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Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy



a mia mamma,
la mia forza e la mia guida





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 NES requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Middleware structure and functionality . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Middleware classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Tuplespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Object-oriented (OOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Message-oriented (MOM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 NES-design state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 AME Design methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Typical NES design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Abstract Middleware Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Database Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Tuplespace Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Object oriented Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Message oriented Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 AME implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 AME-centric design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Refinement and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Refinement and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 HW/SW/Network simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 System/Network co-simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Contents 1

4.1.5 HW/SW (SystemC/ISS) co-simulation . . . . . . . . . . . . . . . . . . . 38
4.1.6 HW/SW (SystemC/QEmu) co-simulation . . . . . . . . . . . . . . . . 43

4.2 AME 2 design level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Network Simulator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 AME-Transactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 SCNSL-AME-Transactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 NS2-AME-Transactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 AME 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Actual or Simulated platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 AME Proxy Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Tuplespace to Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Database to Tuplespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Object-oriented to Tuplespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Tuplespace to Object-Oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Tuplespace to Message-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Message-oriented to Tuplespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8 Message-oriented to Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.9 Database to Message-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 Message-oriented to Object-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 Object-oriented to Message-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.12 Object-oriented to Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.13 Database to Object-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.14 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1 Mapping onto ZigBee/Z-Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Object-Oriented AME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.3 Z-Stack Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Mapping onto TeenyLime MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.1 TeenyLime application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Application to a heterogenous NES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117





1

Introduction

Ambient intelligence, pervasive and ubiquitous computing are the center of a great
deal of attention because of their promise to bring benefits for end-users, higher
revenues for manufacturers and new challenges for researchers. Typical computing
technologies (such as telemedicine, manufacturing, crisis management) are part of
a broader class of Networked Embedded Systems (NESs) in which a large number
of nodes are connected together and collaborate to perform a common task under
a defined set of constraints. Therefore, the key aspects of these applications are
their distributed nature and the presence of very limited HW resources, as in case
of Wireless Sensor Networks (WSNs).

Communication
Network

BODY SENSOR 
NETWORK

GATEWAY

REMOTE SERVICES

Fig. 1.1. Health-care application of NES.

Figure 1.1 illustrates an example of health-care application in which a body
sensor network monitors patient’s parameters (e.g., temperature, blood pressure,
and motion) and transmits them trough the Gateway to a Remote Service to
control/monitor the user health (e.g., hospital).

In the development of NES software, re-use of components to speed-up the
time-to-market contrasts with the need of ad-hoc solutions for the limited HW
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resources. Simulation plays a key role in this development process to allow not
only functional validation but also design-space exploration.

A reuse-driven approach to embedded software for NES must emphasise several
key characteristics [14]:

• use of standard programming paradigms to write applications and standard
communication paradigms between nodes to guarantee interoperability across
different manufacturers;

• presence of a well-defined abstraction layer which isolates application from the
details of the underlying platform to simplify the NES application development;

• simulation tools for functional validation and the fulfilment of tight HW/SW
constraints and efficient modelling techniques to explore different design solu-
tions.

Traditionally, many NES applications have been developed without support
from system software [15]. When system software has been used it has consisted of
simple device drivers and an operating system. State-of-the-art techniques [16] for
NES focus on simple data-gathering applications, and in most cases, the design
of the application and the system software are usually closely-coupled, or even
combined as a monolithic procedure. However, such procedures are sometimes
ad-hoc and impose direct interaction with the underlying embedded operating
system, or even the hardware components. Such applications are neither flexible
nor scalable and they should be re-written if the platform changes.

Due to these problems, Networked Embedded Systems make application devel-
opment non-trivial. Middleware is emerging as an important architectural compo-
nent in supporting NES applications able to facilitate the application development.
The role of middleware is to present a unified programming model to application
designers and to mask out the problems of heterogeneity and distribution providing
a basic set of tools and libraries for the low-level handling of technology-specific
NES. It represents a service layer which abstracts from the peculiarities of the
operating system and HW components. Several NES middlewares have been im-
plemented in the past [17,18], each one providing different programming paradigms
(e.g., tuplespace, message-oriented, object-oriented, database, etc.). Nowadays, the
choice of the middleware to design NES application is based on the following crite-
ria: programming skills of the system architect [19] and platform constraints [20].

The down-side of this traditional approach is a more complex NES applica-
tion design flow. In fact, the same application cannot support different platforms,
limiting application re-use, interoperability and scalability.

1.1 Thesis objective

Despite of these punctual contributions, the literature does not report a complete
design methodology for NES applications integrating interoperability, simulation
and simplification aspects.

The goal of this thesis is to present a middleware-centric design methodology
for NES, where the middleware plays a decisive role in the design process. The
proposed methodology allows:
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• To build the application over a middleware-like service layer named abstract
middleware hiding the different NES implementations peculiarities from end-
user applications; this feature is reached by the Abstract Middleware Environ-
ment (AME), a framework that abstracts common programming paradigms
to design NES applications: tuplespace, publish-subscribe (MOM), object-
oriented (OOM) and database.

• To choose for the application development the programming paradigm that
maximises productivity and to explore different design solutions by automat-
ically translating application code to use another programming paradigm in
order to satisfy system’s functional and non-functional properties (e.g., syn-
chronous or asynchronous communication, tight or loosely coupled interaction,
etc.). For instance, an asynchronous communication requirement would not to
be satisfied by using Tuplespace. Similarly, using a MOM for developing a mes-
saging application implies to explicity deploy a message broker component and
to interact with it for sending and receiving messages.

• To simulate the application for functional validation supporting interoperabil-
ity between different implementation platforms and ensure scalability of the
NES technology.

AME provides a complete framework to design and simulate networked embed-
ded systems application. This environment allows to design applications through
three design step:

• The first step (named AME 3), depicted in Figure 1.2.a, simulates and val-
idates application functional requirements by using middleware-like services
with different programming paradigms.

• During the second step (AME 2), a simulated network infrastructure is in-
volved in the whole framework, as shown in Figure 1.2.b. AME 2 provides the
same APIs of the previous step, even if opportunely modified to establish a
communication with a network simulator (e.g., NS2 [53], SCNSL [73]).

• At the third step (called AME 1) HW/SW partitioning is applied to each
node to map functionalities to HW and SW components accordingly to several
constraints (e.g., performance, cost, and component availability). At this level
communication APIs provided by AME 1 services are the same APIs of the
previous step (AME 2). HW components are involved in the simulation through
HW/SW/network simulation (Figure 1.2.c); in this case the application code
can be changed for the modelling of the HW components.

The described design flow provides three main advantages:

• application development is simplified since the choice of the programming
paradigm is not constrained by deployment issues;

• application development and platform design can be performed concurrently;
• design-space exploration is improved since it is possible to evaluate the perfor-

mance of the same application implemented by using different programming
paradigms.
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Fig. 1.2. AME design flow.

1.2 Structure of the thesis

This thesis is organized as follows.
In Chapter 2 we present the different proposals which have been done to solve

the NES application issues previously described. In this context we present some
works providing abstraction with respect to the plaform model or the architectural
styles (e.g., programming paradigms). Moreover, in this Chapter we classify the
NES middleware approacches accordingly to the their programming paradigms.

Chapter 3 describes the middleware-centric design methodology highlighting
the presence of the middleware introduced as an explicit design dimension with
respect to the typical NES design flow. Furthermore, the AME environment and
the related API set involved for NES application design is described. The AME-
centric design flow has been published on [2] and [3]

Chapter 4 reports the the AME Refinement process concealing the peculiari-
ties of the underlying NES, where the simulation environment is involved in order
to simulate the NES applications taking in account network and hardware ef-
fects. Moreover, the whole simulation environment integrated in AME is described.
The simulation environment is composed by two main co-simulation environment:
System/Network and HW/SW co-simulation. Finally, the Refinement process has
been applied to a NES-based application in order to describe the advantages of
the AME design methodology. The co-simulation environment has been published
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on [1], [4], [5], [7], [8], [10] and [13]. Moreover the Refinement process has been
published on [12].

Chapter 5 focuses on the translation between the different AME programming
paradigms and reports the methodology to translate application code. Finally, the
proposed translation mechanism has been applied to a NES application scenario to
evaluate the effectiveness of the proposed solution. The reference application has
been designed by using the AME programming paradigms: Tuplespace, Object-
Oriented, Database, Message-oriented. The pseudo-code for each implementation
is described. The translation mechanism has been published on [9].

Chapter 6 describes the mapping process from the AME application to the
actual NES by mapping AME calls to actual middleware calls. Two reference
examples are presented: the description of the automatic mapping of AME appli-
cations over a target NES platform running Z-Stack middleware (ZigBee) and the
Mapping process onto a Tuplespace programming paradigm (named TeenyLime).
Finally, experimental results are reported to show the advantages of the AME-
centric design methodology. The automatic mapping process has been published
on [11].

Chapter 7 shows the modelling of a real Networked Embedded Systems, named
Angel platform. This chapter emphasizes how the AME provides an environment
supporting the development of applications, as well as the analysis and optimisa-
tion of the interactions among the platform components. The Angel platform has
been partially described in [6].





2

Background and related works

A Middleware layer is a novel approach to fully meeting the design and imple-
mentation challenges of NES applications. Middleware has often been useful in
traditional systems for bridging the gap between the operating system (a low-level
component) and the application (as shown in Figure 2.1), easing the development
of the distributed applications.

MIDDLEWARE

Application Application
…

APIs

MIDDLEWARE

Hardware

Operating System

Hardware

Operating System

Platform interface Platform interface

…

Fig. 2.1. Middleware layer.

All services provided by a middleware system should respect the constraints
involved in NES, which are limited amount of memory, reduced processing power,
scalability, heterogeneity. Several middleware systems have been designed to deal
with the previous issues. Next Section presents an exhaustive analysis and classi-
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fication of the middleware for NES. Finally, we propose to classify them in four
main classes.

2.1 NES requirements

We envision that the development of NES will finally demand systematic applica-
tion design methods based on standard and portable abstractions of the system.
Thus, middleware sitting between the hardware, operating systems and the appli-
cation is required to provide:

• standardized system services to different applications.
• a runtime environment that can support and coordinate multiple applications.
• mechanisms to achieve adaptive and efficient utilization of system resources.

Such a middleware is particularly useful for NES that host complex applications
with large amount of information processing and/or stringent performance con-
straints. The NES application design and development through a middleware-
based approach, must address many requirements dictated by NES characteristics.
Following we describe the requirements which should be satisfied by a middleware-
centric design flow.

Heterogeneity
NES applications (such as industrial machines, medical equipment, household

appliances, mobile phones, PDAs, sensors and actuators) written in different pro-
gramming languages (C, C++, nescC and Java) running on different operating
systems, executing on different hardware platforms, should be able to communi-
cate using a middleware platform. As possible, middleware system should include
the necessary abstractions in order to cater for the heterogeneous nature of a
network embedded environment consisting of different types of devices, but co-
operating with the middleware. Moreover, the middleware system should include
the flexibility to use the available communication protocols that are eventually
supported by particular devices.

Power and resources
Limited in energy and individual resources (such as CPU and memory), these

tiny devices could be deployed in hundreds or even thousands in harsh and hostile
environments. In cases where physical contact for replacement or maintenance is
impossible, wireless media is the only way for remote accessibility. Hence, mid-
dleware should provide mechanisms for efficient processor and memory use while
enabling lower-power communication. A NES should accomplish its three basic
operations sensing, data processing, and communication without exhausting re-
sources.

Openness
Implementation of new functionality, or changes of an existing functionality

should be possible to be permitted within the middleware as the set of applica-
tions changes or the set of embedded nodes is updated with new nodes, offering
new functionality to the application. Therefore, as in the case of any distributed
system, the middleware should have the capability to be extended and modified
during its lifetime. Moreover, since data should be continuously be provided to the
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application, especially in the case of real-time applications, the process of updating
or extending the middleware should not require halting its operation while this is
being done.

Scalability and mobility
If an application grows, the network should be flexible enough to allow this

growth anywhere and anytime without affecting network performance, so this is
the scalability. Moreover efficient middleware services must be capable of main-
taining acceptable performance levels as the network grows. Network topology is
subject to frequent changes owing to factors such as malfunctioning, device fail-
ure, moving obstacles, mobility, and interference. Middleware should support NES
robust operation despite these dynamics by adapting to the changing network en-
vironment. Middleware also should support mechanisms for fault tolerance and
NES self-configuration and self-maintenance.

Development time
A middleware should provide the mechanisms to reduce the amount of time

and effort required to build a system application.
Data aggregation
Often in a NES the applications involves nodes which both provide redundant

data and are locate in specific local region. Then data aggregation open the pos-
sibility to in-network aggregation from different sources erasing the redundancy
and reducing the number of transmission. This technique allows save energy and
resources.

Security
NES are being widely deployed in domains that involve sensitive information;

typically, NES uses wireless medium facilitating unwanted packets injection to
compromise the network’s functioning. All these factors make security extremely
important. Furthermore, NES have limited power and processing resources, so
standard security mechanisms, which are heavy in weight and resource consump-
tion, are unsuitable. These challenges increase the need to develop comprehensive
and secure solutions that achieve wider protection, while maintaining desirable
network performance.

2.2 Middleware structure and functionality

Networking protocol stacks can be decomposed into multiple layers such as the
physical, data-link, network, transport, session, presentation, and application lay-
ers. Similarly, middleware can be decomposed into multiple layers such as those
shown in Figure 2.2.

We describe each of these middleware layers and outline some of the commercial-
off-the-shelf (COTS) technologies in each layer [21].

Host infrastructure middleware encapsulates OS concurrency and inter-
process communication (IPC) mechanisms to create object-oriented network pro-
gramming capabilities. These capabilities eliminate many tedious, error-prone, and
non-portable activities associated with developing networked applications via na-
tive OS APIs, such as Sockets or POSIX threads (Pthreads). Examples of COTS
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Distribution Middleware

Common Middleware Services

Domain-specific Middleware Services

Application

Abstraction 
levels

Hardware

Operating System

Host insfrastructure Middleware

Distribution Middleware levels

Fig. 2.2. A level-based middleware classification.

host infrastructure middleware include the following: the Adaptive Communica-
tion Environment (ACE) [22] is a portable and efficient toolkit that encapsulates
native operating system network programming capabilities such as inter-process
communication, static and dynamic configuration of application components, and
synchronization. Real-Time Java Virtual Machines implement the Real-Time Spec-
ification for Java (RTSJ) [23]. The RTSJ is a set of extensions to Java that provide
a largely platform-independent way of executing code by encapsulating the differ-
ences between real-time operating systems and CPU architectures..

Distribution middleware uses and extends host infrastructure middleware
in order to automate common network programming tasks, such as connection
and memory management, marshaling and demarshaling, endpoint and request
demultiplexing, synchronization, and multithreading. Developers who use distri-
bution middleware can program distributed applications much like stand-alone
applications, that is, by invoking operations on target objects without concern for
their location, language, OS, or hardware. At the heart of distribution middleware
are Object Request Brokers (ORBs), such as Java RMI [24], and CORBA [25].

Common middleware services augment distribution middleware by defining
higher-level domain-independent services, such as event notification, logging, per-
sistence, security, and recoverable transactions. Whereas distribution middleware
focuses largely on managing end-system resources in support of an object-oriented
distributed programming model, common middleware services focus on allocating,
scheduling, and coordinating various resources throughout a distributed system.
Without common middleware services, these end-to-end capabilities would have
to be implemented ad hoc by each networked application. Examples of common
middleware services include the OMG’s CORBAServices [26] and the CORBA
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Component Model (CCM) [27], which provide domain-independent interfaces and
distribution capabilities that can be used by many distributed applications. The
OMG CORBAServices and CCM specifications define a wide variety of these ser-
vices, including event notification, naming, security, and fault tolerance.

Domain-specific middleware services satisfy specific requirements of par-
ticular domains, such as telecommunications, e-commerce, health care, process au-
tomation, or avionics. Whereas the other object-oriented middleware layers provide
broadly reusable ”horizontal” mechanisms and services, domain-specific services
target vertical markets. From a ”commercial off-the-shelf” (COTS) perspective,
domain-specific services are the least mature of the middleware layers today. This
is due in part to the historical lack of middleware standards needed to provide a
stable base upon which to create domain-specific services.

2.3 Middleware classification

The layer decomposition of the whole middleware architecture is a typical model-
driven approach to simplify the design tasks, and classify the functionalities pro-
vided by the middleware. Moreover, almost all actual middleware are cross layer,
providing a set of services at each layer. Some research efforts have been di-
rected to the development of new middleware based on different programming
paradigms [28]. A programming paradigm allows to program the NES as a stan-
dalone application - it should hide hardware and distribution issues from the pro-
grammer as far as possible. We propose to classify them in following four main
classes as reported in Figure 2.3

Middleware classification

Database Tuplespace OOM MOM

TinyDB T-Spaces TAO MiresCougar ICETinyLime… … … …

Fig. 2.3. A programming paradigm-based middleware classification.

2.3.1 Database

A number of approaches have been proposed that treat the NES as a distributed
database where users can issue SQL-like queries to extract the data of interest from
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the nodes of networks. Cougar [29] introduces a new dimension in middleware
research by adopting a database approach in which NES data are considered a
virtual relational database. Cougar implements NES management operations in
the form of queries, using an SQL-like language. TinyDB [30] is a query-processing
system for extracting information from a network of sensor devices using TinyOS
as an operating system. TinyDB relieves the user from the complexity to write
embedded code by providing an easy, SQL-like interface for extracting the data of
interest from sensor nodes with limited power and hardware resources. The queries
use simple data manipulation to indicate the type of readings, such as light and
temperature, as well as the subset nodes of interest.

2.3.2 Tuplespace

The characteristics of wireless communication media (e.g., low and variable band-
width, frequent disconnections, etc.) favor a decoupled and opportunistic style of
communication: decoupled in the sense that computation proceeds even in pres-
ence of disconnections, and opportunistic as it exploits connectivity whenever it
becomes available. The synchronous communication paradigm supported by many
traditional distributed systems has to be replaced by a new asynchronous com-
munication style. This communication problem has been addressed by Tuplespace
based systems. Although not initially designed for this purpose (their origins go
back to Linda [31], a coordination language for concurrent programming), Tu-
plespace systems have been shown to provide many useful facilities for communi-
cation in wireless settings. In Linda, a Tuplespace is a globally shared, associatively
addressed memory space used by processes to communicate. It acts as a repository
of data structures called tuples that can be seen as vectors of typed values. Tuples
constitute the basic elements of a Tuplespace systems; they are created by a pro-
cess and placed in the tuple space using a write primitive, and they can be accessed
concurrently by several processes using read and take primitives, both of which are
blocking (even if nonblocking versions can be provided). Tuples are anonymous,
thus their selection takes place through pattern matching on the tuple contents.
Communications is decoupled in both time and space: senders and receivers do
not need to be available at the same time, because tuples have their own life span,
independent of the process that generated them, and mutual knowledge of their
location is not necessary for data exchange, as the tuple space looks like a globally
shared data space, regardless of machine or platform boundaries. Some examples
belonging of this class are: T-Spaces [32] and TinyLime [33].

2.3.3 Object-oriented (OOM)

Perhaps the most popular model is object based middleware in which applica-
tions are structured into (potentially distributed) objects that interact via location
transparent method invocation. Object-oriented Middleware offers synchronous,
typed communication between components of a distributed program. An object
model is a set of definitions about the properties of computational entities, such as
the available types and their semantics, rules for type compatibility, behavior in
case of errors, and so on. Typically, these Middlewares offer an interface definition
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language (IDL) which is used to abstract over the fact that objects can be im-
plemented in any suitable programming language, an object request broker which
is responsible for transparently directing method invocations to the appropriate
target object, and a set of services (e.g. naming, time, transactions, replication
etc.) which further enhance the distributed programming environment. Ice [35] is
a new object-oriented middleware platform that allows developers to build dis-
tributed client-server applications with minimal effort. The ACE ORB (TAO) is
an open-source standard-compliant implementation of CORBA that’s optimized
for high-performance and real-time systems; it allows clients to invoke operations
on distributed objects without concern for object location, programming language,
OS platform, communication protocols and interconnects, and hardware [36].

2.3.4 Message-oriented (MOM)

Message-oriented middleware supports asynchronous calls between the client and
server applications. MOM increases the flexibility of an architecture by enabling
applications to exchange messages (containing formatted data, requests for ac-
tion, or both) with other programs without having to know what platform or
processor the other application resides on within the network. Nominally, MOM
systems provide a message queue between interoperating processes, so if the des-
tination process is busy, the message is held in a temporary storage location until
it can be processed. MOM is typically asynchronous and peer-to-peer, but most
implementations support synchronous message passing as well. This approach is
quite suitable in pervasive environments such as NES, where most applications are
based on events. It adopts a component-based programming model using active
messages to implement its publish-subscribe-based communication infrastructure.
In this programming model, sources ”publish” to the entire network and interested
sinks ”subscribe” to messages. The network then only forwards them downstream if
there is at least one subscriber on that path. This requires the message transport
service to understand the message internals, although some systems are ”topic-
based” where each message has a subject line which the transport system reads
and can ignore the rest of the message. Mires [18] proposes an adaptation of a
message-oriented middleware for traditional fixed distributed systems. Mires pro-
vides an asynchronous communication model that is suitable for NES applications
(which are event driven in most cases).

2.4 NES-design state of the art

The diversity of properties provided by each middleware makes complex the devel-
opment of high quality middleware-based software systems: software engineering
methods and tools should be developed with the use of middleware in mind. The
use of middleware affects the following software development phases [37]:

• The selection of the middleware to be used should be based on engineering
methods and on the system requirements.

• System design, specification and analysis must integrate properties manage at
middleware level.
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• System implementation should be built as much as possible on middleware
tools.

• System validation needs to be performed integrating both middleware-related
and application specific components.

Some works try to overcome this problem by using abstraction with respect to
the platform model or the architectural styles (e.g., programming paradigms).

In such way, Sensation [41] presents a middleware platform solution for perva-
sive applications in WSN providing a developer-friendly programming interface.
This approach is valid just for WSN and does not include a network simulator for
an exhaustive network evaluation.

Model-Driven Engineering (MDE) is a significant step towards a middleware-
based software process [38]. The best known MDE initiative is the Model-Driven
Architecture (MDA) from the Object Management Group (OMG). Using the
MDA [39, 40] methodology, system functionalities may first be defined as a plat-
form independent model (PIM) through an appropriate Domain Specific Language.
Given a Platform Definition Model (PDM) corresponding to some middleware, the
PIM may then be translated to one or more platform-specific models (PSMs) for
the actual implementation. Translations between the PIM and PSMs are normally
performed using automated tools, like Model transformation tools The MDA fo-
cuses primarily on the functionality and behaviour of a distributed application or
system, not on the technology in which it will be implemented. Furthermore, MDA
does not directly provide a simulation environment.

PrismMW [42] is an extensible middleware platform that enables implementa-
tion, deployment and execution of distributed Prism (Programming in the small
and many) applications in terms of their architectural elements: components, con-
nectors, configurations, and events. The key properties of Prism-MW are its native,
and flexible, support for architectural abstractions (including architectural styles),
efficiency, scalability, and extensibility. PrismMW allows to develop Java or C++
applications running on Java Virtual Machine or Windows CE respectively.

A Universal Middleware Bridge (UMB) system has been proposed in [43] to
solve the interoperability problem caused by the heterogeneity of several types
of home network middleware. UMB system makes middleware interoperable with
another middleware by using a device conversion mechanism and a message trans-
lation mechanism. This approach introduces a new huge software layer (the UMB)
between the actual middleware and the application; therefore this solution is not
feasible in networked embedded systems where the HW/SW resources available
are very poor.

[44] supports true interoperability between different applications, as well as
between different implementation platforms and ensure scalability of the NES tech-
nology by proposing a universal application interface, which allows programmers
to develop applications without having to know unnecessary details of the underly-
ing platform. Such works define a standard set of services and interface primitives
called SNSP (Sensor Network Services Platform), to facilitate the development of
Wireless Sensors/Actuators Network applications. Unfortunately, this abstraction
model of middleware sensibly simplifies the complexity of developing applications
only for WSNs, merging an abstract implementation of the main services provided
by actual WSN middleware.
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AME Design methodology

A typical NES application is a distributed application composed by a set of interac-
tive modules running on a heterogeneous HW/SW embedded platform (network
nodes interact through communication network) to carry out the functionality.
A milestone in the effort of simplifying the implementation of such applications
has been the introduction of a service layer, named middleware, which abstracts
from the peculiarities of the operating system and HW components. However, the
presence of the middleware has not been yet introduced in the design flow as an
explicit dimension. This Section introduces before the typical NES design flow
and following descibes the design methodology based on an Abstract Middleware
Environment (AME) that allows to abstract common programming paradigms.

