c), (s2, s

2
c)) = 0; the

second step is due to the contrapositive of Lemma 5.11; the third step by
the definition of wγ and the forth step by the step condition for R and the
fact that wγ is an ε-weighing function for µ1dA1

k Lw(R, γ) µ2dA2
k. In fact,

we have that

– the first condition is trivially satisfied: wε(s1, s2) > 0 implies that∑
sc∈Sc

k
w′

γ((s1, sc), (s2, sc)) > 0 and thus there exists at least one sc ∈ Sc
k

such that w′
γ((s1, sc), (s2, sc)) > 0. This implies that (s1, sc) R′

k (s2, sc),
that is (s1, sc) Rk × idk (s2, sc) and thus s1 Rk s2;

– the second condition is also verified: for each s1 ∈ S1
k ,∑

s2∈S2
k

wγ(s1, s2) =
∑

s2∈S2
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

(s2,sc)∈S2
k×Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s′c∈Sc
k

∑
(s2,sc)∈S2

k×Sc
k

w′
γ((s1, s

′
c), (s2, sc))

6
∑

s′c∈Sc
k

µ1(s1, s
′
c)

= µ1dA1
k(s1)

– as well as the third condition: for each s2 ∈ S2
k ,∑

s1∈S1
k

wγ(s1, s2) =
∑

s1∈S1
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

(s1,sc)∈S1
k×Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s′c∈Sc
k

∑
(s1,sc)∈S1

k×Sc
k

w′
γ((s1, sc), (s2, s

′
c))

6
∑

s′c∈Sc
k

µ2(s2, s
′
c)

= µ2dA2
k(s2)

– finally, also the fourth condition is satisfied:
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s1∈S1

k

s2∈S2
k

wγ(s1, s2) =
∑

s1∈S1
k

s2∈S2
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s1∈S1
k

s2∈S2
k

sc∈Sc
k

w′
γ((s1, sc), (s2, sc))

=
∑

(s1,s1
c)∈S1

k×Sc
k

(s2,s2
c)∈S2

k×Sc
k

w′
γ((s1, s

1
c), (s2, s

2
c))

> 1− γ

This completes the proof, since we have that wγ is an ε-weighing function
for µ1dA1

k Lw(R, γ) µ2dA2
k. ut

Similarly to the case of polynomially accurate simulations, we are able
to prove the

Theorem 5.12 (Execution Correspondence Theorem). Let {A1
k}k∈N,

{A2
k}k∈N, . . . , {An

k}k∈N be n families of probabilistic automata such that
there exist n− 1 families of relations {R1

k}k∈N, {R2
k}k∈N, . . . , {Rn−1

k }
k∈N

such for each 0 < i < n, {Ri
k}k∈N is a state polynomially accurate simula-

tion from {Ai
k}k∈N to {Ai+1

k }
k∈N.

For each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such that for each
k > k̄ and each probability measure µ1 ∈ Disc(S1

k), if µ1 is reachable within
p(k) steps in A1

k, then there exists µn ∈ Disc(Sn
k ) such that µn is reachable

within p(k) steps in An
k and µ1 L(R1

k ◦ . . . ◦ Rn−1
k , p(k)k−c) µn.

Proof. Fix c ∈ N, p ∈ Poly and suppose that there exists k̄′ ∈ N such that
for each k > k̄′, µ1 ∈ Disc(S1

k) is reachable within p(k) steps in A1
k. Let s

the actual number of steps performed to reach µ1.
By Theorem 5.9, it follows that for each c′1 ∈ N, there exists k̄1 ∈ N such

that for each k > k̄1, there exists a measure µ2 ∈ Disc(S2
k) such that µ2 is

reachable in s steps and µ1 Lw(R1
k, sk

−c′1) µ2.
Since µ2 is reachable in A2

k in s steps, s 6 p(k), it follows that for each
c′2 ∈ N, there exists k̄2 ∈ N such that for each k > k̄2, there exists a measure
µ3 ∈ Disc(S3

k) such that µ3 is reachable in s steps and µ2 Lw(R2
k, sk

−c′2) µ3.
Iterating this reasoning, we obtain that for each 1 < i < n and each

c′i ∈ N, there exists k̄i ∈ N such that for each k > k̄i, there exists a measure
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µi+1 ∈ Disc(Si+1
k ) such that µi is reachable in s steps and µi Lw(Ri

k, sk
−c′i)

µi+1.
Let k̄ = max{k̄′, k̄1, . . . , k̄n−1}. Since k̄ > k̄′, for each k > k̄ the measure

µ1 is still reachable within p(k) steps and s 6 p(k). Since for each 0 < i < n

k̄ > k̄i, we still have that for each c′i ∈ N, and each k > k̄, there exists
a measure µi+1 ∈ Disc(Si+1

k ) such that µi+1 is reachable in s steps and
µi Lw(Ri

k, sk
−c′i) µi+1. Since for each 0 < i < n we can choose the value

of c′i, let c′ ∈ N be a value such that for each l ∈ N, l > k̄, we have that
(n−1)l−c′ 6 l−c; for each 0 < i < n, take c′i = c′. This implies that for each
k > k̄, there exists a measure µi+1 ∈ Disc(Si+1

k ) such that µi+1 is reachable
in s steps and µi Lw(Ri

k, sk
−c′) µi+1.

Propositions 3.6 and 5.3 imply that µ1 L(R1
k ◦ . . . ◦ Rn−1

k ,
∑n−1

i=1 sk−c′)
µn. Consider

∑n−1
i=1 sk−c′ . We have that

∑n−1
i=1 sk−c′ = s

∑n−1
i=1 k−c′ = s(n−

1)k−c′ 6 sk−c 6 p(k)k−c. By Property 3.5(2), it follows that µn is reachable
in s 6 p(k) steps and µ1 L(R1

k ◦ . . . ◦ Rn−1
k , p(k)k−c) µn, that implies, by

Proposition 5.3, that µ1 Lw(R1
k ◦ . . . ◦ Rn−1

k , p(k)k−c) µn, as required. ut

The state polynomially accurate simulation is preserved by the hiding
operation:

Proposition 5.13. Let Ak and Bk be two families of automata such that
{Ak}k∈N .s {Bk}k∈N. Let H be a set of actions.

Then {HideH(Ak)}k∈N .s {HideH(Bk)}k∈N.

Proof. There is nothing to prove, since the definition of state polynomially
accurate simulation does not care if an action is internal or external. ut

5.2 The State Weak Polynomially Accurate Simulation

The two notions of polynomially accurate simulations, the one based on
executions and the one based on states, are both strong, that is, they do not
distinguish between external and internal actions. This means that given
two families of automata {A1

k}k∈N and {A2
k}k∈N, each time A1

k performs a
transition also A2

k must perform a matching transition, even if the matched
step involves only transitions labelled by internal actions.

The main scope of the internal actions is to model the internal com-
putation of the automaton. Consider, for example, the coin flipper CF in
Figure 5.2: the automaton flips the coin when it performs the internal ac-
tion coin flip. Now, consider the slightly different automaton CF ′ where
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Coin Flipper

Signature:

Output:

coin value(v), v ∈ {H, T}
Input:

flip

Internal:

coin flip

Transitions:

Input flip

Effect:

value := F

Internal coin flip

Precondition:

value = F

Effect:

value := c where c ∈R {H, T}

Output coin value(v)

Precondition:

v = value

Effect:

value := ⊥

Fig. 5.2. A coin flipper

the effect of the input action flip is value := c where c ∈R {H,T} (instead
of value := F ) and where we remove the coin flip action. Intuitively, the
two automata implement the same functionality, but CF ′ does not simu-
late CF . In fact, CF ′ is not able to simulate the transition s

flip−→ δsf
where

sf .value = F , since it can only perform the transition s′
flip−→ µ where

µ(s′h) = 0.5, µ(s′t) = 0.5, sh.value = H, and st.value = T .
To abstract from the internal computation, [105] has introduced the

concept of weak simulation that requires that each transition is matched
up to internal actions. This means that we can perform an arbitrary number
of internal steps before and after performing a transition labelled by the
same action of the matched transition.

We adopt the same approach to define the weak version of the state
polynomially accurate simulation: we require that it is negligible the prob-
ability that given two related states s1 and s2, for each transition enabled
by s1 there does not exist a matching combined weak transition from s2.
We must take care of the definition of combined weak transition we use
to define the weak state polynomially accurate simulation: we can not use
the definition that is used for the ordinary weak simulation since it does
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not impose a bound to the number of internal steps that are performed in
the matching transition. In fact, if we do not impose a bound, then we are
not able to prove again the Execution Correspondence theorem; in fact,
given a measure µ1 of the first automaton, we know that there exists a
matching measure µ2 reached by the second automaton but then we can
not say that there exists a measure µ3 for the third automaton since µ3

exists if µ2 is reached within a polynomial number of steps and we are not
able to prove that µ2 satisfies such constraint. Since we want to prove the
Execution Correspondence theorem also for the weak version of the state
polynomially accurate simulations, we must be able to state that the mea-
sure µ2 is reached within a polynomial number of steps. We can achieve
this property in several ways: the first one, that is also the simpler one, is
that there exists a bound l ∈ N such that for each value of the security
parameter k, the length of each weak transition is bounded by l; the second
one is that the bound l polynomially depends on the value of k, that is,
there exists l ∈ Poly such that for each value of the security parameter k,
the length of each weak transition is bounded by l(k); the third one is that
the expected length of the weak transitions is polynomially bounded.

In this thesis we adopt the second approach: the length of each weak
transition is polynomially bounded. We leave the third approach as future
work since it requires further study.

Let A1, A2 be two probabilistic automata, ζ ∈ R>0, l ∈ N and R be a
relation from S1 to S2. Given two states s1 and s2, we say that s1 Rl(ζ) s2

if s1 R s2 and for each transition (s1, a, µ1) ∈ D1, there exists a weak
combined l-bounded transition (s2, a, µ2) such that µ1 Lw(R, ζ) µ2.

Proposition 5.14. Let A1 and A2 be two automata and let R be a relation
from S1 to S2. Let ε, γ ∈ R>0, l ∈ N be three values and µ1, µ2 be two
distributions in Disc(S1) and Disc(S2), respectively, such that there exists
an ε-weighting function wε that justifies µ1 Lw(R, ε) µ2.

If
∑{wε(s1, s2) | s1¬ Rl(γ) s2} < γ, and µ1 −→ ϕ1 then there exists ϕ2

such that ϕ1 Lw(R, ε + γ) ϕ2 and µ2=⇒lϕ2.

Proof. Given two states s1 and s2 such that s1 Rl(γ) s2 and a transition
tr1 = (s1, a, ρ1), denote by m(s2, tr1) the weak l-bounded combined tran-
sition (s2, a, ρ2) such that ρ1 Lw(R, γ) ρ2 and by ws2,tr1

γ the ε-weighting
function that justifies ρ1 Lw(R, γ) ρ2.

By definition of µ1 −→ ϕ1, it follows that there exists a family
of probabilities {ptr1}tr1∈D1

such that for each state s1 ∈ Supp(µ1),
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tr1∈D1,src(tr1)=s1

ptr1 = 1 and ϕ1 =
∑

tr1∈D1
ptr1µ1(src(tr1))µtr1 . Let

{pm(s2,tr1)}s2∈S2,tr1∈D1
be the family of values for each for each s2 ∈ S2,

pm(s2,tr1) = ptr1 . Let ϕ2 be defined as: for each s′2 ∈ S2, ϕ2(s′2) =∑
tr1∈D1

∑
s2∈Supp(µ2) pm(s2,tr1)wε(src(tr1), s2)

∑
s′1∈Supp(µtr1 ) ws2,tr1

γ (s′1, s
′
2).

Now, we need to verify that ϕ1 Lw(R, ε + γ) ϕ2. To do this, consider
the function wε+γ defined as:

wε+γ(s′1, s
′
2) =

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1) · wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

wε+γ is an ε-weighting function from ϕ1 to ϕ2:

– wε+γ(s′1, s
′
2) > 0 implies that there exists tr1 ∈ D1, s2 ∈ Supp(µ2)

such that pm(s2,tr1)wε(src(tr1), s2)w
s2,tr1
γ (s′1, s

′
2) > 0 and this means that

ws2,tr1
γ (s′1, s

′
2) > 0. By definition of ws2,tr1

γ , it follows that s′1 R s′2;
– for each s′2 ∈ S2,∑

s′1∈S1

wε+γ(s′1, s
′
2)

=
∑

s′1∈S1

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈S1

ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈Supp(µtr1 )

ws2,tr1
γ (s′1, s

′
2)

= ϕ2(s′2)

6 ϕ2(s′2)

– for each s′1 ∈ S1,∑
s′2∈S2

wε+γ(s′1, s
′
2)

=
∑

s′2∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′2∈S2

ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)µtr (s′1)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

ptr1wε(src(tr1), s2)µtr (s′1)



116 5 Polynomially Accurate Simulations: Limitations and Solutions

=
∑

tr1∈D1

ptr1µtr (s′1)
∑

s2∈Supp(µ2)

wε(src(tr1), s2)

6
∑

tr1∈D1

ptr1µtr (s′1)µ1(src(tr1))

6 ϕ1(s′1)

– finally,∑
s′1∈S2

∑
s′2∈S2

wε+γ(s′1, s
′
2)

=
∑

s′1∈S2

∑
s′2∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)ws2,tr1
γ (s′1, s

′
2)

=
∑

tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)
∑

s′1∈S2

∑
s′2∈S2

ws2,tr1
γ (s′1, s

′
2)

>
∑

s′1∈S2

∑
tr1∈D1

∑
s2∈Supp(µ2)

pm(s2,tr1)wε(src(tr1), s2)(1− γ)

= (1− γ)
∑

tr1∈D1

∑
s2∈Supp(µ2)

ptr1wε(src(tr1), s2)

= (1− γ)
∑

tr1∈D1

ptr1

∑
s2∈Supp(µ2)

wε(src(tr1), s2)

> (1− γ)
∑

tr1∈D1

ptr1(1− ε)

= (1− γ)(1− ε)
∑

tr1∈D1

ptr1

= (1− γ)(1− ε)

= (1− γ − ε) + γε

> 1− γ − ε

This implies that wε+γ is an ε-weighting function from ϕ1 to ϕ2 and thus
ϕ1 Lw(R, ε + γ) ϕ2. ut

Now we are able to define the new notion of state weak polynomially
accurate simulation:

Definition 5.15. Let {A1
k}k∈N and {A2

k}k∈N be two families of probabilistic
automata; let R= {Rk}k∈N be a family of relations such that, for each
k ∈ N, Rk is a relation from S1

k to S2
k; let Poly be the set of positive

polynomials over N.
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We say that R is a state weak polynomially accurate simulation from
{A1

k}k∈N to {A2
k}k∈N if

1. for each k, it holds that s̄1
k Rk s̄2

k;
2. for each c ∈ N and p ∈ Poly, there exist l ∈ Poly and k̄ ∈ N such

that for each k > k̄, for all probability measures µ1 and µ2 and for each
γ > 0, if µ1 is reached within p(k) steps in A1

k, then there exists an
ε-weighting function wγ for µ1 Lw(Rk, γ) µ2 such that

∑{wγ(s1, s2) |
s1¬ Rl(k)

k (k−c) s2} < k−c.

We write {A1
k}k∈N /s {A2

k}k∈N if there exists a state weak polynomially
accurate simulation R from {A1

k}k∈K to {A2
k}k∈N.

It is quite easy to see that the state weak polynomially accurate sim-
ulation relation is implied by the ordinary weak l-bounded simulation of
probabilistic automata:

Proposition 5.16. Let A1
n and A2

n be two automata parameterized on n ∈
N.

If there exists l ∈ N such that for each n ∈ N A1
n 4l A2

n, then
{A1

k}k∈N /s {A2
k}k∈N.

Proof. Let l̄ ∈ N such that for each n ∈ N, A1
n 4l̄ A2

n. Let Rn be the
weak simulation that justifies A1

n 4l̄ A2
n. R= {Rk}k∈N is a state weak

polynomially accurate simulation from {A1
k}k∈N to {A2

k}k∈N.
The condition on start states is trivially true, since by definition of

ordinary simulation, it follows that for each k ∈ N, s̄1
k Rk s̄2

k.
Suppose, for the sake of contradiction, that the step condition does not

hold. This means that there exists c ∈ N and p ∈ Poly such that for each
l ∈ Poly and k̄ ∈ N there exists k > k̄ such that there exist µ1, µ2, and
γ > 0 such that µ1 is reached within p(k) steps in A1

k and for each ε-
weighting function wγ for µ1 Lw(Rk, γ) µ2 we have that

∑{wγ(s1, s2) |
s1¬ Rl(k)

k (k−c) s2} > k−c.
s1¬ Rl(k)

k (k−c) s2 implies that either s1¬ Rk s2 or s1 Rk s2 and
there exists tr1 = (s1, a, ρ1) ∈ D1

k such that for each weak l(k)-bounded
combined transition tr2 = (s2, a, ρ2), ρ1¬ Lw(Rk, k

−c) ρ2. In the former
case, s1¬ Rk s2 implies that wγ(s1, s2) = 0. Otherwise, if wγ(s1, s2) > 0,
then by property 1 of the definition of ε-weighting function, we have that
s1 Rk s2. So,

∑{wγ(s1, s2) | s1¬ Rl(k)
k (k−c) s2} > k−c is due to pair of

states (s1, s2) such that s1 Rk s2 and there exists tr1 = (s1, a, ρ1) ∈ D1
k



118 5 Polynomially Accurate Simulations: Limitations and Solutions

such that for each weak l(k)-bounded combined transition tr2 = (s2, a, ρ2),
ρ1¬ Lw(Rk, k

−c) ρ2. Take a pair of such states, say (s1, s2). Since A1
k 4l̄ A2

k,
s1 Rk s2 and s1

a−→ ρ1 implies that there exists a weak l̄-bounded combined
transition (s2, a, ρ2) such that ρ1 L(Rk) ρ2. By Property 3.5(1) we have that
ρ1 L(Rk, 0) ρ2. This implies, by Property 3.5(2), that ρ1 L(Rk, k

−c) ρ2

and thus, by Proposition 5.3, that ρ1 Lw(Rk, k
−c) ρ2. Summing up, we

have that for each pair of states (s1, s2) such that wγ(s1, s2) > 0, it holds
that s1 Rk(k−c) s2. Thus,

∑{wγ(s1, s2) | s1¬ Rl̄
k(k

−c) s2} = 0 < k−c.
Take l ∈ Poly , such that for each n ∈ N, l(n) = l̄. This implies that∑{wγ(s1, s2) | s1¬ Rl

k(k
−c) s2} = 0 < k−c. Absurd. ut

It is straightforward to prove that the state polynomially accurate sim-
ulation relation implies the state weak polynomially accurate simulation
relation:

Proposition 5.17. Let {A1
k}k∈N and {A2

k}k∈N be two families of automata.
If {A1

k}k∈N .s {A2
k}k∈N, then for each l > 0, {A1

k}k∈N /s {A2
k}k∈N.

Proof. Let {Rk}k∈N be a state polynomially accurate simulation that justi-
fies {A1

k}k∈N .s {A2
k}k∈N. Then {Rk}k∈N is also a state weak polynomially

accurate simulation.
The condition on start states is trivially true, since by definition of state

polynomially accurate simulation, it follows that for each k ∈ N, s̄1
k Rk s̄2

k.
For the step condition, fix c ∈ N and p ∈ Poly . Then by definition of

state polynomially accurate simulation there exists k̄ ∈ N such that for
each k > k̄, µ1, µ2 and γ > 0, if µ1 is reached within p(k) steps in A1

k then
there exists an ε-weighting function wγ such that µ1 Lw(Rk, γ) µ2 and∑{wγ(s1, s2) | s1¬ Rk(k−c) s2} < k−c. Since each combined transition is
also a weak 1-boundend combined transition, it follows that

∑{wγ(s1, s2) |
s1¬ R1

k(k
−c) s2} < k−c and thus the step condition is satisfied, where we

choose l ∈ Poly as the constant polynomial 1. ut

The definition state polynomially accurate simulation satisfies few im-
portant properties. The first property is that sequences of n steps can be
matched up to an error nk−c; the second one is the compositionality; the
third property is the execution correspondence.

Theorem 5.18. Let {A1
k}k∈N and {A2

k}k∈N be two families of probabilistic
automata such that {A1

k}k∈N /s {A2
k}k∈N. Let R= {Rk}k∈N be a state weak

polynomially accurate simulation from {A1
k}k∈N to {A2

k}k∈N.
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For each c ∈ N, p ∈ Poly, there exist l ∈ Poly and k̄ ∈ N such that for
each k > k̄ and each scheduler σ1 for A1

k, if µ1 is the probability measure
induced by σ1 after n steps, n 6 p(k), then there exists a scheduler σ2

for A2
k that reaches, after nl(k) steps, a probability measure µ2 such that

µ1 Lw(Rk, nk−c) µ2.

Proof. The proof is a classical inductive argument on the number of steps.

Case n = 0: for each c ∈ N, p ∈ Poly , and k ∈ N after 0 steps, it is not
possible to reach states different from start state of A1

k. This means that
after 0 steps, reached measure is δs̄1 . Analogously, for A2

k δs̄2 is reached
after 0 steps. Since s̄1 Rk s̄2, we have that δs̄1 Lw(Rk, 0) δs̄2 and thus
δs̄1 Lw(Rk, 0k−c) δs̄2 .

Case n > 0: fix c ∈ N, p ∈ Poly . Let l ∈ Poly and k̄ ∈ N be a value such
that for each k > k̄, n < p(k). Let µ1 and µ2 be two measures such that
there exist schedulers σ1 and σ2 such that µ1 is reached via σ1 after n

steps, µ2 is reached via σ2 after nl(k) steps, and µ1 Lw(Rk, nk−c) µ2.
Let wnk−c be the ε-weighting function that justifies µ1 Lw(Rk, nk−c) µ2.
Suppose that there exists ϕ1 such that µ1 −→ ϕ1. Since n < p(k)
and µ1 is reached after n steps, it follows that ϕ1 is reached after
n + 1 6 p(k) steps. By hypothesis, {A1

k}k∈K /s {A2
k}k∈K and thus

there exists k̄′ ∈ N such that for each k > k̄′
∑{wnk−c(s1, s2) |

s1¬ Rl(k)
k (k−c) s2} < k−c and this implies, by Proposition 5.14, that

there exists ϕ2 such that µ2=⇒l(k)ϕ2 and ϕ1 Lw(Rk, nk−c + k−c) ϕ2,
that is ϕ1 Lw(Rk, (n + 1)k−c) ϕ2 and ϕ2 is reached after nl(k)+ l(k) =
(n + 1)l(k) steps in A2

k. ut

We now turn to compositionality:

Theorem 5.19. Let {A1
k}k∈N and {A2

k}k∈N be two families of automata
such that {A1

k}k∈N /s {A2
k}k∈N.

For each context Ck compatible with both A1
k and A2

k,

{A1
k||Ck}k∈N /s {A2

k||Ck}k∈N

Proof. Let {Rk}k∈N be a state weak polynomially accurate simulation that
justifies {A1

k}k∈N /s {A2
k}k∈N. Define {R′

k}k∈N as the family of relations
R′

k⊆ (S1
k ×Sc

k)× (S2
k ×Sc

k) where Sc
k is the set of states of Ck such that for

each measure µ1 and µ2, µ1 Lw(R′
k, γ) µ2 if and only if

– µ1 Lw(Rk × idk, γ) µ2,
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– µ1dA1
k Lw(Rk, γ) µ2dA2

k, and
– µ1dCk = µ2dCk.

We now show that {R′
k}k∈N is a state polynomially accurate from

{A1
k||Ck}k∈N to {A2

k||Ck}k∈N.
Condition on start states is trivially true: let s̄c

k be the start state of
Ck. By hypothesis, we know that s̄1

k Rk s̄2
k and thus δs̄1

k
L(Rk) δs̄2

k
. Since

δs̄c
k

= δs̄c
k
, it follows that (δs̄1

k
× δs̄c

k
) L(R′

k) (δs̄2
k
× δs̄c

k
) and thus (s̄1

k, s̄
c
k) R′

k

(s̄2
k, s̄

c
k).

For the step condition, let c ∈ N and p ∈ Poly and suppose that
there exists l ∈ Poly and k̄ ∈ N such that for each k > k̄, each γ > 0,
and each measure µ1 ∈ Disc(S1

k × Sc
k) and µ2 ∈ Disc(S2

k × Sc
k), it holds

that µ1 Lw(R′
k, γ) µ2. Let w′

γ be the ε-weighting function that justi-
fies µ1 Lw(R′

k, γ) µ2. To prove the step condition, we must show that∑{w′
γ((s1, sc), (s2, sc)) | (s1, sc)¬ R′l(k)

k (k−c) (s2, sc)} < k−c. In fact, de-
noted by wγ(s1, s2) the value

∑
sc∈Sc

k
w′

γ((s1, sc), (s2, sc)),∑
(s1,s1

c)∈S1
k×Sc

k

(s2,s2
c)∈S2

k×Sc
k

{w′
γ((s1, s

1
c), (s2, s

2
c)) | (s1, sc)¬ R′l(k)

k (k−c) (s2, s
2
c)}

=
∑

(s1,sc)∈S1
k×Sc

k

(s2,sc)∈S2
k×Sc

k

{w′
γ((s1, sc), (s2, sc)) | (s1, sc)¬ R′l(k)

k (k−c) (s2, sc)}

=
∑

s1∈S1
k

s2∈S2
k

{
∑

sc∈Sc
k

w′
γ((s1, sc), (s2, sc)) | s1¬ Rl(k)

k (k−c) s2}

=
∑

s1∈S1
k

s2∈S2
k

{wγ(s1, s2) | s1¬ Rl(k)
k (k−c) s2}

< k−c

where the first step is justified by the fact that for each (s1, s
1
c) ∈ S1

k × Sc
k

and each (s2, s
2
c) ∈ S2

k × Sc
k, if s1

c 6= s2
c , then w′

γ((s1, s
1
c), (s2, s

2
c)) = 0; the

second step is due to the contrapositive of Lemma 5.11; the third step by
the definition of wγ and the forth step by the step condition for R and the
fact that wγ is an ε-weighing function for µ1dA1

k Lw(R, γ) µ2dA2
k. In fact,

we have that

– the first condition is trivially satisfied: wε(s1, s2) > 0 implies that∑
sc∈Sc

k
w′

γ((s1, sc), (s2, sc)) > 0 and thus there exists at least one sc ∈ Sc
k
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such that w′
γ((s1, sc), (s2, sc)) > 0. This implies that (s1, sc) R′

k (s2, sc),
that is (s1, sc) Rk × idk (s2, sc) and thus s1 Rk s2;

– the second condition is also verified: for each s1 ∈ S1
k ,∑

s2∈S2
k

wγ(s1, s2) =
∑

s2∈S2
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

(s2,sc)∈S2
k×Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s′c∈Sc
k

∑
(s2,sc)∈S2

k×Sc
k

w′
γ((s1, s

′
c), (s2, sc))

6
∑

s′c∈Sc
k

µ1(s1, s
′
c)

= µ1dA1
k(s1)

– as well as the third condition: for each s2 ∈ S2
k ,∑

s1∈S1
k

wγ(s1, s2) =
∑

s1∈S1
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

(s1,sc)∈S1
k×Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s′c∈Sc
k

∑
(s1,sc)∈S1

k×Sc
k

w′
γ((s1, sc), (s2, s

′
c))

6
∑

s′c∈Sc
k

µ2(s2, s
′
c)

= µ2dA2
k(s2)

– finally, also the fourth condition is satisfied:∑
s1∈S1

k

s2∈S2
k

wγ(s1, s2) =
∑

s1∈S1
k

s2∈S2
k

∑
sc∈Sc

k

w′
γ((s1, sc), (s2, sc))

=
∑

s1∈S1
k

s2∈S2
k

sc∈Sc
k

w′
γ((s1, sc), (s2, sc))

=
∑

(s1,s1
c)∈S1

k×Sc
k

(s2,s2
c)∈S2

k×Sc
k

w′
γ((s1, s

1
c), (s2, s

2
c))

> 1− γ
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This completes the proof, since we have that wγ is an ε-weighing function
for µ1dA1

k Lw(R, γ) µ2dA2
k. ut

Similarly to the case of polynomially accurate simulations, we are able
to prove the

Theorem 5.20 (Execution Correspondence Theorem). Let {A1
k}k∈N,

{A2
k}k∈N, . . . , {An

k}k∈N be n families of probabilistic automata such that
there exist l ∈ N and n − 1 families of relations {R1

k}k∈N, {R2
k}k∈N, . . . ,

{Rn−1
k }

k∈N such for each 0 < i < n, {Ri
k}k∈N is a state weak polynomially

accurate simulation from {Ai
k}k∈N to {Ai+1

k }
k∈N.

For each c ∈ N and p ∈ Poly, there exist l ∈ Poly and k̄ ∈ N such that
for each k > k̄ and each probability measure µ1 ∈ Disc(S1

k), if µ1 is reach-
able within p(k) steps in A1

k, then there exists µn ∈ Disc(Sn
k ) such that µn is

reachable within l(k)n−1p(k) steps in An
k and µ1 L(R1

k ◦ . . . ◦ Rn−1
k , p(k)k−c)

µn.

Proof. Fix c ∈ N, p ∈ Poly and suppose that there exists k̄′ ∈ N such that
for each k > k̄′, µ1 ∈ Disc(S1

k) is reachable within p(k) steps in A1
k. Let s

the actual number of steps performed to reach µ1.
By Theorem 5.18, it follows that for each c′1 ∈ N, there exist l1 ∈ Poly

and k̄1 ∈ N such that for each k > k̄1, there exists a measure µ2 ∈ Disc(S2
k)

such that µ2 is reachable in l1(k)s steps and µ1 Lw(R1
k, sk

−c′1) µ2.
Since µ2 is reachable in A2

k in l(k)s steps, it follows that for each c′2 ∈ N
and p2 ∈ Poly , there exist l2 ∈ Poly and k̄2 ∈ N such that for each k > k̄2,
l1(k)s 6 p2(k) and there exists a measure µ3 ∈ Disc(S3

k) such that µ3 is
reachable in l1(k)l2(k)s steps and µ2 Lw(R2

k, l1(k)sk−c′2) µ3.
Iterating this reasoning, we obtain that for each 1 < i < n and

each c′i ∈ N and pi ∈ Poly , there exist li ∈ Poly and k̄i ∈ N such
that for each k > k̄i, (

∏i
j=1 lj(k))s 6 pi(k) and there exists a measure

µi+1 ∈ Disc(Si+1
k ) such that µi+1 is reachable in (

∏i
j=1 lj(k))s steps and

µi Lw(Ri
k, (

∏i
j=1 lj(k))sk−c′i) µi+1.

Let k̄ = max{k̄′, k̄1, . . . , k̄n−1} and l̄ ∈ Poly be a polynomial such that
for each k ∈ N, l̄(k) >

∏n−1
i=1 li(k). Since k̄ > k̄′, for each k > k̄ the measure

µ1 is still reachable within l̄(k)p(k) steps and s 6 l̄(k)p(k). Since for each
0 < i < n k̄ > k̄i, we still have that for each c′i ∈ N and each k > k̄,
there exists a measure µi+1 ∈ Disc(Si+1

k ) such that µi+1 is reachable in
l̄(k)s steps and µi Lw(Ri

k, l̄(k)sk−c′i) µi+1. Since for each 0 < i < n we
can choose the value of c′i, let c′ ∈ N be a value such that for each u ∈ N,
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u > k̄, we have that (n− 1)l̄(k)u−c′ 6 u−c; for each 0 < i < n, take c′i = c′.
This implies that for each k > k̄, there exists a measure µi+1 ∈ Disc(Si+1

k )
such that µi+1 is reachable in l̄(k)s steps and µi Lw(Ri

k, l̄(k)sk−c′) µi+1.
Propositions 3.6 and 5.3 imply that µ1 L(R1

k ◦ . . . ◦ Rn−1
k ,

∑n−1
i=1 l̄(k)sk−c′)

µn. Consider the error
∑n−1

i=1 l̄(k)sk−c′ . We have that
∑n−1

i=1 l̄(k)sk−c′ = (n−
1)l̄(k)sk−c′ 6 sk−c 6 p(k)k−c. Property 3.5(2) implies that the measure µn

is reachable in l̄(k)s 6 l̄(k)p(k) steps and µ1 L(R1
k ◦ . . . ◦ Rn−1

k , p(k)k−c)
µn, that implies, by Proposition 5.3, that µ1 Lw(R1

k ◦ . . . ◦ Rn−1
k , p(k)k−c)

µn, as required. ut

Also the state weak polynomially accurate simulation is preserved by
the hiding operation:

Proposition 5.21. Let Ak and Bk be two families of automata such that
{Ak}k∈N /s {Bk}k∈N. Let H be a set of actions.

Then {HideH(Ak)}k∈N /s {HideH(Bk)}k∈N.

Proof. There is nothing to prove, since the definition of state weak polyno-
mially accurate simulation does not care if an action is internal or exter-
nal. ut





6

Cryptographic Primitives and Simulations

In this chapter we will show how polynomially accurate simulations can
be used to analyze cryptographic primitives. In particular, for each crypto-
graphic component defined in Section 2.5, we provide an automaton that
models the primitive and we show how to use polynomially accurate simu-
lations to establish a relation between the concrete implementation of the
component and its ideal counterpart.

6.1 Nonces

The first primitive we consider is nonce generation. We model a nonce gen-
erator with an automaton that provides two families of actions: a family of
input actions get nonce(A) and a family of output actions ret nonce(A, n).
A is an identifier of the entity that requires a nonce and it belongs to the set
A that contains all entity’s identifiers. Each state of the nonce generator is
identified by the family of variables valueA that assume values that belong
to the union of the set of all nonces and the singleton {⊥}; the start state
is the one where for each A ∈ A, valueA is ⊥. The overall nonce generator
automaton NGk(A) is depicted in Figure 6.1.

We do not require that elements of A must be of a particular type. They
can be the identity of an agent, a combination of agent identities and session
identifiers, integer values, and so on and so forth. In this way we abstract
from the actual meaning of entity’s identifier and thus we can define and
study an automaton that represents a generic nonce generator that can be
used each time we need to include a nonce generator inside the correctness
proof we are carrying out.
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Nonce Generator NGk(A)

Signature:

Input:

get nonce(A), A ∈ A
Output:

ret nonce(A, n), n ∈ {0, 1}k, A ∈ A

State:

valueA ∈ {0, 1}k ∪ {⊥}, initially ⊥, A ∈ A

Transitions:

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

valueA := ⊥

Fig. 6.1. The Nonce Generator

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

valueA := ⊥

The input action get nonce(A) is used by entity identified by A to re-
quire a nonce. When get nonce(A) occurs, a value v is chosen randomly
and uniformly from the set {0, 1}k that contains all nonces of length k. v

is the chosen nonce and it is saved into the state variable valueA that is
designed to keep the value of the next nonce that we will return to A. Since
valueA is now different from ⊥, then the ret nonce(A, v) output action is
enabled, the nonce v is returned to A and valueA is set to ⊥. We reset
valueA to its initial value ⊥ to ensure that the action ret nonce(A, n) is
enabled only after an input get nonce(A) and that when the nonce n is
returned to A, it can not be sent to A again until A requires another nonce
using the get nonce(A) action. Note that we do not ensure that each nonce
request is followed by the return of a nonce. In fact, suppose that the entity
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A requires a nonce and then another nonce before the ret nonce(A, v) ac-
tion is performed: the second get nonce(A) chooses another value vn and it
replaces the old value v of valueA with vn. This implies that ret nonce(A, v)
is not more enabled while ret nonce(A, vn) is enabled now. This means that
the first nonce request has been lost and A receives only one nonce.

We think that the above situation is acceptable, since it is reasonable
that when someone requires a nonce, then it waits until the nonce is gen-
erated and returned.

The nonce generator NGk we defined and that is fully depicted in Fig-
ure 6.1 is one of the several models we can provide. For example, it is
possible to define a nonce generator that returns exactly one nonce for
each get nonce(A) it receives: for example, we can define valueA as a queue
of nonces; the effect of get nonce(A) is to enqueue the chosen value while
ret nonce(A, n) is enabled when the queue is not empty and n is equal to
the head of the queue; the effect is to dequeue n. We can also define a sim-
pler nonce generator which provides only one input action get nonce and
output actions ret nonce(n) for n ∈ {0, 1}k. This automaton is simpler but
it makes more complicated to define other automata that require nonces to
the nonce generator. In fact, if there are two or more agents that interact
with the nonce generator, then we must consider that the first agent (as
well as all other agents) receives a nonce either when it has required a nonce
or when another agent has required a nonce. In the first case, the received
value is the expected one and it can be used; in the second case, the re-
ceived value is not expected and thus it must be ignored by the agent. This
implies that the agent must be able to decide when the input action must
be considered and when it should be ignored. This result can be achieved
using a state variable that represents a program counter that keeps track
of the current step: if the program counter means “wait for a nonce”, then
the nonce is used and the program counter is updated; otherwise we ignore
the received value and we do not change the current state.

6.1.1 Automaton and Properties of Nonces

In Section 2.5.2 we have seen that the main property of nonces is that for
each c ∈ N and p ∈ Poly , there exists k̄ ∈ N such that for each k > k̄, if
values n1, . . . , np(k) ∈ {0, 1}k are given and a value n is chosen randomly
from {0, 1}k, then Pr[n = ni | 1 6 i 6 p(k)] < k−c. In other words, if we
choose randomly a nonce, then the probability that it belongs to a given set
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of values is negligible. Since there are no conditions on how n1, . . . , np(k)

are chosen, they can be values chosen randomly in {0, 1}k by the nonce
generator itself.

Since repeated nonces occur with negligible probability, we can abstract
from them and consider the case where nonces are never repeated: if we
are sure that nonces are actually fresh, then we can simplify the proof of
correctness of a protocol since we must not consider the case of repeated
nonces and the probability of an attack in such case.

To be sure that the nonce generator does not choose nonces that are
already returned in the past, we must modify it in such a way that nonces
can not be repeated by construction.

Removing internal generated repeated nonces

We can be sure that generated nonces are not repeated in several ways: for
example, we can collect all generated nonces into a set and then choose the
next value from all possible nonces except for collected ones. Alternatively,
we can keep a set of fresh nonces and each time a nonce is requested, it is
chosen uniformly from such set and then it is removed.

We adopt the second approach and we obtain the desired result in two
steps: first, we add to NGk a state variables containing all fresh nonces and
a family of variables that keep information about the freshness of the last
generated value; second, we impose that nonces can be chosen only between
fresh nonces.

For the first step, let NG1
k(A) be the automaton obtained from NGk(A)

adding the state variable fresh nonces ⊆ {0, 1}k with initial value {0, 1}k

and the family of state variables is freshA ⊆ {T, F,⊥} each one with initial
value ⊥. Moreover, each get nonce(A) action also updates fresh nonces
removing the chosen value v from fresh nonces and is freshA assigning
value T or F whenever v belongs to fresh nonces or not, respectively; each
ret nonce(A)(n) action also updates is freshA resetting it to the initial
value ⊥, as depicted in Figure 6.2.

It is immediate to see that NG1
k(A) is an extension of NGk(A). In

fact, we simply add some history variables that keep information about
the freshness of nonces and all nonces not yet chosen. Such variables are
updated internally and do not affect the choice of the next nonce. More-
over, they are updated in a “deterministic” way, that is, when NGk(A)
reaches s′ from s with probability p, then also NG1

k(A) reaches s′1 from s1



6.1 Nonces 129

NGk

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

valueA := ⊥

NG1
k

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

is freshA :=

(
T if v ∈ fresh nonces

F otherwise

fresh nonces := fresh nonces \ {v}

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

is freshA := ⊥
valueA := ⊥

Fig. 6.2. get nonce(A) and ret nonce(A, n) of NGk(A) and NG1
k(A)

with probability p where s = s1¹s and s′ = s′1¹s′ . In fact, when NGk per-
forms a transition labelled by ret nonce(A, n), it actually performs a tran-
sition tr = (s, ret nonce(A, n), δs′) where s.valueA = n and s′.valueA = ⊥.
NGk also performs a transition tr1 = (s1, ret nonce(A, n), δs′1

) where
s1.valueA = n and s′1.valueA = ⊥. If we consider the variables we have
added, we can note that fresh nonces is not modified by ret nonce(A, n)
and that is freshA is reset to ⊥.

That is, tr = tr1¹tr .
Similarly, when NGk performs a transition tr labelled by get nonce(A),

also NG1
k performs a transition tr1 labelled by get nonce(A) such that

tr = tr1¹tr .
The above intuition is formalized by the following result:
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Lemma 6.1. Let A be a set of (identities of) agents and W be the set
{fresh nonces} ∪ {is freshA | A ∈ A} where variables are defined as above.
For each k ∈ N, NG1

k(A) ∈ ExtW
∅ (NGk(A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of NG1
k(A). Then v is either

valueA for A ∈ A and thus it is a state variable of NGk(A), or it is
fresh nonces or is freshA for some A ∈ A and thus v ∈ W ;

compatible start state: s̄1
k is identified by value ⊥ for each valueA and

is freshA (with A ∈ A), and {0, 1}k for fresh nonces. Since s̄k is identi-
fied by the value ⊥ for each valueA (with A ∈ A), then s̄k = s̄1

k¹s̄k
;

compatible actions: NG1
k(A) and NGk(A) provides the same set of actions,

so this condition is trivially verified; and
compatible transitions: let tr1 = (s1, a, µ1) ∈ D1

k be a transition of NG1
k.

Since A of NG1
k is equal to A of NGk(A) by definition of NG1

k(A), then
we must verify that there exists a transition tr = (s, a, µ) ∈ Dk such
that tr = tr1¹tr . There are two cases:
– a = get nonce(A) for some A ∈ A: by definition of the action

get nonce(A), it follows that for each v ∈ {0, 1}k, µ1(s′1) = 2−k where
s′1 is the state of NG1

k such that s′1.valueA = v, s′1.fresh nonces =
s1.fresh nonces \ {v}, s′1.is freshA = T if v ∈ s1.fresh nonces, F

otherwise, and for each B ∈ A, B 6= A, s′1.valueB = s1.valueB,
and s′1.is freshB = s1.is freshB. Let s be the state of NGk(A) such
that for each B ∈ A, s.valueB = s1.valueB. By definition of action
get nonce(A), s enables get nonce(A) that leads to the measure µ

such that for each v ∈ {0, 1}k, µ(s′) = 2−k where s′ is the state
of NGk(A) such that s′.valueA = v, and for each B ∈ A, B 6= A,
s′.valueB = s.valueB. Since s = s1¹s and µ = µ1¹µ, then tr = tr ′¹tr .

– a = ret nonce(A, n) for some A ∈ A and n ∈ {0, 1}k: by definition
of action ret nonce(A, n), it follows that s1.valueA = n and that
µ1 = δs′1

where s′1 is the state of NG1
k(A) such that s′1.fresh nonces =

s1.fresh nonces, and s′1.valueA = ⊥, s′1.is freshA = ⊥, and for
each B ∈ A, B 6= A, s′1.valueB = s1.valueB, and s′1.is freshB =
s1.is freshB. Let s be the state of NGk(A) such that s.valueA = n,
and for each B ∈ A, B 6= A, s.valueB = s1.valueB. By definition of
action ret nonce(A, n), s enables ret nonce(A, n) that leads to the
measure δs′ where s′ is the state of NGk(A) such that s′.valueA = ⊥,
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for each B ∈ A, B 6= A, s′.valueB = s.valueB. Since s = s1¹s and
δs′ = δs′1

¹δs′ , then tr = tr ′¹tr .

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
NG1

k(A) ∈ ExtW
∅ (NGk(A)). ut

The existence of a polynomially accurate simulation from NGk(A) to
NG1

k(A) in now straightforward:

Proposition 6.2. Let A be a set of (identities of) agents. For each context
Ck compatible with NGk(A),

{NGk(A)||Ck}k∈N . {NG1
k(A)||Ck}k∈N

Proof. By Lemma 6.1, for each k ∈ N, NG1
k(A) ∈ ExtW

B (NGk(A)) where B

is the empty set and W is {fresh nonces} ∪ {is freshA | A ∈ A}. This im-
plies, by Lemma 4.6, that for each context C ′

k compatible with NGk(A) such
that B ⊆ AC′k

, NGk(A)||C ′
k ¹ NG1

k(A)||C ′
k and thus, by Proposition 5.6,

{NGk(A)||C ′
k}k∈N .s {NG1

k(A)||C ′
k}k∈N. Since B = ∅, each context Ck

compatible with NGk(A) satisfies B ⊆ ACk
and thus for each context Ck

compatible with NGk(A), {NGk(A)||Ck}k∈N .s {NG1
k(A)||Ck}k∈N. ut

For the second step, let NG2
k(A) be the automaton obtained from

NG1
k(A) modifying each get nonce(A) action as follows: v is chosen ran-

domly from fresh nonces instead of {0, 1}k, as depicted in Figure 6.3.
It is immediate to see that NG2

k(A) simulates the Gk-conditional of
NG1

k(A) where for each k ∈ N, Gk is the set of states of NG1
k(A) such that

for each A ∈ A, 6= .is freshAF . In fact, we simply restrict the support of
the measure described by the get nonce(A) action to the set fresh nonces,
that is, we condition the choice of the next nonce to the fact that it is fresh
(and thus, 6= .is freshAF is always satisfied).

Note that NG2
k(A) is not the Gk-conditional of NG1

k(A) since it provides
more transitions than NG1

k(A)|Gk. In fact, NG2
k(A) enables transitions that

leave from a state not in Gk and that leads to a probability measures µ such
that µ(Gk) = 0. For example, let s be the state such that s.is freshA = F ,
s.is freshB = F , s.valueA = n. Thus, by definition of ret nonce actions, s

enables the action ret nonce(A, n) that leads to the measure δs′ where in
s′ only valueA and is freshA are different with respect to the values in s.
Thus s′.is freshB is still F and hence s′ /∈ Gk.

The above intuition is formalized by the following result:
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NG1
k

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

is freshA :=

(
T if v ∈ fresh nonces

F otherwise

fresh nonces := fresh nonces \ {v}

NG2
k

Input get nonce(A)

Effect:

valueA := v where v ∈R fresh nonces

is freshA :=

(
T if v ∈ fresh nonces

F otherwise

fresh nonces := fresh nonces \ {v}

Fig. 6.3. get nonce(A) of NG1
k(A) and NG2

k(A)

Lemma 6.3. Given NG1
k(A), let Bk be the set of states of NG1

k such that
s ∈ Bk if there exists A ∈ A such that s.is freshA = F . Let Gk be the set
S1

k \Bk.
For each k ∈ N, NG1

k(A)|Gk ¹ NG2
k(A).

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from NG1

k(A)|Gk to NG2
k(A).

The condition on start states is trivially true: let s̄1
k be the start state

of NG1
k(A)|Gk and s̄2

k be the start state of NG2
k(A). By definition of condi-

tional, it follows that s̄1
k is the start state of NG1

k(A). Since by definition of
NG2

k(A), the only difference between NG1
k(A) and NG2

k(A) is on the defi-
nition of the action get nonce(A), we have that s̄2

k = s̄1
k and thus s̄1

k idk s̄2
k.

For the step condition, let s1 and s2 be two states of NG1
k(A)|Gk and

NG2
k(A), respectively, such that s1 idk s2. Let (s1, a, µ1) be a transition of

NG1
k(A)|Gk that leaves from s1. We must find µ2 such that (s2, a, µ2) is a

transition of NG2
k(A) and µ1 L(idk) µ2. There are two cases:

– a = get nonce(A) for some A ∈ A: by definition of get nonce(A), it
follows that µ1 is the probability measure ρ|Gk where ρ is the measure
that for each v ∈ {0, 1}k, ρ assigns probability 2−k to the state sv such
that sv.valueA = v, sv.is freshA = T if v ∈ s1.fresh nonces, F otherwise,
sv.fresh nonces = s1.fresh nonces \ {v}, and for each B ∈ A \ {A},
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sv.valueB = s1.valueB, and sv.is freshB = s1.is freshB. By definition of
conditional measure, we know that for each B ∈ A\{A}, s1.is freshB 6=
F , otherwise if there exists B ∈ A \ {A} such that s1.is freshB = F ,
then for all states sv sv.is freshB = F and thus ρ(Gk) = 0. Denoted
by FN1 the set s1.fresh nonces, it follows that µ1 is the measure that
for each v ∈ FN1, µ1 assigns probability 1/|FN1| to the state sv such
that sv.valueA = v, sv.is freshA = T sv.fresh nonces = FN1 \ {v},
and for each B ∈ A \ {A}, sv.valueB = s1.valueB, and sv.is freshB =
s1.is freshB.
By definition of get nonce(A), also s2 enables a transition labelled by
get nonce(A) that reaches a measure µ2 such that, denoted by FN2

the set s2.fresh nonces (that is the same of FN1 since s1 idk s2), for
each v ∈ FN2, µ2 assigns probability 1/|FN2| to the state sv such
that sv.valueA = v, sv.is freshA = T sv.fresh nonces = FN \ {v},
and for each B ∈ A \ {A}, sv.valueB = s2.valueB, and sv.is freshB =
s2.is freshB. Since for each v ∈ FN1 = FN2, µ1(sv) = µ2(sv), then
µ1 L(idk) µ2, as required.

– a = ret nonce(A, n) for some A ∈ A and n ∈ {0, 1}k: by definition
of the action ret nonce(A, n), it follows that s1 satisfies s1.valueA =
n. Moreover, it follows that µ1 = δs′1

where s′1 is the state such that
s′1.valueA = ⊥, s′1.is freshA = ⊥, and all other variables that describe
s′1 have the same value of the variables that describe s1. Since s1 idk s2,
we have that also s2 satisfies s2.valueA = n and thus it enables the
transition (s2, ret nonce(A, n), µ2) where µ2 is the measure δs′2

where s′2
is the state such that s′2.valueA = ⊥, s′2.is freshA = ⊥, and all other
variables that describe s′2 have the same value of the variables that
describe s2. This implies that s′1 idk s′2 and thus δs′1

L(idk) δs′2
, that is

µ1 L(idk) µ2, as required.

Since for each action a, if s1 enables a transition labelled by a that leads to
µ1, then we can find µ2 such that (s2, a, µ2) ∈ D2 and µ1 L(idk) µ2, then
the step condition is satisfied. ut

The existence of a polynomially accurate simulation from NG1
k(A)|Gk

to NG2
k(A) in now straightforward:

Proposition 6.4. Let A be a set of agents. Given NG1
k(A), let Bk be the

set of states of NG1
k such that s ∈ Bk if there exists A ∈ A such that

s.is freshA = F . Let Gk be the set S1
k \Bk.

For each context Ck compatible with NG1
k(A),
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{(NG1
k(A)|Gk)||Ck}k∈N .s {NG2

k(A)||Ck}k∈N

Proof. By Lemma 6.3, we have that for each k ∈ N, NG1
k(A)|Gk ¹ NG2

k(A).
This implies, by compositionality of ¹, that for each context Ck compatible
with NG1

k(A), NG1
k(A)|Gk||Ck ¹ NG2

k(A)||Ck. This implies, by Proposi-
tion 5.6, that {NG1

k(A)|Gk||Ck}k∈N .s {NG2
k(A)||Ck}k∈N. ut

To complete the chain of simulations from NGk(A) to NG2
k(A), we need

to prove that

Proposition 6.5. Let A be a set of agents. Given NG1
k(A), let Bk be the

set of states of NG1
k such that s ∈ Bk if there exists A ∈ A such that

s.is freshA = F . Let Gk be the set S1
k \Bk.

For each context Ck compatible with NG1
k(A),

{NG1
k(A)||Ck}k∈N .s {(NG1

k(A)|Gk)||Ck}k∈N

Proof. Let Gk be the set of states of NG1
k such that s ∈ Gk if and only if

for each A ∈ A s.is freshA 6= F , that is, the chosen value is fresh. Let Bk

be S1
k \ Gk (that is, states s′ of NG1

k such that s′.is freshA = F for some
A ∈ A).

Theorem 5.8 states that {NG1
k(A)}k∈N .s {NG1

k(A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {NG1

k(A)||Ck}k∈N.
Suppose, for the sake of contradiction, that {NG1

k(A)||Ck}k∈N is not sim-
ulated by {(NG1

k(A)|Gk)||Ck}k∈N. This implies that {Bk}k∈N is not negli-
gible in {NG1

k(A)||Ck}k∈N and thus that there exists c ∈ N, p ∈ Poly such
that for each k̄ ∈ N there exists k > k̄ such the probability to reach states of
Bk within p(k) steps is at least k−c, that is, the probability to reach states
s such that s.is freshA = F for some A ∈ A within p(k) steps is at least
k−c. By definition of the automaton NG1

k(A), it follows that s.is freshA

can assume value F only as the effect of a transition that leaves from some
state s′ and that is labelled by action get nonce(A). This happens only
when the randomly chosen value v assigned to s.valueA does not belong to
the set FN = s′.fresh nonces. Within p(k) steps, we can perform at most
p(k) transitions labelled by get nonce(Z) with Z ∈ A. Since by definition
of get nonce(Z) we remove at most one value from fresh nonces each time
we perform a transition labelled by get nonce(Z), within p(k) steps the set
RN = {0, 1}k \ FN has cardinality at most p(k). This means that with
probability at least k−c, we have chosen randomly in {0, 1}k a value v that
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it is equal to some n ∈ RN with |RN | 6 p(k). This contradicts the Propo-
sition 2.2 and thus {NG1

k(A)}k∈N .s {NG1
k(A)|Gk}k∈N. By Theorem 5.10,

it follows that {NG1
k(A)||Ck}k∈N .s {(NG1

k(A)|Gk)||Ck}k∈N. ut

Avoiding collisions with externally generated nonces

As we have seen above, there exists a simulation from the nonce generator
that can generate repeated nonces to the nonce generator that ensures
that returned nonces are never repeated. Sometimes, the fact that NG2

k

does not generate repeated nonces is not sufficient to satisfy the required
properties: it is still possible that NG2

k generates a nonce that is equal to
some adversary’s generated nonce.

