-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Catalogo dei prodotti della ricerca

Encoding Problemsin Logic Synthesis

by

Tiziano Villa

Laureain Matematica (Universita Statale di Milano, Italy), 1977
Mathematical Tripos, Part I11, D.A.M.T.P, Cambridge University, U.K., 1982
M.S. (University of Californiaat Berkeley) 1987

A dissertation submitted in partial satisfaction of the
reguirementsfor the degree of
Doctor of Philosophy

in

Engineering:
Electrical Engineering and Computer Sciences

inthe

GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Robert Brayton
Professor Shmuel Oren

1995

https://core.ac.uk/display/217490165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The dissertation of Tiziano Villais approved:

Chair Date

Date

Date

University of Californiaat Berkeley

1995

Abstract

Encoding Problemsin Logic Synthesis

by
Tiziano Villa

Doctor of Philosophy in Engineering:
Electrical Engineering and Computer Sciences

University of Californiaat Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

A key step in the implementation of a digital system is to map a given symbolic repre-
sentation into an implementabl e representation with two-valued logic variables. Thisstepis called
encoding and it impacts area, speed, testability and power consumption of the realized circuit.

| focuson a gorithmsto encode symbolicinput and output variables of finite state machines
(FSM's) represented by state transition graphs (STG's) or state transition tables (STT's), when the
cost function is minimum two-level area. Various techniques developed here were applied or are
applicable also to encoding problems with different cost functions and objectives. The technical
contributions can be divided into two parts. agorithms based on heuristic symbolic minimization
and agorithms based on minimization of generalized prime implicants (GPI’s).

| present two main results about symbolic minimization: anew procedure to find minimal
two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame
to check encodeability of encoding constraints and find codes of minimum length that satisfy
them. This frame has been used for various types of encoding constraints arising in problems that
range from encoding for minimum multi-level representation to race-free encoding of asynchronous
FSM's. Experimentsfor different applications are reported.

Then | present two main results on symbolic minimization using GPI's: an implicit
procedure to compute minimum or minimal encodeable covers of GPI's, and an implicit algorithm
to solve table covering problems. The implicit procedure to find minimum encodeable covers of
GPI’s features an implicit agorithm to check encodeability of encoding constraints, and it uses the
implicit table solver. Thelatter algorithmisageneral binate table solver and as such it isapplicable

to avariety of other applications. It has been applied aso to select implicitly minimum contained
behaviors in FSM state minimization. In the second part of the thesis the emphasisis on design
of agorithms based on the manipulation of binary decision diagrams (BDD’s). The reason is that
symbolic minimization requires the construction and manipulation of very large sets that can be
often constructed efficiently with BDD's.

Prof essor Al berto L. Sangi ovanni-Vincentelli
Di ssertation Conmittee Chairman

A miamadre, Marta Ricorda, e amio padre, Franco Villa,
ein memoriadei miei nonni, Cleonice e Giuseppe, Melaniae Valente
To my mother, Marta Ricorda, and to my father, Franco Villa,
and in memory of my grandparents, Cleonice and Giuseppe, Melania and Valente

Contents
List of Figures iX
List of Tables Xi
1 [Introduction 1
1.1 Logic Synthesisof Sequential Behaviors. 1
1.2 TheEncoding Problem: from Symbolicto Booleandomain 3
13 ThesisOvarview o e 7
2 Definitions 11
2.1 Seguentia Functionsand their Representation 11
22 FiniteStateMachines L 11
2.3 Taxonomy of EncodingProblems oo L. 17
2.4 Behavior vs. Structurein EncodingProblems 0oL 0oL 19
25 Boolean Algebrasand Boolean Functions 21
2.6 Discrete FunctionsasBoolean Functions oo 22
2.7 Two-level Minimization of Multi-Valued Functions 26
2.8 Multi-level Minimization of Multi-Valued Functions 29
29 MultipleVauedReations 30
210 Binary DecisionDiagrams oo 31
3 Complexity Issues 33
3.1 Computational Complexityo 33
32 CountingState ASSIgNMENtS L. e e 42
4 Previous and Related Work 45
4.1 Algorithmsfor Optimal Encoding 45
411 EalyContributions 46
412 Encoding for Two-level Implementation 48
4.1.3 Encoding for Multi-level Implementation 54
414 Experimenta Results o 62
4.2 Relation of State Assignment to Other OptimizationSteps. 67
421 State Assignment and State Minimizationo 67

422 State Assignment and State Minimizationo L. 69

CONTENTS

423 State Assignmentand Testability oL

5 Symbolic Minimization

5.1
52

5.3

5.4
55
5.6
5.7
5.8

59

Introduction
Encoding for Two-level Implementations,
521 Multi-valuedMinimization Lo oL L.
522 SymbolicMinimization oL
523 Completnessof Encoding Constraints
A New Symbolic Minimization Algorithm
53.1 Structureof theAlgorithm o oL
5.3.2 Slice Minimization and Induced Face and Dominance Constraints

SymbolicReduction L
SymbolicOring
Ordering of Symbolic Minimization
Satisfaction of Encoding Constraints. o oL
Symbolic Minimizationby Example oo oL
581 TheOring Effectin Two-level Logic.
582 A Worked-out Example of Symbolic Minimization
Experimental Results.

510 Conclusions e

6 Encoding Constraints

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

6.9

Introduction L.
Statement and Complexity of the EncodingProblems
Definitions e
Abstractionof theProblem o
Input Constraint Satisfaction L
6.5.1 Efficient Generation of Prime Dichotomies
Input and Output Constraint Satisfaction
6.6.1 Output Encoding Constraints
6.6.2 Satisfiability of Input and Output Constraints
6.6.3 Exact Encoding of Input and Output Constraints
Bounded LengthEncoding L o
6.7.1 HeuristicAlgorithmfor Input Constraints
Other Applications e
6.8.1 InputEncodingDon'tCares
6.82 Distance2Constraints.
6.8.3 AsynchronousState Assignment. L.
6.84 LogicDecomposition
6.85 LogicPartitioning L o
6.8.6 Limitationsof Dichotomy-based Techniques
Results e

6.10 ConclusionNs e

70

71
71
73
73
74
76
78
78
83
83
88
91
92
93
93
95
102
107

Vi

7

10

CONTENTS

Generalized Prime I mplicants 145
7.1 Introduction 145
7.2 BasicDefinitions. 147
721 FiniteStateMachines o o 147
722 Multi-valuedFunctions Lo 148
7.3 Generdlized Primelmplicants L oo 150
7.3.1 Definition of Generalized PrimeImplicants 150
7.3.2 Generdized Prime Implicants by Consensus Operation 153
7.3.3 Encodesbility of Generdlized Prime Implicants 155
734 Sufficiency of GPI'S o 157
7.4 Reduction of GPI's Computationto MV Primes Computation 158
741 AnExample 159
74.2 Définition of the Transformation 160
74.3 Correctness of the Transformation 161
7.4.4 Définition of aMax-Min Family of Transformations 168
7.5 Reation between GPI'sand Primesof Encoded FSM’s 169
7.5.1 Minimum Cover of Encoded FSM and Minimum Cover of Encoded GPI's 169
7.5.2 Primesof Encoded FSM vs. Primesof EncodedGPI's 170
753 AnAnadysisProcedure Lo 177
Minimization of GPI’s 179
8.1 Reduction of GPl Minimizationto Unate Covering 179
8.1.1 Exact Selection of an EncodeableCoverof GPI's 190
8.1.2 Approximate Selection of an Encodeable Cover of GPI's 193
8.2 Reduction of GPl Minimizationto Binate Covering 194
8.3 GPI'sandNon-Determinism 198
83.1 SymbolicDon'tCaresandBeyond 198
83.2 GPI'sfor Decomposition 203
Encodeability of GPI's 209
9.1 A Theory of Encodeabilityof GPI's 209
9.1.1 Efficient Encodeability Check of GPI's 209
9.1.2 Encoding of aSet of EncodesbleGPI's 215
9.1.3 UpdatingSetsandRaisingGraphs 217
9.14 Choiceof aBranchingColumn 224
9.15 ComputationofaLowerBound 226
Binate Covering 229
10.1 Introduction e 229
10.2 Relationto O-1Integer Linear Programming 233
10.3 Branch-and-Bound asaGenera Technique 234
10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Covering 235
10.4.1 TheBinary RecursionProcedure 237
1042 N-way Partitioning e 240