3.1 Typical NES design flow

Figure 3.1 shows the typical NES design flow; it starts from the specification of
application requirements both functional and non-functional (e.g., cost, speed,
area, and power consumption). From these requirements, a model of the whole
distributed application is build as the interaction of modules connected by com-
munication channels. Communication primitives are provided by the modelling
tool and, at this stage, there is no distinction between intra-node communications
and inter-node communications. Among various system modelling languages, Sys-
temC [45] can be used for its great flexibility in describing systems at different
abstraction levels and for its support of Transaction Level Modeling (TLM) [46]
whose communication primitives can be employed at this stage of the design flow.

Then System/Network partitioning is applied to this model to map modules
onto network nodes; an integer number of modules can be assigned to each node.
We refer to the model of each node as system model. Communications between
modules belonging to different nodes are now described as network communica-
tions and are part of the network model which reproduces the behaviour of network
protocols (e.g., TCP/IP, ZigBee/802.15.4, etc.). System and network models can
be simulated by different tools even if they should interact (horizontal arrow in
the Figure 3.1) to exchange data and to share a common simulation time scale.
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Fig. 3.1. Typical NES design flow.

In the next stage, system models which are outside the design scope remain
unchanged while a traditional design flow can be applied to each system model
to be developed (e.g., transaction level modelling). In particular, HW/SW par-
titioning is performed on the system model to map functionalities onto HW and
SW components according to several constraints (e.g., speed, cost, and component
availability). HW components outside the design scope remain unchanged while
others are refined down to RTL and gate level. In this phase simulation can be
done with different tools for SW,

HW and network components but they should cooperate to exchange data and
to share a common simulation time scale. In particular, SW components inter-
act with HW components and HW components interact with the network model
(horizontal arrows in the Figure 3.1); the simulation of interactions between HW
and SW components is exactly the scope of simulation environment that will be
described in Section 4), while for interactions between HW and network models
the same techniques of the previous design phase.

In the final stage HW and SW models are mapped onto actual components. HW
components can be either synthesized or taken from the market. For what concerns
software, an actual operating system is introduced and SW functionalities become
application code with calls to the OS services. An actual network is used according
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to its model. It is worth remarking that refinement, simulation and validation can
be accomplished at each step of the design flow.

A NES application is a distributed application running on heterogeneous
HW/SW embedded architecture interacting through communication network. NES
systems are distributed, but the nodes must achieve a centralized goal coopera-
tively. Following the design flow proposed in this Section, it is possible to design
NES applications without any support from system software. Moreover, NES nodes
typically have limited computing power and small amounts of memory. They must
consume as little power as possible. Communication is noisy and its bandwidth
is limited. The individual nodes and communication channels are inherently un-
reliable, yet the overall system needs to be robust. These requirements, already
described in Section 2.1, mandate novel systems and software design techniques.

A milestone in the effort of simplifying the implementation of such applications
is the introduction of a service layer, named middleware, which abstracts from the
peculiarities of the operating system and HW components. This work presents a
middleware-centric design flow, where the middleware is an explicit design dimen-
sion.

3.2 Abstract Middleware Environment

Any middleware type provides different services (or APIs) to the application de-
signer. Apart from core features, almost all middlewares, presented in Section 2.3,
provide several services that simplify the application development by providing
access to particular operating systems and hardware functionality. Let us list and
organize the main services provided by the middleware.

3.2.1 Database Services

Database middleware approach provides the user with a query system which is
very easy to use. The database approach hides distribution issues from the user.
We can summarized the services provided by the Database middleware in a unique
service:

query : SQL-like queries to perform Networked Embedded Systems tasks.

The following pseudo-code represents a simplified version of an application
based on database middleware.

string request="SELECT temperature
FROM table
WHERE temperature>40"

response = middleware.query(request);

3.2.2 Tuplespace Services

In this middleware the data are represented by structures called tuples. They are
collected in a globally shared memory called tuple space. Each tupla is a sequence
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of values that also can be of different type (e.g. ¡”temperature”, 25, ”XYZ”¿)
and the communication between process is implemented with reading, writing and
extraction of this elements from the space of tuples. The main services provided
by the programming paradigm tuples-based are:

read b(template) : a blocking read operation to read a tuple from tuple space
without extract the tuple and suspending the operation until a matching tuple
appears.

read nb(template) : like the previous service, but in this case the operation re-
turn null if no matching tuples exists in the tuple space.

take b(template) : a blocking operation to remove a tuple from tuple space sus-
pending the operation until a matching tuple appears.

take nb(template) : like the previous service, but in this case the operation re-
turn null if no matching tuples exists in the tuple space.

write(tuple) : to perform an adding tuple operation on the tuple space.

All operations, except write service, specify a template to read or extract
a tuple from the tuple space. The template itself is a tuple whose field contain
either values (actuals) or ”wild cards” (formals). Typically, if multiple tuples
match a template, the one returned by the read or take operations is selected
non-deterministically.

The following pseudo-code represents a simplified version of an application
based on tuplespace middleware.

while(1) {
response = middleware.take nb

(<"temperature", ?>);
if (response!=NULL AND

response[1] > 40)
execute operation;

endif;
}

3.2.3 Object oriented Services

A typical object-oriented middleware provides 1) a mechanism to describe an ob-
ject interface and to map it to an actual object implemented in common program-
ming languages, 2) a mechanism to provide the client with a local reference of the
remote object, and 3) a public repository in which instances of the actual object
have been registered. Let Srv and SrvImpl be the name of the object interface
and of its actual implementation respectively, then the middleware should provide
the following services:

register(obj,name) : to register an instance of SrvImpl into the public reposi-
tory and to assign it a public name.

lookup(name) : to obtain a local object reference of type Srv.

The following pseudo-code represents a fragment of application which uses the
service provided by a remote object.
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Middleware mw=new Middleware(host,port);
Srv mySrv=(Srv)mw.lookup("Service");
mySrv.do();

The following pseudo-code represents a fragment of an application which cre-
ates an instance of SrvImpl and registers it in the public repository.

Middleware mw=new Middleware(host,port);
SrvImpl mySrvImpl=new SrvImpl();
mw.register(mySrvImpl, "Service");

3.2.4 Message oriented Services

Publish/Subscribe is an asynchronous messaging paradigm. In a Publish/Subscribe
system, publishers post messages to an intermediary broker and subscribers regis-
ter subscriptions with that broker. In a topic-based system, messages are published
to ”topics” or named logical channels which are hosted by a broker. Subscribers
in a topic-based system will receive all messages published to the topics to which
they subscribe and all subscribers to a topic will receive the same messages. The
current programming model uses the following services:

• void publish(Message,Topic): to publish a message Message into the topic
Topic;

• void subscribe(Topic, event): to subscribe to a particular Topic;
• void unsubscribe(Topic, event): to unsubscribe to a particular Topic.

Concerning the subscribe and unsubscribe services, the first parameter rep-
resents a topic. The second parameter is an event used by AME to wake-up the
application subscriber when a message is published in that topic. An event consists
of a name and a payload. The event’s payload carries data information: msg and
topic. Figure 3.2 depicts the communication flow between two applications (Node
A and Node B) implemented by using the AME MOM programming paradigm.

3.3 AME implementation

Based on the previous analysis has been implemented a set of services and interface
primitives (APIs) involved in a simulation envoronment called Abstract Middle-
ware Environment (AME). These APIs should be made available to an applica-
tion programmer independently on the implementation on any actual middleware.
Each programming service, previously described, should be seen as a component
of AME.

AME enviroment has been implemented using SystemC. The well-known sys-
tem description language named SystemC [45] is used to write the application as a
set of concurrent systems interacting together. The SystemC framework provides
primitives to model concurrent processes (threads), to synchronize them and to
exchange messages. Furthermore, the SystemC simulation engine can be exploited
for the functional validation of the application. This allows to simulate each com-
ponent of the whole NES application at different level of abstraction by using the
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Transaction Level Modeling (TLM) library rovided by SystemC, thus providing
an early platform for software development. Following the TLM fashion we have
defined three AME level (AME 1, AME 2 and AME 3), usable in different ab-
straction levels of the application design flow, as described in Section 3.4. Each
AME level includes the same API; in this way we guarantee the reuse of modeled
applications at different abstraction levels

3.4 AME-centric design flow

AME offers an application interface providing the possible services, described in
Section 3.2, that can be used to design a typical NES application. The AME-
centric design flow consists of three key concepts, i.e., Refinement, Translation,
and Mapping.

3.4.1 Refinement and Simulation

As depicted in Figure 3.3, the Refinement process can be represented by a verti-
cal dimension in which the model of the NES platform below the application is
detailed. The design flow proposed in this work is similar to the typical NES flow
presented in Section 3.1. Figure 3.4 shows the design flow for NES application
based on the AME, highlighting the presence of the middleware introduced as an
explicit design dimension. We define three levels of detail.

At the highest level (called AME 3) modules communicate through abstract
point-to-point primitives. During this step of the design flow, the designer has to
specify the application requirements (performances, functionalities, power consum-
ing, etc.) and choose the programming paradigm; a programming model should
substantially support the development of the application hiding hardware and
communication issues from the programmer as far as possible. Ideally a program-
ming paradigm allows to program the networked platform as a single ”virtual”
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Fig. 3.3. AME-centric design flow.

entity, rather than focusing on individual nodes. The choice of the programming
paradigm depends on the application designer skills and on the type/nature of the
application. Therefore, in this phase the NES application will be built using the
abstracted services provided by the AME 3, based on the programming paradigm
chosen, to verify and simulate the functional property of the application. Further-
more, because of the separation of the application model from the middleware, the
application development can be done in parallel with the design of the HW/SW
platform or even without knowledge about the final platform.
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At the next level (called AME 2) System/Network partitioning is applied to the
model. We refer to the model of the node under design as System model. Commu-
nications between nodes are described as network communications in the Network
model which reproduces the behavior of network protocols such as TCP/IP or
ZigBee/802.15.4. The System model, modeled using the services of AME 2, inter-
acts with the Network model (horizontal arrow in Figure 3.4). In this phase, an
performed of the communication protocols, simulated by the Network model, can
be evaluated. The AME 2 API services used to design the NES application as the
same of the previous design step; however, in this case, the implementation of the
AME 2 services is different to allow the interaction with the network simulator.
At the next level (called AME 1) a traditional design flow is applied to the Sys-
tem model, while the different parameters of the Network model can be tuned to
improve performance. In particular, HW/SW partitioning is performed on the Sys-
tem model to map functionalities to HW and SW components according to several
constraints (e.g., performance, cost, and component availability). SW components
interact with HW components (named Hardware model) and HW components in-
teract with the Network model (horizontal arrows in the Figure 3.4). Also in this
case, the AME 1 API services as the same of the previous design steps, but the
implementation is different to communicate with the network simulator, simulat-
ing the Network model.
It is worth noting that the Refinement process involves the model of the NES
while the application software remains un-changed during the System/Network
partitioning design process. Therefore, different development teams can work on
application and NES at the same time since the interface between application and
AME is well-defined.

3.4.2 Translation

The second concept is called Translation and it plays a key role in the AME-based
design flow. It consists in modifying the application software to use a different
programming paradigm without changing its functional behaviour. If program-
ming paradigms are well defined in terms of primitives then a set of rules can
be derived to transform application software from a paradigm to another. The
main advantage of this translation is that programming paradigm can be changed
between application development and deployment without an extra effort to re-
write the application software. Usually during application development the choice
of the programming paradigm is driven by the expertise of the designer and by the
need to re-use application components from other projects. At deployment time, it
may happen that there is no actual middleware featuring the chosen programming
paradigm or this programming paradigm cannot be implemented efficiently on the
actual embedded platform. The translation process gives the freedom to choose a
different programming paradigm during development and deployment. Translation
is performed on the abstract middleware since abstract primitives are well defined
and translation rules can be derived more easily. Translation can be performed
in each of the three levels of the refinement process since it involves application
software not the underlying model of the embedded system. The use of Trans-
lation during application development can also improve design-space exploration
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since the designer can also evaluate performance as a function of the programming
paradigm; in fact, for a given functional requirement some paradigms can be more
efficient then others in terms of resource usage (e.g., CPU, memory, network).

3.4.3 Mapping

The third concept is called Mapping and it regards the deployment of the applica-
tion over the actual NES. If the HW and SW resources of the actual platform allow
the presence of an actual middleware, then the application software is modified to
replace calls to AME services with calls to the actual middleware. The Mapping
process assumes that the programming paradigm remains the same in the trans-
fer from abstract middleware to actual middleware; for example, an application
designed as a collection of objects is mapped onto an object-oriented middleware
such as CORBA. In a more general scenario, different parts of the distributed
system may require different types of actual middleware and the unique abstract
middleware must be mapped on those. A special case is given when the resources of
the node do not tolerate the overhead of a middleware; an example is represented
by the wireless sensor networks in which nodes usually have limited memory and
processing power. In this case, calls to AME have to be replaced with direct calls
to system SW (e.g., operating system and network stack).





4

Refinement and Simulation

One of key advantages of the AME-based design is that simulation can be done at
the early stage of the design flow. With reference to Figure 3.4 there are different
simulation mechanisms and capabilities at the different levels of the design flow
(AME 3, AME 2 and AME 1). This design flow is named Refinement process. It
conceals the peculiarities of the underlying NES, and the simulation environment
is involved in order to simulate the NES applications taking in account network
(AME 2 design level) and hardware ( AME 1 design level) effects.

At the first stage, the whole application is described as a set of SystemC func-
tional modules interacting together through the interface provided by abstract
middleware (i.e., AME 3). Simulation mechanisms are provided by the SystemC
simulation environment in which each function and the middleware are considered
as concurrent processes.

At the second stage, system/network partitioning has been performed and the
system model of each node interacts with other nodes through communication links
described in the network model. At this level a different version of the abstract
middleware library (i.e., AME 2) is used; it provides the same interface to the
application code but communications are implemented through packet exchanges.
System models are simulated by the SystemC simulator while packet delivery is
simulated by a network simulator. A cooperation between the two simulation en-
vironments is needed; in particular, the network simulator must provide SystemC
with an API to transfer packets from system models to the network and viceversa;
for this purpose some general co-simulation approaches have been implemented as
described in Section 4.1. On the other side, AME 2 has to provide a network sim-
ulator interface to establish a connection with the network simuator; this interface
is presented in Section 4.2.

At the third stage, HW/SW partitioning is applied to each node to map func-
tionalities to HW and SW components according to several constraints (e.g., per-
formance, cost, and component availability). At this level communications APIs
provided by AME 1 services are the same API of the previous step (AME 2). HW
components are involved in the simulation through HW/SW/network simulators
(as described in Section 4.1); in this case the application code can be changed for
the modelling of the HW components.
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4.1 HW/SW/Network simulation

In this Section we split the problem of HW/SW/Network co-simulation into Sys-
tem/Network co-simulation, where systems represent processing nodes made up
of HW and SW components, and HW/SW co-simulation, where the interactions
between HW and SW components within each node are considered.

Efficient modelling and simulation of networked systems require that tools
exhibit a good level of scalability, completeness, fidelity, and reusability. The sim-
ulator should be able to handle large networks of thousands of nodes in a wide
range of configurations (scalability). It should be able to cover as many system
interactions as possible, accurately capturing behaviour at a wide range of levels
(completeness) and revealing unanticipated interactions, not just those a developer
suspects (fidelity). Finally, the simulator should bridge the gap between algorithm
and implementation, allowing developers to test and verify the code that will run
on actual hardware (reusability). Different aspects should be addressed during the
modelling and simulation of networked embedded systems. They can be classified
according to three domains, i.e., software, hardware, and network.

4.1.1 Software

The characteristics to simulate in the software domain are: the functional and tim-
ing behaviour of the software and its interaction with external events through in-
terrupts (e.g., the presence of concurrency issues). While the functional behaviour
of a system can be easily simulated through general-purpose languages such as C
or C++, other characteristics can be reproduced only by a cycle-accurate emu-
lation of the CPU through an instruction set simulator [50] and the support of
debug facilities. The instruction set simulator (ISS) is an application which runs
on a host workstation and executes programs written and compiled for a different
processor (target platform). ISS simulates the behaviour of a program and the as-
sociated operating system at the instruction-set level; simulation is cycle-accurate,
i.e., the number of simulated instruction cycles to perform a given operation is the
same as on actual hardware. This tool can be used to verify the interactions be-
tween the application and the operating system and, if a power model of the CPU
is available, to evaluate power consumption. Using this tool, developers can test
and verify the same object code that will run on actual hardware. Simulations
performed by ISS lack realistic timing information since instruction cycles, not
seconds, are the basic time unit. For this reason, this tool cannot be used to model
asynchronous events triggered by hardware components or by the network.

4.1.2 Hardware

Also in this domain, the functional behaviour of the system should be reproduced
at the first design stage. Then, the tool should allow to refine the description to
represent the architecture as a set of interconnected blocks (structural view). In
this flow, non-functional information should be managed, e.g., timing behaviour,
area utilization and power consumption. A desired feature for a HW simulation
tool is its support for the synthesis of the architecture. A traditional language for
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hardware description is VHDL while SystemC [45] is gaining increasing attention
for its great flexibility in describing devices at different abstraction levels, from
system level down to RTL and gate levels. SystemC is a C++ class library that
provides the constructs required to model system architectures including hardware
timing, concurrency and reactive behaviour that are missing in standard C++. In
literature SystemC was already used to describe network-on-chip architectures [51]
and to simulate the lowest network layers of the Bluetooth communication stan-
dard [52].

4.1.3 Network

Network can be modelled at different levels of detail, from packet level down to
the electromagnetic propagation. Simulated values can be either generated by an
analytic model or taken from experimental data sets; the first approach is more
general but it strongly depends on the model validity and may be computational
intensive. Network Simulator, NS-2 [53], is the most widely used discrete event
simulator for computer networks. It is written in C++ and provides modules for
the simulation of well-known protocols both wired and wireless. NS-2 simulates
networks at the packet level and provides facilities to collect statistics at different
detail levels. Some extensions have been developed to simulate sensor networks for
environmental monitoring applications [54–58]. The main weakness of NS-2 is that
it does not model concurrent processes within the network node. With NS-2, sim-
ulation scenarios are created by connecting together different kind of objects, i.e.,
nodes, agents and applications describing different layers of the ISO/OSI model.
Since a cross-layer approach is preferred in the design of wireless sensor networks,
NS-2 should be deeply modified to exploit the interaction between protocols and
applications. Besides, implementing a new protocol requires the update of a lot
of NS-2 configuration files. Some specific tools were developed in the past for the
simulation of wireless sensor networks (e.g., TOSSIM [47], AVRORA, EMSTAR,
ATEMU, SQUALNET) even if most of them are targeted to a specific architec-
ture (e.g., Berkeleys motes). Using different tools for network modelling and node
implementation limits the reuse of code and test-benches. Although this issue can
be tolerated in todays wireless systems often designed using off-the-shelf hardware
components, the high integration of next-generation networked embedded systems
could require that hardware design and network simulation will be applied on the
same models.

4.1.4 System/Network co-simulation

The design of networked embedded systems (NES) requires the availability of both
a traditional system-level modelling tool and a networking modelling environment.
Furthermore, simulation results from these two domains should be merged to pro-
vide a comprehensive view of the System and the Network. Accounting for the
presence of a communication network at the early stages of the design flow is
essential for several reasons. First, it allows verifying the embedded system in a
realistic scenario to assess that functional requirements and design constraints are
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met. In particular, reproducing the network behaviour is crucial to verify the com-
munication constraints (e.g., throughput and delay). Second, the same network
environment can be used to validate successive refinements of the embedded sys-
tem. Third, the implementation of the communication structure of the embedded
system can be validated through the successful interoperation with the protocol
stack described at higher abstraction levels by the network modelling tool. Finally,
when applicable, network protocols can be seen as an additional ”design variable”
for further optimization of the whole architecture.

In [60–63] SystemC has been used to model HW and SW parts of the system
while NS-2 has been used to model the external network. Some changes have been
done to the simulator kernels to perform a synchronized simulation. However, some
points have not been clarified:

• the connection of system components at different ISO/OSI network layers,
• the decision of which components should be modelled in SystemC and which

in the network simulator,
• the integration of the TLM approach in this HW/SW/Network design flow.
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Fig. 4.1. Example of networked embedded system: Internet router.

Figure 4.1 shows a simple representation of a networked embedded system and
highlights the presence of system and network parts. The System usually consists
of a CPU, a memory to store application code and data, one or more network
interfaces, I/O interfaces for data acquisition and user interaction, and other com-
ponents –ASIC’s or FPGA’s– designed to efficiently perform specific functions [64].
An application-specific SW is deployed over this HW architecture often together
with an operating system which bridges HW and SW components. Among the
system modelling languages, SystemC [45] is gaining increasing attention for its
great flexibility in describing devices at different abstraction levels and for its in-
teroperability with other languages, e.g., VHDL. The Network consists of a set of
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nodes connected to the System through communication links. Different parame-
ters can be defined for each link, e.g., the type of channel (wired/wireless), the
bandwidth, and the delay. The way in which nodes exchange data represents the
protocol specification. Even if general purpose languages can be used to reproduce
the behaviour of network protocols, specific network simulators, e.g., NS-2 [53],
already provide models for well-known network protocols, e.g., Ethernet, WiFi,
and TCP/IP.

System modelling

Figure 4.2 shows the system model of an Internet router; the model follows a
modular approach where the main router functionalities are identified:

• the management process,
• the TCP protocol implementation to handle remote connections (e.g., to sup-

port a remote shell),
• packet integrity checking and forwarding.

Packet checking & forwardingTCP agent
Management

process

LookupIPv4

Classifier

CheckIPv4

Queue Service

Switch Fabric

D
R

O
P

Queue Service

Active

queue

management

Fig. 4.2. System model of a networked embedded system: Internet router.

In the first design stage, the functional behaviour of the system should be
reproduced; at this level it is not yet determined which functionalities will be
implemented in HW and which in SW. Thus, different modelling approaches are
allowed at this level, e.g., an operation sequence to describe the management
process and a finite state machine to specify the TCP connection management.
For a given functionality, e.g., in the Figure, the packet checking and forwarding,
the detail level of the description can be increased to represent its architecture as
a set of interconnected blocks (structural view).

Among the system modeling languages, SystemC is gaining increasing atten-
tion for its great flexibility in describing devices at different abstraction levels, from
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system level down to RTL and gate levels. SystemC is a C++ class library that
provides the constructs required to model system architectures including hardware
timing, concurrency and reactive behavior that are missing in standard C++.
SystemC supports Transaction Level Modeling (TLM) [46] which aims at stan-
dardizing the refinement process of the System model to enable re-use between
abstraction levels within the same project and between projects belonging to dif-
ferent manufacturers.

Network modelling

Network can be modelled at different levels of detail, from packet transmission
down to signal propagation. Network simulators reproduce the functional be-
haviour of protocols, manage time information about transmission and reception
events and simulate packet losses due to congestion or link failure. Network Simula-
tor, NS-2, is the most widely used discrete event simulator for computer networks.
It is implemented in C++ and its source code is open. It is widely used in many
research activities because it includes modules for the simulation of well-known
protocols both wired and wireless [22,23]. The modelling approach of NS-2 follows
the well-known ISO/OSI reference model, i.e., a layered architecture in which each
layer provides services to the upper layer and uses services of the lower layer.

