
A proof system for Abstract Non-Interference

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica - Università di Verona

(roberto.giacobazzi|isabella.mastroeni)@univr.it

August 5, 2009

Abstract

In this paper, we provide an inductive proof system for a notion of ab-
stract non-interference which fits in every field of computer science where
we are interested in observing how different programs data interfere with
each other. The idea is to abstract from language-based security and con-
sider generically data as distinguished between internal (that has to be
protected by the program) and observable. In this more general context
we derive a proof system which allows us to characterise abstract non-
interference properties inductively on the syntactic structure of programs.
We finally show how this framework can be instantiated to language-based
security.

Keywords: Abstract interpretation, abstract domains, non-interference,
closure operators, semantics, static program analysis, logic of programs, verifi-
cation.

1 Introduction

Information-flow analysis is a fundamental kind of analysis in several fields of
computer science. It is essential in code debugging, program analysis, program
transformation, and software verification. To understand how information flows
in programs means to model the properties of control and data that are trans-
formed dynamically at run-time. Program slicing needs information-flow analy-
sis for understanding which parts of the code are independent; code debugging
and testing need models of information-flow for understanding error propaga-
tion, language-based security needs information-flow analysis for analysing how
confidential data flows due to erroneous or malicious attacks while data are
processed by programs. Information-flow analyses are based on the characteri-
sations of the degree of independence between program objects, such as program
variables and statements. This is the basic feature of the notion of dependency
introduced by Cohen [5] and then called non-interference and extended in the
context of language-based security by Goguen and Meseguer [17]. Language-
based security, characterising security policies and models, provides, in this

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217497062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

perspective, an important application field for transposing notions, developed
for security models, to information-flow software analysis and applications. The
standard way to protect confidential data in security is access control : Higher
privileges are required in order to access files containing confidential data. It
is well known that access control checks do not put constraints on how the in-
formation is propagated. Once information is released from its container, the
accessing program may, either by mistake or on purpose, improperly transmits
the information in some form. In this case, in order to ensure that information
can be used only according to specific security rules, also known as information-
flow policies, it is necessary to analyze how information flows in program’s
semantics. Clearly, when computations on public data are non-interfering with
those on private resources, no leakage of confidential information is possible
by observing public input/output behavior. This principle is a common pat-
tern for specifying security polices in language-based security [23]. Most meth-
ods and techniques for checking secure information flows in software, ranging
from standard data-flow/control-flow analysis techniques to type inference, are
based on non-interference. All of these approaches are devoted to prove that
a system as a whole, or parts of it, does not allow confidential data to flow
towards public variables. Type-based approaches are designed in such a way
that well-typed programs do not leak secrets. In a security-typed language, a
type is inductively associated at compile-time with program statements in such
a way that any statement showing a potential flow disclosing secrets is rejected
[25, 27, 29]. Similarly, data-flow/control-flow analysis techniques are devoted
to statically discover flows of secret data into public variables [4, 18, 19, 24].
Non-interference is a standard approach to confidentiality problems, and it is
based on a characterization of the attacker that does not impose any observa-
tional or complexity restriction on the attackers’ power. This means that, in
this model, the attackers have full power , namely they are modeled without any
limitation in their quest to obtain confidential information. For this reason non-
interference, as defined in the literature, is an extremely restrictive policy. The
problem of refining this kind of security policies has been addressed by many
authors as a major challenge in language-based information-flow security [23].
Refining security policies means weakening standard non-interference checks, in
such a way that these restrictions can be used in practice or can reveal more
information about how information flows in programs.

In the literature, we can find mainly two different approaches for weakening
non-interference: By constraining the power of the attacker (from the obser-
vational or the computational point of view), or by allowing some confidential
information to flow (the so called declassification). There are several works deal-
ing with both these approaches, but to the best of our knowledge, only one of
these can characterize, at the same time, both the power of the attacker’s model
and the private information that can flow: abstract non-interference [12, 15].
Such a model allows us to understand the intuitive relation existing between the
attacker’s model and the information released: The more powerful the attacker
is, the less information can be kept private [14, 16]. Abstract non-interference
captures a weaker form of non-interference, where non-interference is made para-

2

metric relatively to some abstract property of input/output behaviour. Con-
sider the following program written in a simple imperative language, where the
while-statement iterates until x1 is 0. Suppose x1 is a confidential variable and
x2 is a public variable:

while x1 > 0 do x2 := x2 + 2; x1 := x1 − 1 endw

In standard non-interference there is an implicit flow from x1 to x2, due to the
while-statement, since x2 changes depending on the initial value of x1. This rep-
resents the case where no restriction is considered on the power of the attacker.
However, suppose that the attacker can observe only the parity of public integer
variables (x2). It is clear that this property cannot be changed by the execution
of the program. This means that there’s no information-flow from private to
public if the attacker can only observe parity. Abstract non-interference general-
izes this idea to arbitrary abstractions of programming language semantics and
to arbitrary contexts, where the non-interference analysis is fundamental. This
provides both a characterization of the degree of dependency between different
components of a program, relatively to what an observer can analyze about its
input/output information flow, and the possibility to certify code relatively to
some weaker form of non-interference.

This problem has been attacked first by Cohen [6]. In his definition of
selective dependency, he considers more general situations, where only a portion
of private information affects the observable data; as it happens in the following
example:

l := |l| ∗ Sign(h)

where |l| is the absolute value of the public variable l, while Sign(h) is the sign
of the private variable h. In this case only the sign of h has effect on the value
of l. Hence, if we do not have any restriction on the observational power of the
attacker, then we can conclude that only the sign of the private input can be
detected, since it is the only portion of private data that flows in the public
output. Moreover, if the attacker can only observe the absolute value of public
data, then this assignment is secure. These considerations suggested a notion of
non-interference where it is also possible to characterize which portion of confi-
dential data interferes with the observable output. This requires a considerable
extension of Cohen’s original approach by selective dependencies. For instance
the two characterizations above are combined in such a way that the program
fragment

l := l ∗ h2

can be certified as secure if the attacker can only observe the parity of the
public variable l and if we are interested only in keeping private the sign of
the private variable h. In this expression, it is the semantics of the program
that creates a implicit semantic firewall between public and private variables
that protects the sign of h. Therefore, in the more general context, given the
observer’s model, abstract non-interference allows us to characterise, not only
if there is an information-flow, but also what is flowing, when it turns out that
the program violates non-interference.

3

The problem. Abstract non-interference is based on the general idea that
data are distinguished into two classes: what is observable (public in the security
context) and what has to remain internal to the program (private in security).
This classification is parametric on the model of an observer, which is an ab-
stract interpretation of the program semantics. A program satisfies the abstract
non-interference condition relatively to some given abstraction (observer) if the
abstraction obfuscates any possible interference between internal and observable
data. In [12, 15] the authors introduce a step-by-step weakening of Goguen and
Meseguer’s non-interference by specifying abstract non-interference as a prop-
erty of the program semantics. The idea of modeling observers as abstract do-
mains provides advanced methods for deriving these observers by systematically
transforming the corresponding abstract domains. An algebraic characteriza-
tion of the most precise harmless observer, i.e., the most precise abstraction
for which the program satisfies the abstract non-interference property, is given
as a fixpoint domain construction. This abstraction, as well as any abstrac-
tion for which the program satisfies abstract non-interference, is both a model
of an harmless observer and a certificate for the non-interference degree of the
program. The problem we want to investigate is how it is possible to compose
abstract non-interference certificates. We would like to make this composition
systematic, and therefore we aim to characterise a proof system, inductive on
the syntactic structure of programs. This proof system allows the direct deriva-
tion of abstract non-interference certificates only for elementary statements and
then to obtain more complex certificates by using the rules of the proof system.
In this way, we can think of using abstract non-interference in automatic pro-
gram certification mechanisms, such as in proof-carrying code architectures [21]
and in type-based verification algorithms.
The logical approach to secure information flow is not new. In [10] dynamic
logic is used for characterizing secure information flows, deriving a theorem
prover for checking programs. In [1] an axiomatic approach for checking secure
information flows is provided. In particular the authors syntactically derive the
secure information flows that may happen during the execution. Both these
works don’t characterize the power of the attacker.

Main contribution and structure of the paper. The aim of this paper is
to provide a compositional proof system for certifying abstract non-interference
in programming languages. In this way we can prove, inductively on the syn-
tactic structure of programs, properties of abstract non-interference relatively
to some given abstraction of its input/output. Abstractions are specified in the
standard abstract interpretation [8] framework. The proof systems is based on
the derivation of abstract non-interference assertions, which specify the non-
interference degree of a program relatively to a given model of attacker and the
proof system specifies how these assertions can be composed in a syntax-directed
a la Hoare deduction of abstract non-interference.
The paper is structured as follows. In Sect. 2, we provide the necessary formal
background in abstract interpretation and in program semantics, explaining the

4

notation that will be used along the paper. In Sect. 3, we recall the recent
generalisation [15] of abstract non-interference, which extends the notion intro-
duced in language-based security [12] to any field of computer science where we
are interested in understanding the degree of interference between two different
groups of data. Sect. 4, is the core of the paper, here we describe the proof
system. In particular, by means of some examples, we explain the restrictions
that we have to consider for abstract non-interference in order to being able to
characterise a proof system inductive on the syntactic structure of simple imper-
ative programs. This section is split in several parts. In Sect 4.1 we introduce
a system for the derivation of assertions about invariant properties. A property
is invariant if it is left unchanged by the execution of a program. This kind
of properties are important for the characterisation of abstract non-interference
properties when dealing with loops. In Sect. 4.2, we describe a sound proof
system for abstract non-interference in the most general context possible, while
in Sect.4.3, we show how we can make the system complete, losing in this case,
the effectiveness of the system. Finally, in Sect. 4.4, we show how we can extend
the system to non-deterministic paradigms.
In Sect. 5, we instantiate the proof system for abstract non-interference to the
particular context of language-based security. This specialisation allows us also
to understand why it is not possible to generate a similar system for abstract
non-interference where we allow some confidential information to flow, i.e., de-
classified [12, 20, 3].

This is an extended and revised version of [13].

2 Preliminaries

2.1 Basic notions

Sets are usually denoted with capital letters. If S and T are sets, then ℘(S)
denotes the powerset of S, SrT denotes the set-difference between S and T ,
S ⊂ T denotes strict inclusion, and for a function f : S → T and X ⊆ S,
f(X)

def

= {f(x) | x ∈ X}. We will often denote f({x}) as f(x). By g ◦ f we denote
the composition of the functions f and g, i.e., g ◦ f

def

= λx.g(f(x)). id
def

= λx. x.
〈P,≤〉 denotes a poset P with ordering relation ≤, while 〈P,≤,∨,∧,⊤,⊥〉 de-
notes a complete lattice P , with ordering ≤, lub ∨, glb ∧, greatest element (top)
⊤, and least element (bottom) ⊥. S−→T denotes the set of all functions from
S to T . We use the symbol ⊑ to denote point-wise ordering between functions:
If S is any set, P a poset, and f, g : S → P then f ⊑ g if for all x ∈ S,
f(x) ≤P g(x). Let C and A be complete lattices, then, C m−→A and C c−→A,
denote, respectively, the set of all monotone and (Scott-)continuous functions
from C to A. Recall that f ∈ C c−→A iff f preserves lub’s of (nonempty) chains
iff f preserves lub’s of directed subsets, and f : C → A is (completely) additive
if f preserves lub’s of all subsets of C (empty set included).

5

2.2 Abstract interpretation basics

In the following of this paper we will use the standard framework of abstract
interpretation [8, 9] for modelling the semantic observations of program se-
mantics. The idea is that, instead of observing the concrete semantics of pro-
grams, namely the concrete values of observable data, the analysers can only
observe properties of these data, namely abstract semantics of the program. In
other words, abstract interpretation is used for reasoning on properties rather
than reasoning on data values. For example, instead of computing on integers
we might compute on more abstract properties, such as the sign {0+, 0−, 0}
or parity {ev, od}. Consider the program sum(x, y) = x + y, then it is ab-
stractly interpreted as sum

∗: sum
∗(0+, 0+) = 0+, sum

∗(0−, 0−) = 0−, but
sum

∗(0+, 0−) = “I don’t know” since we are not able to determine the sign of
the sum of a negative number with a positive one (modelled by the fact that
the result can be any value). Analogously, sum∗(ev, ev) = ev, sum∗(od, od) = ev

and sum
∗(ev, od) = od.