1043 Maximal Independent Seto oL 241

CONTENTS Vii

11

1044 Sdectionof aBranchingColumn 242
105 Reduction Techniques e 243
1051 RowDominance e e 243
1052 ROWCONSENSUS v v v et e e e e e e e e e 245
1053 Columna-Dominanceo 246
1054 Columng-Dominance L 247
1055 ColumnDominance e 248
105.6 ColumnMutua Dominance oo 248
1057 Essential Column 249
10.5.8 UnacceptableColumno 249
1059 Unnecessary Column oL oL 250
10510Trid Rule e 250
10.5.11InfeasibleSubproblem oL oo 251
105.12Gimpel’sReduction Stepo 251
10.6 ImplicitBinateCovering« e 253
10.7 Implicit TableGeneration L 255
10.8 Implicit Reduction Techniques 256
10.8.1 DuplicatedColumns e 258
10.8.2 Duplicated ROWS 259
10.8.3 ColumnDominance e 260
1084 RowDominance e e 261
1085 Essentidd Columns 262
10.8.6 UnacceptableColumns 263
10.8.7 Unnecessary Columnso 264
10.9 Other Implicit Covering Table Manipulations 264
10.9.1 Selection of Columnswith Maximum Numberof 1's 264
10.9.2 Implicit Selection of aBranchingColumn 266
10.9.3 Implicit Selection of aMaximal Independent Setof Rows 268
10.9.4 Implicit Covering Table Partitioning 268
10.10Implicit Two-level Logic Minimization 270
Implicit Minimization of GPI's 279
11.1 Implicit Representationsand Manipulations 279
11.1.1 Implicit FSM Representation 279
11.1.2 Positional-set Representation oL 280
11.1.3 Operationson Positional-sets 280
11.1.4 Reationsfor Implicit Encodesbilityof GPI's 282
11.2 Implicit Generation of GPI'sand Minterms 283
11.2.1 ImplicitGenerationof GPI's Lo L. 283
11.2.2 Reduced Representation of GPI'sand Minterms 285
11.23 Pruningof Primes 286
11.3 Implicit Selectionof GPI'S 286
11.3.1 Implicit Selectionof aCover of GPI's 286
11.3.2 Implicit Computationsfor Encodeability 288

11.3.3 Implicit Encoding of an Encodeable Setof GPI's 298

viii CONTENTS
11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI's 299

114 AWorked Example oL e 299
115 Verificationof COrmrectness« o oo i i e 302
116 ImplementationIssues e 304
116.1 Orderof BDD Variables 304

11.6.2 Computationof Set_Minimal 306

11.6.3 TheFilteringHeuristic. 306

117 EXPeriments o o oo e e e 307
11.7.1 AndysisoftheExperiments oo 308

11.7.2 Evauationof theExperiments 312

11.8 ConCluSIONS o o o e e 313

12 Conclusions 319

Bibliography 322

List of Figures

11
12
13

41
4.2
4.3
4.4
45
4.6
4.7

51
52
5.3
5.4
55
5.6
5.7
5.8
59
5.10
511

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Viewsof asequentia circuito 3
Hardware description language representation of traffic light controller 4
STG of trefficlight controllerexample 5
Origina and minimized symboliccover of anFSM 49
Codessatisfyinginput constraints 50
Two-level implementationof encoded FSMo 50
Initial and 1-hot encoded coversof FSM-1 51
Expanded and reduced minimized coversof FSM-1 52
Expanded and reduced implicants and don't care face constraintsof FSM-1 52
Initial cover, GPI's, encodable selection of GPI's and encoded cover of OUT-1 . . 55
Covers of FSM-2 before and after symbolic minimization 75
Encodedcoverof FSM-2. 76
Old Symbaolic MinimizationScheme 79
New Symbolic MinimizationScheme 82
Derivation of face and dominanceconstraints 84
Symbolicreduction-Partl 86
Symbolicreduction-Part2 87
Symbolicoring 90
First schemeto computethegain 92
Second schemeto computethegain L oL L. 93
Ordering of symbolic minimization 94
Satisfaction of encoding constraints using binatecovering 116
Efficient generation of primedichotomies 120
Inputencodingexampleo 121
Example of feasibility check with input and output constraints 123
Removdl of invdid dichotomies 124
Maximal raising of dichotomies L. 125
Feasibility check of input and output constraints 126
Exact encoding constraint satisfactiono 129
Example of exact encoding with input and output constraints 130

Exampleof cost functionevaluation Lo 132

LIST OF FIGURES

71 Coversof FSMleoncino L 159
7.2 GPI'sof FSM leoncino before post-processing. 162
7.3 Thecircleofencodings e 171
74 Thecircleof primes e 172
81 Mintermsof FSM leoncino 180
8.2 Extended representation of the mintermsof FSM leoncino 181
83 GPI'sof FSMleoncino. 182
84 Coveringtableof FSM leoncino 183
8.5 Output coveringtableof FSM leoncino L. 185
8.6 Next-statecoveringtableof FSM leoncino. 186
8.7 Exactsdectionof GPI's 192
8.8 Approximatesdectionof GPI's oL 194
89 Primesof thesymbolicrelation. L. 202
9.1 Encodesdbilitycheck 211
9.2 Detectionof invdiddichotomies. L. 212
9.3 Rasingof dichotomies. e 212
94 Exactencodingof constraints oo 216
10.1 Transformation from linear inequality to Boolean expression. 234
10.2 Structureof branch-and-bound. oL 236
10.3 Detailed branch-and-bound algorithm. 239
104 N-way partitioning. e 241
105 Howof reductionrules. 244
10.6 Implicit branch-and-bound algorithm. 253
10.7 Implicitreductionloop. L 257
10.8 Pseudo-codefor Lmax. 265
10.9 BDD of F'(r, c) toillustratetheroutineLmax 267
10.10Implicit n-way partitioning of acoveringtable. 269
10.11Recursive computationof mazcrg(Q) 274
10.12Recursive computationof mazcrp(P) 276
11.1 Implicit computation of primeimplicants 285
11.2 Implicit encodeability computations oL 290
11.3 Implicit encodeability computations Lo Lo 295
11.4 Computation of codes satisfyingaselectionof GPI's 298
11.5 Approximateimplicit selection of GPI's- Detailedview 300

11.6 Computation of minimized encoded covers and correctnesscheck 303

Xi

List of Tables

41
4.2
4.3

5.1
52
5.3
5.4

111
11.2
11.3
114
115
11.6

Comparison of FSM’s encoding for two-level implementation. 64
Experiments on FSM’s encoding for two and multi-level implementation 66
Multi-level input encoding comparison oo oL 68
Statisticsof FSM’s L 103
Results of ESP_sA with different ordering heuristics 104
Measured parameterSOf ESP.SA L 105
Comparison of FSM’s encodingsfor two-level implementation 106
GPI's of small examples from the MCNC benchmark and others. 310
GPI’'s of medium examples from the MCNC benchmark and others. 311
Selection of aminimal encodeable GPl cover 315
Selection of aminimal encodeable GPl cover 316
Final solutionsand comparisonwithNOVA 317

Final solutionsand comparisonwithNOVA 318

Acknowledgements

| am very grateful to Prof. Alberto Sangiovanni-Vincentelli, who has been my research
advisor throughout al the years in graduate school and has made me possible to pursue higher
education in Berkeley, by associating meto a very distinguished research group that he, more than
anybody else, contributed to create. | hope to continue my association with him and to carry on his
vision of rigorous mathematical modelling applied to relevant engineering problems.

Prof. Robert Brayton has been a constant source of scientific inspiration and has followed
closely my progress, contributing with advice to most of my research activities. He has been a
model of dedication to scholarship and gentleman’s style.

Prof. Shmuel Oren kindly agreed to bein my Thesis Committee. He was part also of my
Qudifying Committee, together with Prof. Jan Rabaey.

| was honoured to embark, 3 years ago, on ajoint research project, SILK, with Timothy
Kam. The results of this common endeavor are documented in many chapters of this dissertation
and in published papers. Tim has aways been a source of ingeniousideas, effective solutionsand
an example of persona and scholarly integrity. | will count him aways as a great friend and a
precious work colleague.

Since my early timein Berkeley | shared personal friendship and work cooperation with
Luciano Lavagno and Alex Saldanha. | carried on fruitful research with Alex presented also in
some chapters of this dissertation. | met Luciano as a colleague in Italy and since then we have
been faithful friends and co-workers. | looked often for Rajeev Murgai to discuss a hard technical
point or share apersona discussion, relying on his keen mind and human wisdom.

Among those with whom | interacted in the group a specia mention goes to Arlindo
De Oliveira, with whom | hope to continue a Southern European research connection, Yosinori
Watanabe, Felice Baarin, William Lam, Huey-Yih Wang, Yuji Kukimoto, Rick McGeer, Gitanjdi
Swamy who contributed efficient software for a prototype of mine, and Tom Shiple. They were
always available for discussing sticky points, sharing an impressive knowledge in their fields of
expertise.

