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Abstract

Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of
the brain, namely, hippocampus, subventricular zone and olfactory bulb. For other brain structures, such as leptomeninges, which con-
tribute to the correct cortex development and functions, there is no evidence so far that they may contain stem/precursor cells. In this
work, we show for the first time that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The
newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with sub-
ventricular zone—derived neural stem cells, and as homogeneous cell population with stem cell features. /n vitro expanded stem cell pop-
ulation can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into the adult
brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also
in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation poten-
tial is resident in the leptomeninges throughout the life. As leptomeninges cover the entire central nervous system, these findings could
have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders.
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Introduction

During recent years, embryonic and adult neural stem cells (NSCs)
gained attention as major candidates for regenerative and cell
replacement therapies in various neurodegenerative diseases. In
this setting, stem cell-based therapies raised important ethical,
technical and immunological concerns [1].

The clinical application of adult NSCs, despite their properties
of self-renewal, neuro-glial differentiation potential and their pos-
sible use in autologous setting, is still of debate. Among technical
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concerns, of relevance is that NSCs have hardly accessible site of
sampling, are difficult to expand in vitro as homogeneous stem
cell population and show low rate of in vivo neuronal differentia-
tion efficiency [2].

Both during development and in adulthood, neurogenesis from
endogenous neural stem/precursor cells has been shown to occur
in discrete areas of the brain where complex microenvironments,
or niches, ensure a balance between proliferation and self-renewal
[3, 4]. NSCs have been found in the main neurogenic regions of
the brain, that is, hippocampus, subventricular zone (SVZ), olfac-
tory bulb [5, 6] and in some non-neurogenic regions, that is,
spinal cord [7]. In SVZ, NSCs are present up to adulthood and are
in tight contact with astrocytes, neuroblasts, ependymal cells,
endothelial cells and growth factor-rich basal lamina [8—11].

In this work, we asked whether other brain sites could host
stem cell niches. To investigate the stem cell distribution in rat
central nervous system (CNS), we analyzed the expression pattern
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in rat cortex of the stem/progenitor cells marker nestin. Nestin is
an intermediate filament of neuroepithelial derivation [12] that has
been detected in stem/progenitor cells of neural and non-neural
tissues [13]. We found that a nestin-expressing cell population is
present in rat leptomeninges during embryonic stages up to adult-
hood. Leptomeninges, which include arachnoid and pia mater,
cover the entire CNS and are filled with cerebrospinal fluid pro-
duced by choroid plexi. All the major arteries supplying the brain
pass through leptomeninges and form branches while penetrating
the cortex [14]. Interestingly, every parenchymal vessels inside
the CNS are surrounded by a perivascular space (Virchow—Robin
space) formed by the extroflexions of leptomeninges (arachnoid
and pia mater) filled with cerebrospinal fluid [15-17]. Thus, lep-
tomeninges are widely spread inside the CNS parenchyma, includ-
ing the choroid plexus.

Leptomeninges form a complex microenvironment that has
important functions for the normal cortex development [18]. They
are present since the very early embryonic stages of cortical
development, when columnar neuroepithelium is located between
ventricle surface and pial basal membrane. Leptomeninges are
involved in multiple interactions among a large number of molec-
ular and chemiotactic factors (e.g. SDF-1/CXCR4, reelin, oxidative
state) [19-21], cell types (e.g. pia mater cells, radial glia, neural
precursor cells, Cajal Retzius cells, glia limitans cells) [22, 23] and
extracellular matrices (e.g. laminin, collagen 1V, fibronectin)
[24-26] that ensure correct cortical development. Abnormal func-
tion/structure of leptomeninges causes altered cortical histogene-
sis, as in the case of cobblestone lissencephaly (type 1), where the
fragmentation of pia mater basal membrane leads to the formation
of cortical neurons protruding into the sub-arachnoid space [27].

The peculiar spatial relationships of leptomeninges in CNS,
their role in cortex development and our serendipitous discovery
of nestin-positive cells prompted us in determining whether lep-
tomeninges could be a possible stem cell niche hosting
stem/progenitor cells with neuronal differentiation potential.

In this work, we show that nestin-positive cells can be
extracted from leptomeninges and expanded in vitro both as neu-
rospheres, displaying high similarity with SVZ-derived NSCs, and
as homogeneous cell population with stem cell features. /n vitro
expanded stem/progenitor cells can be induced to differentiate
with very high efficiency in excitable cells with neuronal morphol-
ogy and phenotype. When injected into adult brain, these cells sur-
vive and differentiate into neurons, thus showing that their neural
differentiation potential is operational also in vivo.

Material and methods

Brain perfusion and immunofluorescence

The animals were perfused with 4% paraformaldehyde in PBS. Brains were
dissected, fixed in 4% paraformaldehyde solution and then left in 10% and
subsequently 30% sucrose solution. By freezing microtome 30-p.m-thick
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coronal brain sections were cut and processed by immunofluorescence as
previously described [28]. Briefly, brain slices were incubated for 2 hrs in
blocking solution (PBS/5%FCS/3%BSA/0.3% Triton X-100). Slices were
then incubated for 12 hrs at 4°C in floating, with antibodies. Primary anti-
bodies were detected with appropriated secondary antibodies for 4 hrs at
4°C in blocking solution.