If we want to be sure that the nonce generator returns values that have
never occurred previously, then we must modify the automaton adding the
knowledge of environment’s generated nonces. We can provide such knowl-
edge using one of the following approaches: the nonce generator receives
as input sets of environment’s generated nonces, or it receives messages. In
the second approach, given a message m, we can easily extract nonces from
m when it is a plaintext or a signature (since we can recover the signed
text from the signature itself), but when m is a ciphertext, we must de-
crypt it to know which nonces it contains. This means that we need also
the decryption keys associated to used encryption keys or some other way
that extracts nonces from encrypted messages.

We do not consider this second approach since we do not think it is
reasonable: it seems to be quite strange that a nonce generator requires
private decryption keys to generate nonces.

So we consider only the first approach, that is also simpler than the sec-
ond one since it do not require to parse messages and to open encryptions.
This means that we provide the nonce generator with the nonces generated
by the environment, that is, if the environment chooses nonces n1, . . . , nl,
then we send the set {n1, . . . , nl} to the generator. We do this adding a state
variable used nonces that contains all nonces used by the environment and
an input action used nonces(N) that updates used nonces:

Input used nonces(N)

Effect:

used nonces := used nonces ∪N
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Moreover, we add a family of variables is not usedA ∈ {T, F,⊥} with ini-
tial value ⊥, one for each A ∈ A. Then we modify the get nonce(A) and
ret nonce(A, n) as follows:

NG2
k

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

is freshA :=

(
T if v ∈ fresh nonces

F otherwise

fresh nonces := fresh nonces \ {v}

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

is freshA := ⊥
valueA := ⊥

NG3
k

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

is freshA :=

(
T if v ∈ fresh nonces

F otherwise

is not usedA :=

(
F if v ∈ used nonces

T otherwise

fresh nonces := fresh nonces \ {v}

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

is freshA := ⊥
is not usedA := ⊥
valueA := ⊥

Let NG3
k(A) be the resulting automaton. It is immediate to see that

NG3
k(A) is an extension of NG2

k(A). In fact, we simply add an history
variable that keeps information about all nonces chosen by the environment.
Such variable is updated only by used nonces(N) and it does not affect
the choice of the next nonce and thus each transition of NG3

k(A) either
is identical to a transition of NG2

k(A) or it is the new action that does
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not modify the state variables that describe states of NG2
k(A). Moreover,

we add a family of variables is not usedA that are updated internally by
NG3

k(A) and that do not change the behavior of the automaton.
The above intuition is formalized by the following result:

Lemma 6.6. Let A be a set of agents, B be the set {used nonces(N) | N ⊆
{0, 1}k} and W be the set {used nonces} ∪ {is not usedA | A ∈ A} where
actions and variables are defined as above. For each k ∈ N, NG3

k(A) ∈
ExtW

B (NG2
k(A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of NG3
k(A). Then v is either

in {valueA, fresh nonces, is freshA} for A ∈ A and thus it is a state
variable of NG2

k(A), or it is used nonces or is not usedA for some A ∈ A
and thus v ∈ W ;

compatible start state: s̄3
k is identified by values ⊥ for each variable valueA,

is freshA and is not usedA (with A ∈ A), {0, 1}k for fresh nonces, and ∅
for used nonces. Since s̄2

k is identified by the value ⊥ for each valueA and
is freshA (with A ∈ A), and by {0, 1}k for fresh nonces, then s̄2

k = s̄3
k¹s̄2

k
;

compatible actions: each action a of NG3
k(A) is either a get nonce(A),

ret nonce(A, n) (and thus it is an action of NG2
k(A)) or it is the ac-

tion used nonces(N) and thus it belongs to B; and
compatible transitions: let tr3 = (s3, a, µ3) ∈ D3

k be a transition of NG3
k.

We must find tr2 = (s2, a, µ2) ∈ D2
k such that tr2 = tr3¹tr2 when a is

an action of NG2
k or the measure δs2 satisfies δs2 = µ3¹δs2

. There are
two cases:
– a = get nonce(A) for some A ∈ A: by definition of the action

get nonce(A), it follows that for each v ∈ fresh nonces, µ3(s′3) =
1/|fresh nonces| where s′3 is the state of NG3

k such that s′3.valueA =
v, s′3.fresh nonces = s3.fresh nonces \ {v}, s′3.is not usedA = F if
v ∈ s3.used nonces, T otherwise, s′3.is freshA = T if v belongs to
s3.fresh nonces, F otherwise, s′3.used nonces = s3.used nonces, and
for each B ∈ A, B 6= A, s′3.valueB = s3.valueB, s′3.is freshB =
s3.is freshB, and s′3.is not usedB = s3.is not usedB. Let s2 be a
state of NG2

k(A) such that s2 = s3¹s2 . By definition of action
get nonce(A), s2 enables get nonce(A) that leads to the measure µ2

such that for each v ∈ fresh nonces, µ2(s′2) = 1/|fresh nonces| where
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s′2 is the state of NG2
k(A) such that s′.valueA = v, s′3.fresh nonces =

s3.fresh nonces \ {v}, s′3.is freshA = T if v ∈ s3.fresh nonces, F

otherwise, and for each B ∈ A, B 6= A, s′3.valueB = s3.valueB, and
s′3.is freshB = s3.is freshB. This means that µ2 = µ3¹µ2 , and thus
tr2 = tr3¹tr2 .

– a = ret nonce(A, n) for some A ∈ A and n ∈ {0, 1}k: by definition
of action ret nonce(A, n), it follows that s3.valueA = n and that
µ3 = δs′3

where s′3 is the state of NG3
k(A) such that s′3.fresh nonces =

s3.fresh nonces, and s′3.used nonces = s3.used nonces, s′3.valueA =
⊥, s′3.is not usedA = ⊥, s′3.is freshA = ⊥, and for each B ∈ A,
B 6= A, s′3.valueB = s3.valueB, s′3.is freshB = s3.is freshB, and
s′3.is not usedB = s3.is not usedB. Let s2 be the state of NG2

k(A)
such that s2 = s3¹s2 . By definition of action ret nonce(A, n), s2

enables ret nonce(A, n) that leads to the measure δs′2
where s′2 is

the state of NG2
k(A) such that s′2.valueA = ⊥, s′2.is freshA = ⊥,

s′2.fresh nonces = s2.fresh nonces, and for each B ∈ A, B 6= A,
s′2.valueB = s2.valueB and s′2.is freshB = s2.is freshB. Since s2 =
s3¹s2 and δs′2

= δs′3
¹δs′2

, then tr2 = tr ′3¹tr2 ;

– a = used nonces(N) for some N ⊆ {0, 1}k: by definition of action
used nonces(N), it follows that µ3 = δs′3

where s′3 is the state of
NG3

k(A) that is identical to s3 except for the used nonces variable
where s′3.used nonces = s3.used nonces ∪ N . Let s2 be a state of
NG2

k such that s2 = s3¹s2 . Thus, δs2 = µ3¹δs2
.

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
NG3

k(A) ∈ ExtW
B (NG2

k(A)). ut

The existence of a polynomially accurate simulation from NG2
k(A) to

NG3
k(A) in now straightforward:

Proposition 6.7. Let A be a set of (identities of) agents and let Ck be
a context compatible with NG2

k(A) such that {used nonces(N) | N ⊆
{0, 1}k} ⊆ ACk

. Then,

{NG2
k(A)||Ck}k∈N .s {NG3

k(A)||Ck}k∈N

Proof. By Lemma 6.6, for each k ∈ N, NG3
k(A) ∈ ExtW

B (NG2
k(A)) where B

be the set {used nonces(N) | N ⊆ {0, 1}k} defined as above and W be the
set of variables {used nonces} ∪ {is not usedA | A ∈ A} that are defined
as above. This implies, by Lemma 4.6, that for each context Ck compatible
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with NG2
k(A) such that B ⊆ ACk

, NG2
k(A)||Ck ¹ NG3

k(A)||Ck and thus, by
Proposition 5.6, {NG2

k(A)||Ck}k∈N .s {NG3
k(A)||Ck}k∈N. ut

To take into account external used nonces, the action get nonce(A)
is modified as follows: instead of choosing the next value v randomly in
fresh nonces, it is chosen randomly in fresh nonces \ used nonces. Let
NG4

k(A) be the resulting automata.
It is immediate to see that NG4

k(A) simulates the Gk-conditional of
NG3

k(A) where for each k ∈ N, Gk is the set of states of NG3
k(A) such

that for each A ∈ A, 6= .is not usedAF . In fact, we simply restrict the
support of the measure described by the get nonce(A) action to the set
fresh nonces \ used nonces, that is, we condition the choice of the next
nonce to the fact that it is not one of the values chosen by the context (and
thus, 6= .is not usedAF is always satisfied).

Note that NG4
k(A) is not the Gk-conditional of NG3

k(A) since it provides
more transitions than NG3

k(A)|Gk. In fact, NG4
k(A) enables transitions that

leave from a state not in Gk and that leads to a probability measures µ such
that µ(Gk) = 0. For example, let s be the state such that s.is not usedA =
F , s.is not usedB = F , s.valueA = n. Thus, by definition of ret nonce
actions, s enables the action ret nonce(A, n) that leads to the measure
δs′ where in s′ only valueA, is freshA and is not usedA are different with
respect to the values in s. Thus s′.is not usedB is still F and hence s′ /∈ Gk.

The above intuition is formalized by the following result:

Lemma 6.8. Given NG3
k(A), let Bk be the set of states of NG3

k such that
s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be the
set S3

k \Bk.
For each k ∈ N, NG3

k(A)|Gk ¹ NG4
k(A).

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from NG3

k(A)|Gk to NG4
k(A).

The condition on start states is trivially true: let s̄3
k be the start state

of NG3
k(A)|Gk and s̄4

k be the start state of NG4
k(A). By definition of condi-

tional, it follows that s̄3
k is the start state of NG3

k(A). Since by definition of
NG4

k(A), the only difference between NG3
k(A) and NG4

k(A) is on the defi-
nition of the action get nonce(A), we have that s̄4

k = s̄3
k and thus s̄3

k idk s̄4
k.

For the step condition, let s3 and s4 be two states of NG3
k(A)|Gk and

NG4
k(A), respectively, such that s3 idk s4. Let (s3, a, µ3) be a transition of

NG3
k(A)|Gk that leaves from s3. We must find µ4 such that (s4, a, µ4) is a

transition of NG4
k(A) and µ3 L(idk) µ4. There are three cases:
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– a = get nonce(A) for some A ∈ A: by definition of get nonce(A), it fol-
lows that µ3 is the probability measure ρ|Gk where ρ is the measure that
for each v ∈ fresh nonces, ρ assigns probability 1/|fresh nonces| to the
state sv such that sv.valueA = v, sv.is freshA = T if v ∈ s3.fresh nonces,
F otherwise, sv.is not usedA = F if v ∈ s3.used nonces, T otherwise,
sv.used nonces = s3.used nonces, sv.fresh nonces = s3.fresh nonces \
{v}, and for each B ∈ A\{A}, sv.valueB = s3.valueB, sv.is not usedB =
s3.is not usedB, and sv.is freshB = s3.is freshB. By definition of condi-
tional measure, we know that for each B ∈ A\{A}, s3.is not usedB 6= F ,
otherwise if there exists B ∈ A \ {A} such that s3.is not usedB = F ,
then for all states sv sv.is not usedB = F and thus ρ(Gk) = 0. Denoted
by UN3 the set s3.used nonces and by FN3 the set s3.fresh nonces, it
follows that µ3 is the measure that for each v ∈ FN3 \ UN3, µ3 as-
signs probability 1/|FN3 \UN3| to the state sv such that sv.valueA = v,
sv.is freshA = T if v ∈ s3.fresh nonces, F otherwise, sv.is not usedA =
F if v ∈ s3.used nonces, T otherwise, sv.used nonces = s3.used nonces,
sv.fresh nonces = s3.fresh nonces \ {v}, and for each B ∈ A \ {A}, we
have that sv.valueB = s3.valueB, sv.is not usedB = s3.is not usedB,
and sv.is freshB = s3.is freshB.
By definition of get nonce(A), also s4 enables a transition labelled by
get nonce(A) that reaches a measure µ4 such that, denoted by FN4

the set s4.fresh nonces and by UN4 the set s4.used nonces, for each
v ∈ FN4 \ UN4, measure µ4 assigns probability 1/|FN4 \ UN4| to the
state sv such that sv.valueA = v, sv.is freshA = T , sv.is not usedA = T ,
sv.fresh nonces = FN4 \ {v}, sv.used nonces = UN4, and for each B ∈
A\{A}, sv.valueB = s4.valueB, sv.is not usedB = s4.is not usedB, and
sv.is freshB = s4.is freshB. Since for each v ∈ FN3\UN3 = FN4\UN4,
µ3(sv) = µ4(sv), then µ3 L(idk) µ4, as required.

– a = ret nonce(A, n) for some A ∈ A and n ∈ {0, 1}k: by definition of
the action ret nonce(A, n), it follows that s3 satisfies s3.valueA = n.
Moreover, it follows that µ3 = δs′3

where s′3 is the state such that
s′3.valueA = ⊥, s′3.is freshA = ⊥, s′3.is not usedA = ⊥, and all other
variables that describe s′3 have the same value of the variables that de-
scribe s3. Since s3 idk s4, we have that also s4 satisfies s4.valueA = n

and thus it enables the transition (s4, ret nonce(A, n), µ4) where µ4

is the measure δs′4
where s′4 is the state such that s′4.valueA = ⊥,

s′4.is freshA = ⊥, s′4.is not usedA = ⊥, and all other variables that
describe s′4 have the same value of the variables that describe s4. This
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implies that s′3 idk s′4 and thus δs′3
L(idk) δs′4

, that is µ3 L(idk) µ4, as
required.

– a = used nonces(N) for some N ⊆ {0, 1}k: by definition of action
used nonces(N), it follows that µ3 = δs′3

where s′3 is the state such
that s′3.used nonces = s3.used nonces ∪ N and all other variables that
describe s′3 have the same value of the variables that describe s3. Also s4

enables a transition (s4, used nonces(N), µ4) where µ4 = δs′4
where s′4 is

the state such that s′4.used nonces = s4.used nonces ∪N and all other
variables that describe s′4 have the same value of the variables that de-
scribe s4. Since by hypothesis s3 idk s4, it follows that s3.used nonces =
s4.used nonces and thus s′3.used nonces = s′4.used nonces. This implies
that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4, as required.

Since for each action a, if s3 enables a transition labelled by a that leads to
µ3, then we can find µ4 such that (s4, a, µ4) ∈ D4 and µ3 L(idk) µ4, then
the step condition is satisfied. ut

The existence of a polynomially accurate simulation from NG3
k(A)|Gk

to NG4
k(A) in now straightforward:

Proposition 6.9. Given NG3
k(A), let Bk be the set of states of NG3

k such
that s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be
the set S3

k \Bk.
For each context Ck compatible with NG3

k(A),

{(NG3
k(A)|Gk)||Ck}k∈N .s {NG4

k(A)||Ck}k∈N

Proof. By Lemma 6.8, we have that for each k ∈ N, NG3
k(A)|Gk ¹ NG4

k(A).
This implies, by compositionality of ¹, that for each context Ck compatible
with NG3

k(A), (NG3
k(A)|Gk)||Ck ¹ NG4

k(A)||Ck. This implies, by Proposi-
tion 5.6, that {(NG3

k(A)|Gk)||Ck}k∈N .s {NG4
k(A)||Ck}k∈N. ut

To complete the chain of simulations from NG2
k(A) to NG3

k(A), we need
to prove that

Proposition 6.10. Let A be a set of (identities of) agents. Let Gk be the
set of states of NG3

k such that s ∈ Gk if and only if for each A ∈ A
s.is not usedA 6= F . Let Bk be S3

k \Gk. For each context Ck compatible with
NG3

k, if there exists q ∈ Poly such that for each action used nonces(N) of
Ck, |N | < q(k), then

{NG3
k(A)||Ck}k∈N . {(NG3

k(A)|Gk)||Ck}k∈N
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Proof. Theorem 5.8 states that Bk is negligible in NG3
k if and only if

{NG3
k(A)}k∈N .s {NG3

k(A)|Gk}k∈N.
Suppose, for the sake of contradiction, that {NG3

k(A)||Ck}k∈N is not
simulated by {(NG3

k(A)|Gk)||Ck}k∈N. This implies that {Bk}k∈N is not
negligible in {NG2

k(A)||Ck}k∈N, that is, the probability of reaching states
of Bk in a polynomial number of steps is not negligible. Since for each
step of NG2

k(A)||Ck at most a polynomial number of values are added to
used nonces, then at most a polynomial number of values can be added to
used nonces in an execution of polynomial length. Since Bk is not negligi-
ble in {NG2

k(A)||Ck}k∈N, then with non negligible probability NG2
k(A)||Ck

has chosen a nonce that is not a fresh nonce, that is, it is equal to a
value chosen by the environment. This contradicts Proposition 2.2 and thus
{NG3

k(A)}k∈N .s {NG3
k(A)|Gk}k∈N. This implies, by Theorem 5.10, that

{NG3
k(A)||Ck}k∈N .s {(NG3

k(A)|Gk)||Ck}k∈N. ut

6.2 Encryption

The second primitive we consider is encryption. We model an encryption
scheme E = (KGen, Enc, Dec) with an automaton that provides several fam-
ilies of actions: a family of input actions get public encrypt(A) that is used
by other automata to ask the public key associated to agent A and the
corresponding ret public encrypt(A, E) that returns the public key E of A:

Input get public encrypt(A)

Effect:

if ek(A) = ⊥ then

(ekA, dkA) := KGen(1k)

fi

pkA := ekA

Output ret public encrypt(A, E)

Precondition:

pkA = E

Effect:

pkA := ⊥

a family of input actions get corrupt encrypt(A) that is used by other au-
tomata to ask both public and private keys of a corrupted agent A and the
corresponding ret corrupt encrypt(A, E, D) that returns both public and
private encryption keys E and D of A, respectively:
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Input get corrupt encrypt(A)

Effect:

if ekA = ⊥ then

(ekA, dkA) := KGen(1k)

fi

ckA := (ekA, dkA)

Output ret corrupt encrypt(A, E, D)

Precondition:

ckA = (E, D)

Effect:

ckA := ⊥

Finally, the automaton provides actions to encrypt and decrypt messages:
a family of input actions get encrypt(A, M) that is used to require the
encryption of M under the public key of A and the corresponding output
action ret encrypt(A, C) that returns the ciphertext C obtained invoking
the encryption algorithm Enc:

Input get encrypt(A, M)

Effect:

enc valueA := Enc(ekA, M)

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

enc valueA := ⊥

and a family of input actions get decrypt(A, C) that is used require the
decryption of C under the private key of A and the corresponding output
action ret decrypt(A, M) that returns the plaintext M obtained invoking
the decryption algorithm Dec:

Input get decrypt(A, C)

Effect:

dec valueA := Dec(dkA, C)

Output ret decrypt(A, M)

Precondition:

dec valueA = M

Effect:

dec valueA := ⊥

Figure 6.4 depicts the complete encryption automaton.

6.2.1 Automaton and Properties of Encryption

In Section 2.5.6 we have seen that the main property of IND-CCA encryp-
tion schemes is that when we encrypt a message m, then the probability
that the resulting ciphertext is repeated is negligible.

Now we want to show that the encryption automaton we defined satisfies
this property. To do this, we consider another encryption automaton that
ensures that generated ciphertexts are never repeated and then we show
that there exists a polynomially accurate simulation between them.
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Encryption automaton Ek(A)

Signature:

Input:

get public encrypt(A), A ∈ A
get corrupt encrypt(A), A ∈ A
get encrypt(A, M), A ∈ A, M ∈ Message

get decrypt(A, C), A ∈ A, C ∈ Ciphertext

Output:

ret public encrypt(A, E), A ∈ A, E ∈ EKey

ret corrupt encrypt(A, E, D), A ∈ A, E ∈ EKey, D ∈ DKey

ret encrypt(A, C), A ∈ A, C ∈ Ciphertext

ret decrypt(A, M), A ∈ A, M ∈ Message

State:

ekA ∈ {⊥} ∪ EKey, A ∈ A, initially ⊥
dkA ∈ {⊥} ∪DKey, A ∈ A, initially ⊥
pkA ∈ {⊥} ∪ EKey, A ∈ A, initially ⊥
ckA ∈ {⊥} ∪ EKey ×DKey, A ∈ A, initially ⊥
enc valueA ∈ {⊥} ∪ Ciphertext, A ∈ A, initially ⊥
dec valueA ∈ {⊥} ∪Message, A ∈ A, initially ⊥

Transitions:

Input get public encrypt(A)

Effect:

if ekA = ⊥ then

(ekA, dkA) := KGen(1k)

fi

pkA := ekA

Input get corrupt encrypt(A)

Effect:

if ekA = ⊥ then

(ekA, dkA) := KGen(1k)

fi

ckA := (ekA, dkA)

Input get encrypt(A, M)

Effect:

enc valueA := Enc(ekA, M)

Input get decrypt(A, C)

Effect:

dec valueA := Dec(dkA, C)

Output ret public encrypt(A, E)

Precondition:

pkA = E

Effect:

pkA := ⊥

Output ret corrupt encrypt(A, E, D)

Precondition:

ckA = (E, D)

Effect:

ckA := ⊥

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

enc valueA := ⊥

Output ret decrypt(A, M)

Precondition:

dec valueA = M

Effect:

dec valueA := ⊥

Fig. 6.4. Encryption automaton Ek(A)
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Ek(A)

Input get encrypt(A, M)

Effect:

enc valueA := Enc(ekA, M)

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

enc valueA := ⊥

E1
k(A)

Input get encrypt(A, M)

Effect:

enc valueA := c where c = Enc(ekA, M)

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

enc valueA := ⊥
is freshA := ⊥

Fig. 6.5. get encrypt(A, M) and ret encrypt(A, C) of Ek and E1
k

Removing internally generated repeated ciphertexts

A possible way to define such automaton is to add some history vari-
ables that keep all previous generated ciphertexts and the information
about the freshness of the generated encryption. Moreover, we modify the
get encrypt(A, M) action imposing that the ciphertext c returned by the
Enc algorithm is not an old ciphertext and then c is added to the set of
already generated ciphertexts. We consider also the set of variables that
stores the information about the freshness of last computed ciphertexts to
simplify the identification of the states where a repeated ciphertext is gen-
erated. Note that we are using a technique that is analogous to the one we
used for nonces in Section 6.1.1.

For the first step, let E1
k be the automaton obtained from Ek adding the

state variable generated ciphers ⊆ Ciphertext with initial value ∅ and the
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family of state variables is freshA ∈ {T, F,⊥} with initial value ⊥ where
A ∈ A. Moreover, each get encrypt(A, M) action modifies is freshA assign-
ing F if the ciphertext returned by Enc(ekA, M) is in generated ciphers; T

otherwise and also updates generated ciphers adding the encrypted value
enc valueA to generated ciphers, as depicted in Figure 6.5. The action
ret encrypt(A, C) reset the is freshA to its initial value ⊥.

It is immediate to see that E1
k (A) is an extension of Ek(A). In fact,

we simply add some history variables that keep information about the
generated ciphertexts and the freshness of the ciphertexts. Such variables
are updated internally and do not affect the behavior of the automaton.
Moreover, they are updated in a “deterministic” way, that is, when Ek(A)
reaches s′ from s with probability p, then also E1

k (A) reaches s′1 from s1

with probability p where s = s1¹s and s′ = s′1¹s′ . In fact, when Ek(A)
performs a transition labelled by get encrypt(A, M), it actually performs
a transition tr = (s, get encrypt(A, M), µ) where for each s′ ∈ Supp(µ),
s′.enc valueA = C where C is the value returned by Enc(s.ekA, M) and
µ(s′) is the probability that Enc(s.ekA, M) generates C. E1

k (A) also per-
forms a transition tr1 = (s1, get encrypt(A, M), µ1) for each s′1 ∈ Supp(µ1),
s′1.enc valueA = C where C is the value returned by Enc(s1.ekA, M)
and µ(s′) is the probability that Enc(s1.ekA, M) generates C. That is,
tr = tr1¹tr .

The above intuition is formalized by the following result:

Lemma 6.11. Let A be a set of (identities of) agents and W be the set of
variables {generated ciphers} ∪ {is freshA | A ∈ A} defined as above. For
each k ∈ N, E1

k (A) ∈ ExtW
∅ (Ek(A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of E1
k (A). Then v is either one of

ekA, dkA, pkA, ckA, enc valueA, and dec valueA for A ∈ A and thus it
is a state variable of Ek(A), or v is either generated ciphers or is freshA

for A ∈ A, and thus v ∈ W ;
compatible start state: s̄1

k is identified by value ⊥ for each ekA, dkA, pkA,
ckA, enc valueA, dec valueA, and is freshA (with A ∈ A), and by ∅
for generated ciphers. Since s̄k is identified by the value ⊥ for each
ekA, dkA, pkA, ckA, enc valueA, and dec valueA (with A ∈ A), then
s̄k = s̄1

k¹s̄k
;
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compatible actions: E1
k (A) and Ek(A) provides the same set of actions, so

this condition is trivially verified; and
compatible transitions: let tr1 = (s1, a, µ1) ∈ D1

k be a transition of E1
k .

Since A of E1
k is equal to A of Ek(A) by definition of E1

k (A), then we
must verify that there exists a transition tr = (s, a, µ) ∈ Dk such that
tr = tr1¹tr . There are eight cases:
– a = get public encrypt(A) for some A ∈ A: by definition of the

action get public encrypt(A), we can identify two cases: s1.ekA =
⊥ or s1.ekA 6= ⊥. If s1.ekA = ⊥, then for each state s′1 of E1

k ,
µ1(s′1) = ρ(e, d) and s′1 is identified by the same values of s1 except
for the following values: s′1.ekA = e, s′1.dkA = d, and s′1.pkA = e

where ρ is the probability measure induced over EKey × DKey by
the probabilistic algorithm KGen(1k). Let s be the state of Ek(A)
such that s = s1¹s. By definition of action get public encrypt(A),
s enables get public encrypt(A) that leads to the measure µ such
that for each state s′ of Ek, µ(s′) = ρ(e, d) and s′ is identified by
the same values of s except for the following values: s′.ekA = e,
s′.dkA = d, and s′.pkA = e where ρ is the probability measure
induced over EKey×DKey by the probabilistic algorithm KGen(1k).
Thus µ = µ1¹µ, and hence tr = tr1¹tr .
If s1.ekA 6= ⊥, then µ1 = δs′1

where s′1 is the state of E1
k (A) that is

identified by the same values of s1 except for the value of the variable
pkA where s′1.pkA = s1.ekA. Let s be the state of Ek(A) such that
s = s1¹s. By definition of action get public encrypt(A), s enables
get public encrypt(A) that leads to the measure δs′ where s′ is the
state of Ek(A) that is identified by the same values of s except for
variable pkA where s′.pkA = s.ekA. Thus δs′ = δs′1

¹δs′ , and hence
tr = tr1¹tr .

– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-
nition of action ret public encrypt(A, E), it follows that s1.pkA = E

and that µ1 = δs′1
where s′1 is the state of E1

k (A) that is identi-
fied by the same values of s1 except for the value of the variable
pkA where s′1.pkA = ⊥. Let s be the state of Ek(A) such that
s = s1¹s. By definition of action ret public encrypt(A, E), s enables
ret public encrypt(A, E) that leads to the measure δs′ where s′ is
the state of Ek(A) that is identified by the same values of s except
for variable pkA where s′.pkA = ⊥. Thus δs′ = δs′1

¹δs′ , and hence
tr = tr1¹tr .
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– a = get corrupt encrypt(A) for some A ∈ A: by definition of the
action get corrupt encrypt(A), we can identify two cases: ekA = ⊥
or ekA 6= ⊥. If ekA = ⊥, then for each state s′1 of E1

k , µ1(s′1) = ρ(e, d)
and s′1 is identified by the same values of s1 except for the follow-
ing values: s′1.ekA = e, s′1.dkA = d, and s′1.ckA = (e, d) where ρ is
the probability measure induced over EKey × DKey by the proba-
bilistic algorithm KGen(1k). Let s be the state of Ek(A) such that
s = s1¹s. By definition of the action get corrupt encrypt(A), s en-
ables get corrupt encrypt(A) that leads to the measure µ such that
for each state s′ of Ek, µ(s′) = ρ(e, d) and s′ is identified by the same
values of s except for the following values: s′.ekA = e, s′.dkA = d,
and s′.ckA = (e, d) where ρ is the probability measure induced
over EKey × DKey by the probabilistic algorithm KGen(1k). Thus
µ = µ1¹µ, and hence tr = tr1¹tr .
If ekA 6= ⊥, then µ1 = δs′1

where s′1 is the state of E1
k (A) that is

identified by the same values of s1 except for the value of the variable
ckA where s′1.ckA = (s1.ekA, s1.dkA). Let s be the state of Ek(A) such
that s = s1¹s. By definition of the action get corrupt encrypt(A), s

enables get corrupt encrypt(A) that leads to the measure δs′ where
s′ is the state of Ek(A) that is identified by the same values of s except
for variable ckA where s′.ckA = (s.ekA, s.dkA). Thus δs′ = δs′1

¹δs′ ,
and hence tr = tr1¹tr .

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey, and
D ∈ DKey: by definition of action ret corrupt encrypt(A, E, D), it
follows that s1.ckA = (E,D) and that µ1 = δs′1

where s′1 is the
state of E1

k (A) that is identified by the same values of s1 except for
ckA where s′1.ckA = ⊥. Let s be the state of Ek(A) such that s =
s1¹s. By definition of action ret corrupt encrypt(A, E, D), s enables
ret corrupt encrypt(A, E, D) that leads to the measure δs′ where s′

is the state of Ek(A) that is identified by the same values of s except
for variable ckA where s′.ckA = ⊥. Thus δs′ = δs′1

¹δs′ , and hence
tr = tr1¹tr .

– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by
definition of the action get encrypt(A, M), it follows that for each
state s′1 of E1

k , µ1(s′1) = ρ(C) and s′1 is identified by the same
values of s1 except for the following values: s′1.is freshA = F if
C ∈ s1.generated ciphers, T otherwise, s′1.enc valueA = C, and
s′1.generated ciphers = s1.generated ciphers∪{C}. ρ is the probabil-
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ity measure induced over Ciphertext by the probabilistic algorithm
Enc(s1.ekA, M). Let s be the state of Ek(A) such that s = s1¹s. By
definition of action get encrypt(A, M), s enables get encrypt(A, M)
that leads to the measure ρ where for each state s′ of Ek(A) that is
identified by the same values of s except for variable enc valueA, we
have that µ(s′) = ρ(C) and s′.enc valueA = C. Thus µ = µ1¹µ, and
hence tr = tr1¹tr .

– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-
nition of action ret encrypt(A, C), it follows that s1.enc valueA = C

and that µ1 = δs′1
where s′1 is the state of E1

k (A) that is identified
by the same values of s1 except for enc valueA that assumes the
value s′1.enc valueA = ⊥ and for is freshA that is reset to ⊥. Let
s be the state of Ek(A) such that s = s1¹s. By definition of action
ret encrypt(A, C), s enables ret encrypt(A, C) that leads to the mea-
sure δs′ where s′ is the state of Ek(A) that is identified by the same
values of s except for variable enc valueA where s′.enc valueA = ⊥.
Thus δs′ = δs′1

¹δs′ , and hence tr = tr1¹tr .
– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by def-

inition of action get decrypt(A, C), it follows that µ1 = δs′1
where

s′1 is the state of E1
k (A) that is identified by the same values of s1

except for dec valueA where s′1.dec valueA = Dec(s1.dkA, C). Let
s be the state of Ek(A) such that s = s1¹s. By definition of action
get decrypt(A, C), s enables get decrypt(A, C) that leads to the mea-
sure δs′ where s′ is the state of Ek(A) that is identified by the same
values of s except for variable dec valueA where s′.dec valueA =
Dec(s.dkA, C). Thus δs′ = δs′1

¹δs′ , and hence tr = tr1¹tr .
– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by defini-

tion of action ret decrypt(A, M), it follows that s1.dec valueA = M

and that µ1 = δs′1
where s′1 is the state of E1

k (A) that is identified by
the same values of s1 except for dec valueA where s′1.dec valueA = ⊥.
Let s be the state of Ek(A) such that s = s1¹s. By definition of
action ret decrypt(A, M), s enables ret decrypt(A, M) that leads
to the measure δs′ where s′ is the state of Ek(A) that is identi-
fied by the same values of s except for variable dec valueA where
s′.dec valueA = ⊥. Thus δs′ = δs′1

¹δs′ , and hence tr = tr1¹tr .

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
E1

k (A) ∈ ExtW
∅ (Ek(A)). ut
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The existence of a polynomially accurate simulation from Ek(A) to E1
k (A)

in now straightforward:

Proposition 6.12. Let A be a set of (identities of) agents. For each context
Ck compatible with Ek(A),

{Ek(A)||Ck}k∈N .s {E1
k (A)||Ck}k∈N

Proof. By Lemma 6.11, for each k ∈ N, E1
k (A) ∈ ExtW

B (Ek(A)) where B is
the empty set and W is {generated ciphers} ∪ {is freshA | A ∈ A}. This
implies, by Lemma 4.6, that for each context C ′

k compatible with Ek(A)
such that B ⊆ AC′k

, Ek(A)||C ′
k ¹ E1

k (A)||C ′
k and thus, by Proposition 5.6,

{Ek(A)||C ′
k}k∈N .s {E1

k (A)||C ′
k}k∈N. Since B = ∅, each context Ck compat-

ible with Ek(A) satisfies B ⊆ ACk
and thus for each context Ck compatible

with Ek(A), {Ek(A)||Ck}k∈N .s {E1
k (A)||Ck}k∈N. ut

For the second step, let E2
k be the automaton obtained from E1

k modifying
each get encrypt(A, M) action as follows: the encryption algorithm Enc is
invoked until it returns a value that is a fresh ciphertext, that is not inside
generated ciphers, as depicted in Figure 6.6.

It is immediate to see that E2
k (A) simulates the Gk-conditional of E1

k (A)
where for each k ∈ N, Gk is the set of states of E1

k (A) such that for each
A ∈ A, 6= .is freshAF . In fact, we iterate the generation of the encryption
of M under the public key of A until it returns a value that is not equal
to an already generated ciphertext. That is, we condition the choice of the
ciphertext to the fact that it is fresh (and thus, 6= .is freshAF is always
satisfied).

Note that E2
k (A) is not the Gk-conditional of E1

k (A) since it provides
more transitions than E1

k (A)|Gk. In fact, E2
k (A) enables transitions that

leave from a state not in Gk and that leads to a probability measures µ such
that µ(Gk) = 0. For example, let s be the state such that s.is freshA = F ,
s.is freshB = F , s.enc valueA = C. Thus, by definition of ret encrypt
actions, s enables the action ret encrypt(A, C) that leads to the measure
δs′ where in s′ only enc valueA and is freshA are different with respect to
the values in s. Thus s′.is freshB is still F and hence s′ /∈ Gk.

The above intuition is formalized by the following result:

Lemma 6.13. Given E1
k (A), let Bk be the set of states of E1

k such that
s ∈ Bk if there exists A ∈ A such that s.is freshA = F . Let Gk be the set
S1

k \Bk.
For each k ∈ N, E1

k (A)|Gk ¹ E2
k (A).
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E1
k

Input get encrypt(A, M)

Effect:

enc valueA := c where c = Enc(ekA, M)

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

E2
k

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Fig. 6.6. get encrypt of E1
k and E2

k

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from E1

k (A)|Gk to E2
k (A).

The condition on start states is trivially true: let s̄1
k be the start state of

E1
k (A)|Gk and s̄2

k be the start state of E2
k (A). By definition of conditional, it

follows that s̄1
k is the start state of E1

k (A). Since by definition of E2
k (A), the

only difference between E1
k (A) and E2

k (A) is on the definition of the action
get encrypt(A, M), we have that s̄2

k = s̄1
k and thus s̄1

k idk s̄2
k.

For the step condition, let s1 and s2 be two states of E1
k (A)|Gk and

E2
k (A), respectively, such that s1 idk s2. Let (s1, a, µ1) be a transition of
E1

k (A)|Gk that leaves from s1. We must find µ2 such that (s2, a, µ2) is a
transition of E2

k (A) and µ1 L(idk) µ2. There are eight cases:

– a = get public encrypt(A) for some A ∈ A: by definition of the ac-
tion get public encrypt(A), we can identify two cases: s1.ekA = ⊥ or
s1.ekA 6= ⊥. If s1.ekA = ⊥, then for each state s′1 of E1

k , µ1(s′1) = ρ1(e, d)
and s′1 is identified by the same values of s1 except for the following val-
ues: s′1.ekA = e, s′1.dkA = d, and s′1.pkA = e where ρ1 is the probabil-
ity measure induced over EKey × DKey by the probabilistic algorithm
KGen(1k). Since s1 idk s2, we have that also s2 satisfies s2.ekA = ⊥,
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and hence for each state s′2 of E2
k , µ2(s′2) = ρ2(e, d) and s′2 is identi-

fied by the same values of s2 except for the following values: s′2.ekA = e,
s′2.dkA = d, and s′2.pkA = e where ρ2 is the probability measure induced
over EKey×DKey by the probabilistic algorithm KGen(1k). This implies
that s′1 idk s′2 for each state s′1 and s′2 satisfying above conditions and
since ρ1 = ρ2, we have that µ1 L(idk) µ2, as required.
If s1.ekA 6= ⊥, then µ1 = δs′1

where s′1 is the state of E1
k (A) that is identi-

fied by the same values of s1 except for pkA where s′1.pkA = s1.ekA. Since
s1 idk s2, we have that also s2 satisfies s2.ekA 6= ⊥, and hence by defini-
tion of action get public encrypt(A), s2 enables get public encrypt(A)
that leads to the measure δs′2

where s′2 is the state of E2
k (A) that

is identified by the same values of s2 except for variable pkA where
s′2.pkA = s2.ekA. This implies that s′1 idk s′2 and thus δs′1

L(idk) δs′2
,

that is µ1 L(idk) µ2, as required.
– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-

nition of the action ret public encrypt(A, E), it follows that s1 satisfies
s1.pkA = E. Moreover, it follows that µ1 = δs′1

where s′1 is the state
such that s′1.pkA = ⊥, and all other variables that describe s′1 have
the same value of the variables that describe s1. Since s1 idk s2, we
have that also s2 satisfies s2.pkA = E and thus it enables the transition
(s2, ret public encrypt(A, E), µ2) where µ2 is the measure δs′2

where s′2
is the state such that s′2.pkA = ⊥, and all other variables that describe
s′2 have the same value of the variables that describe s2. This implies
that s′1 idk s′2 and thus δs′1

L(idk) δs′2
, that is µ1 L(idk) µ2, as required.

– a = get corrupt encrypt(A) for some A ∈ A: by definition of the ac-
tion get corrupt encrypt(A), we can identify two cases: s1.ekA = ⊥ or
s1.ekA 6= ⊥. If s1.ekA = ⊥, then for each state s′1 of E1

k , µ1(s′1) = ρ1(e, d)
and s′1 is identified by the same values of s1 except for the following val-
ues: s′1.ekA = e, s′1.dkA = d, and s′1.ckA = (e, d) where ρ1 is the proba-
bility measure induced over EKey×DKey by the probabilistic algorithm
KGen(1k). Since s1 idk s2, we have that also s2 satisfies s2.ekA = ⊥, and
hence for each state s′2 of E2

k , µ2(s′2) = ρ2(e, d) and s′2 is identified by the
same values of s2 except for the following values: s′2.ekA = e, s′2.dkA = d,
and s′2.ckA = (e, d) where ρ2 is the probability measure induced over
EKey×DKey by the probabilistic algorithm KGen(1k). This implies that
s′1 idk s′2 for each state s′1 and s′2 satisfying above conditions and since
ρ1 = ρ2, we have that µ1 L(idk) µ2, as required.
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If s1.ekA 6= ⊥, then µ1 = δs′1
where s′1 is the state of E1

k (A) that
is identified by the same values of s1 except for ckA where s′1.ckA =
(s1.ekA, s1.dkA). Since s1 idk s2, we have that also s2 satisfies s2.ekA 6=
⊥, and hence by definition of action get corrupt encrypt(A), s2 enables
get corrupt encrypt(A) that leads to the measure δs′2

where s′2 is the
state of E2

k (A) that is identified by the same values of s2 except for vari-
able ckA where s′2.ckA = (s2.ekA, s2.dkA). This implies that s′1 idk s′2
and thus δs′1

L(idk) δs′2
, that is µ1 L(idk) µ2, as required.

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey and D ∈
DKey: by definition of the action ret corrupt encrypt(A, E, D), it fol-
lows that s1 satisfies s1.ckA = (E,D). Moreover, it follows that µ1 = δs′1
where s′1 is the state such that s′1.ckA = ⊥, and all other variables that
describe s′1 have the same value of the variables that describe s1. Since
s1 idk s2, we have that also s2 satisfies s2.ckA = (E,D) and thus it
enables the transition (s2, ret corrupt encrypt(A, E, D), µ2) where µ2 is
the measure δs′2

where s′2 is the state such that s′2.ckA = ⊥, and all
other variables that describe s′2 have the same value of the variables
that describe s2. This implies that s′1 idk s′2 and thus δs′1

L(idk) δs′2
,

that is µ1 L(idk) µ2, as required.
– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by definition

of get encrypt(A, M), it follows that for each state s′1 of E1
k , µ1(s′1) =

ρ1(C) and s′1 is identified by the same values of s1 except for the follow-
ing values: s′1.is freshA = F if C ∈ s1.generated ciphers, T otherwise,
s′1.enc valueA = C, and s′1.generated ciphers = s1.generated ciphers ∪
{C}. ρ1 is the probability measure induced over Ciphertext by the prob-
abilistic algorithm Enc(s1.ekA, M) conditioned to Gk. Since s1 idk s2,
we have that also s2 enables the transition (s2, get encrypt(A, M), µ2)
where for each state s′2 of E2

k , µ2(s′2) = ρ2(C) and s′2 is identified by
the same values of s2 except for the following values: s′2.is freshA = F

if C ∈ s2.generated ciphers, T otherwise, s′2.enc valueA = C, and
s′2.generated ciphers = s2.generated ciphers ∪ {C}. ρ2 is the proba-
bility measure induced over Ciphertext by the probabilistic algorithm
Enc(s2.ekA, M) that is iterated until it returns a value that does not be-
long to s2.generated ciphers. This implies that s′1 idk s′2 for each state
s′1 and s′2 satisfying above conditions and if ρ1 = ρ2, then µ1 L(idk) µ2,
as required.
ρ1 is equal to ρ2 since for each s ∈ Gk, ρ1(s) = ρ2(s). In fact, by
definition of conditional, ρ1(s) = ρ(s)/ρ(Gk) where ρ is the probability
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measure induced over Ciphertext by Enc(s1.ekA, M), ρ(Gk) > 0 and
ρ(Bk) < 1. By definition of get encrypt(A, M) action of E2

k , we have

that ρ2(s) =
∑+∞

i=0 ρ(Bk)iρ(s) = ρ(s)
∑+∞

i=0 ρ(Bk)i = ρ(s)
1

1− ρ(Bk)
=

ρ(s)/ρ(Gk) = ρ1(s).
– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by

definition of the action ret encrypt(A, C), it follows that s1 satisfies
s1.enc valueA = C. Moreover, it follows that µ1 = δs′1

where s′1 is the
state such that s′1.enc valueA = ⊥, s′1.is freshA = ⊥, and all other vari-
ables that describe s′1 have the same value of the variables that describe
s1. Since s1 idk s2, we have that also s2 satisfies s2.enc valueA = C

and thus it enables the transition (s2, ret encrypt(A, C), µ2) where µ2

is the measure δs′2
where s′2 is the state such that s′2.enc valueA = ⊥,

s′2.is freshA = ⊥, and all other variables that describe s′2 have the same
value of the variables that describe s2. This implies that s′1 idk s′2 and
thus δs′1

L(idk) δs′2
, that is µ1 L(idk) µ2, as required.

– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-
nition of the action get decrypt(A, C), it follows that µ1 = δs′1

where
s′1 is the state such that s′1.dec valueA = Dec(s1.dkA, C), and all other
variables that describe s′1 have the same value of the variables that de-
scribe s1. Since s1 idk s2, we have that also s2 enables the transition
(s2, get decrypt(A, C), µ2) where µ2 is the measure δs′2

where s′2 is the
state such that s′2.dec valueA = Dec(s2.dkA, C), and all other variables
that describe s′2 have the same value of the variables that describe s2.
This implies that s′1 idk s′2 and thus δs′1

L(idk) δs′2
, that is µ1 L(idk) µ2,

as required.
– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by

definition of the action ret decrypt(A, M), it follows that s1 satisfies
s1.dec valueA = M . Moreover, it follows that µ1 = δs′1

where s′1 is the
state such that s′1.dec valueA = ⊥, and all other variables that describe
s′1 have the same value of the variables that describe s1. Since s1 idk s2,
we have that also s2 satisfies s2.dec valueA = M and thus it enables the
transition (s2, ret decrypt(A, M), µ2) where µ2 is the measure δs′2

where
s′2 is the state such that s′2.dec valueA = ⊥, and all other variables that
describe s′2 have the same value of the variables that describe s2. This
implies that s′1 idk s′2 and thus δs′1

L(idk) δs′2
, that is µ1 L(idk) µ2, as

required.
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Since for each action a, if s1 enables a transition labelled by a that leads
to µ1, then we can find µ2 such that (s2, a, µ2) ∈ D2 and µ1 L(idk) µ2, the
step condition is satisfied. ut

The existence of a polynomially accurate simulation from E1
k (A)|Gk to

E2
k (A) in now straightforward:

Proposition 6.14. Let A be a set of agents. Given E1
k (A), let Bk be the set

of states of E1
k such that s ∈ Bk if there exists A ∈ A such that s.is freshA =

F . Let Gk be the set S1
k \Bk.

For each context Ck compatible with E1
k (A),

{(E1
k (A)|Gk)||Ck}k∈N .s {E2

k (A)||Ck}k∈N

Proof. By Lemma 6.13, we have that for each k ∈ N, E1
k (A)|Gk ¹

E2
k (A). This implies that for each context Ck compatible with E1

k (A),
(E1

k (A)|Gk)||Ck ¹ E2
k (A)||Ck. Finally, by Proposition 5.6, we have that

{(E1
k (A)|Gk)||Ck}k∈N .s {E2

k (A)||Ck}k∈N. ut

To complete the chain of simulations from Ek(A) to E2
k (A), we need to

prove that

Proposition 6.15. Let E be an IND-CCA encryption scheme and A be a
set of agents. Let Gk be the set of states of E1

k such that s ∈ Gk if and only
if for each A ∈ A s.is freshA 6= F , that is, the generated ciphertext is fresh.
Let Bk be S1

k \ Gk (that is, states s′ of E1
k such that s′.is freshA = F for

some A ∈ A).
For each context Ck compatible with E1

k (A),

{E1
k (A)||Ck}k∈N .s {(E1

k (A)|Gk)||Ck}k∈N

Proof. Theorem 5.8 states that {E1
k (A)}k∈N .s {E1

k (A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {E1

k (A)}k∈N.
Suppose, for the sake of contradiction, that {E1

k (A)}k∈N is not simu-
lated by {E1

k (A)|Gk}k∈N. This implies that {Bk}k∈N is not negligible in
{E1

k (A)}k∈N and thus that there exists c ∈ N, p ∈ Poly such that for each
k̄ ∈ N there exists k > k̄ such the probability to reach states of Bk within
p(k) steps is at least k−c, that is, the probability to reach states s such
that s.is freshA = F for some A ∈ A within p(k) steps is at least k−c.
By definition of the automaton E1

k (A), it follows that s.is freshA can as-
sume value F only as the effect of a transition that leaves from some state
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s′ and that is labelled by action get encrypt(A, M). This happens only
when the ciphertext value Enc(s′.ekA, M) assigned to s.enc valueA belongs
to the set RC = s′.generated ciphers. Within p(k) steps, we can perform
at most p(k) transitions labelled by get encrypt(Z, P ) with Z ∈ A and
P ∈ Message. Since by definition of get encrypt(Z, P ) we add at most one
value to generated ciphers each time we perform a transition labelled by
get encrypt(Z, P ), within p(k) steps the set RC has cardinality at most
p(k). This means that with probability at least k−c, we have generated a
ciphertext that it is equal to some c ∈ RC with |RC| 6 p(k). Since the
encryption scheme E is IND-CCA, this contradicts the Proposition 2.4 and
thus {E1

k (A)}k∈N .s {E1
k (A)|Gk}k∈N. This implies, by Theorem 5.10, that

{E1
k (A)||Ck}k∈N .s {(E1

k (A)|Gk)||Ck}k∈N. ut

Avoiding collisions with externally generated ciphertexts

As we have seen above, there exists a simulation from the encryption au-
tomaton that can generate repeated ciphertexts to the encryption automa-
ton that ensures that returned ciphertexts are never repeated. Sometimes,
the fact that E2

k does not generate repeated ciphertexts is not sufficient
to satisfy the required properties: it is still possible that E2

k generates an
encryption that is equal to some adversary’s generated ciphertext.

If we want to be sure that the encryption automaton returns values that
have never occurred previously, then we must modify the automaton adding
the knowledge of environment’s generated ciphertexts. We can provide such
knowledge using one of the following approaches: the encryption automaton
receives as input sets of environment’s generated ciphertexts, or it receives
messages. In the second approach, given a message m, we can easily extract
ciphertext from m when it is a plaintext or a signature (since we can recover
the signed text from the signature itself), but when m is a ciphertext, we
must decrypt it to know which other ciphertexts it contains. This is not
problematic, since we already know the decryption keys associated to the
agents.

First approach: set of ciphertexts

The simplest way to provide the encryption automaton with the ciphertexts
generated by the environment is to use sets of ciphertexts, that is, if the en-
vironment produces ciphertexts c1, . . . , cl, then we send the set {c1, . . . , cl}
to the automaton. We do this adding a state variable used ciphers that
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contains all ciphertexts used by the environment and an input action
used ciphers(CT ) that updates used ciphers:

Input used ciphers(CT )

Effect:

used ciphers := used ciphers ∪ CT

Moreover, each get encrypt(A, M) action modifies is not usedA assign-
ing F if the ciphertext returned by Enc(ekA, M) is in used ciphers; T oth-
erwise as depicted in Figure 6.7. The action ret encrypt(A, C) resets the
is not usedA to its initial value ⊥. Let E3

k be the resulting automaton.
It is immediate to see that E3

k (A) is an extension of E2
k (A). In fact,

we simply add some history variables that keep information about all en-
cryption generated by the environment. Such variables do not affect the
behavior of the other actions and thus each transition of E3

k (A) either is
almost identical to a transition of E2

k (A) or it is the new action that does
not modify the state variables that describe states of E2

k (A).
The above intuition is formalized by the following result:

Lemma 6.16. Let A be a set of agents, B be the set {used ciphers(CT ) |
CT ⊆ Ciphertext} and W be the set {used ciphers} ∪ {is not usedA |
A ∈ A} where action and variables are defined as above. For each k ∈ N,
E3

k (A) ∈ ExtW
B (E2

k (A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of E3
k (A). Then v is either

one of generated ciphers, ekA, dkA, pkA, ckA, enc valueA, dec valueA,
is freshA for A ∈ A and thus it is a state variable of E2

k (A), or v is
used ciphers or is not usedA for some A ∈ A and thus v ∈ W ;

compatible start state: s̄3
k is identified by value ⊥ for each variable ekA,

dkA, pkA, ckA, enc valueA, dec valueA, is freshA, and is not usedA

(with A ∈ A), and by ∅ for generated ciphers and used ciphers. Since
s̄2
k is identified by the value ⊥ for each variable ekA, dkA, pkA, ckA,

enc valueA, dec valueA, and is freshA (with A ∈ A), and by ∅ for
generated ciphers, then s̄2

k = s̄3
k¹s̄2

k
;

compatible actions: by definition of E3
k (A), it provides the same actions of

E2
k (A) plus the actions used ciphers(CT ) that belong to B;

compatible transitions: let tr3 = (s3, a, µ3) ∈ D3
k be a transition of E3

k . Sup-
pose that a = used ciphers(CT ). Then we must verify that there exists
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E2
k(A)

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

is freshA := ⊥
enc valueA := ⊥

E3
k(A)

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

is freshA := ⊥
is not usedA := ⊥
enc valueA := ⊥

Fig. 6.7. get encrypt(A, M) and ret encrypt(A, C) of E2
k and E3

k
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a state s2 of E2
k such that s2 = s3¹s2 and δs2 = µ3¹δs2

. By definition
of used ciphers(CT ), it follows that µ3 = δs′3

where s′3 is the state of
E3

k (A) that is identified by the same values of s3 except for used ciphers
where s′3.used ciphers = s3.used ciphers ∪ CT . Let s2 be the state of
E2

k (A) such that s2 = s3¹s2 . Since the only difference between s3 and s′3
is on the value of used ciphers, and since used ciphers is not a variable
that characterizes s2, we have that s2 = s′3¹s2 and thus δs2 = δs′3

¹δs2
.