Among established professors and researchers outside, Fabio Somenzi, Ney Calazans,
Sharad Maik, Giovanni De Micheli, Srinivas Devadas, Pranav Ashar, Bruce Holmer, and Kurt
Keutzer were available to discuss technical questionsand share literature. | thank Kurt for sending
meadraft of apaper on computationa complexity of logic synthesis. Prof. Eugene Goldberg of the
Academy of Sciences of Belarus has been recently in contact with me, updating me on his progress

in topics of common interest. | look forward to intensify our cooperation.

The Berkeley CAD group has been alively place thanksto the many outstanding students
that are (or have been) part of it: Krishnan Sriram, Jagesh Sanghavi, Chris Lennard, Cho Moon,
Serdar Tasiran, Szu-Tsung Cheng, Stephen Edwards, Vigyan Singha, Adnan Aziz, Desmond
Kirkpatrick, Mark Beardslee, Paul Stephan, Sunil Khatri, Harry Hsieh, Amit Narayan, Luca Carloni.

A specid acknowledgement goes to my wife, Maria De Nigris, who has been ablessing
for me since when we met and then started a family, enriched four years ago by the birth of Marta
(and soon to be increased by anew member). Mariaand Marta put up with me putting work duties
above family duties. | am looking forward to long years of joyful lifein common. | hope to prove
to Mariathat it was worthy for her to leave her secure lifein Itay to join me here.

No words would be enough to thank my mother, Marta Ricorda, and father, Franco, for
having nurtured me throughout the years, and aways supported me in any possibleway. Given that
| wasin afar away country during the last years, | was almost never to the side of my mother who
has been fighting an uphill battle against illness. May the God of life give her strength and some
more time to spend with us. To them, and to the grandparents, | dedicate this humble achievement

as atoken of gratitude.

Chapter 1

| ntroduction

1.1 Logic Synthesis of Sequential Behaviors

Thetask of logic synthesisisto produceacircuit that reaizes a given behavior. We will be
concerned with sequential behaviors, that can be defined as mappings of sequences of input vectors
to sequences of output vectors. When the mapping of an input vector does not depend on the input
vectors previously seen in the current input sequence, the behavior is said to be combinational. The
origina specification may be described in ways ranging from natural languages to formal hardware
description languages or algorithmic formalisms. Often the wanted behavior is specified only on a
subset of the input sequences, leaving therest as adon’t care condition to be freely exploited by the
implementor, or the specification may admit some possible behaviors as equally acceptable. These
situations are referred a so as non-determinism of the specification. A given specification (or set of
specifications, if we interpret nondeterminism as expressing a set of behaviors, out of which oneis
implemented) may be redlized by alarge variety of circuits al reproducing the wanted sequential
behavior, but very different in terms of structure and characteristics.

An automatic way of synthesizing digital circuitsisto input a description of the behavior
in textual or graph format to an high-level synthesis system, that will perform scheduling and
alocation and produce a register-transfer level description of the synthesized design, that consists
of a controller and a data path. A controller captures the dynamics of a sequentia behavior, while
the data path operates on the data under the supervision of the controller. This RTL description can
then be optimized by means of logic synthesis.

A controller can be produced by an high-level synthesistool, or it can be provided directly
by the designer or extracted from an aready existing circuit. A controller is usualy specified by

2 CHAPTER 1. INTRODUCTION

means of a finite state machine (FSMV), that is a discrete dynamical system translating sequences of
input vectors into sequences of output vectors. FSM’s are aformalism growing from the theory of
finite automata in computer science. An FSM has a set of states and of transitions between states,
the transitions are triggered by input vectors and produce output vectors. The states can be seen as
recording the past input sequence, so that when the next input i s seen atransition can be taken based
on the information of the past history. If a system is such that there is no need to look into past
history to decidewhat output to produce, it hasonly one state and therefore it yieldsa combinational
circuit. From the other side, systems whose past history cannot be condensed in a finite number
of states are not physicaly realizable. FSM’s are usualy represented by state transition graphs
(STG’s) and state transition tables (STT's), that are equivaent ways of enumerating al transitions
as edges of a graph or rows of atable. They can be seen as symbolic two-level representations,
because they map naturally into two-level logic after encoding the states (and any other symbolic
variables) with binary vectors. In the other words, the edges of the graph (rows of the table) can be
interpreted as symbolic representations of and-or logic.

A typical logic synthesis procedure includes FSM restructuring, like state minimization,
followed by a state assignment step to obtain a logic description that can be mapped optimally
into a target technology. Often optimization is done first on a representation independent from the
technology, as in the multi-level synthesis system sis, where the number of literals of a Boolean
network isminimizedfirst, and then the Bool ean network i s mapped using the cellsof agivenlibrary.
Optimization and mapping depend not only on the target technology (PLA’s, custom IC's, Standard
Cdlls, Field Programmable Gate Arrays), but aso on the cost functions. besides area, speed and
power consumption are of growing importance. Moreover, issuesliketesting and verificability play
animportantrole. Attheend of logic synthesisasequential behavior isrepresented by aset of logic
gates. Views of a sequential behavior are shownin Fig. 1.1.

Given a system, the overall theoretical objective is to synthesize a circuit that optimizes
a cost function involving area, delay, power and testability. It is very difficult to come up with
mathematical modelsthat capture the problem in its generality. Furthermore, only for very limited
domains, e.g., two-level logic implementations, there is a clearly defined notion of optimality and
algorithmsto achieve optimality. Moreover, with complex cost functions and a very large solution
space, agood model must nhot only be "exact", but a so amenableto efficient synthesisa gorithmson
problemsinstances of practical interest. A way to copewith complexity isto pursuethe optimization
objective by breaking down the global problem into independent steps, each having arestricted cost
function, at the expense of jeopardizing global optimality. For instanceit is customary to minimize

Primary Input

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN 3

-—1/1
0
inl — 5
[oX
. —]
in2 — O
— outl %, —

I ~~~

in 3 —j £ l o

= | o =

o I o o

| R
|_\

1 - =

in 4 - Io =

= S

- S =

Present State Next State
Lat ch <<
Regi sters and Latches _ = State Transition G aph

Figure 1.1: Views of asequentid circuit

the states of an FSM before encoding it: there is no theoretical guarantee that a state-minimized
FSM is adways a better starting point for state assignment than an FSM that has not been state-
minimized [55], yet in practice this approach leads to good solutions, because it couples a step of
behaviora optimization on the state transition graph (STG) with an encoding step on a reduced
STG, so that the complexity of thelatter's task isaleviated.

1.2 TheEncoding Problem: from Symbolic to Boolean domain

The specification of a sequential behavior may include binary and symbolic variables.
As an example, consider the well-known Mead-Conway traffic light controller [90]. Figure 1.2
presents a description in the BDS language from [127], as slightly modified in [84] to highlight the
symboalic nature of the variables. An STG and STT representation of the FSM denoted by the BDS
descriptionis shownin Fig. 1.3.

The specific syntax and semantics of BDS are unimportant here: it suffices to say that
they express naturaly the evolution of the traffic light controller. Let us focus on the use of
symbolic variables, i.e. variables that take on values from a set of symbols. For instance, the

CHAPTER 1. INTRODUCTION

MODEL traffic_light

hi, fl I control for highway and farmlights

st <0>, I to start the interval tinmer

next State =

c<0>, I indicating a car on the farm road

ts<0>, tl<0> I timeout of short and long interval tinmers

present State ;

ROUTINE traffic_light _controller;
nextState = presentState; st = 0;
SELECT present State FROM

[HG: BEG N
hl = GREEN, fl = RED;
IF ¢ AND tI THEN BEG N
nextState = HY; st = 1;
END;
END;
[HY]: BEG N
hl = YELLOW fl = RED;
IF ts THEN BEG N
nextState = FG st = 1;
END;
END;
[FG: BEGA N
hl = RED; fl = GREEN
IF NOT ¢ or tI THEN BEG N
nextState = FY; st = 1;
END;
END;
[FY]:BEG N
hl = RED; fl = YELLOW
IF ts THEN BEG N
nextState = HG st = 1;
END;
END;
ENDSEL ECT;
ENDRQOUTI NE;
ENDMODEL ;

Figure 1.2: Hardware description language representation of traffic light controller

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN 5

not(c and t1)/
hl = GREEN; fl = RED; st =0

ts/

hl = RED; fl = YELLOW: st= 0 ¢ and t1/

hl = GREEN; fl = RED; st =1

not(ts)/
hl = RED; fl = YELLOW; st =0

not(ts)/
hl = YELLOW; fl = RED; st =0

ts/

not(c) or t1/
hl = YELLOW; fl = RED; st =1

hl = RED; fl = GREEN, st=1

not(not(c) or t1)/
hl = RED; fl = GREEN; st =0

State Transition Graph: Example

PS IN NS ouT

HG (not(c and t1) HG hl = GREEN; fl= RED; st =0
HG candtl HY hl = GREEN; fl=RED; st=1
HY not(ts) HY hl = YELLOW; fl = RED; st=0
HY ts FG hl = YELLOW,; fl = RED; st=1
FG not(not(c) or t1) FG hl = RED,; fl = GREEN; st=0
FG not(c) or t1 FY hl = RED; fl = GREEN; st =1
FY not(ts) FY hl = RED; fl = YELLOW; st = 0
FY ts HG hl = RED; fl = YELLOW; st =1

State Transition Table: Example

Figure 1.3: STG of traffic light controller example

6 CHAPTER 1. INTRODUCTION

variable representing the state of the traffic lightsis represented in symbolic form and can take on
four possible values. Similarly, the output variables representing the highway and farm lights are
symbolic and can take on three values. Because there are symbolic variables, we say that thisisa
symbolic specification.