Abstract interpretation is highly developed theory where abstract domains can
be equivalently formulated either in terms of Galois connections or closure op-
erators [9]. More formally, given a concrete domain C we choose to describe
abstractions of C as upper closure operators.

Definition 2.1 An upper closure operator (uco for short) ρ : C → C on a
poset C is monotone, idempotent, and extensive: ∀x ∈ C. x ≤C ρ(x).

The upper closure operator is the function that maps the concrete values with
their abstract properties, namely with the best possible approximation of the
concrete value in the abstract domain. For example, the operator used in
the introduction Sign : ℘(Z) → ℘(Z), on the powerset of integers, associates
each set of integers with its sign: Sign(∅) =“none”, Sign(S) = 0+ if ∀n ∈
S. x ≥ 0, Sign(0) = 0, Sign(S) = 0− if ∀n ∈ S. n ≤ 0 and Sign(S) =
“I don’t know” otherwise. The used property names “none”, 0+,0,0− and “I
don’t know” are the names of the following sets in ℘(Z): ∅,

{

n ∈ Z
∣

∣ n ≥ 0
}

,

{0},
{

n ∈ Z
∣

∣ n ≤ 0
}

and Z.
Analogously, the operator Par : ℘(Z) → ℘(Z) associates each set of integers
with its parity, Par(∅) = “none” = ∅, Par(S) = ev =

{

n ∈ Z
∣

∣ n is even
}

if

∀n ∈ S. n is even, Par(S) = od =
{

n ∈ Z
∣

∣ n is odd
}

if ∀n ∈ S. n is odd and
Par(S) = “I don’t know” = Z otherwise. Namely the abstract elements, in gen-
eral, correspond to the set of values with the property they represent. Formally,
closure operators ρ are uniquely determined by the set of their fix-points ρ(C)
and in the following we will often use this representation. Hence, we can de-
scribe the two domains Sign and Par simply by providing the set of fix-points of
the corresponding closures: Sign = {Z, 0+, 0, 0−, ∅} and Par = {Z, ev, od, ∅}.
In Fig. 1 we have a graphical representation of the sublattices of ℘(Z) corre-
sponding to the abstract domains Sign and Par.

For upper closures, X ⊆ C is the set of fix-points of ρ ∈ uco(C) iff X
is a Moore-family of C, i.e., X = M(X)

def

= {∧S | S ⊆ X} — where ∧∅ =

6

•

•

• •

•

LLLLLL
rrrrrr

rrrrrr

LLLLLL

0

∅

0− 0+

Z

•

• •

•

::::::::

��������

rrrrrr

LLLLLL

∅

od ev

Z

Figure 1: The Sign and Par domains.

⊤ ∈ M(X). The set of all upper closure operators on C, denoted uco(C),
is isomorphic to the so called lattice of abstract interpretations of C [9]. If
〈C,≤C ,∧C ,∨C ,⊤,⊥〉 is a complete lattice then uco(C) ordered point-wise is
also a complete lattice, 〈uco(C),⊑,⊔,⊓, T, id〉 where for every ρ, η ∈ uco(C),
{ρi}i∈I ⊆ uco(C) and x ∈ C: ρ ⊑ η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
(⊓i∈Iρi)(x) = ∧i∈Iρi(x); and (⊔i∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x, and
T = λx. ⊤ is the closure mapping all concrete elements to the lattice top while
id is the identity closure mapping each elements to itself. The disjunctive com-
pletion of an abstract domain ρ ∈ uco(C) is the most abstract domain able to
represent the concrete disjunction of its objects:

b
(ρ) =

⊔

{η ∈ uco(C)|η ⊑
ρ and η is additive}. ρ is disjunctive iff

b
(ρ) = ρ (cf. [9]). Closure operators

and partitions are related concepts. If π is a partition (viz. an equivalence rela-
tion), then [·]π is the corresponding equivalence class. A closure η ∈ uco(℘(S))
induces a partition on S:

{

[x]η
∣

∣ x ∈ S
}

, where [x]η
def

=
{

y
∣

∣ η(x) = η(y)
}

.
The most concrete closure that induces the same partition of values as η is
Π(η)

def

=
b({

[x]η
∣

∣ x ∈ S
})

. η is partitioning if η = Π(η) [22]. The idea
is that Π(η) is the most concrete closure such that for any y ∈ Π(η(x)):
Π(η(x)) = Π(η(y)), while in general η(y) ⊆ η(x).

2.3 The imperative language

In this section, we introduce the syntax of a simple programming language, Imp
[28], which is a small language of while programs.

Syntax: The deterministic fragment. First of all, we list the syntactic
sets associated with Imp: Values V; Truth values B = {true, false}; Variables
Var ; Arithmetic expression Aexp; Boolean expression Bexp; Commands Com.
We assume that the syntactic structure of numbers is given. We will use the
following convention: m, n range over values V; x, y range over variables Var ;
a ranges over arithmetic expression Aexp; b ranges over boolean expression
Bexp; c ranges over commands Com. We describe the arithmetic and boolean
expressions in Aexp Bexp as follows:

a ::= n | x | a0 + a1 | a0 − a1 | a0 · a1

b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

7

Finally, for commands we have the following abstract syntax:

c ::= skip | x := a | c0; c1 | while b do c endw | if b then c0 else c1

Note that

if b then c0 else c1 ≡ while b do c0; b := false endw;
while ¬b do c1; b := true endw

Therefore, in the following we will consider the language Imp, omitting the
control statement if.

Semantics. As usual the set of values V can be structured as a flat domain
with additional bottom element ⊥, denoting the value of not initialized variables.
In the following, we will denote by Var(P) the set of variables of the program
P ∈ Imp. We consider the well-known (small-step) operational semantics of
Imp, −→ , in Table 1 [28]. Here JeK(s) = n denotes that standard evaluation
of the arithmetic expression e, in the state s, is the value n ∈ V and [n 7→ x]
denotes that the value n is substituted to each occurrence of the variable x.
The operational semantics naturally induces a transition relation on a set of
states Σ, denoted →, specifying the relation between a state and its possible
successors. 〈Σ,→〉 is a transition system. In this transition system, states are
representations of the memory, i.e., associations between variables and values.
For this reason, in the following we will denote states as tuples of values, the
values associated with the variables by the given state. Therefore, if |Var(P)| =
n, then Σ is the set of all n-tuples of values, i.e., Σ = Vn. We abuse notation by
denoting with ⊥ the state where all variables are undefined. Note that, in the
rules provided in Table 1 we have transitions between configurations, i.e., pairs
〈code, state〉. In the following by JP K we will denote the denotational semantics
of the program P .

We follow Cousot’s construction [7], by defining semantics, at different levels
of abstractions, as the abstract interpretation of the maximal trace semantics of
a transition system associated with each well-formed program. In the following,
Σ+ and Σω def

= N−→Σ denote respectively the set of finite nonempty and infinite
sequences of symbols in Σ. Given a sequence σ ∈ Σ∞ def

= Σ+ ∪ Σω, its length is
denoted |σ| ∈ N ∪ {ω} and its i-th element is denoted σi. A non-empty finite
(infinite) trace σ ∈ Σ∞ is a finite (infinite) sequence of program states where
two consecutive elements are in the transition relation →, i.e., for all i < |σ|:
σi → σi+1. For each σ ∈ Σ∞ σ⊢ denotes initial state of σ, and for each σ ∈ Σ+

σ⊣ denotes its final state. The maximal trace semantics [7] of a transition
system associated with a program P is 〈|P |〉

def

= 〈|P |〉+ ∪ 〈|P |〉ω , where Σ⊣ ⊆ Σ
is a set of final/blocking states and Σ⊢ denotes the set of initial states for P .
Then 〈|P |〉ω = {σ ∈ Σω| ∀i ∈ N . σi → σi+1}, 〈|P |〉+ = {σ ∈ Σ+ | σ⊣ ∈ Σ⊣, ∀i ∈
[1, |σ|). σi−1 → σi}.
The denotational semantics is obtained by abstracting trace semantics to the
input and output states only, i.e.,

JP K = λσ⊢.

{

σ⊣ if σ ∈ 〈|P |〉+

⊥ if σ ∈ 〈|P |〉ω

8

〈nil, s〉
JeK(s) = n ∈ V

〈x := e, s〉−→〈nil, s[n 7→ x]〉

〈c0, s〉−→〈c′0, s
′〉

〈c0; c1, s〉−→〈c′0; c1, s
′〉

〈c1, s0〉−→〈c′1, s
′
0〉

〈nil; c1, s〉−→〈c′1, s
′
0〉

〈b, s〉−→true, 〈c, s〉−→〈c′, s′〉

〈while b do c endw, s〉−→〈c′; while b do c endw, s′〉

〈b, s〉−→ false

〈while b do c endw, s〉−→〈nil, s〉

Table 1: Operational semantics of Imp

In this case, it is assumed that the output observation of an infinite computation
is the state where all variables are undefined [7].

The non-deterministic fragment. A simple way to introduce some basic
issues in order to obtain non-deterministic languages is to extend the simple
imperative language Imp by an operation of non-deterministic choice. We define
in this way the language Nd-Imp, whose commands are defined in the following
way:

c ::= skip | x := a | c0; c1 | while b do c endw | if b then c0 else c1 | c0 � c1

We have to extend the operational semantics with the rules for the non-deterministic
choice:

〈c0, s〉−→〈c′0, s
′〉

〈c0 � c1, s〉−→〈c′0, s
′〉

〈c1, s〉−→〈c′1, s
′〉

〈c0 � c1, s〉−→〈c′1, s
′〉

We consider now the possibilistic extension of denotational semantics for non-
deterministic systems, and we abuse notation by denoting this semantics by

JP K = λs.
{

σ⊣

∣

∣ σ ∈ 〈|P |〉+, σ⊢ = s
}

∪
{

⊥
∣

∣ ∃σ ∈ 〈|P |〉ω . σ⊢ = s
}

3 Abstract Non-Interference

In this section, we introduce the notion of abstract non-interference [12, 15], i.e.,
a weakening of non-interference given in terms of observers modelled by means
of abstract interpretations of concrete semantics. We will start from standard
notion on non-interference (NI for short), originally introduced in language-
based security [6, 17, 23], and here generalized to any kind of classification of

9

data (intended as program variables), where we are interested in understanding
if a given class of data interferes with another class of data. In other words, we
generalize the public/private data classification in language-based security to a
generic observable/internal classification.
Consider variables distinguished into two classes, internal (denoted ∗) and ob-
servable (denoted ◦). The internal data correspond to those variables that have
not to interfere with the observable ones. It is clear that, this classification is
static, in the sense that it is fixed and cannot change dynamically, but it is not
a property of data involved as in the security context. It simply characterises
the NI policy we have to verify/define.
Both the input and the output variables are partitioned in this way, and the two
partitions need not coincide. Hence, if I denotes the set of input variables and
O denotes the set of output variables, we have four classes of data: I∗ which
are the input internal variables, I◦ which are the input observable variables, O∗

which are the output internal variables, that cannot be observed, and O◦ which
are the output observable variables. Note that the formal distinction between
I and O is used only to underline that there can be different partitions of input
and output, namely I∗ = O∗ need not hold. In general, we have the same set
of variables in input and in output, hence I = O = Var(P).
Informally, non interference can be reformulated by saying that if we fix the
values of variables in I◦ and we let values of variables in I∗ change, we have not
to observe any difference in the values of variables in O◦. Indeed if this hap-
pens it means that I∗ interferes with O◦. We will use the following notation:
I∗

def

= V|I∗|, O∗
def

= V|O∗|, I◦
def

= V|I◦| and O◦
def

= V|O◦|, where |X | denotes the cardi-
nality of the set of variables X . Consider C ∈ {I∗, I◦, O∗, O◦}, in the following,
we abuse notation by denoting v ∈ C the fact that v is a possible tuple of values
for the vector of variables evaluated in C, e.g., v ∈ I∗ is a vector of values for
the variables in I∗. Moreover, if x is a tuple of variables in O (analogous for I)
we denote as x∗ [x◦] the projection of tuple of variables x only on the variables
in O∗ [O◦] (analogous when we consider values instead of variables). In the
following, when a variable is internal [observable] we will also use the notation
x : ∗ [x : ◦]. At this point, we can reformulate standard non-interference, wrt a
fixed partition of variables P

def

= {I◦, I∗,O◦,O∗}:

A program P , satisfies non-interference between ∗ and ◦ if
∀v ∈ I◦, ∀v1, v2 ∈ I∗ . (JP K(v1, v))◦ = (JP K(v2, v))◦

(1)

3.1 Weakening Non-Interference

Consider the program P
def

= x := |x| ∗ Sign(y) (seen in the introduction, where
I∗ = {y} and I◦ = O◦ = {x}), suppose that | · | is the absolute value func-
tion and suppose Sign(y) returns the sign of y, then “only a portion of x is

10

affected, in this case x’s sign. Imagine if an observer could only observe x’s
absolute value and not x’s sign” [6] then we could say that in the program there
is non-interference between ∗ and ◦. Abstract interpretation provides the most
appropriate framework to further develop Cohen’s intuition. The basic idea is
that an observer can analyze only some properties, modeled as abstract inter-
pretations of the concrete program semantics.
In the following, the observer is a pair of abstractions 〈η, ρ〉, with η abstrac-
tion on the whole input (internal and observable), η ∈ uco(℘(I)), ρ abstraction
on the observable output, ρ ∈ uco(℘(O◦)), representing what can be observed
about, respectively, the input and output of a program. The fact that in output
we consider only observable variables while in input we consider all variables, is
intuitively due to the fact that non-interference specifies what can be analyzed
in output, which clearly corresponds to what is observable of the output, while
it says what we can deduce, with our analysis, about the input, and in this case
we can derive information about both the internal (in case of interference) and
the observable input variables.
Consider another abstraction on the whole input set of variables, φ ∈ uco(℘(I)).
It describes a property on the input which represents when, i.e., for which in-
puts, we are interested in testing non-interference properties. We can say that
the idea of abstract non-interference is that a program P satisfies abstract non-
interference relatively to a pair of observations η and ρ, and to a property
φ, denoted [φ ⊢ (η)P (ρ)], if, whenever the input values have the same prop-
erty φ then the best correct approximation of the semantics of P , wrt η in
input and ρ in output, does not change. This captures precisely the intuition
that φ-indistinguishable input values provide η, ρ-indistinguishable results, for
this reason it can still be considered a non-interference policy. The following
definition introduces the notion of abstract non-interference as a generaliza-
tion of the standard one. In the following, we will often consider ρ ∈ uco(I)
(analogous for O) such that ρ abstracts internal and observable variables in
an attribute independent way. Namely, ρ can be split in two independent
abstractions, one for the variables in I∗, denoted ρ∗, and one for the vari-
ables in I◦, denoted ρ◦, and we write ρ = ρ∗ × ρ◦. In general, we can al-
ways consider the projection of ρ on the variables in I◦ (analogous for I∗):
(ρ)◦

def

= λ〈y, x〉 ∈ I∗ × I◦.
{

x′
∣

∣ 〈y′, x′〉 ∈ ρ(y, x)
}

. It is worth noting that, if ρ

is not relational1 then ρ◦ = (ρ)◦.

Definition 3.1 [Abstract non-interference]
Let φ, η ∈ uco(℘(I)), ρ ∈ uco(℘(O◦)).

A program P satisfies [φ ⊢ (η)P (ρ)] if
∀x1, x2 ∈ I . φ(x1) = φ(x2) ⇒ ρ((JP K(η(x1)))◦) = ρ((JP K(η(x2)))◦)

For instance, in Eq. 1 we have φ = T∗ × id◦, η = id and ρ = id, where we recall
that T∗ = λx ∈ I∗. ⊤ and id◦ = λx ∈ I◦. x. In the following, we define closures

1Here, by relational, we mean not attribute independent, namely a property describing
relations of elements, for example ρ(〈x, y〉) = 0+ if x + y ≥ 0 is a relational property.

11

on Vn by using closures on V. In this case we abuse notation by supposing that
ρ(〈x, y〉) = 〈ρ(x), ρ(y)〉.

Example 3.2 Consider the property Sign and Par represented in Fig. 1, Con-
sider I◦ = {x}, I∗ = {y} and I = Z. Let φ = Sign, η = id, ρ = Par, and
consider the program fragment:

P
def

= x := 2 ∗ x ∗ y2;

In the standard notion of non-interference there is a flow of information from
variable y to variable x, since x depends on the value of y, i.e., the statement
does not satisfy non-interference.
Let us consider [Sign ⊢ (id)P (Par)]. If Sign(〈x, y〉) = 〈Sign(x), Sign(y)〉 =
〈0+, 0+〉, then the possible outputs are always in ev, indeed the result is always
even because there is a multiplication by 2. The same holds if Sign(〈x, y〉) =
〈0−, 0−〉. Therefore any possible output value, with a fixed observable input, has
the same observable abstraction in Par, which is ev. Hence [Sign ⊢ (id)P (Par)]
holds.

3.2 Basic properties of ANI and blind kernels

Abstract non-interference is parametric on program properties specified as clo-
sure operators. We can observe that the property where we cannot observe
anything in output, i.e., [φ ⊢ (η)P (T)] always holds. Indeed, if a closure identi-
fies some objects, then every more abstract closure will identify at least the same
objects. From these simple observations we derive the following basic properties
of abstract non-interference.

Proposition 3.3 [12, 15] Let {φi}i∈I, {ρi}i∈I, with I ⊂ N, and let φ, φi, η ∈
uco(℘(I)), ρ, ρi ∈ uco(℘(O◦)) and the program P ∈ Imp.

1. [φ ⊢ (η)P (ρ)] ⇔ ∀ρ1 ⊒ ρ . [φ ⊢ (η)P (ρ1)];

2. ∀i. [φ ⊢ (η)P (ρi)] ⇒ [φ ⊢ (η)P (
d

i ρi)];

3. [φ ⊢ (η)P (ρ)] ⇔ ∀φ1 ⊑ φ . [φ1 ⊢ (η)P (ρ)];

4. (∀i. [φi ⊢ (η)P (ρ)] ⇒ [
⊔

i φi ⊢ (η)P (ρ)]) iff ∀i. φi are partitioning.

Let us recall that there exists a systematic method for deriving output blind
observers from programs by abstract interpretation [12, 15]. This is useful both
in automatic program certification for deriving basic assertions, and in order to
classify programs in terms of the properties that make non-interference hold.
Since (output) observers are characterized by abstract domains, the idea is to
define an abstract domain transformer, depending on the program to be ana-
lyzed, which is able to transform any abstraction ρ, able to observe interference,
into the closest abstraction unable to observe any interference, i.e., blind. In this
way we can characterize the most powerful blind observer for a given program.

12

The soundness of this idea is provided by Proposition 3.3(1). In particular,
consider a program P and an ANI property [φ ⊢ (η)P (ρ)], we know by Proposi-
tion 3.3(2) that the most concrete ρ1 ⊒ ρ such that [φ ⊢ (η)P (ρ1)] always exists
unique. We call this domain the blind kernel of ρ for P and we denote it with
the following notation: [φ ⊢ (η)JP K(ρ)].

4 A proof system for Abstract Non-Interference

In the previous section, we recall that abstract non-interference can be defined
in a general framework, where the output variables are not necessarily parti-
tioned into internal and observable data. In other words, we consider the notion
of abstract non-interference (ANI for short) [φ ⊢ (η)P (ρ)], where the input ab-
stractions φ and η are on the whole input domain, while the output property
can only abstract the observable data.

Note that the aim of this work is that of providing a proof system, inductive
on the syntactic structure of programs, which allows us to deduce ANI properties
of a program by combining ANI properties of its syntactic components. In order
to obtain this, we have first to understand how we can combine ANI properties
of programs depending on the syntactic structure. Before introducing the proof
system we have to pay attention to the while statement. In fact, the while
has the problem of opening implicit channels of information. We recall that an
implicit channel is due to the dependency existing between the variables in the
guard of the statement and those modified inside its body, e.g., if we consider
x := 0; while y do x := 1; y := y − 1 we have an implicit flow of information
from y to x, since the final value of x depends on the initial value of y. These
kinds of flows may violate non-interference, hence the rule for the while has
to avoid them. Hence, we have not to distinguish, from the observation of the
output, how many times (zero or more) the while body has been executed. This
means that the input/output observable property has to be an invariant of the
loop, namely the execution of the body has to leave this property unchanged.
In the following, we describe the observable invariant proof system.
At this point, in order to generate the proof system, some restrictions has to be
taken into account. One of these restrictions is relevant also for the invariant
proof system and for this reason we introduce it here. In particular, in order to
handle correctly the assignment, where the value of only one variable is modified,
we have to consider only attribute independent abstractions, i.e., abstractions
such that the property of a tuple is a tuple of properties, one for each element
of the tuple. Hence, when ρ(〈x, y〉) then we have that ρ = 〈ρx, ρy〉 namely
ρ(〈x, y〉) = 〈ρx(x), ρy(y)〉.

4.1 Proof system for observable invariants

In order to derive a proof system for non-interference, when implicit flows may
occur, we need to model the properties that are invariant during the execution
of programs. Intuitively, an abstraction ρ is invariant for a program fragment

13

I1: c ⊢I T I2: skip ⊢I ρ I3:
x : ∗

x := e ⊢I ρ
I4:

〈e, x〉 ⊢I ρ, x : ◦

x := e ⊢I ρ

I5:
c1 ⊢I ρ, c2 ⊢I ρ

c1; c2 ⊢I ρ
I6:

c ⊢I ρ

while x > 0 do c endw ⊢I ρ
I7:

c ⊢I ρ1, ρ1 ⊑ ρ

c ⊢I ρ

Table 2: Derivation of public invariants of programs.

P , written P ⊢I ρ, when by observing the property ρ of observable inputs, we
are not able to observe any difference in the ρ property of the corresponding
outputs. In other words, P ⊢I ρ means that P is observably equivalent to skip

as regards the observable property ρ. This information is essential in order to
certify the lack of implicit flows relatively to an observation. These invariant
abstractions are obtained with an a la Hoare proof system, where assertions
are invariant properties of the form P ⊢I ρ, with ρ ∈ uco(℘(O◦)). Invariants of
expressions are parametric on a variable, the observable variable to which they
can be assigned. In the following, being the closure ρ a tuple of closures on the
single variables, for each observable variable x, we denote by ρx the component
of ρ applied to x.

Definition 4.1 Given an expression e in Imp and a variable x, we say that the
property ρ of the variable x is invariant in e, and we write 〈e, x〉 ⊢I ρ, if:

∀v ∈ I . ρx(JeK(v)) = ρx(v|x)

where for any expression e, JeK : Σ−→V is the standard semantics of expressions
and where v|x is the value for x in the tuple v.

The intuition is that e does not change the property ρ of the value of x inside
v. We extend this definition of invariant properties of expressions in order to
define invariant properties of statements/programs.

Definition 4.2 Given a program P in the language Imp, we say that a property
ρ on observable outputs is an invariant in the program P , denoted P ⊢I ρ, if

∀v ∈ I . ρ((JP K(v))◦) = ρ(v◦)

Observable invariants for programs can be derived by induction on the syntax
of Imp by using the proof system I = {I1, . . . , I7} whose rules are defined in
Table 2 and explained in the following.

• Rule I1 says that the property T = λx ∈ O◦. ⊤ is invariant for any
program. This holds since T is the property unable to distinguish any
difference among observable values. Therefore, any change due to the
execution of a program cannot be observed through the property T.

14

• Rule I2 says that any property is invariant for the program skip. This
holds since skip does not change observable data, and therefore observable
data properties are left unchanged.

• When we have an assignment to internal variables, then the semantics
behaves like skip relatively to observable values, therefore rule I3 is sim-
ilar to I2, since, by definition, invariants are defined only for observable
variables.

• In I4, if a property is invariant for the evaluation of an expression as
regards the observable variable x, then it is invariant for the assignment
of the expression to x. Consider, for example, the expression x+2, then the
property Sign (Fig. 1) is not invariant, since if we consider the input value
x = −1, then we have that Sign(x+ 2) = Sign(1) = + 6= Sign(x) = −. On
the other hand, we have that Par (Fig. 1) is invariant for this expression as
regards the variable x, since the operation x+ 2 doesn’t change the parity
of the value assigned to x. At this point if the statement is x := x + 2,
then we have that x := x + 2 ⊢I Par.

• Rule I5 says that the invariants distribute on the sequential composition.
Hence, if for example we have the program x := x + 2; y := y − 1, where
x is observable (x : ◦) and y is internal (y : ∗), then we know, by I3, that
y := y − 1 ⊢I Par and by I4 that x := x + 2 ⊢I Par. Therefore, we obtain
x := x + 2; y := y − 1 ⊢I Par.