Suppose that a ∈ A2
k, that is, it is an action of E2

k (A). Then we must
verify that there exists a transition tr2 = (s2, a, µ2) ∈ D2

k such that
tr2 = tr3¹tr2 . There are eight cases:
– a = get public encrypt(A) for some A ∈ A: by definition of the

action get public encrypt(A), we can identify two cases: s3.ekA =
⊥ or s3.ekA 6= ⊥. If s3.ekA = ⊥, then for each state s′3 of E3

k ,
µ3(s′3) = ρ(e, d) and s′3 is identified by the same values of s3 except
for the following values: s′3.ekA = e, s′3.dkA = d, and s′3.pkA = e

where ρ is the probability measure induced over EKey × DKey by
the probabilistic algorithm KGen(1k). Let s2 be the state of E2

k (A)
such that s2 = s3¹s2 . By definition of action get public encrypt(A),
s2 enables get public encrypt(A) that leads to the measure µ2 such
that for each state s′2 of E2

k , µ2(s′2) = ρ(e, d) and s′2 is identified by
the same values of s2 except for the following values: s′2.ekA = e,
s′2.dkA = d, and s′2.pkA = e where ρ is the probability measure
induced over EKey×DKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ3¹µ2 , and hence tr2 = tr3¹tr2 .
If s3.ekA 6= ⊥, then µ3 = δs′3

where s′3 is the state of E3
k (A) that is

identified by the same values of s3 except for pkA where s′3.pkA =
s3.ekA. Let s2 be the state of E2

k (A) such that s2 = s3¹s2 . By def-
inition of get public encrypt(A), s2 enables get public encrypt(A)
that leads to the measure δs′2

where s′ is the state of E2
k (A) that

is identified by the same values of s2 except for variable pkA where
s′2.pkA = s2.ekA. Thus δs′2

= δs′3
¹δs′2

, and hence tr2 = tr3¹tr2 .
– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-

nition of action ret public encrypt(A, E), it follows that s3.pkA = E

and that µ3 = δs′3
where s′3 is the state of E3

k (A) that is identi-
fied by the same values of s3 except for pkA where s′3.pkA = ⊥.
Let s2 be the state of E2

k (A) such that s2 = s3¹s2 . By definition of
action ret public encrypt(A, E), s2 enables ret public encrypt(A, E)
that leads to the measure δs′2

where s′2 is the state of E2
k (A) that
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is identified by the same values of s2 except for variable pkA where
s′2.pkA = ⊥. Thus δs′2

= δs′3
¹δs′2

, and hence tr2 = tr3¹tr2 .
– a = get corrupt encrypt(A) for some A ∈ A: by definition of the

action get corrupt encrypt(A), we can identify two cases: s3.ekA =
⊥ or s3.ekA 6= ⊥. If s3.ekA = ⊥, then for each state s′3 of E3

k ,
µ3(s′3) = ρ(e, d) and s′3 is identified by the same values of s3 except
for the following values: s′3.ekA = e, s′3.dkA = d, and s′3.ckA = (e, d)
where ρ is the probability measure induced over EKey×DKey by the
probabilistic algorithm KGen(1k). Let s2 be the state of E2

k (A) such
that s2 = s3¹s2 . By definition of action get corrupt encrypt(A), s2

enables get corrupt encrypt(A) that leads to the measure µ2 such
that for each state s′2 of E2

k , µ2(s′2) = ρ(e, d) and s′2 is identified by
the same values of s2 except for the following values: s′2.ekA = e,
s′2.dkA = d, and s′2.ckA = (e, d) where ρ is the probability measure
induced over EKey×DKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ3¹µ2 , and hence tr2 = tr3¹tr2 .
If s3.ekA 6= ⊥, then µ3 = δs′3

where s′3 is the state of E3
k (A)

that is identified by the same values of s3 except for ckA where
s′3.ckA = (s3.ekA, s3.dkA). Let s2 be the state of E2

k (A) such that
s2 = s3¹s2 . By definition of action get corrupt encrypt(A), s2 en-
ables get corrupt encrypt(A) that leads to the measure δs2 where s′2
is the state of E2

k (A) that is identified by the same values of s2 except
for variable ckA where s′2.ckA = (s2.ekA, s2.dkA). Thus δs′2

= δs′3
¹δs′2

,
and hence tr2 = tr3¹tr2 .

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey, and
D ∈ DKey: by definition of action ret corrupt encrypt(A, E, D), it
follows that s3.ckA = (E,D) and that µ3 = δs′3

where s′3 is the
state of E3

k (A) that is identified by the same values of s3 except
for ckA where s′3.ckA = ⊥. Let s2 be the state of E2

k (A) such that
s2 = s3¹s2 . By definition of action ret corrupt encrypt(A, E, D), s2

enables ret corrupt encrypt(A, E, D) that leads to the measure δs2

where s′2 is the state of E2
k (A) that is identified by the same values

of s2 except for variable ckA where s′2.ckA = ⊥. Thus δs′2
= δs′3

¹δs′2
,

and hence tr2 = tr3¹tr2 .
– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by

definition of the action get encrypt(A, M), it follows that for each
state s′3 of E3

k , µ3(s′3) = ρ(C) and s′3 is identified by the same
values of s3 except for the following values: s′3.is freshA = F if
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C ∈ s3.generated ciphers, T otherwise, s′3.enc valueA = C, and
s′3.generated ciphers = s3.generated ciphers∪{C}. ρ is the probabil-
ity measure induced over Ciphertext by the probabilistic algorithm
Enc(s3.ekA, M). Let s2 be the state of E2

k (A) such that s2 = s3¹s2 . By
definition of action get encrypt(A, M), s2 enables get encrypt(A, M)
that leads to the measure ρ where for each state s′2 of E2

k (A) that is
identified by the same values of s2 except for variable enc valueA, we
have that µ(s′2) = ρ(C) and s′2.enc valueA = C. Thus µ2 = µ3¹µ2 ,
and hence tr2 = tr3¹tr2 .

– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-
nition of action ret encrypt(A, C), it follows that s3.enc valueA = C

and that µ3 = δs′3
where s′3 is the state of E3

k (A) that is identified by
the same values of s3 except for enc valueA that assumes the value
s′3.enc valueA = ⊥ and for is freshA and is not usedA that are reset
to ⊥. Let s2 be the state of E2

k (A) such that s2 = s3¹s2 . By defini-
tion of action ret encrypt(A, C), s2 enables ret encrypt(A, C) that
leads to the measure δs′2

where s′2 is the state of E2
k (A) that is iden-

tified by the same values of s2 except for variable enc valueA where
s′2.enc valueA = ⊥. Thus δs′2

= δs′3
¹δs′2

, and hence tr2 = tr3¹tr2 .
– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by def-

inition of action get decrypt(A, C), it follows that µ3 = δs′3
where

s′3 is the state of E3
k (A) that is identified by the same values of s3

except for dec valueA where s′3.dec valueA = Dec(s3.dkA, C). Let
s2 be the state of E2

k (A) such that s2 = s3¹s2 . By definition of
action get decrypt(A, C), s2 enables get decrypt(A, C) that leads
to the measure δs′2

where s′2 is the state of E2
k (A) that is identi-

fied by the same values of s2 except for variable dec valueA where
s′2.dec valueA = Dec(s2.dkA, C). Thus δs′2

= δs′3
¹δs′2

, and hence
tr2 = tr3¹tr2 .

– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by defini-
tion of action ret decrypt(A, M), it follows that s3.dec valueA = M

and that µ3 = δs′3
where s′3 is the state of E3

k (A) that is identified by
the same values of s3 except for dec valueA where s′3.dec valueA = ⊥.
Let s2 be the state of E2

k (A) such that s2 = s3¹s2 . By definition of
action ret decrypt(A, M), s2 enables ret decrypt(A, M) that leads
to the measure δs′2

where s′2 is the state of E2
k (A) that is identi-
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fied by the same values of s2 except for variable dec valueA where
s′2.dec valueA = ⊥. Thus δs′2

= δs′3
¹δs′2

, and hence tr2 = tr3¹tr2 .

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
E3

k (A) ∈ ExtW
B (E2

k (A)). ut
The existence of a polynomially accurate simulation from E2

k (A) to E3
k (A)

in now straightforward:

Proposition 6.17. Let A be a set of (identities of) agents. For each
context Ck compatible with E2

k (A) such that {used ciphers(CT ) | CT ⊆
Ciphertext} ⊆ ACk

,

{E2
k (A)||Ck}k∈N .s {E3

k (A)||Ck}k∈N

Proof. By Lemma 6.16, for each k ∈ N, E3
k (A) ∈ ExtW

B (E2
k (A)) where B

is the set of actions {used ciphers(CT ) | CT ⊆ Ciphertext} and W is
{used ciphers}∪{is not usedA | A ∈ A}. This implies, by Lemma 4.6, that
for each context Ck compatible with E2

k (A) such that B ⊆ ACk
, E2

k (A)||Ck ¹
E3

k (A)||Ck and thus, by Proposition 5.6, {E2
k (A)||Ck}k∈N .s {E3

k (A)||Ck}k∈N.
ut

For the second step, let E4
k be the automaton obtained from E3

k modifying
each get encrypt(A, M) action as follows: the encryption algorithm Enc is
invoked until it returns a value that is a ciphertext that is not yet used,
that is not inside used ciphers, as depicted in Figure 6.8.

It is immediate to see that E4
k (A) simulates the Gk-conditional of E3

k (A)
where for each k ∈ N, Gk is the set of states of E3

k (A) such that for each A ∈
A, s.is not usedA 6= F . In fact, we iterate the generation of the encryption
of M under the public key of A until it returns a value that is not equal to an
already used ciphertext. That is, we condition the choice of the ciphertext
to the fact that it is fresh (and thus, s.is not usedA 6= F is always satisfied).

Note that E4
k (A) is not the Gk-conditional of E3

k (A) since it provides more
transitions than E3

k (A)|Gk. In fact, E4
k (A) enables transitions that leave

from a state not in Gk and that leads to a probability measures µ such that
µ(Gk) = 0. For example, let s be the state such that s.is not usedA = F ,
s.is not usedB = F , s.enc valueA = C. Thus, by definition of ret encrypt
actions, s enables the action ret encrypt(A, C) that leads to the measure
δs′ where in s′ only enc valueA and is freshA are different with respect to
the values in s. Thus s′.is not usedB is still F and hence s′ /∈ Gk.

The above intuition is formalized by the following result:
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E3
k

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

E4
k

Input get encrypt(A, M)

Effect:

repeat

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

until c /∈ used ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Fig. 6.8. get encrypt of E3
k and E4

k

Lemma 6.18. Given E3
k (A), let Bk be the set of states of E3

k such that
s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be the
set S3

k \Bk.
For each k ∈ N, E3

k (A)|Gk ¹ E4
k (A).

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from E3

k (A)|Gk to E4
k (A).

The condition on start states is trivially true: let s̄3
k be the start state of

E3
k (A)|Gk and s̄4

k be the start state of E4
k (A). By definition of conditional, it

follows that s̄3
k is the start state of E3

k (A). Since by definition of E4
k (A), the
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only difference between E3
k (A) and E4

k (A) is on the definition of the action
get encrypt(A, M), we have that s̄4

k = s̄3
k and thus s̄3

k idk s̄4
k.

For the step condition, let s3 and s4 be two states of E3
k (A)|Gk and

E4
k (A), respectively, such that s3 idk s4. Let (s3, a, µ3) be a transition of
E3

k (A)|Gk that leaves from s3. We must find µ4 such that (s4, a, µ4) is a
transition of E4

k (A) and µ3 L(idk) µ4. There are nine cases:

– a = get public encrypt(A) for some A ∈ A: by definition of the ac-
tion get public encrypt(A), we can identify two cases: s3.ekA = ⊥ or
s3.ekA 6= ⊥. If s3.ekA = ⊥, then for each state s′3 of E3

k , µ3(s′3) = ρ3(e, d)
and s′3 is identified by the same values of s3 except for the following val-
ues: s′3.ekA = e, s′3.dkA = d, and s′3.pkA = e where ρ3 is the probabil-
ity measure induced over EKey × DKey by the probabilistic algorithm
KGen(1k). Since s3 idk s4, we have that also s4 satisfies s4.ekA = ⊥,
and hence for each state s′4 of E4

k , µ4(s′4) = ρ4(e, d) and s′4 is identi-
fied by the same values of s4 except for the following values: s′4.ekA = e,
s′4.dkA = d, and s′4.pkA = e where ρ4 is the probability measure induced
over EKey×DKey by the probabilistic algorithm KGen(1k). This implies
that s′3 idk s′4 for each state s′3 and s′4 satisfying above conditions and
since ρ3 = ρ4, we have that µ3 L(idk) µ4, as required.
If s3.ekA 6= ⊥, then µ3 = δs′3

where s′3 is the state of E3
k (A) that is identi-

fied by the same values of s3 except for pkA where s′3.pkA = s3.ekA. Since
s3 idk s4, we have that also s4 satisfies s4.ekA 6= ⊥, and hence by defini-
tion of action get public encrypt(A), s4 enables get public encrypt(A)
that leads to the measure δs′4

where s′4 is the state of E4
k (A) that

is identified by the same values of s4 except for variable pkA where
s′4.pkA = s4.ekA. This implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
,

that is µ3 L(idk) µ4, as required.
– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-

nition of the action ret public encrypt(A, E), it follows that s3 satisfies
s3.pkA = E. Moreover, it follows that µ3 = δs′3

where s′3 is the state
such that s′3.pkA = ⊥, and all other variables that describe s′3 have
the same value of the variables that describe s3. Since s3 idk s4, we
have that also s4 satisfies s4.pkA = E and thus it enables the transition
(s4, ret public encrypt(A, E), µ4) where µ4 is the measure δs′4

where s′4
is the state such that s′4.pkA = ⊥, and all other variables that describe
s′4 have the same value of the variables that describe s4. This implies
that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4, as required.
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– a = get corrupt encrypt(A) for some A ∈ A: by definition of the ac-
tion get corrupt encrypt(A), we can identify two cases: s3.ekA = ⊥ or
s3.ekA 6= ⊥. If s3.ekA = ⊥, then for each state s′3 of E3

k , µ3(s′3) = ρ3(e, d)
and s′3 is identified by the same values of s3 except for the following val-
ues: s′3.ekA = e, s′3.dkA = d, and s′3.ckA = (e, d) where ρ3 is the proba-
bility measure induced over EKey×DKey by the probabilistic algorithm
KGen(1k). Since s3 idk s4, we have that also s4 satisfies s4.ekA = ⊥, and
hence for each state s′4 of E4

k , µ4(s′4) = ρ4(e, d) and s′4 is identified by the
same values of s4 except for the following values: s′4.ekA = e, s′4.dkA = d,
and s′4.ckA = (e, d) where ρ4 is the probability measure induced over
EKey×DKey by the probabilistic algorithm KGen(1k). This implies that
s′3 idk s′4 for each state s′3 and s′4 satisfying above conditions and since
ρ3 = ρ4, we have that µ3 L(idk) µ4, as required.
If s3.ekA 6= ⊥, then µ3 = δs′3

where s′3 is the state of E3
k (A) that

is identified by the same values of s3 except for ckA where s′3.ckA =
(s3.ekA, s3.dkA). Since s3 idk s4, we have that also s4 satisfies s4.ekA 6=
⊥, and hence by definition of action get corrupt encrypt(A), s4 enables
get corrupt encrypt(A) that leads to the measure δs′4

where s′4 is the
state of E4

k (A) that is identified by the same values of s4 except for vari-
able ckA where s′4.ckA = (s4.ekA, s4.dkA). This implies that s′3 idk s′4
and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4, as required.

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey and V ∈
VKey: by definition of the action ret corrupt encrypt(A, E, D), it follows
that s3 satisfies s3.ckA = (E,D). Moreover, it follows that µ3 = δs′3
where s′3 is the state such that s′3.ckA = ⊥, and all other variables that
describe s′3 have the same value of the variables that describe s3. Since
s3 idk s4, we have that also s4 satisfies s4.ckA = (E,D) and thus it
enables the transition (s4, ret corrupt encrypt(A, E, D), µ4) where µ4 is
the measure δs′4

where s′4 is the state such that s′4.ckA = ⊥, and all
other variables that describe s′4 have the same value of the variables
that describe s4. This implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
,

that is µ3 L(idk) µ4, as required.
– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by definition

of get encrypt(A, M), it follows that for each state s′3 of E3
k , µ3(s′3) =

ρ3(C) and s′3 is identified by the same values of s3 except for the follow-
ing values: s′3.is freshA = F if C ∈ s3.generated ciphers, T otherwise,
s′3.enc valueA = C, and s′3.generated ciphers = s3.generated ciphers ∪
{C}. ρ3 is the probability measure induced over Ciphertext by the proba-
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bilistic algorithm Enc(s3.ekA, M) conditioned to the set of states where
for each A ∈ A is freshA 6= F conditioned to Gk. Since s3 idk s4,
we have that also s4 enables the transition (s4, get encrypt(A, M), µ4)
where for each state s′4 of E4

k , µ4(s′4) = ρ4(C) and s′4 is identified by
the same values of s4 except for the following values: s′4.is freshA = F

if C ∈ s4.generated ciphers, T otherwise, s′4.enc valueA = C, and
s′4.generated ciphers = s4.generated ciphers ∪ {C}. ρ4 is the proba-
bility measure induced over Ciphertext by the probabilistic algorithm
Enc(s4.ekA, M) conditioned to the set of states where for each A ∈ A
is freshA 6= F that is iterated until it returns a value that does not
belong to s4.used ciphers. This implies that s′3 idk s′4 for each state s′3
and s′4 satisfying above conditions and if ρ3 = ρ4, then µ3 L(idk) µ4, as
required.
ρ3 is equal to ρ4 since for each s ∈ Gk, ρ3(s) = ρ4(s). In fact, by
definition of conditional, ρ3(s) = ρ(s)/ρ(Gk) where ρ is the probability
measure induced over Ciphertext by Enc(s3.ekA, M), ρ(Gk) > 0 and
ρ(Bk) < 1. By definition of get encrypt(A, M) action of E4

k , we have

that ρ4(s) =
∑+∞

i=0 ρ(Bk)iρ(s) = ρ(s)
∑+∞

i=0 ρ(Bk)i = ρ(s)
1

1− ρ(Bk)
=

ρ(s)/ρ(Gk) = ρ3(s).
– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by

definition of the action ret encrypt(A, C), it follows that s3 satisfies
s3.enc valueA = C. Moreover, it follows that µ3 = δs′3

where s′3 is the
state such that s′3.enc valueA = ⊥, s′3.is freshA = ⊥, and all other vari-
ables that describe s′3 have the same value of the variables that describe
s3. Since s3 idk s4, we have that also s4 satisfies s4.enc valueA = C

and thus it enables the transition (s4, ret encrypt(A, C), µ4) where µ4

is the measure δs′4
where s′4 is the state such that s′4.enc valueA = ⊥,

s′4.is freshA = ⊥, s′4.is not usedA = ⊥ and all other variables that de-
scribe s′4 have the same value of the variables that describe s4. This
implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4, as

required.
– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-

nition of the action get decrypt(A, C), it follows that µ3 = δs′3
where

s′3 is the state such that s′3.dec valueA = Dec(s3.dkA, C), and all other
variables that describe s′3 have the same value of the variables that de-
scribe s3. Since s3 idk s4, we have that also s4 enables the transition
(s4, get decrypt(A, C), µ4) where µ4 is the measure δs′4

where s′4 is the
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state such that s′4.dec valueA = Dec(s4.dkA, C), and all other variables
that describe s′4 have the same value of the variables that describe s4.
This implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4,

as required.
– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by

definition of the action ret decrypt(A, M), it follows that s3 satisfies
s3.dec valueA = M . Moreover, it follows that µ3 = δs′3

where s′3 is the
state such that s′3.dec valueA = ⊥, and all other variables that describe
s′3 have the same value of the variables that describe s3. Since s3 idk s4,
we have that also s4 satisfies s4.dec valueA = M and thus it enables the
transition (s4, ret decrypt(A, M), µ4) where µ4 is the measure δs′4

where
s′4 is the state such that s′4.dec valueA = ⊥, and all other variables that
describe s′4 have the same value of the variables that describe s4. This
implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is µ3 L(idk) µ4, as

required.
– a = used ciphers(CT ) for some CT ⊆ Ciphertext: by definition of

used ciphers(CT ), it follows that µ3 = δs′3
where s′3 is the state

such that s′3.used ciphers = s3.used ciphers ∪ CT , and all other vari-
ables that describe s′3 have the same value of the variables that de-
scribe s3. Since s3 idk s4, we have that also s4 enables the transition
(s4, used ciphers(CT ), µ4) where µ4 is the measure δs′4

where s′4 is the
state such that s′4.used ciphers = s4.used ciphers ∪ CT , and all other
variables that describe s′4 have the same value of the variables that de-
scribe s4. This implies that s′3 idk s′4 and thus δs′3

L(idk) δs′4
, that is

µ3 L(idk) µ4, as required.

Since for each action a, if s3 enables a transition labelled by a that leads
to µ3, then we can find µ4 such that (s4, a, µ4) ∈ D4 and µ3 L(idk) µ4, the
step condition is satisfied. ut

It is straightforward to prove that E3
k (A)|Gk is polynomially simulated

by E4
k (A):

Proposition 6.19. Given E3
k (A), let Bk be the set of states of E3

k such that
s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be the
set S3

k \Bk.
For each context Ck compatible with E3

k (A),

{(E3
k (A)|Gk)||Ck}k∈N .s {E4

k (A)||Ck}k∈N



168 6 Cryptographic Primitives and Simulations

Proof. By Lemma 6.18, we have that for each k ∈ N, E3
k (A)|Gk ¹

E4
k (A). This implies that for each context Ck compatible with E3

k (A),
(E3

k (A)|Gk)||Ck ¹ E4
k (A)||Ck. Finally, by Proposition 5.6, we have that

{(E3
k (A)|Gk)||Ck}k∈N .s {E4

k (A)||Ck}k∈N. ut

The complete the chain of polynomially accurate simulations from E3
k (A)

to E4
k (A) we need to prove:

Proposition 6.20. Let E be an IND-CCA encryption scheme and A be
a set of agents. Let Gk be the set of states of E3

k such that s ∈ Gk if
and only if for each A ∈ A s.is not usedA 6= F , that is, the generated
ciphertext is fresh. Let Bk be S3

k \ Gk (that is, states s′ of E3
k such that

s′.is not usedA = F for some A ∈ A).
For each context Ck compatible with E4

k (A), if there exists q ∈ Poly such
that for each action used ciphers(CT ) of Ck, |CT | < q(k), then

{E3
k (A)||Ck}k∈N .s {(E3

k (A)|Gk)||Ck}k∈N

Proof. Theorem 5.8 states that {E3
k (A)}k∈N .s {E3

k (A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {E3

k (A)}k∈N.
Suppose, for the sake of contradiction, that {E3

k (A)}k∈N is not simu-
lated by {E3

k (A)|Gk}k∈N. This implies that {Bk}k∈N is not negligible in
{E3

k (A)}k∈N and thus that there exists c ∈ N, p ∈ Poly such that for each
k̄ ∈ N there exists k > k̄ such the probability to reach states of Bk within
p(k) steps is at least k−c, that is, the probability to reach states s such that
s.is not usedA = F for some A ∈ A within p(k) steps is at least k−c. By def-
inition of the automaton E3

k (A), it follows that s.is not usedA can assume
value F only as the effect of a transition that leaves from some state s′ and
that is labelled by action get encrypt(A, M). This happens only when the
ciphertext value Enc(s′.ekA, M) assigned to s.enc valueA belongs to the set
UC = s′.used ciphers. Within p(k) steps, we can perform at most p(k) tran-
sitions labelled by used ciphers(CT ). Since by hypothesis we add at most
q(k) values to used ciphers each time we perform a transition labelled by
used ciphers(CT ), within p(k) steps the set UC has cardinality at most
p(k)q(k). This means that with probability at least k−c, we have generated
a ciphertext that it is equal to some c ∈ UC with |UC| 6 p(k)q(k). Since
the encryption scheme E is IND-CCA, this contradicts Proposition 2.4 and
thus {E3

k (A)}k∈N .s {E3
k (A)|Gk}k∈N. This implies, by Theorem 5.10, that

{E3
k (A)||Ck}k∈N .s {(E3

k (A)|Gk)||Ck}k∈N. ut
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Second approach: messages and decryption keys

We can adopt also the second approach, since we simply need to receives
messages instead of ciphertexts. Let E5

k be the automaton obtained from
E2

k adding a set of used ciphertexts used ciphers ⊆ Ciphertext initialized
to ∅, a set of variables is not usedA ∈ {T, F,⊥} all initialized to ⊥ where
A ∈ A and one input action send(m):

Input send(m)

Effect:

used ciphers := used ciphers ∪ extractCiphertexts(decrypt key , m)

where decrypt key is a vector such that for each A ∈ A, decrypt key(A) =
dkA.

Note that the effect of the send(m) input action depends on the function
extractCiphertexts(decrypt key , m) (depicted in Figure 6.9) that parses re-
cursively m and uses keys of decrypt key to decrypt ciphertexts. We assume
that there exists a function agent that, on input a ciphertext c, returns the
identity of the agent A which is associated to the encryption key used to
obtain c and that decrypt key(A) is not ⊥. We suppose that there exists a
function type that, given a message, returns the type of the message that
can be a nonce, a ciphertexts, an identity, a signature, or a pairing. We
assume also that keys and ciphertexts are obtained using the encryption
scheme E = (KGen, Enc, Dec).

Moreover, each get encrypt(A, M) action modifies is not usedA assign-
ing F if the ciphertext returned by Enc(ekA, M) is in used ciphers; T oth-
erwise as depicted in Figure 6.10. The action ret encrypt(A, C) reset the
is not usedA to its initial value ⊥. Let E5

k be the resulting automaton.
It is immediate to see that E5

k (A) is an extension of E2
k (A). In fact,

we simply add some history variables that keep information about all en-
cryption generated by the environment. Such variables do not affect the
behavior of the other actions and thus each transition of E5

k (A) is either
almost identical to a transition of E2

k (A) or it is the new action that does
not modify the state variables that describe states of E2

k (A).
The above intuition is formalized by the following result:

Lemma 6.21. Let A be a set of agents, B be the set {send(m) | m ∈
Message} and W be the set {used ciphers} ∪ {is not usedA | A ∈ A}
where actions and variables are defined as above. For each k ∈ N, E5

k (A) ∈
ExtW

B (E2
k (A)).
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function extractCiphertexts(decrypt key ,message)

if type(message) =id then

used ciphers := ∅
fi

if type(message) = nonce then

used ciphers := ∅
fi

if type(message) = pair then

used ciphers := extractCiphertexts(decrypt key , left(message)) ∪
extractCiphertexts(decrypt key , right(message))

fi

if type(message) = signature then

used ciphers := extractCiphertexts(decrypt key ,msg(message))

fi

if type(message) = encryption then

A := agent(message)

plaintext := Dec(decrypt key(A),message)

used ciphers := {message} ∪ extractCiphertexts(decrypt key , plaintext)

fi

return used ciphers

Fig. 6.9. The extractCiphertexts function

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of E5
k (A). Then v is either

one of generated ciphers, ekA, dkA, pkA, ckA, enc valueA, dec valueA,
is freshA for A ∈ A and thus it is a state variable of E2

k (A), or v is
used ciphers or is not usedA for some A ∈ A and thus v ∈ W ;

compatible start state: s̄5
k is identified by value ⊥ for each ekA, dkA, pkA,

ckA, enc valueA, dec valueA, is freshA, and is not usedA (with A ∈ A),
and by ∅ for generated ciphers and used ciphers. Since s̄2

k is identified
by the value ⊥ for each ekA, dkA, pkA, ckA, enc valueA, dec valueA, and
is freshA (with A ∈ A), and by ∅ for generated ciphers, then s̄2

k = s̄5
k¹s̄2

k
;

compatible actions: by definition of E5
k (A), it provides the same actions of

E2
k (A) plus the actions send(m) that belong to B;

compatible transitions: let tr5 = (s5, a, µ5) ∈ D5
k be a transition of E5

k .
Suppose that a = send(m). Then we must verify that there exists a state
s2 of E2

k such that s2 = s5¹s2 and δs2 = µ5¹δs2
. By definition of send(m),

it follows that µ5 = δs′5
where s′5 is the state of E5

k (A) that is identified by
the same values of s5 except for used ciphers where s′5.used ciphers =
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E2
k(A)

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

is freshA := ⊥
enc valueA := ⊥

E5
k(A)

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

is freshA := ⊥
is not usedA := ⊥
enc valueA := ⊥

Fig. 6.10. get encrypt(A, M) and ret encrypt(A, C) of E2
k and E5

k
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s5.used ciphers∪extractCiphertexts(decrypt key , m). Let s2 be the state
of E2

k (A) such that s2 = s5¹s2 . Since the only difference between s5

and s′5 is on the value of used ciphers, and since used ciphers is not a
variable that characterizes s2, we have that s2 = s′5¹s2 and thus δs2 =
δs′5

¹δs2
.

Suppose that a ∈ A2
k, that is, it is an action of E2

k (A). Then we must
verify that there exists a transition tr2 = (s2, a, µ2) ∈ D2

k such that
tr2 = tr5¹tr2 . There are eight cases:
– a = get public encrypt(A) for some A ∈ A: by definition of the

action get public encrypt(A), we can identify two cases: s5.ekA =
⊥ or s5.ekA 6= ⊥. If s5.ekA = ⊥, then for each state s′5 of E5

k ,
µ5(s′5) = ρ(e, d) and s′5 is identified by the same values of s5 except
for the following values: s′5.ekA = e, s′5.dkA = d, and s′5.pkA = e

where ρ is the probability measure induced over EKey × DKey by
the probabilistic algorithm KGen(1k). Let s2 be the state of E2

k (A)
such that s2 = s5¹s2 . By definition of action get public encrypt(A),
s2 enables get public encrypt(A) that leads to the measure µ2 such
that for each state s′2 of E2

k , µ2(s′2) = ρ(e, d) and s′2 is identified by
the same values of s2 except for the following values: s′2.ekA = e,
s′2.dkA = d, and s′2.pkA = e where ρ is the probability measure
induced over EKey×DKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ5¹µ2 , and hence tr2 = tr5¹tr2 .
If s5.ekA 6= ⊥, then µ5 = δs′5

where s′5 is the state of E5
k (A) that is

identified by the same values of s5 except for pkA where s′5.pkA =
s5.ekA. Let s2 be the state of E2

k (A) such that s2 = s5¹s2 . By def-
inition of get public encrypt(A), s2 enables get public encrypt(A)
that leads to the measure δs′2

where s′2 is the state of E2
k (A) that

is identified by the same values of s2 except for variable pkA where
s′2.pkA = s2.ekA. Thus δs′2

= δs′5
¹δs′2

, and hence tr2 = tr5¹tr2 .
– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-

nition of action ret public encrypt(A, E), it follows that s5.pkA = E

and that µ5 = δs′5
where s′5 is the state of E5

k (A) that is identi-
fied by the same values of s5 except for pkA where s′5.pkA = ⊥.
Let s2 be the state of E2

k (A) such that s2 = s5¹s2 . By definition of
action ret public encrypt(A, E), s2 enables ret public encrypt(A, E)
that leads to the measure δs′2

where s′2 is the state of E2
k (A) that

is identified by the same values of s2 except for variable pkA where
s′2.pkA = ⊥. Thus δs′2

= δs′5
¹δs′2

, and hence tr2 = tr5¹tr2 .
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– a = get corrupt encrypt(A) for some A ∈ A: by definition of the
action get corrupt encrypt(A), we can identify two cases: s5.ekA =
⊥ or s5.ekA 6= ⊥. If s5.ekA = ⊥, then for each state s′5 of E5

k ,
µ5(s′5) = ρ(e, d) and s′5 is identified by the same values of s5 except
for the following values: s′5.ekA = e, s′5.dkA = d, and s′5.ckA = (e, d)
where ρ is the probability measure induced over EKey×DKey by the
probabilistic algorithm KGen(1k). Let s2 be the state of E2

k (A) such
that s2 = s5¹s2 . By definition of action get corrupt encrypt(A), s2

enables get corrupt encrypt(A) that leads to the measure µ2 such
that for each state s′2 of E2

k , µ2(s′2) = ρ(e, d) and s′2 is identified by
the same values of s2 except for the following values: s′2.ekA = e,
s′2.dkA = d, and s′2.ckA = (e, d) where ρ is the probability measure
induced over EKey×DKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ5¹µ2 , and hence tr2 = tr5¹tr2 .
If s5.ekA 6= ⊥, then µ5 = δs′5

where s′5 is the state of E5
k (A)

that is identified by the same values of s5 except for ckA where
s′5.ckA = (s5.ekA, s5.dkA). Let s2 be the state of E2

k (A) such that
s2 = s5¹s2 . By definition of action get corrupt encrypt(A), s2 en-
ables get corrupt encrypt(A) that leads to the measure δs′2

where s′2
is the state of E2

k (A) that is identified by the same values of s2 except
for variable ckA where s′2.ckA = (s2.ekA, s2.dkA). Thus δs′2

= δs′5
¹δs′2

,
and hence tr2 = tr5¹tr2 .

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey, and
D ∈ DKey: by definition of action ret corrupt encrypt(A, E, D), it
follows that s5.ckA = (E,D) and that µ5 = δs′5

where s′5 is the
state of E5

k (A) that is identified by the same values of s5 except
for ckA where s′5.ckA = ⊥. Let s2 be the state of E2

k (A) such that
s2 = s5¹s2 . By definition of action ret corrupt encrypt(A, E, D), s2

enables ret corrupt encrypt(A, E, D) that leads to the measure δs′2
where s′2 is the state of E2

k (A) that is identified by the same values
of s2 except for variable ckA where s′2.ckA = ⊥. Thus δs′2

= δs′5
¹δs′2

,
and hence tr2 = tr5¹tr2 .

– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by
definition of the action get encrypt(A, M), it follows that for each
state s′5 of E5

k , µ5(s′5) = ρ(C) and s′5 is identified by the same
values of s5 except for the following values: s′5.is freshA = F if
C ∈ s5.generated ciphers, T otherwise, s′5.enc valueA = C, and
s′5.generated ciphers = s5.generated ciphers∪{C}. ρ is the probabil-
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ity measure induced over Ciphertext by the probabilistic algorithm
Enc(s5.ekA, M). Let s2 be the state of E2

k (A) such that s2 = s5¹s2 . By
definition of action get encrypt(A, M), s2 enables get encrypt(A, M)
that leads to the measure ρ where for each state s′2 of E2

k (A) that is
identified by the same values of s2 except for variable enc valueA, we
have that µ(s′2) = ρ(C) and s′2.enc valueA = C. Thus µ2 = µ5¹µ2 ,
and hence tr2 = tr5¹tr2 .

– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-
nition of action ret encrypt(A, C), it follows that s5.enc valueA = C

and that µ5 = δs′5
where s′5 is the state of E5

k (A) that is identified by
the same values of s5 except for enc valueA that assumes the value
s′5.enc valueA = ⊥ and for is freshA and is not usedA that are reset
to ⊥. Let s2 be the state of E2

k (A) such that s2 = s5¹s2 . By defini-
tion of action ret encrypt(A, C), s2 enables ret encrypt(A, C) that
leads to the measure δs′2

where s′2 is the state of E2
k (A) that is iden-

tified by the same values of s2 except for variable enc valueA where
s′2.enc valueA = ⊥. Thus δs′2

= δs′5
¹δs′2

, and hence tr2 = tr5¹tr2 .
– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by def-

inition of action get decrypt(A, C), it follows that µ5 = δs′5
where

s′5 is the state of E5
k (A) that is identified by the same values of s5

except for dec valueA where s′5.dec valueA = Dec(s5.dkA, C). Let
s2 be the state of E2

k (A) such that s2 = s5¹s2 . By definition of
action get decrypt(A, C), s2 enables get decrypt(A, C) that leads
to the measure δs′2

where s′2 is the state of E2
k (A) that is identi-

fied by the same values of s2 except for variable dec valueA where
s′2.dec valueA = Dec(s2.dkA, C). Thus δs′2

= δs′5
¹δs′2

, and hence
tr2 = tr5¹tr2 .

– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by defini-
tion of action ret decrypt(A, M), it follows that s5.dec valueA = M

and that µ5 = δs′5
where s′5 is the state of E5

k (A) that is identified by
the same values of s5 except for dec valueA where s′5.dec valueA = ⊥.
Let s2 be the state of E2

k (A) such that s2 = s5¹s2 . By definition of
action ret decrypt(A, M), s2 enables ret decrypt(A, M) that leads
to the measure δs′2

where s′2 is the state of E2
k (A) that is identi-

fied by the same values of s2 except for variable dec valueA where
s′2.dec valueA = ⊥. Thus δs′2

= δs′5
¹δs′2

, and hence tr2 = tr5¹tr2 .



6.2 Encryption 175

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
E5

k (A) ∈ ExtW
B (E2

k (A)). ut

The existence of a polynomially accurate simulation from E2
k (A) to E5

k (A)
in now straightforward:

Proposition 6.22. Let A be a set of (identities of) agents. For each context
Ck compatible with E2

k (A) such that {send(m) | m ∈ Message} ⊆ ACk
,

{E2
k (A)||Ck}k∈N .s {E5

k (A)||Ck}k∈N

Proof. By Lemma 6.21, for each k ∈ N, E5
k (A) ∈ ExtW

B (E2
k (A)) where B is

the set of actions {send(m) | m ∈ Message} and W is {used ciphers} ∪
{is not usedA | A ∈ A}. This implies, by Lemma 4.6, that for each context
Ck compatible with E2

k (A) such that B ⊆ ACk
, E2

k (A)||Ck ¹ E5
k (A)||Ck and

thus, by Proposition 5.6, {E2
k (A)||Ck}k∈N .s {E5

k (A)||Ck}k∈N. ut

For the second step, let E6
k be the automaton obtained from E5

k modifying
each get encrypt(A, M) action as follows: the encryption algorithm Enc is
invoked until it returns a value that is a ciphertext that is not yet used,
that is not inside used ciphers, as depicted in Figure 6.11.

It is immediate to see that E6
k (A) simulates the Gk-conditional of E5

k (A)
where for each k ∈ N, Gk is the set of states of E5

k (A) such that for each A ∈
A, s.is not usedA 6= F . In fact, we iterate the generation of the encryption
of M under the public key of A until it returns a value that is not equal to an
already used ciphertext. That is, we condition the choice of the ciphertext
to the fact that it is fresh (and thus, s.is not usedA 6= F is always satisfied).

Note that E6
k (A) is not the Gk-conditional of E5

k (A) since it provides more
transitions than E5

k (A)|Gk. In fact, E6
k (A) enables transitions that leave

from a state not in Gk and that leads to a probability measures µ such that
µ(Gk) = 0. For example, let s be the state such that s.is not usedA = F ,
s.is not usedB = F , s.enc valueA = C. Thus, by definition of ret encrypt
actions, s enables the action ret encrypt(A, C) that leads to the measure
δs′ where in s′ only enc valueA and is not usedA are different with respect
to the values in s. Thus s′.is not usedB is still F and hence s′ /∈ Gk.

The above intuition is formalized by the following result:

Lemma 6.23. Given E5
k (A), let Bk be the set of states of E5

k such that
s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be the
set S5

k \Bk.
For each k ∈ N, E5

k (A)|Gk ¹ E6
k (A).
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E5
k

Input get encrypt(A, M)

Effect:

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

E6
k

Input get encrypt(A, M)

Effect:

repeat

repeat

c = Enc(ekA, M)

until c /∈ generated ciphers

until c /∈ used ciphers

enc valueA := c

is freshA :=

(
F if c ∈ generated ciphers

T otherwise

is not usedA :=

(
F if c ∈ used ciphers

T otherwise

generated ciphers := generated ciphers ∪ {c}

Fig. 6.11. get encrypt of E5
k and E6

k

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from E5

k (A)|Gk to E6
k (A).

The condition on start states is trivially true: let s̄5
k be the start state of

E5
k (A)|Gk and s̄6

k be the start state of E6
k (A). By definition of conditional, it

follows that s̄5
k is the start state of E5

k (A). Since by definition of E6
k (A), the

only difference between E5
k (A) and E6

k (A) is on the definition of the action
get encrypt(A, M), we have that s̄6

k = s̄5
k and thus s̄5

k idk s̄6
k.

For the step condition, let s5 and s6 be two states of E5
k (A)|Gk and

E6
k (A), respectively, such that s5 idk s6. Let (s5, a, µ5) be a transition of
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E5
k (A)|Gk that leaves from s5. We must find µ6 such that (s6, a, µ6) is a

transition of E6
k (A) and µ5 L(idk) µ6. There are nine cases:

– a = get public encrypt(A) for some A ∈ A: by definition of the ac-
tion get public encrypt(A), we can identify two cases: s5.ekA = ⊥ or
s5.ekA 6= ⊥. If s5.ekA = ⊥, then for each state s′5 of E5

k , µ5(s′5) = ρ5(e, d)
and s′5 is identified by the same values of s5 except for the following val-
ues: s′5.ekA = e, s′5.dkA = d, and s′5.pkA = e where ρ5 is the probabil-
ity measure induced over EKey × DKey by the probabilistic algorithm
KGen(1k). Since s5 idk s6, we have that also s6 satisfies s6.ekA = ⊥,
and hence for each state s′6 of E6

k , µ6(s′6) = ρ6(e, d) and s′6 is identi-
fied by the same values of s6 except for the following values: s′6.ekA = e,
s′6.dkA = d, and s′6.pkA = e where ρ6 is the probability measure induced
over EKey×DKey by the probabilistic algorithm KGen(1k). This implies
that s′5 idk s′6 for each state s′5 and s′6 satisfying above conditions and
since ρ5 = ρ6, we have that µ5 L(idk) µ6, as required.
If s5.ekA 6= ⊥, then µ5 = δs′5

where s′5 is the state of E5
k (A) that is identi-

fied by the same values of s5 except for pkA where s′5.pkA = s5.ekA. Since
s5 idk s6, we have that also s6 satisfies s6.ekA 6= ⊥, and hence by defini-
tion of action get public encrypt(A), s6 enables get public encrypt(A)
that leads to the measure δs′6

where s′6 is the state of E6
k (A) that

is identified by the same values of s6 except for variable pkA where
s′6.pkA = s6.ekA. This implies that s′5 idk s′6 and thus δs′5

L(idk) δs′6
,

that is µ5 L(idk) µ6, as required.
– a = ret public encrypt(A, E) for some A ∈ A and E ∈ EKey: by defi-

nition of the action ret public encrypt(A, E), it follows that s5 satisfies
s5.pkA = E. Moreover, it follows that µ5 = δs′5

where s′5 is the state
such that s′5.pkA = ⊥, and all other variables that describe s′5 have
the same value of the variables that describe s5. Since s5 idk s6, we
have that also s6 satisfies s6.pkA = E and thus it enables the transition
(s6, ret public encrypt(A, E), µ6) where µ6 is the measure δs′6

where s′6
is the state such that s′6.pkA = ⊥, and all other variables that describe
s′6 have the same value of the variables that describe s6. This implies
that s′5 idk s′6 and thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6, as required.

– a = get corrupt encrypt(A) for some A ∈ A: by definition of the ac-
tion get corrupt encrypt(A), we can identify two cases: s5.ekA = ⊥ or
s5.ekA 6= ⊥. If s5.ekA = ⊥, then for each state s′5 of E5

k , µ5(s′5) = ρ5(e, d)
and s′5 is identified by the same values of s5 except for the following val-
ues: s′5.ekA = e, s′5.dkA = d, and s′5.ckA = (e, d) where ρ5 is the proba-
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bility measure induced over EKey×DKey by the probabilistic algorithm
KGen(1k). Since s5 idk s6, we have that also s6 satisfies s6.ekA = ⊥, and
hence for each state s′6 of E6

k , µ6(s′6) = ρ6(e, d) and s′6 is identified by the
same values of s6 except for the following values: s′6.ekA = e, s′6.dkA = d,
and s′6.ckA = (e, d) where ρ6 is the probability measure induced over
EKey×DKey by the probabilistic algorithm KGen(1k). This implies that
s′5 idk s′6 for each state s′5 and s′6 satisfying above conditions and since
ρ5 = ρ6, we have that µ5 L(idk) µ6, as required.
If s5.ekA 6= ⊥, then µ5 = δs′5

where s′5 is the state of E5
k (A) that

is identified by the same values of s5 except for ckA where s′5.ckA =
(s5.ekA, s5.dkA). Since s5 idk s6, we have that also s6 satisfies s6.ekA 6=
⊥, and hence by definition of action get corrupt encrypt(A), s6 enables
get corrupt encrypt(A) that leads to the measure δs′6

where s′6 is the
state of E6

k (A) that is identified by the same values of s6 except for vari-
able ckA where s′6.ckA = (s6.ekA, s6.dkA). This implies that s′5 idk s′6
and thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6, as required.

– a = ret corrupt encrypt(A, E, D) for some A ∈ A, E ∈ EKey and V ∈
VKey: by definition of the action ret corrupt encrypt(A, E, D), it follows
that s5 satisfies s5.ckA = (E,D). Moreover, it follows that µ5 = δs′5
where s′5 is the state such that s′5.ckA = ⊥, and all other variables that
describe s′5 have the same value of the variables that describe s5. Since
s5 idk s6, we have that also s6 satisfies s6.ckA = (E,D) and thus it
enables the transition (s6, ret corrupt encrypt(A, E, D), µ6) where µ6 is
the measure δs′6

where s′6 is the state such that s′6.ckA = ⊥, and all
other variables that describe s′6 have the same value of the variables
that describe s6. This implies that s′5 idk s′6 and thus δs′5

L(idk) δs′6
,

that is µ5 L(idk) µ6, as required.
– a = get encrypt(A, M) for some A ∈ A and M ∈ Message: by

definition of the action get encrypt(A, M), it follows that for each
state s′5 of E5

k , µ5(s′5) = ρ5(C) and s′5 is identified by the same
values of s5 except for the following values: s′5.is not usedA = F

if C ∈ s5.generated ciphers, T otherwise, s′5.enc valueA = C, and
s′5.generated ciphers = s5.generated ciphers ∪ {C}. ρ5 is the proba-
bility measure induced over Ciphertext by the probabilistic algorithm
Enc(s5.ekA, M) conditioned to the set of states where for each A ∈
A is not usedA 6= F conditioned to Gk. Since s5 idk s6, we have
that also s6 enables the transition (s6, get encrypt(A, M), µ6) where
for each state s′6 of E6

k , µ6(s′6) = ρ6(C) and s′6 is identified by the
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same values of s6 except for the following values: s′6.is not usedA = F

if C ∈ s6.generated ciphers, T otherwise, s′6.enc valueA = C, and
s′6.generated ciphers = s6.generated ciphers ∪ {C}. ρ6 is the proba-
bility measure induced over Ciphertext by the probabilistic algorithm
Enc(s6.ekA, M) conditioned to the set of states where for each A ∈ A
is not usedA 6= F that is iterated until it returns a value that does not
belong to s6.used ciphers. This implies that s′5 idk s′6 for each state s′5
and s′6 satisfying above conditions and if ρ5 = ρ6, then µ5 L(idk) µ6, as
required.
ρ5 is equal to ρ6 since for each s ∈ Gk, ρ5(s) = ρ6(s). In fact, by
definition of conditional, ρ5(s) = ρ(s)/ρ(Gk) where ρ is the probability
measure induced over Ciphertext by Enc(s5.ekA, M), ρ(Gk) > 0 and
ρ(Bk) < 1. By definition of get encrypt(A, M) action of E6

k , we have

that ρ6(s) =
∑+∞

i=0 ρ(Bk)iρ(s) = ρ(s)
∑+∞

i=0 ρ(Bk)i = ρ(s)
1

1− ρ(Bk)
=

ρ(s)/ρ(Gk) = ρ5(s).
– a = ret encrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by

definition of the action ret encrypt(A, C), it follows that s5 satis-
fies s5.enc valueA = C. Moreover, it follows that µ5 = δs′5

where
s′5 is the state such that s′5.enc valueA = ⊥, s′5.is not usedA = ⊥,
s′5.is freshA = ⊥, and all other variables that describe s′5 have the
same value of the variables that describe s5. Since s5 idk s6, we have
that also s6 satisfies s6.enc valueA = C and thus it enables the tran-
sition (s6, ret encrypt(A, C), µ6) where µ6 is the measure δs′6

where
s′6 is the state such that s′6.enc valueA = ⊥, s′6.is not usedA = ⊥,
s′6.is freshA = ⊥ and all other variables that describe s′6 have the same
value of the variables that describe s6. This implies that s′5 idk s′6 and
thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6, as required.

– a = get decrypt(A, C) for some A ∈ A and C ∈ Ciphertext: by defi-
nition of the action get decrypt(A, C), it follows that µ5 = δs′5

where
s′5 is the state such that s′5.dec valueA = Dec(s5.dkA, C), and all other
variables that describe s′5 have the same value of the variables that de-
scribe s5. Since s5 idk s6, we have that also s6 enables the transition
(s6, get decrypt(A, C), µ6) where µ6 is the measure δs′6

where s′6 is the
state such that s′6.dec valueA = Dec(s6.dkA, C), and all other variables
that describe s′6 have the same value of the variables that describe s6.
This implies that s′5 idk s′6 and thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6,

as required.



180 6 Cryptographic Primitives and Simulations

– a = ret decrypt(A, M) for some A ∈ A and M ∈ Message: by
definition of the action ret decrypt(A, M), it follows that s5 satisfies
s5.dec valueA = M . Moreover, it follows that µ5 = δs′5

where s′5 is the
state such that s′5.dec valueA = ⊥, and all other variables that describe
s′5 have the same value of the variables that describe s5. Since s5 idk s6,
we have that also s6 satisfies s6.dec valueA = M and thus it enables the
transition (s6, ret decrypt(A, M), µ6) where µ6 is the measure δs′6

where
s′6 is the state such that s′6.dec valueA = ⊥, and all other variables that
describe s′6 have the same value of the variables that describe s6. This
implies that s′5 idk s′6 and thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6, as

required.
– a = send(m) for some m ∈ Message: by definition of send(m), it fol-

lows that µ5 = δs′5
where s′5 is the state such that s′5.used ciphers

is equal to s5.used ciphers ∪ extractCiphertexts(decrypt key , m), and
all other variables that describe s′5 have the same value of the vari-
ables that describe s5. Since s5 idk s6, we have that also s6 en-
ables the transition (s6, send(m), µ6) where µ6 is the measure δs′6
where s′6 is the state such that s′6.used ciphers = s6.used ciphers ∪
extractCiphertexts(decrypt key , m), and all other variables that describe
s′6 have the same value of the variables that describe s6. This implies
that s′5 idk s′6 and thus δs′5

L(idk) δs′6
, that is µ5 L(idk) µ6, as required.

Since for each action a, if s5 enables a transition labelled by a that leads
to µ5, then we can find µ6 such that (s6, a, µ6) ∈ D6 and µ5 L(idk) µ6, the
step condition is satisfied. ut

The extension of the above result to the polynomially accurate simula-
tion is straightforward:

Proposition 6.24. Given E5
k (A), let Bk be the set of states of E5

k such that
s ∈ Bk if there exists A ∈ A such that s.is not usedA = F . Let Gk be the
set S5

k \Bk.
For each context Ck compatible with E5

k (A)|Gk,

{(E5
k (A)|Gk)||Ck}k∈N .s {E6

k (A)||Ck}k∈N

Proof. By Lemma 6.23, it follows that for each k ∈ N, E5
k (A)|Gk ¹ E6

k (A).
By compositionality of ¹, we have that for each k ∈ N and each context
Ck compatible with E5

k (A)|Gk, (E5
k (A)|Gk)||Ck ¹ E6

k (A)||Ck. By Proposi-
tion 5.6, it follows that for each context Ck compatible with E5

k (A)|Gk,
{(E5

k (A)|Gk)||Ck}k∈N .s {E6
k (A)||Ck}k∈N. ut
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To complete the chain of simulations from E5
k (A) to E6

k (A), we need to
prove that

Proposition 6.25. Let E be an IND-CCA encryption scheme and A be a
set of agents. Let Gk be the set of states of E5

k such that s ∈ Gk if and only
if for each A ∈ A s.is not usedA 6= F . Let Bk be S5

k \Gk.
For each context Ck compatible with E6

k (A), if there exists q ∈ Poly such
that for each action send(m), size(m) < q(k), then

{E5
k (A)||Ck}k∈N .s {(E5

k (A)|Gk)||Ck}k∈N

Proof. Theorem 5.8 states that {E5
k (A)}k∈N .s {E5

k (A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {E5

k (A)}k∈N.
Suppose, for the sake of contradiction, that {E5

k (A)}k∈N is not simu-
lated by {(E5

k (A)|Gk)}k∈N. This implies that {Bk}k∈N is not negligible in
{E5

k (A)}k∈N and thus that there exists c ∈ N, p ∈ Poly such that for each
k̄ ∈ N there exists k > k̄ such the probability to reach states of Bk within
p(k) steps is at least k−c, that is, the probability to reach states s such
that s.is not usedA = F for some A ∈ A within p(k) steps is at least k−c.
By definition of the automaton E5

k (A), it follows that s.is not usedA can
assume value F only as the effect of a transition that leaves from some
state s′ and that is labelled by action get encrypt(A, M). This happens
only when the ciphertext value Enc(s′.ekA, M) assigned to s.enc valueA

belongs to the set UC = s′.used ciphers. Within p(k) steps, we can per-
form at most p(k) transitions labelled by send(m). Since by hypothesis we
add at most q(k) values to used ciphers each time we perform a transition
labelled by send(m), within p(k) steps, the set UC has cardinality at most
p(k)q(k). This means that with probability at least k−c, we have generated
a ciphertext that it is equal to some c ∈ UC with |UC| 6 p(k)q(k). Since
the encryption scheme E is IND-CCA, this contradicts the Proposition 2.4
and thus {E5

k (A)}k∈N .s {E5
k (A)|Gk}k∈N. This implies, by Theorem 5.10,

that {E5
k (A)||Ck}k∈N .s {(E5

k (A)|Gk)||Ck}k∈N. ut

6.3 Signature

The third primitive we consider is digital signature. We model a signature
scheme S = (KGen, Sig, Ver) with an automaton that provides several fam-
ilies of actions: a family of input actions get public sign(A) that is used by
other automata to ask for the public key associated to agent A and the
corresponding ret public sign(A, V ) that returns the public key V of A:
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Input get public sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

pkA := vkA

Output ret public sign(A, V )

Precondition:

pkA = V

Effect:

pkA := ⊥

a family of input actions get corrupt sign(A) that is used by other au-
tomata to ask both public and private key of a corrupted agent A and
the corresponding ret corrupt sign(A, V, S) that returns both public and
private signion keys V and S of A, respectively:

Input get corrupt sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

ckA := (vkA, skA)

Output ret corrupt sign(A, V, S)

Precondition:

ckA = (V, S)

Effect:

ckA := ⊥

Finally, the automaton provides actions to sign and verify messages: a
family of input actions get sign(A, M) that is used require the signature
of M under the private key of A and the corresponding output action
ret sign(A, S) that returns the signature S obtained invoking the signing
algorithm Sig:

Input get sign(A, M)

Effect:

sig valueA := Sig(skA, M)

Output ret sign(A, S)

Precondition:

sig valueA = S

Effect:

sig valueA := ⊥

and a family of input actions get verify sign(A, S) that is used require the
verification of S under the public key of A and the corresponding out-
put action ret verify sign(A, B) that returns the validity B of S obtained
invoking the verification algorithm Ver:

Input get verify sign(A, S)

Effect:

ver valueA := Ver(vkA, S)

Output ret verify sign(A, B)

Precondition:

ver valueA = B

Effect:

ver valueA := ⊥
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Figure 6.12 depicts the complete signature automaton.