Figure 4.3 shows the example of the Internet router completely described by
using NS-2 entities; this approach allows to model the surrounding network; to im-
prove clarity a dashed bold box separates router components from the surrounding
network. Round entities are called Nodes; they are connected together by Links
which can be wired (continuous lines) or wireless as in case of Node 3, 5, and
6. Nodes and links reproduce the lowest three ISO/OSI layers and, in particular,
Node 1 reproduces the router behavior for what concerns packet integrity check-
ing and forwarding; it is worth noting that packet integrity checking requires a
bit-level simulation which is not currently supported by NS-2. Square entities are
called Agents and represent the Transport Layer; they are attached to nodes and
connected together to reproduce end-to-end UDP or TCP connections (continu-
ous lines with arrows). Agent TCP3 reproduces the TCP agent implemented in
the operating system of the router. Rhomboidal entities are called Applications
and represent the Application Layer; they reproduce application sessions (dotted
arrows) which inject packets into the network through Agents according to traffic
models derived from either actual applications or statistical functions. Applica-
tion MGM server reproduces the router management process. Nodes, Agents and
Applications are connected together by object references in the network simulator
(dotted lines).

The set of entities (web client, TCP1, TCP4, web server) represents an HTTP
session build upon a TCP connection whose packets flow through Nodes 0, 1, 2,
and 4. Such packets cross the router which forwards them according to the routing
table. The set of entities (CBR source, UDP1, UDP2) represents a constant-bit-rate
flow of UDP packets (e.g., a Voice-over-IP conversation). According to the routing
rules, packets are delivered through the wired link between Node 1 and 3 and
the wireless link between Node 3 and 6. The set of entities (MGM client, TCP2,
TCP3, MGM server) represents a remote management session build upon a TCP
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connection. It is worth to note that the router can be considered as an intermediate
system for what concerns packet checking and forwarding and as an end system
for what concerns TCP and management services.
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TCP4 UDP2
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Fig. 4.3. NS-2 model of an Internet router connected to a simple network.

When designing an integrated simulation framework, two are the main issues
that affect the integration:

• system/network co-simulation partitioning: the designer should decide which
functionalities have to be modeled by the System tool and which by the Net-
work tool; this decision should be driven by methodological criteria;

• the network level of interaction between NS-2 entities and the SystemC mod-
ules; in fact specific extensions of the NS-2 entities could allow the interaction
between the corresponding SystemC modules at different levels of the ISO/OSI
stack.

System/Network co-simulation partitioning

This Section deals with the subdivision of functionalities that should be modelled
in the System and in the Network. For example, in Figure 4.3 both the router and
the surrounding network have been modelled by using the network simulator but
during the design of this embedded system some of its functionalities (e.g., packet
checking and forwarding, TCP agent, management service) should be extracted
from the network model and described in a suitable system design language. The
general criterion is that functionality to be implemented in the embedded system
has to be described as component of the System model instead of the Network
model. Conversely, the network modelling tool should be used to describe that
functionality which is not part of the design process but of the environment in
which the embedded system will operate. In this context, the use of third-party
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components provided by the network modelling tool not only speeds up the de-
sign and simulation process, but also contributes to validate the designed com-
munication structure by testing its interaction with an abstract reference protocol
specification shared by the research community.
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Fig. 4.4. Different possible approaches for System/Network co-simulation partitioning.

Different approaches for System/Network partitioning are shown in Figure 4.4.
Two end systems are represented by the corresponding protocol stacks; for sim-
plicity’s sake each stack is reduced to an upper layer and a lower layer represented
by boxes labelled with U and L respectively. Each approach has its own advantages
and drawbacks which should drive its adoption. In Figure 4.4.a the SystemC sim-
ulator is used not only to model components but also to simulate network commu-
nications. In this case all TLM levels are supported since the model of the network
can be both timed and un-timed; the main drawback of this approach is that all
network protocols should be re-implemented by the designer. In Figure 4.4.b only
the network simulator is used as in the example reported in Figure 4.3. Network
modelling tools lack fidelity since they describe functionality without reproducing
the interaction among different components within the single node as in actual
systems; this fact limits the reusability of the functional description in the next
design phases. Instead, system modelling tools have the advantage that the model
can be refined, i.e., transformed from a behavioural to a structural description,
and traditional validation techniques can be applied to it.

In the other cases both simulators, SystemC and NS-2, are used and arrows
represent interactions between them. The common drawback of these approaches
is that the required synchronization increases simulation time. In Figure 4.4.c the
upper layer of the NES is the focus of the design process and thus it is modelled by
SystemC. The interaction of two instances of this component takes place through
the corresponding lower layer entities modelled by the network simulator. The
designer takes advantage by the use of a specific tool for network simulation con-
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sidering that such lower entities are outside the design scope. Also in Figure 4.4.d
the focus of the design process is the upper layer of the NES but, for validation
purpose, a SystemC instance of the component interacts with a peer entity mod-
elled by the abstract protocol specification of the network simulator. In this case,
the generation of test patterns is simplified by the use of a specific tool for the
reproduction of network behaviour. In Figure 4.4.e the focus of the design process
is the lower layer and therefore it is modelled by SystemC which also reproduces
the communication channel. The upper layer is modelled by the network simulator
thus simplifying the generation of test application models which are outside the
design scope. Finally, in Figure 4.4.f both the upper and lower layers belong to
the design process and thus they are modelled by SystemC and validated by the
reference stack specification of the network simulator.

NS-2 simulations always consist of a sequence of timed events (e.g., start and
stop of packet flows or packet transmission and reception). SystemC models can
be either timed or un-timed. For this reason a kind of adapter is needed in the
SystemC model to connect un-timed SystemC components to an NS-2 topology.

System/network interaction

In previous works [60, 62] interactions between system and network models took
place only at the transport layer preventing the use of SystemC to model com-
ponents at the lower ISO/OSI layers. Figure 4.5 presents a possible co-simulation
approach for the example of Figure 4.3. The functionalities highlighted in the Sys-
temC implementation of the router belong to different ISO/OSI layers and should
exchange information with the corresponding entities in NS-2. For example, the
SystemC module implementing the forwarding functionality should receive from
the network a layer 3 packet reporting the destination node address.

For this reason, three new entities have been added to the NS-2: the ns sc link,
the ns sc agent, and the ns sc app; in Figure 4.5 they are represented by the filled
shapes.

The ns sc link connects NS-2 Nodes with SystemC modules whose functional-
ities belong to the lowest three ISO/OSI layers. This kind of entity conveys network
addresses and bit-accurate packet descriptions. The ns sc agent connects NS-2
Agents with SystemC modules whose functionalities belong to the transport layer.
This entity conveys transport addresses and acknowledgements (in case of TCP
connections). The ns sc app connects NS-2 Applications with SystemC modules
whose functionalities belong to the application layer. This entity conveys the ap-
plication content of network transmissions.

In NS-2 the Link simply reproduces a transmission channel, while the Node is
a more complex entity which also contains the rules for channel access; therefore,
when a new kind of network is introduced in NS-2 (e.g., wireless networks), the
Node should be extended while the Link remains unchanged. For this reason, our
modified version of the Link entity is compatible with the future releases of NS-2. It
is worth noting that all the reported interactions involve event and data exchange
between SystemC and NS-2.
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Fig. 4.5. System/Network co-simulation applied to the design of an Internet router.

Co-simulation implementation

In this Section we describe the implementation details of our System/Network co-
simulation framework. A message structure was defined to transfer data between
the simulation kernels. An addressing scheme has been introduced to identify the
destination of a packet arriving from the other simulator; each instance of the Sys-
temC (ns in and ns out) have a unique identifier corresponding to the NS-2 out-
put and input entity, respectively; each instance of the NS-2 entities (ns sc link,
ns sc agent, and ns sc app) has two unique identifiers (one for each data direc-
tion). In the following we will describe:

• the syntax of the SystemC ns in and ns out ports;
• the syntax of the new NS-2 entities;
• the message format for data transfers between the simulation kernels;
• the implementation of kernel synchronization.

Syntax of the new SystemC ports

From the SystemC side, the new ports ns in and ns out have been added to allow
the user to send/receive a packet to/from a NS-2 object. They are derived by tem-
plate classes sc in and sc out, and are managed by overridden methods read()
and write(). These ports implement the concept of co-simulation external ports
reported in [65]. Figure 4.6 shows the declaration of a SystemC module commu-
nicating with the NS-2 entities described in Figure 4.7.b. Each port allows data
transfer in only one direction and, for this reason, only one identifier is associated
to it during instantiation.

Methods write() and read() are used to send (read) a packet to (from) the
corresponding NS-2 entity as shown in the SystemC code of Figure 4.7.a.
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SC_MODULE(module) {
ns_in *agent_in;   // port to receive a packet 

// from the NS-2 agent
ns_out *agent_out; // port to send a packet to

// the NS-2 agent
ns_in *link_in;    // port to receive a packet 

// from the NS-2 link
ns_out *link_out;  // port to send a packet to   

// the NS-2 link
ns_in *app_in;     // port to receive a packet 

// from the NS-2 application
ns_out *app_out;   // port to send a packet to

// the NS-2 application

// functions called when a packet arrives from NS-2

void agent_proc();
void link_proc();
void app_proc();

SC_CTOR(module) {
// instantiation and address assignment of 
// input ports
agent_in = new ns_in(10);
link_in = new ns_in(11);
app_in = new ns_in(12);

// assignment of callbacks to input ports
NS_PROC(agent_proc,agent_in);
NS_PROC(link_proc,link_in);
NS_PROC(app_proc,app_in);

// instantiation and address assignment of 
// output ports
agent_out = new ns_out(20);
link_out = new ns_out(21);
app_out = new ns_out(22);

}
}

Fig. 4.6. Declaration of a SystemC module communicating with an NS-2 model through
ns in and ns out ports.

Whenever the SystemC kernel receives a data message from NS-2, it generates
an event on the ns in port to which the data message is destinated and with the
timestamp specified in the message. The kernel then wakes up the function which
has been assigned to that event as in traditional inter-module communications.
Whenever a SystemC process writes a packet on a ns out port, the write()
method stores it into the DataToSend Queue. When the simulation control passes
to the kernel it builds a message with such packet according to the algorithm
reported in Figure 4.9.

Syntax of the NS-2 entities

New classes have been created to implement the ns sc agent, the ns sc app and
the ns sc link. In traditional NS-2 Agents and Links, the recv() method is called
when a packet arrives from another entity of the network model. This method has
been modified in case of the ns sc agent and ns sc link to send the packet to
the Scheduler which put it on the DataToSend Queue together with the SystemC
destination address. The elements of this queue will be transmitted to the SystemC
kernel. A similar approach has been followed for the ns sc app but in this case
both the recv() method and the process data method have been extended.

All the packets coming from SystemC are embedded in messages which arrive to
the NS-2 kernel. For each new class, the cosim recv() has been added to process
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1 set n0 [$ns node]}

2 set n1 [$ns node]}

3 $ns duplex-link $n0 $n1 10Mb 20ms DropTail

4 set agent0 [new Agent/ns_sc_agent 20 10]

5 $ns attach-agent $n0 $agent0

6 $ns ns_sc_link $n1 21 11 1Mb 10ms DropTail

7 set agent1 [new Agent/UDP]

8 $ns attach-agent $n1 $agent1

9 set app0 [new Application/ns_sc_app 22 12]

10 $app0 attach-agent $agent1

(a)
void module::agent_proc() {

...

Packet *p;

p = ... // the packet is explicitly built

// sending packet

agent_out.write(p, sizeof(Packet), receiver);

// reading packet

agent_in.read(p, sizeof(Packet));

...

}

(a)

(b)

Fig. 4.7. (a) SystemC code with read and write operations through ns in and ns out
ports. (b) Portion of TCL script showing the use of ns sc link, ns sc agent, and ns sc app.

incoming data. Therefore, the kernel invokes this method on the entity which is
the destination of the data contained in the message.

Figure 4.7.b reports an ideal portion of TCL script containing all the new
entities. The first three lines create two nodes connected through a link. Line
4 creates an instance of the ns sc agent; the last two numerical parameters are
used to identify the output and input port of SystemC, respectively. This agent is
placed upon the first node (Line 5). Line 6 creates an instance of the ns sc link
between the second node and a SystemC model (whose output and input ports
are identified by the first two numerical parameters). The instance of ns sc agent
is attached to an UDP agent on the second node (Lines 7-8). Line 9 creates an
instance of the ns sc app which is connected to a SystemC model (whose output
and input port are identified by the two numerical parameters). This entity is
attached to the UDP agent (Line 10).

Message structure

The information exchanged between the simulators are organized into messages
following the structure shown in Figure 4.8. The Type field indicates if the message
aims at basic time synchronization or involves data exchange; in the latter case this
field is followed by a data array reporting each data event and the corresponding
destination entity (note that more data events may be generated with the same
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timestamp); the next two fields report the current timestamp and the timestamp
of the next simulation event, respectively. Message creation is performed by the
simulation kernels and it is trasparent to the designer.

Type

Data array

Data0 DestinationEntity0

... ...

CurrentEventTimeStamp

NextEvent TimeStamp

Datai DestinationEntityi

Fig. 4.8. Structure of the messages exchanged by the simulation kernels.

Kernel extension for synchronization

Figure 4.9 shows the pseudocode of the synchronization procedure, which is exe-
cuted by both kernels. The subscript k1 refers to the kernel currently executing
the code, and k2 to the other kernel; both kernels are modified so as to incorporate
this procedure.

After a common setup phase (Line 1), one of the two kernels sends the times-
tamp of the next event to the other kernel (Line 2). Then the main synchronization
loop (Lines 3-22) evolves around the reception of messages on the channel that links
the two simulators (Line 4). Anytime a message is received, it is first checked if it
is a Data message type; in this case, it causes the invocation of the cosim recv()
method (Lines 6-7) of the SystemC or NS–2 receiver.

Then, the timestamp Tk2 of the remote event is extracted and compared to the
timestamps Tk1 of the local events (Lines 8-9). The loop of Lines 1018 manages the
processing of all the events in the local queue that are lagging behind the remote
simulation time Tk2. If the generic event Ek1 implies the transmission of data
(Line 13), the current message Mk1 for time Tk1 is properly setup by specifying
the corresponding data field Dk1 and remote recipient j (Line 14).

This condition is flagged (Line 15) for later use. For any new value of Tk1 (yet
still ¡ Tk2), a new message Mk1 is actually allocated (this operation is abstracted
away in the pseudocode). The do while loop at Lines 1117 allows the dispatching
of all events with the same scheduling time. When the loop at Lines 1018 exits it
is time to send a message to the other kernel. If the flagged condition at Line 19 is
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SynchronizedScheduler() { 
1   Setup phase
2   Send(Mk1) // done by only one of 

// the two kernels
3   do {
4     Receive(Mk2); // from the other kernel 
5     state = TRUE;
6     if(Mk2.Type == Data) { // a data msg
7       for each Mk2.DestinationEntityi { 

Call Entity.cosim_recv(); 
}

}
Tk2 = Mk2.NextEventTimeStamp;

8     Get next event Ek1 from ReadyQueue;
9     Tk1 = TimeStamp(Ek1);
10    while(Tk1 � Tk2 && state) {
11      do {  // events that are lagging behind 
12        dispatch event Ek1;
13        if(Ek1 requires sending data to entity j){ 
14          DataToSend.enqueue(D ,j);14          DataToSend.enqueue(Dk1,j);
15          state = FALSE;

}
16        Get next event Ek1 from ReadyQueue;

Tk1 OLD = Tk1; 
Tk1 = TimeStamp(Ek1);

17      } while(Tk1 == Tk1 OLD);
18    }

Allocate a new message Mk1;
19    if(state) {

Mk1.Type = Data;
Mk1.CurrentEventTimeStamp = Tk1 OLD;
Mk1.DataArray = DataToSend();
state = TRUE;

} else Mk1.Type = Time;
20    Mk1.NextEventTimeStamp = Tk1;
21    Send(Mk1);
22  } while(there are messages);
}

Fig. 4.9. Structure of the messages exchanged by the simulation kernels.

true, the kernel sets up a data message, otherwise a time message is set up. When
the message is ready it is sent to the other kernel.

4.1.5 HW/SW (SystemC/ISS) co-simulation

Related works

The concept of HW/SW co-simulation regards the integrated simulation of both
HW and SW components of the system under test.

Concerning SW simulation some solutions are based on ISS-free schemes. For
example, a delay-annotated software simulation tool is described in [66]. This ap-
proach determines the timing behavior of the SW at level of each C++. Although
this approach seems to be a fast and easy alternative to a full ISS, it lacks detailed
information on how to determine the delay of each C++ statement, since processor
manufacturers only provide delay information for Assembly instructions and not
for C++ statements; moreover, it does not consider compiler optimizations. Delay
annotation has been improved by considering the Assembly instructions generated
by the actual compiler for the target platform [67]. In the same work delay anno-
tation has been also combined with native execution of target code on the host
platform.

The presence of an ISS increases accuracy since this tool is specifically designed
to emulate the target CPU and the executed SW is the same which run on the
actual platform. Furthermore modularity is enforced since a change in the CPU
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type implies only the recompilation of the SW part; ISS-free schemes, conversely,
would require complete re-targeting of the software. In case of external ISS, the
simulation performance could be limited by the communication overhead between
the HW simulator and the ISS. A possible way to reduce this overhead consists in
reducing message exchanges through dynamic prediction of transaction occurrence
time for both software and hardware models [68].

Concerning the simulation of the HW part, a possible solution is the creation
of virtual prototypes through the use of HW description languages, such as VHDL,
Verilog and SystemC. Such virtual prototypes are available at the early stage of
the design flow and the designer can use different abstraction levels trading off
between accuracy and speed. Another solution emulates HW by using inexpensive
FPGA [69]; communication between the SW simulator and the FPGA occurs via a
flexible interface based on shared communication registers. This solution requires
the maintenance of multiple code bases of the design i.e., one for the FPGA-based
prototype, and one for the real HW. Furthermore, the HW description has to be
at RT level to be used on the FPGA. Simulation with actual HW prototypes is
another solution even if it is available late in the design flow [61].

Concerning the simulation of multi-CPU systems we have to consider tools
for the simulation of MPSoC such as Simics [70] and MPARM [71], and tools for
wireless sensor networks such as TOSSIM [47].

Simics is a commercial full-system simulator. It provides a virtual version of
a target hardware on top of a standard host PC. Even if modelling of new HW
components is possible, this product is mainly devoted to HW integrators and
software developers since the virtual hardware runs the same binary software as the
physical target system. HW models are described at behavioral level and therefore
they cannot be inserted into a traditional HW design flow.

MPARM is a SystemC-based modelling and simulation environment for MP-
SoC; it includes models for processors, the AMBA bus architecture, memory mod-
els and support for parallel programming. A fully operating linux version for em-
bedded systems has been ported on this platform, and a cross-toolchain has been
developed as well.

TOSSIM is a simulation tool for wireless sensor nodes running TinyOS oper-
ating system. This tool reproduces the behavior of the actual application code by
modeling TinyOS services on the host machine. TOSSIM is strictly targeted to
this specific architecture, it only supports networks of homogeneous nodes and it
does not offer a direct path to hardware design and synthesis.

Co-simulation implementation

Starting from the analysis of past literature we can conclude that SystemC and
ISS give the best results in terms of flexibility and availability at the early stages
of design flow. SystemC can be used to model HW components at different ab-
straction levels while ISS can accurately emulate the behavior of the target CPU.
Even if, in the past, communication overhead between the tools was considered a
limiting aspect, we expect that the power of today’s multi-core systems and an
accurate tuning of inter-process communications might overcome this drawback
and make SystemC/ISS co-simulation a good solution.
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Fig. 4.10. HW/SW co-simulation architecture.

The starting point of our work is the un-timed SystemC/ISS co-simulation
methodology described in [72] and depicted in Figure 4.10. This co-simulation
model consists of an ISS and a simulator of HW models (e.g., SystemC), both ex-
ecuted as processes in the host operating system and connected together through
an inter-process communication (IPC) channel. The ISS executes the target SW
(i.e., applications, OS, and device drivers); read and write accesses to the HW
components (either memory-mapped or I/O-mapped) are transmitted to the HW
simulator through read/write commands while HW interrupts are reported to the
ISS through corresponding messages in the opposite direction. The generation and
management of such messages is transparent to the target SW since the ISS inter-
cepts interrupt and read/write Assembly instructions which involve HW registers
outside the CPU.

The advantages of this solution are:

• Actual device drivers for the target system can be used during the simulation
provided that the addressing schema of HW devices is the same.

• Communication between SW and HW parts is described in terms of abstract
messages instead of true bus cycles.

• Communication between SW and HW parts is managed by simulation kernels
to gain efficiency and to be completely transparent to the designer.

The aim of this work is the extension of this methodology to support:

• timing-accurate synchronization between HW and SW models;
• coexistence of different execution environments, one for each processing unit;
• clustering of HW and SW models to represent each processing unit.

Time synchronization

This section addresses the extensions for timing accuracy added to the framework
previously described. A mandatory requirement to implement the timing-accurate
ISS/SystemC co-simulation is the notion of time inside the ISS. With this feature
the local time of the ISS can be compared with the time of the SystemC simulator.

The synchronization mechanism follows an asymmetric scheme, where one of
the two simulators (the master) explicitly controls the execution of the other (the
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slave). Time synchronization is provided by adding time information in the mes-
sages exchanged between the SystemC simulator and the ISS. Both simulator
kernels have been modified for this purpose. In this way synchronization is more
efficient and the modeler does not have to know its details.

Fig. 4.11. SystemC procedure for time synchronization with ISS.

Figure 4.11 shows the pseudocode of the time synchronization procedure in
the SystemC kernel, representing the co-simulation master. The SystemC co-
simulation kernel starts by creating the IPC channel toward the ISS (Line 1).
Then, simulation loop starts and SystemC checks (Lines 3-4) for ISS requests (i.e.,
read/write registers commands); each command also reports the time (in the time
space of ISS simulation) in which it has been generated (ISS Time). SystemC com-
pares ISS Time with local time (SystemC Time) If local time is smaller than the
ISS time, then the SystemC simulator is lagging behind (Line 5); in this case the
SystemC inserts the request as a new event into the event queue (Line 6); that
event will be scheduled in the future when ISS has generated the request (i.e.,
ISS Time). Conversely, if SystemC simulator is ahead of time with respect to the
ISS simulator (Line 7), it executes immediately the read/write operation and sends
the response to the ISS (Line 8). Then, the traditional event-driven scheduling is
performed (Line 10); if the scheduled event has been added during the previous
phase (i.e., it is an ISS TIMED EVENT), the simulator executes the corresponding
read/write operation and sends the response to the ISS (Line 12); otherwise, the
SystemC simulator executes the SystemC event as normally (Line 14). The above
operations are repeated for the whole simulation (Line 15).

At the other side, ISS simulation kernel has to be modified so that messages
exchanged with the master simulator contain time information.

A possible weakness of this mechanism regards the case in which SystemC
simulator is ahead of time with respect to the ISS simulator; in this case the result
of a read operation or the behavior of SystemC after a write operation may depend
on the delay of ISS with respect to SystemC. A possible solution consists in forcing
periodical synchronization messages between the tools thus increasing significantly
the communication overhead. Another solution, at least in case of read operations,
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could be the generation of a warning message if a HW register is updated twice
by SystemC without being read by the ISS.

Multi-CPU co-simulation

This section presents the SystemC simulator extensions to support a multi-ISS
simulation. The multi-ISS co-simulation mechanism is based on the communication
protocol established between the ISS and SystemC as described in Section 4.1.5.

The communication between the HW simulator and the ISS is implemented
by means of three new type of ports added to the SystemC library, i.e., iss in,
iss out and iss interrupt. The iss in port is derived from the standard sc in
port and it is used to read data coming from ISS, the iss out port extends the
SystemC sc out port and it allows to send data from SystemC to the ISS. These
special ports can be used to model HW registers, thus allowing the ISS to read
and write them. In the following text, we assume that HW registers are memory-
mapped. The connection between the two sides of the co-simulation is performed
by binding specific addresses of the ISS memory space to SystemC iss in and
iss out ports contained in the HW models. When the CPU accesses some registers
through their addresses, the SystemC kernel determines the corresponding special
ports of the corresponding hardware model. The link between the SystemC port
and the corresponding memory address in the ISS is implemented by using a
binding table stored in the SystemC kernel.

To support multi-ISS simulation, the SystemC simulator has been modified to
manage messages incoming from all ISS’s. First of all, the constructor of previously
described special ports (i.e., iss in and iss out) has been extended to obtain a
string which identifies the ISS instance which can issue read/write requests. For
example, an iss in port has to be initialized as follows:

iss int ∗ reg1 = iss in(0x12340000, ISS1)

Corresponding to this declaration, the following record is inserted into the
binding table:

< reg1, 0x12340000, ISS1 >

This mechanism allows to cluster HW models and ISS instances to model
independent processing units containing a CPU and some related HW devices.