• Rule I6 states that, given a while-statement, if a property is invariant
for the body, then the same property is invariant for the whole state-
ment. This rule holds since the only modifications of variables made by
the while, are made by its body.

• Weakening (I7) says that any more abstract property of an invariant is
still invariant.

A derivation in the proof system of observable invariants in Table 2 is denoted
⊢DI . The following theorem shows that the proof system for invariants is sound
as regards the given definition of invariant properties (Def. 4.2).

Theorem 4.3 Let P ∈ Imp and ρ ∈ uco(O◦), such that ρ = 〈ρ1, . . . , ρn〉, where
n =

∣

∣

{

x ∈ Var(P)
∣

∣ x : ◦
}∣

∣. If ⊢DI (P ⊢I ρ) then P ⊢I ρ holds.

Proof. The proof is by induction on the rules in Table 2. The rules I1

and I2 are trivial since the closure T makes each element equal to the ele-
ment ⊤, while (JskipK(x))◦ = x◦ by definition of skip and therefore for each
ρ we have ρ((JskipK(x))◦) = ρ(x◦). As far as I3 is concerned, the assign-
ment semantics guarantees that y : ∗ implies ρ((Jx := eK(v))◦) = ρ(v◦), be-
ing v◦ left unchanged by the assignment. Consider I4, then the hypothesis
〈e, x〉 ⊢I ρ says that ∀v : O . ρx(v|x) = ρx(JeK(v)). We have to prove that,
with this hypothesis, ρ((Jx := eK(v))◦) = ρ(v◦) holds. Since we have that the

15

abstraction ρ of a tuple of values is a tuple of abstractions, then after the ex-
ecution of x := e we obtain ρ(v[x 7→ JeK(v)]) = ρ(v◦)[x 7→ ρx(v|x)] = ρ(v◦).
Consider now I5 and suppose that c1 ⊢I ρ and c2 ⊢I ρ, namely ∀x ∈ I we
have ρ((Jc1K(x))◦) = ρ(x◦) and ρ((Jc2K(x))◦) = ρ(x◦). We have the following
equalities ρ((Jc1; c2K(x))◦) = ρ((Jc2K(Jc1K(x)))◦) = ρ((Jc2K(x′))◦) = ρ(x′◦) with
x′ = Jc1K(x) therefore ρ(x′◦) = ρ(x◦), so we have the thesis. I6 holds since
the only modifications that the statement while x > 0 do c endw can do are
through c. Indeed, if by hypothesis we have ρ((JcK(v))◦) = ρ(v◦), then we can
prove, by induction on the number of executions of c in the semantics of the
while, that the rule holds. In fact, the base considers 0 executions of c, namely
Jwhile x > 0 do c endwK = JskipK, and trivially we have ρ((JskipK(v))◦) =
ρ(v◦). Suppose now that for n executions of c, the semantics of the while has ρ
as observable invariant, namely ρ((Jwhile x > 0 do c endwK(v))◦) = ρ(v◦), we
have to prove that the same holds for c; while x > 0 do c endw. But combining
together the hypothesis on c and the inductive hypothesis, by Rule I5, we have
the thesis. Finally, I7 is straightforward from the definition of invariants. 2

Note that the proof system is not complete since Rule I5 introduces incom-
pleteness. In fact, x := x + 1; x := x + 1 ⊢I Par holds, while x := x + 1 ⊢I Par

does not hold.

4.2 Proof system for abstract non-interference

We can now introduce a proof system for abstract non-interference. As under-
lined before, in order to define a proof system, some restrictions have to be taken
into account. Let us first understand what happens for sequential composition,
namely, suppose we know that [φ ⊢ (η)c1(ρ)] and that [φ ⊢ (η)c2(ρ)], then we
wonder what we can say about c1; c2. It is clear that, if we want to “compose”
these ANI properties, the output observation of the first statement has to be
the same as the input observation φ of the second statement, and this implies
that also the input selection observation φ has to be defined only on observable
data, namely has to be of the kind φ = T∗ × φ◦, exactly as it happens for the
output observation. However, if O◦ = O then both φ◦ and ρ are defined on the
whole data domains. In the following, in order to avoid confusion, we will abuse
notation by writing [φ◦ ⊢ (η)P (ρ)] instead of [T∗ × φ◦ ⊢ (η)P (ρ)].
In the previous section, we describe another necessary restriction, i.e., the use of
only attribute independent abstractions. For the assignment rule, this condition
is only sufficient for making the property hold, but it is necessary in order to
rewrite the ANI property of an assignment in terms only of the ANI property
of the evaluation of the expression. Otherwise, in fact, the ANI property of
the assignment would depend on the whole memory, and not only on the con-
sidered expression. For example, consider the simpler case where η = id and
also φ◦ = id◦, then [id◦ ⊢ (id)x := e(ρ)] requires that, for all memories such
that σ◦ = σ◦

1 , we have ρ((Jx := eK(σ))◦) = ρ((Jx := eK(σ1))◦), namely we have
ρ(σ[x 7→ JeK(σ)]◦) = ρ(σ1[x 7→ JeK(σ1)]◦). Clearly, if ρ is relational, whether this
property holds or not depends, not only on the evaluation of e in the different

16

R1: [φ◦ ⊢ (η)c(T)] R2:
Π(φ◦) ⊑ Π(ρ◦(η)◦)

[φ◦ ⊢ (η)skip(ρ)]

R3:
x |= [φ◦ ⊢ (η)e(ρ)], [Π(φ◦) ⊑ Π(ρ◦(η)◦)], x : ◦

[φ◦ ⊢ (η)x := e(ρ)]
R4:

x : ∗, Π(φ◦) ⊑ Π(ρ◦(η)◦)

[φ◦ ⊢ (η)x := e(ρ)]

R5:
c ⊢I ρ

[ρ ⊢ (id)while x > 0 do c endw(ρ)]

R6:
[φ◦ ⊢ (η)c1(ρ)], [ρ ⊢ (id)c2(ρ1)], [ρ, ρ1 additive if η 6= id]

[φ◦ ⊢ (η)c1; c2(ρ1)]

R7:
[φ◦ ⊢ (id)c(ρ)], Π(φ◦) ⊑ Π((η)◦), ρ additive

[φ◦ ⊢ (η)c(ρ)]
R8:

[φ◦ ⊢ (id)c(ρ)]

[φ◦ ⊢ (id)c(
b

(ρ))]

R9:
[φ◦

1 ⊢ (η)c(ρ1)], φ◦ ⊑ φ◦

1, ρ1 ⊑ ρ

[φ◦ ⊢ (η)c(ρ)]
R10:

∀i ∈ I . [φ◦

i ⊢ (η)c(ρ)], φ◦

i partitioning

[
F

i∈I
φ◦ ⊢ (η)c(ρ)]

R11:
∀i ∈ I . [φ◦ ⊢ (η)c(ρi)]

[φ◦ ⊢ (η)c(
d

i∈I
ρi)]

R12:
∀i ∈ I . [φ◦ ⊢ (η)c(ρi)]

[φ◦ ⊢ (η)c(
F

i∈I
ρi)]

Table 3: Axiomatic abstract non-interference

memories, but also on the relation between these evaluations and the rest of the
corresponding memories, even if they remain the same.
At this point, we can give sufficient conditions for proving that a statement
satisfies abstract non-interference by inductively analyzing its sub-components.
The rules of this proof system are specified in Table 3.

• Rule R1 says that if the output observation is T = λx ∈ O◦. ⊤, then the
input observation can be any. Again, this holds because T is not able to
distinguish different public data.

• Rule R2 says that skip satisfies non-interference for any possible observer
such that the partition induced by input selection observation is more con-
crete than the one induced by the I/O observation of the program seman-
tics. Let us recall that Π(ρ) denotes the partition induced by the closure ρ,
and that (η)◦

def

= λ〈y, x〉 ∈ I∗× I◦.
{

x′
∣

∣ 〈y′, x′〉 ∈ η(y, x)
}

(see Sect. 3.1).
This condition is necessary since in this case abstract non-interference cor-
responds to saying ∀x1, x2 .φ◦(x◦

1) = φ◦(x◦
2) ⇒ ρ((η(x1))◦) = ρ((η(x2))◦)

which holds iff Π(φ◦) ⊑ Π(ρ ◦ (η)◦).

• Rule R3 considers a notion of non-interference extended to expressions
and depending on a fixed variable to which the expression is assigned.

17

Formally, we can define non-interference for expressions as follows:

x |= [φ◦ ⊢ (η)e(ρ)] iff ∀v1, v2 ∈ I . φ◦(v1) = φ◦(v2) ⇒
ρx(JeK(η(v1))) = ρx(JeK(η(v2)))

We note that the assignment changes only the variable x, all other ob-
servable variables (if there are some) are left unchanged. For this reason
we need the condition on the partition induced by the involved closures
Π(φ◦) ⊑ Π(ρ ◦ (η)◦) (between square brackets since it is required only
when there are more than one observable variable), since for all observ-
able variables different from x the assignment behaves like skip.

Example 4.4 Consider the program fragment

x1 := 2 ∗ y ∗ x2

with I◦ = O◦ = {x1, x2}, then [T ⊢ (id)x1 := 2∗ y∗x2(Par)] does not hold
since, if the input has the form 〈y, x1, x2〉

Par((Jx1 := 2 ∗ y ∗ x2K(y, x1, 3))◦) = 〈ev, od〉 while
Par((Jx1 := 2 ∗ y ∗ x2K(y, x′

1, 2))◦) = 〈ev, ev〉.

And indeed Π(T) 6⊑ Π(Par), namely T(3) = T(2) = ⊤ doesn’t imply
Par(3) = Par(2).

This condition between the partitions induced by the abstractions is not
necessary when the program contains only one observable variable. Con-
sider, for instance x := y ∗2 (O◦ = {x}), we have that [T ⊢ (id)y ∗2(Par)],
namely the multiplication by 2 hides the parity property of the computed
value. This implies that [T ⊢ (id)x := y ∗ 2(Par)].

• Rule R4 says that an assignment to an internal variable, from the ob-
servable point of view, behaves like skip, therefore for this kind of as-
signments the rule is like R2. This means that also in this case abstract
non-interference corresponds to saying φ◦(x◦) = φ◦(x′◦) ⇒ ρ((η(x))◦) =
ρ((η(x′))◦).

• Rule R5 controls the while-statement when η = id. In particular c ⊢I ρ
states that the program c is not acting on the property ρ of the observable
data, namely ρ is invariant in the execution of c, in the sense that the
property ρ of observable data is not changed by the execution of c. If this
happens then the behaviour of c observed by means of ρ is the same as
the program skip, and therefore whether the while is executed or not is
not distinguishable from an observer.

• Rule R6 shows how we can compose the non-interference properties in
presence of sequential composition of programs. In particular, two pro-
grams c1 and c2 can be composed when c1 and c2 both satisfy non-
interference, with the condition that the output observation of c1 cor-
responds exactly to the input observation of c2. Unfortunately, this is

18

straightforward only when η = id, otherwise we have to require additivity
of the output observations. This is due to the fact that, by definition,
abstract non-interference checks input properties on singletons while the
output of the abstract non-interference assertion for c1 deals with proper-
ties of sets of values. In order to cope with this ‘type mismatch”, we need
the additivity condition, as shown in the following example.

Example 4.5 Consider the program:

P
def

= c1; c2 =

x := (y mod 2)(2x mod 4) + (1 − (y mod 2))(x mod 2 + 1);
x := (x mod 2) ∗ 4y + (1 − (x mod 2)) ∗ (4y + 1)

where the values are integers and the observable variable is x. Consider
the property ρ = {Z, 4Z, 4Z + 1, 4Z + 2, 4Z + 3, ∅} (not additive), then
[T ⊢ (id∗ × T◦)c1(ρ)] holds since

∀y ∈ 2Z. ρ((Jc1K(y, Z))◦) = ρ({1, 2}) = Z and
∀y ∈ 2Z + 1. ρ((Jc1K(y, Z))◦) = ρ({0, 2}) = Z

where we abuse notation by denoting with JP K the additive lift to sets of
denotational semantics of P . On the other hand, it is simple to show that
[ρ ⊢ (id)c2(ρ)] since this statement leaves unchanged the abstraction of x.
But if we consider the composition then we have that [T ⊢ (id∗×T◦)P (ρ)]
does not hold because if y ∈ 2Z then ρ(JP K(y, Z)◦) = ρ({4y, 4y + 1}) = Z

while if y ∈ 2Z + 1 then ρ(JP K(y, Z)◦) = ρ({4y + 1}) = 4Z + 1. Note that
the first statement does not satisfy abstract non-interference if we consider
the disjunctive completion of ρ in output, namely its additive lift.