6.3.1 Automaton and Properties of Signatures

Unlike in the previous section, it is not so easy to define other automata that
ensures by construction the properties of the digital signature. For example,
an IND-CCA encryption scheme imposes to use randomized algorithms,
otherwise the attacker can distinguish ciphertexts in the following way:
it generates two messages m0 and m1 and then it asks the encryption
algorithm to encrypt them. Let cb be the resulting ciphertext, where b is the
bit that parameterizes the left-right encryption oracle. Then the attacker
computes the ciphertexts c0 and c1 of m0 and m1, respectively. It can
compute them by itself or simply it can ask the left-right encryption oracle
the pairs (m0, m0) and (m1, m1). Finally, the attacker compares cb with c0

and c1 and outputs 1 when cb = c1, 0 when cb = c0. Since the encryption
scheme is not randomized, each time we require the encryption of m, the
value we obtain does not change, so with probability 1 the attacker guesses
the bit b.

On the contrary, it is not mandatory to use randomized algorithms to
define a signature scheme. In fact, the only property the signature scheme
requires is that it is not feasible to generate a valid signature for a message
that has not signed yet. Note that we do not impose restrictions about
the signature of already signed messages; we do not care if they are re-
peated or not, because the repetition of signatures does not influence the
unforgeability of the signature scheme.

Anyway, suppose that the signature scheme is randomized and that
ensures that the probability to generate repeated signatures is negligible.
Formally,

Definition 6.26. Let S = (G, S, V ) be a signature scheme.
We say that S is a non-repeating unforgeable signature scheme if the

following conditions hold:

– S is an unforgeable signature scheme, and
– for each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such that for each

k > k̄, we have that for each (s, v) in the range of G(1k) and for every
α ∈ {0, 1}∗, Pr[βi = βj | 1 6 i, j 6 p(k), i 6= j] < k−c where for each
1 6 i 6 p(k), βi = S(s, α).

A possible way to define an automaton that models a non-repeating
unforgeable signature scheme and that ensures that generated signatures
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Signature automaton Sk(A)

Signature:

Input:

get public sign(A), A ∈ A
get corrupt sign(A), A ∈ A
get sign(A, M), A ∈ A, M ∈ Message

get verify sign(A, S), A ∈ A, S ∈ Signature

Output:

ret public sign(A, V ), A ∈ A, V ∈ VKey

ret corrupt sign(A, V, S), A ∈ A, V ∈ VKey, S ∈ SKey

ret sign(A, S), A ∈ A, S ∈ Signature

ret verify sign(A, B), A ∈ A, B ∈ {T, F}

State:

skA ∈ {⊥} ∪ SKey, A ∈ A, initially ⊥
vkA ∈ {⊥} ∪VKey, A ∈ A, initially ⊥
pkA ∈ {⊥} ∪VKey, A ∈ A, initially ⊥
ckA ∈ {⊥} ∪VKey × SKey, A ∈ A, initially ⊥
sig valueA ∈ {⊥} ∪ Signature, A ∈ A, initially ⊥
ver valueA ∈ {⊥} ∪ {T, F}, A ∈ A, initially ⊥

Transitions:

Input get public sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

pkA := vkA

Input get corrupt sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

ckA := (vkA, skA)

Input get sign(A, M)

Effect:

sig valueA := Sig(skA, M)

Input get verify sign(A, S)

Effect:

ver valueA := Ver(vkA, S)

Output ret public sign(A, V )

Precondition:

pkA = V

Effect:

pkA := ⊥

Output ret corrupt sign(A, V, S)

Precondition:

ckA = (V, S)

Effect:

ckA := ⊥

Output ret sign(A, S)

Precondition:

sig valueA = S

Effect:

sig valueA := ⊥

Output ret verify sign(A, B)

Precondition:

ver valueA = B

Effect:

ver valueA := ⊥

Fig. 6.12. Signature automaton Sk(A)
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Sk(A)

Input get sign(A, M)

Effect:

sig valueA := Sig(skA, M)

Output ret sign(A, S)

Precondition:

sig valueA = S

Effect:

sig valueA := ⊥

S1
k(A)

Input get sign(A, M)

Effect:

sig valueA := s where s = Sig(skA, M)

is freshA :=

(
F if s ∈ generated signs

T otherwise

generated signs := generated signs ∪ {s}

Output ret sign(A, S)

Precondition:

sig valueA = S

Effect:

sig valueA := ⊥
is freshA := ⊥

Fig. 6.13. get sign(A, M) and ret sign(A, S) of Sk and S1
k

are always fresh is to add some history variable that keeps all previous
generated values and the information about the freshness of the generated
signature, as we have already done for nonces and ciphertexts. This re-
sult can be achieved modifying the get sign(A, M) action imposing that
the signature s returned by the Sig algorithm is not an old signature and
then adding s to the set of already generated signatures. We consider also
some variable that keeps information about the freshness of the last com-
puted signature to simplify the identification of the states where a repeated
signature is generated.

For the first step, let S1
k be the automaton obtained from Sk adding

the state variable generated signs ⊆ Signature with initial value ∅ and the
family of state variables is freshA ∈ {T, F,⊥} with initial value ⊥ where
A ∈ A. Moreover, each get sign(A, M) action modifies is freshA assigning
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F if the signature s returned by Sig(skA, M) belongs to generated signs;
T otherwise and also updates generated signs adding s to generated signs,
as depicted in Figure 6.13. The action ret sign(A, S) reset the is freshA

variable to its initial value ⊥.
It is immediate to see that S1

k(A) is an extension of Sk(A). In fact, we
simply add some history variables that keep information about the gener-
ated signatures and the freshness of them. Such variables are updated inter-
nally and do not affect the behavior of the automaton. Moreover, they are
updated in a “deterministic” way, that is, when Sk(A) reaches t′ from t with
probability p, then also S1

k(A) reaches t′1 from t1 with probability p where
t = t1¹t and t′ = t′1¹t′ . In fact, when Sk(A) performs a transition labelled by
get sign(A, M), it actually performs a transition tr = (t, get sign(A, M), µ)
where for each t′ ∈ Supp(µ), t′.sig valueA = s where s is the value returned
by Sig(t.skA, M) and µ(t′) is the probability that Sig(t.skA, M) gener-
ates s. S1

k(A) also performs a transition tr1 = (t1, get sign(A, M), µ1) for
each t′1 ∈ Supp(µ1), t′1.sig valueA = s where s is the value returned by
Sig(t1.skA, M) and µ(t′) is the probability that Sig(t1.skA, M) generates
s. That is, tr = tr1¹tr .

The above intuition is formalized by the following result:

Lemma 6.27. Let A be a set of (identities of) agents and W be the set
of variables {generated signs} ∪ {is freshA | A ∈ A} defined as above. For
each k ∈ N, S1

k(A) ∈ ExtW
∅ (Sk(A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of S1
k(A). Then v is either one

of skA, vkA, pkA, ckA, sig valueA, and ver valueA for A ∈ A and thus
it is a state variable of Sk(A), or v is either generated signs or is freshA

for A ∈ A, and thus v ∈ W ;
compatible start state: s̄1

k is identified by value ⊥ for each skA, vkA, pkA,
ckA, sig valueA, ver valueA, and is freshA (with A ∈ A), and by ∅ for
generated signs. Since s̄k is identified by the value ⊥ for each skA, vkA,
pkA, ckA, sig valueA, and ver valueA (with A ∈ A), then s̄k = s̄1

k¹s̄k
;

compatible actions: S1
k(A) and Sk(A) provides the same set of actions, so

this condition is trivially verified; and
compatible transitions: let tr1 = (t1, a, µ1) ∈ D1

k be a transition of S1
k .

Since A of S1
k is equal to A of Sk(A) by definition of S1

k(A), then we
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must verify that there exists a transition tr = (t, a, µ) ∈ Dk such that
tr = tr1¹tr . There are eight cases:
– a = get public sign(A) for some A ∈ A: by definition of the action

get public sign(A), we can identify two cases: t1.skA = ⊥ or t1.skA 6=
⊥. If t1.skA = ⊥, then for each state t′1 of S1

k , µ1(t′1) = ρ(s, v) and t′1
is identified by the same values of t1 except for the following values:
t′1.skA = s, t′1.vkA = v, and t′1.pkA = v where ρ is the probability
measure induced over SKey × VKey by the probabilistic algorithm
KGen(1k). Let t be the state of Sk(A) such that t = t1¹t. By definition
of action get public sign(A), t enables get public sign(A) that leads
to the measure µ such that for each state t′ of Sk, µ(t′) = ρ(s, v) and
t′ is identified by the same values of t except for the following values:
t′.skA = s, t′.vkA = v, and t′.pkA = v where ρ is the probability
measure induced over SKey × VKey by the probabilistic algorithm
KGen(1k). Thus µ = µ1¹µ, and hence tr = tr1¹tr .
If t1.skA 6= ⊥, then µ1 = δt′1

where t′1 is the state of S1
k(A) that

is identified by the same values of t1 except for the value of the
variable pkA where t′1.pkA = t1.vkA. Let t be the state of Sk(A) such
that t = t1¹t. By definition of action get public sign(A), t enables
get public sign(A) that leads to the measure δt′ where t′ is the state
of Sk(A) that is identified by the same values of t except for variable
pkA where t′.pkA = t.vkA. Thus δt′ = δt′1

¹δt′ , and hence tr = tr1¹tr .
– a = ret public sign(A, V ) for some A ∈ A and V ∈ VKey: by defini-

tion of action ret public sign(A, V ), it follows that t1.skA = V and
that µ1 = δt′1

where t′1 is the state of S1
k(A) that is identified by

the same values of t1 except for the value of the variable pkA where
t′1.pkA = ⊥. Let t be the state of Sk(A) such that t = t1¹t. By defini-
tion of action ret public sign(A, V ), t enables ret public sign(A, V )
that leads to the measure δt′ where t′ is the state of Sk(A) that
is identified by the same values of t except for variable pkA where
t′.pkA = ⊥. Thus δt′ = δt′1

¹δt′ , and hence tr = tr1¹tr .
– a = get corrupt sign(A) for some A ∈ A: by definition of the ac-

tion get corrupt sign(A), we can identify two cases: t1.skA = ⊥
or t1.skA 6= ⊥. If t1.skA = ⊥, then for each state t′1 of S1

k ,
µ1(t′1) = ρ(s, v) and t′1 is identified by the same values of t1 except
for the following values: t′1.skA = s, t′1.vkA = v, and t′1.ckA = (v, s)
where ρ is the probability measure induced over SKey×VKey by the
probabilistic algorithm KGen(1k). Let t be the state of Sk(A) such
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that t = t1¹t. By definition of the action get corrupt sign(A), t en-
ables get corrupt sign(A) that leads to the measure µ such that for
each state t′ of Sk, µ(t′) = ρ(s, v) and t′ is identified by the same
values of t except for the following values: t′.skA = s, t′.vkA = v,
and t′.ckA = (v, s) where ρ is the probability measure induced
over SKey × VKey by the probabilistic algorithm KGen(1k). Thus
µ = µ1¹µ, and hence tr = tr1¹tr .
If t1.skA 6= ⊥, then µ1 = δt′1

where t′1 is the state of S1
k(A) that is

identified by the same values of t1 except for the value of the variable
ckA where t′1.ckA = (t1.vkA, t1.skA). Let t be the state of Sk(A)
such that t = t1¹t. By definition of the action get corrupt sign(A),
t enables get corrupt sign(A) that leads to the measure δt′ where t′

is the state of Sk(A) that is identified by the same values of t except
for variable ckA where t′.ckA = (t.vkA, t.skA). Thus δt′ = δt′1

¹δt′ , and
hence tr = tr1¹tr .

– a = ret corrupt sign(A, V, S) for some A ∈ A, S ∈ SKey, and
V ∈ VKey: by definition of action ret corrupt sign(A, V, S), it fol-
lows that s1.ckA = (V, S) and that µ1 = δt′1

where t′1 is the
state of S1

k(A) that is identified by the same values of t1 except
for ckA where t′1.ckA = ⊥. Let t be the state of Sk(A) such that
t = t1¹t. By definition of action ret corrupt sign(A, V, S), t enables
ret corrupt sign(A, V, S) that leads to the measure δt′ where t′ is
the state of Sk(A) that is identified by the same values of t except
for variable ckA where t′.ckA = ⊥. Thus δt′ = δt′1

¹δt′ , and hence
tr = tr1¹tr .

– a = get sign(A, M) for some A ∈ A and M ∈ Message: by def-
inition of the action get sign(A, M), it follows that for each state
t′1 of S1

k , µ1(t′1) = ρ(S) and t′1 is identified by the same values
of t1 except for the following values that are: t′1.is freshA = F

if S ∈ s1.generated signs, T otherwise, t′1.sig valueA = S, and
t′1.generated signs = t1.generated signs ∪ {S}. ρ is the probabil-
ity measure induced over Signature by the probabilistic algorithm
Sig(t1.skA, M). Let t be the state of Sk(A) such that t = t1¹t. By
definition of action get sign(A, M), t enables get sign(A, M) that
leads to the measure ρ where for each state t′ of Sk(A) that is iden-
tified by the same values of t except for variable sig valueA, we have
that µ(t′) = ρ(S) and t′.sig valueA = S. Thus µ = µ1¹µ, and hence
tr = tr1¹tr .
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– a = ret sign(A, S) for some A ∈ A and S ∈ Signature: by def-
inition of action ret sign(A, S), it follows that t1.sig valueA = S

and that µ1 = δt′1
where t′1 is the state of S1

k(A) that is identified
by the same values of t1 except for sig valueA that assumes the
value t′1.sig valueA = ⊥ and for is freshA that is reset to ⊥. Let
t be the state of Sk(A) such that t = t1¹t. By definition of action
ret sign(A, S), t enables ret sign(A, S) that leads to the measure δt′

where t′ is the state of Sk(A) that is identified by the same values
of t except for variable sig valueA where t′.sig valueA = ⊥. Thus
δt′ = δt′1

¹δt′ , and hence tr = tr1¹tr .
– a = get verify sign(A, S) for some A ∈ A and S ∈ Signature: by

definition of action get verify sign(A, S), it follows that µ1 = δt′1
where t′1 is the state of S1

k(A) that is identified by the same values of
t1 except for ver valueA where t′1.ver valueA = Ver(t1.vkA, S). Let
t be the state of Sk(A) such that t = t1¹t. By definition of action
get verify sign(A, S), t enables get verify sign(A, S) that leads to
the measure δt′ where t′ is the state of Sk(A) that is identified by the
same values of t except for variable ver valueA where t′.ver valueA =
Ver(t.vkA, S). Thus δt′ = δt′1

¹δt′ , and hence tr = tr1¹tr .
– a = ret verify sign(A, B) for some A ∈ A and B ∈ {T, F}: by defini-

tion of action ret verify sign(A, B), it follows that t1.ver valueA = B

and that µ1 = δt′1
where t′1 is the state of S1

k(A) that is identified by
the same values of t1 except for ver valueA where t′1.ver valueA = ⊥.
Let t be the state of Sk(A) such that t = t1¹t. By definition of ac-
tion ret verify sign(A, B), t enables ret verify sign(A, B) that leads
to the measure δt′ where t′ is the state of Sk(A) that is identi-
fied by the same values of t except for variable ver valueA where
t′.ver valueA = ⊥. Thus δt′ = δt′1

¹δt′ , and hence tr = tr1¹tr .

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
S1

k(A) ∈ ExtW
∅ (Sk(A)). ut

The existence of a polynomially accurate simulation from Sk(A) to
S1

k(A) in now straightforward:

Proposition 6.28. Let A be a set of (identities of) agents. For each context
Ck compatible with Sk(A),

{Sk(A)||Ck}k∈N .s {S1
k(A)||Ck}k∈N
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S1
k

Input get sign(A, M)

Effect:

sig valueA := s where s = Sig(skA, M)

is freshA :=

(
F if s ∈ generated signs

T otherwise

generated signs := generated signs ∪ {s}

S2
k

Input get sign(A, M)

Effect:

repeat

s = Sig(skA, M)

until s /∈ generated signs

sig valueA := s

is freshA :=

(
F if s ∈ generated signs

T otherwise

generated signs := generated signs ∪ {s}

Fig. 6.14. get sign of S1
k and S2

k

Proof. By Lemma 6.27, for each k ∈ N, S1
k(A) ∈ ExtW

B (Sk(A)) where B

is the empty set and W is {generated signs} ∪ {is freshA | A ∈ A}. This
implies, by Lemma 4.6, that for each context C ′

k compatible with Sk(A)
such that B ⊆ AC′k

, Sk(A)||C ′
k ¹ S1

k(A)||C ′
k and thus, by Proposition 5.6,

{Sk(A)||C ′
k}k∈N .s {S1

k(A)||C ′
k}k∈N. Since B = ∅, each context Ck compat-

ible with Sk(A) satisfies B ⊆ ACk
and thus for each context Ck compatible

with Sk(A), {Sk(A)||Ck}k∈N .s {S1
k(A)||Ck}k∈N. ut

For the second step, let S2
k be the automaton obtained from S1

k modify-
ing each get sign(A, M) action as follows: the encryption algorithm Sig is
invoked until it returns a value that is a fresh signature, that is not inside
generated signs, as depicted in Figure 6.14.

It is immediate to see that S2
k(A) simulates the Gk-conditional of S1

k(A)
where for each k ∈ N, Gk is the set of states of S1

k(A) such that for each
A ∈ A, 6= .is freshAF . In fact, we iterate the generation of the signature
of M under the secret key of A until we obtain a value that is not equal
to an already generated signature. That is, we condition the choice of the
signature to the fact that it is fresh (and thus, 6= .is freshAF is always
satisfied).



6.3 Signature 191

Note that S2
k(A) is not the Gk-conditional of S1

k(A) since it provides
more transitions than S1

k(A)|Gk. In fact, S2
k(A) enables transitions that

leave from a state not in Gk and that leads to a probability measures µ such
that µ(Gk) = 0. For example, let t be the state such that t.is freshA = F ,
t.is freshB = F , t.sig valueA = S. Thus, by definition of ret sign actions,
t enables the action ret sign(A, S) that leads to the measure δt′ where t′ is
identified by the same values of t except for sig valueA and is freshA that
are ⊥. Thus t′.is freshB is still F and hence t′ /∈ Gk.

The above intuition is formalized by the following result:

Lemma 6.29. Given S1
k(A), let Bk be the set of states of S1

k such that
t ∈ Bk if there exists A ∈ A such that t.is freshA = F . Let Gk be the set
S1

k \Bk.
For each k ∈ N, S1

k(A)|Gk ¹ S2
k(A).

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from S1

k(A)|Gk to S2
k(A).

The condition on start states is trivially true: let s̄1
k be the start state of

S1
k(A)|Gk and s̄2

k be the start state of S2
k(A). By definition of conditional, it

follows that s̄1
k is the start state of S1

k(A). Since by definition of S2
k(A), the

only difference between S1
k(A) and S2

k(A) is on the definition of the action
get sign(A, M), we have that s̄2

k = s̄1
k and thus s̄1

k idk s̄2
k.

For the step condition, let t1 and t2 be two states of S1
k(A)|Gk and S2

k(A),
respectively, such that t1 idk t2. Let (t1, a, µ1) be a transition of S1

k(A)|Gk

that leaves from t1. We must find µ2 such that (t2, a, µ2) is a transition of
S2

k(A) and µ1 L(idk) µ2. There are eight cases:

– a = get public sign(A) for some A ∈ A: by definition of the action
get public sign(A), we can identify two cases: t1.skA = ⊥ or t1.skA 6= ⊥.
If t1.skA = ⊥, then for each state t′1 of S1

k |Gk, µ1(t′1) = ρ1(s, v) and t′1
is identified by the same values of t1 except for the following values:
t′1.skA = s, t′1.vkA = v, and t′1.pkA = v where ρ1 is the probabil-
ity measure induced over SKey × VKey by the probabilistic algorithm
KGen(1k). Since t1 idk t2, we have that also t2 satisfies t2.skA = ⊥,
and hence for each state t′2 of S2

k , µ2(t′2) = ρ2(s, v) and t′2 is identified
by the same values of t2 except for the following values: t′2.skA = s,
t′2.vkA = v, and t′2.pkA = v where ρ2 is the probability measure induced
over SKey×VKey by the probabilistic algorithm KGen(1k). This implies
that t′1 idk t′2 for each state t′1 and t′2 satisfying above conditions and
since ρ1 = ρ2, we have that µ1 L(idk) µ2, as required.
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If t1.skA 6= ⊥, then µ1 = δt′1
where t′1 is the state of S1

k(A)|Gk that is
identified by the same values of t1 except for pkA where t′1.pkA = t1.vkA.
Since t1 idk t2, we have that also t2 satisfies t2.skA 6= ⊥, and hence
by definition of action get public sign(A), t2 enables get public sign(A)
that leads to the measure δt′2

where t′2 is the state of S2
k(A) that

is identified by the same values of t2 except for variable pkA where
t′2.pkA = t2.vkA. This implies that t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that

is µ1 L(idk) µ2, as required.
– a = ret public sign(A, V ) for some A ∈ A and V ∈ VKey: by def-

inition of the action ret public sign(A, V ), it follows that t1 satisfies
t1.pkA = V . Moreover, it follows that µ1 = δt′1

where t′1 is the state
such that t′1.pkA = ⊥, and all other variables that describe t′1 have
the same value of the variables that describe t1. Since t1 idk t2, we
have that also t2 satisfies t2.pkA = V and thus it enables the transition
(t2, ret public sign(A, V ), µ2) where µ2 is the measure δt′2

where t′2 is
the state such that t′2.pkA = ⊥, and all other variables that describe t′2
have the same value of the variables that describe t2. This implies that
t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that is µ1 L(idk) µ2, as required.

– a = get corrupt sign(A) for some A ∈ A: by definition of the action
get corrupt sign(A), we can identify two cases: t1.skA = ⊥ or t1.skA 6=
⊥. If t1.skA = ⊥, then for each state t′1 of S1

k |Gk, µ1(t′1) = ρ1(s, v) and
t′1 is identified by the same values of t1 except for the following values:
t′1.skA = s, t′1.vkA = v, and t′1.ckA = (v, s) where ρ1 is the probabil-
ity measure induced over SKey × VKey by the probabilistic algorithm
KGen(1k). Since t1 idk t2, we have that also t2 satisfies t2.skA = ⊥, and
hence for each state t′2 of S2

k , µ2(t′2) = ρ2(s, v) and t′2 is identified by the
same values of t2 except for the following values: t′2.skA = s, t′2.vkA = v,
and t′2.ckA = (v, s) where ρ2 is the probability measure induced over
SKey×VKey by the probabilistic algorithm KGen(1k). This implies that
t′1 idk t′2 for each state t′1 and t′2 satisfying above conditions and since
ρ1 = ρ2, we have that µ1 L(idk) µ2, as required.
If t1.skA 6= ⊥, then µ1 = δt′1

where t′1 is the state of S1
k(A)|Gk that

is identified by the same values of t1 except for ckA where t′1.ckA =
(t1.vkA, t1.skA). Since t1 idk t2, we have that also t2 satisfies t2.skA 6=
⊥, and hence by definition of action get corrupt sign(A), t2 enables
get corrupt sign(A) that leads to the measure δt′2

where t′2 is the state
of S2

k(A) that is identified by the same values of t2 except for variable
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ckA where t′2.ckA = (t2.vkA, t2.skA). This implies that t′1 idk t′2 and thus
δt′1

L(idk) δt′2
, that is µ1 L(idk) µ2, as required.

– a = ret corrupt sign(A, V, S) for some A ∈ A, S ∈ SKey and V ∈ VKey:
by definition of the action ret corrupt sign(A, V, S), it follows that t1
satisfies t1.ckA = (V, S). Moreover, it follows that µ1 = δt′1

where t′1 is
the state such that t′1.ckA = ⊥, and all other variables that describe t′1
have the same value of the variables that describe t1. Since t1 idk t2,
we have that also t2 satisfies t2.ckA = (V, S) and thus it enables the
transition (t2, ret corrupt sign(A, V, S), µ2) where µ2 is the measure δt′2
where t′2 is the state such that t′2.ckA = ⊥, and all other variables that
describe t′2 have the same value of the variables that describe t2. This
implies that t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that is µ1 L(idk) µ2, as

required.
– a = get sign(A, M) for some A ∈ A and M ∈ Message: by definition of

get sign(A, M), it follows that for each state t′1 of S1
k , µ1(t′1) = ρ1(S) and

t′1 is identified by the same values of t1 except for the following values:
t′1.is freshA = F if S ∈ t1.generated signs, T otherwise, t′1.sig valueA =
S, and t′1.generated signs = t1.generated signs ∪ {S}. ρ1 is the prob-
ability measure induced over Signature by the probabilistic algorithm
Sig(t1.skA, M) conditioned to Gk. Since t1 idk t2, we have that also t2
enables the transition (t2, get sign(A, M), µ2) where for each state t′2 of
S2

k , µ2(t′2) = ρ2(S) and t′2 is identified by the same values of t2 except for
the following values: t′2.is freshA = F if S ∈ t2.generated signs, T oth-
erwise, t′2.sig valueA = S, and t′2.generated signs = t2.generated signs∪
{C}. ρ2 is the probability measure induced over Signature by the proba-
bilistic algorithm Sig(t2.skA, M) that is iterated until it returns a value
that does not belong to t2.generated signs. This implies that t′1 idk t′2
for each state t′1 and t′2 satisfying above conditions and if ρ1 = ρ2, then
µ1 L(idk) µ2, as required.
ρ1 is equal to ρ2 since for each t ∈ Gk, ρ1(t) = ρ2(t). In fact, by definition
of conditional, ρ1(t) = ρ(t)/ρ(Gk) where ρ is the probability measure
induced over Signature by Sig(t1.skA, M), ρ(Gk) > 0 and ρ(Bk) <

1. By definition of get sign(A, M) action of S2
k , we have that ρ2(t) =∑+∞

i=0 ρ(Bk)iρ(t) = ρ(t)
∑+∞

i=0 ρ(Bk)i = ρ(t)
1

1− ρ(Bk)
= ρ(t)/ρ(Gk) =

ρ1(t).
– a = ret sign(A, S) for some A ∈ A and S ∈ Signature: by definition

of the action ret sign(A, S), it follows that t1 satisfies t1.sig valueA =
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S. Moreover, it follows that µ1 = δt′1
where t′1 is the state such that

t′1.sig valueA = ⊥, t′1.is freshA = ⊥, and all other variables that describe
t′1 have the same value of the variables that describe t1. Since t1 idk t2,
we have that also t2 satisfies t2.sig valueA = S and thus it enables
the transition (t2, ret sign(A, S), µ2) where µ2 is the measure δt′2

where
t′2 is the state such that t′2.sig valueA = ⊥, t′2.is freshA = ⊥, and all
other variables that describe t′2 have the same value of the variables
that describe t2. This implies that t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that

is µ1 L(idk) µ2, as required.
– a = get verify sign(A, S) for some A ∈ A and S ∈ Signature: by defini-

tion of the action get verify sign(A, S), it follows that µ1 = δt′1
where

t′1 is the state such that t′1.ver valueA = Ver(t1.vkA, S), and all other
variables that describe t′1 have the same value of the variables that de-
scribe t1. Since t1 idk t2, we have that also t2 enables the transition
(t2, get verify sign(A, S), µ2) where µ2 is the measure δt′2

where t′2 is the
state such that t′2.ver valueA = Ver(t2.vkA, S), and all other variables
that describe t′2 have the same value of the variables that describe t2.
This implies that t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that is µ1 L(idk) µ2,

as required.
– a = ret verify sign(A, B) for some A ∈ A and B ∈ {T, F}: by def-

inition of the action ret verify sign(A, B), it follows that t1 satisfies
t1.ver valueA = B. Moreover, it follows that µ1 = δt′1

where t′1 is the
state such that t′1.ver valueA = ⊥, and all other variables that describe
t′1 have the same value of the variables that describe t1. Since t1 idk t2,
we have that also t2 satisfies t2.ver valueA = B and thus it enables
the transition (t2, ret verify sign(A, B), µ2) where µ2 is the measure δt′2
where t′2 is the state such that t′2.ver valueA = ⊥, and all other variables
that describe t′2 have the same value of the variables that describe t2.
This implies that t′1 idk t′2 and thus δt′1

L(idk) δt′2
, that is µ1 L(idk) µ2,

as required.

The step condition is satisfied since for each action a if t1 enables a
transition labelled by a that leads to µ1, then we can find µ2 such that
(t2, a, µ2) ∈ D2

k and µ1 L(idk) µ2. ut

The existence of a polynomially accurate simulation from S1
k(A)|Gk to

S2
k(A) in now straightforward:
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Proposition 6.30. Let A be a set of agents. Given S1
k(A), let Bk be the set

of states of S1
k such that t ∈ Bk if there exists A ∈ A such that t.is freshA =

F . Let Gk be the set S1
k \Bk.

For each context Ck compatible with S1
k(A),

{(S1
k(A)|Gk)||Ck}k∈N .s {S2

k(A)||Ck}k∈N

Proof. By Lemma 6.29, we have that for each k ∈ N, S1
k(A)|Gk ¹

S2
k(A). This implies that for each context Ck compatible with S1

k(A),
(S1

k(A)|Gk)||Ck ¹ S2
k(A)||Ck. Finally, by Proposition 5.6, we have that

{(S1
k(A)|Gk)||Ck}k∈N .s {S2

k(A)||Ck}k∈N. ut

To complete the chain of simulations from Sk(A) to S2
k(A), we need to

prove that

Proposition 6.31. Let S be a non-repeating unforgeable signature scheme
and A be a set of agents. Let Gk be the set of states of S1

k such that t ∈ Gk if
and only if for each A ∈ A t.is freshA 6= F , that is, the generated signature
is fresh. Let Bk be S1

k \Gk (that is, states t′ of S1
k such that t′.is freshA = F

for some A ∈ A).
For each context Ck compatible with S1

k(A),

{S1
k(A)||Ck}k∈N .s {(S1

k(A)|Gk)||Ck}k∈N

Proof. Theorem 5.8 states that {S1
k(A)}k∈N .s {S1

k(A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {S1

k(A)}k∈N.
Suppose, for the sake of contradiction, that {S1

k(A)}k∈N is not simu-
lated by {S1

k(A)|Gk}k∈N. This implies that {Bk}k∈N is not negligible in
{S1

k(A)}k∈N and thus that there exists c ∈ N, p ∈ Poly such that for
each k̄ ∈ N there exists k > k̄ such the probability to reach states of Bk

within p(k) steps is at least k−c, that is, the probability to reach states
t such that t.is freshA = F for some A ∈ A within p(k) steps is at
least k−c. By definition of the automaton S1

k(A), it follows that t.is freshA

can assume value F only as the effect of a transition that leaves from
some state t′ and that is labelled by action get sign(A, M). This happens
only when the signature value Sig(t′.skA, M) assigned to t.sig valueA be-
longs to the set RC = t′.generated signs. Within p(k) steps, we can per-
form at most p(k) transitions labelled by get sign(Z, P ) with Z ∈ A and
P ∈ Message. Since by definition of get sign(Z, P ) we add at most one
value to generated signs each time we perform a transition labelled by
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get sign(Z, P ), within p(k) steps the set RC has cardinality at most p(k).
This means that with probability at least k−c, we have generated a signa-
ture that it is equal to some c ∈ RC with |RC| 6 p(k). Since the encryption
scheme S is non-repeating unforgeable, this contradicts the Definition 6.26
and thus {S1

k(A)}k∈N .s {S1
k(A)|Gk}k∈N. This implies, by Theorem 5.10,

that {S1
k(A)||Ck}k∈N .s {(S1

k(A)|Gk)||Ck}k∈N. ut

Avoiding collisions with externally generated signatures

As we have seen above, there exists a simulation from the signature au-
tomaton that can generate repeated signatures to the signature automaton
that ensures that returned signatures are never repeated. Sometimes, the
fact that S2

k does not generate repeated signatures is not sufficient to satisfy
the required properties: it is still possible that S2

k generates a sign that is
equal to some adversary’s generated signature.

If we want to be sure that the signature automaton returns values that
have never occurred previously, then we must modify it adding the knowl-
edge of environment’s generated signatures. We can provide such knowledge
using the following approach: the encryption automaton receives as input
sets of environment’s generated signatures and then it ensures that gen-
erated values do not belong to such sets as well as previously returned
values.

This means that we provide the signature automaton with the signatures
generated by the environment sending the set {s1, . . . , sl} to the automaton,
where s1, . . . , sl are signatures generated by the environment. We do this
adding a state variable used signatures that contains all signatures used
by the environment and an input action used signatures(SN) that updates
used signatures:

Input used signatures(SN)

Effect:

used signatures := used signatures ∪ SN

To simplify the characterization of states where the generated signa-
ture matches with some value received from the environment, we add the
family of state variables is not usedA for A ∈ A that assume values in
{T, F,⊥} with initial value ⊥. Moreover, each get sign(A, M) action mod-
ifies is not usedA assigning F if the ciphertext returned by Sig(skA, M)
is in used signatures; T otherwise, as depicted in Figure 6.15. The action
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S2
k(A)

Input get sign(A, M)

Effect:

repeat

s = Sig(skA, M)

until s /∈ generated signs

sig valueA := s

is freshA :=

(
F if s ∈ generated signs

T otherwise

generated signs := generated signs ∪ {s}

Output ret encrypt(A, C)

Precondition:

sig valueA = C

Effect:

is freshA := ⊥
sig valueA := ⊥

S3
k(A)

Input get sign(A, M)

Effect:

repeat

s = Sig(skA, M)

until s /∈ generated signs

sig valueA := s

is freshA :=

(
F if s ∈ generated signs

T otherwise

is not usedA :=

(
F if s ∈ used signatures

T otherwise

generated signs := generated signs ∪ {s}

Output ret encrypt(A, C)

Precondition:

sig valueA = C

Effect:

is freshA := ⊥
is not usedA := ⊥
sig valueA := ⊥

Fig. 6.15. get sign(A, M) and ret sign(A, S) of S2
k and S3

k
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ret sign(A, S) also resets the is not usedA to its initial value ⊥. Let S3
k be

the resulting automaton.
It is immediate to see that S3

k(A) is an extension of S2
k(A). In fact,

we simply add some history variables that keep information about all sig-
natures generated by the environment. Such variables do not affect the
behavior of the other actions and thus each transition of S3

k(A) is either
almost identical to a transition of S2

k(A) or the new action that does not
modify the state variables that describe states of S2

k(A).
The above intuition is formalized by the following result:

Lemma 6.32. Let A be a set of agents, B be the set {used signatures(SN) |
SN ⊆ Signature} and W be the set {used signatures} ∪ {is not usedA |
A ∈ A} where action and variables are defined as above. For each k ∈ N,
S3

k(A) ∈ ExtW
B (S2

k(A)).

Proof. To prove the statement of the Lemma, we need to check if the re-
quirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of S3
k(A). Then v is either one of

generated signs, skA, vkA, pkA, ckA, sig valueA, ver valueA, is freshA

for A ∈ A and thus it is a state variable of S2
k(A), or v is used signatures

or is not usedA for some A ∈ A and thus v ∈ W ;
compatible start state: s̄3

k is identified by value ⊥ for each skA, vkA, pkA,
ckA, sig valueA, ver valueA, is freshA, and is not usedA (with A ∈ A),
and by ∅ for generated signs and used signatures. Since s̄2

k is identified
by the value ⊥ for each skA, vkA, pkA, ckA, sig valueA, ver valueA, and
is freshA (with A ∈ A), and by ∅ for generated signs, then s̄2

k = s̄3
k¹s̄2

k
;

compatible actions: by definition of S3
k(A), it provides the same actions of

S2
k(A) plus the actions used signatures(SN) that belong to B;

compatible transitions: let tr3 = (t3, a, µ3) ∈ D3
k be a transition of S3

k .
Suppose that a = used signatures(SN). Then we must verify that there
exists a state t2 of S2

k such that t2 = t3¹t2 and δt2 = µ3¹δt2
. By defi-

nition of used signatures(SN), it follows that µ3 = δt′3
where t′3 is the

state of S3
k(A) that is identified by the same values of t3 except for

used signatures where t′3.used signatures = t3.used signatures ∪ SN .
Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . Since the only dif-
ference between t3 and t′3 is on the value of used signatures, and since
used signatures is not a variable that characterizes t2, we have that
t2 = t′3¹t2 and thus δt2 = δt′3

¹δt2
.
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Suppose that a ∈ A2
k, that is, it is an action of S2

k(A). Then we must
verify that there exists a transition tr2 = (t2, a, µ2) ∈ D2

k such that
tr2 = tr3¹tr2 . There are eight cases:
– a = get public sign(A) for some A ∈ A: by definition of the ac-

tion get public sign(A, M), we can identify two cases: t3.skA = ⊥
or t3.skA 6= ⊥. If t3.skA = ⊥, then for each state t′3 of S3

k ,
µ3(t′3) = ρ(s, v) and t′3 is identified by the same values of t3 ex-
cept for the following values: t′3.skA = s, t′3.vkA = v, and t′3.pkA = v

where ρ is the probability measure induced over SKey × VKey by
the probabilistic algorithm KGen(1k). Let t2 be the state of S2

k(A)
such that t2 = t3¹t2 . By definition of action get public sign(A), t2
enables get public sign(A) that leads to the measure µ2 such that
for each state t′2 of S2

k , µ2(t′2) = ρ(s, v) and t′2 is identified by
the same values of t2 except for the following values: t′2.skA = s,
t′2.vkA = v, and t′2.pkA = s where ρ is the probability measure in-
duced over SKey × VKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ3¹µ2 , and hence tr2 = tr3¹tr2 .
If t3.skA 6= ⊥, then µ3 = δt′3

where t′3 is the state of S3
k(A) that is

identified by the same values of t3 except for pkA where t′3.pkA =
t3.vkA. Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By definition
of get public sign(A), t2 enables get public sign(A) that leads to the
measure δt′2

where t′2 is the state of S2
k(A) that is identified by the

same values of t2 except for variable pkA where t′2.pkA = t2.vkA.
Thus δt′2

= δt′3
¹δt′2

, and hence tr2 = tr3¹tr2 .
– a = ret public sign(A, V ) for some A ∈ A and E ∈ EKey: by def-

inition of action ret public sign(A, V ), it follows that t3.pkA = V

and that µ3 = δt′3
where t′3 is the state of S3

k(A) that is identified
by the same values of t3 except for pkA where t′3.pkA = ⊥. Let t2
be the state of S2

k(A) such that t2 = t3¹t2 . By definition of action
ret public sign(A, V ), t2 enables ret public sign(A, V ) that leads to
the measure δt′2

where t′2 is the state of S2
k(A) that is identified by

the same values of t2 except for variable pkA where t′2.pkA = ⊥.
Thus δt′2

= δt′3
¹δt′2

, and hence tr2 = tr3¹tr2 .
– a = get corrupt sign(A) for some A ∈ A: by definition of the ac-

tion get corrupt sign(A), we can identify two cases: t3.skA = ⊥
or t3.skA 6= ⊥. If t3.skA = ⊥, then for each state t′3 of S3

k ,
µ3(t′3) = ρ(s, v) and t′3 is identified by the same values of t3 except
for the following values: t′3.skA = s, t′3.vkA = v, and t′3.ckA = (v, s)
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where ρ is the probability measure induced over SKey × VKey by
the probabilistic algorithm KGen(1k). Let t2 be the state of S2

k(A)
such that t2 = t3¹t2 . By definition of action get corrupt sign(A),
t2 enables get corrupt sign(A) that leads to the measure µ2 such
that for each state t′2 of S2

k , µ2(t′2) = ρ(s, v) and t′2 is identified by
the same values of t2 except for the following values: t′2.skA = s,
t′2.vkA = v, and t′2.ckA = (v, s) where ρ is the probability measure
induced over SKey×VKey by the probabilistic algorithm KGen(1k).
Thus µ2 = µ2¹µ2 , and hence tr2 = tr3¹tr2 .
If t3.skA 6= ⊥, then µ3 = δt′3

where t′3 is the state of S3
k(A)

that is identified by the same values of t3 except for ckA where
t′3.ckA = (t3.vkA, t3.skA). Let t2 be the state of S2

k(A) such that
t2 = t3¹t2 . By definition of action get corrupt sign(A), t2 enables
get corrupt sign(A) that leads to the measure δt′2

where t′2 is the
state of S2

k(A) that is identified by the same values of t2 except for
variable ckA where t′2.ckA = (t2.vkA, t2.skA). Thus δt′2

= δt′3
¹δt′2

, and
hence tr2 = tr3¹tr2 .

– a = ret corrupt sign(A, V, S) for some A ∈ A, V ∈ VKey, and S ∈
SKey: by definition of action ret corrupt sign(A, V, S), it follows that
t3.ckA = (V, S) and that µ3 = δt′3

where t′3 is the state of S3
k(A) that

is identified by the same values of t3 except for ckA where t′3.ckA =
⊥. Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By definition of
action ret corrupt sign(A, V, S), t2 enables ret corrupt sign(A, V, S)
that leads to the measure δt′2

where t′2 is the state of S2
k(A) that

is identified by the same values of t2 except for variable ckA where
t′2.ckA = ⊥. Thus δt′2

= δt′3
¹δt′2

, and hence tr2 = tr3¹tr2 .
– a = get sign(A, M) for some A ∈ A and M ∈ Message: by def-

inition of the action get sign(A, M), it follows that for each state
t′3 of S3

k , µ3(t′3) = ρ(S) and t′3 is identified by the same values
of t3 except for the following values that are: t′3.is freshA = F

if S ∈ t3.generated signs, T otherwise, t′3.sig valueA = S, and
t′3.generated signs = t3.generated signs ∪ {S}. ρ is the probabil-
ity measure induced over Signature by the probabilistic algorithm
Sig(t3.skA, M). Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By
definition of action get sign(A, M), t2 enables get sign(A, M) that
leads to the measure ρ where for each state t′2 of S2

k(A) that is identi-
fied by the same values of t2 except for variable sig valueA, we have
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that µ(t′2) = ρ(S) and t′2.sig valueA = S. Thus µ2 = µ3¹µ2 , and
hence tr2 = tr3¹tr2 .

– a = ret sign(A, S) for some A ∈ A and S ∈ Signature: by defini-
tion of action ret sign(A, S), it follows that t3.sig valueA = S and
that µ3 = δt′3

where t′3 is the state of S3
k(A) that is identified by

the same values of t3 except for sig valueA that assumes the value
t′3.sig valueA = ⊥ and for is freshA and is not usedA that are reset
to ⊥. Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By defi-
nition of action ret sign(A, S), t2 enables ret sign(A, S) that leads
to the measure δt′2

where t′2 is the state of S2
k(A) that is identi-

fied by the same values of t2 except for variable sig valueA where
t′2.sig valueA = ⊥. Thus δt′2

= δt′3
¹δt′2

, and hence tr2 = tr3¹tr2 .
– a = get verify sign(A, S) for some A ∈ A and S ∈ Signature: by

definition of action get verify sign(A, S), it follows that µ3 = δt′3
where t′3 is the state of S3

k(A) that is identified by the same values
of t3 except for ver valueA where t′3.ver valueA = Ver(t3.vkA, S).
Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By definition
of action get verify sign(A, S), t2 enables get verify sign(A, S) that
leads to the measure δt′2

where t′2 is the state of S2
k(A) that is

identified by the same values of t2 except for variable ver valueA

where t′2.ver valueA = Ver(s2.vkA, S). Thus δt′2
= δt′3

¹δt′2
, and hence

tr2 = tr3¹tr2 .
– a = ret verify sign(A, B) for some A ∈ A and B ∈ {T, F}: by defini-

tion of action ret verify sign(A, B), it follows that t3.ver valueA = B

and that µ3 = δt′3
where t′3 is the state of S3

k(A) that is identified by
the same values of t3 except for ver valueA where t′3.ver valueA = ⊥.
Let t2 be the state of S2

k(A) such that t2 = t3¹t2 . By definition
of action ret verify sign(A, B), t2 enables ret verify sign(A, B) that
leads to the measure δt′2

where t′2 is the state of S2
k(A) that is iden-

tified by the same values of t2 except for variable ver valueA where
t′2.ver valueA = ⊥. Thus δt′2

= δt′3
¹δt′2

, and hence tr2 = tr3¹tr2 .

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
S3

k(A) ∈ ExtW
B (S2

k(A)). ut
The existence of a polynomially accurate simulation from S2

k(A) to
S3

k(A) in now straightforward:

Proposition 6.33. Let A be a set of (identities of) agents. For each con-
text Ck compatible with S2

k(A) such that {used signatures(SN) | SN ⊆
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Signature} ⊆ ACk
,

{S2
k(A)||Ck}k∈N .s {S3

k(A)||Ck}k∈N

Proof. By Lemma 6.32, for each k ∈ N, S3
k(A) ∈ ExtW

B (S2
k(A)) where B

is the set of actions {used signatures(SN) | SN ⊆ Signature} and W is
{used signatures} ∪ {is not usedA | A ∈ A}. This implies, by Lemma 4.6,
that for each context Ck compatible with S2

k(A) such that B ⊆ ACk
,

S2
k(A)||Ck ¹ S3

k(A)||Ck and thus, by Proposition 5.6, {S2
k(A)||Ck}k∈N .s

{S3
k(A)||Ck}k∈N. ut

For the second step, let S4
k be the automaton obtained from S3

k mod-
ifying each get sign(A, M) action as follows: the signature algorithm Sig

is invoked until it returns a value that is a signature that is not yet used,
that is not inside used signatures, as depicted in Figure 6.16.

It is immediate to see that S4
k(A) simulates the Gk-conditional of S3

k(A)
where for each k ∈ N, Gk is the set of states of S3

k(A) such that for each
A ∈ A, 6= .is not usedAF . In fact, we iterate the generation of the signature
of M under the private key of A until it returns a value that is not equal to
an already used signature. That is, we condition the choice of the signature
to the fact that it is fresh (and thus, 6= .is not usedAF is always satisfied).

Note that S4
k(A) is not the Gk-conditional of S3

k(A) since it provides
more transitions than S3

k(A)|Gk. In fact, S4
k(A) enables transitions that

leave from a state not in Gk and that leads to a probability measures µ such
that µ(Gk) = 0. For example, let t be the state such that t.is not usedA =
F , t.is not usedB = F , t.sig valueA = S. Thus, by definition of ret sign
actions, t enables the action ret sign(A, S) that leads to the measure δt′

where t′ is identified by the same values of t except for variables sig valueA

and is freshA that are ⊥. Thus t′.is not usedB is still F and hence t′ /∈ Gk.
The above intuition is formalized by the following result:

Lemma 6.34. Given S3
k(A), let Bk be the set of states of S3

k such that
t ∈ Bk if there exists A ∈ A such that t.is not usedA = F . Let Gk be the
set S3

k \Bk.
For each k ∈ N, S3

k(A)|Gk ¹ S4
k(A).

Proof. For each k ∈ N, let idk be the identity relation on states. idk is a
simulation from S3

k(A)|Gk to S4
k(A).

The condition on start states is trivially true: let s̄3
k be the start state of

S3
k(A)|Gk and s̄4

k be the start state of S4
k(A). By definition of conditional, it
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S3
k

Input get sign(A, M)

Effect:

repeat

s = Sig(skA, M)

until s /∈ generated signs

sig valueA := s

is freshA :=

(
F if s ∈ generated signs

T otherwise

is not usedA :=

(
F if s ∈ used signatures

T otherwise

generated signs := generated signs ∪ {s}

S4
k

Input get sign(A, M)

Effect:

repeat

repeat

s = Sig(skA, M)

until s /∈ generated signs

until s /∈ used signatures

sig valueA := s

is freshA :=

(
F if s ∈ generated signs

T otherwise

is not usedA :=

(
F if s ∈ used signatures

T otherwise

generated signs := generated signs ∪ {s}

Fig. 6.16. get sign of S3
k and S4

k

follows that s̄3
k is the start state of S3

k(A). Since by definition of S4
k(A), the

only difference between S3
k(A) and S4

k(A) is on the definition of the action
get sign(A, M), we have that s̄4

k = s̄3
k and thus s̄3

k idk s̄4
k.

For the step condition, let t3 and t4 be two states of S3
k(A)|Gk and S4

k(A),
respectively, such that t3 idk t4. Let (t3, a, µ3) be a transition of S3

k(A)|Gk

that leaves from t3. We must find µ4 such that (t4, a, µ4) is a transition of
S4

k(A) and µ3 L(idk) µ4. There are nine cases:

– a = get public sign(A) for some A ∈ A: by definition of the action
get public sign(A), we can identify two cases: t3.skA = ⊥ or t3.skA 6= ⊥.
If t3.skA = ⊥, then for each state t′3 of S3

k , µ3(t′3) = ρ3(s, v) and t′3
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is identified by the same values of t3 except for the following values:
t′3.skA = s, t′3.vkA = v, and t′3.pkA = v where ρ3 is the probabil-
ity measure induced over SKey × VKey by the probabilistic algorithm
KGen(1k). Since t3 idk t4, we have that also t4 satisfies t4.skA = ⊥,
and hence for each state t′4 of S4

k , µ4(t′4) = ρ4(s, v) and t′4 is identified
by the same values of t4 except for the following values: t′4.skA = s,
t′4.vkA =, and t′4.pkA = v where ρ4 is the probability measure induced
over SKey×VKey by the probabilistic algorithm KGen(1k). This implies
that t′3 idk t′4 for each state t′3 and t′4 satisfying above conditions and
since ρ3 = ρ4, we have that µ3 L(idk) µ4, as required.
If t3.skA 6= ⊥, then µ3 = δt′3

where t′3 is the state of S3
k(A) that is identi-

fied by the same values of t3 except for pkA where t′3.pkA = t3.vkA. Since
t3 idk t4, we have that also t4 satisfies t4.skA 6= ⊥, and hence by def-
inition of action get public sign(A), t4 enables get public sign(A) that
leads to the measure δt′4

where t′4 is the state of S4
k(A) that is identified

by the same values of t4 except for variable pkA where t′4.pkA = t4.vkA.
This implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4,

as required.
– a = ret public sign(A, V ) for some A ∈ A and V ∈ VKey: by def-

inition of the action ret public sign(A, V ), it follows that t3 satisfies
t3.pkA = V . Moreover, it follows that µ3 = δt′3

where t′3 is the state
such that t′3.pkA = ⊥, and all other variables that describe t′3 have
the same value of the variables that describe t3. Since t3 idk t4, we
have that also t4 satisfies t4.pkA = V and thus it enables the transition
(t4, ret public sign(A, V ), µ4) where µ4 is the measure δt′4

where t′4 is
the state such that t′4.pkA = ⊥, and all other variables that describe s′4
have the same value of the variables that describe t4. This implies that
t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4, as required.