The SystemC kernel creates an IPC channel for each ISS, as shown in Fig-
ure 4.12. Since the SystemC kernel has to know the mapping between the ISS
identification string and the IPC channel, during the setup phase, each ISS in-
stance sends its identification string to SystemC which updates the binding table
accordingly. An example of binding table is depicted in Figure 4.13; it shows the
relationship between addresses, ISS identification strings and IPC channels. It is
worth noting that the same address can be used for different registers connected
to different ISS’s since their memory spaces are disjoint.

Figure 4.14 shows the pseudo-code of the SystemC simulator to support multi-
ISS simulation; bold text represents added code with respect to the pseudo-code
described in Figure 4.11. Lines 1-4 implement the setup phase. After this phase,



4.1 HW/SW/Network simulation 43

Fig. 4.12. General architecture of the multi-ISS co-simulation.

Fig. 4.13. The communication between different ISS instances and SystemC.

each ISS is able to send/receive data to/from the SystemC simulator. In the multi-
ISS scenario the SystemC kernel could receive messages from different ISS’s. There-
fore each IPC channel has to be monitored to verify the presence of an ISS request
(Line 6 and 7). Corresponding to each ISS request, the SystemC kernel has to reply
to the proper ISS identified by the iss id variable. Finally, the simulator extracts
the next event from the queue to schedule it. In the multi-ISS case, SystemC has
to find the ISS able to receive the response (Line 17).

4.1.6 HW/SW (SystemC/QEmu) co-simulation

In the design of ever complex embedded systems, a major task is handling several
platforms consisting of different processors and operating systems as well as a
large amount of HW devices such as memory, DSPs, I/O interfaces and ASICs.
As described in Section 4.1.5, Instruction set simulators (ISS’s) can be used to
reproduce the behavior of target processors; their use offers several advantages,
such as the flexibility of specifying different targets and the wide availability of
standard development tools [79]. Even if some ISS has the capability to model
simple HW components, such as memory and timers, in general, the simulation of
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1 for (iss_id=0; iss_id < ISS_NUM; iss_id++) {
2 create_IPC_channel(iss_id);
3 update_binding_table(iss_id);
4 } 
5 do {
6 for (iss_id=0; iss_id < ISS_NUM; iss_id++) {
7 if ( !channel [iss_id]->isEmpty() ) {
8 receive(msg);
9 if (SystemC_Time < msg.ISS_Time)
10 add_timed_event(<operation,    

msg.ISS_Time, ISS_Port, iss_id>);
11 else
12 send_response_to_ISS (iss_id);
13 }
14 }
15 event = extract_event_from_queue();
16 if (event == “TIMED_EVENT”)
17 iss_response = find_iss_by_event(event);
18 send_response_to_ISS (iss_response);
19 else 
20 // NORMAL SystemC Kernel code
21 } while(…SystemC events…);

Fig. 4.14. SystemC procedure to support multi-ISS co-simulation.

HW components relies on the use of HW description languages and their simulation
environments.

Figure 4.15 depicts different co-simulation strategies. Different strategies can
be used to simulate HW components:

• host-mapping approach: devices are mapped on the actual ones on the host
machine;

• model-level co-simulation approach: devices are simulated by using HDL models
and every driver controls the corresponding device through a dedicated channel
connected to the corresponding HDL model;

• tool-level co-simulation approach: devices are simulated by using HDL models
and synchronization between HW and SW simulations is done at tool level by
exchanging messages through a single control channel.

Fig. 4.15. HW/SW Co-simulation strategies.

In literature the model-level co-simulation approach has been addressed by [80].
In that work an ISS, e.g., QEmu [81], executes the application and the operating
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system, some HW components are mapped on the corresponding host devices
while others are modeled in SystemC [45]. The communication between drivers and
the corresponding devices modeled in SystemC is implemented through dedicated
inter-process channels (i.e., sockets) leading to two main drawbacks: 1) HW/SW
communication in case of SystemC-simulated devices is different from the final
actual implementation since the designer has to put explicit socket calls in the
driver implementation and in the SystemC device description; and 2) in case of
multiple SystemC devices the number of sockets between QEmu and SystemC may
decrease simulation speed.

The proposed co-simulation methodology described in this Section aims at
solving these issues by supporting HW/SW communication directly in the ISS
and in the HDL simulator. The advantages are: 1) the way in which device drivers
access HW devices is the same both in case of host-mapped components and HDL
models; and 2) a single inter-process channel is established between the ISS and the
HDL simulator thus increasing the efficiency and scalability of the co-simulation
framework which can handle several CPUs connected to many HDL models.

Co-simulation Architecture

Co-simulation is a methodology for the accurate verification of mixed HW/SW
systems. It allows to meet the requirements for fast HW prototyping and for early
SW development, because high level HW models can be effectively inserted into the
development flow. The framework described in this work uses SystemC to model
the HW and QEmu to emulate the SW even if the methodology can be applied
to other similar tools. The reasons of the choice are: 1) QEmu already supports
the use of host-mapped devices 2) SystemC supports the HW description at many
abstraction levels, and 3) QEmu source code is available and easy to understand
and modify.

QEmu: SW simulation

QEmu [81] achieves good SW simulation speed by using dynamic code translation
to map SW instructions of the guest CPU to the host CPU so that it behaves as
an ISS. QEmu has two operating modes:

• Full system simulation. In this mode, QEmu simulates a full system (for exam-
ple a PC), including one or several processors and various peripherals; QEmu
exploits the components present on the host platform to map the guest com-
ponents.

• User mode simulation. In this mode, QEmu can launch processes compiled for
one CPU on another CPU. It can be used to simplify cross-compilation and
cross-debugging. Several processors are supported, e.g., x86, PowerPC, ARM,
32-bit MIPS, Sparc32/64 and ColdFire (i.e., m68k).

SystemC: HW simulation

HW devices are modeled in SystemC and module interfaces (i.e., input/output
ports) follow the rules presented in [72]. The communication between the SystemC
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simulator and the ISS is implemented by means of three new type of ports added
to the SystemC library, i.e., iss in, iss out, iss inout (in the following they
are also grouped under the term iss port) and iss interrupt. The iss in port
is derived from the standard sc in port and it is used to read data coming from
ISS, the iss out port extends the SystemC sc out port and it allows to send data
from SystemC to the ISS. These special ports can be used to model HW registers,
thus allowing the ISS to read and write them. In the following text, we assume
that HW registers are memory-mapped.

The connection between the two sides of the co-simulation is performed by
binding specific addresses of the ISS memory space to SystemC iss port contained
in the HW models. When the CPU accesses some registers through their addresses,
the SystemC kernel determines the corresponding special ports of the HW model.
The link between SystemC ports and memory addresses in the ISS is implemented
by using a binding table stored in the SystemC kernel.

Device driver structure

In actual embedded platforms, SW applications access HW devices through device
drivers. The same mechanism is needed in a co-simulation model. According to
good-practice rules [83] device drivers should follow a two-levels structure:

• The II level device driver contains the functions used by user applications to
access the device (e.g., read, write, config, etc.). Each function implements a
specific communication protocol according to the type of device.

• The I level device driver implements atomic operations used to access the
device registers (such as read and write). These operations are invoked by the
second level functions: the sequence of invocations forms the communication
protocol. This level is equal for all devices except for some architectural choices
(e.g., the addresses on which the device is mapped, interrupt handling, etc.).

Figure 4.16 shows an example of HW device and the corresponding driver code
organized in two levels.

Co-simulation requirements

Since co-simulation is used for verification, the device drivers used in the co-
simulation platform must be the same as on the actual operating system. This
fact creates some requirements that must be met by the co-simulation architec-
ture.

• The CPU - device communication mechanisms must be managed. The way
used to access I/O depends on the computer architecture, bus and devices
being used. However, the main mechanism used to communicate with devices
is through memory-mapped I/O (MMIO) according to which specific areas of
CPU’s addressable space are reserved for I/O. Each I/O device responds to the
CPU’s access of device-assigned address space.
In the co-simulation architecture, access to MMIO regions must be managed
by an external wrapper. Whenever the device driver accesses MMIO regions
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Fig. 4.16. HW device (a) and the corresponding driver code (b).

with read or write operations, the request must be forwarded to the simulated
device and then the result must be brought back to the driver.

• Device drivers handle interrupts: thus, co-simulation must guarantee that in-
terrupts risen by the SystemC device are forwarded to the ISS side of co-
simulation.

• A device driver might contain mutual exclusion resources to avoid race condi-
tions. Thus, co-simulation must manage concurrent access to the modules that
handle communication with the SystemC side.

Co-simulation Methodology

Figure 4.17 shows how the SW application running on the QEmu simulator ex-
changes data with the SystemC simulator. An user application simply accesses
the hardware devices by using their drivers, that read and write device registers
through the I/O memory where the device is registered. Operations over this I/O
memory pass through QEmu kernel virtualizing the hardware device implemented
in SystemC. Communication with HW device, modeled in SystemC, is managed
by SystemC kernel, suitably modified to support the co-simulation methodology.
In order to implement this HW/SW simulator framework two steps are required:

• Modifications to the QEmu both to communicate with the SystemC simulator
and to manage the HW device.

• Modifications to the SystemC simulator kernel. For the SystemC simulator,
it is necessary to add the capability of reading and interpreting the messages
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Fig. 4.17. QEmu-SystemC co-simulation schema.

coming from the QEmu side, as well as of sending interrupts to QEmu whenever
the HW models generate them. These operations must be transparent to the
designer who just writes the model by using the standard SystemC statements.

Communication between QEmu and SystemC simulator kernel is established by
an inter-process channel (i.e., a socket) implementing the HW/SW interface in
order to transmit synchronization messages.

SystemC-QEmu wrapper

The most meaningful parts of the SystemC - QEmu wrapper code are reported in
Figure 4.18.

The SystemC - QEmu wrapper handles the SystemC side of co-simulation: it
activates execution on the SystemC modules by setting the iss port to the values
received from QEmu through the socket.

Messages from QEmu are directed to four ISS ports on the SystemC side. The
methods of the SystemC-QEmu wrapper are sensitive to these ports: whenever a
data is received on a port, the corresponding method is called in order to update
the wrapper registers and eventually trigger other events on the SystemC platform.

The wrapper consists of four main functions:

• Read iss data register: this method is sensitive to the ISS data port. When-
ever a new data is written to this port, the new value is saved in the data
register;

• Read iss address register: this method is sensitive to the ISS address port.
Whenever a new data is written to this port, the new value is saved in the
address register;

• Read iss command register: this method is sensitive to the ISS command
port. If a new data is written to this port, it means that the QEmu side has
finished transmitting data and thus the SystemC side has already received the
updated values for both data and address. The read iss command register
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function updates the command register and it writes 0 to the ISS control port,
to keep the QEmu side waiting. Then, the read iss command register wakes
up the entry method by notifying a run io process event: the entry function
will process the QEmu request and write the result to the ISS data port.

• Entry: this function waits for a run io process event. Whenever such an event
is notified, the function writes the values of data, address and command on an
ahb transport port to the SystemC platform. The SystemC AHB bus will
receive the data and forward it to the corresponding device. Then, the entry
function gets the execution result from the ahb transport port and it writes
it to the ISS data port. Finally, the ISS control port is updated to 1, to notify
QEmu that execution on SystemC side is finished. This value will raise an
interrupt on the QEmu side.

Fig. 4.18. SystemC - QEmu wrapper code.

QEmu-SystemC wrapper

The most meaningful parts of the Qemu - SystemC wrapper code are reported
in Figure 4.19. The Qemu - SystemC wrapper has an important role in the co-
simulation architecture: it manages accesses to MMIO regions assigned to devices,
forwarding the requests to the SystemC side and bringing the result back to the
device driver.

The wrapper consists of six main functions:

• Update: this function is used to raise an interrupt or to knock an interrupt
down;

• Init: this function is used to initialize memory and I/O resources, to manage
the addresses of the ISS ports on the SystemC side and to start the socket
communication;
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• Restore: it restores the socket communication;
• Read: this function is invoked whenever a read operation is performed by the

driver on the I/O memory assigned to the device. This function prepares the
data to be sent via socket to the SystemC side and it invokes the cosim function.
Then, it returns the result received via socket;

• Write: this function is invoked whenever a write operation is performed by
the driver on the I/O memory assigned to the device. This function prepares
the data to be sent via socket to the SystemC side and it invokes the cosim
function;

• Cosim: this function sends data to the SystemC side via socket. It is invoked
by both the read and the write functions.

Fig. 4.19. QEmu - SystemC wrapper code.

Execution flow

The execution flow to access a simulated device is the following:

1. A user application wants to access the device. Thus, it invokes the ioctl
function of the corresponding second level device driver.

2. The second level device driver implements the communication protocol with a
certain number of invocations of the functions implemented by the first level
device driver (sclink write and sclink read).

3. The first level device driver writes data to the MMIO locations assigned to the
device. Then, it invokes the wait event interruptible function to suspend
its execution until an interrupt is received.
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4. QEmu catches the accesses to the MMIO locations and invokes the functions
of the QEmu-SystemC wrapper to forward the requests to the SystemC side of
co-simulation. When the SystemC-QEmu wrapper receives a command value,
the simulated device is activated.

5. As soon as the requested operation has been executed, the SystemC-QEmu
wrapper sends an acknowledge message to the QEmu side of co-simulation.
This message in interpreted as an interrupt: thus, the QEmu-SystemC wrapper
functions notifies that execution is finished by rising an interrupt.

6. The interrupt is forwarded to the target CPU.
7. The target CPU invokes the interrupt handler function (sclink interrupt handler),

that knocks the interrupt down and executes the wake up interruptible
function.

8. The first level device driver resumes execution and it returns the result to the
second level device driver.

9. As soon as the second level device driver has completed the communication
protocol, it returns the final result to the user application, that resumes exe-
cution.

Figure 4.20 shows and clarifies the main steps of the execution flow.

Appl.

II lev 
driver.

I lev 
driver.

SystemC 
- QEmu 
wrapper

ioctl (hw_dev, HW_WRITE, &arg);

hw_dev_ioctl (hw_dev, file, HW_WRITE, &arg);

do_write (&arg){

for (1 to 128){

sclink_write (HW_ADDR, &send_data);

sclink_write (HW_ADDR, &send_data);
sclink_write (HW_ADDR, &send_data);  

} }

sclink_write (addr, value){

*address = addr;

*data = value;

*command = 1;

wait_event_interruptible 

sclink_interrupt_handler (irq, devid, regs){

irq_flag = 1;

wake_up_interruptible (irq_wq);

}

entry (){

wait (run_io_process);

request = set_request

(address_register, data_register);

SystemC 
platform

HW_DEVICE

BUS

QEmu –
SystemC 
wrapper

I/O 
memory

DATA

ADDRESS

COMMAND

CONTROL

(irq_wq, irq_flag!=0);

}

send_data

HW_ADDR

1

0

write (status, addr, val){

switch (addr){

case DATA: 

cosim (1, DATA, val);

case ADDR: 

cosim (1, ADDR, val);

case COMMAND:

cosim (1, COMM, val);

while (cosim 

(0, CONTROL, 0)!=1);

set_irq (pic, irq, irq_flag!=0);

} }

response = ahb_transport (request);

if (command_register == READ){

data_register = response.get_data();

iss_data_port-> write (data_reister, size); }

iss_control_register->write(1, size);

}

read_iss_data_register ();

read_iss_address_register ();

read_iss_control_register (); 

read_iss_command_register () {

iss_command_register-> read (tmp, size);

command_register = tmp;

iss_control_register->write(0, size);

run_io_process.notify();

}

Fig. 4.20. Execution flow.
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Model-level Tool-level Speed up

2520 sec 120 sec 20X

Table 4.1. Co-simulation performance.

Experimental analysis

The proposed HW/SW (SystemC/QEmu) co-simulation methodology has been
evaluated in two different experiments. The former compares the tool-level ap-
proach with respect to the model-level approach. The latter shows the validity of
the methodology to model an actual platform.

Co-simulation performance

The first experiment regards co-simulation of a video MPEG-2 decoder. Software
decoder has been executed by QEmu and uses HW SystemC modules to compute
Inverse Discrete Cosine Transform (IDCT) function. The co-simulation methodol-
ogy described in this paper allows to rely on SystemC kernel for the communication
between QEmu and SystemC. Using this approach the performance is increased
of about 20 times, as shown in Table 5.1, compared with the approach where
communication issues are managed at SystemC model level as described in [80].

Co-simulation of modeled and actual devices

The second experiment concerns the model of a ZigBee/802.15.4 wireless scenario
taken from the Angel European project [82]. As depicted in Figure 4.21.a, Node 0
and Node 1 transmit information to Node 2 through a wireless channel. Fig-
ure 4.21.b shows the partitioning of the scenario onto the simulation tools. Node 1
and Node 2 are modeled in SystemC at TLM level; also the wireless channel is
reproduced in SystemC by using the SCNSL library [73]. SW running on Node 0
is simulated by QEmu while HW devices are mapped both in SystemC and on the
host components. At SystemC side a wireless network interface is implemented by
a TLM module of the serial interface (UART) and of the RF-module. An applica-
tion software transmits packets to the network by sending appropriate commands
through the serial interface accessed by the corresponding device driver.

The user application is the same in both cases. It initializes the wireless network
and then it sends a packet every 3 seconds. Since the application has a regular
time behavior, the validation of the simulated model against the actual platform
can be done by comparing the execution time for both cases as a function of the
number of packets sent. This comparison is reported in Table 4.2 which shows a
negligible increase of the execution time (about 0.6%) in case of co-simulation.

4.2 AME 2 design level

At AME 2 level a System/Network partitioning is applied to the model designed
during the AME 3 level; modules are mapped onto network nodes and communica-
tions between nodes are provided by AME 2 services through a network simulator.
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Fig. 4.21. Co-simulation of a real scenario.

Traffic load Actual platform Co-simulation model

10 packets 44.101 sec 44.517 sec

20 packets 75.125 sec 75.672 sec

40 packets 137.062 sec 137.879 sec

Table 4.2. Comparison of the execution time of the actual platform and its co-simulation
model.

Therefore a simulated network infrastructure is involved in the whole framework
at AME 2, as shown in Figure 1.2.b. AME 2 provides the same API of the previ-
ous design step, even if opportunely modified to establish a communication with a
network simulator (e.g., NS2, SCNSL [73]). Exploiting the same API, the NES de-
signer can simulate the same applications modelled during the AME 2 design step,
but evaluating the NES applications impact on the network requirements. The sim-
ulation environment is connected to the AME 2 by using a general communication
interface named Network Simulator Interface (NSI). This feature guarantees to use
different network simulators. Doing that, it’s possible to involve the network sim-
ulator providing the protocol required. Figure 4.22 shows the AME 2 architecture
involving the NSI to establish the communication with the simulator.

4.2.1 Network Simulator Interface

The network simulator interface (NSI) serves as an abstraction layer hiding the
different NES implementations peculiarities from end-user applications. NSI im-
plements two main tasks:

• accomplish the application functionalities sending/receiving data to the right
network nodes.
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Fig. 4.22. Interaction between AME and Network Simulator.

• establish a communication with a network simulator

The first point is implemented by using a XML packet, a standardized and
flexible well-formed meta-language, capable of describing data information in a
structured and portable manner. The packet, named MWpkt includes the following
tags:

• MWfrom represents the data source point.
• MWto indicates the data destination point.
• op type describes the operation type involved in the packet (e.g., Tuplespace

read operation, MOM publish operation, etc.).
• data contains the information specific related to the operation type.

4.2.2 AME-Transactor

The communication between AME and the network simulator is implemented by
using the communication interfaces proposed by OSCI (Open SystemC Initiative)
TLM (Transaction-Level Modeling) standard. The intention of OSCI TLM is to
coordinate different teams of engineers in the modelling of the same design through
an interoperable interface. Because of this teams divide, it is often useful to define
a protocol specific boundary between these groups of engineers. This interface is
sometimes called the convenience interface. It will typically consist of methods that
make sense to users of the protocol in question (e.g., read/write). A user will use
initiator ports that supply these interfaces, and define target modules which inherit
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from the these interfaces. The infrastructure team will implement the protocol layer
for the users. This consists of the request and response classes that encapsulate the
protocol. Therefore, the use of OSCI TLM interface guarantees standard, efficient
and safe exchange of transactions between AME and the network simulator.

The AME-Transactor interface is modelled by using the following TLM chan-
nel.

tlm req rsp channel < REQ,RSP >

The tlm req rsp channel<REQ,RSP> class consists of two fifos, one for the
request going from initiator (AME) to target (AME-Transactor) and the other for
the response being moved from target (AME-Transactor) to initiator (AME). To
provide direct access to these fifos, it exports the put request and get response
interfaces to the initiator (as shown in Figure 4.22) and the get request and put
response interfaces to the target. This channel adopts a standard TLM packet
involving a generic payload for the data exchanged between initiator and target.
AME loads the XML packet previuosly described inside the TLM packet in order
to send information to the network simulator.

AME-Transactor is an intermediate layer that act as transactor and data con-
version layer. The transactor is a translator from different hardware abstraction
level and permits to connect AME2, implemented at TL3, with a Network simula-
tor implemented at different abstraction level (e.g. SCNSL TLM or SCNSL RTL).
Data conversion is also required to convert AME packet into the specific packet
managed from network simulator.

It’s important to understand that AME-Transactor doesnt depend from mid-
dleware programming paradigm used by the application, but from Network simu-
lator. A NES designer can connect the preffered Network Simulator to AME just
modelling the related AME-Transactor able to establish the correct data conver-
sion with the Network Simulator.

4.2.3 SCNSL-AME-Transactor

This Section reports the AME-transactor implementation used to connect Sys-
temC Network Simulation Library (SCNSL) to AME.

SCNSL is a free simulation kernel of Networked Embedded Systems, written
in SystemC and C++. This library allows to model network scenarios in which
different kinds of nodes, or nodes described at different abstraction levels, interact
together. The use of SystemC as unique tool has the advantage that HW, SW,
and network can be jointly designed, validated and refined.
To support network modeling and simulation, SCNSL provides the following ele-
ments:

• Kernel: the kernel is responsible for the correct simulation, i.e., its adherence to
the behavior of an actual communication channel; the kernel executes events in
the correct temporal order and it has to take into account the physical features
of the channel such as, for example, propagation delay, signal loss and so forth;

• Node: nodes are the active elements of the network; they produce, transformand
consume transmitted data;

• Packet: in packet-switched networks the packet is the unit of data exchanged
among nodes; it consists of a header and a payload.
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• Channel: the channel is an abstraction of the transmitting medium which con-
nects two or more nodes; it can be either a point-to-point link or a shared
medium.

• Port: nodes use ports to send and receive packets.

More details can be found in [73].

write()read()

AME

XML packet

SCNSL

IEEE 802.15.4

receivesend

802.15.4

packets

Fig. 4.23. SCNSL-AME-Transactor implementation.

SCNSL-AME-Transactor, shown in Figure 4.23, consists of two main function
for the transmittion from AME to SCNSL and viceversa, called send and receive
respectively. Send function retrieves data packets coming from AME and splits
them into a sequence of message depending on the maximum transmittion unit
(MTU) supported by the network protocol simulated by SCNSL. MTU value for
SCNSL 802.15.4 model is equal to 124 byte. On the other hand, Receive function
waits messages from SCNSL and rebuilds the AME XML packet containing the
programming paradigm features used by the designer. Finally this packet is sent
to AME.

4.2.4 NS2-AME-Transactor

NS-2 is a discrete event simulator targeted at networking research. It covers a very
large number of applications, protocols, network types, network elements and traf-
fic models. NS-2 provides substantial support for simulation of TCP, routing, and
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multicast protocols over wired and wireless (local and satellite) networks. NS-2
simulator is based on two languages: an object oriented kernel simulation, written
in C++, and an OTcl (an object oriented extension of Tcl) interpreter, used to
execute user’s command scripts. More details can be found in [53].
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Fig. 4.24. NS2-AME-Transactor implementation.