Current digital circuits can only store one of two values, since available storage el ements
arehistablecircuits (even though experimenta multistablecircuits have been investigated and built).
Therefore one says that symbolic variables need to be encoded, i.e., each symbolic variable must be
replaced by a set of binary-valued (or two-valued) variables, to map an abstract specification onto
aphysical circuit. Let us examine more carefully the last statement.

Notice that also two-vaued variables need to be encoded, for instance, given a variable
C with values {green, red} one might map green to 0 and red to 1, or vice-versa. In this case,
given atwo-valued variable, one assigns to each of the two symbolic values one of the values of a
variable defined on the Boolean agebra {0, 1} (called alogic variable) . Problems like optimal
phase assignment of two-level logic attest that even the encoding of a two-valued variable may
affect considerably the size of the fina representation.

Therefore, rigorously speaking, encoding is the process of assigning to each value of a
symbolic variable X a unique combination of values of a set of logic variables defined on {0, 1}".
To have enough codes, it is hecessary that logn > | X |, where | X | isthe cardinality of X'. Thenthe
values of the encoding logic variables are mapped into stable levels of circuit signals. These subtle
distinctions are often ignored in common parlance, so that one simply says that encoding is a map
from values of symbolic variables to values of sets of binary variables.

When variables are defined on Boolean algebras, it is possibleto use the formalism of the
latter in the manipulation of logic circuits, aswas discovered independently by Nakasima, Shestakov
and Shannon [15].

For example, in the case of the traffic light controller, the four state values HG, HY, FG
FY may be represented as the bit patterns 00, 01, 10, 11 on two binary-va ued encoding variables.
The resulting logic depends on the chosen encoding and so do area, performance and testability
of the circuit. This gives rise to the encoding problem in logic synthesis wherein an encoding
needs to be determined for a symbolic variable such that the resulting logic is optimal under some
metric. The versions of the problem where the symboalic variables are inputs or outputs of the

combinational logic are referred to as the input and output encoding problems respectively. An

!Alternatively, one could encode C' with two logic variables, mapping, say, green to 01 and red to 10.

1.3. THESISOVERVIEW 7

FSM has a symbolic variable, the state, that appears both as input (present state) and output (next
state) variable. The encoding problem for FSM’s isreferred to as the state assignment problem and
is a case of input-output encoding, with the constraint that the values of the present state must be
given the same codes as the values of the next states. This taxonomy was first introduced in [91].

1.3 ThesisOverview

This thesis focusses on agorithms to encode symbolic input and output variables of
sequential behaviors represented by STG's or STT's, when the cost function is minimum two-level
area. Various techniques developed here were applied or are applicable aso to encoding problems
with different cost functions and objectives.

We can divide the technical contributions into two parts: algorithms based on heuristic
symbolic minimization (Chapters 5 and 6) and agorithms based on minimization of generalized
prime implicants (Chapters 7, 8, 9 and 11). Minimization of GPI’s required the development of
implicit techniques devel oped in Chapters 11 and 10.

Let usclarify briefly the two approaches. Classical |ogic minimizationaimsto find amin-
imum sum-of-products 2 expression of binary-valued inputs binary-valued outputs functions [87].
It was extended to functions with multi-valued inputs and binary-valued outputsin [139, 114, 112],
as multi-val ued minimization.

Thisextension inspired a solution to the input encoding problemin [92], that was applied
to encoding the present states of an FSM, and to other problems in combinationa synthesis.
The solution consists of performing a multi-valued minimization of the given function and then
converting the result to a two-valued sum-of-products 2, by satisfying certain conditions on the
codes of the states that are called input or face constraints. For any group of face constraints there
is a satisfying encoding, but one wants to find codes of minimum code-length that satusfy the
face constraints. We call encoding constraints any types of conditions imposed on the codes of a
set of symbols. We call encodeable a symbolic sum-of-products whose encoding constraints are
satisfiable.

When there are multi-valued output variables, we call symbolic minimization, according
to the terminology established in [91, 147], the problem of finding a minimum symbolic sum-
of-products that can be converted into a two-valued sum-of-products of the same cardinality. A

2A sum-of-product is also called a cover of product-terms.
3Also called an encoded sum-of-products.

8 CHAPTER 1. INTRODUCTION

procedure for symbolic minimization is completeif it can yield at least a minimum encoded sum-
of-products. A procedure for symbolic minimization has a part to construct a cover of symbolic
product-terms and a part to satisfy encoding constraints “ that let transform the symbolic cover
into an equivalent encoded cover. The encoding constraints required for a complete symbolic
minimization procedure invol ve new types of conditionson the codes of the states, that go under the
name of dominance, disunctive and digjunctive-conjunctive constraints. In [91, 147] algorithms
for symbolic minimization were proposed that used only face and dominance constraints.

Thefirst part of this dissertation contains two main results on symbolic minimization: a
new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive
constraints (Chapter 5), and a unified frame to check encodeability of encoding constraints and
find codes of minimum length that satisfy them (Chapter 6). This frame has been used for various
types of encoding constraints arising in problems that range from encoding for minimum multi-
level representation ° to race-free encoding of asynchronous FSM’s [74]. Experimentsfor different
applications are reported.

The procedure for symbolic minimization presented in Chapter 5 isnot complete because
it is not able to explore al possible symbolic cubes needed to build minimum symbolic covers.
Moreover, it does not use disjunctive-conjunctive constraints, that are required for completness
in some cases. This is why it is described also as heuristic symbolic minimization, and it is
reminiscent of the heuristic mode for classica minimization of two-valued logic. A complete
symbolic minimization agorithm was proposed in [39]. It extends to the symbolic case the two
main features of exact classictwo-level minimization: generation of aset of product-terms sufficient
to find at least a minimum cover, i.e. the primeimplicants, and computation of a minimum cover as
solution of aset covering problem, represented asatabl e covering problem [87]. To handlesymbolic
minimization, in [39] the notion of primeimplicantsis extended to the notion of generalized prime
implicants (GPI's) and the set covering problemis extended to a constrained set covering problem,
because it is not sufficient to find a minimum symbolic cover, but one must find a minimum
encodeable symbolic cover, i.e., aminimum symbolic cover whose associated encoding constraints
are satisfiable so that it can be mapped into an equivaent encoded cover. We will refer to thisexact
algorithm for symbolic minimization as minimization of GPI’s.

The second part of this dissertation contains two main results on symbolic minimization

“More precisely, one must check satisfiability of sets of encoding constraints, and, if they are satisfiable, find codes of
minimum length that satisfy them.

5Theory and algorithms for multi-level minimization of multi-valued input functions were presented in [85] and
applied to the encoding of the present state of an FSM for minimum multi-level literals.

1.3. THESISOVERVIEW 9

using GPI's. anhovel theory of encodeahility of GPI’s (Chapter 9), an implicit procedure to compute
minimum or minimal encodeable covers of GPI's (Chapter 11), and an implicit agorithm to solve
table covering problems(Chapter 10) ©. Theimplicit procedure to find minimum encodesbl e covers
of GPI's features an implicit algorithm to check encodeability of encoding constraints, and it uses
as akey subroutine theimplicit algorithm to solve covering problems described in Chapter 10. The
latter algorithm is a general binate table solver 7 and as such it is applicable to a variety of other
applications. Indeed it was originally developed to select implicitly minimum contained behaviors
in FSM minimization [66].

Inthesecond part of thethesi sthe emphasi sison design of implicit algorithms. Thereason
is that symbolic minimization requires the construction and manipulation of very large sets (the set
of GPI's, the set of encoding constraints and many others). Implicit techniques have been shownto
outperform traditional methodsin the task of computing the primes of logic functions[27, 53] and
of solving unate covering tables [53, 29]. Therefore, we deemed our application to be the perfect
challenge for implicit techniques and we did not save efforts to extend their capabilities.