Finally, the next example shows that, whenever η 6= id, then requiring ab-
stract non-interference to hold for c2 is not sufficient to achieve soundness.
For this reason, the rule requires abstract non-interference with η = id for
c2.

Example 4.6 Consider Par and the following program fragment P

P
def

= x := 4 ∗ y2 + 4; while y > 0 do x := x mod 4; y := 0 endw

We can prove that

[T ⊢ (id∗ × T◦)x := 4y2 + 4(Par)] and
[Par ⊢ (id∗ × Par)while y > 0 do x := x mod 4; y := 0 endw(ρ)]

where ρ
def
= Par∪{0} and x is observable. Indeed the first statement returns

always an even number, while the second one, returns always even numbers
if the observable input x is even, odd numbers if it is odd. On the other
hand, we have that [T ⊢ (id◦ × T∗)x := 4y2 + 4; c(ρ)], where

c
def

= while y > 0 do x := x mod 4; y := 0 endw

19

does not hold since

ρ((Jx := 4y2 + 4; cK(0, Z))◦) = ρ(4) = ev while
ρ((Jx := 4y2 + 4; cK(1, Z))◦) = ρ(0) = {0}

namely abstract non-interference does not hold. At this point, note that
we can prove

[T ⊢ (id∗ × T◦)x := 4y2 + 4(Par)] and
[Par ⊢ (id)while y > 0 do x := x mod 4; y := 0 endw(Par)]

where x is the observable variable. Therefore, by applying rule R6, we
have that [T ⊢ (id∗ × T

◦)x := 4y2 + 4; c(Par)]. Indeed, for instance, if we
consider x1 = 4 and x2 = 8 then clearly T(4) = T(8) = ⊤ and

Par((Jx := 4y2 + 4; cK(0,⊤))◦) = Par((JcK(0, 4y2 + 4))◦)
= Par(4y2 + 4) = ev and

Par((Jx := 4y2 + 4; cK(1,⊤))◦) = Par((JcK(1, 4y2 + 4))◦)
= Par(0) = ev

namely they are the same.

• Rule R7 allows us to extend the results obtained with η = id (as it
happens in rule R5) to abstract non-interference where η 6= id. This is
possible only when φ◦ distinguishes more than (η)◦, since intuitively this
hypothesis on φ◦ allows us to apply the semantics of the program to the
same set of observable inputs.

• Rule R8 tells us that we can always make additive the output observation.

• Rule R9 is the consequence rule, which states that we can concretize the
input observation and we can abstract the output one (see Sect 3).

• The rules R10 and R11 say that both the least upper bound and the
greatest lower bound of output observations making a program satisfy
non-interference, still make the program satisfy non-interference. Rule
R12 says that the same hold for the greatest lower bound of the selection
observations when these are partitioning.

We denote by R0 = I ∪ {R1, . . . ,R12} the proof system for abstract non-
interference. The next result specifies that the proof system R0 is sound.

Lemma 4.7 Let φ ∈ uco(I◦) and ρ ∈ uco(O◦) additive maps such that ∀x1, x2 ∈
I.φ(x1) = φ(x2) ⇒ ρ((JP K(x1))◦) = ρ((JP K(x2))◦). Then ∀X1, X2 ⊆ I we have
φ(X1) = φ(X2) ⇒ ρ((JP K(X1))◦) = ρ((JP K(X2))◦)

20

Proof. The following implications hold:

φ(X1) = φ(X2) ⇔
⋃

x1∈X1
φ(x1) =

⋃

x2∈X2
φ(x2) by additivity

⇔ ∀x1 ∈ X1.∃x2 ∈ X2. φ(x1) = φ(x2) ∧
∀x2 ∈ X2.∃x1 ∈ X1. φ(x1) = φ(x2)

⇒ ∀x1 ∈ X1.∃x2 ∈ X2. ρ((JP K(x1))◦) = ρ((JP K(x2))◦) ∧
∀x2 ∈ X2.∃x1 ∈ X1. ρ((JP K(x1))◦) = ρ((JP K(x2))◦)

⇔
⋃

x1∈X1
ρ((JP K(x1))◦) =

⋃

x2∈X2
ρ((JP K(x2))◦)

⇔ ρ((JP K(X1))◦) = ρ((JP K(X2))◦)

2

Theorem 4.8 Let P ∈ Imp be a program and φ◦ ∈ uco(I◦), ρ ∈ uco(O◦), such
that ρ = 〈ρ1, . . . , ρn〉, where n =

∣

∣

{

x ∈ Var
∣

∣ x : ◦
}∣

∣. If ⊢R0
[φ◦ ⊢ (η)P (ρ)]

then [φ◦ ⊢ (η)P (ρ)].

Proof. We prove the soundness of the system inductively on the rules in
Table 4. Consider l1, l2 ∈ I◦ and h1, h2 ∈ I∗. The first rule holds from
Prop. 3.3 (generalization of [12][Prop. 3.7]), since we can always abstract the
output observation. Let us consider R2. We have to prove that φ◦(l1) =
φ◦(l2) implies ρ((JskipK(η(h1, l1))◦)) = ρ((JskipK(η(h2, l2))◦)), namely implies
ρ((η(h1, l1))◦) = ρ((η(h2, l2))◦). By definition ρ((η(h1, l1))◦) = ρ ◦ (η)◦(h1, l1).
Hence, the implication we require is exactly the one corresponding to the pre-
condition Π(φ◦) ⊑ Π(ρ ◦ (η)◦).
Consider R3, i.e., consider x := e with x : ◦. The hypothesis says that φ◦(l1) =
φ◦(l2) implies ρx(JeK(η(h1, l1))) = ρx(JeK(η(h2, l2))), we have to prove that
φ◦(l1) = φ◦(l2) implies that ρ((Jx := eK(η(h1, l1)))◦) = ρ((Jx := eK(η(h2, l2)))◦).
Suppose φ◦(l1) = φ◦(l2) and note that, being Π(φ◦) ⊑ Π(ρ ◦ (η)◦) then for each
x and y we have that φ◦(x) = φ◦(y) implies ρ ◦ (η)◦(x) = ρ ◦ (η)◦(y). Let
l1 = 〈x1, . . . , x, . . . , xn〉 and l2 = 〈y1, . . . , yn〉, with n ∈ N. For the condition
above, the hypothesis φ◦(l1) = φ◦(l2) means that ∀i ≤ n . φ◦

i (xi) = φ◦
i (yi) that

implies that ∀i ≤ n.ρ ◦ (η)◦i (xi) = ρ ◦ (η)◦i (yi). Therefore the following equalities
hold:

ρ((Jx := eK(η(h1, l1)))◦) = ρ(〈η(h1, l1)1, . . . , JeK(η(h1, l1)), . . . , η(h1, l1)n〉)
= 〈ρ1(η(h1, l1)1), . . . , ρx(JeK(η(h1, l1))), . . . , ρn(η(h1, l1)n)〉 (∗)
= 〈ρ1(η(h2, l2)1), . . . , ρx(JeK(η(h2, l2))), . . . , ρn(η(h2, l2)n)〉
= ρ(〈η(h2, l2)1, . . . , JeK(η(h2, l2)), . . . , η(h2, l2)n〉)
= ρ(Jx := eK(η(h2, l2))◦)

where the equality (∗) holds since ρx(JeK(η(h1, l1))) = ρx(JeK(η(h2, l2))) by hy-
pothesis on e, while ∀i. ρi(η(h1, l1)i) = ρi(η(h2, l2)i), being φ◦(l1) = φ◦(l2) and
being Π(φ◦) ⊑ Π(ρ ◦ (η)◦) (note that the indexes from 1 to n are only the ob-
servable outputs).
Consider R4, suppose φ◦(l1) = φ◦(l2), being Π(φ◦) ⊑ Π(ρ ◦ (η)◦), we have also
that ρ(η(h1, l1)◦) = ρ(η(h2, l2)◦). Moreover, ρ((Jx := eK(η(h1, l1)))◦) behaves

21

like skip on observable variables, being x : ∗, hence we have the thesis.
In order to show the soundness of R5 we prove c ⊢I ρ, i.e., ρ((JcK(h, l))◦) = ρ(l),
implies non-interference for the while, namely

ρ((Jwhile x > 0 do c endwK(h1, l1))◦) = ρ((Jwhile x > 0 do c endwK(h2, l2))◦)

for any l1, l2 ∈ I◦ and h1, h2 ∈ I∗ such that ρ(l1) = ρ(l2). Let us denote
c1

def

= while x > 0 do c endw. We have to prove, by induction on the iterations
of the while, that ρ((Jc1K(h, l))◦) = ρ(l) for any h, l, namely we prove that this
is an invariant property of the loop. If Jx > 0K(h, l) = false, then by definition
we have that Jc1K = JskipK and therefore we have the thesis by rule R2, being
η = id and φ◦ = ρ. Suppose now that the property holds for while’s with
a number of loops less or equal than n, we prove it for while’s with n + 1
iterations. Consider Jc1K = Jc; c1K where c1 has n iterations, we can apply the
inductive hypothesis on c1. Then

ρ((Jc; c1K(h, l))◦) = ρ((Jc1K(JcK(h, l)))◦)
= ρ((Jc1K((JcK(h, l))∗, (JcK(h, l))◦))◦)
= ρ((JcK(h, l))◦) (by inductive hypothesis)
= ρ(l) (by the hypothesis of the rule on c)

Consider rule R6. The hypotheses of the rule say that ∀l1, l2 .φ◦(l1) = φ◦(l2) we
have ∀h1, h2 .ρ((Jc1K(η(h1, l1)))◦) = ρ((Jc1K(η(h2, l2)))◦) and ∀l1, l2 .ρ(l1) = ρ(l2)
we have ∀h1, h2 . ρ1((Jc2K(h1, l1))◦) = ρ1((Jc2K(h2, l2))◦). Suppose φ◦(l1) =
φ◦(l2) then the following implications hold.

ρ1((Jc1; c2K(η(h1, l1)))◦) = ρ1((Jc2K(Jc1K(η(h1, l1))))◦)
= ρ1((Jc2K(Jc1K((η(h1, l1)))∗, (Jc1K(η(h1, l1)))◦))◦)
= ρ1((Jc2K(Jc1K((η(h1, l1)))∗, (Jc1K(η(h2, l2)))◦))◦)

(∗) = ρ1((Jc2K(Jc1K((η(h2, l2)))∗, (Jc1K(η(h2, l2)))◦))◦)
= ρ1((Jc2K(Jc1K(η(h2, l2))))◦)
= ρ1((Jc1; c2K(η(h2, l2)))◦)

where (∗) holds by hypotheses and by Lemma 4.7.
In R7 we have that φ◦(l1) = φ◦(l2) implies ρ((JcK(h1, l1))◦) = ρ((JcK(h2, l2))◦),
we have also to prove that the same hypothesis implies ρ((JcK(η(h1, l1)))◦) =
ρ((JcK(η(h2, l2)))◦). The following equalities hold:

ρ((JcK(η(h1, l1)))◦) = ρ

JcK

⋃

〈x,y〉∈η(h1,l1)

(x, y)

◦

= ρ

⋃

〈x,y〉∈η(h1,l1)

(JcK(x, y))◦

=
⋃

〈x,y〉∈η(h1,l1)

ρ((JcK(x, y))◦) (Being ρ additive)

=
⋃

〈x,y〉∈η(h2,l2)

ρ((JcK(x, y))◦) (∗)

= ρ((JcK(η(h2, l2)))◦)

22

where (∗) holds since, by hypothesis φ◦(l1) = φ◦(l2) implies η(h1, l1)◦ = η(h2, l2)◦

and the internal part can arbitrary change by definition of non-interference.
Consider R8. Suppose [φ◦ ⊢ (id)P (ρ)], namely ∀h1, h2 ∈ I∗ and ∀l1, l2 ∈ I◦

we have that φ◦(l1) = φ◦(l2) implies ρ((JP K(h1, l1))◦) = ρ((JP K(h2, l2))◦). At
this point, since P is deterministic, JP K(h, l)◦ is a singleton in O◦. Therefore,
from the properties of disjunctive completion, we have

b
(ρ)((JP K(h1, l1))◦) =

ρ((JP K(h1, l1))◦) = ρ((JP K(h2, l2))◦) =
b

(ρ)((JP K(h1, l1))◦), namely we have
non-interference. Finally R9, R10, R11 and R12 hold by a straightforward
generalization of [12][Prop. 3.7]. 2

Next example shows a simple derivation of abstract non-interference prop-
erties, possible in our proof system.