NS2-AME-Transactor allows to involve NS-2 simulator in AME environment in
order to simulate network aspects. The connection between NS-2 and AME exploits
the co-simulation methodology describes in Section 4.1.4. The co-simulation is
implemented at Agent level.

Figure 4.24 depicts the NS2-AME-Transactor. It receives AME XML packet
coming from AME NSI layer; these packets are elaborated by the Send function
in order to send them to the appropriate Agent/ns sc agent modelled in NS-2.
No payload split into a sequence of messages is needed to implement (as described
in Section 4.2.3 concerning the SCNSL-AME-Transactor) because this operation
is performed by the NS-2 simulator depending on the network protocol simulated
(TCP, UDP, 802.11, etc.). The connection with NS-2 is established by using ns in
port.

On the other hand, a Receive function for each NS-2 Agent/ns sc agent is
created. The Receive waits messages from NS-2 and delivers them to AME able to
send the messages to the application. The connection with NS-2 is established by
using ns out port.

It is worth noting that on the NS-2 side the Tcl network topology has to be
modeled by using Agent/ns sc agent; in fact, this Agent allows the co-simulation
with SystemC as described in Section 4.1.4.
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4.3 AME 1

At AME 1 design level HW/SW partitioning is applied to each node to map func-
tionalities to HW and SW components accordingly to several constraints (e.g.,
performance, cost, and component availability). HW and SW components are sim-
ulated by SystemC and interact with the network model as in the previous stage.
Also the software is simulated by SystemC. AME 1 API services are the same
of the previous design steps, but the implementation is different to communicate
with the network simulator, simulating the Network model, as shown in Figure 1.2
and in Figure 3.4.

NES
Application

AME

AME API

AME_1

HW modules
(SystemC)

TLM/RTL 
SystemC Transactor

Network Simulator Interface

AME-Transactor

Network Simulator

Fig. 4.25. TLM/RTL transactor to include HW models.

Figure 4.25 shows the transactor to involve Hardware model inside the AME
environment. The transactor is needed in order to link modules, IPs, designed at
different levels of abstraction (Transaction Level Modeling or Register Transfer
Level). Transaction Level Modeling (TLM) modules communicate with each other
through function calls and allow the designers to focus on the functionality, while
abstracting away implementation details. At the Register Transfer Level (RTL)
different modules communicate through pin level signaling. SoC design method-
ologies involve the integration of different intellectual property (IP) blocks modeled
at different levels of abstraction. TLM/RTL transactor has to be modeled using
a finite state machine (FSM) providing a functional specification of the protocol’s
behavior

Figure 4.25 emphasizes that the application software changes with respect to
the AME 2 design level. Obviously, the HW/SW partitioning applied in this phase
imposes the application software has to establish a communication with the hard-
ware modules generated. For instance, let’s suppose to simulate a WSN node



4.5 Experimental analysis 59

running an application software sensing data from an accelerometer sensor and
delivering the data just obtained to another remote WSN node.

At AME 3 level, where neither network nor hardware aspects are involved in
the simulation, the application software can be modelled simulating the sensing
accelerometer data by using a random process.

At AME 2 level, the network is involved in the simualtion to model the wireless
protocol (e.g., IEEE 802.15.4). The communication between AME 2 and the sim-
ulated wireless protocol is implemented by using the AME-Transactor described
in Section 4.2.2. In this case, the application software remains un-changed because
the System/Network partitioning does not concern the application software. There-
fore, also in this design phase, the application software can be modelled simulating
the sensing accelerometer data by using a random process.

Finally, at AME 1 level, due to the HW/SW partitioning the application soft-
ware has to be changed in order to communicate with a HW module simulating the
accelerometer sensor modelled in SystemC language; the communication between
the application software and the accelerometer sensor is implemented by using the
TLM/RTL transactor.

4.4 Actual or Simulated platform

At the conclusion of the Refinement process, when the AME-centric design flow is
completed, a mapping process is implemented to deploy the simulated application
over the actual or simulated platform as shown in Figure 4.26. If the HW/SW
resources of the actual/simulated platform allow the presence of an actual middle-
ware, the the application code modelled by using AME is automatically translated
to replace calls to AME services with calls to the actual middleware. This proce-
dure called Mapping process is described in Section 6.

The application designer can deploy the actual application directly on the
actual platform or can exploit the HW/SW/Network environment, described in
Section 4.1, to execute the actual application on the simulated platform.

The HW and Network aspects of the simulated platform can be modelled by
using the co-simulation environment described in Section 4.1.4.

Concerning the SW layer, it includes the actual application, the actual middle-
ware and an operating system; the latter is not mandatory and typically it depends
on the NES. The SW layer can be run by using the co-simulation environment de-
scribed in Section 4.1.5 and in Section 4.1.6.

4.5 Experimental analysis

An example of NES-based application is shown in Figure 4.27 which represents
a remotely-assisted training session; expert trainers and physicians can monitor
a user through a NES acting as gateway between a short-range wireless network
(e.g., ZigBee or Bluetooth) and Internet. The user wears a 3D acceleration sensor
which interacts with the gateway to compute the step rate and the run speed.

Step rate can be obtained from acceleration data at the cost of some computa-
tions [59]; however, such conversion reduce the amount of data to be transmitted
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Fig. 4.26. Mapping process onto the actual or the simulated platform.

Fig. 4.27. NES-based case study.

since a sequence of 3D acceleration values are reduced to a single step rate value.
Some general observations about NES-based applications can be extracted from
this simple example:

• several NES’s cooperate through the network to accomplish a single task;
• the task can be decomposed into smaller interacting subtasks which can be

assigned to different NES’s (aka network nodes);
• the assignement of subtasks to network nodes affects the required resources

on the nodes and the demand of bandwidth on the communication channels
among them;

• transmission bitrate and computational power affect energy consumption which
may be critical in case of battery-powered devices;

• the computational requirements for each NES affect their cost.
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Fig. 4.28. AME 3 model of the step-counter application with three user.

The Refinement process proposed in this Section aims at providing a method-
ology to address these aspects in the design of NES-based applications. It has been
applied to the example of NES-based application shown in Figure 4.27. Figure 4.28
shows the model at AME 3 with three users. For each user a sensor module (la-
belled with ”S” representing the accelerometer sensor) and a processing module
for step detection (labelled with ”P” implementing the pedometer module) are
instantiated while a Display module simply shows training results for all the
users. Modules communicate through primitives provided by the Abstract Mid-
dleware which reproduces the behavior of a Tuplespace programming paradigm.
The step detection algorithm has been taken from an application note by Analog
Devices [59]; the algorithm was specified in C language and thus the introduction
in the SystemC model has been straightforward.

This scenario has been implemented in AME 3 as reported in the pseudo-code
of Figure 4.29. Tuplespace programming paradigm has been used and the specific
API (read, write, take) have been highlighted in bold face style. Figure 4.29.4
represents the application code running on the ”S” module (accelerometer). It
transmits the X/Y/Z information to the related ”P” module (pedometer) by writ-
ing a tuple containing the X/Y/Z data; this operation is implemented by using
the write service.

Figure 4.29.3 represents the application code running on the ”P” module
(pedometer) which extracts (take service) available X/Y/Z information writ-
ten by the associated ”S” module and executes the step detection algorithm
(StepCounter) to calculates the ”step” and the ”distance” value. Moreover, it
write these values (< STEP,DISTANCE >) in the tuplespace through the write
service.

Figure 4.29.2 represents the application code running on the Display module.
It extracts the < STEP,DISTANCE > tuple and prints it.

Finally, Figure 4.29.1 describes the instantiation of the all actors. It shows
the instantiation of the three ”S” modules (a 1, a 2, a 3), the instantiation of
the three related ”P” modules (p 1, p 2, p 3), the instantiation of the Display
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int sc_main(int argc,char *argv[]){
Acc *a_1 = new Acc(“Acc1”);
Acc *a_2 = new Acc(“Acc2”);
Acc *a_3 = new Acc(“Acc3”);
Pedometer *p_1 = new Pedometer (“Ped1”);
Pedometer *p_2 = new Pedometer (“Ped2”);
Pedometer *p_3 = new Pedometer (“Ped3”);
Display *d = new Display(“Display”);
AME_3 *mw=new AME_3(“AME_3”);
a_1->mw_port(mw->tuple_port);
a_2->mw_port(mw->tuple_port);
a_3->mw_port(mw->tuple_port);
p_1->mw_port(mw->tuple_port);
p_1->setAccelerometer(a_1->name);
p_2->mw_port(mw->tuple_port);
p_2->setAccelerometer(a_2->name);
p_3->mw_port(mw->tuple_port);
p_3->setAccelerometer(a_3->name);  

1 3SC_MODULE(Pedometer) { /* pedometer.h */
sc_port<mw_tuple_if> mw_port;
void run();
void setAccelerometer(string acc_name);
SC_CTOR(Pedometer) {

SC_THREAD(run);
};

};

void Pedometer::run(){/* pedometer.cc */
while (1) {
mw_port->take(<X,Y,Z>))
StepCounter(<X,Y,Z>);
if (IsNewStep())

mw_port->write(<STEP,DISTANCE>))
}

};

SC_MODULE(Acc) { /* acc.h */
sc_port<mw_tuple_if> mw_port;
void run();
SC_CTOR(Acc) {

SC_THREAD(run);
};

};

p_3->setAccelerometer(a_3->name);  
display->mw_port(mw->tuple_port);
sc_start(-1);
return 0;

};

void Acc::run(){/* acc.cc */
int X = DATA X;
int Y = DATA Y;
int Z = DATA Z;
mw_port->write(<X,Y,Z>))

};

2

4

SC_MODULE(Display) { /* display.h */
sc_port<mw_tuple_if> mw_port;
void run();
SC_CTOR(Display) {

SC_THREAD(run);
};

};
void Pedometer::run(){/* display.cc */
while (1) {
mw_port->take(<STEP, DISTANCE>))
printf(STEP, DISTANCE);

}
};

Fig. 4.29. AME 3 model pseudo-code of the step-counter application.

module and finally the creation of the AME environment (mw). Each module is
connected to the AME environment through the tuple port.
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Fig. 4.30. AME 2 model of the step-counter application with three users (case 1).

Figure 4.30 and Figure 4.31 show two different ways to refine the model from
AME 3 to AME 2. Dashed boxes represent distinct network nodes interacting
together through a subset of the well-known IEEE 802.15.4 wireless standard,
i.e., peer un-slotted transmissions with acknowledge. In Figure 4.30, each user
wears a wireless accelerometer while step detection is performed in the gateway.
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In Figure 4.31, all the accelerometers are connected to the same node while step
detection is performed in dedicated nodes. In both cases, a dedicated node hosts
the diplay subtask.
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Fig. 4.31. AME 2 model of the step-counter application with three users (case 2).

Figure 4.32 reports the implementation of the step-counter application with
three users (case 1) simulated by using AME 2 environment. In this scenario,
SCNSL is involved in order to simulate the whole NES application on the
IEEE 802.15.4 wireless protocol.

Figure 4.32 just shows the SystemC pseudo-code to model the scenario; ”S”,
”P” and Display modules remain un-changed with respect to the AME 3 imple-
mentation. Lines 9-11 emphasize the instantiation of one AME 2 module for each
”S” module application (wireless accelerometer). The instantiation of AME 2 mod-
ule for the Display module is shown in Line 12. Line 13 reports the creation of
the AME 2 module to connect the gateway simulating the step detection (pe-
dometers) algorithm. The connection between the modules is implemented in the
pseudo-code at Line 15-24.

Lines 28-35 show the insertion of the SCNSL-AME-Transactor for each AME 2
module previously created; this module allows to connect SCNSL network simu-
lator (Line 36) simulating IEEE 802.15.4 protocol (Line 39) to AME 2 (Lines 30,
31).

Figure 4.33 shows the modelling of the step-counter application where all the
accelerometers are connected to the same node while step detection is performed
in dedicated nodes (case 2 depicted in Figure 4.31). In this case all ”S” module
(a 1, a 2, a 3) are connected to the same AME 2 middleware (name mw acc) as
reported in Line 15, 16 and 17.

Each ”P” module (p 1, p 2, p 3) implementing the step detection is con-
nected to a different AME 2 middleware in order to simulate a dedicated node
(Lines 18-23).
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1  int sc_main(int argc,char *argv[]){
2   Acc *a_1 = new Acc(“Acc1”);
3   Acc *a_2 = new Acc(“Acc2”);
4   Acc *a_3 = new Acc(“Acc3”);
5   Pedometer *p_1 = new Pedometer (“Ped1”);
6   Pedometer *p_2 = new Pedometer (“Ped2”);
7   Pedometer *p_3 = new Pedometer (“Ped3”);
8   Display *d = new Display(“Display”);
9   AME_2 *mw_acc1=new AME_2(“AME_2”);
10   AME_2 *mw_acc2=new AME_2(“AME_2”);
11   AME_2 *mw_acc3=new AME_2(“AME_2”);
12   AME_2 *mw_display=new AME_2(“AME_2”);
13   AME_2 *mw_pedometer=new AME_2(“AME_2”);
14   #define TUPLE_SERVER mw_pedometer

15   a_1->mw_port(mw_acc1->tuple_port);
16   a_2->mw_port(mw_acc2->tuple_port);
17   a_3->mw_port(mw_acc3->tuple_port);
18   p_1->mw_port(mw_pedometer->tuple_port);
19 p_1->setAccelerometer(a_1->name);
20 p_2->mw_port(mw_pedometer->tuple_port);
21   p_2->setAccelerometer(a_2->name);
22   p_3->mw_port(mw_pedometer->tuple_port);
23   p_3->setAccelerometer(a_3->name);  

24   display->mw_port(mw_display->tuple_port);24   display->mw_port(mw_display->tuple_port);

25   foreach mwAME2 in [mw_acc1,mw_acc2, mw_acc3,mw_display,mw_pedometer]
26 mwAME2->setMWspaceServer(TUPLE_SERVER)

27   sc_clock clock (“clock”, sc_time(1,SC_MS));

28   ReqRsp *channel[TOT_MW*2]=new ReqRsp(“channel”)
29   foreach mwAME2 in [mw_acc1,mw_acc2,mw_acc3,mw_display,mw_pedometer]
30 mwAME2->net_out(req_rsp[t]->put_request_export)
31 mwAME2->net_in(req_rsp[t+1]->get_request_export)

32   SCNSL-AME_trans *transactor[TOT_MW]=new  SCNSL-AME_trans(“trans”)
33   foreach transactor in transactor[TOT_MW]
34  transactor->mw_in(req_rsp[t]->get_request_export)
35 transactor->mw_out(req_rsp[t+1]->put_request_export)

36   SCNSL *network = new SCNSL(“wnet”)
37   network->setClock(clock)
38   foreach transactor in transactor[TOT_MW]
39  transactor->setMacNode(network->802_15_4mac)
40   ...

41   sc_start(-1);
42   return 0;
43  };

Fig. 4.32. AME 2 model pseudo-code of the step-counter application (case 1).

Finally, the SCNSL-AME-Transactor creation to involve the SCNSL simulating
the IEEE 802.15.4 protocol is performed (Lines 28-35).

We simulated 20 s of operation of the distributed application as a function
of the task-node assignement and the number of accelerometer sensors. Table 5.1
compares the performance of the two network configurations. We considered the
total number of packets which are sent to the network, the average transmission
delay of packets and the number of transmissions per packet (average and max
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1  int sc_main(int argc,char *argv[]){
2   Acc *a_1 = new Acc(“Acc1”);
3   Acc *a_2 = new Acc(“Acc2”);
4   Acc *a_3 = new Acc(“Acc3”);
5   Pedometer *p_1 = new Pedometer (“Ped1”);
6   Pedometer *p_2 = new Pedometer (“Ped2”);
7   Pedometer *p_3 = new Pedometer (“Ped3”);
8   Display *d = new Display(“Display”);
9   AME_2 *mw_acc=new AME_2(“AME_2”);
10   AME_2 *mw_ped1=new AME_2(“AME_2”);
11   AME_2 *mw_ped2=new AME_2(“AME_2”);
12   AME_2 *mw_ped3=new AME_2(“AME_2”);
13   AME_2 *mw_display=new AME_2(“AME_2”);
14   #define TUPLE_SERVER mw_acc

15   a_1->mw_port(mw_acc->tuple_port);
16   a_2->mw_port(mw_acc->tuple_port);
17   a_3->mw_port(mw_acc->tuple_port);
18   p_1->mw_port(mw_ped1->tuple_port);
19 p_1->setAccelerometer(a_1->name);
20 p_2->mw_port(mw_ped2->tuple_port);
21   p_2->setAccelerometer(a_2->name);
22   p_3->mw_port(mw_ped3->tuple_port);
23   p_3->setAccelerometer(a_3->name);  

24   display->mw_port(mw_display->tuple_port);24   display->mw_port(mw_display->tuple_port);

25   foreach mwAME2 in [mw_acc,mw_ped1, mw_ped2,mw_ped3,mw_display]
26 mwAME2->setMWspaceServer(TUPLE_SERVER)

27   sc_clock clock (“clock”, sc_time(1,SC_MS));

28   ReqRsp *channel[TOT_MW*2]=new ReqRsp(“channel”)
29   foreach mwAME2 in [mw_acc,mw_ped1,mw_ped2,mw_ped3,mw_display]
30 mwAME2->net_out(req_rsp[t]->put_request_export)
31 mwAME2->net_in(req_rsp[t+1]->get_request_export)

32   SCNSL-AME_trans *transactor[TOT_MW]=new  SCNSL-AME_transactor(“trans”)
33   foreach transactor in transactor[TOT_MW]
34  transactor->mw_in(req_rsp[t]->get_request_export)
35 transactor->mw_out(req_rsp[t+1]->put_request_export)

36   SCNSL *network = new SCNSL(“wnet”)
37   network->setClock(clock)
38   foreach transactor in transactor[TOT_MW]
39  transactor->setMacNode(network->802_15_4mac)
40   ...

41   sc_start(-1);
42   return 0;
43  };

Fig. 4.33. AME 2 model pseudo-code of the step-counter application (case 2).

value, respectively). Case 1 exhibits a higher delay but a lower number of retrans-
missions with respect to Case 2.

Figures 4.34, 4.35, 4.36 show the described metrics as a function of the number
of acceleration sensors. Case 1 provides a more scalable solution than Case 2; in
fact the former allows up to ten sensors while the latter saturates the channel
capacity with six sensors.
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Sent Avg. packet Transmissions/packet
packets delay (s) Avg. Max.

Case 1 2303 0.008 2.09 14

Case 2 79 0.004 11.91 565

Table 4.3. Network performance with six users as a function of the task-node assigne-
ment.
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Fig. 4.34. Network performance as a function of the task-node assignement and of the
number of acceleration sensors: Sent packets.
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Fig. 4.35. Network performance as a function of the task-node assignement and of the
number of acceleration sensors: Avg. packet delay.
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Fig. 4.36. Network performance as a function of the task-node assignement and of the
number of acceleration sensors: Avg. number of transmissions/packet.





5

Translation

In this chapter the translation process between the different programming paradigms
provided by AME is described. A proxy-based mechanisms (called AME Proxy
Middleware) is implemented to allow the designer to smoothly move across dif-
ferent programming paradigms in order to validate and simulate the NES appli-
cations. Finally, the proposed translation mechanism has been applied to a house
temperature monitor scenario to evaluate the effectiveness of the proposed solu-
tion, pointing up the advantages of the proxy-based middleware solution.

5.1 AME Proxy Middleware

A new module is automatically generated to implement the translation between
the different programming paradigms provided by AME (e.g., MOM to Tuplespace
and viceversa). This module is called proxy-MW module, as depicted in Figure 5.1
and it will become a real part of the final application. The proxy-MW module
provides the same Tuplespace API provided by AME and it represents a proxy
layer between the applications and AME.

Let us suppose to translate a MOM application into a Tuplespace application
(the translation methodology will be described in Section 5.7). The proxy-MW
module interacts with the application above using a Tuple-space paradigm and
it translates every operation into MOM services. On the middleware side, the
proxy-MW module still uses the MOM interface. In this way, applications think
to dialogue with the middleware by using a tuple-space interface, but in truth
they dialogue with proxy-MW. Thus, AME provides a X-paradigm interface, using
the services of a Y-paradigm. Data is stored inside of the middleware in the Y-
paradigm format. In this way, Y-paradigm applications will access data it without
noticing that the application writing them follows a different paradigm.

The transparency enables to design an AME application which is composed by
several parts, each one written by using different program-paradigms. Moreover,
when the application accesses to the data, consistence will be always assured.
Another advantage of this approach is that the automatically program-paradigms
translation does not need of a SystemC parser, easing the translation mechanism.
This feature also guarantees a reduction of the translated applications in term of
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Fig. 5.1. AME Proxy Middleware.

code lines, because it isn’t necessary to replace the translation-paradigm code in
each point of the starting code.

Finally, proxy-MW makes easier the mapping process since the programming
paradigm must be not the same in the transfer process from abstract middleware
to actual middleware. For example, an application designed by using the MOM
serivces provided by AME could be mapped onto a Tuplespace middleware such
as TeenyLime.

5.2 Tuplespace to Database

This section describes the translation from tuplespace services to database services.
The Tuplespace paradigm uses a repository (the tuplespace) to store all the

information: therefore the tuplespace contains tuples differing in number and type
of their elements. A tuple T is an ordered set of elements
T =< e1, e2, ..., en > , where n represents the number of tuple elements. Before
presenting the translation rule between tuplespace middleware and database mid-
dleware, let us partition the tuple space into subsets of homogeneous tuples; then
a database table is created for each subset Pi as shown in Fig. 5.2.

The relationship between the read service of the tuplespace middleware and
the query of the database middleware can be described as follows.

The WHERE condition has to be composed by the AND operation of the tem-
plate actual fields, skipping the ”wild cards” elements. Tuples can be also extracted
from the tuple space using the destructive take operation; the corresponding im-
plementation in a database middleware can be described as follows.

Finally, to write a tuple into the Tuplespace means to add information to our
repository if it isnt there yet. In database programming paradigm, the same result
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Fig. 5.2. Example of transformation of a tuple space into database tables.

read(<e1,e2,...,en>) 

SELECT * 

FROM Pi

WHERE column1 = e1 AND

... 

columnn = en

take(<e1,e2,...,en>) 

SELECT * 
FROM Pi
WHERE column1 = e1 AND

... 
columnn = en

DELETE
FROM Pi
WHERE column1 = e1 AND

... 
columnn = en

is achieved by adding a line into the table of the tuple template. Therefore, a
write operation is converted as follows. The write service inserts a tuple into the
tuplespace only if that tuple does not already exist. The first operation to be
performed then is a select query to check whether the table already contains that
line or not. If the query finds the line, no operation is performed; otherwise a new
line is added to the table with an insert query
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write(<e1,e2,...,en>) 

if ( SELECT * 
FROM Pi
WHERE column = e AND
FROM Pi
WHERE column1 = e1 AND

... 
columnn = en )

// no operation
else

INSERT …

5.3 Database to Tuplespace

The translation between Database services into Tuplespace services is described
in this section. The main objective of this translation is the creation of a tuple
containing the same information typically stored through the database table. In
order to create a database table inside the Tuplespace it’s necessary to build two
tuple including the table information (number of columns table and data type).

CREATE table1 (c1, c2, c3)

write(<table1_template, num_of_field>)

write(<table1_template_field, c1, c2, c3>)

INSERT INTO table1 (c1, c2, c3) VALUES (v1, v2, v3) 

<result> = read(<table1_template_field, c1, c2, c3>)

if (<result> exist)

write(<table1, v1, v2, v3>)

Fig. 5.3. Example of translation of a database into tuplespace representation.

Therefore, the CREATE table1 query is translated with two write services to
insert the following tuples (as shown in Figure 5.3):

• < table1 template, num of field > where table1 template is a keywork com-
posed by the name of table to be created and the ” template” suffix and
num of field is the number of columns table.
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• < table1templatef ield, c1, c2, c3 > where table1 template field is a keywork
composed by the name of table to be created and the ” template field” and c1,
c2 and c3 are the column data type.