We stress that GPI minimization is harder than standard |ogic minimization:

1. Thenumber of GPI’sismuch larger than the number of primes of functionswith multi-valued

inputs binary-valued outputs.

2. Choosing a minimum cover of GPI's is not sufficient. The cover must be aso encodeable,
i.e. it must be possible to find encoding functions such that the chosen symbolic primes
can be converted into two-vaued primes. A consequence is that some of the traditional
simplificationsthat can be applied to unate tables are disallowed @.

In other words, potentialy we are exploring al possible primesof all possible encodings. GPI’s can
be seen as templates of primes of encoded representations, by means of the existence of encodings
that map symbolic cubes into two-valued cubes. Experimenta results are reported that assess the
progress made and the bottlenecks still remaining.

This thesis contains 10 main chapters. In Chapter 2 basic definitions regarding FSM'’s,
Boolean logic, multi-val ued minimization and Boolean networks are provided.

5We say that an algorithm is implicit if it represents and manipulates sets and functions using binary decision
diagrams[16] as data structure.

A binate table represents general product-of-sums expressions, while a unate table represents product-of-sums
expressionswith only positive literals

8Constrained binate covering appears also in different problems, like finding minimum contained behaviors of nonde-
terministic FSM’s that can be composed with agiven FSM [63].

10 CHAPTER 1. INTRODUCTION

In Chapter 3 the computational complexity of some key problemsin logic minimization
and state assignment is demonstrated.

In Chapter 4 a survey of previous approaches to state assignment and other encoding
problemsis presented. Specia attention is given to the techniques based on symbolic minimization
that are at the heart of the technical contributions reported in this dissertation.

In Chapter 5 we present anew algorithm for encoding input-output symbolic variablesfor
two-level implementations. In particular the case of state assignmentsof FSM'sis considered. The
new agorithm is based on an extension of the scheme of symbolic minimization presented in [91]
and obtains better results than previously known through state-of-art tools[147].

In Chapter 6 we present comprehensive agorithms to check encodeability of sets of
encoding constraints, including face, dominance, disjunctive, conjunctive-digunctive constraints.
If aset of encoding constraintsisencodeable, it isshown how to find codes of minimum code-length
that satisfy them. These algorithms have been aready used in various applications, including our
symbolic minimization scheme, that motivated first their development.

In Chapters7 and 8 atheory of GPI minimizationispresented. Thetheory isanexact frame
to solve input and output encoding problems targetting optimal two-level area implementations.
The paradygm is based on extending the traditional notion of primeimplicantsto generalized prime
implicants. Optimum state assignment for two-level implementationissolved by findingaminimum
encodeable cover of GPI's. The theory of encodeability of GPI's is established in Chapter 9, with
an host of new results based on the notions of raising graphs and updating sets.

In Chapter 10 an implicit solution of table covering problems and other implicit compu-
tations needed to solve implicit GPl minimization are presented. The agorithms described here
may solve exactly binate table covering problems occurring in various phases of logic synthesis.
In Chapter 11 implicit algorithms to generate and compute minimum encodesbl e sets of GPI's are
presented. Results of a prototype implementation are discussed.

Finally Chapter 12 summarizes what has been achieved and what is | eft to be done.

11

Chapter 2

Definitions

2.1 Sequential Functions and their Representation

Sequential functions ! transform input sequences into output sequences. A sequenceisa
function from the set of natural numbersto any set. Here we are interested only to finite sets and
to "well-behaved" or "regular" sequential functions: those such that at any stage the output symbol
depends only on the sequence of input symbolswhich have been already received and such that they
can "hold" only a certain amount of the information received, i.e., they cannot always make use of
al the information contained in that portion of the input sequence which has been received. Such
sequential functions have been called retrospective finitary sequential functions by Raney [49]. A
sequential function can be represented in many possible ways. A naive representation would be to
give a collection of pairs of input and output sequences. Since these sequences are of unbounded
length, this would not be a practical way. For the class of regular functions mentioned above it is
possible to derive a finite state representation, that corresponds to the usua notion of finite state
machine (FSM) 2.

2.2 Finite State Machines

Retrospective finitary functions admit of afinite state representation. We are now going
to define formally FSM’s, that are the most common way of representing afinite state system. We

ICalled also sequential machines or mathematical machines. A sequential machine receives input symbols in a
seguence, works on this sequencein some way, and yields a sequenceof output symbols.

2\We note that the notion of stateis usually introduced at the structural level, but it can be done also at the function (or
behavioral level) as shown by Raney [49].

12 CHAPTER 2. DEFINITIONS

will see that an FSM represents a "behavior”, i.e., aregular sequentia function and that collections
of behaviors can be represented by adding non-determinism to the FSM, that so becomes a non-
deterministic FSM (NDFSM). Thesamebehavior of coursemay have many different representations.
Wewill seethat the chosen representation (or the one that happensto be available) affects thequality

of the implemention derived by an encoding step.

Definition 2.2.1 A non-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tuple
M = (5,1,0,T, R) where S represents the finite state space, I represents the finite input space
and O represents the finite output space. 7T is the transition relation defined as a characteristic
functionT : I x S x S x O — B. Onaninput ¢, the NDFSM at present state p can transit to a
next state » and output o if and only if 7'(z, p, n, 0) = 1 (i.e, (7, p, n, o) isatransition). There exists
one or more transitionsfor each combination of present statep and input . R C .S represents the
Set of reset states.

In this and subsequent definitions, the state space .S, the input space I and the output
space O can be generic discrete spacesand so .5, I and O can assume symbolicvalues[32, 114]. A
special caseiswhen S, I and O are the Cartesian product of copies of the space B = {0, 1}, i.e,
they are binary variables.

The above is the most general definition of an FSM and it contains, as special cases,
different well-known classes of FSM’s. An FSM can be specified by a state transition table (STT)
whichisatabular list of thetransitionsin 7. An FSM defines atransition structure that can aso be
described by a state transition graph (STG). By an edge p ﬂ n, the FSM transits from state p on

input ¢ to state » with output o.

Definition 2.2.2 Given an FSM M = (S,1,0,T, R), the state transition graph of M, STG(M)
= (V, F),isalabeled directed graph where each state s € .S correspondsto a vertexin V' labeled
s and each transition (¢, p, n, 0) € T' correspondsto a directed edgein F fromvertex p to vertex ¢,
and the edge is labeled by the input/output pair i/o.

To capture flexibility in the next state » and/or the output o from a state p at an input
i, one can specify one or more transitions (i, p, n,0) € 1. As said above, we assume that the
state transition relations 7' is complete with respect to ¢ and p, i.e., there is dways at least one
transition from each state on each input. Thisdiffersfrom the situationin formal verification where
incompl ete automata are considered.

2.2. FINITE STATE MACHINES 13

Relational representation of 7" allows non-deterministic transitions with respect to next
statesand/or outputs, and & so all ows correl ations between next states and outputs. Morespecialized
forms of FSM's are derived by restricting the type of transitions allowed in 7. FSM’s can be
categorized by answering the following questions:

Classical textsusually describethe Mealy and Moore model of FSM’s. For compl eteness,
they are also defined here as subclasses of NDFSM. A Meadly NDFSM isan NDFSM where there
existsanext staterelation’ A : I x S xS — B andanoutput relation* A : I xS x O — B suchthat
foral (i,p,n,0) € I xS xS x0O,T(i,p,n,0) = Llifandonly if A(i, p,n) = Land A(i, p,0) = 1.

Definition 2.2.3 A Mealy NDFSM isa 6-tuple M = (S,I,0,A/\, R). S represents the finite
state space, I representsthefiniteinput space and O represents the finite output space. A isthe next
state relation defined as a characteristic function A : 7 x S x S — B where each combination of
input and present state isrelated to a non-empty set of next states. A is the output relation defined
asacharacteristic function A\ : I x S x O — B where each combination of input and present state
isrelated to a non-empty set of outputs. R C .S represents the set of reset states.

A MooreNDFSM isan NDFSM wherethereexistsanext staterelationA : I xS xS — B
and anoutput relation A : S x O — B suchthatforal (i, p,n,0) € I xSxSxO,T(i,p,n,0)=1
if and only if A(i, p,n) = 1and A(p, 0) = 1.

Definition 2.2.4 A Moore NDFSM isa 6-tuple M = (S,1,0,A, N\, R). S represents the finite
state space, I representsthefiniteinput space and O represents the finite output space. A isthe next
state relation defined as a characteristic function A : I x S x S — B where each combination of
input and present state isrelated to a non-empty set of next states. A is the output relation defined
asa characteristic function A : S x O — B where each present state is related to a non-empty set
of outputs. R C .S represents the set of reset states.