– a = get corrupt sign(A) for some A ∈ A: by definition of the ac-
tion get corrupt sign(A), we can identify two cases: t3.skA = ⊥ or
t3.skA 6= ⊥. If t3.skA = ⊥, then for each state t′3 of S3

k , µ3(t′3) = ρ3(s, v)
and t′3 is identified by the same values of t3 except for the following
values: t′3.skA = s, t′3.vkA = v, and t′3.ckA = (v, s) where ρ3 is the prob-
ability measure induced over SKey×VKey by the probabilistic algorithm
KGen(1k). Since t3 idk t4, we have that also t4 satisfies t4.skA = ⊥, and
hence for each state t′4 of S4

k , µ4(t′4) = ρ4(s, v) and t′4 is identified by the
same values of t4 except for the following values: t′4.skA = s, t′4.vkA = v,
and t′4.ckA = (v, s) where ρ4 is the probability measure induced over
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SKey×VKey by the probabilistic algorithm KGen(1k). This implies that
t′3 idk t′4 for each state t′3 and t′4 satisfying above conditions and since
ρ3 = ρ4, we have that µ3 L(idk) µ4, as required.
If t3.skA 6= ⊥, then µ3 = δt′3

where t′3 is the state of S3
k(A) that

is identified by the same values of t3 except for ckA where t′3.ckA =
(t3.vkA, t3.skA). Since t3 idk t4, we have that also t4 satisfies t4.skA 6=
⊥, and hence by definition of action get corrupt sign(A), t4 enables
get corrupt sign(A) that leads to the measure δt′4

where t′4 is the state
of S4

k(A) that is identified by the same values of t4 except for variable
ckA where t′4.ckA = (t4.vkA, t4.skA). This implies that t′3 idk t′4 and thus
δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4, as required.

– a = ret corrupt sign(A, V, S) for some A ∈ A, V ∈ VKey and S ∈ SKey:
by definition of the action ret corrupt sign(A, V, S), it follows that t3
satisfies t3.ckA = (V, S). Moreover, it follows that µ3 = δt′3

where t′3 is
the state such that t′3.ckA = ⊥, and all other variables that describe t′3
have the same value of the variables that describe t3. Since t3 idk t4,
we have that also t4 satisfies t4.ckA = (V, S) and thus it enables the
transition (t4, ret corrupt sign(A, V, S), µ4) where µ4 is the measure δt′4
where t′4 is the state such that t′4.ckA = ⊥, and all other variables that
describe t′4 have the same value of the variables that describe t4. This
implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4, as

required.
– a = get sign(A, M) for some A ∈ A and M ∈ Message: by definition of

get sign(A, M), it follows that for each state t′3 of S3
k , µ3(t′3) = ρ3(S) and

t′3 is identified by the same values of t3 except for the following values:
t′3.is freshA = F if S ∈ t3.generated signs, T otherwise, t′3.sig valueA =
S, and t′3.generated signs = t3.generated signs ∪ {S}. ρ3 is the prob-
ability measure induced over Signature by the probabilistic algorithm
Sig(t3.skA, M) conditioned to the set of states such that for each A ∈ A
is freshA 6= F conditioned to Gk. Since t3 idk t4, we have that also t4 en-
ables the transition (t4, get sign(A, M), µ4) where for each state t′4 of S4

k ,
µ4(t′4) = ρ4(S) and t′4 is identified by the same values of t4 except for the
following values: t′4.is freshA = F if S ∈ t4.generated signs, T otherwise,
t′4.sig valueA = S, and t′4.generated signs = t4.generated signs∪{S}. ρ4

is the probability measure induced over Signature by the probabilistic
algorithm Sig(t4.skA, M) conditioned to the set of states such that for
each A ∈ A is freshA 6= F that is iterated until it returns a value that
does not belong to t4.used signatures. This implies that t′3 idk t′4 for
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each state t′3 and t′4 satisfying above conditions and if ρ3 = ρ4, then
µ3 L(idk) µ4, as required.
ρ3 is equal to ρ4 since for each t ∈ Gk, ρ3(t) = ρ4(t). In fact, by definition
of conditional, ρ3(t) = ρ(t)/ρ(Gk) where ρ is the probability measure
induced over Signature by Sig(t3.skA, M), ρ(Gk) > 0 and ρ(Bk) <

1. By definition of get sign(A, M) action of S4
k , we have that ρ4(t) =∑+∞

i=0 ρ(Bk)iρ(t) = ρ(t)
∑+∞

i=0 ρ(Bk)i = ρ(t)
1

1− ρ(Bk)
= ρ(t)/ρ(Gk) =

ρ3(t).
– a = ret sign(A, S) for some A ∈ A and S ∈ Signature: by definition of

the action ret sign(A, S), it follows that t3 satisfies t3.sig valueA = S.
Moreover, it follows that µ3 = δt′3

where t′3 is the state such that
t′3.sig valueA = ⊥, t′3.is freshA = ⊥, t′3.is not usedA = ⊥, and all other
variables that describe t′3 have the same value of the variables that de-
scribe t3. Since t3 idk t4, we have that also t4 satisfies t4.sig valueA = S

and thus it enables the transition (t4, ret sign(A, S), µ4) where µ4 is
the measure δt′4

where t′4 is the state such that t′4.sig valueA = ⊥,
t′4.is freshA = ⊥, t′4.is not usedA = ⊥ and all other variables that de-
scribe t′4 have the same value of the variables that describe t4. This
implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4, as

required.
– a = get verify sign(A, S) for some A ∈ A and S ∈ Signature: by defini-

tion of the action get verify sign(A, S), it follows that µ3 = δt′3
where

t′3 is the state such that t′3.ver valueA = Ver(t3.vkA, S), and all other
variables that describe t′3 have the same value of the variables that de-
scribe t3. Since t3 idk t4, we have that also t4 enables the transition
(t4, get verify sign(A, S), µ4) where µ4 is the measure δt′4

where t′4 is the
state such that t′4.ver valueA = Ver(t4.vkA, S), and all other variables
that describe t′4 have the same value of the variables that describe t4.
This implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4,

as required.
– a = ret verify sign(A, B) for some A ∈ A and B ∈ {T, F}: by def-

inition of the action ret verify sign(A, B), it follows that t3 satisfies
t3.ver valueA = B. Moreover, it follows that µ3 = δt′3

where t′3 is the
state such that t′3.ver valueA = ⊥, and all other variables that describe
t′3 have the same value of the variables that describe t3. Since t3 idk t4,
we have that also t4 satisfies t4.ver valueA = B and thus it enables
the transition (t4, ret verify sign(A, B), µ4) where µ4 is the measure δt′4
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where t′4 is the state such that t′4.ver valueA = ⊥, and all other variables
that describe t′4 have the same value of the variables that describe t4.
This implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that is µ3 L(idk) µ4,

as required.
– a = used signatures(SN) for some SN ⊆ Signature: by definition of

used signatures(SN), it follows that µ3 = δt′3
where t′3 is the state such

that t′3.used signatures = t3.used signatures ∪ SN , and all other vari-
ables that describe t′3 have the same value of the variables that de-
scribe t3. Since s3 idk t4, we have that also t4 enables the transition
(t4, used signatures(SN), µ4) where µ4 is the measure δt′4

where t′4 is
the state such that t′4.used signatures = t4.used signatures ∪ SN , and
all other variables that describe t′4 have the same value of the variables
that describe t4. This implies that t′3 idk t′4 and thus δt′3

L(idk) δt′4
, that

is µ3 L(idk) µ4, as required.

The step condition is satisfied since for each action a, if t3 enables a
transition labelled by a that leads to µ3, then we can find µ4 such that
(t4, a, µ4) ∈ D4

k and µ3 L(idk) µ4. ut
It is straightforward to prove that S3

k(A)|Gk is polynomially simulated
by S4

k(A):

Proposition 6.35. Given S3
k(A), let Bk be the set of states of S3

k such that
t ∈ Bk if there exists A ∈ A such that t.is not usedA = F . Let Gk be the
set S3

k \Bk.
For each context Ck compatible with S3

k(A),

{(S3
k(A)|Gk)||Ck}k∈N .s {S4

k(A)||Ck}k∈N

Proof. By Lemma 6.34, we have that for each k ∈ N, S3
k(A)|Gk ¹

S4
k(A). This implies that for each context Ck compatible with S3

k(A),
(S3

k(A)|Gk)||Ck ¹ S4
k(A)||Ck. Finally, by Proposition 5.6, we have that

{(S3
k(A)|Gk)||Ck}k∈N .s {S4

k(A)||Ck}k∈N. ut
The complete the chain of polynomially accurate simulations from S3

k(A)
to S4

k(A) we need to prove:

Proposition 6.36. Let S be a non-repeating unforgeable signature scheme
and A be a set of agents. Let Gk be the set of states of S3

k such that t ∈ Gk

if and only if for each A ∈ A t.is not usedA 6= F , that is, the generated
ciphertext is fresh. Let Bk be S3

k \ Gk (that is, states t′ of S3
k such that

t′.is not usedA = F for some A ∈ A).
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For each context Ck compatible with S4
k(A), if there exists q ∈ Poly such

that for each action used signatures(SN) of Ck, |SN | < q(k), then

{S3
k(A)||Ck}k∈N .s {(S3

k(A)|Gk)||Ck}k∈N

Proof. Theorem 5.8 states that {S3
k(A)}k∈N .s {S3

k(A)|Gk}k∈N if and only
if {Bk}k∈N is negligible in {S3

k(A)}k∈N.
Suppose, for the sake of contradiction, that {S3

k(A)}k∈N is not simu-
lated by {S3

k(A)|Gk}k∈N. This implies that {Bk}k∈N is not negligible in
{S3

k(A)}k∈N and thus that there exists c ∈ N, p ∈ Poly such that for each
k̄ ∈ N there exists k > k̄ such the probability to reach states of Bk within
p(k) steps is at least k−c, that is, the probability to reach states t such that
t.is not usedA = F for some A ∈ A within p(k) steps is at least k−c. By
definition of the automaton S3

k(A), it follows that t.is not usedA can as-
sume value F only as the effect of a transition that leaves from some state t′

and that is labelled by action get sign(A, M). This happens only when the
signature value Sig(t′.skA, M) assigned to t.sig valueA belongs to the set
US = t′.used signatures. Within p(k) steps, we can perform at most p(k)
transitions labelled by used signatures(SN). Since by hypothesis we add at
most q(k) values to used signatures each time we perform a transition la-
belled by used signatures(SN), within p(k) steps the set US has cardinality
at most p(k)q(k). This means that with probability at least k−c, we have
generated a signature that it is equal to some s ∈ US with |US| 6 p(k)q(k).
Since the signature scheme S is non-repeating unforgeable, this contradicts
the Definition 6.26 and thus {S3

k(A)}k∈N .s {S3
k(A)|Gk}k∈N. This implies,

by Theorem 5.10, that {S3
k(A)||Ck}k∈N .s {(S3

k(A)|Gk)||Ck}k∈N. ut
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A Simple Case Study: the MAP1 Protocol

In this chapter we illustrate the use of polynomially accurate simulations
via a simple case study that deals with the Mutual Authentication Protocol
MAP1 of Bellare and Rogaway [22]. The protocol uses nonces to guarantee
freshness and pseudorandom functions as message authentication tool. We
describe the MAP1 protocol and the structure of our correctness proof. In
particular, we prove the correctness result in two steps: in the first one we
avoid the generation of repeated nonces; in the second one we impose that
the adversary can not produce fresh valid message authentication codes.

7.1 The Protocol

A B
[b.a.RA.RB ]s

[a.RB ]s

RA

Fig. 7.1. MAP1 protocol.

Let {fs}s∈{0,1}∗ be a pseudorandom function, and let [x]s denote the
message (x, fs(x)) where fs(x) is the message authentication code of x

with respect to s.
The MAP1 protocol is used to establish a mutual authentication between

any two agents A and B among a set of agents A who share a key s. At the
beginning, all agents share a pseudorandom function and a secret random
element s ∈ {0, 1}k, where k is the security parameter. When agent A
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wants to communicate with agent B, A sends to B a random challenge
(a nonce) RA ∈R {0, 1}k. B responds by making up a random challenge
RB ∈R {0, 1}k and returning [b.a.RA.RB]s, where a and b are descriptions
of the identity of agents A and B, respectively. Then, A checks that the
message received from B is of the right form and that it is correctly tagged
as coming from B. If it is, A sends to B the message [a.RB]s and accepts. B

checks that the message from A is of the right form and that it is correctly
tagged as coming from A. If it is, B accepts. Fig. 7.1 depicts how the MAP1
protocol works.

The definition of correctness proposed by Bellare and Rogaway in [22]
is based on the concept of matching conversation. All agents communicate
via an adversarial network E, controlled by a probabilistic polynomial time
algorithm, that can block, delay and/or modify messages, and possibly
create new messages. Two agents A and B have a matching conversation if
the following conditions hold:

1. every message that A sends out, except possibly the last, is subsequently
delivered to B, with the response to this message being returned to A

as its own next message;
2. every message B receives was previously generated by A and each mes-

sage that B sends out is subsequently delivered to A, with the response
that this message generates being returned to B as its own next mes-
sage.

The first condition states that when A (that plays as a sender or initiator
agent) sends a message to B, the message is not modified or blocked by the
adversary E (except for the last message) and the response of B is correctly
delivered to A, without changing the messages order. The second condition
is very similar to the first one, but it is based on B’s point of view (B plays
as a receiver or responder agent).

Given an adversary E (that does not know the secret key s shared by
the agents), E breaks the MAP1 protocol if it completes a mutual au-
thentication with some agent X persuading X that the other participant
is another agent Y . This means that X completes the protocol without a
matching conversation with Y . More formally, MAP1 is a secure mutual
authentication protocol if

• for each pair of agents X and Y , if X and Y have a matching conversa-
tion, then both agents accept;
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• for any probabilistic polynomial time adversary E, the probability that
E induces an agent X to accept a communication with another agent
Y without a matching conversation with Y is negligible.

E, during the attack, can play as initiator or responder, or even in both
roles if it tries to break the MAP1 protocol interacting with several agents.

7.2 The Security Proof of Bellare-Rogaway

The original proof that MAP1 is a secure mutual authentication protocol
can be found in Appendix A of [22]. The proof is split into two parts.
First it is shown that the probability of breaking the protocol when the
agents share a truly random function is negligible; then it is shown that
an adversary E that successfully attacks the MAP1 protocol with a non-
negligible probability can be turned into a distinguisher for a pseudorandom
function.

The second step is rather standard in cryptography: the distinguisher is
an algorithm that simulates the interaction between the adversary E and
the agents and that queries the message authentication scheme whenever
it simulates a real agent that computes a message authentication code.
The distinguisher returns 1 whenever it successfully induces an agent A to
accept without a matching conversation. The probability of returning 1 is
then significantly different if the message authentication scheme is given
by a truly random function or by a pseudorandom function. Though this
construction is described in a semi-formal language, it is quite standard
and widely accepted.

The first step is based on an explicit computation of the probability
that the adversary induces acceptance without a matching conversation
when the message authentication scheme is given by a truly random func-
tion. The short proof must be read with great attention because of the
high number of potential pitfalls. It is a classical proof where we reason
about global properties of computations by arguing back and forth about
properties of different computational steps. These are typical arguments
employed in correctness proofs for distributed and concurrent systems. In
the specific case the argument is complicated further by the presence of
probabilities. More or less the argument is a sequence of semi-formal state-
ments about what messages are generated, in what order, who can have
generated them (and with which probability), and whether messages can
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G

A1 A2

RAdvf

A2
k

NGI
G

A1 A2

NGI

A3
k

GAdv

G

A1 A2

A1
k

NGR

RAdvf

. .

Fig. 7.2. The three levels of abstraction for MAP1.

be repeated (and with which probability). Arguments about uniqueness of
nonces and unforgeability of message authentication codes are intermixed.
Our suggestion is that the use of polynomially accurate simulations in this
context can provide us with the same simplifications that the simulation
method provided in the area of distributed systems (cf. [72]).

7.3 Our Correctness Proof

We now give an outline of the correctness proof of the MAP1 protocol
based on polynomially accurate simulations. We describe the protocol at
three levels of abstraction. The lowest level description consists of the actual
agents that receive the secret s from a secret generator and receive nonces
from a device that generates random numbers. The adversary is controlled
by a generic probabilistic polynomial time algorithm. At the intermediate
level nonces are generated by an ideal device that keeps track of what was
distributed earlier, while at the highest level the adversary is purely non-
deterministic and is not permitted to generate new message authentication
codes without obtaining them from the agents. Figure 7.2 depicts the three
levels of abstraction.

The highest level abstraction is similar in style to the Dolev-Yao model
where we assume perfect cryptography, while the description in these three
levels is similar in style to the game transformations proposed in [24,25,107].
The most abstract system can be shown easily not to exhibit any attack
by employing ordinary well known techniques for purely nondeterministic
systems. The novel element here is the use of simulation relations to relate
the three levels.
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We exhibit a polynomially accurate simulation for each pair of neighbor
abstractions, use results on polynomially accurate simulation to argue that
the probability of low level computations that do not have corresponding
high level computations is negligible, and use the fact that at the highest
level there are no attacks to deduce that at the lowest level the probability
of attack is negligible. The crucial and interesting point is that at each
level we can use general results or, when we prove the existence of the
polynomially accurate simulation, the negation of the step condition is the
negation of the key property of nonces or the definition of a successful forger
for a message authentication scheme depending on the simulation relation
we are analyzing.

Now we give a more detailed description of the three levels of the ab-
straction. The lowest level, depicted on the left of Figure 7.2, consists of
several automata, each one parameterized by a security parameter k (we do
not add such parameter to the automata names for clarity). The automaton
G is a secret generator that generates and provides the agents with a secret
s that is used as the key of the message authentication scheme of MAP1
protocol. The automaton NGR models a real nonce generator. Whenever
an agent needs a nonce, it sends a request to NGR and obtains a random
value taken from {0, 1}k as answer. The set {A1, A2, . . . } is a numerable
set of automata that describe end-points of sessions of the protocol. That
is, each automaton Ai corresponds to some oracle Πt

X,Y of [22], where ora-
cle Πt

X,Y describes the participant X trying to authenticate participant Y

in session t, where t is different for each authentication attempt. Commu-
nication between agents and secret and nonce generators is private, while
communication between agents is performed using a network that is con-
trolled by the adversary RAdvf . The network keeps a history variable that
contains all previous messages sent and received by agents, which is used
to select the next action to perform (e.g., delivering messages, casting new
messages, blocking messages, . . . ). The choices of the network should be
computable in probabilistic polynomial time. For this reason, the adver-
sary RAdvf is parameterized by a probabilistic polynomial time function
f , so that the transition enabled from a state s is f(s).

The intermediate level, depicted in the middle of Figure 7.2, differs from
the lowest level only in the nonce generator automaton. NGI models an
ideal nonce generator that ensures that nonces are never repeated. This
implies that unicity of nonces chosen by agents is guaranteed by definition.
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Gk(A)

Signature:

Output:

secret((X, Y, t), s), s ∈ {0, 1}k, X, Y ∈ A, t ∈ N
secret for adv(s), s ∈ {0, 1}k

State:

value ∈ {0, 1}k, initially v ∈R {0, 1}k

Transitions:

Output secret for adv(s)

Precondition:

s = value

Effect:

none

Output secret((X, Y, t), s)

Precondition:

s = value

Effect:

none

Fig. 7.3. The Secret Generator, Gk

The highest level, depicted in the right of Figure 7.2, differs from the
intermediate level only in the automaton that controls the network. The
new adversary, denoted by GAdv , is a nondeterministic automaton that is
permitted to perform any action except for casting new message authenti-
cation codes without obtaining them from the agents. More precisely, we
define a function Not Bad that, given a secret s and a history history , re-
turns the set of messages where all subparts that are tagged correctly with
a message authentication code relative to s are taken from history . That is,
no new correct tag is cast. Then we require GAdv to generate only those
messages that are in the outcome of function Not Bad . This implies that
unforgeability of message authentication scheme is warranted by definition.

Automata Specification

We now provide the automata that describe the participants and adver-
saries of the MAP1 protocol.

Figure 7.3 depicts the secret generator Gk. It starts with a secret s,
chosen randomly in {0, 1}k, which is then sent to all agents via actions of
the form secret(X, Y, t). The secret is sent also to the adversary via action
secret for adv , though the real adversary will discard the value received.
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Real Nonce Generator NGR
k (A)

Signature:

Input:

get nonce(X, Y, t), X, Y ∈ A, t ∈ N
Output:

ret nonce((X, Y, t), n), n ∈ {0, 1}k, X, Y ∈ A, t ∈ N

State:

valuet
X,Y ∈ {0, 1}k ∪ {⊥}, initially ⊥, X, Y ∈ A, t ∈ N

Transitions:

Input get nonce(X, Y, t)

Effect:

valuet
X,Y := v where v ∈R {0, 1}k

Output ret nonce((X, Y, t), n)

Precondition:

n = valuet
X,Y

Effect:

valuet
X,Y := ⊥

Fig. 7.4. The Real Nonce Generator, NGR
k (A)

The value of the secret will be used by the good adversary to prevent the
generation of forged message authentication codes.

Figure 7.4 shows the real nonce generators NGR
k (A). When the automa-

ton receives an input get nonce, it chooses a new nonce and assigns it to
a local variable to be used by the corresponding ret nonce action. It is es-
sentially the same of the generic nonce generator NG of Figure 6.1 where
each component (action or state variable) is parameterized on X, Y and t

instead of A. NGR
k (A) is the same automaton of NGk(A′) of Section 6.1,

where A′ is the set of agent’s identities {(X,Y, t) | X, Y ∈ A, t ∈ N}.
Figure 7.5 shows the ideal nonce generators NGI

k(A). When the automa-
ton receives an input get nonce, it chooses a new, fresh nonce and assigns
it to a local variable to be used by the corresponding ret nonce action.
We are sure that the chosen nonce is fresh since it is taken from the set
fresh nonces that contains all nonces that are not chosen yet. It is the same
as the generic nonce generator NG2

k(A′) of Section 6.1.1 where A′ is the set
of agent’s identities {(X, Y, t) | X, Y ∈ A, t ∈ N}.

Figures from 7.6 to 7.8 depict the MAP1(X, Y, t) automaton that de-
scribes an agent X trying to authenticate to another agent Y in session t.
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Ideal Nonce Generator NGI
k(A)

Signature:

Input:

get nonce(X, Y, t), X, Y ∈ A, t ∈ N
Output:

ret nonce((X, Y, t), n), n ∈ {0, 1}k, X, Y ∈ A, t ∈ N

State:

valuet
X,Y ∈ {0, 1}k ∪ {⊥}, initially ⊥, X, Y ∈ A, t ∈ N

is fresht
X,Y ∈ {T, F,⊥}, initially ⊥, X, Y ∈ A, t ∈ N

fresh nonces ∈ {0, 1}k, initially {0, 1}k

Transitions:

Input get nonce(X, Y, t)

Effect:

valuet
X,Y := v where v ∈R fresh nonces

is fresht
X,Y := T

fresh nonces := fresh nonces \ {v}

Output ret nonce((X, Y, t), n)

Precondition:

n = valuet
X,Y

Effect:

valuet
X,Y := ⊥

Fig. 7.5. The Ideal Nonce Generator NGI
k(A)

Agent X may play either as a sender or as a receiver, and the role of X is
determined by the first input received by the automaton: if the first input
is a start init action, then X acts as sender (or initiator) agent; if the first
input is a receive1 action, then X acts as a receiver agent. The state of the
automaton has two variables RX , RY that store local copies of the nonces
of X and Y , respectively; a variable secret that stores the secret key of the
message authentication scheme; a variable accept that assumes value true
when the automaton accepts the authentication; a nonce requested vari-
ables that is used to remember when a nonce request is pending; and a
program counter pc that keeps track of the current position in the flow of
the MAP1 protocol. The automaton switches to an error state (pc = error)
as soon as an unexpected input or a badly formatted message is received.
From the error state the automaton does not perform any output action
and ignores the effects of all input actions. The sequence of actions follows
the MAP1 protocol as proposed in [22].



7.3 Our Correctness Proof 217

MAP1 t
X,Y k

Signature:

Input:

start init(X, Y, t)

receive1 ((X, Y, t), m), m ∈ {0, 1}k

receive2 ((X, Y, t), m), m ∈ {0, 1}5k

receive3 ((X, Y, t), m), m ∈ {0, 1}3k

ret nonce((X, Y, t), n), n ∈ {0, 1}k

secret((X, Y, t), s), s ∈ {0, 1}k

Output:

get nonce(X, Y, t)

send1 ((X, Y, t), m), m ∈ {0, 1}k

send2 ((X, Y, t), m), m ∈ {0, 1}5k

send3 ((X, Y, t), m), m ∈ {0, 1}3k

State:

RX , RY ∈ {0, 1}k ∪ {⊥}, initially ⊥
secret ∈ {0, 1}k ∪ {⊥}, initially ⊥
pc ∈ {error, end, wait1, wait2, wait3,

send1, send2, send3}, initially wait1

nonce requested ∈ {T, F}, initially F

accept ∈ {T, F}, initially F

Transitions:

Input secret((X, Y, t), s)

Effect:

secret := s

Output get nonce(X, Y, t)

Precondition:

pc ∈ {send1, send2} ∧RX = ⊥ ∧ ¬nonce requested

Effect:

nonce requested := T

Input ret nonce((X, Y, t), n)

Effect:

if ¬nonce requested then

pc := error

else

RX := n

nonce requested := F

fi

Fig. 7.6. The MAP1 Agent, MAP1 t
X,Y k

, Part I
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Transitions:

Input start init(X, Y, t)

Effect:

if pc = wait1 then

pc := send1

else

pc := error

fi

Output send1 ((X, Y, t), m)

Precondition:

pc = send1 ∧m = RX 6= ⊥ ∧ secret 6= ⊥
Effect:

pc := wait2

Input receive2 ((X, Y, t), m)

Effect:

if pc = wait2 ∧
∃r ∈ {0, 1}k.m = [y.x.RX .r]secret then

RY := r

pc := send3

else

pc := error

fi

Output send3 ((X, Y, t), m)

Precondition:

pc = send3 ∧m = [x.RY ]secret
Effect:

pc := end

accept := T

Fig. 7.7. The MAP1 Agent, MAP1 t
X,Y k

, Part II

Figures 7.9 and 7.10 show the good adversary. First of all the adversary
waits for the secret from the secret generator G. Then it alternates internal
generation of messages according to function Not Bad , which guarantees
no forging of signatures, and delivery of messages to agents. All inputs from
the agents are simply added to the history.

Figures 7.11 and 7.12 depict the real adversary RAdvf
k(A). Also in this

case the adversary waits for the secret from G, but the actual value of
the secret is discarded. After that, the adversary behaves sequentially: it
generates internally a new message, including the destination, according
to a probabilistic polynomial time function f , it forwards the generated
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Transitions:

Input receive1 ((X, Y, t), m)

Effect:

if pc = wait1 then

pc := send2

RY := m

else

pc := error

fi

Output send2 ((X, Y, t), m)

Precondition:

pc = send2 ∧RX 6= ⊥ ∧ secret 6= ⊥ ∧
m = [x.y.RY .RX ]secret

Effect:

pc := wait3

Input receive3 ((X, Y, t), m)

Effect:

if pc = wait3 ∧m = [y.RX ]secret then

pc := end

accept := T

else

pc := error

fi

Fig. 7.8. The MAP1 Agent, MAP1 t
X,Y k

, Part III

message to the chosen destination, and, if specified in the MAP1 protocol,
waits for the answer. Then the cycle is repeated. The correctness of the
cycle is guaranteed by a boolean variable enable action creation, which is
true only when a new message can be generated.

Some Considerations on the Automata

We have been very careful in the definition of the real adversary, and in
particular we have ensured that its behavior is sequential. One reason for
doing this is that in the definition of correct message authentication schemes
the forger is a sequential process, and thus, if we want the negation of the
step condition to become the definition of a forger, we need to make sure
that we will deal with a sequential process.

It would be desirable to be able to reason with a more general, non-
sequential, adversary, but unfortunately it is not possible to do it in the
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GAdvk(A)

Signature:

Input:

secret for adv(s), s ∈ {0, 1}k

send1 ((X, Y, t), m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
send2 ((X, Y, t), m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
send3 ((X, Y, t), m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Output:

start init(X, Y, t), X, Y ∈ A, t ∈ N
receive1 ((X, Y, t), m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
receive2 ((X, Y, t), m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
receive3 ((X, Y, t), m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Internal:

create message

State:

history ∈ Sequences(Actions(A)×M), initially ∅,
message ∈ M ∪ {⊥}, initially ⊥
secret ∈ {0, 1}k ∪ {⊥}, initially ⊥
where M = {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

Transitions:

Input secret for adv(s)

Effect:

secret := s

Internal create message

Precondition:

secret 6= ⊥
Effect:

message := m ∈ Not Bad(secret , history)

Fig. 7.9. The Good Adversary, GAdvk(A), Part I

current setting. Suppose we allow the real adversary to generate messages
according to f in any order, without necessarily waiting for the answers
from the agents. Then we can build a scheduler, and an appropriate func-
tion f , where the adversary initializes k sessions of the MAP1 protocol,
say S1, . . . , Sk, and make sure that session Si responds only if the ith bit
of the secret is 1. In this way the adversary knows the value of the secret
and it is therefore able to sign messages. In other words we can resolve
nondeterminism to create a covert channel [66] that communicates the se-
cret to the adversary. Solutions to this problem are studied already in the
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Transitions:

Output start init(X, Y, t)

Precondition:

secret 6= ⊥
Effect:

history := history ` (start init , (X, Y, t))

Input send1 ((X, Y, t), m)

Effect:

history := history ` (send1 , ((X, Y, t), m))

Output receive1 ((X, Y, t), m)

Precondition:

m = message

Effect:

history := history ` (receive1 , ((X, Y, t), m))

Input send2 ((X, Y, t), m)

Effect:

history := history ` (send2 , ((X, Y, t), m))

Output receive2 ((X, Y, t), m)

Precondition:

m = message

Effect:

history := history ` (receive2 , ((X, Y, t), m))

Input send3 ((X, Y, t), m)

Effect:

history := history ` (send3 , ((X, Y, t), m))

Output receive3 ((X, Y, t), m)

Precondition:

m = message

Effect:

history := history ` (receive3 , ((X, Y, t), m))

Fig. 7.10. The Good Adversary, GAdvk(A), Part II

literature [34, 86, 97] and it is worth investigating how polynomially accu-
rate simulations can be adapted to such frameworks. Here we have chosen
to avoid restrictions to the schedulers to keep the treatment simple and to
show that it is also possible to remove dangerous nondeterminism and work
with unrestricted schedulers.

Another observation about our definition of the adversaries is that we
have separated message generation from message delivery. We could easily
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RAdvf
k(A)

Signature:

Input:

secret for adv(s), s ∈ {0, 1}k

send1 ((X, Y, t), m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
send2 ((X, Y, t), m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
send3 ((X, Y, t), m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Output:

start init(X, Y, t), X, Y ∈ A, t ∈ N
receive1 ((X, Y, t), m), m ∈ {0, 1}k, X, Y ∈ A, t ∈ N
receive2 ((X, Y, t), m), m ∈ {0, 1}5k, X, Y ∈ A, t ∈ N
receive3 ((X, Y, t), m), m ∈ {0, 1}3k, X, Y ∈ A, t ∈ N

Internal:

create message

State:

history ∈ Sequences(Actions(A)×M), initially ∅,
action ∈ Actions(A) ∪ {⊥}, initially ⊥
enable action creation ∈ {T, F}, initially T

message ∈ M ∪ {⊥}, initially ⊥
run enabled ∈ {T, F}, initially F

where M = {0, 1}k ∪ {0, 1}3k ∪ {0, 1}5k

Transitions:

Input secret for adv(s)

Effect:

run enabled := T

Internal create action

Precondition:

run enabled ∧ enable action creation

Effect:

enable action creation := F

(action,message) := f(history)

Fig. 7.11. The Real Adversary, RAdvf
k(A), Part I

avoid this separation, but in this case we would be forced to use probabilistic
automata with generative transitions [104] to describe the real adversary,
which have a more complex theory. Once again, our choice is to keep the
presentation simple and focus on the ideas behind polynomially accurate
simulations.
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Transitions:

Output start init(X, Y, t)

Precondition:

action = start init(X, Y, t)

Effect:

action := ⊥
history := history ` (start init , ((X, Y, t), m))

Input send1 ((X, Y, t), m)

Effect:

history := history ` (send1 , ((X, Y, t), m))

enable action creation := T

Output receive1 ((X, Y, t), m)

Precondition:

=receive1 t
X,Y ∧m = message

Effect:

history := history ` (receive1 , ((X, Y, t), m))

action := ⊥

Input send2 ((X, Y, t), m)

Effect:

history := history ` (send2 , ((X, Y, t), m))

enable action creation := T

Output receive2 ((X, Y, t), m)

Precondition:

=receive2 t
X,Y ∧m = message

Effect:

history := history ` (receive2 , ((X, Y, t), m))

action := ⊥

Input send3 ((X, Y, t), m)

Effect:

history := history ` (send3 , ((X, Y, t), m))

enable action creation := T

Output receive3 ((X, Y, t), m)

Precondition:

action = receive3 t
X,Y ∧m = message

Effect:

history := history ` (receive3 , ((X, Y, t), m))

enable action creation := T

action := ⊥

Fig. 7.12. The Real Adversary, RAdvf
k(A), Part II
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υ3
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Fig. 7.13. Graphical representation of the step ν2 −→ υ2.

The Security Proof

Now we are ready to prove the correctness of the MAP1 protocol. For the
first step, there is nothing to prove, since we can use the results of the
Section 6.1.1. For the second step of the proof, we apply directly the defi-
nition of the polynomially accurate simulation, showing how the negation
of the step condition leads to the negation of the main property of the un-
derlying cryptographic primitive (in this case, the security of the message
authentication scheme).

Proposition 7.1. {A2
k}k∈N .s {A3

k}k∈N

Proof. Define the relation family {Rk}k∈N as the family of identity rela-
tions.

The condition on start states is trivially true. Suppose that step condi-
tion does not hold. This means that there exist c ∈ N, p ∈ Poly such that
for all k̄ ∈ N there exist k > k̄, ν2, ν3, γ and υ2 such that ν2 is reached
by A2

k within p(k) steps, ν2 L(Rk, γ) ν3, ν2 −→ υ2 and there is no υ3 such
that ν3 −→ υ3 and υ2 L(Rk, γ + k−c) υ3.

Figure 7.13 gives a graphical representation of the transition ν2 −→ υ2

where ε represents the part of the transition that can not be emulated from
ν3; hence ε > k−c.

By definition of A2
k and A3

k, it follows that A2
k is the composed automa-

ton Gk||NGI
k(A)||MAP1 t

X,Y k
||RAdvf

k(A) and A3
k is the composed automa-

ton Gk||NGI
k(A)||MAP1 t

X,Y k
||GAdvk(A). This implies that the transitions

of A2
k that can not be simulated by A3

k are only the ones of RAdvf
k(A)

(since each transition of other automata is easily matched choosing the
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same transition). By definition of RAdvf
k(A) and GAdvk(A), it follows that

RAdvf
k(A) might generate a fresh valid message authentication code while

GAdv may perform any action except for casting new message authentica-
tion codes without obtaining them from the agents, and this implies that
the ε fraction above corresponds to generation of new message authentica-
tion codes. That is, the right side of Figure 7.13 represents a computation
of A2

k of length at most p(k) + 1 where a new message authentication code
is generated with probability at least k−c. Summing up, there exist c ∈ N,
p ∈ Poly such that for all k̄ ∈ N there exist k > k̄ and υ2 such that υ2

has length at most p(k) + 1 and the probability to generate new message
authentication codes in υ2 is at least k−c. This contradicts the fact that the
message authentication scheme used by MAP1 is a secure message authen-
tication scheme since the statement above is the negation of the negligible
probability of successful forger after using a polynomial p′(k) to denote
p(k)+1 and observing that at most p′(k) message authentication codes are
requested within p′(k) steps. ut

As we can see, in the above proof the negation of the step condition
leads to a negation of properties of underlying cryptographic primitives.
In fact we have negated the security of the message authentication scheme
used to define the MAP1 protocol.

Now we are ready to relate the executions of the concrete level to exe-
cutions of the abstract model. In fact, denote by MAP1 k the composition
of automata MAP1 t

X,Y k
with X,Y ∈ A and t ∈ N; moreover, consider the

following naming:

– B1
k for Gk(A)||NGk(A)||MAP1 k||RAdvf

k(A),
– B2

k for Gk(A)||NG1
k(A)||MAP1 k||RAdvf

k(A),
– B3

k for Gk(A)||(NG1
k(A)|Gk)||MAP1 k||RAdvf

k(A),
– B4

k for Gk(A)||NG2
k(A)||MAP1 k||RAdvf

k(A), and
– B5

k for Gk(A)||NG2
k(A)||MAP1 k||GAdvk(A).

We have the following chain of simulations:

– by Proposition 6.2, we have that {B1
k}k∈N .s {B2

k}k∈N;
– Proposition 6.5 implies that {B2

k}.s
{B3

k}k∈N;
– by Proposition 6.4 it follows that {B3

k}k∈N .s {Gk(B4
k}k∈N;

– Proposition 7.1 implies that {B4
k}k∈N .s {B5

k}k∈N.

The above results imply that we have a chain of simulations from {B1
k}k∈N

to {B5
k}k∈N and thus, by Theorem 3.16, we know that for each c ∈ N e
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p ∈ Poly , there exists k̄ ∈ N such that for each k > k̄, if ν1 is a probability
measure reached within p(k) steps in {B1

k}k∈N, then there exists a proba-
bility measure ν5 such that ν5 is reached within p(k) steps in {B5

k}k∈N and
ν1 L(Rk, p(k)k−c) ν5 where {Rk}k∈N is the family of relations Rk such that
each relation Rk is the composition of the relations that justify the chain
of simulations.

If we analyze the relations we use in the chain of simulations, we find
that they are always the identity relation, except for the first relation that
is the identity relation on common variables. This implies that also the
composition of such relations is the identity relation (on common variables)
and thus we know that each execution of the real representation of the
protocol is also an execution of the ideal automaton, except for a negligible
set of executions. This means that the probability of an attack is negligible.
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A Case Study: the Dolev-Yao Soundness

In this chapter we apply our polynomially accurate simulations to the
soundness result of Cortier and Warinschi [41] and we show how proba-
bilistic automata and approximated simulations can be used to provide
a more rigorous proof of the soundness result, highlighting the technical
details that are considered in an informal way.

We start recalling the protocol syntax, the execution models and the
soundness results of [41]. Finally, in Section 8.4, we present our analysis of
the proof, showing how probabilistic automata and polynomially accurate
simulations permit to point out the details that are usually treated only
informally.

8.1 Protocol Syntax

The cryptographic protocols considered in [41] are specified in a language
similar to the one of [101]. In such language, protocols are described by
ordered set of roles: given the set of participants, the behavior of the par-
ticipant p is specified by a role Rp. Each role is a list of steps performed
by the participant and each step is represented using two message patterns
(ml, mr). Each participant p knows which is the next step it should perform,
so when it receives a message m, it tries to match m with the left pattern ml

of the next step. If m and ml match, then p replies with a message m′ that
is obtained from mr by instantiating variables of mr with corresponding
values in m, previously received messages and p’s initial knowledge. Start
point of the protocol is denoted by the pattern init that can be used only
once and as the left pattern of a step. In particular, such step is the first
step of the role that specifies the initiator of the protocol. Similarly, pattern
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stop is used to denote the end of the protocol and it can be used only as
the right pattern of a step.

The language is based on an algebraic signature with the following sorts:
ID, SKey, VKey, EKey, DKey, Nonce, Label, Ciphertext, Signature, Pair, and
Term. ID is used for agent identities; SKey, VKey, EKey, and DKey con-
tain keys for signing, verifying, encryption and decryption, respectively;
Nonce for nonces; Label for labels; Ciphertext for ciphertexts; Signature for
signatures, Pair for pairs and Term is a supersort containing all other sorts.

Nine operations are defined on sorts:

– ek : ID → EKey

– dk : ID → DKey

– sk : ID → SKey

– vk : ID → VKey

– ag : N → Label

– adv : N → Label

– 〈 , 〉 : Term× Term → Pair

– { } : EKey × Term× Label → Ciphertext

– [ ] : SKey × Term× Label → Signature

The first four operations (ek, dk, sk, and vk) associate the corresponding
key to the given agent identity; ag and adv are used to generate labels. A
label represents the randomness used during the encryption/signature of a
value and we define two functions to distinguish between the randomness
used by agents (represented by ag function) from the one used by the ad-
versary (represented by adv). The last three operations are pairing, public
key encryption and signing and are used to build up composed terms.

The protocols are specified using the algebra of term constructed over
the above signature from a set X of sorted variables, that is, X = X.n ∪
X.a ∪ X.c ∪ X.s ∪ X.l where X.n, X.a, X.c, X.s, and X.l denote the set of
variables of sort nonce, agent, ciphertext, signature, and labels, respectively.
If p ∈ N is the number of the protocol participants, then the set X.a is fixed
to be X.a = {A1, . . . , Ap}. The set of nonce variables is partitioned with
respect to the agent that generates them, that is, X.n =

⋃
A∈X.a Xn(A)

where Xn(A) = {Xj
A | j ∈ N} and Xj

A denotes the jth nonce variable of
agent A.

We define the size of a term t inductively as follows:
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size(t) =


1 if t = N ∈ X.n

size(t1) + 1 if t = {t1}t2
t3

size(t1) + 1 if t = [t1]t2t3
size(t1) + size(t2) + 1 if t = 〈t1, t2〉

8.1.1 Roles and Protocols

The messages sent by protocol participants are specified using terms in
TΣ (X), the free algebra generated by X over the signature Σ . A role de-
scribes the individual behavior of each protocol participant specifying the
sequence of message receptions and transmissions. Usually, a participant
receives a message as input and then generates a reply as output. In some
cases, the participant can generate an output without having received an in-
put previously. In this case, the special term init /∈ TΣ (X) is used instead of
the expected message reception. Similarly, the special term stop /∈ TΣ (X)
is used to specify that a message reception is not followed by a message
transmission.

A protocol generally involves several participants, each one with a dif-
ferent behavior. If the protocol involves k participants, then it is called a
k-party protocol and it is defined by k (possibly different) roles.

Definition 8.1. Let Roles be the set (({init}∪TΣ (X))×(TΣ (X)∪{stop}))∗.
A k-party protocol is a mapping Π : {1, . . . , k} → Roles.

The above definition of k-party protocol is very general and does
not distinguish between protocols that can be implemented from non-
implementable protocols. For example, it is possible to define a protocol
where three participants A1, A2, and A3 are involved: A1 generates a mes-
sage m that is then encrypted with the encryption key of A2 and the re-
sulting ciphertext c is sent to A3. A3 receives c, extracts m and replies
with m signed with the signing key of A2. Such protocol is obviously non-
implementable, since A3 can not decrypt the c to obtain m and furthermore
it can not generate the signature of m under the signing key of A2, since it is
a standard assumption that each participant is honest (until it is corrupted
by the adversary) and it does not know private keys of other participants.

Before defining executable protocols, that is protocols that can be imple-
mented and that satisfy standard assumptions, we define the initial knowl-
edge of a participant. The initial knowledge contains the private keys of the
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S `a m
m ∈ S

S `a b, ek(b), vk(b)
b ∈ X.a Initial knowledge

S `a m1 S `a m2

S `a 〈m1, m2〉
S `a 〈m1, m2〉

S `a mi
i ∈ {1, 2} Pairing and unpairing

S `a ek(b) S `a m

S `a {m}ag(i)
ek(b)

i ∈ N
S `a {m}l

ek(b) S `a dk(b)

S `a m
Encryption and decryption

S `a sk(b) S `a m

S `a [m]
ag(i)
sk(b)

i ∈ N Signature

Fig. 8.1. Deduction rules for agents

participant (decryption and signing key) and all nonces it will use during
the protocol run.

Definition 8.2. If A is a variable, or constants of sort agent, we define the
knowledge of A, denoted by kn(A), as kn(A) = {dk(A), sk(A)} ∪ Xn(A).

The fact that initial knowledge contains cryptographic private keys per-
mits to do not consider the problem of generating and distributing cryp-
tographic keys. This assumption is widely used when a new protocol (that
does not try to resolve the problem of generating and distributing crypto-
graphic keys) is proposed (see, for example, [63, 71,87]).

Now we can define when a protocol is executable, that is, it is imple-
mentable. Informally, a protocol is executable if response messages can be
deduced from the initial knowledge and previously received messages. More-
over, it is required that a participant is actually able to open encryptions
and to verify signatures as well as the participant is able to perform equality
tests implicitly defined by the repetitions of variables.

The following definition of executable protocol is different from the origi-
nal definition provided in [41]: we have expanded it to make it more readable
and more complete.

Definition 8.3. Let Π : {1, . . . , n} → Roles be an n-party protocol. Sup-
pose that for each j ∈ {1, . . . , n}, the role of the protocol associated with
participant j is Π(j) = ((lj1, r

j
1), . . . , (l

j
kj

, rj
kj

)).
Let `a be the deduction defined by rules given in Figure 8.1.
Π is an executable protocol if following conditions hold:

1. the protocol has the executable decryption property: for all Ai ∈ X.a the
only encryption keys that are contained in terms li1, . . . , liki

are ek(Ai);
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2. the protocol has the executable verification property: for each 1 6 i 6 n,
each 1 6 k 6 ki, and each A ∈ X.a we require that whenever lik contains
a signature [t]λsk(A) for some term t ∈ TΣ(X), λ ∈ ag(i), the term t

can be computed from li1, . . . , lik, kn(Ai) by Dolev-Yao operations, i.e.,
li1, . . . , l

i
k,kn(Ai) `a t;

3. the protocol has the computable message property: for all 1 6 k 6 kj

we require that ri
k can be computed from li1, . . . , l

i
k,kn(Ai) by Dolev-Yao

operations, i.e., li1, . . . , l
i
k,kn(Ai) `a ri

k;
4. the protocol has the already known variable property: for each 1 6 i 6

n, each 1 6 k 6 ki, the variables of ri
k are contained in the union of the

variables of li1, . . . , l
i
k, X.a and Xn(Ai).

In addition, the terms li1, . . . , l
i
k do not contain label variables and for

any subterm {m}λ
ek(B) of ri

1, . . . , r
i
k, λ is a label variable and for any

{m′}λ
ek(B′) subterm of ri

1, . . . , r
i
k, we have m = m′ and B = B′, and for

any subterm [m]λsk(B) of ri
1, . . . , r

i
k,

• either λ is a label variable and for any [m′]λsk(B′) subterm of ri
1, . . . , r

i
k,

we have m = m′ and B = B′,
• or λ is of the form ag(p) (p ∈ N) and B = Ai.

Before explaining the conditions of executable protocols, we explain the
deduction rules of Figure 8.1. Consider the first row, identified as initial
knowledge: if our knowledge is S, then we can deduct each element of S as
well as the identity and public keys of each protocol’s participant. These
rules model the fact that we know who are the participants of the protocol
and that public keys are already distributed to all participants.

The second two rules (pairing and unpairing) are very simple: if we know
two messages m1 and m2, then we can generate the message 〈m1, m2〉 that
is the pair composed by m1 and m2. On the contrary, if we know a message
m that is the pair 〈m1, m2〉, then we can retreive each component of the
pair, that is m1 and m2.

The third row (encryption and decryption) models our capability to
generate encrypted messages and to decrypt ciphertexts. The left rule states
that if we can deduct an encryption key ek(b) and a message m, then we are
able to generate {m}ag(i)

ek(b): the encryption of m under ek(b) where ag(i) is
an agent’s label. Note that this rule (in conjunction with initial knowledge
rules) does not permit to encrypt a message with the encryption key of an
agent that is not involved into the protocol.
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The right rule of the third row states that we are able to decrypt a
message only if we can deduct the decryption key associated with the en-
cryption key used to generate the ciphertext.

Finally, the signature rule of the forth row models our capability to
generate signatures. In particular, if we are able to deduce a message m and
a signature key sk(b), then we are able to produce the signature [m]ag(i)

sk(b);
ag(i) is an agent’s label.

Now we can start to explain the properties that characterize executable
protocols. Note that such properties are sufficient to achieve the soundness
result, even if probably we can find less restrictive conditions that permit
to characterize executable protocols. We do not care about how much re-
strictive properties are, since we want to use approximated simulations to
make more rigorous the soundness proof following the same hypothesis, not
to question the accuracy of hypothesis.

The first condition, the executable decryption property, states that for
each agent Ai, encryption keys used in the left side of each step of the
corresponding role belong to Ai.

The second condition, the executable verification property, states that
for each signature [t]λsk(A) contained in the left side of a step of a role, it
is possible to derive t from previously received messages together with the
initial knowledge. The meaning of this property is that when we receive a
signature [t]λsk(A), we can verify it if we are able to obtain t.

The third condition, the computable message property, states that each
term on the right side of a step of a role is derivable from previously received
messages together with the initial knowledge. The meaning of this property
is that we can generate a term only if we can compute it from our knowledge.

The fourth condition, the already known variable property, states that
each variable we use when we generate a term must be a variable we al-
ready know. Moreover, the label variables must satisfy further restrictions:
a label variable that occurs in an encryption term can not occur in different
encryption terms; for the signatures, there is the same restriction and given
[m]λsk(B), if λ = ag(p) for some p ∈ N, then signature is produced using the
signature key of the agent corresponding to the current role.

8.2 Execution Models

The soundness result of [41] relates two different execution models: in the
first one, the formal execution model, agents and adversary exchange sym-
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bolic elements of a term algebra and the adversary can produce its messages
only following standard Dolev-Yao restrictions [46]. In the second model,
the computational execution model, messages are bitstrings and no restric-
tions are imposed to the adversary and agents which are implemented by
probabilistic polynomial time Turing machines.

8.2.1 Formal Execution Model

In the formal execution model, messages exchanged between agents and the
adversary are terms of a free algebra T f defined as:

T f ::= a identities
| ek(a) | dk(a) | sk(a) | vk(a) keys
| n(a, j, s) agent nonces
| n(j) adversary nonces
| 〈T f , T f 〉 pairing
| {T f}ag(i)

ek(a) | {T f}adv(i)
ek(a) encryption

| [T f ]ag(i)
sk(a) | [T f ]adv(i)

sk(a) sign

where a ∈ ID, i, j, s ∈ N.
Formal execution model is defined as a state transition system (S, T ).

Each global state s is a triple (SId, f,H) where

– SId ⊆ N × N × IDk is the set of session ids. Given a session id
(n, j, (a1, . . . , ak)), n identifies the session, j represents the index of the
role executed in session n and a1, . . . , an ∈ ID are the identities of the
parties involved in the protocol;

– f : SId → ((X → T f ) × N × N) keeps the local state for each session.
Given a session id sid, f(sid) = (σ, i, p) where σ partially instantiates
variables of the role Π(i) and p is the control point of the program, that
is which step of the protocol is the next one to execute;

– H contains the history of the execution. That is, it contains messages
generated by agents (as terms of T f ) and possibly private cryptographic
keys.

There are three kinds of transition:

– (SId, f,H)
corrupt(a1,...,al)−−−−−−−−−−−→ (SId, f,H ∪ ⋃

16j6l kn(aj)). Agents a1, . . . ,
al are corrupted by the adversary and the effect of such action is to
extend the history with private keys of corrupted agents;
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– (SId, f,H)
new(i,a1,...,ak)−−−−−−−−−→ (SId′, f ′, H ′). A new session is instantiated by

the adversary; i is the index of the initial role of the new session and a1,
. . . , ak are actual agents involved in the session. The effect of such action
is to reach a new global state (SId′, f ′, H ′) whose components are defined
as follows: let s be a the new session identifier (for example, s = |SId|+1).
SId′ = SId ∪ {(s, i, (a1, . . . , ak))} and H ′ = H. Function f ′ is defined as
f ′(sid) = f(sid) for sid ∈ SId and f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) where
σ : X → T f is partially defined as{

σ(Aj) = aj 1 6 j 6 k

σ(Xj
Ai

) = n(ai, j, s) j ∈ N

This means that a new session is instantiated, the history is extended
with the session just created and the local state of the new session maps
only agent identities and nonces of the agent corresponding to the initial
role i;

– (SId, f,H)
send(sid,m)−−−−−−−→ (SId′, f ′, H ′). A new message m ∈ T f is sent

by the adversary to the session identified by the session id sid ∈ SId.
The effect of such action depends on the message m. In fact, sup-
pose that f(sid) = (σ, j, p) for some σ, j, and p and let Π(j) =
((lj1, r

j
1), . . . , (l

j
k, r

j
k)). There are two cases:

– either there exists a substitution θ such that m = ljpσθ, then

f ′(sid′) =

{
(σ ∪ θ, j, p + 1) if sid′ = sid

f(sid′) if sid′ ∈ SId \ {sid}

and H ′ = H ∪ {rj
pσθ},

– or simply f ′ = f and H ′ = H.
This means that if the message m sent by the adversary to session sid

matches the expected one, then the global state is updated adding the
response message generated by the protocol to the history, variables
instantiation σ of the local state is updated adding new association
defined in θ and program counter is increased to the next step of the
protocol. On the contrary, if the message m can not be matched with
the expected one (for example, because it uses different values for the
same nonce or it is a pair instead of an encrypted message), then the
global state remains unchanged and no information is stored inside the
history about matching failure.
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S ` m
m ∈ S

S ` b, ek(b), vk(b)
b ∈ X.a Initial knowledge

S ` m1 S ` m2

S ` 〈m1, m2〉
S ` 〈m1, m2〉

S ` mi
i ∈ {1, 2} Pairing and unpairing

S ` ek(b) S ` m

S ` {m}adv(i)
ek(b)

i ∈ N
S ` {m}l

ek(b) S ` dk(b)

S ` m
Encryption and decryption

S ` sk(b) S ` m

S ` [m]
adv(i)
sk(b)

i ∈ N
S ` [m]lsk(b)

S ` m
Signature

Fig. 8.2. Deduction rules for adversary

Definition 8.4. Let SID = N× N× IDk be the set of all session ids.
A symbolic execution trace is a sequence of global states (SId, f,H)

of the state transition system. The set of all symbolic execution traces is
SymbTr = (SID× (SID → ((X → T f )× N× N))× 2T f

)∗.