The INSERT INTO table1 query is implemented in tuplespace programming
paradigm by using a read and a write service to insert into the tuplespace an infor-
mation corresponding to a new row table. Figure 5.3 reports the pseudo-code of this
translation. It reads the tuple template (read(< table1 template field, c1, c2, c3 >)
to verify the presence of the corresponfig table and then it writes a new tuple con-
taining the row table data; this tuple is composed by a keywork representing the
name of the table (table1) and by the values (v1, v2 and v3).

SELECT * FROM table1 WHERE c2 = v2

tuple[] re_insert;

<result1> = read(table1_template, *);

<result2> = read(table1_template_field, result1[1]);

<table1_template_field,*,c2,*>=buildTemplate(<result1>,<result2>);

while (take is not empty)

re_insert[i++] = take(<table1_template_field,*,c2,*>);

for each re_insert[] entry

write(re_insert);

DELETE FROM table1 WHERE c2 = v2

<result1> = read(table1_template, *);

<result2> = read(table1_template_field, result1[1]);

<table1_template_field,*,c2,*>=buildTemplate(<result1>,<result2>);

while (take is not empty)

take(<table1_template_field,*,c2,*>);

write(re_insert);

return re_insert[];

Fig. 5.4. Example of translation of a database into an tuplespace representation.

The SELECT query can be replaced inside the tuplespace programming paradigm
by using the following tuplespace services:

• a couple of read service allows to know which table as to be used to select
the information; the buildTemplate function builds the tuple template used
to extract data from the table.

• a while statement allows to extract (by using a take service in order to avoid to
exctract the same tuple twice) the whole tuple set matching the tuple template
previously created.

• finally, before to return the result (return re insert[]), the set of tuples are
re-inserted in the tuplespace.

Finally, the DELETE statement typically used to delete rows in a table is trans-
lated as the SELECT without re-insert operation in order to delete the tuples from
the tuplespace.

The SELECT and DELETE statements are shown in Figure 5.4.
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5.4 Object-oriented to Tuplespace

The Object-Oriented and Tuplespace paradigms are quite different. The former
provides synchronous point-to-point communications between distributed objects.
The latter has an asynchronous communication style and it uses a shared memory
to link processes.

The lookup service of the Object-Oriented paradigm allows to obtain a local
reference of the remote object. This reference is then used for method invocation.
The same mechanism can be easily described with Tuplespace paradigm by writing
and reading requests to/from the shared space.

Object-Oriented applications always obtain a reference to one particular object
by using its public name given during registration. Therefore, in the Tuplespace
implementation an identification string must be created in correspondence of a
register operation:

REGISTER(∗obj, name)→ stringID = name

The lookup service of the Object-Oriented paradigm allows to obtain a local object
reference. Lookup is usually followed by a method invocation:

P = lookup(name)
R = P.METHODi(A1, .., AN )

Let us define client the object doing lookup and method invocation, and server
the object implementing the actual object. To invoke one of the server methods,
the client writes a tuple with the following fields:

• identification to the service provider (name)
• method to be called
• list of parameters belonging to the method signature.

For example, referring to the previous example, the client writes the following
tuple:

< name,METHODi, A1, .., AN >

The server, at the same time, is waiting for requests by performing a take operation
with the following template:

< name, METHODi, ∗, ..., ∗ >

where wild-cards correspond to parameters belonging to the method signature.
If a matching tuple is found, the server executes the method on the given

parameters. Conversion from the Object-Oriented paradigm to the Tuplespace
transforms methods into functions, though doing the same operations and with
the same signature.

The result of the function is then returned by the server by writing a tuple
with the following structure:

< ”result”, name,METHODi, A1, .., AN , Ri >

where the first field allows to identify the response tuple which contains the re-
turning value of the method.
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This tuple is read by the client through a blocking take operation on the fol-
lowing template:

< ”result”, name,METHODi, A1, .., AN , ∗ >

As a result, the register operation done in the OOM programming paradigm is
replaced by an infinite loop of take operations, looking for method invocations, fol-
lowed by write operations to publish results, as described in the following pseudo-
code:

The lookup and method invocations (performed by the client) are translated
into a write operation, to publish the request, followed by a blocking take operation
to get the result:

5.5 Tuplespace to Object-Oriented

The Tuplespace model uses a shared memory (called tuplespace), that usually
contains tuples differing in number and type of their elements. Before mapping
the Tuplespace paradigm on to the Object-Oriented one, the set of tuples must be
partitioned into homogeneous subsets, based on equal number and type of fields.
Then a class is created for the template of each subset, as shown in Figure 5.5.
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Fig. 5.5. Example of translation of a tuplespace into an object-oriented representation.

An instance object is created for each class. Since the tuplespace may contain
more tuples of the same type, each instance object contains a list of nodes with as
many fields as the tuple elements.

The translation between the write operation and the Object-Oriented opera-
tions is the following:

• when the first write is found, the corresponding Object-Oriented implementa-
tion has to create and register a new object of the corresponding class. The
first node is added to the list and initialised with the tuple elements (step (1)
of the following schema);

• further write operations are translated into invocations of the add method,
with the tuple elements as parameters (step (2) of the following schema).

write(<e 1,e 2,...,e n>)

(1)
obj = new FileName();
register(*obj,className+counter());
obj.add(e1, e2, …, en);

(2)
obj.add(e1, e2, …, en);
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The read and take services of the Tuplespace paradigm are based on a pattern-
matching search. They return the first tuple corresponding to the provided tem-
plate.

The read service is translated into the following Object-Oriented implementa-
tion:

• get a reference to each object (one a time) with the lookup service:
• invoke the ”scan list” method on the current object to check whether one node

matches the template;
• if the ”scan list” method returns one node, it is returned as result;
• otherwise, the code passes to the following object;
• if no object contains a node matching the template, the service returns a null

value.

read(<e 1,e 2,...,e n>)

Node result = NULL;
for (int i=0; i<count; i++){

obj=lookup(“FileName”+i.str());
Node n = obj;
scan_list (<e 1,...,e n>);
if (n!= null) {

result=n;
break;

}
}

The translation of the take operation is similar:

• get a reference to each object (one a time) with the lookup service:
• invoke the ”scan list” method on the current object to check whether one node

matches the template;
• if the ”scan list” method returns one node, it is removed from the list and

returned as result;
• otherwise, the code passes to the following object;
• if no object contains a node matching the template, the service returns a null

value.

Both the read and take operations require a search in the node list. To make
the search faster, the actual implementation might use hash tables using tuple
data as key values.

The resulting model is an Object-Oriented implementation but its communi-
cation style is still asynchronous and the search methods are based on pattern-
matching operations. For this reason the application will not change its behaviour
after the translation.
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take(<e 1,e 2,...,e n>)

Node result = NULL;
for (int i=0; i<count; i++){

obj=lookup(“FileName”+i.str());
Node n = obj;
scan_list(<e 1,...,e n>);
if (n!= null) {

remove_node(<e 1,...,e n>);
result=n;
break;

}
}

5.6 Tuplespace to Message-oriented

Before to describe the Tuplespace-to-MOM translation, let us define first how to
translate the Tuplespace data (Tuples) into MOM data (Messages). Each tuple
becomes a Topic object created by listing the tuple fields as a string. For instance,
the following tuple:

< ”Temperature”, 27, ”Room1”, ID SENSOR >

becomes:
”Temperature + 27 + Room1 + ID SENSOR”

In the Tuple-space paradigm, each tuple is stored in the Tuple-space by using
the write service. The subscribe service of the MOM paradigm inserts a record
inside the AME table, still maintaining the relation between the subscribed topic
and the event associated, as shown in Figure 3.2. Thus, the data representing a
tuple can be stored inside a MOM middleware by using the subscribe service.
Therefore, the Tuplespace write service is translated by using a MOM subscribe
service as shown in Figure 5.6.

The implementation of the Tuplespace read nb (non-blocking read) service
inside the MOM leverages the use of topic object. The goal of the read service is
to extract the tuple from the tuplespace, if it is present. In MOM this result can
be reached in the following way:

• a NULL message is published in a particular topic describing the tuple (Topic
object is created by listing the tuple fields as implemented for the write service);

• if the MOM contains this topic, the associated event is raised and the data
event (containing the msg and the topic) is transmitted;

• the topic is translated in a tuple object and returned to the application invoking
the read service.

The read b (blocking read) is implemented exploiting the read nb; this service
is repeated until the tuple is retrieved.

This translation is shown in the pseudo-code of Figure 5.6.
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write(<e1,e2,...,en>)

subscribe(<e1,e2,...,en> ,wakeupEvent);

publish(NULL_MSG, <e1,e2,...,en>);
wait(wakeupEvent);
topic = wakeupEvent->topic;
tuple = rebuildTupleByTopic(topic);

do {
res = read_nb(t);
}while(!res.matches(<e1,e2,...,en>))

tuple = read_nb(<e1,e2,...,en>) tuple = read(<e1,e2,...,en>)

tuple = rebuildTupleByTopic(topic);
return tuple;

publish(NULL_MSG, <e1,e2,...,en>);
wait(wakeupEvent);
topic = wakeupEvent->topic;
tuple = rebuildTupleByTopic(topic);
unsubscribe(<e1,e2,...,en>,wakeupEvent)
return tuple;

tuple = take_nb(<e1,e2,...,en>)

do {
res = take_nb(t);
}while(!res.matches(<e1,e2,...,en>))

tuple = take(<e1,e2,...,en>)

Fig. 5.6. Tuplespace to MOM.

5.7 Message-oriented to Tuplespace

Message-oriented middleware adopts a different communication paradigms with
respect to the Tuplespace: the former offers an asynchronous model because the
service’s consumers physically and temporally are decoupled from the service
providers, while Tuplespace is a synchronous method

Let us define consumer the object doing subscribe, and producer the object
calling the publish method. The publish service provided by the Message-oriented
paradigm allows to store a message belonging to a particular topic into the message
repository. This service can be easily performed by using the tuplespace middle-
ware services writing in the tuples space a tuple keeping the following information:

• data information involved in the MOM message.
• name of the message topic.

This tuple is called tuple-data. For example, the MOM message data published
by the producer in the message repository named topic can be transformed in the
following Tuple:

< data, topic >

The subscribe service allows to store a topic and an event that must be raised
when a message with this topic will be published. This service can be performed
by using the tuplespace middleware services by using a tuple (named tuple-events
in the follow) including:

• list of events to be raised with respect to the topic.
• name of the message topic.
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Therefore, the publish(message, topic) operation is replaced by a write
operation (to store the message in the tuple-space) followed by a read nb op-
eration of tuple-events (to retrieve the list of the events belonging to the topic
raised), as shown in Figure 5.7. The subscribe(topic, event) operation is im-
plemented by the proxy-MW taking the tuple-event from the tuples space in order
to update the list of events to be raised when a message belonging to the topic
will be published; this translation is shown in the pseudo-code of Figure 5.7. The
unsubscribe(topic, event) operation can be represented by using a take op-
eration to retrieve the list of events previously defined through the subscribe
operation. The event specified in the unsubscribe signature is deleted through this
list of events (deleteEventFromListEvent) before updating this tuple containing
the new list of events can be raised.

subscribe(topic, event)

Tuple listEvent = take_nb(<*, topic>);
newListEvent = addEventToListEvent(event);
write(<newListEvent, topic>);

publish(message, topic)

write(<message, topic>);
Tuple eventToNotify = read_nb(<*, topic>);
notifyMOMconsumer(eventToNotify, message);

Tuple listEvent = take_nb(<*, topic>);
newListEvent = deleteEventFromListEvent(event);
write(<newListEvent, topic>);

unsubscribe(topic, evet)

Fig. 5.7. MOM to Tuplespace.

5.8 Message-oriented to Database

This Section describes the translation from Message-oriented paradigm to Database
paradigm. In the Message-oriented paradigm each entity interacts in an asyn-
chronous way through the Publish/Subscribe paradigm enabling an event/notity
mechanism. This mechamism is implemented through a data structure, named
event repository, to store the event used to automatically notify the entity sub-
scriber when a message is published in that topic, as shown in Figure 3.2.

Dealing with data memorization aspects, the Database paradigm is powerful
with respect to the Message-oriented paradigm, therefore this translation is not
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complicated. The main concern regards the communication way: Database is query
based (synchronous); on the other side Message-oriented is event/notify based
(asynchronous).

The proxy middleware creates a table named event repository exploiting the
query service provided by the underlying middleware. This table keeps the same
information as a typical event repository structure would keep using directly a
Message paradigm, that is an association between a Topic and an event for each
entry.

Therefore, the subscribe(topic, event) operation is replaced by a query to
insert into the DB the information related the event able to wake-up the entity
associated with a particular topic. The publish(message, topic) operation is
implemented by the proxy-MW selecting the information (the event list) related
to a topic from the event repository and raising the entities associated. Finally,
the unsubscribe(topic, event) operation can be represented by using a query
operation to delete the event from the event repository. This translation is
shown in the pseudo-code of Figure 5.8.

subscribe(topic, event)

query(INSERT INTO event_repository(event,topic) values ('topic','event'))

Table event_to_wakeup=

publish(message, topic)

Table event_to_wakeup=
query(select * from event_repository where topic='topic')

for each event in event_repository
notifyMOMconsumer(event, message)

query(DELETE FROM event_repository where event='event' and topic='topic')

unsubscribe(topic, event)

Fig. 5.8. MOM to Database.

5.9 Database to Message-oriented

The Database to Message-oriented translation can be performed by using the trans-
lation between Database to Tuplespace described in Section 5.3 and the translation
between Tuplespace to Message-oriented presented in Section 5.6.
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5.10 Message-oriented to Object-oriented

The Message-oriented to Object-oriented translation exploits the similarities be-
tween the two programming paradigm in term of data type saved inside the mid-
dleware. The object-oriented paradigm uses a public repository in which in-
stances of the actual object have been registered with a public name (an entry
of <Reference, Object Name>). The message-oriented paradigm memorizes an
event and a topic inside the event repository with the following entry: <Event,
Topic Name>. Therefore the proxy-mw manages the Reference as a Event and
the Object Name like a Topic Name.

The main issue is how to translate the asynchronous communication pradigm
used by Message-oriented with respect to the synchronous communication paradgim
implemeted by Object-oriented. Moreover, the object-oriented paradigm requires
each Object Name of a Reference object to be unique; in Message-oriented differ-
ent communicating entities could be interested to the same topic. In order to solve
this problem we have to make each entry unique by using a progressive number
for the Topic Name.

For instance, these set of subscribe operations:
subscribe(”Cartopic”, event1);
subscribe(”Shiptopic”, event2);
subscribe(”Cartopic”, event3);

store the following entries:
< event1, ”Cartopic1” >
< event2, ”Shiptopic2” >
< event3, ”Cartopic3” >

On the other hand, the following publish request:
publish(message, ”Cartopic”)

has to wake-up the following events:
< event1, ”Cartopic1” >
< event3, ”Cartopic3” >

Therefore, the subscribe(topic, event) operation is replaced by a register
operation to insert an entry inside the OOM public repository. The publish(message,
topic) operation is implemented by the proxy-MW looking for the entries (the
event list) with a name formed by the topic required and a number from zero to
the last number generated inside the subscribe and finally raising the entities
associated. This translation is shown in the pseudo-code of Figure 5.9.

Concerning the unsubscribe, we note that the object-oriented paradigm
doesn’t provide a mechanism for data erasing. This problem is solved by regis-
tering another entry with the same name of the remote object to be erased with
a keyword NULL corresponding to the event. Doing that when a lookup will be
called to search this this object, a NULL event will be waken up (because the
lookup does its research from the younger to the older entry).
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subscribe(topic, event)

registerobj(event, topic)

for each entry of AME_OOM stub_register {

publish(message, topic)

for each entry of AME_OOM stub_register {
Event event = lookup(topic);
notifyMOMconsumer(event, message)

}

registerobj(NULL, topic)

unsubscribe(topic, event)

Fig. 5.9. MOM to OOM.

5.11 Object-oriented to Message-oriented

The Message-oriented paradigm uses a event based communication style (and
is therefore asynchronous). The Object-oriented paradigm is fully synchronous.
Moreover, the main difference between the two programming-paradigms consist of
they have been designed in order to manage different contexts.

The Object-oriented to Message-oriented translation exploits the similarities
between the two programming paradigm in term of data type saved inside the
middleware, as already described in section 5.10.

In the Object-oriented paradigm, each reference to a particular object is stored
in the public repository by using the register service. The subscribe service of
the MOM paradigm inserts a record inside the AME table, still maintaining the
relation between the subscribed topic and the event associated, as shown in Figure
3.2. Thus, the data representing a reference to the object can be stored inside
a MOM middleware by using the subscribe service. Therefore, the Tuplespace
register service is translated by using a MOM subscribe service as shown in
Figure 5.10.

The lookup service of the Object-Oriented paradigm allows to obtain a local
reference of the remote object. This reference is then used for method invocation.
In MOM this result can be reached in the following way:

• a NULL message is published in a particular topic describing the public name
given during registration;

• if the MOM contains this topic, the associated event is raised and the data
event (containing the msg and the topic) is transmitted;

• the topic is translated in a reference object and returned to the application.
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This translation is shown in the pseudo-code of Figure 5.10.

register(obj, name)

subscribe(createTopic(obj, name), wakeupEvent);

publish(NULL_MSG, name);
wait(wakeupEvent);
topic = wakeupEvent->topic;
obj = rebuildObjByTopic(topic);
return obj;

lookup(name)

Fig. 5.10. OOM to MOM.

5.12 Object-oriented to Database

This Section explains the translation from Object-oriented to Database program-
ming paradigm. Database and object-oriented paradigms have been designed to
work in different context: the former focuses on the data store aspects; the second
focuses on the communication aspects. Moreover, dealing with data memorization
aspects, the Database paradigm is powerful with respect to the Message-oriented
paradigm, therefore this translation is not complicated.

The translation is based on the creation of a table (called Reference Register)
inside the database. This table has to represent the OOM public repository in
which instances of the actual object are registered with a public name (an entry
of <Reference, Object Name>). Typically, the Reference is the address of an
object; therefore, it can be easily kept inside the Reference Register table as a
string.

The translation can be implemented as shown in the pseudo-code of Figure 5.11.

5.13 Database to Object-oriented

The Database to Message-oriented translation can be performed by using the trans-
lation between Database to Tuplespace described in Section 5.3 and the translation
between Tuplespace to Object-oriented presented in Section 5.5.
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register(obj, name)

query(INSERT INTO Reference_Register(Reference, Object_Name)
values ('obj','name'));

query(select * from Reference_Register 
where Object_Name = 'name');

return obj;

lookup(name)

Fig. 5.11. OOM to Database.

5.14 Experimental analysis

The first step (AME3) of the proposed middleware-centric design flow has been
applied to a house temperature monitor system scenario depicted in Figure 5.12.
The objective is the evaluation of the translation mechanism described in this
Section, pointing up the advantages of the proxy-MW solution.

In the House temperature monitor scenario a Wireless Sensors Network (WSN),
including 20 nodes deployed in the house, sends ambient information to a remote
service centre (SC) to control/monitor the house, through a fixed gateway installed
in the house (GW). The gateway queries each temperature sensor and checks
the received data to inform the remote service if some sample exceeds a given
temperature threshold.

The reference application has been originally designed by using the AME pro-
gramming paradigms: Tuplespace, Object-Oriented, Database, Message-oriented
(in the follow called respectively TP-origin, OOM-origin, DB-origin and MOM-
origin). The application models have been simulated in the AME environment to
verify the correct implementation of functionalities.

Figure 5.13 shows SystemC code for the three actors of the application (WSN,
GW, SC) modelled in Tuplespace programming paradigm by using AME environ-
ment. Figure 5.13.1 represents the application code running on each sensor node
which samples the body temperature and then makes its value available by using
the tuplespace write service. Figure 5.13.2 represents the application code run-
ning on the GW which extracts (take service) available temperatures and checks
for values above 40 degree; in this case, the GW generates an alarm through the
write service. Figure 5.13.3 represents the application code running on the SC
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Fig. 5.12. House temperature monitor.

to verify whether an alarm has been raised (take service). Finally, Figure 5.13.4
describes the instantiation of the all actors.

Figure 5.14 reports the implementation of the house temperature monitor sce-
nario, where the Database programming paradigm has been used and the specific
API have been highlighted in bold face style. The code shows the daa exchanged
beetwen the WSN, GW and SC by using the query service; in fact AME simu-
lates the behaviuor of a database. Figure 5.14.1 simulates the insertion of a set of
records inside a temper table representing the temperature value monitored by the
WSN. Figure 5.14.2 selects (by a SELECT query) these values, checks for values
above 40 degree and generates an alarm in affermative case by inserting a reconrd
inside a alarms table. Finally, Figure 5.14.3 selects the alarm records alarm to
reise an alarm in dangerous situation.

Figure 5.15 and Figure 5.16 depict the pseudo-code of the house tempera-
ture monitor system scenario simulated by using the Object-oriented programming
paradigm API provides by AME environment highlighted in bold face style.

Finally, the house temperature monitor scenario has been implemented by using
Message-oriented programming paradigm as shown in Figure 5.17. It emphatises
the use of the publish and subscribe services provided by AME message-oriented
programming paradigm. The GW (Figure 5.17.2) is subscribed to the ”temper”
topic in order to receive the temperature data published by the WSN modules
(Figure 5.17.1). When the GW catches a temperature value overcome 40 degree it
generates an alarm publishing a message in the ”alarm” topic. The SC is subscribed
to the ”alarm” topic; therefore, when the GW publishes an alarm the SC will be
waken up to signal the alarm.



5.14 Experimental analysis 87

SC_MODULE(WSN) {    // WSN.h
sc_port<AME_if> wsn_port;
void run();
SC_CTOR(WSN):wsn_port(“wsn_port”){

SC_THREAD(run);
end_module();

}
};

void WSN::run(){  // WSN.cc
while (1) {

for (int i=0;i<NUM_SENSOR;i++){
Tuple t = …<TEMP>…;
wsn_port->write(t);

}
wait();

}

SC_MODULE(GW) { // GW.h
sc_port<AME_if> gw_port;
void run();
SC_CTOR(GW) : gw_port(“gw_port”){

SC_THREAD(run);
end_module();

}
};
void GW::run() {  // GW.cc

while (1) {
Tuple=gw_port->take(…<TEMP>…);
if (tuple[1]>40)

gw_port->write(…< ALARM >…);
wait();

} 

1 2

}
}

} 
}

SC_MODULE(SC) { // SC.h
sc_port<AME_if> rs_port;
void run();
SC_CTOR(SC) : rs_port(“rs_port”){

SC_THREAD(run);
end_module();

}
};
void SC::run() {  // SC.cc

while (1) {
rs_port->take(…<ALARM>…);
wait();

}
}

3 int sc_main() {
WSN *b = new WSN(“WSN”);
GW *gw = new GW(“GW”); 
SC *rs = new SC(“SC”);
AME_3 *mw=new AME_3(“AME_3”);

b->wsn_port(mw->mw_port);
gw->gw_port(mw->mw_port);
rs->rs_port(mw->mw_port);
sc_start(-1);
return 0;
};

4

Fig. 5.13. Application described by using the AMS 3 library (Tuplespace).

Then, each original model has been translated applying the proxy-MW so-
lution previously described. All translations between the different programming
paradigms have been executed.

Table 5.1 reports simulation performance of the Tuplespace, Message-Oriented,
Object-Oriented and Database application models, both the original and the trans-
lated versions. The first column reports the number of code lines of the applica-
tion source code (hand-written in the case of original models and automatically-
generated code in the case of translated models implemented by using the proxy-
MW). The second column reports the simulation time; the third column reports
the number of calls to AME services.

The results obviously show an increasing of the AME calls due to the transla-
tion mechanism. The Code lines parameter augments of a fixed value corresponding
to the Code lines related to the proxy-MW used for the translation. For example,
the proxy-MW used to translate a tuplespace application into a MOM application
includes the pseudo-code described in Section 5.6 equal to 220 code lines.

Figure 5.18 shows the performance of AME proposed in this paper with respect
to a solution using a parser/translator of SystemC code, which was implemented
without the AME proxy-MW (called AMEplain). The comparison has been im-
plemented for the Tuplespace-to-TOM translation, because it uses the proxy-MW
more extensive in terms of Code lines (220 code lines as reported in Table 5.1).