As a specia case of Meady machine, Moore machines have its output depends on its present state
only (but not on the input).

The definition of Moore machine presented here is the one given by Moore itself in [96]
and followed by other authors [148]. The key fact is that the output is associated with the present
state. In other words, the common output associated to a given state, goes on all edges that leave

%A canbeviewed asafunctionA: T x S — 2%, andn € A(4, p) if andonly if n is a possible next state of state p on
input s.

A canbeviewed asafunction A : 7 x S — 2, ando € A(s, p) if and only if o is a possible output of state p on
input s.

14 CHAPTER 2. DEFINITIONS

that state. This is a reasonable assumption when modeling an hardware system. However, it is
common to find in textbooks [70, 58] a "dual" definition where the output is associated with the
next state. In other words, the common output associated to a given stateis on all edgesthat go into
that state, while edges leaving a given state may carry different outputs.

This second definition has the advantage that it is aways possible to convert a Meay
machine into aMoore machine. Instead with the first definition there are Mealy machinesthat have
no Moore equivalent. For example awire can be consider aMeay machine with one state and with
its input connecting directly to its output. It does not have an equivaent Moore machine.

An NDFSM is an incompletely specified FSM (ISFSM) if and only if for each pair
(¢,p) € I x S suchthat 7'(7, p, n,0) = 1, (1) the machine can transit to a unique next state n or to
any next state, and (2) the machine can produce a unique output o or produce any output.

Definition 2.2.5 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =
(S,1,0,A,\, R). S represents the finite state space, I represents the finite input space and O
represents the finite output space. A isthe next state relation defined as a characteristic function
A: T x5 xS — Bwhere each combination of input and present state is related to a single next
stateor to all states. A istheoutput relation defined asa characteristicfunction A : I x S xO — B
where each combination of input and present state is related to a single output or to all outputs.
R C S represents the set of reset states.

Incomplete specification is used here to express don't cares in the next states and/or
outputs. We warn that even though “incompl etely specified” is established terminology in the logic
synthesisliterature, it conflictswith thefact that ISFSM’s have atransitionrelation 7 that isactualy
completely specified with respect to present state p and input ¢, becausethereisat | east onetransition
for each (¢, p) pairinT.

Other classes of NDFSM'’s have been recently characterized in logic synthesis applica-
tions. Most noticeabl e are pseudo non-deterministic FSM’s (PNDFSM's) that are such that for each
triple (i, p,0) € I x S x O, there is a unique state n such that 7'(i, p, n,0) = 1°. Since these
machines are not of direct interest to the investigationsreported in this dissertation we will not give
aformal taxonomy.

A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM
where for each pair (i,p) € I x S, thereis a unique next state n and a unique output o such that

They are called "pseudo" non-deterministic becausetheir underlying finite automaton is deterministic.

2.2. FINITE STATE MACHINES 15

T(i,p,n,0)=1,i.e, thereisauniquetransition from (, p). In addition, R contains a unique reset
state.

Definition 2.2.6 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be
defined as a 6-tuple M = (S,1,0,6,A,r). S represents the finite state space, I represents the
finite input space and O represents the finite output space. § isthe next state function defined as
61 x5 — Swheren € S isthe next state of present state p € S oninput ¢ € [if and only if
n = 6(7,p). Aistheoutput functiondefinedas A : I x .S — O whereo € O isthe output of present
statep € Soninput: € [ifandonlyifo = A(¢,p). r € S represents the unique reset state.

A Moore DFSM isaMoore NDFSM wherefor each pair (¢, p) € I x 9, thereisaunique
next state » and for each p € .S auniqueoutput o suchthat 7'(, p, n, o) = 1. In addition, R contains

auniquereset state.

Definition 2.2.7 AMoore DFSM can be defined asa 6-tuple M = (S, 1,0, 4, A, r). S represents
the finite state space, I represents the finite input space and O represents the finite output space. §
isthe next state function defined asd : 1 x S — S where n € S isthe next state of present state
p € Soninput: € [ifandonlyifn = é(7, p). Aistheoutput functiondefinedas A : S — O where
o € O istheoutput of present statep € S ifand only if o = A(p). r € S represents the reset state.

Wenow show that aDFSM redizesabehavior whilean NDFSM redlizesaset of behaviors.

Definition 2.2.8 Given a finite set of inputs / and a finite set of outputs O, a trace between [and

O isapair of input and output sequences (o, o,) whereo; € I*, 0, € O* and |o;| = |o,].
Definition 2.2.9 Atrace set issimply a set of traces.

Definition 2.2.10 AnNDFSM M = (S, 1,0, T, R) realizesatrace set between / and O fromstate
so € S, denoted by £(M|,,) ©, if for every trace ({io, 71, . - -, %;}, {00, 01, . - ., 0;}) inthe trace s&t,
there exists a state sequence s1, sp, . . ., s;41 suchthat Vi : 0 < k < j, T'(ig, Sk, Sk+1, 08) = L.

Definition 2.2.11 An ISFSM M = (S, 1,0,A,\, R) realizes a trace set between I and O from
state sg € .5, denoted by £ (M |s,), if for every trace ({ig, 1, ..., ¢;}, {00, 01,...,0;}) inthetrace
set, there exists a state sequence s1, sy, . . ., 541 Suchthat vk : 0 < k£ < j,

8If the NDFSM M isviewed asaNFA A which alphabetisZ = I x O, thetrace set of M from astate so corresponds
to the language of A from so, and both will be denoted by £(3 |,).

16 CHAPTER 2. DEFINITIONS

® Spi1 € A(ik, Sk), and

e 0 € N(ig, sk).

The trace set redized by a deterministic FSM with inputs I and outputs O is caled a
behavior between the inputs I and the outputs O. A formal definition follows.

Definition 2.2.12 Given a finite set of inputs / and a finite set of outputs O, a behavior between 7
and O isatraceset, B = {(0;,0,) | |oi| = |o,|}, which satisfies the following conditions:

1. Completeness:
For an arbitrary sequence o; on I, there exists a unique pair in B whose input sequence is

equal to o;.

2. Regularity:
ThereexistsaDFSM M = (S, 1,0, 4, A, sg) such that, for each ((g, . ..,), (01,...,0;)) €
B, there is a sequence of states s1, sz, . . ., s;11 With the property that s;41 = (i, s;) and

op = A(ig, sp) forevery bk : 0 < k < j.

For each state in a deterministic FSM, each input sequence corresponds to exactly one
possi ble output sequence. Given an initia state, a deterministic FSM realizes a uniqueinput-output
behavior. But given a behavior, there can be (possibly infinitely) many DFSM’s that realize the
behavior. Thus, the mapping between behaviors and DFSM redlizationsis a one-to-many relation.

Any other kinds of FSM’s, on the other hand, can represent a set of behaviors because
by different choices of next states and/or outputs, more than one output sequence can be associated
with an input sequence. Moreover, multiple reset states allow aternative trace sets be specified;
depending on the choi ce of the reset state, abehavior within the trace set from the chosen reset state
can be implemented. Therefore, while a DFSM represents a single behavior, a non-deterministic
FSM (NDFSM) can be viewed as representing aset of behaviors. Each such behavior withinitstrace
set is called a contained behavior of the NDFSM. Then an NDFSM expresses handily flexibilities
in sequential synthesis. Using an NDFSM, a user can specify that one of a set of behaviorsisto
be implemented. The choice of a particular behavior for implementation is based on some cost

function such as the number of states.

2.3. TAXONOMY OF ENCODING PROBLEMS 17

2.3 Taxonomy of Encoding Problems

Synthesis of an FSM is the process of producing an implementation starting from a
behavioral specification of a sequential function. In our case we suppose that the starting point is
an STG or an STT. Combinational functionsare FSM’swith only one state. It was mentioned in the
introduction that we assume the usual paradigm of state minimizationfollowed by state assignment,
even though our encoding techniques do not depend onit.

Thestep that transl ates arepresentation where some variablesare symbolicinto onewhere
they are al binary-vaued is called encoding. An encoding must at least be correct, which means
that the encoded representation must behave as the symbolic representation (usually an encoding
must establish an injection from symbols to codes), but more interestingly it is often required that
the encoded implementation satisfies some further condition or optimality criterion. For instance,
supposethat the encoded representation must beimplemented with two-level logic, then adefinition
of optimum encoding may be that the encoded implementation after two-level minimization has
smallest area, or smallest number of product-terms. Also an encoding can be used to enforce a
structural property, like testability, of the encoded representation, i.e. that it is possibile to find
sequences of input vectors that distinguish a good and a faulty physical redization of the encoded
representation.