Antisera

The following primary antibodies were used: mouse monoclonal antibodies
anti-nestin, anti-CD106 (VCAM-1), anti-CD90, anti-CD31, anti-CD45, anti-
CD105 (endoglin) and anti-BrdU (all from Pharmingen/Becton Dickinson);
anti-EGFP (rabbit, 1:2000, Invitrogen, San Giuliano Milanese, Milan, Italy),
MAP2 (mouse, 1:1000, Sigma, Milan Italy), GFAP (mouse, 1:1000, BD
Pharmigen, Buccinasco, Italy), Laminin (rabbit, 1:1000 Sigma), Nestin
(mouse, 1:1000, BD Pharmigen), NG2 (rabbit, 1:500, Chemicon, Milan,
Italy), Neurofilament 160 (mouse, 1:100, Sigma).

The following secondary antibodies were used: goat anti-mouse
Ig/Alexa Fluor 488, IgM/FITC, 1gG/PE and chicken anti-rabbit/Alexa Fluor
488 (all from Molecular Probes, San Giuliano Milanese, Milan, Italy), goat
anti-mouse/Cy3, goat anti-rabbit/Cy3 (all from Amersham, Milan, Italy).

Cell cultures

Cells were harvested from the first cortical layers and overhead lep-
tomeninges of Sprague—Dawley rats or from enhanced green fluorescent
protein (EGFP) transgenic rats [29] at post-natal days 15 (n = 6 experi-
ments, 10 animals each). Tissues were sampled with stereo-microscope
from brain coronal sections. Mechanically and enzymatically dissociated
tissue extracts from first cortical layers of P15 rats were cultured in neu-
rosphere-inducing and adherent conditions.

1 Neurosphere culture: tissue extracts were seeded into 6-well plates
(Falcon, Buccinasco, ltaly) in 3 ml of neurosphere culture medium.
Medium supplemented with fresh growth factors was added every 2-3
days. Neurospheres could be detected under phase optics after 7-10 days.

2 Adherent culture: tissue extracts were seeded into culture flasks
(Falcon) with growing medium; after 72 hrs, non-adherent cells were
removed. In 10 days, clear colony-forming units could be detected.
Differentiation was performed after three to six passages by plating
1 % 10° cells/cm? in poly-L-lysine (40 wg/ml, Sigma)-coated cover
slip in the differentiation medium. For media composition, see below.

Media

Neurosphere culture medium: Neurobasal Medium, (Gibco, San Giuliano
Milanese, Milan, ltaly) containing 2% B27 supplements (Gibco), 1% N2
supplement (Gibco), 200 mM glutamine, 1% penicillin-streptomycin plus
20 ng/ml epidermal growth factor (EGF) and 10 ng/ml basic fibroblast
growth factor (bFGF).

Growing medium: Dulbecco modified Eagle medium (DMEM), with
high glucose concentration, GLUTAMAX |, 18% heat-inactivated fetal calf
serum (FCS), 100 U/ml penicillin and 100 wg/ml streptomycin (all from
GibcoBRL/Life Technologies, Milan, Italy). Differentiation medium: Neuron
Chow (Neurobasal Medium [Gibco] containing 2% B27 supplements
(Gibco), 200 mM glutamine, 10 mM glutamate and 1% peni-
cillin—streptomycin—fungizole) plus 50 ng/ml brain-derived nerve growth
factor (BDNF).

© 2009 The Authors

Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



Flow cytometric analysis

Samples of fresh tissue extracts and cultured cells were analyzed by flow
cytometry using standard methods [30].

Intracellular calcium imaging

Intracellular calcium levels (ratio 340/380) were evaluated by ratiometric
imaging techniques. Cells were loaded with Fura2-AM for 30-45 min. at
37°C. The loading solution contained 5 wM Fura 2-AM in HEPES buffered
solution. Loading solution was removed and the culture was incubated for
another 10 min. at 37°C in HEPES buffered solution to allow de-esterification
of Fura2-AM. The cover slips were then placed onto a recording
chamber, connected by a Tygon tube to a 1-ml syringe used for substance
fast application.

All image processing and analysis was performed using OpenLab soft-
ware (Improvision, Tiibingen, Deutschland, Europe) with an inverted Zeiss
microscope (Zeiss, Oberkochen, Germany). Wavelength of 340 and 380 nm
were used to excite Fura2 and the emitted light was collected at 510 nm.

Colony forming unit (CFU) assay

Dissociated tissue extracts were plated at five different cell concentra-
tions. After 14 days of culture, every single cell colony with more than
50 cells was considered as CFU. CFU assay was performed every follow-
ing passage by plating cells at four different concentrations. CFUs were
stained with May—-Grunwald Giemsa and then counted (mean = S.D. of
two different cultures).

Cells immunofluorescence

Cells on cover slips were immunostained as previously described [31].
Briefly, cells were first fixed, blocked and permeabilized. Slides were incu-
bated for 10 min. with the nuclear dye DAPI (Sigma); then, immunostain-
ing was performed with standard procedure using primary antibodies and
fluorochrome-conjugated secondary antibodies.

5-bromo-2-deoxyuridine (BrdU) labelling

Cells were incubated for 12 hrs with BrdU (3 wM) before starting the dif-
ferentiation protocol. After differentiation, cells were fixed on cover slips
with 4% paraformaldehyde and rinsed with PBS. Cells were then treated for
15 min. in 2N HCI/0.5% Triton X-100 at room temperature, and the reac-
tion were neutralized with 0.1 N B4Naz (pH 8.5).