The comparison has been implemented for an application originally written
by using the Tuplespace paradigm. It is composed by 500 code lines. The re-
sults clearly show that the translation mechanism is application-dependent. The
real advantage by using the proxy-MW takes place when the code of the original
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SC_MODULE(WSN) {    // WSN.h
sc_port<AME_if> wsn_port;
void run();
SC_CTOR(WSN):wsn_port(“wsn_port”){

SC_THREAD(run);
end_module();

}
};
void WSN::run(){  // WSN.cc
while (1) {

for (int i=0;i<NUM_SENSOR;i++){
String sql=”insert into temper 

values(..”+<TEMP>+”..);”;
wsn_port->query(sql);

}
wait();

}
}

SC_MODULE(GW) { // GW.h
sc_port<AME_if> gw_port;
void run();
SC_CTOR(GW) : gw_port(“gw_port”){

SC_THREAD(run);
end_module();

}
};
void GW::run() {  // GW.cc

while (1) {
String sql=”select * from temper;”;
result=gw_port->query(sql);
line=result.get_line(); 
if (line[1]>40){

String sql=”insert into alarms 
values(..”+<ALARM>+”..);”;
gw_port->query(sql);

}
wait();

1 2

wait();
} 

};

SC_MODULE(SC) { // SC.h
sc_port<AME_if> rs_port;
void run();
SC_CTOR(SC) : rs_port(“rs_port”){

SC_THREAD(run);
end_module();

}
};
void SC::run() {  // SC.cc

while (1) {
String sql=”select * from alarms;”;
msg = rs_port->query(sql);
if (msg == <ALARM>) {

sql=”delete from alarms where…;”;
rs_port->query(sql);

}
wait();

}
}

int sc_main() {
WSN *b = new WSN(“WSN”);
GW *gw = new GW(“GW”); 
SC *rs = new RS(“SC”);
AMS_3 *mw=new AMS_3(“AME_3”);

b->wsn_port(mw->mw_port);
gw->gw_port(mw->mw_port);
rs->rs_port(mw->mw_port);
sc_start(-1);
return 0;
};

3

4

Fig. 5.14. Application described by using the AMS 3 library (Database).

Code Simulation AME
lines time [msec.] calls

TP-original X 352 5442

TP 2 MOM X+220 3288 3595

TP 2 OOM X+100 235 6595

TP 2 DB X+90 5070 12896

MOM-original Y 88 2086

MOM 2 TP Y+50 344 4172

MOM 2 DB Y+30 436 2087

MOM 2 OOM Y+35 58 4170

OOM-original Z 40 3321

OO 2 TP Z+90 108 3343

OO 2 MOM Z+140 776 3343

OO 2 DB Z+40 796 3344

DB-original W 1684 2252

DB 2 TP W+120 319 4675

DB 2 OOM W+100 121 4202

DB 2 MOM W+340 879 8270

Table 5.1. Simulation performance results of the programming paradigms translations.

application includes a high number of AME calls (X-axis) since it is not neces-
sary to replace the translation-paradigm code (as in AME-plain) in each point
of the original code. In fact, when the AME calls increases, the translated code
(Y-axis) is a constant value equal to the original application (500 lines) added
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// WSN.h
SC_MODULE(WSN) {

sc_port<AME_if> wsn_port;
int id;
void run();

SC_CTOR(WSN):wsn_port(“wsn_port”){
SC_THREAD(run);
end_module();

}
};

// WSN.cc
void WSN::run(){ 
wsn_port->register(&remote,id);

}

// GW.h
SC_MODULE(GW) {

sc_port<AME_if> gw_port;
void run();
SC_CTOR(GW) : gw_port(“gw_port”){

SC_THREAD(run);
end_module();

}
};

// GW.cc
void GW::run() {

1 2

}

// WSN_IF.h
class wsn_if: public remote_generic{

virtual int getTemperature();
};

// WSN_CLASS.h
class wsn_class: public wsn_if{

int getTemperature();
};

// WSN_CLASS.cc
int wsn_class::getTemperature(){

return <TEMP>;  
}

void GW::run() {
while (1) {
for (int i=0;i<NUM_SENSOR;i++){
bsn_class ref=lookup(i);
int t= ref.getTemperature();
if (t>40)
sc_class ref=lookup(“remote”);
remote.setAlarm(<ALARM>); 

}  
}
wait();  

}
}

Fig. 5.15. Application described by using the AMS 3 library (Object-oriented) - PART
1.

to the Tuplespace-to-MOM proxy-MW (equal to 220 lines). Moreover, the AME
proxy-MW solution outperforms the AME-plain solution decreasing the execution
time of the translated application (3288 msec. vs. 10589 msec.).
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// SC.h
SC_MODULE(SC) {

sc_port<AME_if> rs_port;
remote_class remote;
void run();

SC_CTOR(SC) : rs_port(“rs_port”){
SC_THREAD(run);
end_module();

}
};

// SC.cc
void RS::run() {
rs_port->register(remote,id);

}

3 4

int sc_main() {
WSN *b = new WSN(“WSN”);
GW *gw = new GW(“GW”); 
SC *rs = new SC(“SC”);
AME_3 *mw=new AME_3(“AME_3”);

}

// SC_IF.h
class sc_if: public remote_generic{

virtual void setAlarm(string alarm);
};

// SC_CLASS.h
class sc_class: public rs_if{

void setAlarm(string alarm);
};

// SC_CLASS.cc
void sc_class::setAlarm(string alarm){

cout<<alarm<<endl;  
}

b->wsn_port(mw->mw_port);
gw->gw_port(mw->mw_port);
rs->rs_port(mw->mw_port);
sc_start(-1);
return 0;
};

Fig. 5.16. Application described by using the AMS 3 library (Object-oriented) - PART
2.

SC_MODULE(WSN) {    // WSN.h
sc_port<AME_if> wsn_port;
void run();
SC_CTOR(WSN):wsn_port(“wsn_port”){

SC_THREAD(run);
end_module();

}
};
void WSN::run(){  // WSN.cc
while (1) {
for (int i=0;i<NUM_SENSOR;i++){
int t=TEMPERATURE;
wsn_port->publish(t,“temper”);

}
wait();
}

}

1
SC_MODULE(GW) { // GW.h

sc_port<AME_if> gw_port;
void run();
void notify_routine();
SC_CTOR(GW) : gw_port(“gw_port”){

SC_METHOD(run);
SC_THREAD(notify_routine);
sensitive << wakeup_gw;
end_module();

}
};
void GW::run() {  // GW.cc
gw_port->subscribe(“temper”,wakeup_gw); 

};
void GW::notify_routine() { // GW.cc

while(1) {
wait(wakeup_gw);
int temp = wakeup_gw.getValue();
if (temp > 40)   

2

SC_MODULE(SC) { // SC.h
sc_port<AME_if> rs_port; 3

int sc_main() {
WSN *b = new WSN(“WSN”);
GW *gw = new GW(“GW”); 
SC *rs = new RS(“SC”);
AME_3 *mw=new AME_3(“AME_3”);

b->wsn_port(mw->mw_port);
gw->gw_port(mw->mw_port);
rs->rs_port(mw->mw_port);
sc_start(-1);
return 0;
};

4

if (temp > 40)   
gw_port->publish(temp,“alarm”); 

}
};

SC_MODULE(SC) { // SC.h
sc_port<AME_if> rs_port;
void init();
void run();
SC_CTOR(SC) : rs_port(“rs_port”){

SC_METHOD(init);
SC_THREAD(run);
sensitive << wakeup_rs;
end_module();

}
};
void SC::run() {  // SC.cc
rs_port->subscribe(“alarm”,wakeup_rs);

}
void SC::run() {  // SC.cc
while(1) {

wait(wakeup_rs);
cout<<ALARM<<wakeup_rs.getValue(); 

}
}

3

Fig. 5.17. Application described by using the AMS 3 library (Message-oriented).
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Fig. 5.18. AME proxy-MW vs. AME plain.





6

Mapping

As already described in Section 1, the key aspects of NES applications are their
distributed nature and the presence of very limited HW resources, as in case of
Wireless Sensor Network (WSNs). The wide adoption of these applications requires
the interoperability across different manufacturers, the simplification of application
development through abstract paradigms, simulation tools to verify the correct
behavior and the fulfilment of the tight HW/SW constraints.

Interoperability is achieved through the use of standard protocol stacks (e.g.,
IEEE 802.15.1/Bluetooth and IEEE 802.15.4/ZigBee [74, 75]). For instance, the
ZigBee standard provides the so-called Profiles which define services and attributes
of nodes implementing common applications (e.g., for home automation).

Simplification of application development can be achieved through software
services provided by the operating system. TinyOS is a popular operating system
providing a component-based programming approach [76]. SW services can also
be implemented by a middleware, which hides the peculiarities of operating sys-
tem and HW components and provides abstract entities (such as objects, tables,
tuples and message boards) [35, 77]. The Texas Instruments’ Z-Stack [78] is a
software package providing ZigBee API and minimal OS services, thus behaving
as a middleware.

Simulation tools are used for validating the application: they range from
pure network tools, such as NS-2 [53], to platform-specific environments, such
as TOSSIM [47].

The integration of these three aspects is the objective of Abstract Middleware
Environment (AME) in order to provide a complete design methodology for NES
applications. The proposed methodology allows programmers to write NES appli-
cations by using AME framework for fast simulation and validation as described
in Section 5 and 4. AME behaves as an abstraction of the services provided by
the actual platform. Finally, the implemented application has to be automatically
mapped over an actual platform. This design step is called AME Mapping process
and it regards the deployment of the application over the actual NES.

Figure 6.1 shows an example where the Mapping of the AME-based application
is applied onto a typical middleware for WSN, called ZigBee.

This Chapter completes the description of AME design methodology by auto-
matically mapping AME applications over a target NES platform, e.g., the Texas
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Fig. 6.1. Mapping of the AME-based application onto ZigBee.

Instruments CC2430 nodes, running Z-Stack middleware (ZigBee), which is com-
plex and generic enough to verify the effectiveness of the methodology. Moreover,
experimental results are reported to show the advantages of the AME-centric de-
sign methodology. Finally, the Mapping process onto a tuplespace programming
paradigm (named TeenyLime) is described.

6.1 Mapping onto ZigBee/Z-Stack

6.1.1 Object-Oriented AME

To describe the mapping process from the AME application to the ZigBee appli-
cation we chose the object-oriented programming paradigm for its spread among
programmers. A typical object-oriented middleware [35,78] provides: a mechanism
to describe an object interface and to map it onto an actual object; a public repos-
itory in which instances of actual objects are registered, so that a client can obtain
a local reference of a remote object; a protocol to remotely invoke object’s methods
with transmission of parameters and results. The object-oriented services provided
by AME have been described in Section 3.2.3.

To better clarify the use of AME with the object-oriented paradigm, let us
consider the home automation scenario depicted in Figure 6.2 where a switch
controls a lamp through a wireless channel.

Figure 6.3 reports the corresponding application code described in SystemC
with the Abstract Middleware Environment.

Figure 6.3.1 reports the SystemC main function which creates the light and
the switch objects communicating each other through an instance of the AME
middleware. The OnOff Cluster is an abstract class which defines the commands
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Radio Radio

switch light

Fig. 6.2. Wireless application for light control.

(COMMAND OFF, COMMAND ON and COMMAND TOGGLE), the attribute OnOff (i.e., the
light status) and the operation (OnOffCB) which can be performed on the attribute.
This class represents the description of a functionality, i.e., an interface in object-
oriented terms; in Section 6.1.2 we will see it is quite close to the concept of cluster
in ZigBee standard. Figure 6.3.2 represents HomeAutomation object implementing
the OnOffCB function that modifies the light status according to the commands
defined in the implemented interface OnOff Cluster:

• COMMAND ON: the light is switched on;
• COMMAND OFF: the light is switched off;
• COMMAND TOGGLE: to change light status.

Figure 6.3.3 and Figure 6.3.4 describe two modules representing the actors of
the distributed application. Figure 6.3.3 describes the object named light; during
initialization (init() method) it calls the AME registerobj() service to register
an instance of the HomeAutomation object so that its methods can be remotely
accessed. Figure 6.3.4 describes the object named switch; during initialization
(init() method) it retrieves a reference to the instance running on the other
node by using the AME lookup() service. During the execution phase (run()
method), the object calls OnoffCB() method on the remote object to change light
status. It is worth to note that only the switch object defines the run() method
and a corresponding thread while the light object plays a passive role since it
provides a remote object whose methods are executed in the middleware thread.

The same application can be modelled in AME framework at AME 2 level
involving a simulated wireless channel. Figure 6.4 reports the AME 2 architecture
where the NES application described in Figure 6.3 is simulated taking in account
wireless network effects.

Figure 6.5 shows the SystemC pseudo-code to model the scenario at AME 2
design level; light and switch modules instantiated at line 3 and 4 remain un-
changed with respect to the AME 3 implementation described in Figure 6.3. Lines
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/* switch.h */

SC_MODULE(switch) {
OnOff_Cluster *l;

sc_port<mw_oom_if> mw_port;

void init();
void run();

SC_CTOR(swtch) { 
SC_THREAD(init);
SC_THREAD(run);

};
};

/*HomeAutomation.cc*/

void HA::OnOffCB(int command){
if (command == COMMAND_OFF){

OnOff = false;
}else if (command==COMMAND_ON){

OnOff = true;
}else if (command==COMMAND_TOGGLE){

if (OnOff == false)
OnOff = true;

else
OnOff = false;

}
};

/* light.cc */

void light::init(){
if(!mw_port->registerobj(&led,“LGT"))
{

cout<<“Light not present”<<endl;
}
cout <<“Register executed!”<< endl;

};

/*light.h */

SC_MODULE(light) {
sc_port<mw_oom_if> mw_port;
bulb led;
void init();
SC_CTOR(light) { 

SC_THREAD(init);
}

};

/* OnOff_Cluster.h */

//COMMANDS CONSTANTS
#define COMMAND_OFF 0
#define COMMAND_ON 1
#define COMMAND_TOGGLE 2

class OnOff_Cluster: public remote{
//ATTRIBUTES
bool OnOff;
//SERVER CALLBACKS
virtual void OnOffCB(int com)=0;

};

/* switch.cc */

void switch::init(){
do {

l=(OnOff_Cluster*)
mw_port->lookup(“LGT");

} while (l == NULL)
};
void switch::run() {

while(1){
if (l!=NULL)

l->OnOffCB(COMMAND_TOGGLE);
}

};

/* HomeAutomation.h */

class HA : public OnOff_Cluster {

public:
void init();
void OnOffCB(int command);

};

/* main.cc */

int sc_main(int argc,char *argv[]) {
AME *mw = new AME("Middleware");
light *l_board=new light("LIGHT");
swtch *s_board=new swtch("SWITCH");

l_board->mw_port(mw->oom_port);
s_board->mw_port(mw->oom_port);

sc_start(-1);
return 0;

};
1

2

3

4

Fig. 6.3. Light-control application designed by using the AME 3.

6 and 7 emphasize the instantiation of one AME 2 module and line 6 and 7 re-
port the creation of the connection between the NES applications and the AME
middleware.

Lines 11-24 show the insertion of the SCNSL-AME-Transactor for each AME 2
module previously created; this module allows to connect SCNSL network simu-
lator (Line 26) simulating IEEE 802.15.4 protocol to AME 2.

The example shows that object-oriented programming and SystemC concur-
rency model (i.e., threads) allow to describe efficiently a distributed application
and, therefore, the AME-based approach can save design and coding effort.
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Fig. 6.4. Light-control archtecture designed by using the AME 2.

6.1.2 ZigBee

ZigBee is a multi-vendor standard for low-power, low-data-rate, low-cost wireless
communications enabling next-generation sensor and actuation networks [75]. Zig-
Bee is defined on top of IEEE 802.15.4 [74] and it adds the capability of creating
interoperable applications over multi-hop networks. The key for the interoperation
between devices on a ZigBee network is the agreement on a profile. ZigBee Appli-
cation Profiles are standard agreements on type of messages, message formats and
processing actions that allow to announce, query and discover node capabilities.
For example, if the two nodes depicted in Figure 6.2 are compliant to the ZigBee
standard and, in particular, to the Home Automation profile, then they can rec-
ognize each other’s functionality (i.e., lamp and switch) and the actions one node
can perform on the other node (e.g., changing light status).

In ZigBee standard, message formats are described as clusters and identified
with a code which is unique within a given Application Profile. Clusters can be
groups of attributes or commands and the corresponding Application Profile de-
fines the valid match between attributes and commands; for example, in the Home
Automation Profile, a lamp can be recognized for its specific set of commands,
namely those related to light switching, while a switch can be recognized for each
attributes, namely the status, and lamp-switch connections are valid. Clusters are
quite similar to objects in the object-oriented programming paradigm and this fact
suggests a way to efficiently map the previously described object-oriented AME
applications onto ZigBee.
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1 int sc_main(int argc,char *argv[]){

2   // application implementation 

3   light *l_board=new light("LIGHT");
4   swtch *s_board=new swtch("SWITCH");

5   // Middleware creation
6   AME_2 *mw_light=new AME_2(“AME_2”);
7   AME_2 *mw_switch=new AME_2(“AME_2”);

8   // Connection between Application and AME2
9   l_board->mw_port(mw_light->oom_port);
10  s_board->mw_port(mw_switch->oom_port);

11  // Request and response channel creation
12  ReqRsp *req_rsp [2]=new ReqRsp(“channel”)

13  // Connection between AME2 and request/response channel
14  mw_light->net_out(req_rsp[0]->put_request_export);
15  mw_light->net_in(req_rsp[1]->get_request_export);
16  mw_switch->net_out(req_rsp[2]->put_request_export);16  mw_switch->net_out(req_rsp[2]->put_request_export);
17  mw_switch->net_in(req_rsp[3]->get_request_export);

18  // SCNSL-AME-Transactor creation
19  SCNSL-AME_trans *transactor[2]=new  SCNSL-AME_trans(“trans”)

20  // Connection between request/response channel and SCNSL-AME-Transactor
21  transactor->net_out(req_rsp[0]->put_request_export);
22  transactor->net_in(req_rsp[1]->get_request_export);
23  transactor->net_out(req_rsp[2]->put_request_export);
24  transactor->net_in(req_rsp[3]->get_request_export);  

25  // SCNSL simulator (IEEE 802_15_4)
26  SCNSL *network = new SCNSL(“wnet”)
27  network->setClock(clock)
28  foreach transactor in transactor[]
29  transactor->setMacNode(network->802_15_4mac)
30  ...
31  sc_start(-1);
32  return 0;
33 };

Fig. 6.5. Light-control pseudo-code designed by using the AME 2.

6.1.3 Z-Stack Execution Model

The mapping of an AME-based application onto a given HW/SW platform requires
to take into account the execution model of the target operating system, i.e.,
how it handles tasks, threads, events and so forth. AME-based applications must
be adapted to move from the execution model provided by SystemC to the one
provided by the target platform. In particular, in our case study, we adopted
Texas Instruments’ CC2430 nodes which use the Z-Stack operating system [78].
This platform represents one of the most popular and mature implementation of
ZigBee standard and its constraints in terms of memory usage allows to show the
potentialities of the approach. Z-Stack provides a full ZigBee stack and the minimal
services provided by the Operating System Abstraction Layer (OSAL), i.e., inter-
and intra-task communications task scheduling, timer management, and dynamic
memory allocation. Furthermore, every application can use the HW Abstraction
Layer API to control HW components like LEDs, displays, etc.

The structure of a typical Z-Stack application is as follows:

• Task Initialization (Init() method): it performs initialization of data struc-
tures that describe the status of the node.

• Task Event Handler (ProcessEvent() method): the ZigBee application fol-
lows an event-driven execution model, i.e., it performs operations when cer-
tain events occur. This method receives events and determines which opera-
tions have to be performed. While handling some events is mandatory (e.g.,
SYS EVENT MSG); the user can define other events, e.g., a timeout.
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• Other methods: callbacks to be executed when certain events occurs, methods
to send messages and other functions.

6.1.4 Methodology

This Section describes the process to map AME-based applications onto the
CC2430 SoC by Texas Instruments. The mapping process consists of three key
concepts:

• Compliance with the Z-Stack execution model : to correctly interact with the Z-
Stack operating system, the translated application has to use the same methods
as typical Z-Stack applications, i.e., the task initialization method and an event
listener (Task Event Handler) as described in Section 6.1.3. In this way, the
application will be able to receive events from lower layers and thus from other
nodes. Section 6.1.4 describes this issue.

• ZigBee OOM Services implementation: calls to object-oriented AME services
described in Section 6.1.1 have to be translated to work onto ZigBee stack.
If the involved objects belong to an existent ZigBee Application Profile, then
mapping is simplified, otherwise additional functions have to be implemented
on top of the ZigBee stack. This issue is addressed in Section 6.1.4.

• SystemC to C language conversion: AME applications are written in SystemC
(i.e., C++), while Z-Stack applications are written in C language. Conver-
sion has to take into account not only language differences but also the issues
described in the previous two points. The conversion is performed with the
support of an automatic tool; this issue is described in Section 6.1.4.

Compliance with Z-Stack

a statement1
statement2
…
statementN

����������
����������
	
���������


b If (condition1) Then
(statement1)

…
…

Else if (conditionN)
(statementN)

End If

��������
���������


�������������������
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d statement1
statement2
blocking_op
statement3
statement4

�������������������������
����������
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while (condition) 
{

(statements)
}

������������������

c

Fig. 6.6. Basic cases for the generation of the application FSM.
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At a first look, it seems straightforward to map AME code onto a Z-Stack
application; initialization code can be put in the Init() function while the core
of the application code can be put in the ProcessEvent() function. Actually a
problem arises with blocking calls such as the lookup() service and remote method
invocations which need to stop the calling process until a response arrives. The Z-
Stack operating system does not support pre-emption and therefore blocking calls
in application code block the event listener thus preventing the correct processing
of system events.

To adapt application code to the Z-Stack execution model, the blocking calls
must be replaced by their non-blocking versions plus a timer initialization which
gives control to the OS and periodically polls for results. To perform automatic
code adaptation we decided to rely on code representation through finite state
machine (FSM). The FSM is implemented inside the ProcessEvent() method as
shown in Figure 6.8. The FSM is scheduled by using a timer; when the timer expires
then a TIMER EVENT is generated by the OS and the FSM re-starts from the last
state reached (the timer is re-started after every expiration). The ProcessEvent()
function also manages the arrival of network messages by catching the event named
MESSAGE EVENT generated by the OS, as shown in Figure 6.8.

The core of the AME code (i.e., statements to be put in the body of the
ProcessEvent()) is converted into an FSM by applying recursively the cases de-
picted in Figure 6.6. As shown in Case A, non-blocking statements are put on FSM
transitions while branches are implemented through multiple transitions (Case B).
Loops are translated into self-looping states (Case C). Sections containing blocking
operations undergo a more complex translation (Case D). A new state is created
and statements preceding the blocking call are put of the entering transition to-
gether with the non-blocking version of the call and a timer initialization. Then,
application remains in the new state until a response arrives. Finally, remaining
statements are put on the transition leaving the described state. Thanks to the
FSM formal representation, the described conversion rules can be performed by
an automatic tool based on syntax checking; furthermore, rules can be recursively
applied in more complex cases (e.g., a blocking call inside a loop).

ZigBee OOM Services

As described in Section 6.1.1, object-oriented AME provides a mechanism to de-
scribe an object interface and to map it onto an actual object, a mechanism to
obtain a local reference of a remote object, and a public repository in which in-
stances of the actual objects are registered.

Once the application becomes a really distributed application, object references
used in the AME environment have to be replaced by the addresses of the nodes
where the objects are. Therefore, the public repository is needed to link the public
name of an object and its node location; two solutions are available:

• every node has a copy of the public repository;
• only the ZigBee network coordinator keeps the public repository.

The second design choice allows to maintain public repository information con-
sistent and updated. If a node joins the WSN during the normal network operations
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(hot plug-in), it must get a complete version of the table, including information
that has been exchanged when it was not part of the network yet. Moreover, in a
typical WSN the coordinator has more memory resources with respect to the other
wireless nodes, and therefore it is able to maintain the whole public repository.

The AME services, described in Section 6.1.1, are implemented on the ZigBee
stack as described in the following. A pictorial representation of data exchanges
between nodes is given in Figure 6.7.

Fig. 6.7. ZigBee implementation of OOM services.