Definition 8.5. A symbolic execution trace (SId1, f1, H1) . . . (SIdn, fn, Hn)
is valid if

– H1 = SId1 = ∅;
– (SId1, f1, H1)

a−→ (SId2, f2, H2) for a ∈ {corrupt,new, send};
– for each 1 < i < n, (SIdi, fi, Hi)

a−→ (SIdi+1, fi+1, Hi+1) for a ∈
{new, send}; and

– if (SIdi, fi, Hi)
send(sid,m)−−−−−−−→ (SIdi+1, fi+1, Hi+1), then Hi ` m

where deduction ` is defined by deduction rules given in Figure 8.2.
Given a protocol Roles, the set of valid symbolic execution traces is de-

noted by Execs(Roles).

Lemma 8.6 (Lemma 1 [41]). Let M be a set of messages and m be a
message. If M 6` m, then:

– either there exists a subterm [t]k of m which is not a subterm of terms
in M ,

– or there exists a subterm t of m, i.e. t = m|p for some path p, such
that for each path p′ 6 p, M 6` m|p′, and t appears under an encryption
in M , i.e. there exist a term m′ ∈ M and contexts C and C′ such that
m′ = C[{C′[t]}k] with M 6` k−1.

The above Lemma characterizes which messages can not be derived by
the adversary. In particular, a message m can not be derived using the `
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deduction when one of the following two cases occurs: it contains a signed
message [t]k and such signature is not available as a subterm of terms of M .
This implies that [t]k is a fresh signature that can not be found in M ; or it
contains a message t that appears encrypted in some message m′ ∈ M but
in m it does not appear as a subterm of some derivable term. This means
that t is encrypted in M , it does not appear as plaintext in M , and in m it
is not a subterm of some derivable message. For example, suppose that m is
the message {N}ek(a) and that M = {mb, mc, md} where mx = {N}ek(x) for
x ∈ {b, c, d}. In this case, M 6` m since m contains an encryption of N that
it is not available in M , thus m can be obtained only opening one of mb, mc,
and md. On the contrary, for M = {sa, mb, mc} with sa = [{N}ek(a)]sk(a),
M ` m since {N}ek(a) can be derived from sa (using the right Sign rule of
Figure 8.2).

8.2.2 Concrete Execution Model

The second model used in [41] is the concrete execution model. In such
model, exchanged messages are bitstrings parameterized by a security pa-
rameter η that is used to establish, for example, the size of nonces and
cryptographic keys.

Set of valid messages is denoted by Cη and it is partitioned into sets
Cη.a, Cη.n, Cη.e, Cη.v, Cη.c, Cη.s, and Cη.p that represent agent identi-
ties, nonces, encryption keys, verification keys, ciphertexts, signatures, and
pairs, respectively.

Given a message m ∈ Cη, any implementation must permit to efficiently
recover the type of the message, that is, if it is a pair or an encryption key.
To do this, the total function type: Cη → {a, n, e, v, c, s, p} is used.

To share public keys between agents and adversary, two functions are
used: ek : Cη.a → Cη.e and vk : Cη.a → Cη.v. These functions are supposed
to be available to all parties, publicly computable and efficiently invertible,
that is given a public key, it is easy to recover corresponding agent.

The concrete implementation of encryption and signing is based on two
schemes: a public key encryption scheme E = (KGene, Enc, Dec) and a sig-
nature scheme S = (KGens, Sig, Ver). We suppose that, given a ciphertext
or a signature, it is easy to derive the public key associated to the message
and, for signatures, the signed message. Pairing is implemented by some
standard and efficiently invertible encoding function 〈 · , · 〉 : Cη×Cη → Cη.p.

We define the size of a message m ∈ Message inductively as follows:



8.2 Execution Models 237

size(m) =


1 if type(m) ∈ {a, n, e, v}
size(p) + 1 if type(m) = c and m = Enc(e, p)

size(p) + 1 if type(m) = s and m = Sig(s, p)

size(m1) + size(m2) + 1 if type(m) = p and m = 〈m1, m2〉

The concrete execution model is defined as a state transition system
(S, T ), similarly to the formal execution model. Each global state s is a
triple (SId, f) where

– SId ⊆ N × N × Cη.ak is the set of session ids. Given a session id
(n, j, (a1, . . . , ak)), n identifies the session, j represents the index of the
role executed in session n and a1, . . . , an ∈ Cη.a are the identities of the
parties involved in the protocol;

– f : SId → ((X → Cη) × N × N) keeps the local state for each session.
Given a session id sid , f(sid) = (σ, i, p) where σ : X → Cη partially
instantiates variables of the role Π(i) and p is the control point of the
program, that is which step of the protocol is the next one to execute.

Global states of the concrete execution model are essentially the same of
the formal execution model, except that history H is missing.

There are three kinds of transition and they are very similar to ones of
formal execution model:

– (SId , f)
corrupt(a1,...,al)−−−−−−−−−−→ (SId , f). Agents a1, . . . , al ∈ Cη.a are corrupted

by the adversary and the effect of such action is to generate public and
private keys for corrupted agents using key generation algorithms KGene

and KGens: public keys are published and private keys are given to the
adversary;

– (SId , f)
new(i,a1,...,ak)−−−−−−−−−→ (SId ′, f ′). A new session is instantiated by the

adversary; i is the index of the initial role of the new session and
a1, . . . , ak ∈ Cη.a are actual agents involved in the session. The effect of
such action is to reach a new global state (SId ′, f) whose components
are defined as follows: let s be a the new session identifier (for example,
s = |SId |+1). SId ′ = SId∪{(s, i, (a1, . . . , ak))}. Function f ′ is defined as
f ′(sid) = f(sid) for sid ∈ SId and f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) where
σ : X → Cη is partially defined as{

σ(Aj) = aj 1 6 j 6 k

σ(Xj
Ai

) = n(ai, j, s) ∈R Cη.n j ∈ N.
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In addition, for each term {t}l
ek(Aj)

and each term [t]lsk(Ai)
that are

sent (i.e. occurring within some ri
j of Π(i)) we choose random coins

resid (t, Aj , l) and rssid (t, Ai, l) respectively. These coins will later be
used in randomizing the encryption and signing functions in the con-
crete implementation.
This means that when a new session is instantiated, the history is ex-
tended with the session just created and the local state of the new session
maps only agent identities and nonces of the agent corresponding to the
initial role i;

– (SId , f)
send(sid ,m)−−−−−−−→ (SId , f ′). A new message m ∈ Cη is sent by the

adversary to the session identified by the session id sid ∈ SId . The effect
of such action depends on the message m. In fact, suppose that f(sid) =
(σ, j, p) for some σ, j, and p and let Π(j) = ((lj1, r

j
1), . . . , (l

j
k, r

j
k)).

First step is to parse m as an instantiaton of ljp. Let θ be the resulting
mapping that assignees variables of ljp to values of Cη. If the parsing
procedure fails (this can happen for example when types of bitstring
and term do not match), then f ′ = f .
If the parsing procedure ends correctly, the second step is to update
local state (σ, j, p) accordingly to θ. There are two cases, depending on
σ and θ:
– either θ and σ are compatible, then

f ′(sid ′) =

{
(σ ∪ θ, j, p + 1) if sid ′ = sid

f(sid ′) if sid ′ ∈ SId \ {sid}
– or simply f ′ = f .
If θ and σ are compatible, then the message rj

p is computed: each variable
X of rj

p is replaced by (σ∪ θ)(X) and actual encryptions and signatures
are obtained as result of the use of algorithms Enc and Sig. Resulting
bitstring is then given to the adversary as answer of send(sid , m) action.

Definition 8.7. Let SID = N×{0, . . . , k}×Cη.ak be the set of all session
ids.

A concrete trace is a sequence of global states (f,SId) of the state tran-
sition system. The set of all concrete traces is

ConcTr =
⋃

η(SID × (SID → ((X → Cη.a)× N× N)))∗

Given an adversary A and a protocol Π, we can obtain several con-
crete traces. This is due to the fact that the adversary is probabilistic
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and the cryptographic primitives used by the protocol are randomized. In
fact nonces, encryption and signatures are generated by random choices
(for nonces) or by randomized algorithms (for encryption and signatures).
Since the adversary runs in polynomial time, then at most a polynomial
number of random coins are used by the protocol. Let pA and pΠ two poly-
nomials that bound the number of random coins used by adversary and
protocol, respectively. Let (RA, RΠ) ∈ {0, 1}pA(η) × {0, 1}pΠ(η) be a pair of
sequences of random coins. (RA, RΠ) determines a unique concrete trace
(SId1, f1), (SId2, f2), . . . which is denoted by Execc

Π(RΠ),A(RA)(η).

8.3 Relating Symbolic and Concrete Traces

Concrete traces can be regarded as instantiations of formal traces via ap-
propriate renaming of the variables.

Definition 8.8. Let sid = (t, i, (b1, . . . bk)) be a symbolic session id and
sid = (s, j, (a1, . . . , al)) be a concrete session id.

We say that sid is equal to sid (denoted by sid = sid) if s = t, i = j,
k = l, and for each z ∈ {1, . . . , k}, az and bz denote the same agent.

Let SId be a set of symbolic session ids and SId be a set of concrete
session ids.

SId = SId if for each sid ∈ SId there exists sid ∈ SId such that sid = sid
and for each sid ∈ SId there exists sid ∈ SId such that sid = sid.

Definition 8.9. Take a concrete trace tc = (SId1, g1), . . . , (SIdm, gm) and
a symbolic execution trace ts = (SId1, f1, H1), . . . , (SIdn, fn, Hn).

Trace tc is a concrete instantiation of ts (or alternatively ts is a symbolic
representation of tc), denoted by ts ¹ tc, if m = n and there exists an
injective function c : T f → Cη such that for each i ∈ {1, . . . , n} the following
conditions hold:

– SId i = SIdi,
– for each sid ∈ SIdi, if fi(sid) = (σ, j, p) and gi(sid) = (τ, l, q), then

– τ = c ◦ σ,
– j = l, and
– p = q.

Lemma 8.10 (Lemma 2 [41]). Let Π be an executable protocol. If in the
concrete implementation E is an IND-CCA encryption scheme and S is a
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unforgeable encryption scheme, then for any probabilistic polynomial time
algorithm A

Pr[∃ts ∈ Execs(Π) | ts ¹ Execc
Π(RΠ),A(RA)(η)] > 1− νA(η)

where the probability is over the choice (RΠ , RA) ∈R {0, 1}pA(η)×{0, 1}pΠ(η)

and νA( · ) is some negligible function.

The above Lemma states that with overwhelming probability the con-
crete traces of a protocol are instantiations of valid symbolic execution
traces.

8.3.1 Proof of Lemma 8.10

The original proof of Lemma 8.10 in [41] is done in two steps: in the first
one a mapping from bitstrings to symbols is defined while in the second
one it is shown that with overwhelming probability the resulting symbolic
trace is a valid trace.

In Step I, random coins RΠ and RA are fixed and then the execution
of adversary A is started. During the execution, a function c : Cη → T f is
maintained and it is used to map each bitstring that occurs to a formal term.
The function c is initialized by mapping agent identities in Cη.a to symbolic
names, that is, c(ai) = ai. Since RΠ is fixed, then also cryptographic keys
are fixed. So, if cryptographic keys for agent ai are eki, dki, ski, and vki,
then c is extended with c(eki) = ek(ai), c(dki) = dk(ai), c(ski) = sk(ai),
and c(vki) = vk(ai).

Adversary A uses three kinds of actions to interact with the protocol.
Thus function c must be updated accordingly:

corrupt(a1, . . . , al): mapping c is not modified, since the effect of a corrupt

action is to generate keys for agents a1, . . . , al, to publish public keys,
and to give private keys to the adversary. Function c already maps pri-
vate and public keys to corresponding symbols, since keys are uniquely
determined by RΠ that is fixed;

new(s, i, (a1, . . . , ak)): the effect of a new action is to generate keys for in-
volved agents and publish public keys. Moreover, all nonces used by
agents are generated. Similarly to corrupt, we do not update mapping
c to consider keys, since they are already mapped, but we need to up-
date c to relate concrete and symbolic nonces. To do this, since nonces
are determined by RΠ that is fixed, each concrete nonce is mapped to
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the corresponding symbolic nonce. That is, if nonce n is associated to
variable Xj

ai (for some j ∈ N), then c(n) = n(ai, j, s);
send(sid , m): as first thing, the parse tree of m is constructed recursively:

given m, if type(m) = c (that is, m is a ciphertext), then it is recovered
the encryption key e used to obtain m, the agent a which e refers and
then the original plaintext p using dk(a) (that is known). Then it p is
parsed; if type(m) = p (that is, m is a pair), then elements m1, m2

such that m = 〈m1, m2〉 are parsed; if type(m) = s (that is, m is a
signature), then the signed message m′ is recovered from m together
with the verification key v and then m′ is parsed. For all other cases
(type(m) ∈ {a, n, e, v}) parsing procedure stops, since in such cases m

is a basic element.
At the end of parsing procedure, we have obtained a parsing tree whose
leafs are nonces, agent identities, or cryptographic keys. Mapping c is
already defined for agent identities, cryptographic keys, and almost all
nonces but there can be some nonce that is not mapped into symbolic
nonces. In fact, c is already defined on all nonces generated by agents
but it is not defined on nonces generated by adversary. In this case,
c is extended mapping each adversary’s nonce to a fresh adversary’s
symbolic nonce. The mapping of other nodes of the parsing tree is then
a straightforward bottom-up procedure.

Once the mapping c is defined for all messages that are exchanged in
the execution Execc

Π(RΠ),A(RA)(η), then the symbolic trace ts is defined as
c(Execc

Π(RΠ),A(RA)(η)) that is the sequence of queries of A where:

– each query corrupt(a1, . . . , al) is replaced by corrupt(a1, . . . , al);
– each query new(s, i, (a1, . . . , ak)) is replaced by new(s, i, (a1, . . . , ak));
– each query send(sid , m) is replaced by send(sid, c(m)) where sid = sid .

The inverse of the function c maps the symbolic trace ts to the execution
Execc

Π(RΠ),A(RA)(η), denoted by c−1(ts) = Execc
Π(RΠ),A(RA)(η).

Once function c is fully defined on the concrete trace Execc
Π(RΠ),A(RA)(η),

in Step II it is shown that resulting symbolic trace ts is valid with over-
whelming probability. This is done supposing that ts is not valid with non-
negligible probability and then showing that adversary A is an attacker of
the joint security of encryption scheme E and signature scheme S. The proof
that A is an attacker of the joint security is a standard proof of computa-
tional model: A is used as a subroutine by another adversary B that behaves
as a forger for the signature scheme or as a distinguisher for the encryption
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scheme that performs a successful attack with non-negligible probability.
In particular, B is a forger when A generates the invalid query send(sid , m)
where c(m) contains some signature [t]sk that did not occur at all in the
prior communication, that is A has generated a fresh and valid signature of
t without obtaining it from the agent that own secret key sk . On the other
hand, B is a distinguisher when A generates the invalid send(sid , m) where
c(m) contains some formal term t such that there exists a message m sent by
honest parties and two contexts C and C′ such that m′ = C′[{C[c−1(t)]}ek(a)]
for some honest agent a and the term {C[c−1(t)]}ek(a) do not appear on the
path from m to c−1(t) in the parse tree of m.

8.3.2 Some Notes About The Proof of Lemma 8.10

As we have seen previously, the proof is performed in two steps: the first
one defines a mapping c from bitstrings to symbolic terms, while the second
ones shows that the resulting symbolic trace is valid with overwhelming
probability. Note that probability is considered only in the second step of
the proof, assuming that c obtained from first step is a mapping that can
be inverted and hence c−1 is injective.

These assumptions are generally true but there are some cases that
invalidate them, even if they do not affect the validity of the proof. Suppose,
for example, that there exists a nonce, say n, that is mapped into X1

a .
Suppose that adversary A performs a new(s, i, (a1, . . . , al)) and that n is
used another time, for example because it is assigned to X2

a3
where a and a3

denotes two different agents. There are two cases: either the pair (n, X2
a3

)
is simply added to c (and hence c, considered as a relation, contains both
(n, X2

a3
) and (n, X1

a)), or the pair (n, X1
a) is replaced by (n, X2

a3
). In the

first case, c is not a function anymore, since it maps the same value n to two
different symbols (X1

a and X2
a3

) and c−1 is not injective and thus it can not
be used as the injective function that justifies ts ¹ Execc

Π(RΠ),A(RA)(η) (see
Definition 8.9). So we must replace (n, X1

a) with (n, X2
a3

). In this case each
symbolic message that uses X1

a actually contains X2
a3

as subterm instead of
X1

a and this can condition second step of the proof, since an invalid trace
could not lead to an attack to the joint security of cryptographic schemes.

We have the same situation when we consider adversary’s generated
nonces. In fact, it can generate randomly a nonce n that is equal to some
agent’s generated nonce. In this case, when c is updated after a send ac-
tion, n is not mapped into the set of adversary’s symbolic nonces but it is
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associated to the nonce of some agent. This implies that a simple guess can
be confused with the decryption of a ciphertext, when n is never sent as
cleartext in all prior communication.

Claim 2.2 states that the probability of repeated nonces is negligible
thus above situation occurs with negligible probability. This means that we
can exclude traces with repeated nonces before performing first step of the
proof, so the resulting function c is really an invertible mapping and when
we consider an invalid symbolic trace at second step, then we are sure it
does not depend on wrong mapping but only on adversary’s choices.

Other problems are related to encryptions and signatures. In particu-
lar, the concrete model is not able to forward signatures and ciphertexts
since by definition of the send action, each time they are needed, they are
obtained invoking the Enc and Sig algorithms. This implies that with high
probability the bitstring we use is not the same of the one we received. This
means that we map two different bitstrings to the same symbolic term and
hence when we consider the inverse c−1 of the resulting map c, c−1 is not
a function.

8.4 Analysis of the Soundness Proof using Probabilistic

Automata

As we have seen in the previous section, proof of Lemma 8.10 is correct
but some steps require to be particularly careful, since they are not so
immediate and depends on properties that hold only after the step we are
performing.

In the following of the section we will show how probabilistic automata
and approximated simulations can be used to manage in an easier way the
technicalities we found in the proof. In particular, we are able to remove
problematic cases before the generation of the mapping from bitstrings to
symbols, so the resulting mapping satisfies required properties.

8.4.1 An Overview

To model a generic cryptographic protocol, we use several automata; each
automaton represents a single functionality and their composition models
the interaction between the cryptographic protocol and the adversary. Fig-
ure 8.3 shows an overview of the model we develop, which kind of automata
we use and the way they interact. In particular, NG represents the nonce
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PAdv

NG E S

Fig. 8.3. Automata model of a generic cryptographic protocol

generator, E the encryption oracle, S the signature oracle, and PAdv the
protocol and the adversary, which constitute a single automaton.

We describe the protocol at several levels of abstraction. The lowest
level description consists on the actual protocol that receives cryptographic
keys from a key generator, receives nonces from a device that generates
random numbers and performs cryptographic operations querying them to
the oracles that encrypt and sign messages, decrypt ciphertexts and verify
signatures. The adversary is controlled by a generic probabilistic polynomial
time algorithm.

The highest level abstraction is similar in style to the Dolev-Yao model
where we assume perfect cryptography.

8.4.2 The Modeling

We now define the automata we use to analyze the soundness proof of [41].
Each automaton is parameterized by a security parameter k ∈ N and the
set of identities of agents A.

Nonce Generator

For the nonce generator, we consider the automaton NGk(A) that repre-
sents a real nonce generator, that is a nonce generator that chooses next
nonce flipping a coin without ensuring that chosen value is not a repeated
nonce.

We model the NGk(A) automaton exactly as the NGk(A) automaton
defined in Section 6.1 and that we depict again in Figure 8.4.

Encryption Oracle

The probabilistic automaton Ek(A) that models the encryption scheme
E = (KGen, Enc, Dec) is exactly the encryption automaton Ek(A) defined
in Section 6.2 and that is shown in Figure 8.5.
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Nonce Generator NGk(A)

Signature:

Input:

get nonce(A), A ∈ A
Output:

ret nonce(A, n), n ∈ {0, 1}k, A ∈ A

State:

valueA ∈ {0, 1}k ∪ {⊥}, initially ⊥, A ∈ A

Transitions:

Input get nonce(A)

Effect:

valueA := v where v ∈R {0, 1}k

Output ret nonce(A, n)

Precondition:

n = valueA

Effect:

valueA := ⊥

Fig. 8.4. The Nonce Generator NGk(A)

Signature Oracle

Similarly to the case of the encryption oracle, the automaton Sk(A) that
models the signature scheme S = (KGen, Sig, Ver) is exactly the signature
automaton Sk(A) defined in Section 6.3 and that is depicted in Figure 8.6.

Adversary and Protocol: the Concrete Model

We now describe the automaton that models the protocol plus the adver-
sary. We have chosen to use a single automaton for two main motivations:
the first one is that we adopt the same approach of [41], the second one is
that in this way we provide a simpler automaton. In fact, if we represent
the protocol and the adversary using two different automata, then we must
provide both automata with a set of actions that are used to exchange
messages; moreover, the protocol must notify the adversary about the fail-
ure/rejection of the message it sent to the protocol. This can be done either
by a new action, or by a new message. In both cases, the adversary receives
an input that is not provided in the model considered in [41].
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Encryption automaton Ek(A)

Signature:

Input:

get public encrypt(A), A ∈ A
get corrupt encrypt(A), A ∈ A
get encrypt(A, M), A ∈ A, M ∈ Message

get decrypt(A, C), A ∈ A, C ∈ Ciphertext

Output:

ret public encrypt(A, E), A ∈ A, E ∈ EKey

ret corrupt encrypt(A, E, D), A ∈ A, E ∈ EKey, D ∈ DKey

ret encrypt(A, C), A ∈ A, C ∈ Ciphertext

ret decrypt(A, M), A ∈ A, M ∈ Message

State:

ekA ∈ {⊥} ∪ EKey, A ∈ A, initially ⊥
dkA ∈ {⊥} ∪DKey, A ∈ A, initially ⊥
pkA ∈ {⊥} ∪ EKey, A ∈ A, initially ⊥
ckA ∈ {⊥} ∪ EKey ×DKey, A ∈ A, initially ⊥
enc valueA ∈ {⊥} ∪ Ciphertext, A ∈ A, initially ⊥
dec valueA ∈ {⊥} ∪Message, A ∈ A, initially ⊥

Transitions:

Input get public encrypt(A)

Effect:

if ekA = ⊥ then

(ekA, dkA) := KGen(1k)

fi

pkA := ekA

Input get corrupt encrypt(A)

Effect:

if ekA = ⊥ then

(ekA, dkA) := KGen(1k)

fi

ckA := (ekA, dkA)

Input get encrypt(A, M)

Effect:

enc valueA := Enc(ekA, M)

Input get decrypt(A, C)

Effect:

dec valueA := Dec(dkA, C)

Output ret public encrypt(A, E)

Precondition:

pkA = E

Effect:

pkA := ⊥

Output ret corrupt encrypt(A, E, D)

Precondition:

ckA = (E, D)

Effect:

ckA := ⊥

Output ret encrypt(A, C)

Precondition:

enc valueA = C

Effect:

enc valueA := ⊥

Output ret decrypt(A, M)

Precondition:

dec valueA = M

Effect:

dec valueA := ⊥

Fig. 8.5. Encryption automaton Ek(A)
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Signature automaton Sk(A)

Signature:

Input:

get public sign(A), A ∈ A
get corrupt sign(A), A ∈ A
get sign(A, M), A ∈ A, M ∈ Message

get verify sign(A, S), A ∈ A, S ∈ Signature

Output:

ret public sign(A, V ), A ∈ A, V ∈ VKey

ret corrupt sign(A, V, S), A ∈ A, V ∈ VKey, S ∈ SKey

ret sign(A, S), A ∈ A, S ∈ Signature

ret verify sign(A, B), A ∈ A, B ∈ {T, F}

State:

skA ∈ {⊥} ∪ SKey, A ∈ A, initially ⊥
vkA ∈ {⊥} ∪VKey, A ∈ A, initially ⊥
pkA ∈ {⊥} ∪VKey, A ∈ A, initially ⊥
ckA ∈ {⊥} ∪VKey × SKey, A ∈ A, initially ⊥
sig valueA ∈ {⊥} ∪ Signature, A ∈ A, initially ⊥
ver valueA ∈ {⊥} ∪ {T, F}, A ∈ A, initially ⊥

Transitions:

Input get public sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

pkA := vkA

Input get corrupt sign(A)

Effect:

if skA = ⊥ then

(skA, vkA) := KGen(1k)

fi

ckA := (vkA, skA)

Input get sign(A, M)

Effect:

sig valueA := Sig(skA, M)

Input get verify sign(A, S)

Effect:

ver valueA := Ver(vkA, S)

Output ret public sign(A, V )

Precondition:

pkA = V

Effect:

pkA := ⊥

Output ret corrupt sign(A, V, S)

Precondition:

ckA = (V, S)

Effect:

ckA := ⊥

Output ret sign(A, S)

Precondition:

sig valueA = S

Effect:

sig valueA := ⊥

Output ret verify sign(A, B)

Precondition:

ver valueA = B

Effect:

ver valueA := ⊥

Fig. 8.6. Signature automaton Sk(A)
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Unlike for the other components, we do not provide the overall repre-
sentation of the automaton that models both adversary and protocol, but
we describe only the transitions it perform. The complete automaton can
be reconstructed collecting actions and state variables from the description
of each single transition we will list below.

For each state of the automaton, that we denote by PAdvadv
k (A), there is

a variable status that is used as a program counter to know the next kind of
operation to perform. The automaton runs a cycle where the probabilistic
polynomial time function adv is used to generate the next action to perform.
There are only three kind of actions the adversary can execute and that
adv can choose: corrupt , new and send , that correspond to the corruption
of agents, instantiation of a new session, and the sending of a message to a
session. Once adv has chosen the next action, it is executed, though this may
require to invoke the external primitives, such as nonce and keys generation,
encryption, signing, and so on. To query the external primitives, we enable
the corresponding actions of the automata we have described above in this
section.

As first thing, we choose the next action to perform with the function
adv that uses as input the state variable history that keeps the information
about all previous events (such as creation of new sessions, corruption of
agents, sending of messages, an so on). The history variable is a sequence
of actions and it is initialized to the empty sequence.

Internal create action

Precondition:

status = create

Effect:

(action,message) := adv(history)

status := act

The precondition of the create action action is that status is create,
that is, we have completed the previous action and we can choose the next
thing to do. In this way we are sure that the adversary models a sequential
algorithm where it is not possible to intermix two different thing but the
execution of an action can start only at the end of the previous one. The
function adv returns a pair of values (action,message). action represents
the next action to perform and message is the argument of it.

One action the adversary can perform is the corruption of a set of agents.
This capability is modelled by the action corrupt that is possible only at
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the beginning of the execution and it induces the generation of the keys of
the corrupted agents. In the code below variable agentsToCorrupt , which
initial value is the empty sequence λ, is updated with the list of agents that
should be corrupted. Such list is specified by the message variable that was
set by the create action action. Then a cycle starts where, for each agent
to corrupt, first the signature scheme and then the encryption scheme are
queried to generate a pair of keys and return both of them. This is done
enabling the output actions get corrupt sign(η) and get corrupt encrypt(η)
that activate the corresponding input action of Sk(A) and Ek(A). Each
request updates the history variable adding itself to the history; each pair
of keys that are received is stored into the vectors of keys: for example, if
we obtain the public encryption key public and the private decryption key
private for agent A, then we store public into ek(A) and private into dk(A).
We operate similarly for private and public signature keys.

Output corrupt(η1 . . . ηl)

Precondition:

history = λ

action = corrupt

message = (η1 . . . ηl)

Effect:

history := corrupt(η1 . . . ηl)

action := ⊥
agentsToCorrupt := η1 . . . ηl

status := get sig key

Output get corrupt sign(η)

Precondition:

head(agentsToCorrupt) = η

status = get sig key

Effect:

history := history ` get corrupt sign(η)

status := wait sig key

Input ret corrupt sign(η, public, secret)

Effect:

history := history ` ret corrupt sign(η, public, secret)

vk(η) := public

sk(η) := private

status := get enc key
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Output get corrupt encrypt(η)

Precondition:

head(agentsToCorrupt) = η

status = get enc key

Effect:

history := history ` get corrupt encrypt(η)

status := wait enc key

Input ret corrupt encrypt(η, public, secret)

Effect:

history := history ` ret corrupt encrypt(η, public, secret)

ek(η) := public

dk(η) := private

agentsToCorrupt := tail(agentsToCorrupt)

status := if agentsToCorrupt 6= λ then get sig key else create

Once the keys of all corrupted agents are received, then the status vari-
able is set to create and this enables the create action action that chooses
the next action to perform. create action can choose again to corrupt an-
other set of agents but this choice blocks the adversary, since the model
allows the adversary to corrupt agents only at the beginning. We block
the adversary imposing, as precondition of corrupt , that history = λ, that
is, history is the empty sequence. Now, if the adv(history) function re-
turns again (corrupt ,message) for some message, then since history 6= λ

corrupt(. . . ) is not enabled. As we will see in the following, only corrupt(. . . )
contains the precondition action = corrupt , so other actions are not enabled
and thus the automaton is in deadlock.

Another possible action the adversary can perform is the instantiation
of a new session. This is obtained using the action new that creates a new
session and makes sure that all necessary keys are generated. In this case
a variable agents to init , which initial value is the empty sequence λ, is
updated to the set of new agents for which no key was generated yet. Then
a cycle is started where first the signature scheme and then the encryption
scheme are queried to generate a pair of keys and return the public one.
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Output new(i, η1 . . . ηl)

Precondition:

action = new

message = (i, η1 . . . ηl)

Effect:

history := history ` new(i, η1, . . . , ηl)

action := ⊥
CSId := CSId ∪ {cs}
f := f ∪ {(cs, (τ, i, 1))}

)
where

cs = (|CSId |+ 1, i, (η1 . . . ηl))

τ = {(Aj , ηj) | 1 6 j 6 l}
agents to init := (η1 . . . ηl)− {η | ek(η) 6= ⊥}
status := if agents to init 6= λ then get sig key else create

Output get public sign(η)

Precondition:

head(agents to init) = η

status = get sig key

Effect:

history := history ` get public sign(η)

status := wait sig key

Input ret public sign(η, public)

Effect:

history := history ` ret public sign(η, public)

vk(η) := public

status := get enc key

Output get public encrypt(η)

Precondition:

head(agents to init) = η

status = get enc key

Effect:

history := history ` get public encrypt(η)

status := wait enc key

Input ret public encrypt(η, public)

Effect:

history := history ` ret public encrypt(η, public)

ek(η) := public

agents to init := tail(agents to init)

status := if agents to init 6= λ then get sig key else create

As for the corruption of agents, once we have obtained all keys of in-
stantiated agents, we can set status to create to choose the next action to
perform.
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The last action that can be chosen by the adv function is the sending
of a message to a specific session. We model such sending using the action
send that is much more complex to treat with respect to other actions
the adversary can perform. We need to identify the role that receives the
message and the rule that should be applied, which is identified by a pair
(j, p). If the rule to be applied exists, that is p 6 kj where kj is the number
of rules of the role j, then we have to parse m according to the left-hand side
of the rule, possibly invoking external decryption and signature verification
primitives, and updating the τ function. τ is a function that maps terms
to bitstrings and it is used to keep information about which bitstrings are
associated to the terms used in the description of the role. Then we have to
compute the right-hand side of the rule, apply the encryption and signing
primitives and generating nonces where necessary, updating the τ function
along the way.

We found many problems in the original paper while trying to formalize
the constructions. As an example, in the left side we may have a subterm
like {t}l

k that appears as well on the right side. In such case, the encryption
of t should not be recomputed, while according to the informal description
in the paper it is recomputed. We can solve the problem only by defining
τ for all terms and not only for basic terms like nonce variables, agent
identities, and keys.

Output send(cs, m)

Precondition:

action = send

message = (cs, m)

Effect:

history := history ` send(cs, m)

action := ⊥
csid := cs

if p 6 kj

left := ljp
right := rj

p

(S, τ) := EvalLeft(push(∅, (ljp, m)), ρ)

else

(S, τ) := (∅,⊥)

9>>>>>>>=>>>>>>>;
where (ρ, j, p) = f(cs)

status := parse left

The parsing of the left-hand side of the rule is done via a stack that
contains a list of symbolic terms to parse paired with their bitstring value.
Function EvalLeft consumes elements of the stack S as long as parsing
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EvalLeft(S, τ)

if S = ∅ then return(S, τ)

(t, m) := top(S)

if t = init return(if m = λ then (∅, τ) else (∅,⊥))

if τ(t) 6= ⊥ return(if τ(t) = m then (∅, τ) else (∅,⊥))

if t = X ∧ type(X) = type(m)

τ(t) := m

S := pop(S)

return(EvalLeft(S, τ))

if t = 〈t1, t2〉 ∧ type(m) = pair

τ(t) := m

S := pop(S)

S := push(S, (t2, right(m)))

S := push(S, (t1, left(m)))

return(EvalLeft(S, τ))

if t = {t1}t3
t2
∧ type(m) = encrypt

τ(t) := m

return(S, τ)

if t = [t1]
t3
t2
∧ type(m) = signature

if τ(t1) = ⊥
S := push(S, (t1,msg(m)))

return(EvalLeft(S, τ))

if τ(t1) = msg(m)

τ(t) := m

return(S, τ)

return(∅,⊥)

Fig. 8.7. The EvalLeft(S, τ) function

is possible without invoking any primitive. If the top element of S needs
the invocation of a cryptographic primitive to be parsed, then EvalLeft
terminates, so that the appropriate action can be scheduled. In other words,
once EvalLeft has terminated, either an error was detected (τ = ⊥), or the
stack is empty, which means that the parsing procedure is completed, or
the top element of the stack requires an invocation to an external primitive
to be resolved.

Function EvalLeft is defined recursively. If the stack is empty it ter-
minates immediately. Otherwise it retrieves the top element and checks
whether we are expecting an initiation. In such case the input bitstring
should be empty. If we are not expecting an initiation, then the function
checks whether the symbolic term was parsed already before, and in such
case the bitstrings should coincide, otherwise an error is returned. If the
symbolic term was not parsed before, then several cases are distinguished.
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In particular in each case it is checked whether the bitstring is of the correct
type. If no case applies, then an error is returned. Variables are immediate,
while pairs are handled easily by creating two subproblems that are added
to the stack. In both cases the evaluation of the stack continues with a re-
cursive call. Encryption requires the invocation of a decryption primitive.
Thus, function τ is updated and the function terminates. For signatures it is
necessary to parse the signed message before verifying the signature. Thus,
if the signed message is not parsed yet, then it is inserted into the stack on
top of the whole term, which should be reevaluated later. Otherwise, τ is
updated and the procedure terminates.

If we consider the definition of the EvalLeft function, we can note that
function τ is updated only when the term and the bitstrings are compatible.
This means, for example, that they must have the same type (we recall that
given a bitstring, it is possible to recover its type: key, agent’s identity,
pair, and so on) and if the τ assigns a value to the current term t, then
such value must be the current bitstring. If the bitstring and the τ do not
match, then we are faced to two different bitstrings that should represent
the same symbolic term. This means, for example, that we have generated
two ciphertexts for the same plaintext instead of copying the first one. On
the contrary, if we find some problem during the evaluation of the left-
hand side of a rule, then we put τ to ⊥ denoting in this way that an error
occurred.

Once the stack is empty and τ 6= ⊥, then we have that for each term t

in the left-hand side of the current rule, τ(t) 6= ⊥ and, t has been verified
successfully and we have associated each term with the actual bitstring that
represents t in the message m of send(cs, m).

If we return from EvalLeft with a stack that is not empty, then this
means that the top element of the stack requires the invocation of a cryp-
tographic primitive to be verified. In particular, we need only two primi-
tives: the decryption and the verification operation. We do not need other
cryptographic primitives, since we are not generating nonces, encryptions
and signatures. These operations are used only when we build up a message
and this can happen only in the right-hand side of the current rule.

The next two actions deal with the decryption primitive, which is in-
voked when the top of the stack contains an encryption. We know already
that τ assigns a value to each agent variable. The result of the decryption
is pushed into the stack, and then function EvalLeft is invoked again.
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Output get decrypt(η, m)

Precondition:

status = parse left

top(S) = ({t1}t2
ek(A), m)

τ(A) = η

Effect:

pending := t1
S := pop(S)

status := parse left wait

Input ret decrypt(η, m)

Effect:

(S, τ) := EvalLeft(push(S, (pending , m)), τ)

status := parse left

In particular, the get decrypt(η, m) action is enabled when we are pars-
ing the left-hand side of a role (status = parse left), the top of the stack
contains a term that is an encryption ({t1}t2

ek(A)), the actual bitstring asso-
ciated to the term is exactly m and the encryption key used to generate the
encryption belongs to agent η. The effect of the action is to save into the
state variable pending the term t1 corresponding to the encrypted message,
to remove the top element from the stack, and to update status to the value
parse left wait. We change the value of status to avoid the enabling of an-
other cryptographic primitive invocation. Once we receive the decryption
from the encryption automaton through the ret decrypt(η, m) action, we
push into the stack the received value m associated to the pending term
pending (that is t1), we invoke again the EvalLeft function on the updated
stack and we update status to parse left to enable again the parsing of the
left-hand side.

The next two actions deal with signature verification. If the verification
is unsuccessful, then an error occurs by setting τ to ⊥.

Output get verify sign(η, m)

Precondition:

status = parse left

top(S) = ([t1]
t2
sk(A), m)

τ(A) = η

Effect:

S := pop(S)

status := parse left wait
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Input ret verify sign(η, b)

Effect:

if b = T

(S, τ) := EvalLeft(S, τ)

else

τ := ⊥
status := parse left

The verification of a signature is very similar to the decryption of a
ciphertext: the get verify sign(η, m) action is enabled when we are parsing
the left-hand side of a role (status = parse left), the top of the stack contains
a term that is a signature ([t1]t2sk(A)), the actual bitstring associated to the
term is exactly m and the signature key used to generate the encryption
belongs to agent η. The effect of the action is to remove the top element
from the stack and to update status to the value parse left wait. Again, we
change the value of status to avoid the enabling of another cryptographic
primitive invocation. Once we receive the validity of the signature from the
signature automaton through the ret verify sign(η, b) action, we check if
the signature is valid or invalid. If it is valid (b = T ), then we invoke again
the EvalLeft function on the stack and we update status to parse left to
enable again the parsing of the left-hand side. If the signature is not valid
(b = F ), then we set τ to ⊥ to denote the fact that an error occurred.

The next action fail step is enabled when an error occurs while parsing.
In this case the status variable is set to create, thus ignoring the rule under
application. On the other hand, if no error occurs and the stack is empty,
then the parsing is complete and we can start to work on the right-hand
side of the rule.

Internal fail step

Precondition:

status = parse left

τ = ⊥
Effect:

status = create
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EvalRight(t, τ)

if t = stop then return(τ)

if τ(t) 6= ⊥ then return(τ)

if t = X then return(τ)

if t = 〈t1, t2〉
τ := EvalRight(t1, τ)

τ := EvalRight(t2, τ)

if τ(t1) 6= ⊥ ∧ τ(t2) 6= ⊥ then τ(t) := 〈τ(t1), τ(t2)〉
return(τ)

if t = {t1}t2
ek(A) ∨ t = [t1]

t2
sk(A)

τ := EvalRight(t1, τ)

return(τ)

Fig. 8.8. The EvalRight(t, τ) function

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅

Effect:

τ := EvalRight(right , τ)

status := parse right

The evaluation of a term t is carried out in two phases. First, the defini-
tion of τ is extended on subterms of t, leaving unresolved only those places
that require the invocation of an external primitive, and then invoking a
primitive for one of the unresolved places. These two phases are alternated
until term t is resolved. Function EvalRight carries out the first phase. Vari-
ables are not evaluated since, in case they are not defined, they require the
generation of a nonce. Pairs are resolved completely, while for signatures
and encryptions only the subterm corresponding to the message is evalu-
ated since labels are used just to distinguish terms syntactically and agent
variables are already defined by construction. Observe that the function
EvalRight does not operate on t if τ is defined already. This ensures that
terms that have appeared already before are not recomputed.

The FirstUnresolved function takes the outcome of EvalRight and iden-
tifies an unresolved place that can be resolved by invoking an external
primitive. It is essentially a post-visit of the parse tree of t, searching for
an undefined term whose subterms are defined. The next three pairs of
actions are the invocations to the three primitives that resolve unresolved
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FirstUnresolved(t, τ)

if t = stop then return(⊥)

if τ(t) 6= ⊥ then return(⊥)

if t = X then return(t)

if t = 〈t1, t2〉
if τ(t1) = ⊥
return(FirstUnresolved(t1, τ))

else

return(FirstUnresolved(t2, τ))

if t = {t1}t2
ek(A) ∨ t = [t1]

t2
sk(A)

if τ(t1) = ⊥
return(FirstUnresolved(t1, τ))

else

return(t)

Fig. 8.9. The FirstUnresolved(t, τ) function

places. The get action retrieves the arguments from the unresolved term
and saves on pending the term that should denote the returned value; the
return action updates τ .

Output get encrypt(η, m)

Precondition:

status = parse right

FirstUnresolved(right , τ) = {t1}t2
ek(A)

(η, m) = (τ(A), τ(t1))

Effect:

pending := {t1}t2
ek(A)

status := parse right wait

Input ret encrypt(η, m)

Effect:

τ(pending) := m

τ := EvalRight(right , τ)

status := parse right

Output get sign(η, m)

Precondition:

status = parse right

FirstUnresolved(right , τ) = [t1]
t2
sk(A)

(η, m) = (τ(A), τ(t1))

Effect:

pending := [t1]
t2
sk(A)

status := parse right wait
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Input ret sign(η, m)

Effect:

τ(pending) := m

τ := EvalRight(right , τ)

status := parse right

Output get nonce(η)

Precondition:

status = parse right

Xj
A = FirstUnresolved(right , τ) ∈ Xn(A)

η = τ(A)

Effect:

pending := Xj
A

status := parse right wait

Input ret nonce(η, m)

Effect:

τ(pending) := m

τ := EvalRight(right , τ)

status := parse right

Finally, when the evaluation of the rule is completed successfully, that
is the value of the right-hand side of the rule is computed, function f is
updated with the result of the computation and we are ready to choose the
next action to perform.

Internal end step

Precondition:

status = parse right ∧ FirstUnresolved(right , τ) = ⊥
Effect:

history := history ` end step(τ(right))

f(csid) := (τ, j, p + 1) where (ρ, j, p) = f(csid)

status := create

This, together with the definition of the encryption automaton Ek(A),
the signature automaton Sk(A), and the nonce generator NGk(A), com-
pletes the definition of the concrete model. We should now move to the
abstract model, though we have several problems to solve.

First, it is evident that Lemma 1 of [41] is not completely correct and
that some arguments about non guessing data for which we have no infor-
mation is not possible. In fact, it seems that there is a missing condition in
the hypothesis, that is that the message m should be built out of atomic
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elements that are either deducible atomically from S or that are subterms
of terms in S. If not, then we could simply guess a nonce or a key of the
agents, leading to a non-deducible message that does not satisfy the conclu-
sions of Lemma 1. This argument is completely absent in [41]. However, we
can fix the statement of Lemma 1 making the condition of the statement
more restrictive: instead of simply requiring M 6` m, we can also need that
m is built out of atoms of elements of M , that is, m is generated starting
from terms that occur in M .

Second, the action names change completely in the symbolic model, so
it is likely that somewhere we must hide actions and rely on the actual def-
inition of the simulation relation to state correspondence between symbolic
and concrete traces. We have to recover the trick to communicate informa-
tion to the nonce generator to avoid duplicated nonces, and finally we have
to find the correct order of abstraction, or state theorems that allow us to
combine separate abstractions into a unique one.

Recovering and sending adversary’s generated nonces

One possible way to recover the set of nonces generated by the adversary is
to modify the adv function in the following way: instead of returning a pair
(action,message), it returns a triple (action,message, extr nonces) where
extr nonces is the set of all nonces created by adv during the choice of
action and message. Note that we can expect that extr nonces is meaning-
ful, that is it is not the empty set, only when action is send . To send
the set extr nonces to the nonce generator, we can add to the PAdv
automaton an output action used nonces(N), N ⊆ {0, 1}k, defined as:

Output used nonces(N)

Precondition:

N = extr nonces

Effect:

extr nonces := ⊥

Moreover, we need to modify corrupt , send and new actions adding
the precondition extr nonces = ⊥. In this way, we force the execution of
used nonces(N), when enabled, before the execution of corrupt , send and
new . This is mandatory in particular for the send action: if we do not
impose that we send nonces before enabling the send action, then it is still
possible that the nonce generator chooses a nonce that belongs to the set of
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extracted nonces extr nonces. We also impose that extr nonces has initial
value ⊥.

This first solution seems to be acceptable, but it presents some problem:
in particular, we can not be completely sure that extr nonces contains all
nonces that are inside message. In fact, it is possible that adv generates
at random a bitstring that is the encryption of a nonce. In this case, the
encrypted nonce is not known to adv and thus we can not find it into
extr nonces.

Another possible way to recover the set of nonces generated by the
adversary is to extract it after the evaluation of the left-hand side of the
current rule and to send such set to the nonce generator before starting
the evaluation of the right-hand side of the rule. We obtain this adding the
state variable extr nonces with initial value ⊥ and replacing the parse right
action with two new actions: the output action used nonces(N), where
N ⊆ {0, 1}k, and the internal action parse right defined as:

Output used nonces(N)

Precondition:

N = extr nonces

Effect:

extr nonces := ⊥
τ := EvalRight(right , τ)

status := parse right

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅
extr nonces = ⊥

Effect:

extr nonces := extractNonces(left , τ)

The extractNonces(t, τ), that is depicted in Figure 8.10, is a function
that recursively parses subterms of t collecting all nonces it finds. If t′ is a
subterm of t that denotes a nonce, the actual value we collect is τ(t′). It is
easy to see that the cardinality of the set returned by the extractNonces(t, τ)
function is bounded by the size of t:

Proposition 8.11. Let t be a term and τ be a mapping from terms to
bitstrings. Let N be the output of extractNonces(t, τ).

Then, |N | 6 size(t).
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extractNonces(t, τ)

if t = X

return({τ(t)})
if t = 〈t1, t2〉
return(extractNonces(t1, τ) ∪ extractNonces(t2, τ))

if t = {t1}t2
ek(A) ∨ t = [t1]

t2
sk(A)

return(extractNonces(t1, τ))

return(∅)

Fig. 8.10. The extractNonces(t, τ) function

Proof. We prove the statement using a classical inductive proof on the
structure of the term t:

case t = X: by definition of size( · ), it follows that size(X) = 1 and by
definition of extractNonces(t, τ), |N | = |{τ(X)}| = 1 and thus |N | 6
size(X) = size(t);

case t = 〈t1, t2〉: by inductive hypothesis, we have that |N1| 6 size(t1) and
|N2| 6 size(t2) where for i = 1, 2, Ni = extractNonces(ti, τ). By defini-
tion of extractNonces(t, τ), it follows that |N | = |extractNonces(t, τ)| 6
|extractNonces(t1, τ)| + |extractNonces(t2, τ)| 6 size(t1) + size(t2) 6
size(t1) + size(t2) + 1 = size(t);

case t = {t1}t2
ek(A): by inductive hypothesis, we have that |N1| 6 size(t1)

and thus, by definition of extractNonces(t, τ), we have that |N | =
|extractNonces(t, τ)| = |extractNonces(t1, τ)| 6 size(t1) 6 size(t1)+1 =
size(t);

case t = [t1]t2sk(A): by inductive hypothesis, we have that |N1| 6 size(t1)
and thus, by definition of extractNonces(t, τ), we have that |N | =
|extractNonces(t, τ)| = |extractNonces(t1, τ)| 6 size(t1) 6 size(t1)+1 =
size(t);

other cases: by definition of size( · ), it follows that size(t) = 1 and by defini-
tion of extractNonces(t, τ), it follows that |N | = |extractNonces(t, τ)| =
|∅| 6 size(t). ut

Recovering and sending adversary’s generated ciphertexts

Similarly to the case of nonces, it is possible to recover all adversary’s gen-
erated ciphertexts and to send them to the encryption oracle. We adopt the
same approach of the previous case: we extract the ciphertexts after ending
the parsing of the left-hand side of the current rule and we provide them
to the encryption oracle before the evaluation of the right-hand side of the
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rule. We obtain this adding the state variable extr ciphers with initial value
⊥ and replacing the parse right and used nonces(N) actions with the fol-
lowing actions: a modified version of used nonces(N) that simply reset the
value of extr nonces, a new action used ciphers(C), C ⊆ Cη.c that outputs
the set C of extracted ciphertexts, and the internal action parse right that
recover used nonces and ciphertexts from the current message. The three
actions are defined as:

Output used nonces(N)

Precondition:

N = extr nonces

Effect:

extr nonces := ⊥

Output used ciphers(C)

Precondition:

extr nonces = ⊥
C = extr ciphers

Effect:

extr ciphers := ⊥
τ := EvalRight(right , τ)

status := parse right

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅
extr nonces = ⊥
extr ciphers = ⊥

Effect:

extr nonces := extractNonces(left , τ)

extr ciphers := extractCiphertexts(left , τ)

The extractCiphertexts(t, τ), that is depicted in Figure 8.11, is a function
that recursively parses subterms of t collecting all ciphertexts it finds. If
t′ is a subterm of t that denotes a ciphertext, the actual value we collect
is τ(t′). It is easy to see that the cardinality of the set returned by the
extractCiphertexts(t, τ) function is bounded by the size of t:

Proposition 8.12. Let t be a term and τ be a mapping from terms to
bitstrings. Let CT be the output of extractCiphertexts(t, τ).

Then, |CT | 6 size(t).



264 8 A Case Study: the Dolev-Yao Soundness

extractCiphertexts(t, τ)

if t = 〈t1, t2〉
return(extractCiphertexts(t1, τ) ∪ extractCiphertexts(t2, τ))

if t = {t1}t2
ek(A)

return({τ(t)} ∪ extractCiphertexts(t1, τ))

if t = [t1]
t2
ek(A)

return(extractCiphertexts(t1, τ))

return(∅)

Fig. 8.11. The extractCiphertexts(t, τ) function

Proof. We prove the statement using a classical inductive proof on the
structure of the term t:

case t = 〈t1, t2〉: by inductive hypothesis, we have that for i = 1, 2, |CTi| 6
size(ti) where CTi = extractCiphertexts(ti, τ). This implies, by defini-
tion of extractCiphertexts(t, τ), that |CT | 6 |extractCiphertexts(t1, τ)|+
|extractCiphertexts(t2, τ)| 6 size(t1)+size(t2) 6 size(t1)+size(t2)+1 =
size(t);

case t = {t1}t2
ek(A): by inductive hypothesis, we have that |CT1| 6 size(t1)

and thus, by definition of extractCiphertexts(t, τ), we have that |CT | =
|{τ(t)} ∪ extractCiphertexts(t1, τ)| 6 size(t1) + 1 = size(t);

case t = [t1]t2sk(A): by inductive hypothesis, we have that |CT1| 6 size(t1)
and thus, by definition of extractCiphertexts(t, τ), we have that |CT | =
|extractCiphertexts(t1, τ)| 6 size(t1) 6 size(t1) + 1 = size(t);

other cases: by definition of size( · ), it follows that size(t) = 1 and by defini-
tion of extractCiphertexts(t, τ), it follows that |CT | = |∅| 6 size(t). ut

Recovering and sending adversary’s generated signatures

Similarly to the previous cases, it is possible to recover all adversary’s
generated signatures and to send them to the signature oracle. We adopt
the same approach of the previous cases: we extract the signatures after
ending the parsing of the left-hand side of the current rule and we provide
them to the signature oracle before the evaluation of the right-hand side
of the rule. We obtain this adding the state variable extr signatures with
initial value ⊥, modifying the used ciphers(C) and parse right actions and
adding a new action used signatures(S), S ⊆ Cη.s, that outputs the set S

of used signatures:
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extractSignatures(t, τ)

if t = 〈t1, t2〉
return(extractSignatures(t1, τ) ∪ extractSignatures(t2, τ))

if t = {t1}t2
ek(A)

return(extractSignatures(t1, τ))

if t = [t1]
t2
ek(A)

return({τ(t)} ∪ extractSignatures(t1, τ))

return(∅)

Fig. 8.12. The extractSignatures(t, τ) function

Output used ciphers(C)

Precondition:

extr nonces = ⊥
C = extr ciphers

Effect:

extr ciphers := ⊥

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅
extr nonces = ⊥
extr ciphers = ⊥
extr signatures = ⊥

Effect:

extr nonces := extractNonces(left , τ)

extr ciphers := extractCiphertexts(left , τ)

extr signatures := extractSignatures(left , τ)

Output used signatures(S)

Precondition:

extr nonces = ⊥
extr ciphers = ⊥
S = extr signatures

Effect:

extr signatures := ⊥
τ := EvalRight(right , τ)

status := parse right

The extractSignatures(t, τ), that is depicted in Figure 8.12, is a function
that recursively parses subterms of t collecting all signatures it finds. If
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t′ is a subterm of t that denotes a signature, the actual value we collect
is τ(t′). It is easy to see that the cardinality of the set returned by the
extractSignatures(t, τ) function is bounded by the size of t:

Proposition 8.13. Let t be a term and τ be a mapping from terms to
bitstrings. Let S be the output of extractSignatures(t, τ).