Stereotaxical surgery in brain

All in vivo experiments were in accordance with the Italian Legislative
Decree N.116/92. Male Sprague-Dawley adult rats (Harlan, Milan, Italy)
(n = 8) were anaesthetized and a guide cannula (26G, Plastics One, Roanoke,
VA, USA) was stereotaxically (stereotaxic frame; Kopf Instruments, Tujunga,
CA, USA) lowered to Hippocampus (AP -2.3mm, L 2.2 mm, V 3.4mm, incisor
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bar 3.0 below horizontal line; Paxinos and Watson). Either cell suspension
or vehicle (PBS) were loaded in a Hamilton syringe connected with a Tygon
tube (ID 0.020 mm, OD 0.060 mm, Saint-Gobain PPL Corp., Charny, France)
and with a needle (33G, Plastics One). The needle was inserted in the guide
cannula. A volume of 1 pl (3 X 10 EGFP + cells) was then infused with a
syringe pump over 5 min. and left in place for additional 5 min.

Transplanted cell counts

Frequency estimation of transplanted EGFP+/MAP2+ leptomeningeal
cells were performed in hippocampal slices of four rats injected with
EGFP+ leptomeningeal cells and one not-injected rat as negative con-
trol. Five of serial coronal sections (30 wm) of hippocampus were
randomly selected and stained with antibodies against EGFP and
MAP2. Five random fields for each slice were acquired with a 40
objective in confocal microscopy. EGFP-positive cells and
MAP2/EGFP double-positive cells were then counted. The number of
MAP2-positive injected cells was expressed as percentage of EGFP-
positive cells examined.

Quantitative real-time RT
(reverse transcription)-PCR analysis (qPCR)

Total RNA was purified with Trizol reagent (Invitrogen) and retrotran-
scribed to cDNA by reverse transcriptase AMV contained in the First Strand
cDNA Synthesis Kit (Roche, Milan, Italy). qPCR reactions were carried out
in 20 pl total volume containing 10 ng of cDNA (RNA equivalent), 1x
Power SYBR Green | Master Mix or Tagman Universal PCR Master Mix
(Applied Biosystems, Monza, Milan, Italy), 0.4 wM primers forward and
reverse or 1/20 Tagman probe. After a starting denaturation for 10 min. at
95°C, 40 PCR cycles (15 sec. 95°C and 1 min. 60°C) were carried out on
ABI PRISM 7900HT SDS instrument (Applied Biosystems). The Tagman
assays (Applied Biosystems) were as follows: Rn00566603_m1 for Gfap;
Rn00565046_m1 for Mtap2; Rn00564394_m1 for Nes; Rn00578849_m1
for Cspg4; Rn00667869_m1 for Actb. Forward and reverse 5’-3’ primer
sequences and PCR product lengths were as follows: Tdgf1, GCTGGTGAA-
GACCTCGACGT, CGGAAGGCACAAGCTGGA, 106 bp; Smad4, GCACTAC-
CACCTGGACTGGAA, TGTGAACCGGCCAGTAATGTC, 126 bp; Poubft,
GCCAAGCTGCTGAAACAGAAG, CTGGCTGAACACCTTTCCAAA, 96 bp;
Nanog, GGCCTGACTCAGAAGGGCTC, TGCCCCATACTGGAAGGTTTC, 106
bp; Sox2, CGCCGAGTGGAAACTTTTGT, CGCGGCCGGTATTTATAATC, 111
bp; Kihl1, GCTCATAGGCTTGTCCTGAGCT, GCTTGGCTTCACAGACATCG-3',
75 bp; Eng, GGACAGCCTCTCCTTCCAGC, TGCTCACCTGTACGAAGCCC, 101
bp; Col1al, GCAGATTGAGAACATCCGCAG, CCAGTACTCTCCGCTCTTCCA,
106 bp; Cd44, CAACGCTATCTGTGCAGCCA, CAAGAGGAGCTGAG-
GCATTGA, 101 bp; Fgfr1, AAATTCAAATGCCCGTCGAG, GGCGTAACGAAC-
CTTGTAGCC, 111 bp; Fgfr2, TTGGCAGCCAGAAATGTGC, CTTGACTG-
GAAGTCGCCCAT, 126 bp; Fgfr3, CAAGGTGTACAGCGACGCAC, GTGGTGT-
TAGCTCCTGCAGTCTT, 126 bp; Kit, GGCATCACCATCAAAAACGTG,
GGGATAGCTTTGATGGCTGC, 131 bp; Cd34, CACCAGCCATCTCAGAGACCA,
CAGTGTGACGGTTG-GGTAAGTC, 113 bp. The probe signal was normalized
to an internal reference, and a cycle threshold (Ct) was taken significantly
above the background fluorescence. The Ct value used for subsequent cal-
culation was the average of three replicates. The relative expression level
was calculated using transcript level of Actb as endogenous reference.
Data analysis was done according to the comparative method following the
User Bulletin No. 2 (Applied Biosystems).
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Statistical analysis

Data were analyzed using GraphPad Prism4 software. Results were
expressed as mean = S.D. or S.E.M., when indicated. Differences between
experimental conditions were analyzed using two-tailed Student’s t-test.
Pvalue <0.05 was considered statistically significant.