The register service is implemented by sending a message to the coordinator
with the object public name, node address and a field that indicates that this is
a register request. On receipt, the coordinator adds the new entry to the public
repository: in this way the information becomes available to the other nodes.

The lookup service is implemented by sending a lookup message containing the
public name of the remote object and a field that indicates that this is a lookup
request. On receipt, the coordinator sends back a message containing the address
of the node. In this way, the caller obtains the node address and can interact
directly with it.

The implementation of remote method invocation depends on the support of
ZigBee Profiles by the target platform. Therefore two mechanisms are possible.

Non-profile-enabled platform: a remote method invocation is converted as follows:
• Node A, that wants to invoke the method on node B, sends a message to

B containing the name of the method to be executed and the parameters,
plus a field indicating that this is a method invocation message.

• On receipt, node B executes the method.
• Node B sends to A a message containing the values received and the exe-

cution result, plus a field indicating that this is a method execution result
message.

• On receipt, node A obtains the result of its invocation and the application
flow goes on.



102 6 Mapping

Profile-enabled platform: If the target platform supports Profiles then the applica-
tion can use some advanced communication mechanisms (such as commands
and callbacks defined by the specific profile) and a precise protocol for the
communication. The key element in profile-enabled applications is the cluster
which embeds attributes and commands related to a specific real-world object
(e.g., a lamp or a switch). If method invocations refer to objects supported by
the profile then they can be implemented by native profile mechanisms without
the need of additional code over the ZigBee stack.
In the light-control example presented in Section 6.1.1, the switch node obtains
a reference to the remote object and then invoke its OnOff method, with the
right parameter to switch the light on. The same behavior can obtained by
using ZigBee messages contained in the Home Automation Profile.

SystemC to C language conversion

Figure 6.8 shows the operations performed to transform the AME application
(written in SystemC language) into a Z-Stack compliant application (written in C
language).

AME2zigbee_init() {
/* Initialization function */
/* Start TIMER_EVENT */

}
…
AME2zigbee_process_event () {

if (TIMER_EVENT) {

}
if (MESSAGE_EVENT) {

/* Catch 
Over The Air 
Messages */

}
}

AME Application (SystemC) 

init () {
…
if (COORDINATOR)

registerobj(object)
else   

ref = lookup(object)
…

}

run () {
…
ref->method 1(par1, …, parN)
ref->method 2(par1, …, parN)
…

}

AME2zigbee Intermediate 
Application (HIF)

AME2zigbee Final Application
(Z-Stack compliant (C))

class object {
…
method 1(par1, …, parN) {
}
method 2(par1, …, parN) {
}
…

}

method 1(par1, …, parN) {
…

}
method 2(par1, …, parN) {

…
}

method 1(par1, …, parN) {
…

}
method 2(par1, …, parN) {

…
}

/* ZigBee OOM Services */
lookup(…) {…}
registerobj(…) {…}
invoke(…) {…}

/* AME OOM Services */
lookup(…) {…}
registerobj(…) {…}

S1 S2

S4 S3

Fig. 6.8. AME to Z-Stack mapping process.

The mapping process consists of three main steps:

1. During the first phase, the AME application is automatically translated into
an intermediate format which captures the basic syntax elements of the source
code (i.e., sequential statement blocks, branches and function calls).

2. In the second step, the intermediate representation is manipulated to:
• separate initialization statements from application statements;
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• extract the application FSM by identifying flow branches and blocking
statements as described in Section 6.1.4;

• identify calls to OOM services which must be translated as described in
Section 6.1.4;

• identify remote method invocations which must handled differently from
local function calls.

3. Finally, the intermediate representation is automatically converted into a C-
language application which can be compiled and downloaded on the target
platform.

To simplify conversion, objects to be mapped on ZigBee applications (e.g.,
switch and light in the light-control example) have to be written by respecting
some guidelines. In particular, to simplify the separation between initialization
code and application code, objects must provide the following methods:

• init(): it contains the operations that should be performed just once, such as
variable initializations, object register and object lookup operations;

• run(): it contains the body of the application; typically, in SystemC this por-
tion of code is placed into the SC THREAD process;

• other application-specific methods.

The AME Automatic Mapping tool has been implemented by using HIF
Suite [84]. HIF stands for HDL Intermediate Format and it is an XML language
that allows tree-structured descriptions of HW/SW objects. Each object describes
a specific functionality or component that is typically provided by HDL languages
like SystemC. The HIF Suite is composed of a set of tools and functions, based on
the HIF language, that allow system designers to:

• parse SystemC functional descriptions
• extract an HIF representation of the descriptions
• manipulate the HIF representation through a set of functions
• generate a C-language description that reflects the changes introduced by the

manipulation of the HIF representation.

6.1.5 Experimental analysis

The proposed SystemC-centric approach has been evaluated by considering two
different ZigBee applications contained in the Texas Instruments’ Z-Stack distribu-
tion, i.e., GenericApp and HomeAutomation. The former establishes a connection
between two nodes and periodically exchanges a string between them; the latter
implements the light-control application described in Section 6.1.1. The former
application does not use any ZigBee Application Profile while the latter uses the
Home Automation Profile: this difference allows to show the effect of Profiles on
the mapping performance.

The functional behavior of the applications has been used to write the corre-
sponding AME-based applications. Table 6.1 evaluates the programming efficiency
achievable by the use of SystemC, i.e., the resulting simplification of the program-
ming task. The complexity of the source code of both the AME-based applications
is compared to the original applications. The first column reports the number of
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Language Code Num. API
lines calls

AME GenericApp SystemC 219 3

GenericApp C 565 15

AME HomeAutomation SystemC 178 2

HomeAutomation C 720 12

Table 6.1. Results on programming efficiency.

Code Code Transmission
lines size (KB) Overhead

GenericApp 565 111 1

AME GA Mapped 1261 118 2.30

HomeAutomation 720 99+100 1

AME HA Mapped 1590 123+105 1.02

Table 6.2. Results on mapping efficiency.

code lines. The second column reports the number of significant calls to services
provided by the underlying middleware: for the AME-based applications we con-
sidered lookup(), registerobj() and remote method invocations (e.g., OnOffCB)
while for the original Z-stack applications we considered the invocations to Z-Stack
API. Results show that source code is more compact and simple in case of Sys-
temC applications because of its higher expressiveness with respect to C language.
Clearly, this result would be meaningless without the possibility to translate Sys-
temC code into native C code.

We assessed mapping efficiency by translating AME-based applications into C-
language applications for the Texas Instruments’ platform. AME GA Mapped has
been generated from AME GenericApp; AME HA Mapped has been generated
from AME HomeAutomation. Automatically-generated applications have been
compared with the original Texas Instruments’ examples and results are shown
in Table 6.2. Considered metrics are the number of source code lines (first col-
umn), binary code size (second column), and transmission overhead with respect
to the original Z-stack applications (third column). For the light-control exam-
ple, binary code size has been reported for both light and switch components,
respectively.

Binary code size is an important metric since sensor nodes usually have limited
memory resources. Results show that the translation always increases the number
of code lines and the binary code size but the limit of 128 KB is still satisfied.

Transmission overhead reveals the impact of translation on wireless commu-
nications. There is a significant difference of the transmission overhead between
non-profile-enabled (2.30) and profile-enabled (1.02) applications. Without using
Profiles, the emulation of the object-oriented programming paradigm requires more
data transfers while profile-based applications already use part of these data trans-
fers. In fact, the AME HA Mapped application increases the transmission overhead
only for the use of the lookup() and registerobj() functions.
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6.2 Mapping onto TeenyLime MW

TeenyLime is a middleware simplifying the development of WSN applications,
and encompassing the peculiarities of sense-and-react scenarios. The foundation
for TeenyLime is the notion of tuple space, a repository of elementary sequences of
typed fields, called tuples. This notion is revisited in an original way by TeenyLime
by considering the WSN requirements of dynamicity, resource consumption, and
reliability in the programming model, and by satisfying them concretely through
an efficient middleware implementation.

TeenyLime is written in nesC on top of TinyOS O.S.. nesC is an extension to
the C programming language designed to embody the structuring concepts and
execution model of TinyOS. TinyOS is an event-driven operating system designed
for sensor network nodes that have very limited resources. A dedicated nesC in-
terface (illustrated in Figure 6.9) is used (in the TinyOS sense) by the application
to access the transiently shared tuple space composed of the local tuple space and
that of the one-hop neighbors. Each nesC command requires a target, a specifi-
cation of the tuple space repositories in the federation over which the operation
should execute.

interface TupleSpace {

// Standard operations

command   TLOpId_t out(bool reliable, TLTarget_t t, tuple *t);

command   TLOpId_t rd(bool reliable, TLTarget_t t, tuple *templ);

command   TLOpId_t in(bool reliable, TLTarget_t t, tuple *templ);

// Reliable group operations

command   TLOpId_t rdg(bool reliable,TLTarget_t t, tuple *templ);

command   TLOpId_t ing(bool reliable, TLTarget_t t, tuple *templ);

// Managing reactions

command   TLOpId_t addReaction(bool reliable, TLTarget_t t, tuple *templ);

command   TLOpId_t removeReaction(TLOpId_t operationId);

// Request to reify a capability tuple

event   result_t reifyCapabilityTuple(tuple* ct);

// Returning tuples

event   result_t tupleReady(TLOpId_t operationId, tuple *t, uint8_t n);

}

Fig. 6.9. TeenyLIME API.

The APIs out(), rd(), in() shown in Figure 6.9 representing the APIs
write(), read(), take() typically provided by the Tuplespace programming
paradigm as described in Section 3.2.2.

6.2.1 TeenyLime application

Figure 6.10 shows the template of a typical TeenyLime application implemented
by using the following interfaces:
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• Tuplespace has been described in Section 6.2; it allows to access TeenyLime’s
shared tuple space.

• TeenyLIMESystem provides the middleware with a neighbor tuple for the local
host.

• Timer interface is used to trigger a periodic operation (e.g., reading values from
a sensor or to implement a general operation).

includes TupleSpace;

module Template_Application {

uses {

interface TupleSpace;

interface TeenyLIMESystem;

interface Timer;

...

}

provides interface StdControl;

}

implementation {implementation {

command result_t StdControl.start() {

return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);

}

event result_t StdControl.fired() {

return call StdControl.run();

}

command result_t StdControl.run() {

...

}

} 

Fig. 6.10. Template of a typical TeenyLIME application.

The actual processing in the Template Application module is fairly simple,
as illustrated in the following fragment of code. start() command executes the
start() command provided by the Timer interface in order to specify the type of
timer (REPEAT or ONE SHOT) and the interval at which the timer will expire.
Moreover the Template Application module receives fired() event when the
timer has expired and executes the run command (to create a tuple describing an
information, to write it in the tuplespace by means of the out command, and so
on).

6.2.2 Methodology

The Mapping process onto TeenyLime MW assumes that the programming paradigm
remains the same in the transfer from abstract middleware (AME) to actual mid-
dleware; therefore this mapping is easier with respect to the mapping onto ZigBee
described in Section 6.1.4, where calls to AME have to be replaced with direct
calls to system SW (e.g., z-stack).

AME applications are written in SystemC (i.e., C++), while TeenyLime ap-
plications are written in nesC language. Therefore, the mapping process shown in
Figure 6.11 consists of three key concepts in order to convert SystemC to nesC
language:
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1. During the first phase, the AME application is automatically translated into
an intermediate format.

2. In the second step, the intermediate representation is manipulated to iden-
tify calls to Tuplespace services (write(), read(), take()) which must be
translated with the corresponding TeenyLime APIs (out(), rd(), in()).

3. Finally, the intermediate representation is automatically converted into a nesC
template application reported in Figure 6.10 which can be compiled and down-
loaded on the target platform.

implementation {
command result_t StdControl.start() {

return call SensingTimer.start (...);
}
event result_t StdControl.fired() {

return call StdControl.run();
}
command result_t StdControl.run() {

}
} 

AME Application (SystemC) 
AME2TeenyLime 

Intermediate 
Application (HIF)����

Final Application
(TeenyLime compliant (nesC))����

module::run () {
…
write

SC_MODULE(module) {
sc_port mw_port;
void run();

SC_CTOR(module) {
SC_THREAD(run);

};
};

…
OUT
…
READ 
…
IN
…

method1(par1, …, parN) {
…

}
method2(par1, …, parN) {

…
}

method1(par1, …, parN) {
…

}
method2(par1, …, parN) {

…
}

write
…
read 
…
take
…

}

method1(par1, …, parN) {
…

}
method2(par1, …, parN) {

…
}

includes TupleSpace;
module Template_Application {

uses {
interface TupleSpace;
interface TeenyLIMESystem;
interface Timer;

}
provides interface StdControl;

}

Fig. 6.11. AME to TeenyLIME mapping process.

The conversion is performed with the support of automatic tool implemented
by using HIF-Suite.
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Application to a heterogenous NES

The Middleware-centric desing methodology described in this work has been used
to model a real NES, called Angel platform [82].

The Angel platform includes WSN to constitute the infrastructure needed to
create a set of new services for life and health of the citizen. The architecture
considered in the Angel platform consists of three main actors, i.e., the wireless
ad-hoc network, the gateway and the remote agents. The ad-hoc wireless network
consisting of nodes with different capabilities ranging from simple transmission
nodes to full wireless sensor nodes; they communicate using short-range radio links.
The ad-hoc wireless network accesses traditional communication networks through
a dedicated node called Gateway. This node is responsible for configuring and
querying the WSN, gathering data, processing them in collaboration with remote
service centres and providing services to users. The Gateway can be embedded
into mobile handsets or residential network appliances.

The gateway is used for the interconnection of a wireless sensor network with
remote agents through a geographical network, to collect, aggregate and eventually
pre-process data received by the WSN. It is also responsible for keeping personal
information (in case of a mobile phone) and exact space position (in case of a
fixed gateway). Personal information are used for service authentication and for
user-driven services (e.g., to recover a personal profile or health disease). The exact
space position can be used to locate sensor nodes.

Remote agents can be either collector of information or data/service providers.
They are responsible for all those aspects of the distributed application which
cannot be implemented on the wireless sensor nodes or on the gateway (e.g., large
databases, computational intensive elaboration, need for human supervision). An
example of remote agent is the remote destination of an alarm sent by the gateway
after the wireless sensor network has detected a particular event. The Service
Centre is also used to remotely configure and monitor the wireless sensor network,
through the gateway.

The Middleware-centric design flow consists of several stages of increasing re-
finement level which produce different co-simulation Views.

Figure 7.1 shows View 1 of the proposed modelling flow for the whole Angel
platform. The Gateway, the Remote Service and Sensor Nodes are modelled by
SystemC to simplify the re-using of actual software; the whole Angel application
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App AppApp
App

App

SystemC

Abstract Middleware Environment (AME_3)

Sensor nodes Gateway Remote Service

Fig. 7.1. View 1 of the modelling flow: the whole application is a set of interacting
object-oriented modules.

is developed as a single distributed application in which communications between
nodes are simulated through SystemC primitives; a possible approach could consist
in creating a module for each network node, i.e., WSN nodes, the Gateway and the
Remote Service. the application components on the different nodes communicate
each other through an interoperable set of protocols provided by an underlying
software layer named middleware; for example, in a temperature-monitoring ap-
plication the piece of code which requests temperature samples, averages them
and tests for dangerous conditions belongs to the Application while services to
send queries and alarms belong to the middleware. To reflect this approach in
the modelling flow, each node is partitioned into Application code and Abstract
middleware; the former is the model of the actual application and it accesses lower
services through the middleware API. The Abstract Middleware is similar to the
middleware actually present on the final nodes in the fact that they provide the
same API to the application; in this way, the models of the application compo-
nents can be seamlessly ported to the actual platform; in other words, application
developer can write modules and simulate them concurrently with the design of
the actual HW/SW platform provided that application API has been previously
defined. The Abstract Middleware is different from the actual middleware in the
fact that it also reproduces the behaviour of HW and SW components of the actual
platform. View 1 uses the Abstract Middleware Environment Level 3 (AME 3) in
which communications are implemented through SystemC primitives.

Different types of middleware can be used; AME provides four programming
paradigms: object-oriented, message-oriented, database and tuplespace. To sim-
plify application development and the mapping of Abstract Middleware onto Ac-
tual Middleware we decided to use an object-oriented paradigm in the Abstract
Middleware Environment; in fact several modern distributed applications consist
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of distributed objects connected together by middleware such as CORBA, Web
Services and Java RMI. Also, ZigBee applications follow a kind of object-oriented
paradigm. For these reasons, in View 1 the application is designed as a set of
classes interacting together.

GW App
App

Sensor App

Co-simulation environment: SystemC only

Service
Centre
Stub

socket interface

Abstract Middleware 
Environment (AME_3)

Level 3 + SOAP support

Simulated
Smart nodes

Simulated
Gateway

Actual 
Service
Terminal

GW App
App

Sensor App

Service
Centre
Stub

socket interface

Abstract Middleware 
Environment (AME_3)

Level 3 + SOAP support

Fig. 7.2. View 2 of the modelling workflow: the Service Centre Stub allows the inter-
action with the actual Remote Service.

An important extension of View 1 is represented by the View 2 depicted in
Figure 7.2. In this View the model of the application running on the Remote Service
has been replaced by its actual implementation executed by a stand-alone server.
Actual communications supported by the actual Remote Service application are
re-directed to the SystemC simulator through the Service Centre Stub. This View
can be used when the development of the Remote Service is almost completed
and its complexity (e.g., the presence of a database server or of a web server)
cannot be efficiently supported by SystemC; furthermore, this View can also be
used to validate the Remote Service and to evaluate its impact on the Gateway.
As depicted in the Figure, different instances of the pair WSN/Gateway can be
created to reproduce complex scenarios.

In this View the Abstract Middleware is partially extended to be compliant
with the middleware running on the Remote Service; specifically, the chosen object-
oriented middleware is Web Services with the SOAP protocol [16].

The Service Centre Stub provides a standard BSD Socket API which is used
by the abstract middleware of the Gateway to implement SOAP services.

Figure 7.2 also reports a minimal architecture of the Actual Service Terminal
which consists of a standard PC executing a Java application and interacting with
the Gateway through Web Services

Figure 7.3 shows the third View. Also in this case SystemC is the only mod-
elling tool. The Abstract Middleware Environment Level 3 (AME 3) has been
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Fig. 7.3. View 3 of the modelling flow: WSN is modelled at packet level.

replaced with AME Level 2 (AME 2) in which communications are modelled in
a more realistic way by a SystemC Network Simulation Library which reproduces
packet transfers. This View allows evaluating the effect of design choices on com-
munication performance (e.g., latency and throughput). It is worth noting that
the interface between Application and Middleware remains unchanged with re-
spect to the previous View; furthermore, since AME 2 will be used also in the
following views the application code will not change in the all modelling flow. Ap-
plication code and abstract middleware are pure software components and even
though they are described by SystemC, there is no timing information inside them.
Instead, the SystemC Network Simulation Library reproduces network behaviour
with timing information (e.g., about propagation delay). To allow the interaction
between un-timed and timed components an additional module named SCNSL-
AME-Transactor (described in Section 4.2.3) is required as shown in Figure 7.2.

In View 4 (Figure 7.4) the approach of View 3 is extended also to the ge-
ographical network. Even though data to/from the Remote Service refer to its
actual implementation, network performance can be evaluated through the Sys-
temC Network Simulation Library. In this View other two transactors are required
to interface the middleware and the Service Centre Stub to the SystemC Network
Simulation Library.

In View 5 (Figure 7.5) the model of the Gateway is refined with a cycle-accurate
emulation of the application software, the actual middleware and the operating sys-
tem. The use of a CPU emulator increases the simulation accuracy for the software
and it allows assessing the computation time, memory requirements, and power
consumption as a function of SW complexity. We use a modified version QEmu [81]
which is an open source emulation software to execute applications and operating
system on a host platform; the advantage of QEmu is that the Gateway operat-
ing system can be fully emulated since most of the required HW components are
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Fig. 7.4. View 4 of the modelling flow: both the WSN and the traditional network are
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Fig. 7.5. View 5 of the modelling flow: cycle-accurate emulation of the Gateway.

mapped onto the host; for what concerns specific HW components, we modified
QEmu, as described in Section 4.1.6, to interact with SystemC models. On the
actual Gateway the ZigBee stack is executed by a different CPU which commu-
nicates with the main CPU through a serial channel; we decided to model the
functionalities of this slave CPU through a SystemC component; for this reason, a
new SystemC module has been added to implement a Serial Adapter to interface
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the serial interface provided by QEmu and the 802.15.4 module to interface with
the WSN.
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Fig. 7.6. View 6 of the modelling flow: cycle-accurate simulation of the Sensor Node
and of the Gateway.

Figure 7.5 represents View 6 in which the model of the sensor node has been re-
fined assuming that it is based on the Texas Instruments CC2430 System-on-Chip;
we have introduced an instruction set simulator (ISS), named CSim, which exe-
cutes the application software, the Aquisgrain OS, and the ZigBee stack contained
in the official Aquisgrain software distribution. The ISS has been modified as de-
scribed in Section 4.1.5, to interact with SystemC models representing the network
interface (802.15.4 RF-module) and other HW components (i.e., the Aquisgrain
accelerometer). The ISS version able to interact with SystemC is called uCsim4hsn.
An instance of uCsim4hsn is also used to model the ZigBee interface of the Gate-
way; in this case a SystemC model of the Aquisgrain serial interface is used to link
the Gateway CPU with the ZigBee slave CPU.
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Conclusion

This thesis presented a middleware-centric design methodology for modelling and
simulating of complex distributed applications based on a network of heterogeneous
networked embedded systems. Based on the assumption that the presence of a
middleware software simplifies the design of distributed applications, an Abstract
Middleware Environment has been developed, named AME, providing services
belonging to the common programming paradigms: tuplespace, publish-subscribe
(MOM), object-oriented (OOM) and database. AME has been developed by using
the SystemC system language.

The designer can thus rapidly develop a model of the application accordingly
to the preferred paradigm. A proxy-based mechanism has been proposed to al-
low the designer to smoothly move across different programming paradigms in
order to validate and simulate the NES applications. The translation methodology
has been presented in order to implement this feature. It allows to automatically
change the programming paradigm without re-writing the application code. This
methodology can be used to de-couple the choice of the programming paradigm in
the development phase from the use of a specific actual middleware; in fact, the
choice of the programming paradigm during the development phase depends on
the application designer skills and on the type/nature of the application; in the
other hand, during the implementation phase, the choice depends on the acutal
platfrom chosen for the deployment.

Moreover, during the NES application modelling and simulation the model of
the platform below the application can be detailed through three design steps: at
the highest level (called AME 3) modules communicate through abstract point-to-
point primitives; at the next level (called AME 2) System/Network partitioning is
applied to the model; modules are mapped onto network nodes and communica-
tions between nodes are provided by AME 2 services through a network simulator.
at the final level (called AME 1) HW/SW partitioning is applied to each node to
map functionalities to HW and SW components.

The simulation of a networked embedded systems mixing sensors, gateway ans
service centers has shown the effectiveness of the proposed solution. Experimental
results show that the efficiency of the programming paradigm is preserved across
translation and therefore it can be evaluated during development as part of the
design-space exploration.
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Finally, after application development and design-space exploration, applica-
tion code can be deployed over the actual NES by mapping AME calls to actual
middleware calls. Two reference examples have been presented: the description of
the automatic mapping of AME applications over a target NES platform running
Z-Stack middleware (ZigBee) and the Mapping process onto a Tuplespace pro-
gramming paradigm (named TeenyLime). In the first case, experimental results
shown that this approach significantly simplifies the coding process: the resulting
applications have also been compared with native and functionally equivalent im-
plementations. The increase of binary code size is small (about 4%) since AME
services are translated into services already provided by the ZigBee library, and
even the transmission overhead is negligible whenever the mechanism of ZigBee
Profiles can be exploited.

Concerning the future works, an aspect that should be investigated concerns
the possibility to extend the programming paradigms supported by the Abstract
Middleware Environment (e.g., component-based middleware). Moreover, from the
practical point of view, it could be interesting to support several network simula-
tors during the refinement process; therefore, it’s necessary to extend the AME-
transactor feature in order to be able to involve other network simulators. Finally, a
mapping solution for each programming solution could be investigated; nowadays,
ZigBee and TeenyLime are supported.
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