Example 4.9 Consider the program fragment

P
def

= x := 2y; while y > 0 do x := 2 ∗ x; y := y − 1 endw

where the values are naturals and x is the observable variable. First of all we
note that

x |= [T ⊢ (id∗ × T
◦)2y(ρ1)] where ρ1

def

=
j

(

{{2}N} ∪
{

n
∣

∣ n /∈ {2}N
})

and {2}N def
=

{

2n
∣

∣ n ∈ N
}

, since the result is always an even number, inde-
pendently from the initial value of y. This means that we can apply R3:

x |= [T ⊢ (id∗ × T◦)2y(ρ1)], x : ◦

[T ⊢ (id∗ × T◦)x := 2y(ρ1)]

Consider the while-statement, denoted by c, and consider the closure opera-
tor ρ2

def

=
b({

n{2}N
∣

∣ n ∈ N odd
})

. We note that 〈2 ∗ x, x〉 ⊢I ρ2, since the

operation 2 ∗ x does not change the property n{2}N of the initial value of x,
namely it does not change the odd factor of x. Therefore, we can apply I4 to
the observable assignment and I3 for the internal assignment:

〈2 ∗ x, x〉 ⊢I ρ2, x : ◦

x := 2 ∗ x ⊢I ρ2

h : ∗

y := y − 1 ⊢I ρ2

and therefore by applying I5 we obtain

x := 2 ∗ x ⊢I ρ2, y := y − 1 ⊢I ρ2

x := 2 ∗ x; y := y − 1 ⊢I ρ2

Now we can apply R5

x := 2 ∗ x; y := y − 1 ⊢I ρ2

[ρ2 ⊢ (id)while y > 0 do x := 2 ∗ x; y := y − 1 endw(ρ2)]

23

and therefore we use R6:

[T◦ ⊢ (id∗ × T◦)x := 2y(ρ1)], [ρ2 ⊢ (id)c(ρ2)]

(T)P (ρ2)

4.3 Complete proof system

Unfortunately, the system R0 is not complete, and in particular R6 is the rule
that introduces incompleteness.

Example 4.10 Consider the property Par, and the program P in the Exam-
ple 4.6, where the values are integer and the observable variable is x. Let us
denote the while statement as c

def

= while y > 0 do x := x mod 4; y := 0 endw.
We can prove that

[T ⊢ (id)x := 4y2 + 4(ρ1)] and [T ⊢ (id)P (ρ1)] hold

where ρ1 is the closure which is not able to distinguish even numbers, i.e., ρ1 =b(

{ev} ∪
{

{n}
∣

∣ n odd
})

. These facts hold since the result of the assignment
is always an even number multiple of 4, independently from the value of y (so the
first fact holds). At this point, the while receives a multiple of 4 and therefore
the result is always 0, implying the second fact. On the other hand, we have
that it does not hold

[ρ1 ⊢ (id)c(ρ1)]

since without the assignment, the while can receive any number, in particu-
lar it can receive, as inputs, numbers that are not multiples of 4. For these
numbers the statement does not satisfy abstract non-interference, for instance
ρ1(JcK(0, 5)◦) = 5 6= ρ1(JcK(1, 5)◦) = 1. This means that 6⊢R0

[T ⊢ (id)P (ρ1)]2.

In abstract non-interference, the systematic construction of secret kernels
(see Sect.3), plays a key role for making the proof systems R0 complete. Com-
pleteness is here achieved by respectively including the following semantic rule:

R0:
[φ◦ ⊢ (η)JcK(id)] ⊑ ρ

[φ◦ ⊢ (η)c(ρ)]

The semantic rule R0 derives from [12][Th. 5.5]. It states that, given a program
c and the input observations φ◦ and η we can derive the most concrete output
observation that makes the program satisfy abstract non-interference. This cor-
responds precisely to finding the strongest post-condition (viz., the most con-
crete abstract domain) for the program c with precondition φ◦ and η, such that
abstract non-interference holds. This is a “semantic rule”, because it involves
the construction of the abstract domain [φ◦ ⊢ (η)JcK(id)], which is equivalent to

2This example does not imply that there not exist a ρ2 such that abstract non-interference
holds, but it shows that we cannot derive, in this case, an abstract non-interference property
that holds by using this system.

24

compute the concrete semantics of the command c. However, this rule allows
us to include in the abstract non-interference proof, assertions which can be
systematically derived as an abstract domain transformation. The idea is to
use this rule for deriving some starting properties, for example for expressions,
or for some simple statements, and then to use the proof system for deriving
the non-interference property for the whole program. Let R = R0 ∪ {R0}. It
is clear that rule R0 makes the proof systems R complete.

Corollary 4.11 The proof systems R is complete.

Proof. If [φ◦ ⊢ (η)P (ρ)] then ρ ⊒ [φ◦ ⊢ (η)JP K(id)] by [12][Th. 5.5].
Therefore for by Rule R0 we have that ⊢R [φ◦ ⊢ (η)P (ρ)]. 2

4.4 ANI for non-deterministic systems

In the following, we consider the simple imperative language with non deter-
ministic choice, Nd-Imp, introduced in Sec. 2.3. As usual JP K denotes the
input/output relation for the program P also in the non-deterministic case,
therefore JP K(s) denotes the set of all states reachable by executing P starting
from the state s.

In this context, consider the notion of possibilistic non-interference [26] for
non-deterministic programs: A program is secure if given two states s1 and s2

such that sL1 = sL2, then for each computation σ with σL

⊢ = sL1 there exists a
computation δ with δL⊢ = sL2, such that σL

⊣ = δL⊣ (see Sec. 2.3). This notion can
be formulated as in Def. 3.1 with only semantic difference that now JP K(s)L is
a set of values instead of a single value. Anyway, the generalization is not so
straightforward. Indeed if we don’t consider additive closures for the output ob-
servation, the notion of non-interference as given above, is not precise. In fact,
missing additivity means that the property of a set is not the union of the prop-
erties of its elements. In the context of non-interference, this means that the
collection of all observations of the single computations, does not correspond to
the observation of the set of all possible results. Indeed, we recall that possibilis-
tic non-interference is based on the assumption that the attacker can observe
and collect all possible system behaviours. Therefore, if it is able to observe
the property ρ of the output, then the natural non-deterministic extension of
abstract non-interference would say that the attacker can collect the set of all ρ
observations of the possible system behaviours, which is in general different from
the ρ property of the set of all possible system behaviours. Therefore, in order to
define abstract non-interference for non-deterministic systems simply by consid-
ering the non-deterministic denotational semantics as defined by Cousot [7], we
have to consider only additive properties for the output observation. Therefore,
when ρ is additive, i.e., ρ =

b
(ρ), we define abstract non-interference exactly

as we have done for deterministic systems, as follows:

A program P is secure if
∀x1, x2 ∈ I . φ(x1) = φ(x2) ⇒ ρ((JP K(η(x1)))◦) = ρ((JP K(η(x2)))◦)

25

Exactly as it happens in the deterministic case, we have to require some
restrictions on φ in order to guarantee the sequential compositionality of the
abstract non-interference properties. Hence, also in this case, φ can only select
observable data, and therefore it has the form φ = T∗ × φ◦, and we choose to
explicitly denote only the observable part, using exactly the same notation as
in the deterministic case.

We now extend the proof system for deterministic programs in order to cope
with non-deterministic ones. We first derive the rule for the non-deterministic
choice in the proof system I :

I8:
∀i ∈ I . ci ⊢I ρi

�ici ⊢I

⊔

i∈I ρi

Rule I8 controls the non-deterministic choice in a rather standard way. In-
deed, it says that an invariant property for a non-deterministic choice is the
most abstract invariant among the ones for all programs involved in the non-
deterministic choice. At this point we have to modify the proof system R. The
problem here is that it is not sufficient to add the rule for non-deterministic
choice, since the fact that the denotational semantics returns a set of values
instead of a singleton induces some new considerations on rule R6.

Example 4.12 Consider the program:

P = c1; c2 = l := 1 − (h mod 2) � l := 2 ∗ (h mod 2) + 2 ∗ (1 − (h mod 2));
l := (l mod 2) ∗ 4h + (1 − (l mod 2)) ∗ (4h + 1)

with typing h : ∗ and l : ◦. Consider the property observing the modulus in the
division by 4: ρ = {Z, 4Z, 4Z + 1, 4Z + 2, 4Z + 3, ∅} (not additive), then we can
show that [T ⊢ (id)c1(ρ)] since

∀h ∈ ev. ∀l ∈ Z ρ((Jc1K(h, l))◦) = ρ({1, 2}) = Z and
∀h ∈ od. ∀l ∈ Z ρ((Jc1K(h, l))◦) = ρ({0, 2}) = Z

On the other hand, it is simple to show that [ρ ⊢ (id)c2(ρ)] since the abstraction
of l does not depend on h. But if we consider the composition then we have that
[T ⊢ (id)P (ρ)] does not hold because

∀h ∈ ev. ∀l ∈ Z ρ((JP K(h, l))◦) = ρ({4h, 4h + 1}) = Z

∀h ∈ od. ∀l ∈ Z ρ((JP K(h, l))◦) = ρ({4h + 1}) = 4Z + 1

while rule R6 would infer that [T ⊢ (id)P (ρ)] holds, and the problem lies on the
fact that ρ is not additive.

Therefore we replace rule R6 with R′6

R′6:
[φ◦ ⊢ (η)c1(ρ)], [ρ ⊢ (id)c2(ρ1)], ρ, ρ1 additive

[φ◦ ⊢ (η)c1; c2(ρ1)]

26

We can observe that rule R8 becomes useless since, in the non-deterministic
context, we need output additive observations, and this means that we have
no distinction between ρ and

b
(ρ). Finally, we introduce the rule R13 for the

non-deterministic choice.

R13:
∀i ∈ I . [φ◦

i ⊢ (η)ci(ρi)]

[
d

i∈I φ◦
i ⊢ (η)�ici(

⊔

i∈I ρi)]

R13 says that, if we have a non-deterministic choice among the elements of
a set of programs, then this non-deterministic choice satisfies non-interference
for the observer characterized, in input, by the greatest lower bound of input
observations for which the elements of the set satisfy non-interference, and in
output by the least upper bound of output observations of the same elements.
For instance, note that if we have c

def

= l := 2 ∗ h � l := 2h + l, where it is worth
noting that, if ρ =

b(

{ev} ∪
{

{n}
∣

∣ n odd
})

, we obtain [ρ ⊢ (id)l := 2∗h(ρ)]
and [Par ⊢ (id)l := 2h + l(Par)]. Clearly the execution of c has to guarantee
non interference independently from the statement that is executed, so we have
[ρ ⊢ (id)c(Par)]. For all other rules we have simply to add the requirement that
the output observations are additive when the program is non-deterministic.

Lemma 4.13 Let η ∈ uco(℘(I◦)) and ρ ∈ uco(℘(O◦)) additive, and suppose
[η ⊢ (id)P (ρ)], then we have that for each L1, L2 ∈ ℘(I◦) and H1, H2 ∈ ℘(I∗) if
η(L1) = η(L2) then ρ((JP K(H1, L1))◦) = ρ((JP K(H2, L2))◦)

Proof. Being ρ additive we have

ρ((JP K(H1, L1))◦) =
⋃

h1∈H1,l1∈L1

ρ((JP K(h1, l1))◦).

Since also η is additive, we have that η(L1) = η(L2) implies that for each l1 ∈ L1

there exists l2 ∈ L2 such that η(l1) = η(l2). Namely we have that

⋃

h1∈H1,l1∈L1

ρ((JP K(h1, l1))◦) ⊆
⋃

h2∈H2,l2∈L2

ρ((JP K(h2, l2))◦)

since [η ⊢ (id)P (ρ)]. Viceversa we can prove the other inclusion in a similar
way, therefore we have that

ρ((JP K(H1, L1))◦) = ρ((JP K(H2, L2))◦).