Results

Nestin-positive cells are present in rat
leptomeninges during development
up to adulthood

Immunofluorescence confocal microscopy with anti-nestin anti-
bodies was used to identify potential stem cell sites in coronal sec-
tions of rat brain cortex at different stages of development. Figure 1
shows that nestin-positive cells were present in peripheral cell lay-
ers of the parietal cortex of brains obtained from embryos (embry-
onic day 20 [E20]), animals at different post-natal days (P1, P8,
P15) and in adulthood. The distribution of nestin-positive cells
within the cortical layers decreased over time but persisted in the
superficial layer covering the cortex up to adulthood. As previ-
ously described by several groups, nestin-positive cells were pres-
ent at high density in the SVZ at all the developmental stages and
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Fig. 1 Distribution of nestin-
positive cells in rat cortex
at different ages. Confocal
images of coronal sections of
parietal cerebral cortex: rats
at embryonic day 20 (E20)
(A), postnatal day +1 (P1)
(B), +8 (P8) (C) and +15
(P15) (D) and adults (E).
Immunolabelling with the
anti-nestin (red) antibody. (F)
Subventricular zone (SVZ) of
P15 rats as positive control
and choroid plexus. Scale
bar 50 pwm.

Choroid
plexus

[

in adults [32] (positive control). Interestingly nestin-positive cells
were also present in choroid plexus.

To better define and characterize this population of nestin-pos-
itive cells, we first analyzed the distribution of this marker in com-
parison with that of laminin (a specific marker of pia mater) [19]
and glial fibrillary acidic proteins (GFAP, a marker of glial cells).
DAPI staining was used to visualize cell nuclei. Figure 2 was
obtained from P15 rat brains and indicates that the nestin-positive
tissue was a layer of densely packed nucleated cells residing out-
side the pia mater boundary of the cortex (as shown in details in
Fig. 2A and B) in the leptomeninges. This cell population was dis-
tinct from astrocytes (Fig. 2C).

We then assessed whether the nestin-positive cell popula-
tion included vascular cells. To this aim, we used antibodies
against NG2 (integral membrane chondroitin sulphate proteo-
glycan, Cspg4) a marker of smooth muscle cells [33] and
of microvascular pericytes [34]. As shown in Fig. 2D, the
nestin-positive cell population did not include NG2-positive
vascular cells.

In vitro expansion of the nestin-positive cell
population derived from leptomeninges

Leptomeninges were stripped from the brain surface of P15 rats
(n = 6 experiments, 10 animals each); the stripped samples also
included the outermost layers of the cortex (Fig. 3A). Mechanically
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dissociated tissue extracts contained living nestin-positive cells
(40.3%), as shown by FACS analysis (Fig. 3B).

Standard NSC growth condition. To assess whether cells with
neural differentiation potential were present in the tissue extracts
from this region, we first cultured these cells in the same condi-
tions used to expand SVZ-NSCs. In NSC medium (see Materials
and Methods), cells from tissue extract generated floating neu-
rospheres in 9-11 days (Fig. 4A). Neurospheres could be
expanded in vitro up to several months (data not shown).
Similarly to SVZ-derived neurospheres [35], leptomeninges-
derived neurospheres consisted of different cell types, including
nestin-positive cells, neuronal MAP2-positive cells and glial
GFAP-positive [36] (Fig. 4B and C). Quantitative gene expression
assay was performed to analyze self-renewal regulators
(Pou5f1/0ct4 [37], Nanog [38], Sox2 [39]), genes related to the
undifferentiated state maintenance (Tdgf1/Cripto-1, Smad4, and
Nestin) [40, 41] and genes related to neural differentiation (Klhi1,
Gfap, Mtap2) [42]. Comparison of gene expression between SVZ-
and leptomeninges-derived neurospheres were shown in Fig. 4D.
Data were normalized for beta-actin expression level and were
expressed as ratios between the two populations. A tight correla-
tion between the gene expression pattern of SVZ-NSC-derived
neurosphere and the leptomeninges-derived neurospheres
(Fig. 4D) was observed. Statistically significant differences (P <
0.05) were observed for differentiation genes Gfap and Mtap?2
only (Fig. 4D).

Adherent stem cell growth condition. We tried to overcome the
complexity [36, 43, 44] of neurosphere assay by modifying the
culture conditions. The whole tissue extract was plated in flasks
with growing medium (see Materials and Methods). After 48 hrs,
non-adherent cells were removed and the medium completely
changed. In 1-3 weeks, cell colonies could be recognized. Only a
minority of cells from the whole tissue extract adhered and gave
rise to CFUs. Non-adherent cells underwent apoptosis or were
removed by medium change. All the adherent cells proliferating
after several days derived from CFU and displayed a homogeneous
immunophenotype, as shown in Fig. 5A and E. This cell population
was expanded for several passages and was clonogenic, since
CFU were present at each passage (Fig. 5B). Time course experi-
ments were performed to assess whether a cell population of
nestin+/GFAP-/NG2-cells (similar to what found in vivo in the lep-
tomeninges) was present in the culture. As shown in Fig. 5A,
nestin+/NG2- cells were present as early as 5 hrs after plating
(approximately 90% of attached cells). Similar results were
obtained with GFAP staining (data not shown). From day 8,
nestin-+/GFAP—/NG2- cell colonies are detectable.