Then, |S| 6 size(t).

Proof. We prove the statement using a classical inductive proof on the
structure of the term t:

case t = 〈t1, t2〉: by inductive hypothesis, we have that for i = 1, 2, |Si| 6
size(ti) where Si = extractSignatures(ti, τ). This implies, by defini-
tion of extractSignatures(t, τ), that |S| 6 |extractSignatures(t1, τ)| +
|extractSignatures(t2, τ)| 6 size(t1) + size(t2) 6 size(t1) + size(t2) + 1 =
size(t);

case t = {t1}t2
ek(A): by inductive hypothesis, we have that |S1| 6 size(t1)

and thus, by definition of extractSignatures(t, τ), we have that |S| =
|extractSignatures(t1, τ)| 6 size(t1) 6 size(t1) + 1 = size(t);

case t = [t1]t2sk(A): by inductive hypothesis, we have that |S1| 6 size(t1)
and thus, by definition of extractSignatures(t, τ), we have that |S| =
|{τ(t)} ∪ extractSignatures(t1, τ)| 6 size(t1) + 1 = size(t);

other cases: by definition of size( · ), it follows that size(t) = 1 and by defi-
nition of extractSignatures(t, τ), it follows that |S| = |∅| 6 size(t). ut

Adversary and Protocol: the Formal Model

We provide here a description of the formal model. This model is highly
nondeterministic, and therefore does not need to create the next action to
perform. Furthermore, there is no need to go through several intermediate
operations. Messages are ground terms of the algebra defined in [41] and
discussed in Section 8.1. There is a variable H that contains the knowledge
of the adversary. Initially the knowledge is given by the public keys of
the agents, which is much more than what is known by the adversary in
the concrete model. The substitution function of the state of each role,
denoted by σ, is just a partial assignment of ground terms to variables. In
the description below we compose substitution functions; however, given
that variables are associated to ground terms, we could take unions as well,
provided that substitution functions are compatible.
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There are only three transitions. Corruption occurs only at the begin-
ning, and this is ensured by the state component h, which we should change.
A new instance of a role creates the instance and adds the knowledge of all
nonces. Sending a message produces an update of the substitution function
if the message sent matches what the role is expecting. The message should
be derivable from the knowledge of the adversary.

Output corrupt(a1 . . . al)

Precondition:

h = λ

Effect:

h := corrupt(a1 . . . al)

H := H ∪ kn(a1) ∪ · · · ∪ kn(al)

Output new(i, a1 . . . al)

Effect:

H := H ∪ {(i, a1, . . . , al)}

ASId := ASId ∪ {as}
F := F ∪ {as, (σ, i, 1)}

)
where

as = (|ASId |+ 1, i, (a1 . . . al))

σ = {(Aj , aj) | 1 6 j 6 l} ∪
{(Xj

ai
, n(ai, j, as)) | j ∈ N}

Output send(as, m)

Precondition:

H ` m

Effect:

if p 6 kj ∧ ∃θ | m = (σ ◦ θ)(ljp)

H := H ∪ {(σ ◦ θ)(rj
p)}

F (as) := (σ ◦ θ, j, p + 1)

9>=>; where (σ, j, p) = F (as)

Adversary and Protocol: the Mixed Model

We now consider the concrete model and add the fields of the abstract
model, while at the same time we keep a mapping that relates formal traces
with concrete traces. In a second stage we will need to impose restrictions
on the transitions in the sense that we should produce only deducible terms.
We will state explicitly what actions and functions are changed.

No change for create action.
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update ag names(c, η1 . . . ηl)

for i = 1 to l

if c−1(ηi) = ∅
c(gj) := ηi where j = min{k | c(gk) = ⊥}

return(c)

Fig. 8.13. The update ag names(c, η1 . . . ηl) function

Internal create action

Precondition:

status = create

Effect:

(action,message) := adv(history)

status := act

Action corrupt needs to construct a symbolic name for each agent. This
is done by invoking function update ag names, which selects a symbolic
agent for each new concrete agent. Then the symbolic term is constructed
and the database H is updated. The concretization function c is used to
know which concrete agents have already an abstract counterpart. The
construction is done in such a way that each concrete agent has at most
one counterpart and in particular exactly one counterpart whenever c−1 is
used. The subsequent actions need to update the concretization map c.

Output corrupt(η1 . . . ηl)

Precondition:

history = λ

action = corrupt

message = (η1 . . . ηl)

Effect:

history := corrupt(η1 . . . ηl)

action := ⊥
agentsToCorrupt := η1 . . . ηl

status := get sig key

c := update ag names(c, η1 . . . ηl)

symbolic := corrupt(c−1(η1) . . . c−1(ηl))

H := H ∪ kn(c−1(η1)) ∪ · · · ∪ kn(c−1(ηl))
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Output get corrupt sign(η)

Precondition:

head(agentsToCorrupt) = η

status = get sig key

Effect:

history := history ` get corrupt sign(η)

status := wait sig key

Input ret corrupt sign(η, public, secret)

Effect:

history := history ` ret corrupt sign(η, public, secret)

vk(η) := public

sk(η) := private

status := get enc key

c(sk(c−1(η))) := private

c(vk(c−1(η))) := public

Output get corrupt encrypt(η)

Precondition:

head(agentsToCorrupt) = η

status = get enc key

Effect:

history := history ` get corrupt encrypt(η)

status := wait enc key

Input ret corrupt encrypt(η, public, secret)

Effect:

history := history ` ret corrupt encrypt(η, public, secret)

ek(η) := public

dk(η) := private

agentsToCorrupt := tail(agentsToCorrupt)

status := if agentsToCorrupt 6= λ then get sig key else create

c(dk(c−1(η))) := private

c(ek(c−1(η))) := public

Action new , similarly to corrupt , needs to construct symbolic names for
the new agents. Once again the concretization map is updated for the new
keys. We also update the F function.
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Output new(i, η1 . . . ηl)

Precondition:

action = new

message = (i, η1 . . . ηl)

Effect:

history := history ` new(i, η1, . . . , ηl)

action := ⊥
c := update ag names(c, η1 . . . ηl)

CSId := CSId ∪ {cs}
f := f ∪ {(cs, (τ, i, 1))}
ASId := ASId ∪ {as}
F := F ∪ {(as, (σ, i, 1))}

9>>>=>>>; where

cs = (|CSId |+ 1, i, (η1 . . . ηl))

τ = {(Aj , ηj) | 1 6 j 6 l}
as = (|ASId |+ 1, i, (c−1(η1) . . . c−1(ηl)))

σ = {(Aj , c
−1(ηj)) | 1 6 j 6 l} ∪

{(Xj

c−1(ηi)
, n(c−1(ηi), j, as)) | j ∈ N}

agents to init := (η1 . . . ηl)− {η | ek(η) 6= ⊥}
status := if agents to init 6= λ then get sig key else create

symbolic := new(i, c−1(η1) . . . c−1(ηl))

H := H ∪ {(i, c−1(η1) . . . c−1(ηl))}

Output get public sign(η)

Precondition:

head(agents to init) = η

status = get sig key

Effect:

history := history ` get public sign(η)

status := wait sig key

Input ret public sign(η, public)

Effect:

history := history ` ret public sign(η, public)

vk(η) := public

status := get enc key

c(vk(c−1(η))) := public

Output get public encrypt(η)

Precondition:

head(agents to init) = η

status = get enc key

Effect:

history := history ` get public encrypt(η)

status := wait enc key
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Input ret public encrypt(η, public)

Effect:

history := history ` ret public encrypt(η, public)

ek(η) := public

agents to init := tail(agents to init)

status := if agents to init 6= λ then get sig key else create

c(ek(c−1(η))) := public

Action send , again, is much more complex to treat. We cannot compute
the symbolic input message before completing the elaboration of m. For
this reason, we need to keep track of m, of the applied rule, and of the
pending symbolic session. We also need to compute σ along the way. We
will use the symbolic term ⊥ whenever the message m cannot be parsed.

Output send(cs, m)

Precondition:

action = send

message = (cs, m)

Effect:

history := history ` send(cs, m)

action := ⊥
csid := cs

if p 6 kj

left := ljp
right := rj

p

(S, τ, σ, c) := EvalLeft(push(∅, (ljp, m)), ρ, φ, c)

else

(S, τ) := (∅,⊥)

9>>>>>>>=>>>>>>>;
where

(ρ, j, p) = f(cs)

(φ, j, p) = F (c−1(cs))

status := parse left

In the parsing procedure we need to identify the symbolic nonces that
are sent. In particular, either the adversary sends a nonce that exists al-
ready, or it generates one. For the purpose we need to add two arguments
to the function and two returned values. Once the parsing is finished the
concretization map needs to be updates. Note that in handling nonces we
use a minimum operator over sets of symbolic nonces. This is to ensure de-
terminism. We assume implicitly an ordering on the set of symbolic nonces.
The actual ordering is irrelevant. Later we will ensure that there is at most
one selectable nonce.

It is interesting to observe that the two EvalLeft functions we use in
the concrete and in the mixed model returns the same value on common
outputs:
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EvalLeft(S, τ, θ, c)

if S = ∅ then return(S, τ, θ, c)

(t, m) := top(S)

if t = init return(if m = λ then (∅, τ, θ, c) else (∅,⊥, θ, c))

if τ(t) 6= ⊥ return(if τ(t) = m then (∅, τ, θ, c) else (∅,⊥, θ, c))

if t = X ∧ type(X) = type(m)

Note this below works only with nonce variables.

τ(t) := m

S := pop(S)

if ∃a,i,sc(n(a, i, s)) = m

θ(X) := min{n(a, i, s) | c(n(a, i, s)) = m}
else

θ(X) := min{n(adv , i,⊥) | c(n(adv , i,⊥)) = ⊥}
return(EvalLeft(S, τ, θ, c))

if t = 〈t1, t2〉 ∧ type(m) = pair

τ(t) := m

S := pop(S)

S := push(S, (t2, right(m)))

S := push(S, (t1, left(m)))

return(EvalLeft(S, τ, θ, c))

if t = {t1}t3
t2
∧ type(m) = encrypt

τ(t) := m

return(S, τ, θ, c)

if t = [t1]
t3
t2
∧ type(m) = signature

if τ(t1) = ⊥
S := push(S, (t1,msg(m)))

return(EvalLeft(S, τ, θ, c))

if τ(t1) = msg(m)

τ(t) := m

return(S, τ, θ, c)

return(∅,⊥, θ, c)

Fig. 8.14. The EvalLeft(S, τ, θ, c) function

Lemma 8.14. For each S, τ , σ, and c, let (S2, τ2) and (S4, τ4, σ4, c4) be the
values returned by EvalLeft(S, τ) and EvalLeft(S, τ, σ, c), respectively.

Then S2 = S4 and τ2 = τ4.

Proof. Suppose, for the sake of contradiction, that there exist S, τ , σ,
and c such that, given (S2, τ2) = EvalLeft(S, τ) and (S4, τ4, σ4, c4) =
EvalLeft(S, τ, σ, c), S2 6= S4 or τ2 6= τ4. Suppose, without loss of gener-
ality, that S is minimal, where S is minimal if, denoted by (t, m) the top
element of S, for each τ ′ such that for each t′ 6= t τ ′(t′) = τ(t′), it holds
that
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– for each S′ such that there exists (t′, m′) such that S = push(S′, (t′, m′)),
(S′2, τ

′
2) = EvalLeft(S′, τ ′) and (S′4, τ

′
4, σ

′
4, c

′
4) = EvalLeft(S′, τ ′, σ, c) im-

plies S′2 = S′4 and τ ′2 = τ ′4;
– for each S′ such that there exist (t1, m1) and (t2, m2) such that S′ =

push(push(pop(S), (t2, m2)), (t1, m1)) and t1 and t2 are subterms of t,
denoted by (S′2, τ

′
2) and (S′4, τ

′
4, σ

′
4, c

′
4) the values returned by functions

EvalLeft(S′, τ ′) and EvalLeft(S′, τ ′, σ, c), respectively, it holds that S′2 =
S′4 and τ ′2 = τ ′4.

If S = ∅, then by definition of EvalLeft , it follows that (S4, τ4, σ4, c4) =
EvalLeft(S, τ, σ, c) = (S, τ, σ, c) and (S2, τ2) = EvalLeft(S, τ) = (S, τ), thus
S2 = S4 and τ2 = τ4. If S 6= ∅, then there are the following cases:

– if t = init, then by definition of the function EvalLeft , we have two cases:
if m = λ, then (S2, τ2) = EvalLeft(S, τ) = (S, τ) and (S4, τ4, σ4, c4) =
EvalLeft(S, τ, σ, c) = (S, τ, σ, c). Otherwise, (S2, τ2) = EvalLeft(S, τ) =
(S,⊥) and (S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) = (S,⊥, σ, c). Thus, in
both cases, S2 = S4 and τ2 = τ4;

– if τ(t) 6= ⊥ and τ(t) = m, then (S2, τ2) = EvalLeft(S, τ) = (∅, τ) and
(S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) = (∅, τ, σ, c), thus S2 = S4 and τ2 =
τ4.

– if τ(t) 6= ⊥ and τ(t) 6= m, then (S2, τ2) = EvalLeft(S, τ) = (∅,⊥) and
(S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) = (∅,⊥, σ, c), thus S2 = S4 and τ2 =
τ4.

– if t = X and type(X) = type(m), then given S′ = pop(S) and τ ′

such that τ ′(t) = m and for each t′ 6= t, τ ′(t) = τ(t), by definition of
EvalLeft it follows that (S′′2, τ

′′
2 ) = EvalLeft(S′, τ ′) and (S′′4, τ

′′
4 , σ′′4 , c′′4) =

EvalLeft(S′, τ ′, σ, c). Since S is minimal, it follows that S′′2 = S′′4 and
τ ′′2 = τ ′′4 . By definition of the function EvalLeft , it follows that (S2, τ2) =
EvalLeft(S, τ) = (S′′2, τ

′′
2 ) and (S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) =

(S′′4, τ
′′
4 , σ′′4 , c′′4), thus S2 = S4 and τ2 = τ4.

– if t = 〈t1, t2〉 and type(m) = pair , then by definition of EvalLeft , it
follows that (S2, τ2) = EvalLeft(S, τ) = (S′′2, τ

′′
2 ) and (S4, τ4, σ4, c4) =

EvalLeft(S, τ, σ, c) = (S′′4, τ
′′
4 , σ′′4 , c′′4) where (S′′2, τ

′′
2 ) = EvalLeft(S′, τ ′),

and (S′′4, τ
′′
4 , σ′′4 , c′′4) = EvalLeft(S′, τ ′, σ, c) with top(S′) = (t1, left(m))

and τ ′(t) = m and for each t′ 6= t, τ ′(t) = τ(t). Since S is minimal, it
follows that S′′2 = S′′4 and τ ′′2 = τ ′′4 , thus S2 = S4 and τ2 = τ4.

– if t = {t1}t3
t2

and type(m) = encrypt , then by definition of EvalLeft ,
it follows that (S2, τ2) = EvalLeft(S, τ) = (S, τ ′) and (S4, τ4, σ4, c4) =



274 8 A Case Study: the Dolev-Yao Soundness

EvalLeft(S, τ, σ, c) = (S, τ ′, σ, c) where τ ′(t′) = τ(t′) for all t′ 6= t, and
τ ′(t) = m. Thus S2 = S4 and τ2 = τ4.

– if t = [t1]t3t2 and type(m) = signature, then by definition of EvalLeft ,
it follows that there are two cases: if τ(t1) = ⊥, then (S2, τ2) =
EvalLeft(S, τ) = (S′2, τ

′
2) and (S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) =

(S′4, τ
′
4, σ

′
4, c

′
4) where, denoted by S′ the stack push(S, (t1,msg(m))), we

have (S′2, τ
′
2) = EvalLeft(S′, τ), and (S′4, τ

′
4, σ

′
4, c

′
4) = EvalLeft(S′, τ, σ, c).

Since S is minimal, we have that S′2 = S′4 and τ ′2 = τ ′4, thus S2 = S4 and
τ2 = τ4. If τ(t1) = msg(m), then (S2, τ2) = EvalLeft(S, τ) = (S, τ ′) and
(S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) = (S, τ ′, σ, c) where τ ′(t′) = τ(t′) for
all t′ 6= t, and τ ′(t) = m. Thus S2 = S4 and τ2 = τ4.

– in all other cases, we have that (S2, τ2) = EvalLeft(S, τ) = (S,⊥) and
(S4, τ4, σ4, c4) = EvalLeft(S, τ, σ, c) = (S,⊥, σ, c), thus S2 = S4 and τ2 =
τ4.

Since for all possible cases we have that S2 = S4 and τ2 = τ4, we have
obtained an absurd, thus for each S, τ , σ, and c, denoted by (S2, τ2) and
(S4, τ4, σ4, c4) the values returned by EvalLeft(S, τ) and EvalLeft(S, τ, σ, c),
respectively, it holds that S2 = S4 and τ2 = τ4. ut

The following four actions (decryption and signature verification) are
modified only in the parameters they pass to EvalLeft . They work just at
the concrete level.

Output get decrypt(η, m)

Precondition:

status = parse left

top(S) = ({t1}t2
ek(A), m)

τ(A) = η

Effect:

pending := t1
S := pop(S)

status := parse left wait

Input ret decrypt(η, m)

Effect:

(S, τ, σ, c) := EvalLeft(push(S, (pending , m)), τ, σ, c)

status := parse left
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Output get verify sign(η, m)

Precondition:

status = parse left

top(S) = ([t1]
t2
sk(A), m)

τ(A) = η

Effect:

S := pop(S)

status := parse left wait

Input ret verify sign(η, b)

Effect:

if b

(S, τ, σ, c) := EvalLeft(S, τ, σ, c)

else

τ := ⊥
status := parse left

The next action fail step is enabled when an error occurs while parsing.
In this case the status variable is set to create, thus ignoring the rule under
application. In particular the variable σ is not considered at all, while the
variable c keeps the modifications. This will not be a problem, though. If a
problem will occur, then we can always introduce an intermediary variable
to be confirmed only if no error occurs. On the other hand, if no error occurs
and the stack is empty, then the parsing is complete and we can start to
work on the right-hand side of the rule. Yet, we are in the conditions to
compute the symbolic terms and to update the concretization map.

Internal fail step

Precondition:

status = parse left

τ = ⊥
Effect:

status := create

symbolic := ⊥
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update c map(c, t, τ, σ)

c(σ(t)) := τ(t)

if t = 〈t1, t2〉
c := update c map(c, t1, τ, σ)

c := update c map(c, t2, τ, σ)

if t = {t1}t3
t2
∨ t = [t1]

t3
t2

c := update c map(c, t1, τ, σ)

return(c)

Fig. 8.15. The update c map(c, t, τ, σ) function

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅

Effect:

(τ, c) := EvalRight(right , τ, σ, c)

status := parse right

symbolic := σ(left)

H := H ∪ {σ(right)}
c := update c map(c, left , τ, σ)

In the evaluation of the right term we need to update the concretization
map c and this is done in both the two phases of the evaluation: in the first
phase, the function update c map(c, t, τ, σ) is used to resolve all terms that
do not require the invocation of the cryptographic primitives; in the second
phase, we invoke the primitives for one of the unresolved place. The two
phases are alternated until the term is completely resolved.

It is interesting to observe that the two EvalRight functions we use in
the concrete and in the mixed model returns the same value on common
outputs:

Lemma 8.15. For each t, τ , σ, and c, let τ2 and (τ4, c4) be the values
returned by EvalRight(t, τ) and EvalRight(t, τ, σ, c), respectively.

Then τ2 = τ4.

Proof. Fix t, τ , send , and c. If τ(t) 6= ⊥, then by definition of function
EvalRight , it follows that (τ4, c4) = EvalRight(t, τ, σ, c) = (τ, c) and τ2 =
EvalRight(t, τ) = τ , thus τ2 = τ4. If τ(t) = ⊥, we prove the statement using
a classical inductive proof on the structure of the term t:
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EvalRight(t, τ, σ, c)

if t = stop then return(τ, c)

if t = X ∨ τ(t) 6= ⊥ then return(τ, c)

if t = 〈t1, t2〉
(τ, c) := EvalRight(t1, τ, σ, c)

(τ, c) := EvalRight(t2, τ, σ, c)

if τ(t1) 6= ⊥ ∧ τ(t2) 6= ⊥
τ(t) := 〈τ(t1), τ(t1)〉
c(σ(t)) := 〈τ(t1), τ(t1)〉

return(τ, c)

if t = {t1}t2
ek(A) ∨ t = [t1]

t2
sk(A)

(τ, c) := EvalRight(t1, τ, σ, c)

return(τ, c)

Fig. 8.16. The EvalRight(t, τ, σ, c) function

case t = stop: by definition of function EvalRight , we have that τ2 =
EvalRight(t, τ) = τ and (τ4, c4) = EvalRight(t, τ, σ, c) = (τ, c), thus
τ2 = τ4;

case t = X: by definition of function EvalRight , it follows that (τ4, c4) =
EvalRight(t, τ, σ, c) = (τ, c) and τ2 = EvalRight(t, τ) = τ , thus τ2 = τ4;

case t = 〈t1, t2〉: let τ ′2 = EvalRight(t1, τ), τ ′′2 = EvalRight(t2, τ ′2), (τ ′4, c
′
4) =

EvalRight(t1, τ, σ, c), and (τ ′′4 , c′′4) = EvalRight(t2, τ ′4, σ, c′4). By induc-
tive hypothesis, we have that τ ′2 = τ ′4 and hence τ ′′2 = τ ′′4 . This implies
that τ ′′2 (t1) = τ ′′4 (t1) and τ ′′2 (t2) = τ ′′4 (t2) and thus either τ2 = τ ′′2 and
τ4 = τ ′′4 or τ2 = τ ′′2 and τ4 = τ ′′4 with τ2(t) = 〈τ ′′2 (t1), τ ′′2 (t2)〉 and
τ4(t) = 〈τ ′′4 (t1), τ ′′4 (t2)〉. This implies that τ2 = τ4;

case t = {t1}t2
ek(A) or t = [t1]t2sk(A): by definition of function EvalRight , it

follows that τ2 = EvalRight(t, τ) = EvalRight(t1, τ) and (τ4, c4) =
EvalRight(t, τ, σ, c) = EvalRight(t1, τ, σ, c) and thus, by inductive hy-
pothesis, τ2 = τ4. ut

The FirstUnresolved(t, τ) function of Figure 8.17 takes the outcome of
EvalRight and identifies an unresolved place that can be resolved by in-
voking an external primitive. It is essentially a post-visit of the parse tree
of t, searching for an undefined term whose subterms are defined. It is un-
changed. The next three pairs of actions are the invocations to the three
primitives that resolve unresolved places. The get action retrieves the argu-
ments from the unresolved term and saves on pending the term that should
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FirstUnresolved(t, τ)

if t = stop then return(⊥)

if τ(t) 6= ⊥ then return(⊥)

if t = X then return(t)

if t = 〈t1, t2〉
if τ(t1) = ⊥
return(FirstUnresolved(t1, τ))

else

return(FirstUnresolved(t2, τ))

if t = {t1}t2
ek(A) ∨ t = [t1]

t2
sk(A)

if τ(t1) = ⊥
return(FirstUnresolved(t1, τ))

else

return(t)

Fig. 8.17. The FirstUnresolved(t, τ) function

denote the returned value; the return action updates τ . Upon return the
concretization map needs to be updated.

Output get encrypt(η, m)

Precondition:

status = parse right

FirstUnresolved(right , τ) = {t1}t2
ek(A)

(η, m) = (τ(A), τ(t1))

Effect:

pending := {t1}t2
ek(A)

status := parse right wait

Input ret encrypt(η, m)

Effect:

τ(pending) := m

c(σ(pending)) := m

(τ, c) := EvalRight(right , τ, σ, c)

status := parse right

Output get sign(η, m)

Precondition:

status = parse right

FirstUnresolved(right , τ) = [t1]
t2
sk(A)

(η, m) = (τ(A), τ(t1))

Effect:

pending := [t1]
t2
sk(A)

status := parse right wait
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Input ret sign(η, m)

Effect:

τ(pending) := m

c(σ(pending)) := m

(τ, c) := EvalRight(right , τ, σ, c)

status := parse right

Output get nonce(η)

Precondition:

status = parse right

Xj
A = FirstUnresolved(right , τ) ∈ Xn(A)

η = τ(A)

Effect:

pending := Xj
A

status := parse right wait

Input ret nonce(η, m)

Effect:

τ(pending) := m

c(σ(pending)) := m

(τ, c) := EvalRight(right , τ)

status := parse right

Finally, when the evaluation of the rule is completed successfully, that
is the value of the right-hand side of the rule is computed, both functions
f and F are updated with the result of the computation and we are ready
to choose the next action to perform.

Internal end step

Precondition:

status = parse right ∧ FirstUnresolved(right , τ) = ⊥
Effect:

history := history ` end step(τ(right))

f(csid) := (τ, j, p + 1) where (ρ, j, p) = f(csid)

F (c−1(csid)) := (σ, j, p + 1) where (ρ, j, p) = F (c−1(csid))

status := create

As in the concrete model, we need to send adversary’s generated nonces
to the nonce generator to avoid the generation of repeated values, as well
as for ciphertexts and signatures. We adopt the same approach of the
concrete case: to recover the sets of nonces, ciphertexts, and signatures
generated by the adversary, we extract them after the evaluation of the
left-hand side of the current rule and then we send them to the nonce gen-
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erator, the encryption oracle, and the signature oracle before starting the
evaluation of the right-hand side of the rule. We obtain this adding the
state variables extr nonces, extr ciphers, and extr signatures with initial
value ⊥ and replacing the parse right action with four new actions: the
output actions used nonces(N), N ⊆ {0, 1}k, used ciphers(C), C ⊆ Cη.c,
used signatures(S), S ⊆ Cη.s, and the internal action parse right defined
as:

Output used signatures(S)

Precondition:

extr nonces = ⊥
extr ciphers = ⊥
S = extr signatures

Effect:

extr signatures := ⊥
(τ, c) := EvalRight(right , τ, σ, c)

status := parse right

symbolic := σ(left)

H := H ∪ {σ(right)}
c := update c map(c, left , τ, σ)

Output used nonces(N)

Precondition:

N = extr nonces

Effect:

extr nonces := ⊥

Output used ciphers(C)

Precondition:

extr nonces = ⊥
C = extr ciphers

Effect:

extr ciphers := ⊥



8.4 Analysis of the Soundness Proof using Probabilistic Automata 281

Internal parse right

Precondition:

status = parse left

τ 6= ⊥
S = ∅
extr nonces = ⊥
extr ciphers = ⊥
extr signatures = ⊥

Effect:

extr nonces := extractNonces(left , τ)

extr ciphers := extractCiphertexts(left , τ)

extr signatures := extractSignatures(left , τ)

The three functions extractNonces(t, τ), extractCiphertexts(t, τ), and
extractSignatures(t, τ) are the same of the functions we used in the con-
crete model.

8.4.3 The Proof

We are now able to relate the executions of the concrete model with the
ones of the formal model. We obtain such relation defining several levels
of abstraction and then showing that there exists a (state) polynomially
accurate simulation between each pair of levels. Finally, using the execution
correspondence theorem we can relate the executions of the concrete model
with the ones of the formal model.

We start giving a brief overview of the abstraction levels and then we
provide the formal proofs of the approximated simulations.

An Overview

Let A be a set of identities of participants of the protocol and k be a security
parameter.

The first automaton we consider is the one that model the concrete
implementation of a protocol: we define the automaton A1

k(A) as the com-
position of PAdvadv

k (A), NGk(A), Ek(A), and Sk(A) where PAdvadv
k (A) is

the automaton that model the protocol plus the concrete adversary (which
actions are chosen using the probabilistic polynomial time function adv),
NGk(A), Ek(A), and Sk(A) are a real nonce generator, encryption and signa-
ture oracles that can generate repeated nonces, ciphertexts and signatures,
respectively.
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The second automaton A2
k(A) is obtained from A1

k(A) replacing the au-
tomaton PAdvadv

k (A) with MPAdvadv
k (A) that is the automaton that model

the protocol plus the mixed adversary. We recall that MPAdvadv
k (A) is de-

fined as PAdvadv
k (A) except for the fact that each state keeps a mapping

that relates formal traces with concrete traces.
We define the third automaton A3

k(A) as the automaton A2
k(A) except

for the fact that we replace the nonce generator NGk(A) with the automa-
ton NG2

k(A) of Section 6.1.1. This nonce generator ensures that returned
nonces are different from all previously generated nonces.

Analogously, we define the A4
k(A) and A5

k(A) automata replacing the
encryption oracle Ek(A) and the signature oracle Sk(A) with E2

k (A) and
S2

k(A) of Sections 6.2.1 and 6.3.1, respectively. This means that A5
k(A)

ensures that nonces, ciphertexts and signatures obtained invoking the cor-
responding automaton are different from all previously returned values.

The automata A6
k(A), A7

k(A), and A8
k(A) are obtained from the previ-

ous one imposing that the MPAdvadv
k (A) automaton extracts the nonces,

ciphertexts, and signatures from the received message and that it sends
them to the nonce generator, the encryption oracle, and the signature ora-
cle before computing the response message, respectively.

Then we define the automata A9
k(A), A10

k (A), and A11
k (A) that ensures

that nonces, ciphertexts, and signatures generated by the corresponding
automaton are different from all previously used values. This means that
A10

k (A) ensures that nonces, ciphertexts, and signatures that are obtained
by honest users querying the cryptographic primitives are always different
from all values generated previously by cryptographic primitives themselves
or by the adversary.

Finally, A12
k (A) is simply the automaton that represents the formal

model. So, it is highly nondeterministic and all messages are ground terms
of the algebra defined in Section 8.1.1.

The Simulations

Now we can start to relate the automata we have defined above using the
polynomially accurate simulation relation.

Lemma 8.16. Let A be a set of agents and for each k ∈ N, denote by A1
k the

automaton NGk(A)||Ek(A)||Sk(A)||PAdvadv
k (A) and by A2

k the automaton
NGk(A)||Ek(A)||Sk(A)||MPAdvadv

k (A).
Then, {A1

k}k∈N .s {A2
k}k∈N.
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Proof. We prove the Lemma showing that MPAdvadv
k (A) is an extension

of PAdvadv
k (A), that is MPAdvadv

k (A) ∈ ExtW
B (PAdvadv

k (A)). Thus, by
Lemma 4.6, we have that PAdvadv

k (A) ¹ MPAdvadv
k (A) and thus, by Propo-

sition 5.6, PAdvadv
k (A) .s MPAdvadv

k (A). Finally, Theorem 5.10 implies
that {A1

k}k∈N .s {A2
k}k∈N.

So, to prove that MPAdvadv
k (A) ∈ ExtW

B (PAdvadv
k (A)), let B = ∅ and W

be the set of variables {c, symbolic, H, sk, vk, ek, dk,ASId , F, σ}. We need to
check if the requirements of Definition 4.5 are satisfied:

compatible states: let v be a state variable of MPAdvadv
k (A). Then v is

either history , action, message, agentsToCorrupt , status, vk , sk , ek ,
dk , CSId , f , agents to init , csid , left , right , S, τ , pending and thus it
is a state variable of PAdvadv

k (A), or it is c, symbolic, H, sk, vk, ek, dk,
ASId , F , σ and thus v ∈ W ;

compatible start state: let s̄1
k be the start state of PAdvadv

k (A) and s̄2
k be

the start state of MPAdvadv
k (A). s̄2

k is identified by value λ for variables
history , agents to init , and agentsToCorrupt , by value ∅ for variables
CSId , f , τ , c, H, ASId , and F and by value ⊥ for all other variables.
Since s̄1

k is identified by value λ for variables history , agents to init ,
and agentsToCorrupt , by value ∅ for variables CSId , f , τ , and by value
⊥ for all other variables, then s̄1

k = s̄2
k¹s̄1

k
;

compatible actions: PAdvadv
k (A) and MPAdvadv

k (A) provides the same set
of actions, so this condition is trivially verified; and

compatible transitions: let tr2 = (s2, a, µ2) be a transition of MPAdvadv
k (A).

Since the set of actions of MPAdvadv
k (A) is equal to the set of ac-

tions of PAdvadv
k (A) by definition of MPAdvadv

k (A), then we must verify
that there exists a transition tr1 = (s1, a, µ1) of PAdvadv

k (A) such that
tr1 = tr2¹tr1 . There are several cases: since most of them are very simi-
lar and the proofs are based on the same argumentation, we prove only
a restricted set of actions; other cases can be proved using the same
argumentation:
– a = create action: by definition of the action create action, it fol-

lows that s2.status = create and for each state s′2 of MPAdvadv
k (A),

µ2(s′2) = ρ(a, m) and s′2 is identified by the same values of s2 ex-
cept for the following values: s′2.action = a, s′2.message = m, and
s′2.status = act where ρ is the probability measure induced by the
probabilistic polynomial time function adv(s1.history). Let s1 be the
state of PAdvadv

k (A) such that s1 = s2¹s1 . By definition of action
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create action, also s1 enables create action that leads to the mea-
sure µ1 such that for each state s′1 of PAdvadv

k (A), µ1(s′1) = ρ(a, m)
and s′1 is identified by the same values of s1 except for the following
values: s′1.action = a, s′1.message = m, and s′1.status = act where
ρ is the probability measure induced by the probabilistic polyno-
mial time function adv(s1.history). Thus µ1 = µ2¹µ1 , and hence
tr1 = tr2¹tr1 .

– a = corrupt(η1, . . . , ηl): by definition of the action corrupt(η1, . . . , ηl),
it follows that s2.history = λ, s2.action = corrupt , and s2.message =
(η1, . . . , ηl) and µ2 = δs′2

where s′2 is the state identified by the
same values of s2 except for the following values: s′2.history =
corrupt(η1, . . . , ηl), s′2.action = ⊥, s′2.agentsToCorrupt = η1 . . . ηl,
s′2.status = get sig key, s′2.c = update c map(s2.c, η1 . . . ηl), s′2.H =
s2.H ∪ kn(c−1(η1)) ∪ · · · ∪ kn(c−1(ηl)), and s′2.symbolic =
corrupt(c−1(η1) . . . c−1(ηl)) where c−1 = (s2.c)−1. Let s1 be the
state of PAdvadv

k (A) such that s1 = s2¹s1 . By definition of ac-
tion corrupt(η1, . . . , ηl), also s1 enables corrupt(η1, . . . , ηl) that leads
to the measure µ1 = δs′1

where s′1 is the state of PAdvadv
k (A)

that is identified by the same values of s1 except for the fol-
lowing values: s′2.history = corrupt(η1, . . . , ηl), s′2.action = ⊥,
s′2.agentsToCorrupt = η1 . . . ηl, s′2.status = get sig key. Thus s′1 =
s′2¹s′1

, so µ1 = µ2¹µ1 , and hence tr1 = tr2¹tr1 .
– a = new(i, η1 . . . ηl): by definition of the action, it follows that

s2.action) = new and s2.message = (i, η1 . . . ηl) and µ2 = δs′2
where

s′2 is the state identified by the same values of s2 except for the fol-
lowing values: s′2.history = s2.history ` new(i, η1 . . . ηl), s′2.action =
⊥, s′2.c = update ag names(s2.c, η1 . . . ηl), s′2.CSId = s2.CSId ∪
{cs}, s′2.f = s2.f ∪ {(cs, (τ, i, 1))}, s′2.ASId = s2.ASId ∪ {as},
s′2.F = s2.F ∪ {(as, (σ, i, 1))}, s′2.status = if s′2.agentsToCorrupt 6=
λ then get sig key else create, s′2.agents to init = (η1 . . . ηl) − {η |
s2.ek(η) 6= ⊥}, s′2.symbolic = new(i, c−1(η1) . . . c−1(ηl)), and s′2.H =
s2.H ∪{(i, c−1(η1) . . . c−1(ηl))} where c−1 = (s2.c)−1, τ = {(Aj , ηj) |
1 6 j 6 l}, cs = (|s2.CSId | + 1, i, (η1 . . . ηl)), σ = {(Aj , c

−1(ηj)) |
1 6 j 6 l}, and as = (|s2.ASId | + 1, i, (c−1(η1) . . . c−1(ηl))). Let
s1 be the state of PAdvadv

k (A) such that s1 = s2¹s1 . By definition
of action get corrupt sign(η), also s1 enables new(i, η1 . . . ηl) that
leads to the measure µ1 = δs′1

where s′1 is the state of PAdvadv
k (A)

that is identified by the same values of s1 except for the following
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values: s′1.history = s1.history ` new(i, η1 . . . ηl), s′1.action = ⊥,
s′1.CSId = s1.CSId ∪ {cs}, s′1.f = s1.f ∪ {(cs, (τ, i, 1))}, s′1.status =
if s′1.agentsToCorrupt 6= λ then get sig key else create, and
s′1.agents to init = (η1 . . . ηl) − {η | s1.ek(η) 6= ⊥} where τ =
{(Aj , ηj) | 1 6 j 6 l} and cs = (|s1.CSId | + 1, i, (η1 . . . ηl)). Thus
s′1 = s′2¹s′1

, so µ1 = µ2¹µ1 , and hence tr1 = tr2¹tr1 .
– a = send(cs, m): by definition of the action send(cs, m), it follows

that s2.action = send and s2.message = (cs, m) and µ2 = δs′2
where

s′2 is the state identified by the same values of s2 except for the
following values: s′2.history = s2.history ` send(cs, m), s′2.csid =
cs, s′2.action = ⊥, and s′2.status = parse left. Moreover, given
(ρ, j, p) = (s2.f)(cs) and (φ, j, p) = (s2.F )((s2.c)−1(cs)), if p 6 kj

then s′2.left = ljp, s′2.right = rj
p, s′2.σ = φ, and (s′2.S, s

′
2.τ, s

′
2.σ, s′2.c) =

EvalLeft(push(∅, (ljp, m)), ρ, φ, c). Otherwise, (s′2.S, s
′
2.τ) = (∅,⊥).

Let s1 be the state of PAdvadv
k (A) such that s1 = s2¹s1 . By definition

of action get corrupt sign(η), also s1 enables send(cs, m) that leads
to the measure µ1 = δs′1

where s′1 is the state of PAdvadv
k (A) that is

identified by the same values of s1 except for the following values:
s′1.history = s1.history ` send(cs, m), s′1.csid = cs, s′1.action = ⊥,
and s′1.status = parse left. Moreover, given (ρ, j, p) = (s1.f)(cs),
if p 6 kj then s′1.left = ljp, s′1.right = rj

p, and (s′1.S, s
′
1.τ) =

EvalLeft(push(∅, (ljp, m)), ρ). Otherwise, (s′1.S, s
′
1.τ) = (∅,⊥). Since

by Lemma 8.14 we have that EvalLeft(S, τ) and EvalLeft(S, τ, σ, c) re-
turn the same values on common outputs, it follows that s′1 = s′2¹s′1

,
thus µ1 = µ2¹µ1 , and hence tr1 = tr2¹tr1 .

– a = parse right : by definition of the action, it follows that s2.S = ∅,
s2.τ 6= ⊥, and s2.status = parse left and µ2 = δs′2

where s′2 is
the state identified by the same values of s2 except for the follow-
ing values: (s′2.τ, s

′
2.c) = EvalRight(s2.right , s2.τ, s2.σ, s2.c), s′2.c =

update c map(s′2.c, s2.left , s′2.τ, s2.σ), s′2.symbolic = (s2.σ)(s2.left),
s′2.H = s2.H ∪ {(s2.σ)(s2.right)}, and s′2.status = parse right. Let
s1 be the state of PAdvadv

k (A) such that s1 = s2¹s1 . By definition
of the action, also s1 enables parse right that leads to the mea-
sure µ1 = δs′1

where s′1 is the state of PAdvadv
k (A) that is iden-

tified by the same values of s1 except for the following values:
s′1.τ = EvalRight(s1.right , s1.τ) and s′1.status = parse right. Since by
Lemma 8.15 we have that EvalRight(t, τ) and EvalRight(t, τ, σ, c) re-
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turn the same values on common outputs, it follows that s′1 = s′2¹s′1
,

thus µ1 = µ2¹µ1 , and hence tr1 = tr2¹tr1 .
– a = end step: by definition of the action get nonce(η), it follows

that FirstUnresolved(s2.right , s2.τ) = bot and s2.status = parse right

and µ2 = δs′2
where s′2 is the state identified by the same val-

ues of s2 except for the following values: s′2.history = s2.history `
end step((s2.τ)(s2.right)), (s′2.f)(s2.csid) = (s2.τ, j, p + 1) where
(ρ, j, p) = (s2.f)(s2.csid), (s′2.F )((s2.c)−1(s2.csid)) = (s2.σ, j, p + 1)
where (ρ, j, p) = (s2.F )((s2.c)−1(s2.csid)), and s′2.status = create.
Let s1 be the state of PAdvadv

k (A) such that s1 = s2¹s1 . By
definition of action end step, also s1 enables end step that leads
to the measure µ1 = δs′1

where s′1 is the state of PAdvadv
k (A)

that is identified by the same values of s1 except for the follow-
ing values: s′2.history = s2.history ` end step((s2.τ)(s2.right)),
(s′2.f)(s2.csid) = (s2.τ, j, p + 1) where (ρ, j, p) = (s2.f)(s2.csid),
s′2.status = create. Thus s′1 = s′2¹s′1

, so µ1 = µ2¹µ1 , and hence
tr1 = tr2¹tr1 .

– a = get corrupt sign(η): by definition of the action, it follows that
head(s2.agentsToCorrupt) = η and s2.status = get sig key and µ2 =
δs′2

where s′2 is the state identified by the same values of s2 except for
the following values: s′2.history = s2.history ` get corrupt sign(η)
and s′2.status = wait sig key. Let s1 be the state of PAdvadv

k (A) such
that s1 = s2¹s1 . By definition of action get corrupt sign(η), also
s1 enables get corrupt sign(η) that leads to the measure µ1 = δs′1
where s′1 is the state of PAdvadv

k (A) that is identified by the same
values of s1 except for the following values: s′1.history = s1.history `
get corrupt sign(η) and s′1.status = wait sig key. Thus s′1 = s′2¹s′1

, so
µ1 = µ2¹µ1 , and hence tr1 = tr2¹tr1 .

– all other cases are very similar to the previous one and they are
proved using the same argumentation.

Since the requirements of Definition 4.5 are satisfied, for each k ∈ N,
MPAdvadv

k (A) ∈ ExtW
∅ (PAdvadv

k (A)). ut

We define the third automaton A3
k(A) as the automaton A2

k(A) except
for the fact that we replace the nonce generator NGk(A) with the automa-
ton NG2

k(A) of Section 6.1.1. This nonce generator ensures that returned
nonces are different from all previously generated nonces.
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Lemma 8.17. Let A be a set of agents and for each k ∈ N, denote by A2
k the

automaton NGk(A)||Ek(A)||Sk(A)||MPAdvadv
k (A) and by A3

k the automaton
NG2

k(A)||Ek(A)||Sk(A)||MPAdvadv
k (A) where NG2

k(A) is the nonce genera-
tor automaton defined as in Section 6.1.1.

Then there exist B1
k and B2

k such that

{A2
k}k∈N .s {B1

k}k∈N .s {B2
k}k∈N .s {A3

k}k∈N.

Proof. Let NG1
k(A) be the nonce generator automaton defined as in Sec-

tion 6.1.1. Let Gk be the set of states s of NG1
k such that for all A ∈ A,

s.is freshA 6= F . By Propositions 6.2, 6.5, and 6.4, we know that for
each context Ck compatible with NG2

k(A) we have the following chain of
state approximated simulations: {NGk(A)||Ck}k∈N .s {NG1

k(A)||Ck}k∈N .s

{(NG1
k(A)|Gk)||Ck}k∈N .s {NG2

k(A)||Ck}k∈N.
To prove the statement of the Lemma, it is sufficient to show that C̄k =

Ek(A)||Sk(A)||MPAdvadv
k (A) is a context compatible with NG2

k(A).
C̄k is trivially compatible with NG2

k(A) since the set HNG2
k

of inter-
nal actions of NG2

k(A) is empty and thus HNG2
k
∩ AC̄k

= ∅ and the set
HC̄k

= {create action, fail step, parse right , end step} is disjoint from the
set ANG2

k
of actions of NG2

k(A) and thus ANG2
k
∩HC̄k

= ∅, as required. ut
Lemma 8.18. Let A be a set of agents and for each k ∈ N, denote by A3

k the
automaton NG2

k(A)||Ek(A)||Sk(A)||MPAdvadv
k (A) and by A4

k the automaton
NG2

k(A)||E2
k (A)||Sk(A)||MPAdvadv

k (A) where E2
k (A) is the encryption oracle

automaton defined as in Section 6.2.1.
Then there exist B1

k and B2
k such that

{A3
k}k∈N .s {B1

k}k∈N .s {B2
k}k∈N .s {A4

k}k∈N.

Proof. Let E1
k (A) be the encryption oracle automaton defined as in Sec-

tion 6.2.1. Let Gk be the set of states s of E1
k such that for all A ∈ A,

s.is freshA 6= F . By Propositions 6.12, 6.15, and 6.14, we know that for
each context Ck compatible with E2

k (A) we have the following chain of sim-
ulations: {Ek(A)||Ck}k∈N .s {E1

k (A)||Ck}k∈N .s {(E1
k (A)|Gk)||Ck}k∈N .s

{E2
k (A)||Ck}k∈N.
To prove the statement of the Lemma, it is sufficient to show that C̄k =

NG2
k(A)||Sk(A)||MPAdvadv

k (A) is a context compatible with E2
k (A).

C̄k is trivially compatible with E2
k (A) since the set HE2

k
of internal ac-

tions of E2
k (A) is empty and thus HE2

k
∩ AC̄k

= ∅ and the set HC̄k
=

{create action, fail step, parse right , end step} is disjoint from the set AE2
k

of actions of E2
k (A) and thus AE2

k
∩HC̄k

= ∅, as required. ut
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Lemma 8.19. Let A be a set of agents and for each k ∈ N, denote by A4
k the

automaton NG2
k(A)||E2

k (A)||Sk(A)||MPAdvadv
k (A) and by A5

k the automaton
NG2

k(A)||E2
k (A)||S2

k(A)||MPAdvadv
k (A) where S2

k(A) is the signature oracle
automaton defined as in Section 6.3.1.

Then there exist B1
k and B2

k such that

{A4
k}k∈N .s {B1

k}k∈N .s {B2
k}k∈N .s {A5

k}k∈N.

Proof. Let S1
k(A) be the signature oracle automaton defined as in Sec-

tion 6.3.1. Let Gk be the set of states s of S1
k such that for all A ∈ A,

s.is freshA 6= F . By Propositions 6.28, 6.31, and 6.30, we know that for
each context Ck compatible with S2

k(A) we have the following chain of sim-
ulations: {Sk(A)||Ck}k∈N .s {S1

k(A)||Ck}k∈N .s {(S1
k(A)|Gk)||Ck}k∈N .s

{S2
k(A)||Ck}k∈N.
To prove the statement of the Lemma, it is sufficient to show that C̄k =

NG2
k(A)||E2

k (A)||MPAdvadv
k (A) is a context compatible with S2

k(A).
C̄k is trivially compatible with S2

k(A) since the set HS2
k

of internal ac-
tions of S2

k(A) is empty and thus HS2
k
∩ AC̄k

= ∅ and the set HC̄k
=

{create action, fail step, parse right , end step} is disjoint from the set AS2
k

of actions of S2
k(A) and thus AS2

k
∩HC̄k

= ∅, as required. ut
Lemma 8.20. Let A be a set of agents and for each k ∈ N, denote by A5

k the
automaton NG2

k(A)||E2
k (A)||S2

k(A)||MPAdvadv
k (A) and by A6

k the automaton
NG3

k(A)||E2
k (A)||S2

k(A)||MNPAdvadv
k (A) where NG3

k(A) is the nonce gener-
ator automaton defined as in Section 6.1.1. Let UN k = {used nonces(N) |
N ⊆ {0, 1}k}.

Then, {HideUN k
(A5

k)}k∈N /s {HideUN k
(A6

k)}k∈N.

Proof. To simplify the proof, denote by B2
k and B3

k the composed automata
HideUN k

(NG2
k(A)||MPAdvadv

k (A)) and HideUN k
(NG3

k(A)||MNPAdvadv
k (A)).

We prove the Lemma showing a stronger result, that is that the au-
tomaton B2

k is weakly simulated by B3
k and that each matching weak

transition has length at most 2. Thus, by Proposition 5.16, it follows
that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10, we have that

{HideUN k
(A5

k)}k∈N /s {HideUN k
(A6

k)}k∈N.
Let S2

k and S3
k be the sets of states of B2

k and B3
k, respectively, and

Rk⊆ S2
k × S3

k be the relation defined as s2 Rk s3 if and only if s2 = s3¹s2

and s3.extr nonces = ⊥.
The condition on start states is trivially verified, since by definition of

B2
k and B3

k, it follows that the two automata initialize the common state
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variables with the same values and thus s̄2
k = s̄3

k¹s̄2
k
. Moreover, by definition

of B3
k, we have that s3.extr nonces = ⊥ and thus s̄2

k Rk s̄3
k, as required.

For the step condition, let s2 and s3 be two states such that s2 Rk s3

and suppose that s2
a−→ µ2. We must find µ3 such that s3

a=⇒2
C µ3 such

that µ2 L(Rk) µ3. There are several cases:

case a = parse right : by definition of parse right , it follows that s2.status =
parse left, s2.τ 6= ⊥, and s2.S = ∅. Moreover, we have that µ2 = δs′2
where s′2 is the state of B2

k that is identified by the same values of
s2 except for the following values: s′2.c = update c map(c′, left ′, τ ′, σ′),
s′2.τ = τ ′, s′2.symbolic = σ′(left ′), s′2.H = s2.H ∪ {σ′(right ′)}, and
s′2.status = parse right where σ′ = s2.σ, left ′ = s2.left , right ′ = s2.right ,
and (τ ′, c′) = EvalRight(right ′, s2.τ, σ

′, s2.c). Since s2 Rk s3, it follows
that also s3 satisfies s3.status = parse left, s3.τ 6= ⊥, and s3.S = ∅.
Moreover, it satisfies s3.extr nonces = ⊥ and thus we have that
s3 enables the transition s3

a−→ µ′3 where µ′3 = δs′3
where s′3 is

the state of B3
k that is identified by the same values of s3 except

for the extr nonces variable where s′3.extr nonces = N and N =
extractNonces(s3.left , s3.τ). This implies that s′3 enables the transition
labelled by used nonces(N) that leads to δs′′3

where s′′3 is the state of B3
k

that is identified by the same values of s′3 except for the following val-
ues: s′′3.used nonces = s′3.used nonces ∪N , s′′3.extr nonces = ⊥, s′′3.c =
update c map(c′, left ′, τ ′, σ′), s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′), s′′3.H =
s′3.H ∪ {σ′(right ′)}, and s′′3.status = parse right where σ′ = s′3.σ, left ′ =
s′3.left , right ′ = s′3.right , and (τ ′, c′) = EvalRight(right ′, s′3.τ, σ

′, s′3.c).
Since s′3 and s3 differ only on the value of the extr nonces variable, it
follows that s′′3.extr nonces = ⊥, s′′3.c = update c map(c′, left ′, τ ′, σ′),
s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′), s′′3.H = s3.H ∪ {σ′(right ′)}, and
s′′3.status = parse right where σ′ = s3.σ, left ′ = s3.left , right ′ = s3.right ,
and (τ ′, c′) = EvalRight(right ′, s3.τ, σ

′, s3.c) and thus δs′2
L(Rk) δs′′3

.
This implies that there exists a weak combined 2-bounded transition
s3

a=⇒2
C µ3 such that µ2 = δs′2

L(Rk) δs′′3
= µ3, as required.

case a = get corrupt sign(η): by definition of get corrupt sign(η) action, it
follows that s2.status = get sig key and head(s2.agentsToCorrupt) = η.
Moreover, we have that µ2 = δs′2

where s′2 is the state of B2
k that is identi-

fied by the same values of s2 except for the following values: s′2.history =
s2.history ` get corrupt sign(η) and s′2.status = wait sig key. Since
s2 Rk s3, it follows that also s3 satisfies s3.status = get sig key and
head(s3.agentsToCorrupt) = η. Thus s3 enables the transition s3

a−→ µ3
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where µ3 = δs′3
where s′3 is the state of B3

k that is identified by the same
values of s3 except for the following values: s′3.history = s3.history `
get corrupt sign(η) and s′3.status = wait sig key. This implies that
δs′2

L(Rk) δs′3
that is µ2 L(Rk) µ3 and thus s2

a−→ µ2 is matched
by s3

a−→ µ3. Since each transition is also a weak combined 2-bounded
transition, it follows that s2

a−→ µ2 is matched by s3
a=⇒2

C µ3, as re-
quired.

all other cases: the argumentation is the same of the previous case.