2

Theorem 4.14 The proof system RNd
0

def

= R0 r {R6}∪{I8,R′6,R13} (where
the additivity condition on the output observation is added to all the rules) is

sound and the proof system RNd def

= RNd
0 ∪ {R0} is complete.

27

Proof. The completeness is straightforward by the presence of the rule R0

(see Corollary 4.11).
Correctness of I8 is straightforward from rule I7. In order to prove correctness
of R′6 we have to show that whenever the premises of the rule hold then the con-
sequence holds as well. Consider ρ and ρ1 additive, namely ρ =

b
(ρ) and ρ1 =b

(ρ1). Then we suppose that [φ◦ ⊢ (η)c1(ρ)] and that [ρ ⊢ (id)c2(ρ1)], namely
if φ◦(l1) = φ◦(l2) then ρ((Jc1K(η(h1, l1)))◦) = ρ((Jc1K(η(l2, h2)))◦) and if ρ(l1) =
ρ(l2) then ρ1((Jc2K(h1, l1))◦) = ρ1((Jc2K(l2, h2))◦). We have to prove that if
φ◦(l1) = φ◦(l2) then we have ρ1((Jc1; c2K(η(h1, l1)))◦) = ρ1((Jc1; c2K(η(l2, h2)))◦).
Hence suppose φ◦(l1) = φ◦(l2), the following equalities hold:

ρ1((Jc1; c2K(η(h1, l1)))◦) = ρ1((Jc2K(Jc1K(η(h1, l1))))◦)
= ρ((Jc2K((Jc1K(η(h1, l1)))∗, (Jc1K(η(h1, l1)))◦))◦)
= ρ((Jc2K((Jc1K(η(h2, l2)))∗, (Jc1K(η(h2, l2)))◦))◦) (By Lemma 4.13)
= ρ((Jc2K(Jc1K(η(h2, l2))))◦) = ρ((Jc1; c2K(η(h2, l2)))◦)

and so we have non-interference.
R13 is sound since J�ici∈IK = JckK for some k ∈ I, and [φ◦

k ⊢ (η)ck(ρk)], that
holds by hypothesis, implies by R9, that [⊓iφ

◦
i ⊢ (η)ck(⊔iρi)].

2

5 An application to language-based security

In this section, we focus on the instantiation, of the proof system, introduced
in the previous section, to the context of language-based security. In particular,
the idea is to derive a proof system for each abstract non-interference notion
introduced in [12]: Narrow and Abstract Non-Interference. The fact that we are
considering security adds a new constraint on the considered abstractions: in
this case also η is an attribute independent abstraction, namely it is composed
by an internal (here private, denoted H) and observable (here public, denoted
L) part. In other words, it cannot describe relations between internal and ob-
servable data. Moreover, in sake of simplicity, we only consider deterministic
programs. In this way, we have only two cases. The first one is narrow (ab-
stract) non-interference, which consists in considering an observer (here called
attacker) that can only observe the I/O behaviour of programs by means of
an abstraction φ◦ in input and an abstraction ρ in output. In this case, the
property η is the identity, since the semantics of programs is abstracted only in
the output. The other case is called abstract non-interference (for security) and
it considers η◦ = φ◦ and η∗ = id∗. Namely we characterise again the attacker
with only two abstractions, an input and an output one, and for this reason the
input observational capability of the attacker is the same in the selection of the
inputs and in the observation of data.

Note that, the restrictions we introduced in the general framework on φ
imply the impossibility to consider declassification (via allowing) [20, 3] in our

28

proof system. Declassified abstract non-interference (via allowing) considers an
abstraction of private input characterising what private property we allow to
flow in the observable part. This abstraction, in our context corresponds to φ∗.
In this case, for example narrow abstract non-interference becomes:

∀h1, h2 : H, l1, l2 : L.φ◦(l1) = φ◦(l2) ∧ φ∗(h1) = φ∗(h2)
⇒ ρ((JP K(h1, l1))◦) = ρ((JP K(h2, l2))◦)

At this point, it is possible to verify that this notion is not compositional wrt
sequential composition, exactly as we noticed in the general case. This obser-
vation, therefore, excludes the possibility of generating a similar proof system
for this kind of declassified abstract non-interference.
The things are different for the other kind of declassification introduced in the
context of abstract non-interference [12, 20]: Declassification via blocking. In
this case we have again an abstraction on the private input, but it represents
what we don’t want to flow in the observable data. In our context this corre-
sponds to the property η∗. Namely, abstract non-interference declassified via
blocking is precisely the property [φ◦ ⊢ (η∗ × φ◦)P (ρ)], which perfectly fits in
the general proof system introduced in the previous section, simply with some
restrictions on η.

5.1 Proof system for Narrow (Abstract) Non-Interference

Consider first the situation where the observer can only observe, and therefore
abstract, the I/O behaviour of the program. In particular, we have the input
observation of the input, which is φ◦, and the output observation ρ, while we
do not have an abstraction of the semantics in input, namely η = id. In sake
of simplicity, and for coherence with previous works [12] we call this particular
instantiation narrow, and we denote it [φ◦]P (ρ). In the following we explain
the meaning of the different rules in this particular context, and we show how
certain rules change due to the new constraints. Moreover, being in the context
of security, the internal data will be called private and denoted as H, while the
observable data will be called public and denoted L. Rules from RN1 to RN4
and from RN8 to RN12 are trivial instantiations of the corresponding rules in
R, with the only observation that, being η = id, ρ ◦ η◦ becomes ρ. In RN6
we lose the additivity condition, since here we consider only η = id. RN5 is
exactly R5, while we have not the instantiation of R7 since this rule becomes
meaningless when η = id.

We denote by RN
0 = I ∪ {RN1, . . . , RN11} the proof system for (narrow)

abstract non-interference.

Example 5.1 Consider the closure Par, and the program:

P
def

= l := 2 ∗ h; while h > 0 do l := l + 2; h := h − 1 endw

with security typing h : H and l : L, and with V
H = V

L = Z. We can show
that [T]2 ∗ h(ρ1) where ρ1 is the closure which is not able to distinguish even

29

RN1: [φ◦]c(T) RN2:
Π(φ◦) ⊑ Π(ρ)

[φ◦]skip(ρ)
RN3:

x |= [φ◦]e(ρ), [Π(φ◦) ⊑ Π(ρ)], x : L

[φ◦]x := e(ρ)

RN4:
x : H, Π(φ◦) ⊑ Π(ρ)

[φ◦]x := e(ρ)
RN5:

c ⊢I ρ

[ρ]while x > 0 do c endw(ρ)
RN6:

[φ◦]c1(ρ), [ρ]c2(ρ1)

[φ◦]c1; c2(ρ1)

RN8:
[φ◦]c(ρ)

[φ◦]c(
b

(ρ))
RN9:

[φ◦

1]c(ρ1), φ◦ ⊑ φ◦

1, ρ1 ⊑ ρ

[φ◦]c(ρ)

RN10:
∀i ∈ I . [φ◦

1]c(ρ), φ◦

i partitioning

[
F

i∈I
φ◦

i]c(ρ)
RN11:

∀i ∈ I . [φ◦]c(ρi)

[φ◦]c(
F

i∈I
ρi)

RN12:
∀i ∈ I . [φ◦]c(ρi)

[φ◦]c(
d

i∈I
ρi)

Table 4: Axiomatic narrow (abstract) non-interference

numbers, i.e., ρ1 =
b(

{ev} ∪
{

{n}
∣

∣ n odd
})

. Therefore, by RN3, we obtain
[T]l := 2 ∗ h(ρ1) (note that, since there is only one low variable we ignore the
condition Π(η) ⊑ Π(ρ)). Consider now the while-statement. We note that the
operation l + 2 leaves unchanged the parity of l, this means that if the input is
even the the output is even, and similarly if it is odd. Namely for each n such
that Par(n) = Par(l) then Par(Jl + 2K(h, n)) = Par(n + 2) = Par(n) = Par(l).
Therefore 〈l + 2, l〉 ⊢I Par which implies

〈l + 2, l〉 ⊢I Par

l := l + 2 ⊢I Par

h : H

h := h + 1 ⊢I Par

Therefore, by I5, we have that l := l + 2; h := h − 1 ⊢I Par. Now we can apply
rule RN6 obtaining

l := l + 2; h := h − 1 ⊢I Par

[Par]while h > 0 do l := l + 2; h := h − 1 endw(Par)

Finally, note that ρ1 ⊑ Par hence by RN8 we have also that [T]l := 2 ∗ h(Par),
therefore we can apply rule RN6 and we obtain that [T]P (Par).

5.2 Proof system for Abstract Non-Interference

Consider now the situation where the observer can also analyse the code, and
therefore it can abstract the semantics of the program. In particular, we have
the input observation φ◦, which corresponds to the input analysis of the se-
mantics, i.e., η◦ = φ◦, and the output observation ρ, while we do not have
an abstraction of the private input semantics, namely η∗ = id∗. In sake of
simplicity, and for coherence with previous works [12] we call this particular
instantiation generically abstract, and we denote it (φ◦)P (ρ). In the following
we explain the meaning of the different rules in this particular context, and we
show how certain rules change due to the new constraints.

30

RA1: (φ◦)c(T) RA2: (φ◦)skip(ρ) RA3:
x |= (φ◦)e(ρ), x : L

(φ◦)x := e(ρ)
RA4:

x : H

(φ◦)x := e(ρ)

RA5:
c ⊢I ρ, x : H

(ρ)while x > 0 do c endw(ρ)
RA5bis:

[ρ]c(ρ), ρ additive, x : L

[ρ]while x > 0 do c endw(ρ)

RA6:
(φ◦)c1(ρ), [ρ]c2(ρ1), ρ, ρ1 additive

(φ◦)c1; c2(ρ)
RA9:

(φ◦)c(ρ1), ρ1 ⊑ ρ

(φ◦)c(ρ)

RA11:
∀i ∈ I . (φ◦)c(ρi)

(φ◦)c(
F

i∈I
ρi)

RA12:
∀i ∈ I . (φ◦)c(ρi)

(φ◦)c(
d

i∈I
ρi)

RA13:
[φ◦]c(ρ)

(φ◦)c(ρ)

Table 5: Axiomatic abstract non-interference

Rules RA1, RA9, RA11 e RA12 are trivial instantiations of the correspond-
ing rules in R. Also the rules from RA3 to RA6 are trivial instantiations of the
corresponding rules, noting that ρ ◦η◦ = ρ ◦φ◦, and therefore Π(φ◦) ⊑ Π(ρ ◦φ◦)
trivially holds since φ◦ ⊑ ρ ◦ φ◦. As far as the while is concerned the new
constraints make the analysis more precise. In particular rule R5 can be instan-
tiated only when the guard is private, namely when implicit flows are possible.
Instead, when the guard is public, we can consider a new weaker rule RA5bis.
This rule was not possible before, because the possible difference between φ◦ and
η◦ could cause deceptive interference [12]. Finally, rule RA13 describe the rela-
tion between narrow and abstract non-interference [12]. The following example
shows the difference between narrow and abstract non-interference properties
for loops.

Example 5.2 Consider the program fragment:

P
def

= while l < 2 do l := 2l endw

and consider the non-interference property [Sign]P (Par). Then we can note that,
this property does not hold even if it holds for the body of the while. Indeed,
we can trivially verify that [Sign]l := 2l(Par), while if we consider l1 = 1 and
l2 = 3, then Sign(1) = Sign(3), while Par((JP K(h1, 1))L) = Par(2) = ev 6= od =
Par(3) = Par((JP K(h2, 3))L). This means that, in the general case, even if the
guard is observable we need the condition about invariant properties.
Consider now (Sign)P (Par): Par((JP K(h1, Sign(1)))L) = Par((JP K(h1, +))L) =
Par((JP K(h2, +))L) = Par((JP K(h2, Sign(3)))L). Hence, in the abstract case we
can be more precise removing the invariant condition when the guard is observ-
able.

RA8 is meaningless, since it concerns only narrow non-interference. Finally
R9 is not applicable here, where φ = η, because it requires the independence
between φ and η, since in the rule φ can change while η remain fixed.

The proof system for abstract non-interference in Table 5 is denoted RA
0 =

RN
0 ∪ {RA1, . . . , RA12}.

31

Theorem 5.3 Let P ∈ Imp be a program and η, ρ ∈ uco(VL), such that ρ =
〈ρ1, . . . , ρn〉, where n =

∣

∣

{

x ∈ Var
∣

∣ x : L
}∣

∣. If ⊢A0
(η)P (ρ) then (η)P (ρ).