FACS analysis showed that in vitro expanded cells always
retained nestin positivity, did not express markers of either neu-
ronal (MAP2)/glial (GFAP) or hematopoietic (CD45, CD34)

Fig. 2 Localization of nestin-positive cells in leptomeningeal tissue. (A) Coronal section of the parietal cortex of P15 rat, stained with DAPI (blue), anti-
laminin (green) and anti-nestin (red) antibodies. Scale bar 50 wm. (B, C, D) Z-stack reconstruction assembled from 10 serial 2 wm confocal sections.
Sections were stained in red with anti-nestin antibodies and in green with either anti-laminin (B) or -GFAP (C) or -NG2 (D) antibodies; high magnifica-
tion. None of these markers co-localizes with nestin. Scale bars 50 um.
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Fig. 3 Tissue sampling. (A)

wt FACS analysm Hematoxylin/eosin staining of a
B . coronal section of P15 rat brain
wid to show (arrows) the site and the

& 40.3% extent of the biopsy. Scale bar
= 250 pwm. (B) FACS analysis of tis-
i sue extracts from P15 rats.
Viable cells, stained with Syto16,

were gated and, among them,

nestin-positive cells (red 40.3%)
or negative (black) are shown.

Mtag2

[0 svZ-derived neurospheres [JJj Leptomeninges-derived nestin+cells

Fig. 4 In vitro expansion of the tissue extract in neural stem cell growth conditions. Floating neurospheres were obtained, with morphology and phenotype
comparable to those of SVZ-NSC-derived neurospheres. (A) Transmitted light of leptomeningeal-derived neurosphere. Confocal image of neurospheres
stained with MAP2 (green), nestin (red) and DAPI (blue) (B), or MAP2 (red) and GFAP (green) (C), scale bar 100 wm. (D) Relative gene expression analy-
sis. For each sample, expression levels of different genes were normalized to levels of beta-actin mRNA. The bars show fold change = S.D. in transcrip-
tion of normalized mRNA expression levels measured for leptomeninges-derived neurosphere compared to SVZ-NSC-derived neurosphere.

[45]/endothelial (CD105, CD31, CD106) [46] lineages and were
positive for CD90, a non-specific marker of neural cells and stro-
mal cells [47] (Fig. 5E). Immunofluorescence microscopy con-
firmed that expanded cells were a homogeneous population of
nestin-positive cells (Fig. 5D) that did not express neuronal
(MAP2), glial (GFAP), oligodendrocytic and pericytic markers
(NG2) [48] (data not shown). Interestingly, a similar population of
nestin-positive cells could be extracted and in vitro expanded also
from choroid plexi, a tissue devoid of neural elements (data not
shown). We studied by quantitative RT-PCR the expression of dif-
ferent MSC markers (see Table 1); we found that nestin-positive
cells from leptomeninges displayed a different pattern of expres-
sion as compared with MSC. In addition, no evidence of adipocyte
and osteocyte differentiation was achieved with the standard pro-
tocols used for MSC (data not shown).

3200

Gene expression analysis was performed to compare the stem-
ness molecular signature and neural differentiation pattern of lep-
tomeningeal nestin-positive cells with that of other known stem
cell types derived from P15 rats, such as NSC from SVZ and bone
marrow mesenchymal stem cell (BM-MSC). All these stem cell
types were cultured in the same condition. Adherent/expanded
leptomeninges-derived cells showed higher stemness-related
gene expression, such as Pou5f1/0ct4, Tdgf1 (Cripto-1), Nanog,
(P < 0.01) as compared with adherent cultured SVZ-NSC. By con-
trast, adherent/expanded leptomeningeal cells expressed lower
neural differentiation genes, such as Mtap2 (MAP2) and Gfap as
compared with adherent cultured SVZ-NSC (Fig. 5F). These find-
ings were in line with data obtained by FACS and immunofluores-
cence, and they suggest a homogeneous phenotype of adherent/
expanded leptomeningeal cells.
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In vitro neuronal differentiation of expanded
leptomeninges-derived cells

To determine whether the leptomeningeal adherent/expanded cells
had neural differentiation potential, they were cultured with differ-
entiating medium for at least 1 month and then analyzed for the
presence of the neural marker MAP2. Real-time gene expression
analysis of leptomeninges-derived cells in basal condition and
after differentiation showed a statistically significant increase in
Mtap2 (MAP2) and decrease in nestin expression levels (P <
0.01). Immunofluorescence analysis showed that cells differenti-
ated in cultures into MAP2-positive neurons with high efficiency
(30-50% of cells, n = 6 experiments; Fig. 6B-D). Most of MAP2-
negative cells were nestin-positive. Some GFAP-positive astro-
cytes and rare NG2- or O4-positive oligodendrocytic precursors
were also found in the differentiated cultures (data not shown).
Moreover, MAP2-positive cells showed other features of neuronal
phenotype, including distinct neuritic arborization, dendritic
spines (arrows in Fig. 6C) and the expression of presynaptic pro-
tein synaptophysin (Fig. 6E). A fraction of the differentiated MAP2-
positive cells also expressed the GIuR2 sub-unit of the ionotropic
AMPA-glutamate receptor (Fig. 6G) and the glutamate decarboxy-
lase (GAD67), marker of GABAergic neurons (Fig. 6F).

These terminally differentiated cells were not residual adult
neuronal cells from tissue extract. This was demonstrated by incu-
bating nestin-positive cultures with BrdU for 9 hrs before inducing
differentiation. As shown in Fig. 6D, MAP2-positive cells were also
labelled by the anti-BrdU antibody, thus indicating that these neu-
rons derived from replicating cells.