Since all conditions are satisfied, we have that B2
k 42 B3

k. Thus, by Proposi-
tion 5.16, it follows that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10,

we have that {HideUN k
(A5

k)}k∈N /s {HideUN k
(A6

k)}k∈N. ut

Lemma 8.21. Let A be a set of agents and for each k ∈ N, denote by A6
k the

automaton NG3
k(A)||E2

k (A)||S2
k(A)||MNPAdvadv

k (A) and by A7
k the automa-

ton NG3
k(A)||E3

k (A)||S2
k(A)||MNEPAdvadv

k (A) where E3
k (A) is the encryption

oracle automaton defined as in Section 6.2.1. Let UC = {used ciphers(C) |
C ⊆ Ciphertext}.

Then, {HideUC (A6
k)}k∈N /s {HideUC (A7

k)}k∈N.

Proof. To simplify the proof, denote by B2
k and B3

k the composed automata
HideUC (E2

k (A)||MNPAdvadv
k (A)) and HideUC (E3

k (A)||MNEPAdvadv
k (A)).

We prove the Lemma showing a stronger result, that is that the au-
tomaton B2

k is weakly simulated by B3
k and that each matching weak

transition has length at most 2. Thus, by Proposition 5.16, it follows
that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10, we have that

{HideUN k
(A5

k)}k∈N /s {HideUN k
(A6

k)}k∈N.
Let S2

k and S3
k be the sets of states of B2

k and B3
k, respectively, and

Rk⊆ S2
k × S3

k be the relation defined as s2 Rk s3 if and only if s2 = s3¹s2

and s3.extr ciphers = ⊥ ⇐⇒ s2.extr nonces = ⊥.
The condition on start states is trivially verified, since by definition of

B2
k and B3

k, it follows that the two automata initialize the common state
variables with the same values and thus s̄2

k = s̄3
k¹s̄2

k
. Moreover, by definition

of B3
k, we have that s3.extr ciphers = ⊥ and s2.extr nonces = ⊥ and thus

s̄2
k Rk s̄3

k, as required.
For the step condition, let s2 and s3 be two states such that s2 Rk s3

and suppose that s2
a−→ µ2. We must find µ3 such that s3

a=⇒2
C µ3 such

that µ2 L(Rk) µ3. There are several cases:
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case a = used nonces(N): by definition of used nonces(N), it follows that
s2.extr nonces = N . Moreover, we have that µ2 = δs′2

where s′2
is the state of B2

k that is identified by the same values of s2 ex-
cept for the following values: s′2.used nonces = s2.used nonces ∪ N ,
s′2.extr nonces = ⊥, s′2.c = update c map(c′, left ′, τ ′, σ′), s′2.τ = τ ′,
s′2.symbolic = σ′(left ′), s′2.H = s2.H ∪ {σ′(right ′)}, and s′2.status =
parse right where σ′ = s2.σ, left ′ = s2.left , right ′ = s2.right , and
(τ ′, c′) = EvalRight(right ′, s2.τ, σ

′, s2.c). Since s2 Rk s3, it follows
that also s3 satisfies s3.extr nonces = N . Moreover, s3 also satisfies
s3.extr ciphers 6= ⊥ and thus we have that s3 enables the transition
s3

a−→ µ′3 where µ′3 = δs′3
where s′3 is the state of B3

k that is identified
by the same values of s3 except for the extr nonces variable where
s′3.extr nonces = ⊥. This implies that s′3 enables the transition la-
belled by used ciphers(C) (where C = s′3.extr ciphers 6= ⊥) that leads
to δs′′3

where s′′3 is the state of B3
k that is identified by the same val-

ues of s′3 except for the following values: s′′3.extr ciphers = ⊥, s′′3.c =
update c map(c′, left ′, τ ′, σ′), s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′), s′′3.H =
s′3.H ∪ {σ′(right ′)}, and s′′3.status = parse right where σ′ = s′3.σ, left ′ =
s′3.left , right ′ = s′3.right , and (τ ′, c′) = EvalRight(right ′, s′3.τ, σ

′, s′3.c).
Since s′3 and s3 differ only on the value of the extr nonces variable, it
follows that s′′3.extr ciphers = ⊥, s′′3.c = update c map(c′, left ′, τ ′, σ′),
s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′), s′′3.H = s3.H ∪ {σ′(right ′)}, and
s′′3.status = parse right where σ′ = s3.σ, left ′ = s3.left , right ′ = s3.right ,
and (τ ′, c′) = EvalRight(right ′, s3.τ, σ

′, s3.c) and thus δs′2
L(Rk) δs′′3

.
This implies that there exists a weak combined 2-bounded transition
s3

a=⇒2
C µ3 such that µ2 = δs′2

L(Rk) δs′′3
= µ3, as required.

case a = get corrupt sign(η): by definition of get corrupt sign(η) action, it
follows that s2.status = get sig key and head(s2.agentsToCorrupt) = η.
Moreover, we have that µ2 = δs′2

where s′2 is the state of B2
k that is identi-

fied by the same values of s2 except for the following values: s′2.history =
s2.history ` get corrupt sign(η) and s′2.status = wait sig key. Since
s2 Rk s3, it follows that also s3 satisfies s3.status = get sig key and
head(s3.agentsToCorrupt) = η. Thus s3 enables the transition s3

a−→ µ3

where µ3 = δs′3
where s′3 is the state of B3

k that is identified by the same
values of s3 except for the following values: s′3.history = s3.history `
get corrupt sign(η) and s′3.status = wait sig key. This implies that
δs′2

L(Rk) δs′3
that is µ2 L(Rk) µ3 and thus s2

a−→ µ2 is matched
by s3

a−→ µ3. Since each transition is also a weak combined 2-bounded
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transition, it follows that s2
a−→ µ2 is matched by s3

a=⇒2
C µ3, as re-

quired.
all other cases: the argumentation is the same of the previous case.

Since all conditions are satisfied, we have that B2
k 42 B3

k. Thus, by Proposi-
tion 5.16, it follows that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10,

we have that {HideUC (A6
k)}k∈N /s {HideUC (A7

k)}k∈N. ut

Lemma 8.22. Let A be a set of agents and for each k ∈ N, denote
by A7

k the automaton NG3
k(A)||E3

k (A)||S2
k(A)||MNEPAdvadv

k (A) and by A8
k

the automaton NG3
k(A)||E3

k (A)||S3
k(A)||MNESPAdvadv

k (A) where S3
k(A) is

the signature oracle automaton defined as in Section 6.3.1. Let US =
{used signatures(S) | S ⊆ Signature}.

Then, {HideUS (A7
k)}k∈N /s {HideUS (A8

k)}k∈N.

Proof. To simplify the proof, denote by B2
k and B3

k the composed automata
HideUS (S2

k(A)||MPAdvadv
k (A)) and HideUS (S3

k(A)||MNEPAdvadv
k (A)).

We prove the Lemma showing a stronger result, that is that the au-
tomaton B2

k is weakly simulated by B3
k and that each matching weak

transition has length at most 2. Thus, by Proposition 5.16, it follows
that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10, we have that

{HideUN k
(A5

k)}k∈N /s {HideUN k
(A7

k)}k∈N.
Let S2

k and S3
k be the sets of states of B2

k and B3
k, respectively, and

Rk⊆ S2
k × S3

k be the relation defined as s2 Rk s3 if and only if s2 = s3¹s2

and s3.extr signatures = ⊥ ⇐⇒ s2.extr ciphers = ⊥.
The condition on start states is trivially verified, since by definition of

B2
k and B3

k, it follows that the two automata initialize the common state
variables with the same values and thus s̄2

k = s̄3
k¹s̄2

k
. Moreover, by definition

of B3
k, we have that s3.extr signatures = ⊥ and s2.extr ciphers = ⊥ and

thus s̄2
k Rk s̄3

k, as required.
For the step condition, let s2 and s3 be two states such that s2 Rk s3

and suppose that s2
a−→ µ2. We must find µ3 such that s3

a=⇒2
C µ3 such

that µ2 L(Rk) µ3. There are several cases:

case a = used ciphers(C): by definition of used ciphers(C), it follows that
s2.extr ciphers = C. Moreover, we have that µ2 = δs′2

where s′2 is the
state of B2

k that is identified by the same values of s2 except for the fol-
lowing values: s′2.extr ciphers = ⊥, s′2.c = update c map(c′, left ′, τ ′, σ′),
s′2.τ = τ ′, s′2.symbolic = σ′(left ′), s′2.H = s2.H ∪ {σ′(right ′)}, and
s′2.status = parse right where σ′ = s2.σ, left ′ = s2.left , right ′ =
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s2.right , and (τ ′, c′) = EvalRight(right ′, s2.τ, σ
′, s2.c). Since s2 Rk

s3, it follows that also s3 satisfies s3.extr ciphers = C. Moreover,
it satisfies s3.extr signatures 6= ⊥ and thus we have that s3 en-
ables the transition s3

a−→ µ′3 where µ′3 = δs′3
where s′3 is the

state of B3
k that is identified by the same values of s3 except for

the extr ciphers variable where s′3.extr ciphers = ⊥. This implies
that s′3 enables the transition labelled by used signatures(S) (where
S = s′3.extr signatures 6= ⊥) that leads to δs′′3

where s′′3 is the state of B3
k

that is identified by the same values of s′3 except for the following values:
s′′3.used signatures = s′3.used signatures ∪ S, s′′3.extr signatures = ⊥,
s′′3.c = update c map(c′, left ′, τ ′, σ′), s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′),
s′′3.H = s′3.H ∪ {σ′(right ′)}, and s′′3.status = parse right where σ′ =
s′3.σ, left ′ = s′3.left , right ′ = s′3.right , and (τ ′, c′) is the output of
EvalRight(right ′, s′3.τ, σ

′, s′3.c). Since s′3 and s3 differ only on the value
of the extr signatures variable, it follows that s′′3.extr signatures = ⊥,
s′′3.c = update c map(c′, left ′, τ ′, σ′), s′′3.τ = τ ′, s′′3.symbolic = σ′(left ′),
s′′3.H = s3.H ∪ {σ′(right ′)}, and s′′3.status = parse right where σ′ =
s3.σ, left ′ = s3.left , right ′ = s3.right , and (τ ′, c′) is the output of
EvalRight(right ′, s3.τ, σ

′, s3.c) and thus δs′2
L(Rk) δs′′3

. This implies that
there exists a weak combined 2-bounded transition s3

a=⇒2
C µ3 such that

µ2 = δs′2
L(Rk) δs′′3

= µ3, as required.
case a = get corrupt sign(η): by definition of get corrupt sign(η) action, it

follows that s2.status = get sig key and head(s2.agentsToCorrupt) = η.
Moreover, we have that µ2 = δs′2

where s′2 is the state of B2
k that is identi-

fied by the same values of s2 except for the following values: s′2.history =
s2.history ` get corrupt sign(η) and s′2.status = wait sig key. Since
s2 Rk s3, it follows that also s3 satisfies s3.status = get sig key and
head(s3.agentsToCorrupt) = η. Thus s3 enables the transition s3

a−→ µ3

where µ3 = δs′3
where s′3 is the state of B3

k that is identified by the same
values of s3 except for the following values: s′3.history = s3.history `
get corrupt sign(η) and s′3.status = wait sig key. This implies that
δs′2

L(Rk) δs′3
that is µ2 L(Rk) µ3 and thus s2

a−→ µ2 is matched
by s3

a−→ µ3. Since each transition is also a weak combined 2-bounded
transition, it follows that s2

a−→ µ2 is matched by s3
a=⇒2

C µ3, as re-
quired.

all other cases: the argumentation is the same of the previous case.
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Since all conditions are satisfied, we have that B2
k 42 B3

k. Thus, by Proposi-
tion 5.16, it follows that {B2

k}k∈N /s {B3
k}k∈N and hence, by Theorem 5.10,

we have that {HideUS (A7
k)}k∈N /s {HideUS (A8

k)}k∈N. ut
Lemma 8.23. Let A be a set of agents and for each k ∈ N, denote by A8

k

the automaton NG3
k(A)||E3

k (A)||S3
k(A)||MNESPAdvadv

k (A) and by A9
k the

automaton NG4
k(A)||E3

k (A)||S3
k(A)||MNESPAdvadv

k (A) where NG4
k(A) is the

nonce generator automaton defined in Section 6.1.1.
Then there exists Bk such that {A8

k}k∈N .s {Bk}k∈N .s {A9
k}k∈N.

Proof. Let Gk be the set of states s of NG3
k such that for all A ∈ A,

s.is not usedA 6= F . By Propositions 6.10 and 6.9, we know that for each
context Ck compatible with NG3

k(A) we have the following chain of simu-
lations: {NG3

k(A)||Ck}k∈N .s {(NG3
k(A)|Gk)||Ck}k∈N .s {NG4

k(A)||Ck}k∈N,
provided that there exists q ∈ Poly such that for each N ⊆ {0, 1}k such
that used nonces(N) is an action of Ck, |N | 6 q(k).

To prove the statement of the Lemma, it is sufficient to show that C̄k =
E3

k (A)||S3
k(A)||MNESPAdvadv

k (A) is a context compatible with NG4
k(A)

such that there exists q ∈ Poly such that for each used nonces(N) ∈ AC̄k
,

N ⊆ {0, 1}k, |N | 6 q(k) holds.
C̄k is trivially compatible with NG4

k(A) since the set HNG4
k

of internal
actions of NG4

k(A) is empty and thus HNGI
k
∩ AC̄k

= ∅ and the set HC̄k
is

disjoint from the set ANG4
k

of actions of NG4
k(A) and thus ANG4

k
∩HC̄k

=
∅. The last thing to check is that there exists q ∈ Poly such that for
each action used nonces(N) of C̄k, we have |N | < q(k). By the definition
of used nonces(N), it follows that the cardinality of the set of nonces N

depends on the output of the function extractNonces(t, τ) where t is a
term and τ a mapping terms to bitstrings. By Proposition 8.11, we know
that |N | 6 size(t). In particular, the terms t that are used as input of
extractNonces(t, τ) are the left-hand side of the roles that describe the
protocol. This means that given a n-party protocol, we are able to find
r ∈ N such that for each left-hand side term t of the roles of the protocol,
size(t) < r. Let q ∈ Poly be the constant polynomial q(k) = r. Then
|N | 6 size(t) < r = q(k) and thus |N | < q(k), as required. ut
Lemma 8.24. Let E be an IND-CCA encryption scheme and A be a
set of agents. For each k ∈ N, denote by A9

k the composed automa-
ton NG4

k(A)||E3
k (A)||S3

k(A)||MNESPAdvadv
k (A) and by A10

k the automaton
NG4

k(A)||E4
k (A)||S3

k(A)||MNESPAdvadv
k (A) where E4

k (A) is the encryption
oracle automaton defined in Section 6.2.1.
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Then there exists Bk such that {A9
k}k∈N .s {Bk}k∈N .s {A10

k }k∈N.

Proof. Let Gk be the set of states s of E3
k such that for all A ∈ A,

s.is not usedA 6= F . By Propositions 6.20 and 6.19, we know that for each
context Ck compatible with E3

k (A) we have the following chain of simu-
lations: {E3

k (A)||Ck}k∈N .s {(E3
k (A)|Gk)||Ck}k∈N .s {E4

k (A)||Ck}k∈N, pro-
vided that there exists q ∈ Poly such that for each action used ciphers(C)
of Ck, |C| 6 q(k).

To prove the statement of the Lemma, it is sufficient to show that C̄k =
NG4

k(A)||S3
k(A)||MNESPAdvadv

k (A) is a context compatible with E4
k (A)

such that there exists q ∈ Poly such that for each used ciphers(C) ∈ AC̄k
,

C ⊆ Ciphertext, |C| 6 q(k) holds.
C̄k is trivially compatible with E4

k (A) since the set HE4
k

of internal actions
of E4

k (A) is empty and thus HEI
k
∩AC̄k

= ∅ and the set HC̄k
is disjoint from

the set AE4
k

of actions of E4
k (A) and thus AE4

k
∩HC̄k

= ∅. The last thing to
check is that there exists q ∈ Poly such that for each action used ciphers(C)
of C̄k, we have |C| < q(k). By the definition of used ciphers(C), it follows
that the cardinality of the set of ciphertexts C depends on the output of
the function extractCiphertexts(t, τ) where t is a term and τ a mapping
terms to bitstrings. By Proposition 8.12, we know that |C| 6 size(t). In
particular, the terms t that are used as input of extractCiphertexts(t, τ)
are the left-hand side of the roles that describe the protocol. This means
that given a n-party protocol, we are able to find r ∈ N such that for each
left-hand side term t of the roles of the protocol, size(t) < r. Let q ∈ Poly
be the constant polynomial q(k) = r. Then |C| 6 size(t) < r = q(k) and
thus |C| < q(k), as required. ut
Lemma 8.25. Let S be a non-repeating unforgeable signature scheme and A
be a set of agents and for each k ∈ N, denote by A10

k the composed automa-
ton NG4

k(A)||E4
k (A)||S3

k(A)||MNESPAdvadv
k (A) and by A11

k the automaton
NG4

k(A)||E4
k (A)||S4

k(A)||MNESPAdvadv
k (A) where S4

k(A) is the signature or-
acle automaton defined in Section 6.3.1.

Then there exists Bk such that {A10
k }k∈N .s {Bk}k∈N .s {A11

k }k∈N.

Proof. Let Gk be the set of states s of S3
k such that for all A ∈ A,

s.is not usedA 6= F . By Propositions 6.36 and 6.35, we know that for each
context Ck compatible with S3

k(A) we have the following chain of simu-
lations: {S3

k(A)||Ck}k∈N .s {(S3
k(A)|Gk)||Ck}k∈N .s {S4

k(A)||Ck}k∈N, pro-
vided that there exists q ∈ Poly such that for each action used signatures(S)
of Ck, |S| 6 q(k).
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To prove the statement of the Lemma, it is sufficient to show that C̄k =
NG4

k(A)||E3
k (A)||MNESPAdvadv

k (A) is a context compatible with S4
k(A)

such that there exists q ∈ Poly such that for each used signatures(S) ∈ AC̄k
,

C ⊆ Ciphertext, |S| 6 q(k) holds.
C̄k is trivially compatible with S4

k(A) since the set HS4
k

of internal ac-
tions of S4

k(A) is empty and thus HSI
k
∩ AC̄k

= ∅ and the set HC̄k
is dis-

joint from the set AS4
k

of actions of S4
k(A) and thus AS4

k
∩ HC̄k

= ∅. The
last thing to check is that there exists q ∈ Poly such that for each ac-
tion used signatures(S) of C̄k, we have |S| < q(k). By the definition of
used signatures(S), it follows that the cardinality of the set of signatures
C depends on the output of the function extractSignatures(t, τ) where t

is a term and τ a mapping terms to bitstrings. By Proposition 8.13, we
know that |S| 6 size(t). In particular, the terms t that are used as input
of extractSignatures(t, τ) are the left-hand side of the roles that describe
the protocol. This means that given a n-party protocol, we are able to find
r ∈ N such that for each left-hand side term t of the roles of the proto-
col, size(t) < r. Let q ∈ Poly be the constant polynomial q(k) = r. Then
|S| 6 size(t) < r = q(k) and thus |S| < q(k), as required. ut
Lemma 8.26. Let A be a set of agents. For each k ∈ N, denote by A11

k

the automaton NG4
k(A)||E4

k (A)||S4
k(A)||MNESPAdvadv

k (A). Let Ēk be the set
{corrupt(η1 . . . ηl),new(i, η1 . . . ηl), send(cs, m)} and Āk be the set A11

k \Ēk.
If E is an IND-CCA encryption scheme and S is a non-repeating un-

forgeable signature scheme, then {HideĀk
(A11

k )}
k∈N /s {SAdv}k∈N.

Before proving the Lemma, we need of a preliminary result. The first
thing we need to define is a function that allows us to abstract from the
actual value of the bitstring but that takes into account the structure of
the input. Let class( · ) be a function defined inductively as follows:

– if x ∈ N, then class(x) = N;
– if x ∈ Message and type(x) = id , then class(x) = x;
– if x ∈ Message and type(x) = nonce, then class(x) = nonce;
– if x ∈ Message and type(x) = ek , then class(x) = ek ;
– if x ∈ Message and type(x) = dk , then class(x) = dk ;
– if x ∈ Message and type(x) = sk , then class(x) = sk ;
– if x ∈ Message and type(x) = vk , then class(x) = vk ;
– if x ∈ Message and type(x) = ek , then class(x) = ek ;
– if x1, x2 ∈ Message, type(x1) = t1, and type(x2) = t2, then

class(〈x1, x2〉) = 〈t1, t2〉;
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– if x ∈ Message, type(x) = t, and type(e) = ek , then class({x}e) = {t}ek ;
– if x ∈ Message, type(x) = t, and type(s) = sk , then class([x]s) = [t]sk ;
– class((x1, x2)) = (class(x1), class(x2));
– class(λ) = λ and class(x ` S) = class(x) ` class(S);
– class(x1x2 . . . xn) = class(x1)class(x2 . . . xn);
– class(∅) = ∅ and class(push(S, x)) = push(class(S), class(x));
– class(action(S)) = action(class(S));
– class(s) = s′ where for each state variable v of s, s′.v = class(s.v);
– for all other cases, class(x) = x.

Lemma 8.27. Let A11
k and Ēk be the automaton and the set of actions

defined as in Lemma 8.26. Let ξ = s0a1s1 . . . ansn be an execution fragment
of A11

k such that for each 0 6 i < n, si.action = ⊥. An execution fragment
ξ = s0a1s1 . . . ansn is maximal if sn.action 6= ⊥. Let Ξ ⊆ Frags∗(A11

k ) be
the set of finite maximal execution fragments ξ defined as above.

For each pair of transitions s
a1−→ µ and s′

a′1−→ µ′ such that class(s) =
class(s′) and class(a1) = class(a′1) and for each pair of states s1 and s′1
such that s1, s

′
1 ∈ Supp(µ) and s1, s

′
1 ∈ Supp(µ), if ξ = sa1s1 . . . ansn ∈ Ξ,

then there exists ξ′ = s′a′1s
′
1 . . . a′ns′n ∈ Ξ such that class(ξ) = class(ξ′).

Proof. The proof is a classical inductive proof on the length of ξ. ut

Lemma 8.28. Let A11
k and Ēk be the automaton and the set of actions

defined as in Lemma 8.26. Let ξ = s0a1s1 . . . ansn be an execution fragment
of A11

k such that for each 0 6 i < n, si.action = ⊥. An execution fragment
ξ = s0a1s1 . . . ansn is maximal if sn.action 6= ⊥. Let Ξ ⊆ Frags∗(A11

k ) be
the set of finite maximal execution fragments ξ defined as above.

For each state s such that s.agentsToCorrupt 6= λ or s.agents to init 6=
λ, there exists ξ = sa1s1 . . . ansn ∈ Ξ such that for each 1 6 i 6 n,
si.H = s.H, si.ASId = s.ASId, and si.F = s.F .

Proof. The proof is a classical inductive proof on the length of ξ. ut

Lemma 8.29. Let A11
k and Ēk be the automaton and the set of actions

defined as in Lemma 8.26. Let ξ = s0a1s1 . . . ansn be an execution fragment
of A11

k such that for each 0 6 i < n, si.action = ⊥. An execution fragment
ξ = s0a1s1 . . . ansn is maximal if sn.action 6= ⊥. Let Ξ ⊆ Frags∗(A11

k ) be
the set of finite maximal execution fragments ξ defined as above.

For each state s such that there exists s′ such that (s′, send(cs, m), δs)
is a transition of A11

k , if there does not exist θ such that m = (σ ◦ θ)(ljp)
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where (σ, j, p) = (s.F )((s.c)−1(cs)) then there exists ξ = sa1s1 . . . ansn ∈ Ξ

such that an−1 = fail step and for each 1 6 i 6 n, si.H = s.H, si.ASId =
s.ASId, and si.F = s.F .

Proof. The proof is a classical inductive proof on the length of ξ. ut

Lemma 8.30. Let A11
k and Ēk be the automaton and the set of actions

defined as in Lemma 8.26. Let ξ = s0a1s1 . . . ansn be an execution fragment
of A11

k such that for each 0 6 i < n, si.action = ⊥. An execution fragment
ξ = s0a1s1 . . . ansn is maximal if sn.action 6= ⊥. Let Ξ ⊆ Frags∗(A11

k ) be
the set of finite maximal execution fragments ξ defined as above.

For each state s such that there exists s′ such that (s′, send(cs, m), δs)
is a transition of A11

k , if there exists θ such that m = (σ ◦ θ)(ljp) where
(σ, j, p) = (s.F )((s.c)−1(cs)) then there exists ξ = sa1s1 . . . ansn ∈ Ξ such
that an−1 = end step, sn.H = s.H∪{(σ ◦θ)(rj

p)}, and sn.F ((s′.c)−1(cs)) =
(σ ◦ θ, j, p + 1) where (σ, i, p) = (s′.F )((s′.c−1)(cs)).

Proof. The proof is a classical inductive proof on the length of ξ. ut

Now we are able to prove the statement of the Lemma 8.26:

Proof of Lemma 8.26. Let Ξ be the set of executions fragments of A11
k

defined as in Lemma 8.27. Let Rk⊆ S11
k × S12

k be the relation defined as:
s11
k Rk s12

k if and only if one of the following conditions holds:

– s11
k .action ∈ {new , send} and s12

k = s11
k ¹s12

k
;

– s11
k .action = corrupt , s11

k .history = λ, s12
k .h = λ, and s12

k = s11
k ¹s12

k
; or

– for each transition enabled by s11
k and labelled by a, there exist ξ =

s0as1 . . . ansn ∈ Ξ such that s11
k = s0, s12

k = sn¹s12
k

.

Then {Rk}k∈N is a state weak polynomially accurate simulation from
{HideĀk

(A11
k )}

k∈N to {SAdv}k∈N.
Start condition is trivially true, since by definition of A11

k and of A12
k it

follows that s.action 6= ⊥ s.F = ∅, s̄12
k .F = ∅, s.ASId = ∅, s̄12

k .ASId = ∅,
s.H = ∅, and s̄12

k .H = ∅ where s ∈ Supp(µ) and (s̄11
k , create action, µ) is a

transition of A11
k and thus s̄11

k create actions ∈ Ξ.
Suppose, for the sake of contradiction, that the step condition does not

hold. This means that there exists c ∈ N and p ∈ Poly such that for each
l ∈ Poly and k̄ ∈ N there exist k > k̄, µ11, µ12 and γ > 0 such that
µ11 is reached within p(k) steps in A11

k and for each ε-weighting function
wγ for µ11 Lw(Rk, γ) µ12 we have that

∑{wγ(s11, s12) | s11¬ Rl(k)
k (k−c)
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s12} > k−c. Let s11 and s12 be two states such that s11¬ Rl(k)
k (k−c) s12.

This implies that either s11¬ Rk s12 or s11 Rk s12 and there exists
tr11 = (s11, a, ρ11) ∈ D11

k such that for each weak l(k)-bounded combined
transition tr12 = (s12, a, ρ12), ρ11¬ Lw(Rk, k

−c) ρ12. In the former case,
s11¬ Rk s12 implies that wγ(s11, s12) = 0. Otherwise, if wγ(s11, s12) > 0,
then by property 1 of the definition of ε-weighting function, we have that
s11 Rk s12. So,

∑{wγ(s11, s12) | s11¬ Rl(k)
k (k−c) s12} > k−c is due to

pair of states (s11, s12) such that s11 Rk s12 and there exists tr11 =
(s11, a, ρ11) ∈ D11

k such that for each weak l(k)-bounded combined tran-
sition tr12 = (s12, a, ρ12), ρ11¬ Lw(Rk, k

−c) ρ12. Take a pair of such states,
say (s11, s12), and suppose that s11

a−→ ρ11. Now there are two cases: either
s11.action /∈ {corrupt ,new , send} or s11.action ∈ {corrupt ,new , send}. In
the former case, by definition of Rk it follows that there exists a maxi-
mal execution fragment ξ = q0aq1 . . . anqn ∈ Ξ such that s11 = q0 and
s12
k = qn¹s12

k
. This implies, by Lemma 8.27, that for each q′1 ∈ Supp(ρ11)

there exists ξ′ = s11aq′1 . . . a′nq′n ∈ Ξ such that class(ξ) = class(ξ′) and thus
s12
k = q′n¹s12

k
. By definition of Rk, it follows that q′1 Rk s12 and since this

happens for all q′1 ∈ Supp(ρ1), it follows that ρ1 Lw(Rk, 0) δs12 and thus
ρ1 Lw(Rk, k

−c) δs12 . Since s11.action /∈ {corrupt ,new , send}, by definition
of corrupt , new , and send actions it follows that a ∈ Āk and thus a is an
internal action of HideĀk

(A11
k ) thus the transition s12

τ=⇒Cδs12 is a valid
weak l(k)-bounded combined transition such that ρ11¬ Lw(Rk, k

−c) ρ12.
Now, suppose that s11.action ∈ {corrupt ,new , send}. This implies that

s11 enables a transition labelled by either corrupt(η1 . . . ηl), new(i, η1 . . . ηl),
or send(cs, m) provided that s11.action = corrupt , new , and send , respec-
tively:

case a = corrupt(η1 . . . ηl): by definition of action corrupt(η1 . . . ηl) it fol-
lows that s11.history = λ, s11.action = corrupt and ρ1 = δs′11

where s′11

is the state of A11
k that is identified by the same values of s11 except for

the following values: s′11.history = corrupt(η1 . . . ηl), s′11.action = ⊥,
s′11.agentsToCorrupt = η1 . . . ηl, s′11.status = get sig key, s′11.c = c′,
s′11.symbolic = corrupt(c̄(η1) . . . c̄(ηl)), s′11.H = s11.H∪kn(c̄(η1))∪· · ·∪
kn(c̄(ηl)), where c′ = update ag names(s11.c, η1 . . . ηl) and c̄ = (c′)−1.
This implies, by definition of Rk, that s12 satisfies s12.h = λ and
thus it enables the transition (s12, corrupt(c̄(η1) . . . c̄(ηl)), δs′12

) where
s′12 is the state of A12

k that is identified by the same values of s12

except for the following values: s′12.h = corrupt(c̄(η1) . . . c̄(ηl)) and
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s′12.H = s12.H ∪ kn(c̄(η1)) ∪ · · · ∪ kn(c̄(ηl)) and thus s′12 = s′11¹s′12
.

By Lemma 8.28 it follows that there exists ξ = s0a1s1 . . . ansn ∈ Ξ

such that s0 = s′11 and s′12 = s′11¹s′12
and thus s′11 Rk s′12, so

δs′11
Lw(Rk, 0) δs′12

that implies δs′11
Lw(Rk, k

−c) δs′12
and thus the

transition (s12, corrupt(c̄(η1) . . . c̄(ηl)), δs′12
) is a valid weak l(k)-bounded

combined transition such that δs′11
Lw(Rk, k

−c) δs′12
.

case a = new(i, η1 . . . ηl): by definition of action new(i, η1 . . . ηl) it follows
that s11.action = new and ρ1 = δs′11

where s′11 is the state of A11
k that

is identified by the same values of s11 except for the following values:
s′11.history = s11.history ` new(i, η1 . . . ηl), s′11.action = ⊥, s′11.c = c′,
s′11.CSId = s11.CSId ∪{cs}, s′11.f = s11.f ∪{(cs, (τ, i, 1))}, s′11.ASId =
s11.ASId ∪ {as}, s′11.F = s11.F ∪ {(as, (σ, i, 1))}, s′11.agents to init =
(η1 . . . ηl) − {η | ek(η) 6= ⊥}, s′11.status = if s′11.agents to init 6=
λ then get sig key else create, s′11.symbolic = new(i, c̄(η1) . . . c̄(ηl)),
s′11.H = s11.H ∪ {(i, c̄(η1) . . . c̄(ηl))} where τ = {(Aj , ηj) | 1 6 j 6 l},
cs = (|s11.CSId |+1, i, (η1 . . . ηl)), c′ = update ag names(s11.c, η1 . . . ηl),
c̄ = (c′)−1, as = (|s11.ASId |+1, i, (c̄(η1) . . . c̄(ηl))), and σ = {(Aj , c̄(ηj)) |
1 6 j 6 l} ∪ {(Xj

c̄(ηi)
, n(c̄(ηi), j, as)) | j ∈ N}. s12 enables the transition

(s12,new(i, c̄(η1) . . . c̄(ηl)), δs′12
) where s′12 is the state ofA12

k that is iden-
tified by the same values of s12 except for the following values: s′11.H =
s11.H ∪ {(i, c̄(η1) . . . c̄(ηl))}, s′12.ASId = s12.ASId ∪ {as}, s′12.F =
s12.F ∪ {(as, (σ, i, 1))} where as = (|s12.ASId | + 1, i, (c̄(η1) . . . c̄(ηl)))
and σ = {(Aj , c̄(ηj)) | 1 6 j 6 l} ∪ {(Xj

c̄(ηi)
, n(c̄(ηi), j, as)) | j ∈ N} and

thus s′12 = s′11¹s′12
. If s′11.agents to init 6= ⊥, then by Lemma 8.28 it

follows that there exists ξ = s0a1s1 . . . ansn ∈ Ξ such that s0 = s′11 and
s′12 = s′11¹s′12

and thus s′11 Rk s′12, so δs′11
Lw(Rk, 0) δs′12

that implies
δs′11

Lw(Rk, k
−c) δs′12

and thus (s12,new(i, c̄(η1) . . . c̄(ηl)), δs′12
) is a valid

weak l(k)-bounded combined transition such that δs′11
Lw(Rk, k

−c) δs′12
.

If s′11.agents to init = ⊥, then s′11.status = create and thus s′11 enables
a transition labelled by create action that by definition of the action
reaches only states s′′11 where only variables action, message, and status
are modified. This implies that s′12 = s′′11¹s′12

, thus s′11create actions′′11 ∈
Ξ and hence s′11 Rk s′12. This implies that δs′11

Lw(Rk, 0) δs′12
, hence

δs′11
Lw(Rk, k

−c) δs′12
and thus (s12,new(i, c̄(η1) . . . c̄(ηl)), δs′12

) is a valid
weak l(k)-bounded combined transition such that δs′11

Lw(Rk, k
−c) δs′12

.
case a = send(cs, m): by definition of action send(cs, m) it follows that

s11.action = send and ρ1 = δs′11
where s′11 is the state of A11

k that
is identified by the same values of s11 except for the following values:
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s′11.history = s11.history ` send(cs, m), s′11.action = ⊥, s′11.csid = cs,
s′11.status = parse left, and if p 6 kj , then s′11.left = ljp, s′11.right = rj

p,
(s′11.S, s

′
11.τ, s

′
11.σ, s′11.c) = EvalLeft(push(∅, (ljp, m)), ρ, φ, s11.c), else

(s′11.S, s
′
11.τ) = (∅,⊥), where (ρ, j, p) = s11.f(cs) and (φ, j, p) =

s11.F ((s11.c)−1(cs)). If s12.H 6` m, then A12
k is not able to simulate

the transition performed by A11
k from the state s11. This implies that

the message m, by Lemma 8.6, that either m contains a forged sig-
nature, or m contains a message that A11

k has obtained decrypting a
ciphertext which decryption key is not known by A11

k . Since this hap-
pens with non-negligible probability, it follows that A11

k is either a forger
for the signature scheme S or a distinguisher for the encryption scheme
E. But this violates the hypothesis that E is an IND-CCA encryption
scheme and S is a non-repeating unforgeable signature scheme. So, sup-
pose that s12.H ` m. If p > kj , then it follows that s′11.τ = ⊥ and
s′11.status = parse left. This implies that s′11 enables a transition labelled
by fail step that leads to the measure δs′′11

that is the same of s′11 ex-
cept for the following values: s′′11.status = create and s′′11.symbolic = ⊥.
Also s12 enables the transition (s12, send((s11.c)−1(cs), m), δs′12

) where
s′12 = s12, since p > kj . This implies that s12 = s11¹s12 = s′11¹s12 =
s′′11¹s12 = s′′11¹s′12

= s′12. This implies, by definition of Rk, that s′11 Rk

s′12, thus δs′11
Lw(Rk, 0) δs′12

, hence δs′11
Lw(Rk, k

−c) δs′12
and thus

(s12, send((s11.c)−1(cs), m), δs′12
) is a valid weak l(k)-bounded combined

transition such that δs′11
Lw(Rk, k

−c) δs′12
. Now, suppose that p 6 kj .

If there does not exist θ such that m = (σ ◦ θ)(ljp) where (σ, j, p) =
(s12.F )((s11.c)−1(cs)), then this implies that there exists some subterm
t of ljp such that σ(t) is different from the actual value of t in m. This
implies, by definition of EvalLeft function, that the test τ(t) 6= ⊥ of
if τ(t) 6= ⊥ return(if τ(t) = m then (∅, τ, θ, c) else (∅,⊥, θ, c)) is sat-
isfied while the test τ(t) = m fails. By Lemma 8.29, it follows that there
exists an execution s′11a1s1 . . . ansn ∈ Ξ such that an−1 = fail step and
for each 1 6 i 6 n, si.H = s.H, si.ASId = s.ASId , and si.F = s.F .
Also s12 enables the transition (s12, send((s11.c)−1(cs), m), δs′12

) where
s′12 = s12, since there does not exist θ such that m = (σ◦θ)(ljp). This im-
plies that s12 = s11¹s12 = s′11¹s12 = s′′11¹s12 = s′′11¹s′12

= s′12. This implies,
by definition of Rk, that s′11 Rk s′12, thus δs′11

Lw(Rk, 0) δs′12
, hence

δs′11
Lw(Rk, k

−c) δs′12
and thus (s12, send((s11.c)−1(cs), m), δs′12

) is a
valid weak l(k)-bounded combined transition such that δs′11

Lw(Rk, k
−c)
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δs′12
. Finally, suppose that there exists θ such that m = (σ◦θ)(ljp) where

(σ, j, p) = (s12.F )((s11.c)−1(cs)). By Lemma 8.30, it follows that there
exists an execution s′11a1s1 . . . ansn ∈ Ξ such that an−1 = end step,
sn.H = s.H ∪ {(σ ◦ θ)(rj

p)}, and sn.F ((s′.c)−1(cs)) = (σ ◦ θ, j, p + 1)
where (σ, i, p) = (s′.F )((s′.c−1)(cs)). Also s12 enables the transition
(s12, send((s11.c)−1(cs), m), δs′12

) where s′12 is that state that is identi-
fied by the same values of s12 except for the following values: s′12.H =
s12.H ∪ {(σ ◦ θ)(rj

p)}, and (s′12.F )((s11.c)−1(cs)) = (σ ◦ θ, j, p + 1).
This implies that s′12 = sn¹s′12

, hence by definition of Rk, that s′11 Rk

s′12, thus δs′11
Lw(Rk, 0) δs′12

, hence δs′11
Lw(Rk, k

−c) δs′12
and thus

(s12, send((s11.c)−1(cs), m), δs′12
) is a valid weak l(k)-bounded combined

transition such that δs′11
Lw(Rk, k

−c) δs′12
.

Since all cases lead to a contradiction, it follows that the step condition is
satisfied, hence {HideĀk

(A11
k )}

k∈N /s {SAdv}k∈N. ut

Completing the Proof

Now we are able to complete the proof showing that there exists a chain of
simulations between the concrete model and the symbolic model.

Theorem 8.31. Let A be a set of agents, E be an IND-CCA encryption
scheme and S be a non-repeating unforgeable signature scheme. For each
k ∈ N, denote by Ak the automaton NGk(A)||Ek(A)||Sk(A)||PAdvadv

k (A).
Let Āk be the set Ak \ {corrupt(η1 . . . ηl),new(i, η1 . . . ηl), send(cs, m)}.

Then there exists a sequence of automata B1
k, . . . , B21

k such that B1
k =

Ak, B21
k = SAdv and for each 1 6 i 6 20, it holds that {HideĀk

(Bi
k)}k∈N /s

{HideĀk
(Bi+1

k )}
k∈N.

Proof. The result is the immediate consequence of Lemmas 8.16 to 8.26
and Propositions 5.13, 5.17, and 5.21. ut

The above result allows us to invoke the correspondence execution theo-
rem (Theorem 5.20) and thus we have that for each probability measure µ1

that is reachable within a polynomial number of steps in Ak, there exists
a probability measure µ2 that is reached in SAdv such that µ1 and µ2 are
related up to a negligible error. In particular, if we consider the relations
we used in the chain from Ak to SAdv , we note that they are the identity
relation and thus with overwhelming probability for each execution of Ak

(that is stored into the history variable), there exists an execution of SAdv



8.4 Analysis of the Soundness Proof using Probabilistic Automata 303

that simulates it performing the same sequence of actions and each message
is derivable from the previous knowledge, that is all actions of the sequence
are Dolev-Yao transitions.





9

Conclusion

In this thesis we have considered the problem of the verification of the secu-
rity of cryprographic protocols. Starting from the work we find in literature,
we have identified two main approaches that are used to prove the security:
in the first approach, also called the formal model or symbolic model, the
protocol is modelled combining terms of an algebra where each term mod-
els a message. This means that we have terms that denote nonces, other
terms that represent agent’s identities, and so on. Complex terms, such as
pairs of terms, encryptions and signatures are modelled by operations that
combine terms and produce a new term. The security of the protocol is
proved considering an adversary that interacts with the modelled protocol:
the aim of the adversary is to retreive reserved information exchanged by
the participants of the protocol or to induce a participant to complete a
session of the protocol with the adversary. In this last case, the adversary
attacks the protocol if it is able to convince the participant that it has
completed the session with another agent and not with the adversary.

The adversary during its interaction with the protocol can not send all
messages it desires. Specifically, each message it sends must be deducible
from the adversary’s knowledge. A message is deducible if it can be derived
from the knowledge using a fixed set of deduction rules. These rules char-
acterize the properties of the cryptographic primitives we are considering:
for example, an usual rule states that whatever the knowledge is, it is pos-
sible to derive the public encryption key of each participant; another rule is
the one that permits to deduce the pairing of two messages provided that
we are able to derive both the messages. When the protocol involves the
encryption as cryptographic operation, there are the following rules that
characterize it: for the encryption, the first rule states that if we are able
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to derive a message m and a public encryption key pe, then we are able to
derive the encryption {m}pe of m under the key pe while the second rules
states that if we are able to derive the encryption {m}pe and the secret de-
cryption key pe−1, then we are able to derive m. These two rules model the
widely accepted assumption that everyone can encrypt a message but only
the owner of the decryption key can decrypt a ciphertext. Analogously, we
have rules that model the generation of signatures and other cryptographic
operations.

The proof of security of a cryptographic protocol is very rigorous and
often quite simple to understand, but it does not model exactly what hap-
pens in the real world. In fact, in the real world the adversary can guess
the decryption key and thus it can decrypt a message, even if this happens
with very small probability.

The aim of the second approach we have identified in the literature
is to model also these cases. In this approach, that is known as the con-
crete model or computational model, all elements are sequences of bits, also
called bitstrings: nonces, agent’s identities, keys; cryptographic operations
are functions that receive bitstrings and return a bitstring. The length of
the bitstrings is based on a security parameter k: for example, given k,
all identities are bitstrings of length k as well as the length of keys. Also
the properties of cryptographic primitives are defined considering the real
world: for example, we require that the encryption scheme ensures that
we can recover the plaintext from an encrypted message only with negli-
gible probability if we do not know the decryption key associated to the
encryption key used to encrypt the message.

The security of the protocol is proved considering an adversary that
interacts with the modelled protocol: as in the first approach, the aim of the
adversary is to retreive reserved information exchanged by the participants
of the protocol or to induce a participant to complete a session of the
protocol with the adversary. In this last case, the adversary attacks the
protocol if it is able to convince the agent that it has completed the session
with another participant and not with the adversary. In this approach, the
adversary can interact with the protocol sending all messages it desires.
The only restriction we impose is that the adversary can perform at most
a polynomial number of steps during the generation of the message. The
security of the protocol is not absolute but depends on the probability that
the adversary performs a successful attack. This means that we do not
require that the attack occurs with probability 0 to say that the protocol
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is correct, but we say that it is secure if the probability of an attack is
negligible with respect to the security parameter k.

This second approach permits to study the security of protocols in the
real world but it presents some problems: we must consider the probability
of attacks and thus we should take into account all sources of randomness
in our analysis; the proofs are usually very long and with a lot of technical
details; proofs are usually tedious and hence it is quite common to perform
some step of the proof in an informal way. This lack of formality is usually
safe but sometimes it can hide some error that invalidates the proof.

A similar situation can be found in the context of distributed systems,
where there are several probabilistic components that interact with each
other implementing a distributed algorithm. In this context, the analysis
of the correctness of a complex system is very rigorous and it is based on
tools from information theory such as the simulation method that allows
us to decompose large problems into smaller problems and to verify sys-
tems hierarchically and compositionally. The simulation method consists
of establishing relations between the states of two automata, called simu-
lation relations, and to verify that such relations satisfy appropriate step
conditions: each transition of the simulated system can be matched by the
simulating system up to the given relation. Using a compositional approach
we can study the properties of each small problem independently from the
each other, deriving the properties of the overall system. Furthermore, the
hierarchical verification allows us to build several intermediate refinements
between specification and implementation. Often hierarchical and compo-
sitional verification is simpler and cleaner than direct one-step verification,
since each refinement may focus on specific homogeneous aspects of the
implementation.

In this thesis we have investigates if it is possible to extend tools and
results from distributed systems to the verification of cryptographic pro-
tocols: we base our modeling on probabilistic automata and we represent
each actor (cryptographic primitive, protocol, adversary, and so on) with an
automaton. In particular, we model them as in the computational model:
exchanged messages are bitstrings which length depends on a security pa-
rameter k that parameterize the automaton; the probabilistic aspects are
considered directly by the transitions of the involved automata. Once we
have the automata that model all actors, their composition models the
concrete protocol that interacts with the concrete adversary. The security
proof is obtained relating this concrete automaton with another automaton
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that implements actors ideally. This means that in this abstract automaton,
encryptions satisfy the properties as in the symbolic model, the adversary
can generate a message m only if it is able to derive m from its knowledge,
and so on.

Standard relations defined on probabilistic automata are not suitable for
our purpose, since they do not consider the computational constraints we
impose to the adversary. For this reason, we have defined a new simulation
relation that takes into account the length of the execution but it is still too
restrictive for our aims. In fact, we have that in the symbolic model, the
probability to decrypt an encrypted message is zero if we do not know the
decryption key; in the computational model, the same event has negligible
probability. So we can not use an exact matching, but we need to match
up to an error.

This consideration leads us to define the polynomially accurate simula-
tion that takes into account the security parameter that characterizes the
concrete primitives, the computational aspects of the system and the admit-
ted error. We have defined both strong and weak version of the simulations,
since we want to be able to abstract from the internal computations of the
automata, provided that such computations are polynomially bounded.

Besides the polynomially accurate simulations, we have provided other
tools that can simplify the analysis of cryptographic protocols: the first
one is the concept of conditional automaton, that permits to safely remove
events that occur with negligible probability. Starting from a machine that
is attackable with negligible probability, if we build an automaton that is
conditional to the absence of these attacks, then there exists a simulation.
And this allows us to work with the simulation relations all the time and
in particular we can also prove in a compositional way that the elimination
of negligible events from an automaton is safe. This property is justified by
the conditional automaton theorem that states that events are negligible if
and only if the identity relation is an approximated simulation from the
automaton and its conditional counterpart. Another tool is the execution
correspondence theorem, that extends the one of the distributed systems
context, that allows us to use the hierarchical approach. In fact, the the-
orem states that if we have several automata and a chain of simulations
between them, then with overwhelming probability each execution of the
first automaton is related to an execution of the last automaton. In other
words, we have that the probability that the last automaton is not able to
simulate an execution of the first one is negligible.
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Finally, we have provided a library of families of automata that imple-
ment commonly used cryptographic primitives and that can be used each
time during the verification of a protocol we want to replace a concrete
primitive with its ideal counterpart.

To show the usefulness of our polynomially accurate simulation, we have
considered two different case studies: in the first one we have recast the
security proof of the mutual authentication protocol of Bellare and Rogaway
[22] showing how our new simulation can be used to relate the concrete
implementation of the protocol with its idealized version, obtaining a proof
that involves compositionality and hierarchical verification; in the second
case study we used our polynomially accurate simulation to provide a more
rigorous proof of the soundness result of Cortier and Warinschi [41] showing
off the problems hidden by the not so formal argumentation used in some
step of the original proof.

The results of this thesis can be expanded to several directions. One
of them is that currently our simulation relates the probability measures
that can reached within a polynomial number of steps. It is our intention
to relax such restriction allowing the probability measures to be reached
in an expected polynomial number of steps and then to study the effects
of such modification. Similarly, we want to investigate the properties of
the weak simulation defined as the one of Section 5.2 except for the weak
transition, where we require that the expected length of the weak transitions
is polynomially bounded.

Another direction we would like to extend the results of this thesis is the
application of the polynomially accurate simulation to other cryptographic
primitives, such as symmetric encryptions and hash functions. The scope
of this extension is to add other primitives to the library of results of the
Chapter 6.

Moreover, we would like to search for a logical characterization of the
proposed simulations and how it can be used together with automatic ver-
ification tools or other proposal of literature.

Another research direction can be to study if and how to use our simu-
lation in other research fields, like hybrid systems.
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41. Véronique Cortier and Bogdan Warinschi. Computationally sound, automated

proofs for security protocols. Technical Report RR-5341, INRIA, 2004.
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110. F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand

spaces: Why is a security protocol correct? In IEEE Symposium on Security and

Privacy, pages 160–171, 1998.
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Sommario

Nella verifica dei protocolli di sicurezza ci seguono due importanti ap-
procci che sono conosciuti sotto il nome di approccio simbolico e com-
putazionale, rispettivamente. Nell’approccio simbolico i messaggi sono ter-
mini di un’algebra e le primitive crittografiche sono idealmente sicure;
nell’approccio computazionale i messaggi sono sequenze di bit e le primitive
crittografiche sono sicure con elevata probabilità. Questo significa, per es-
empio, che nell’approccio simbolico solo chi conosce la chiave di decifratura
può decifrare un messaggio cifrato, mentre nell’approccio computazionale
la probabilità di decifrare un testo cifrato senza conoscere la chiave di de-
cifratura è trascurabile.

Di solito, i protocolli crittografici sono il risultato dell’interazione di
molte componenti: alcune sono basate su primitive crittografiche, altre su
altri principi. In generale, quello che risulta è un sistema complesso che
vorremmo poter analizzare in modo modulare invece che doverlo studiare
come un singolo sistema.

Una situazione simile può essere trovata nel contesto dei sistemi dis-
tribuiti, dove ci sono molti componenti probabilistici che interagiscono tra
loro implementando un algoritmo distribuito. In questo contesto l’analisi
della correttezza di un sistema complesso è molto rigorosa ed è basata
su strumenti che derivano dalla teoria dell’informazione, strumenti come
il metodo di simulazione che permette di decomporre grossi problemi in
problemi più piccoli e di verificare i sistemi in modo gerarchico e compo-
sizionale. Il metodo di simulazione consiste nello stabilire delle relazioni tra
gli stati di due automi, chiamate relazioni di simulazione, e nel verificare
che tali relazioni soddisfano delle condizioni di passo appropriate, come che
ogni transizione del sistema simulato può essere imitata dal sistema simu-
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lante nel rispetto della relazione data. Usando un approccio composizionale
possiamo studiare le proprietà di ogni singolo sotto-problema indipenden-
temente dagli altri per poi derivare le proprietà del sistema complessivo.
Inoltre, la verifica gerarchica ci permette di definire molti raffinamenti in-
termedi tra la specifica e l’implementazione. Spesso la verifica gerarchica
e composizionale è più semplice e chiara che l’intera verifica fatta in una
volta sola.

In questa tesi introduciamo una nuova relazione di simulazione, che chi-
amiamo simulazione polinomialmente accurata o simulazione approssimata,
che è composizionale e che permette di usare l’approccio gerarchico nelle
nostre analisi. Le simulazioni polinomialmente accurate estendono le re-
lazioni di simulazione definite nel contesto dei sistemi distribuiti sia nel caso
forte sia in quello debole tenendo conto delle lunghezze delle esecuzioni e
delle proprietà computazionali delle primitive crittografiche.

Oltre alle simulazioni polinomialmente accurate, forniamo altri stru-
menti che possono semplificare l’analisi dei protocolli crittografici: il primo
è il concetto di automa condizionale che permette di rimuovere eventi che
occorrono con probabilità trascurabile in modo sicuro. Data una macchina
che è attaccabile con probabilità trascurabile, se costruiamo un automa che
è condizionale all’assenza di questi attacchi, allora esiste una simulazione
tra i due. Questo ci permette, tra l’altro, di lavorare con le relazioni di sim-
ulazione tutto il tempo e in particolare possiamo anche dimostrare in modo
composizionale che l’eliminazione di eventi trascurabili è sicura. Questa
proprietà è giustificata dal teorema dell’automa condizionale che afferma
che gli eventi sono trascurabili se e solo se la relazione identità è una simu-
lazione approssimata dall’automa alla sua controparte condizionale. Un al-
tro strumento è il teorema della corrispondenza delle esecuzioni, che estende
quello del contesto dei sistemi distribuiti, che giustifica l’approccio gerar-
chico. Infatti, il teorema afferma che se abbiamo molti automi e una catena
di simulazioni tra di essi, allora con elevata probabilità ogni esecuzione del
primo automa della catena è in relazione con un’esecuzione dell’ultimo au-
toma della catena. In altre parole, abbiamo che la probabilitc̀he l’ultimo
automa non sia in grado di simulare un’esecuzione del primo è trascurabile.

Infine, usiamo il framework delle simulazioni polinomialmente accurate
per fornire delle famiglie di automi che implementano le primitive crit-
tografiche comunemente usate e per dimostrare che l’approccio simbolico è
corretto rispetto all’approccio computazionale.