It should be noticed that aso the choice of the memory element (JK or RS or T or D
flip-flop) matters since an encoding can be optimal with one type of bistable, but not with another
one. We will assumethat unless otherwise stated memory elements are of type D, i.e,, they smply
transfer the input to the output at the appropriate time.

There is amost no end to the variations of optimality objectives that can be imposed,

according to different applications. We will review later a number of them.

Definition 2.3.1 Given the sets of symbols S; = {si;, 5i,, -+, 5:,} @ Sy, = {50;, S0y, -+ 5 S0, J

and a Boolean function:

f:4{0,1,2}" x S; — S, x {0,1,2}™,

an input-output encoding is given by a pair of integers k;, k, and a pair of injective functions
e; 1 S; = {0,1}% and e, : S; — {0, 1}*=. The encoded representation of f, i.e. therepresentation
of f where the symbolsare replaced by Boolean vectorsin By, and By, accordingtoe; and e, , is
denoted by fe. ...

18 CHAPTER 2. DEFINITIONS

Notice that the case of more than one symbolic variable in the input or output part can be treated
similarly 7.

The definition of encoding can be speciaized if symbolic variables appear only as input
or output variables. For instance, if symbolic variables appear only as input variables, one has an

input encoding problem:
Definition 2.3.2 Given a set of symbols S; = {s1, s2, - - -, 5, } and a Boolean function:
f : {07 1}n X S — {07 1 2}m7

an input encoding is given by an integer k; and an injective function ¢; : S; — {0,1}*. The
encoded representation of £, i.e. the representation of f where the symbolsare replaced by Boolean
vectorsin By, , according to e;, isdenoted by f, .

If symbolic variables appear only as output variables, one has an output encoding problem:
Definition 2.3.3 Given a set of symbols S, = {s1, s2, - - -, 5, } and a Boolean function:
f:{0,1}" = 5, x {0,1,2}",

an output encoding is given by an integer k, and an injective function e, : S, — {0,1}*. The
encoded representation of £, i.e. the representation of f where the symbolsare replaced by Boolean
vectorsin By, , according to e,,, is denoted by f., .

Since e isan injective function, different symbols are mapped into different codes and so

the encoded representation behaves as the symbolic representation.
Definition 2.3.4 Given an operator O an encoding € is optimal with respect to O if
O(fé) = Opte(o(fe))‘

Asan example, O can be the cardinality of atwo-level minimized encoded cover of f. and opt the

minimum.

Definition 2.3.5 Given a decision operator O an encoding € satisfies O if:
O(fe)

istrue.

"Let V4 and V2 be two symbolic variables taking values from sets Sy, and Sy, respectively. These may be replaced
by asingle symbolic variable V' taking valuesfrom Sv; x Sv,. Thisisin fact potentially better than considering V1 and
V> separately since the encoding for V' takesinto account the interactions between Vi and V5.

2.4. BEHAVIOR VS. STRUCTURE IN ENCODING PROBLEM S 19

As an example, O can be a testability procedure that given an encoded cover returns true if it is
testable, false otherwise.

Some encoding problems may have various sets of symbolic variableswith mutual depen-
dencies. A well-known oneisthe problem of assigning codesto the states of FSM’s, where the state
variable appears both as input variable (present state) and output variable (next state). Therefore a
common va ue must be assigned to the same symbol in the present state and next state variable. We
are going to repeat the definition for the state encoding or state assignment problem, sinceit is one

of the most widely studied encoding problems.

Definition 2.3.6 Given the sets of symbols S = {s1,s2,---,s,} and an FSM with transition
function:
f£:4{0,1,2}" xS —- S x {0,1,2}"™,

a state assignment or state encoding is given by an integer £ and an injective functionse : S —
{0,1}*. The encoded representation of f, i.e. the representation of f where the symbols are
replaced by Boolean vectorsin By, according to e, is denoted by f..

The optimality criteria investigated for state assignment have been more commonly the best two-
level or multi-level area of the encoded circuit. Attention has been paid aso to state assignment of
asynchronous circuits, where one must guarantee correctness, for instance that the change of the
state of the circuit does not depend on races among the transitions of signal values. Some work
has been done on state assignment for testability. Little work has been done on state assignment to
improve performance. Recently state assignment for low-power has received some attention, likely
to grow in the near future.

2.4 Behavior vs. Structurein Encoding Problems

Some issues deserve discussion at this point. Does the encoding always need to be a
function or can it be a mapping that assigns more than one code to a state (still preserving the
fact that a code cannot be assigned to more than one symbol) ? The answer isthat in generd it is
possible to derive e as a mapping that is not afunction. Given n symbolsto encode, one needs at
least k = log n bitsto distinguish them. The difference n — 2* givesthe number of spare codes that
are avail able and could be used to assign more than one code to astate. Therefore one could replace
"function " with "relation e" in the previous definitions. An intermediate degree of freedom would
be to define e as afunctioninto the set {0, 1, x}, where + denotes for output encoding a don’t care

20 CHAPTER 2. DEFINITIONS

condition, for input encoding both 0 and 1. One must say that rarely existing encoding algorithms
are ableto exploit directly thisdegree of freedom, so we choose the more restrictive definition where

f isafunction, unless otherwise specified 8.

Does the encoding function need to be always injective or two different symbols can be
given the same code ? The answer is that in general injectivity is necessary, unless in a given
application one has an equivalence relation among the symbols such that symbolsin the same class
of the equivalence relation do not need to be distinguished. We will see later such examples, as for
instance equiva ent states of a CSFSM.

It is important to underline that the optimality of an encoding can only be guaranteed
with respect to the starting symbolic representation. To be more specific, consider optimal state
assignment. If we start with a given symbolic cover of a CSFSM and try, say in an exhaustive way,
all possible encodings and choose the best according to a given cost function, we cannot rule out
that adifferent symbolic cover representing the same behavior can produce, after encoding, a better
result. Thefact isthat a CSFSM represents a behavior and that many different representations can
be given of the same behavior. We do not know how to explore all possible representations of a
behavior, for instance al possible STG's °. So we restrict our notion of optimality to the best that

can be done starting from a given representation.

The situation is even more complex with state assignment of ISFSM’s. An ISFSM
represents a collection of behaviors. We will see that optimal state assignment procedures for two-
level implementations have a limited capability of exploring different behaviors by the flexibility
of choosing how to implement the don’t care transitions (edges not specified or partially specified
in the description). But they cannot explore al possible contained behaviors as for instance it is
done by computing closed covers of compatible sets of states (a set of states is compatible if for
every sequence there is at least one output sequence that dl the states in the set can produce).
Therefore when doing state assignment of an ISFSM (or another type of FSM that contains more
than one behavior), one must gauge the optimality of state assignment against the fact that neither
all behaviorsnor al representations of the same behavior can be explored (unless otherwise shown).
Some proposals to use more behavioral information when encoding CSFSM’s (equivalent states)
and ISFSM'’s (compatible states) will be seen later.

8Unused codes are usually given as don’t care conditions when the smallest area of an encoded representation is
obtained.

90f courseit may not be necessary to explore all possible STG's representing a given behavior, one should characterize
the class of interesting STG's with respect to a certain notion of optimal encoding.

2.5. BOOLEAN ALGEBRASAND BOOLEAN FUNCTIONS 21

2.5 Boolean Algebras and Boolean Functions

This section provides a brief review of the background material on Boolean algebras and
Boolean functions. There are many classical expositions of it. We refer to [15, 32] for a complete
treatment.

Definition 2.5.1 Consider a quintuple (B, +, -,0, 1) in which B isa set, called the carrier, + and
- are binary operations on B, and 0 and 1 are distinct members of B. The algebraic system so

defined is a Boolean algebra provided the following postulates are satisfied:
1. Commutative Laws. For all a,b € B:
at+b = b4a
a-b = b-a
2. Distributive Laws. For all a, b, c € B:
a+(b-¢c) = (a+b)-(a+¢)
a-(b+c) = (a-b)+(a-c)
3. Identities. For all « € B:
O+a = a
l-a = «a
4. Complements. For any « € B, thereisa uniquedement «’ € B such that:
at+d = 1
a-a = 0
Useful identities can be derived from the axioms. Of very common use are De Morgan’s laws.

Definition 2.5.2 Given a Boolean algebra B, the set of Boolean formulas on the n symbols

x1, T2, ..., ¥, isdefined by the following rules:
1. The elements of B are Boolean formulas.

2. Thesymbolsz1, xo, .. ., x, are Boolean formulas.

22 CHAPTER 2. DEFINITIONS

3. If g and & are Boolean formulas, then so are:

@ (9)+ (h)
(b) (g)- (h)
© (9)

4. AstringisaBooleanformulaif and only if its being so followsfromfinitely many applications

of therules above.