Responses to depolarizing agents were analyzed by calcium
imaging after Fura-2 loading. Stimulation with 55 mM KCI caused
increase of the intracellular calcium concentration indicated by the
shift of the 340/380 ratio. Fast application of 55 mM KCI (approx-
imately 40 sec.) produced a significant response in 77% of the
cells studied (n = 36). Response reached a peak level after 9.7 +
1.9 sec. of KCI application and was sustained and reversible
Fig. 7A). Similar data were obtained from primary neuronal culture
(Fig. 7B). These data suggest that leptomeningeal cells in vitro dif-
ferentiated into neurones are excitable and express functional volt-
age-dependent calcium channels.

In vivo neuronal differentiation
of leptomeninges-derived cells

Transplantation studies were performed to determine whether
adherent/expanded cells derived from leptomeninges of P15 rats
could generate neural cell types in vivo. To recognize injected
cells, expanded leptomeningeal nestin-positive cells were derived
from EGFP-transgenic rats [29]. Cells were stereotaxically injected
into the hippocampus of adult rats (n = 8). Immunofluorescence
analysis with anti-EGFP antibody revealed the presence of EGFP+
cells in hippocampus 4-8 weeks after transplantation (Fig. 8).
EGFP+ cells were not detected in the control rat (non-injected
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adult rats or rats injected with vehicle only). Real-time PCR con-
firmed that EGFP expression was restricted to injected rats (data
not shown). To evaluate the differentiation of engrafted cells,
30-pm-thick sections were analyzed by confocal microscopy fol-
lowing immunostaining with anti-EGFP antibody and markers for
either undifferentiated cells (nestin) or neurons (MAP2) or astro-
cytes (GFAP) or oligodendrocyte precursors (NG2). The injection
needle track was recognizable in the CA2-CA3 hippocampal region
(Fig. 8A). EGFP+ cells close to the injection point were sur-
rounded by abundant GFAP-expressing astrocytes (Fig. 8B). Most
of the transplanted cells at the injection site expressed nestin
(Fig. 8C); EGFP+/GFAP+ and EGFP+/NG2+ double positive cells
were rarely detected (Fig. 8D and E).

Sixty days after injection, 49.8 = 17.9% of the EGFP+ cells
found in the hippocampus were also MAP2-positive (n = 4, see
Materials and Methods). Most EGFP+/MAP2- cells were nestin-
positive, undifferentiated cells. Most of the EGFP+ cells were
located in the CA1 region (Fig. 9A-D). In this site, some of the
grafted cells displayed complex morphology resembling the
pyramidal neurons of the hippocampus (Fig. 9B’). EGFP+/MAP2+
engrafted cells were detected in the pyramidal layer and in the stra-
tum oriens (Fig. 9C). Not all the EGFP+ cells observed in this layer
also expressed MAP2, even if they displayed neuronal morphology
and appeared to be well integrated within the CA1 (Fig. 9D and E).
Transplanted cells displaying distinct neuronal morphology and
MAP2 expression were also found in the hilus and in the sub-gran-
ular zone (SGZ) of the dentate gyrus (Fig. 9F).

Discussion

In this work, we analyzed the leptomeningeal compartment of the
rat brain to assess whether a stem cell population with neuronal
differentiation potential is present in this structure. Indeed, we
found that (/) nestin-positive cells are present in the leptomeningeal
compartment at the embryonic stages and persist up to adulthood,
(i) leptomeningeal nestin-positive cells can be extracted and cul-
tured as neurospheres with features similar to the NSC-derived
neurospheres, (/i) leptomeningeal nestin-positive cells can be cul-
tured as adherent cells and expanded in vitro as homogeneous
population of nestin-positive cells that highly express many of the
stemness-related genes, (/v) expanded nestin-positive cells can be
induced to differentiate in vitro with high efficiency to generate
excitable neurons and (v) expanded cells can differentiate into neu-
rons when injected into brains of living rats.

Previous studies described the distribution of stem cell mark-
ers inside the brain [49], but there was no evidence so far that lep-
tomeninges could be a stem cell niche. Nestin-positive cells were
seen in the most superficial portion of the rat brains in embryos
and post-natal puppies. These cells were neither glial nor muscle cells
or pericytes. Number and distribution of the nestin-positive cells
declined during development and become restricted to the lep-
tomeninges from post-natal day 15. At this age, nestin-positive
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Fig. 5 /n vitro expansion of the tissue extract in adherent cells culture conditions. (A) Time course experiment. Confocal images of nestin+/ NG2- cells
in adherent culture at 5 hrs, 1, 4, 8 and 12 days after plating. (B) CFU derived from leptomeningeal cells at different passages. Bars represent the CFU
number/million of plated cells = S.D. (B’) May-Grunwald Giemsa staining of a single colony of leptomeningeal adherent cells. (C) Transmitted light and
(D) immunofluorescence, nestin (red), of adherent leptomeningeal cells. (E) FACS analysis, carried out on expanded cells obtained from adult rats,
shows high expression of nestin and CD90. /n vitro expanded cell population does not express neuro-glial (VAP2, GFAP and 04), leukocyte (CD45),
endothelial (CD31, CD106) and haematopoietic stem cell markers (CD34). (F) Relative gene expression analysis. Leptomeningeal-derived nestin+ cells
and BM-MSCs fold changes in transcription, normalized to actin mRNA, have been shown compared to SVZ-NSCs.