Proof. Clearly, all rules but RA5bis and RA13 are trivial instantiations of the
corresponding rules in the system R, hence we inherit their soundness. RA13 is
a trivial consequence of the fact that [η]P (ρ) implies (η)P (ρ) [12]. Hence, we have
only to prove soundness of RA5bis. Consider [ρ]c(ρ), and ρ(l1) = ρ(l2), then
we have to prove that ρ((Jwhile x > 0 do c endwK(h1, l1))L) = ρ((Jwhile x >
0 do c endwK(h2, l2))L). The only difference with rule R5 is that, since the
guard is public, the number of iterations is the same in both the cases, hence
we have only to show that non-interference is preserved by composition. This
can be simply showed by induction on the number of iterations of the while and
by using Rule RN6. 2

The following example shows that also the proof system RA
0 for abstract

non-interference in Table 5 is not complete.

Example 5.4 Consider the closure ρ
def

= {Z, 2Z, 4Z, ∅} and consider the pro-
gram

P
def
= while h > 0 do l := (l mod 4) ∗ (l ÷ 4); h := 0 endw

with security typing h : H and l : L, and with VH = VL = Z. Note that (ρ)P (ρ)

since, for example, ρ((JP K(1, 2Z))L) = 2Z = ρ((JP K(0, 2Z))L). But we have that
P ⊢I ρ does not hold since ρ((JP K(1, 2))L) = ρ(0) = 4Z 6= ρ(2) = 2Z.

The example above shows that A5 introduces incompleteness in the system,
but it is not the only such a rule. In particular, by the same argument used
in Example 4.10 for R6, RA6 introduces also incompleteness. Even RA5bis

introduces incompleteness, since the guard of the while can avoid interferences
that may happen in the body, as shown in the following example.

Example 5.5 Consider ρ
def

= {Z, {0}, ev0, od, ∅}, where ev0
def

= ev r {0}, and

P
def
= while l1 > 0 do l2 := iszero(l1) ∗ h2; l1 := 0 endw

with security typing h : H and l1, l2 : L, and with

iszero(x) =

{

1 if x = 0
0 otherwise

Then we can prove that it does not hold that

[ρ]l2 := iszero(l1) ∗ h2; l1 := 0(ρ)

since, if we take the low input 〈0, 2〉, 〈0, 8〉 ∈ 〈0, ev0〉 then we have

ρ((Jl2 := iszero(l1) ∗ h2; l1 := 0K(1, 〈0, 2〉))L) = ρ(〈0, 1〉) = 〈0, od〉 6=
ρ((Jl2 := iszero(l1) ∗ h2; l1 := 0K(2, 〈0, 8〉))L) = ρ(〈0, 4〉) = 〈0, ev0〉

But it is worth noting that [ρ]P (ρ) since, for example, ρ((JP K(h, 〈0, 2〉))L) =
〈0, ev0〉 and ρ((JP K(h, 〈4, 8〉))L) = 〈0, 0〉.

32

The next example shows that RA
0 is strictly weaker than RN

0 . We show that if
[η]P (ρ) and ⊢RA

0
(η)P (ρ), the fact that [η]P (ρ) ⇒ (η)P (ρ) does not imply that

⊢RN

0

[η]P (ρ).

Example 5.6 Consider the property Par and the program:

P
def

= h := h + 1; l := 2 ∗ h

with security typing h : H and l : L, and with V
H = V

L = Z. Note that
[Sign]P (Par) since

∀l ∈ V
L, h ∈ V

H we have Par((JP K(h, l))L) = Par(2 ∗ h) = ev

This means also that (Sign)P (Par) holds. Moreover, note that [Sign]h := h +
1(Par) does not hold since

Sign(2) = Sign(3) = Z+ and Par((Jh := h + 1K(h, 2))L) = Par(2) = ev 6=
Par((Jh := h + 1K(h, 3))L) = Par(3) = od

This means that 6⊢N0
[Sign]P (Par). On the other hand, we have that ⊢A0

(Sign)h := h + 1(Par) and ⊢N0
[Par]l := 2 ∗ h(Par), therefore we can use RA6

since Par is disjunctive, and therefore we can infer (Sign)P (Par).

6 Discussion

In this paper we have introduced a proof system for abstract non-interference,
in the general context where we are interested in understanding how data of two
different groups interfere with each other. The advantage of a proof system for
abstract non-interference is that checking abstract non-interference inductively
on the syntax can be easily mechanized. The proof system can benefit of stan-
dard abstract interpretation methods for generating basic certificates for simple
program fragments (rules R0). The other rules allow us to combine certificates
from program fragments in a proof-theoretic certification of non-interference for
programs. It is clear that our proof system is a system for certification and
not for the generation of harmless attackers, since the rules are general and
holds for all the abstractions satisfying the fixed restrictions. An analogous
proof system, which instead allows us to generate input or output observations
for abstract non-interference, can be easily derived as instantiation by fixing
for each rule a possible input or output observation that we choose wrt a fixed
strategy. Namely, fixed the input [output] observation we can derive a system
where we choose only one output [input] abstraction in the set of all domains
that satisfy the rule. Depending on the kind of application we can clearly decide
the strategy for choosing such a witness and this deserves further research. Any-
way, the interest in the general technology we propose in this paper is mostly
related with its use in a la proof carrying code (PCC) verification of abstract
non-interference, when mobile code is allowed. In this case in a PCC archi-
tecture, the code producer may create an abstract non-interference certificate

33

that attests to the fact that the code non-interference cannot be violated by
the corresponding model of the observer. Then the code consumer may validate
the certificate to check that the foreign code is not violating non-interference
for the corresponding model of observer. The implementation of this technol-
ogy requires an appropriate choice of a logic for specifying abstractions and an
adequate logical framework where the logic can be manipulated. We believe
that predicate abstraction [11] is a fairly simple and easily mechanizable way
for reasoning about abstract domains. More appropriate logics can be designed
following the ideas in [2], even though a mechanizable logic for reasoning about
abstractions is currently a major challenge in this field and deserves further in-
vestigations. The language we used is quite simple. Even though abstract non-
interference makes non-interference a purely semantic problem, any extension
of Imp and its semantics with for example probabilistic choice, non terminating
computations, and concurrency, may require a redesign of the proof systems for
abstract non-interference. It would be particularly interesting to extend Imp
with concurrency. In the context of language-based security, the main interest
in this extension deals both with the chance to reduce protocol verification to
non-interference problems and with the possibility of modeling active attack-
ers as abstract interpretations. The models of attackers developed in abstract
non-interference are indeed passive [12]. Active attackers would be particularly
relevant in order to extend abstract non-interference as a language-based tool
for protocol validation.

Acknowledgements

We are grateful to the anonymous referee for his useful observations and sugges-
tions that helped us improving this paper. This paper was partially supported
by the PRIN projects “SOFT” and “AIDA2”.

References

[1] G.R. Andrews and R. P. Reitman. An axiomatic approach to information
flow in programs. ACM Trans. Program. Lang. Syst., 2(1):56–76, 1980.

[2] A. Appel. Foundational proof-carrying code. In Proc. of the 16th IEEE
Symp. on Logic in Computer Science (LICS ’01), pages 247–258, Los
Alamitos, Calif., 2001. IEEE Comp. Soc. Press.

[3] A. Banerjee, R. Giacobazzi, and I. Mastroeni. What you lose is what you
leak: Information leakage in declassifivation policies. In Proc. of the 23th
Internat. Symp. on Mathematical Foundations of Programming Semantics
(MFPS ’07), volume 1514 of Electronic Notes in Theoretical Computer
Science, Amsterdam, 2007. Elsevier.

[4] D. Clark, C. Hankin, and S. Hunt. Information flow for algol-like languages.
Computer Languages, 28(1):3–28, 2002.

34

[5] E. S. Cohen. Information transmission in computational systems. ACM
SIGOPS Operating System Review, 11(5):133–139, 1977.

[6] E. S. Cohen. Information transmission in sequential programs. In DeMillo
et al., editor, Foundations of Secure Computation, pages 297–335, New
York, 1978. Academic Press.

[7] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theor. Comput. Sci., 277(1-2):47–103,
2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. of Conf. Record of the 4th ACM Symp. on Principles
of Programming Languages (POPL ’77), pages 238–252, New York, 1977.
ACM Press.

[9] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Proc. of Conf. Record of the 6th ACM Symp. on Principles
of Programming Languages (POPL ’79), pages 269–282, New York, 1979.
ACM Press.

[10] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to
analysis of secure information flow. In D. Hutter and M. Ullmann, editors,
Security in Pervasive Computing: Second International Conference (SPC
2005), volume 3450, pages 193–209, Berlin, 2005. Springer-Verlag.

[11] C. Flanagan and S. Qadeer. Pedicate abstraction for software verification.
In Proc. of Conf. Record of the 29th ACM Symp. on Principles of Pro-
gramming Languages (POPL ’02), pages 191–202, New York, 2002. ACM
Press.

[12] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing
non-interference by abstract interpretation. In Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL ’04), pages 186–197, New York, 2004. ACM-Press.

[13] R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. In
A. Tarlecki J. Marcinkowski, editor, Annual Conf. of the European Associ-
ation for Computer Science Logic (CSL ’04), volume 3210, pages 280–294,
Berlin, 2004. Springer-Verlag.

[14] R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack mod-
els by abstract interpretation. In S. Sagiv, editor, Proc. of the European
Symp. on Programming (ESOP ’05), volume 3444 of Lecture Notes in Com-
puter Science, pages 295–310, Berlin, 2005. Springer-Verlag.

[15] R. Giacobazzi and I. Mastroeni. Abstract Non-Interference. Technical
report, Department of Computer Science - University of Verona, 2008.

35

[16] R. Giacobazzi and I. Mastroeni. Adjoining classified and unclassified in-
formation by abstract interpretation. Journal of Computer Security, To
appear.

[17] J. A. Goguen and J. Meseguer. Security policies and security models. In
Proc. IEEE Symp. on Security and Privacy, pages 11–20, Los Alamitos,
Calif., 1982. IEEE Comp. Soc. Press.

[18] R. Joshi and K. R. M. Leino. A semantic approach to secure information
flow. Science of Computer Programming, 37:113–138, 2000.

[19] P. Laud. Semantics and program analysis of computationally secure infor-
mation flow. In D. Sands, editor, In Programming Languages and Systems,
10th European Symp. On Programming (ESOP ’01), volume 2028 of Lecture
Notes in Computer Science, pages 77–91, Berlin, 2001. Springer-Verlag.

[20] I. Mastroeni. On the rôle of abstract non-interference in language-based
security. In K. Yi, editor, Third Asian Symp. on Programming Languages
and Systems (APLAS ’05), volume 3780 of Lecture Notes in Computer
Science, pages 418–433, Berlin, 2005. Springer-Verlag.

[21] G. Necula. Proof-carrying code. In Proc. of Conf. Record of the 24th ACM
Symp. on Principles of Programming Languages (POPL ’97), pages 106–
119, New York, 1997. ACM Press.

[22] F. Ranzato and F. Tapparo. Strong preservation as completeness in ab-
stract interpretation. In D. Schmidt, editor, Proc. of the 13th European
Symp. on Programming (ESOP ’04), volume 2986 of Lecture Notes in Com-
puter Science, pages 18–32, Berlin, 2004. Springer-Verlag.

[23] A. Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE J. on selected ares in communications, 21(1):5–19, 2003.

[24] A. Sabelfeld and D. Sands. A PER model of secure information flow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–
91, 2001.

[25] C. Skalka and S. Smith. Static enforcement of security with types. In
Proc. of the Fifth ACM SIGPLAN Internat. Conf. on Functional Program-
ming(ICFP ’00), pages 254–267, New York, 2000. ACM Press.

[26] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. In Proc. of The 25th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages (POPL ’98), pages 355–364, New
York, 1998. ACM Press.

[27] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2,3):167–187, 1996.

36

[28] G. Winskel. The formal semantics of programming languages: an introduc-
tion. MIT press, Cambridge, Mass., 1993.

[29] M. Zanotti. Security typings by abstract interpretation. In
M. Hermenegildo and H. Puebla, editors, Proc. of The 9th Internat. Static
Analysis Symp. (SAS ’02), volume 2477 of Lecture Notes in Computer Sci-
ence, pages 360–375, Berlin, 2002. Springer-Verlag.

37