Table 1 Assessment by quantitative RT-PCR of MSC marker expres-
sion by leptomeningeal nestin-positive cells

Leptomeningeal nestin-

Protein Gene  positive cells/BM-MSC P
fold change

Nestin Nes 49 <0.01

Collagen typela Coltal  0.58 <0.01

NG2 Cspgd  0.64 <0.01

CD34 Cd34 0.2 <0.01

Hyaluronate binding

protein (CD44) Cd44 1.16 0.16

Stem cell growth fac- Kit 3.06 ~0.01

tor receptor kit (C-Kit)
Endoglin (CD105) Eng 1.24 <0.01
Fibroblast growth

A — Fgfr 0.017 <0.01
Fibroblast growth Fgfr2 193 0,01
factor receptor 2

Fibroblast growth Fgfr3 26.93 0,01
factor receptor 3

Cripto-1 Tdgf1 5.48 0.06
Oct4 Pou5f1  9.86 <0.05
Homeobox transcrip- Nanog  3.34 <005

tion factor Nanog

Fig. 6 /n vitro neural differentiation of leptomeningeal cells after adherent
culture expansion (A) Real-time gene expression analysis of Nestin and
Mtap2 (MAP2) in leptomeninges-derived cells in basal condition and after
differentiation. The bars show folds change = S.D. of normalized mRNA
expression levels measured before and after differentiation (P < 0.01).
(B, C, D) Differentiated cells, stained with antibodies against MAP2 (red).
Arrows in (C) indicate dendritic spines. (D) BrdU staining (green) indi-
cates that the MAP2-positive cells (red) derived from replicating cells.
MAP2-positive cells also expressed components of the synaptic appara-
tus, including the presynaptic marker synaptophysin (E), the glutamate
ionotropic receptor sub-unit GIuR2 (G) and glutamate decarboxylase
(GADG67) (F). Scale bars 50 pm.
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Fig. 7 Calcium imaging analysis of in vitro neural differentiated leptomeningeal cells. (A) Changes in intracellular free calcium are indicated by variation
of 340 nm/380 nm fluorescence ratio in Fura-2-loaded cells. Depolarization induced by 55 mM KCI led to increase of 340/380 ratio in most of the cells
present in the field. (B) Average responses (mean + S.E.M.) expressed as peak and baseline values in differentiated cells and in primary neuronal cul-

tures; ***P < 0.001.

cells appeared as a layer associated to the leptomeninges and in
contact but distinct from the pia mater. Other nestin-positive cells
were abundant at known loci of neurogenesis, that is, SVZ, den-
tate gyrus and olfactory bulb [6]. Starting from these morpholog-
ical observations, we decided to analyze leptomeninges as a
potential source of nestin-positive stem/progenitor cells.

In this study, we report data from post-natal P15 rats. Preliminary
data indicate that extraction efficiency is higher in younger animals
and embryos. On the other hand, at P15 the cortical development is
complete. This limits possible contamination by other potential
sources of stem cells. This was confirmed by morphological exami-
nation of the stripped brains showing that SVZ, dentate gyrus and
olfactory bulb remained intact. It is interesting to note that a similar
population of nestin-positive cells could be extracted from choroid
plexi, a site free of neural cells further confirming that the newly iden-
tified population of cultured nestin-positive cells did not originate
from brain parenchyma. In addition, the number of cells that could
be obtained from the biopsies was large enough to conduct exten-
sive characterization of the leptomeningeal cells.

The nestin-positive cell population grown in vitro are likely to
originate from the nestin-positive cells present in the stripped tis-
sue and not from a process of transformation occurring in vitro.
This was indicated by the presence of the nestin signal in cells as
early as the cells become adherent to the flask following extrac-
tion. Previous work had shown that cells extracted from the whole
brain express both NG2 and nestin antigens in vitro; these cells
are endowed of neural differentiation potential [48]. The newly
identified population of nestin-positive cells extracted from the
leptomeninges were neither NG2- nor GFAP-positive cells, both
in vivo and after expansion in vitro.

3204

The extracted cells could be expanded as neurospheres or
adherent cultures. Real-time PCR was used to show that lep-
tomeninges-derived neurospheres had gene expression and mul-
tipotent differentiation potential comparable to those of SVZ-
NSCs. Floating neurospheres are heterogeneous cultures contain-
ing multipotent stem cells, cell progenitors and many neuro-glial
differentiating cells [35, 36]. We have used a different culturing
protocol and extracted cells were grown as an adherent layer. At
difference from the floating neurospheres, cells grew as a homo-
geneous cell population of nestin-positive/lineage-negative cells,
characterized by clonogenicity and differentiation potential. This
cell population showed high levels of stemness-related genes
[40], such as Oct4, Nanog, Cripto-1 and Nestin, but it did not
express differentiated neural genes. This procedure allowed a
clear-cut differentiation between proliferative and differentiative
stages of the cultured cells.

Leptomeninges-derived cells can be expanded and maintained
in undifferentiated stage for up to several months; by switching
medium, the cells can then be induced to differentiate in vitro with
high efficiency into neuronal lineage. In 1 month, up to half of the
cell population differentiated into MAP2-positive cells showing
many features of terminally differentiated neurons, including dendritic
spines, presynaptic proteins, receptors for neurotransmitters,
enzymes involved in neurotransmitter synthesis and depolarization-
induced changes of [Ca2+]i [50]. In conclusion, the nestin-positive
stem/progenitor cells extracted from leptomeninges and grown
in vitro have the potential to generate cells with several of the
properties that identify mature and functional neurons.

As a further step of characterization of the newly identified cell
population, we tested their neural differentiation potential in vivo.

© 2009 The Authors
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This was done by injecting expanded nestin-positive cells in hip-
pocampus and following their fate for up to 60 days. To distin-
guish injected from resident cells, leptomeningeal cells were
extracted and expanded from enhanced green fluorescent protein
(EGFP) transgenic rats [29]. Following intra-brain transplant, the
EGFP-positive cells persisted for up to 60 days into the hippocam-
pus when approximately half of the transplanted cells in the hip-
pocampus were MAP2-positive and had the morphological aspect
of differentiated neurons. We cannot exclude that the EGFP+
engrafted cells may fuse with resident neurons. Fusion of stem
cells with resident neurons has been shown to occur in some
experimental setting when in vivo differentiation is rare [51]. This
does not appear to be the case for leptomeningeal cells because

© 2009 The Authors
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Fig. 8 Confocal images
of injection site of trans-
planted leptomeningeal
cells. (A) GFP-positive
cells (green) into the
injection site in CA2 hip-
pocampal region stained
with  nuclear marker
DAPI (blue), scale bar
200 pm; (B) GFP-posi-
tive cells in the injection
site surrounded by glia
(GFAP red signal), scale bar
100 m; (C) Colocalization
of GFP-positive cells
with nestin in the injec-
tion site (yellow signal),
scale bar 100 pm; (D)
Colocalization of GFP-
positive cells with GFAP
(yellow signal) near the
injection site, scale bar
50 pm; (E) Colocalization
of GFP-positive cells
with NG2 (yellow signal),
scale bar 50 pm.

fEGFP

up to 50% the engrafted cells express the neuronal MAP2 antigen;
in addition, none of these cells appeared to be multi-nucleated. In
conclusion, the data suggest that nestin-positive stem/progenitor
cells extracted from leptomeninges may have capability of neural
differentiation also in vivo.

Somatic stem cells have been described in many adult organs
and are presumably responsible of the maintenance of tissue
homeostasis [3]. Stem/progenitor cells normally reside in vivo in
special microenvironments capable of regulating their persistence
and differentiation [4]. The discovery that stem/progenitor cells
are present in leptomeninges is new but not surprising. Indeed,
this region is strictly associated to pia mater cells that secrete
important chemotactic factors, such as SDF-1 [19], as well as several
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Fig. 9 Confocal images of in vivo leptomeningeal cells neural differentiation. (A) Transplanted EGFP+ cells (green) are localized in CA1 region, scale
bar 100 wm. (B) EGFP+ cells (green) showed complex phenotypes mimicking the pyramidal neurons of the hippocampus (CA1 pyramidal cell layer),
scale bar 100 wm; (B’) high magnification, scale bar 20 wm . (C) Z-stack reconstruction assembled from 10 serial 1.63-pm confocal sections. EGFP
(green)/MAP2 (red)/DAPI (blue)-positive cells in CA1 pyramidal layer, scale bar 50 wm. (C’, C”, C’’) confocal images pointing single cell (arrowhead)
co-localizations (yellow) of EGFP (green) and MAP2 (red), scale bars 20 wm. EGFP+ cells co-localizing with MAP2 (yellow) (D) or not (E), scale bars
20 pwm. Transplanted EGFP+ cells (green) co-localizing with MAP2 (yellow) in sub-granular zone (SGZ) and hilus of the dentatus gyrus, scale bar
200 wm (F). (F’) High magnification, scale bar 50 pm.
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extracellular matrix components endowed of trophic functions
[52]. In addition, it may be in contact/communication with other
known NSC niches such as the ventricular zone mediated by the cere-
brospinal fluid. Thus, this structure is a potentially favourable
microenvironment, or niche, capable of hosting stem/precursor cells.

Other somatic stem cells displaying some of the characteristics
of leptomeningeal nestin-positive cells, that is formation of neu-
rospheres in liquid culture and neuronal differentiation, and not
related to NSC have been previously described [53-58]. A transient
wave of MSC originates during embryogenesis from Sox1™* neu-
roepithelium [59]. In adulthood, MSC appears to reside in multiple
human organs as perivascular cells [60]. The origin and identity of
the stem/progenitor cells we described is unknown; however, our
data show that leptomeningeal nestin-positive cells are different
from NG2-positive perivascular MSC and have different localiza-
tion, as compared with all the other known somatic stem cells.

Further studies are needed to establish the in vivo role of lep-
tomeningeal nestin-positive cells in embryonic, post-natal and
adult CNS. As leptomeninges cover the entire CNS surface and
also follow vessels into the brain mass, it is possible that the adult
CNS has the potential to host regenerative stem cells over a large
proportion of its volume. Finding factors that may expand migra-
tion, replication and differentiation properties of the resident pop-
ulation of stem cells may be relevant for the improvement of
regenerative therapies for brain diseases.

J. Cell. Mol. Med. Vol 13, No 9B, 2009

Because of the persistence of these cells up to adulthood, their
proliferation capability in vitro, and their differentiation potential
into neuronal cells in vitro and in vivo, we suggest to name them
leptomeningeal stem/progenitor cells (LeSC) as a new entity.
Further characterization of LeSCs in normal and pathological con-
ditions may help to better understand the cortical neurogenesis as
well as their potential usefulness in the treatment of neurological
diseases when used as source of NSC-like population.
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