Definition 2.5.3 An n-variable function f : B — B iscalled a Boolean function if and only if it
can be expressed as an n-variable Boolean formula.

2.6 Discrete Functions as Boolean Functions

Many functions needed to specify the behavior of digital systems are binary-vaued
functions of binary-valued variables ({0,1}" — {0,1}). These are also referred to as switching
functions [15]. The fact that al switching functions are aso Boolean functions [15] enables all
properties of Boolean functionsto be directly applied to switching functions.

However not al functions that arise in the context of circuit specification and design are
switching functions. We are especially interested hereto thosefunctions, likethe transition function
of an FSM, that are usually given as symbolic functions. These symbolic or discrete functionsare
in the most genera case multiple-valued functions of multiple-valued variables, It would be very
useful if discrete functions would be Boolean functions, as switching functions are. Apparently
thisis not the case, or at least one should check case by case if the requirements for being Boolean
functions are satisfied. Fortunately one can associate to a discrete function a Boolean function
which can be used to represent and manipulate the discrete function, capitalizing on al the niceties
of Boolean agebra, including compactness of representation. This association can be done both if
onetakestherelational or functional view of adiscrete function. This sectionis heavily indebted to
the expositionin [84].

Let f: FPox Py x...x P,_1— P, beadiscrete function with P; = {0,1,...,p;_1}.
Let P={FPox PLx...x P,}. fisnotaBoolean function sinceit does not meet the condition that
f: B" — B for some Boolean adgebra B. Correspondingto f thereistherelation R C P defined
in the natural way as the set of pointsin P consistent with f. Let B = 2, the power set of P, i.e.

2.6. DISCRETE FUNCTIONS ASBOOLEAN FUNCTIONS 23

the set of all subsetsof P. B isaBoolean agebra described by (2, U, N, ¢, P). Let ¢ : B — B
be defined as:

&e)=RnNz z€B (2.1
RNz isaBoolean formulaand hence ¢ isaBoolean function. Equation 2.1 isthe minterm canonical
formfor this function.

Letm € {Pox P1x...x P,_1}and(m) = {m} x P,. 1(m) istheset of n+ 1-tuples
corresponding to the n-tuple m that have al p,, possiblevaluesinthelast field. £ correspondsto f
in the sense that given any m, f(m) may be computed by ¢ as follows. £(v>(m)) isasingleton set
containing the tuple in R with thefirst n fields the same as that of m. Field n + 1 in thistupleis

f(m).

Example 2.6.1 The switching function correspondingto an AND gateisused to illustratethe above.
Here f : {0,1} — {0,1}. Consider m = (0, 1).

R = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}

v(m) = {(0,1)}x{0,1}

= {(0,1,0),(0,1,1)}

§(@(m)) = {(0.0,0),(0,1,0),(1,0,0),(1,1,1)}n {(0,1,0),(0.1,1)}
= 1(0,1,0)}

F(m) isthelast field of the n + 1-tuple (0, 1,0),i.e. f(m) = O.

Example 2.6.2 Each person in a certain university town in to be classified as being one of {
good, bad, ugly} (abbreviated as {¢, b, v }). This classification is to be done based on the person’s
occupation which is one of {professor, teaching assistant, outlaw} (abbreviated as {p, ¢, 0}) and
their nature which is one of {honest, selfish, cruel } (abbreviated as {4, s, ¢}). To be good you have
to be a professor or be honest and not an outlaw. Cruel outlaws are ugly. Everyone elseisjust bad.

The classification function is a discrete function f : {p,t,0} x {h,s,c} — {g,b,u}.
Consider m = (t, ¢).

R = {(p.h.9),(p,5,9),(p,c.9), (t, b, g), (t,5,0), (t,c,b), (0, h,b), (0,5,b), (0,c,u)}
b(m) = {(t,c)} x {g,b,u}
§(p(m)) = RNy(m)
= {(t,e,0)}

24 CHAPTER 2. DEFINITIONS

f(m) isthelast field of the » + 1-tuple (¢, ¢, b),i.e. f(m) =b.

By clustering pointsin the domain one can get a more compact representation of f. Let
B = 2P andm € P. Let m[j] be the value of field j in m. One natural way to cluster pointsin
P isto group dl points with the same value of m[j] (for some given ;) together and refer to them
collectively. Let ij =FPoX...xPi_1x5; xPiy1x...xX P,. Thus, ij hasall pointsfor which

m[j] € S;. For Example 2.6.2 Xép} isthe set of al pointsfor which m[0] = p. Note that ij €B
PJ_SJ
]‘ .

and ij =X

Theorem 2.6.1 Let y = {ij l7€40,1,...,n},S; C P;}. Letb € B. b canbeexpressed interms
of a Boolean expression restricted to elements of .

Proof: The statement needs to be proven only for the atoms of B, the singleton sets, since any other
element of B can be obtained by a union of the atoms. Let {a} be an atom and «[:] befield of a,
thena = N, (Xi{a[ﬂ}). |
Animmediate corollary of thisresultisthat R can be expressed as a Boolean expression restricted
to elements of y. Thusthe Boolean formulain Equation 2.1 can be re-written by expressing R asa
Boolean expression restricted to theelements of . In practice Theorem 2.6.1 isnot used to re-write
R, but rather R is derived directly from some description of the function.

Example 2.6.3 Consider f in Example 2.6.2. R is derived directly from the conditions specified
asfollows. The set of pointsin P that represent professorsor honest people who are not outlawsis
naturally expressed as. L

X u (Xih} N XéO})
This can be simplified to:

@ (7 0nd?)

Smilarly the set of points that represent cruel outlawsis: Xéo} N Xf}. The rest of the people are
obviously expressed as.

@O T 0 (87)
This can be simplified to:
(Xc{)t} A Xis,c}) U (X({)O} A Xih,s})

Thus, R can be expressed as:

S ud ndtn o ad nd adE h u d ndm iy u dH n T nde)

2.6. DISCRETE FUNCTIONS ASBOOLEAN FUNCTIONS 25

Inconclusion, taking therelational view of adiscretefunction, wehave associated aBool ean function
to adiscretefunction and described how the Bool ean formulacorresponding to thisBoolean function
can be represented compactly. This enables to apply any Boolean identity to simplify the Boolean
expression.

Instead of therelational view, we can manipulate discrete functions taking the functional
view. Suppose that the domain is partitioned based on the vaue of the function. Let M =
{mo, ™1, ..., mp,—1} beapartitionof Py x P1 x ...x P,_1 suchthat: m € n; & f(m) = 1. For
the switching function f in Example 2.6.1, 7o = {(0, 0), (0,1), (1,0)} and 71 = {(1, 1) }.

Each 7; may be described by its characteristic function f; defined as follows.

~

fZ’ZP()XPlX...XPn_l'—}{O,l} 1€ P,

~ 1 ifmemn
film) = .
0 otherwise
f; tests for membership in 7;; it evaluates to 1 for exactly the points in 7;. The following

representation has been commonly used to describe the f; in the literature. Let S; C P; and
X; beap;-valued variable. ij istermed aliteral of X; and is defined as:

1 ifm[j]les;
XSJ (m) = m(j] J
0 otherwise

X't . X isdefined as the logical AND of X and X .2, Similarly, X + X . is defined as
the logical OR of stl“ and XZ”. The complement of aliteral Xfﬂ is denoted 85ij and defined
as X = X%

J J

and sums of SOP forms) are constructed.

. In thisway sum-of-products (SOP's) and factored forms (recursive products

Example 2.6.4 For f in Example 2.6.1 the following is the SOP representation of the fi

~

Jo=x{% + x/[o
7 1 1
fi= x50 xY

Example 2.6.5 For f in Example 2.6.2 the following is the SOP representation for f, and f,.:
b - xpo(xnT)

fu = XPax(d

26 CHAPTER 2. DEFINITIONS

However, there seems to be no direct way to obtain f» sincethese expressions are hot Boolean and
DeMorgan’sidentitiescannot bedirectly appliedinthiscase, and if they do apply, it must be proven
separately for each expression. Thisisalimitation of this representation.

Along the lines of the previous derivation of the Boolean function £ from therelation R,
one can obtain ¢ from the expressi onsrepresenting the characteri stic functionsof the partitions. First
one derives a Boolean formulafor each factored form expression. Then these Boolean formulasare
combined to give £(x). So al properties for Boolean formulas hold for factored form expressions
and they need not be proven separately. We refer to [84] for a detailed derivation, that we simply
demonstrate on an example.

Example 2.6.6 For the switching function in Example 2.6.1:
W2 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)}
W% = {(0,0,0),(0,0,1),(1,0,0),(1,0,1)}
6’ = {(1,00
U’ = {010

X;O} = {(070707 0,1,0),(1,0,0), 1’1’0)}
w

)

)

,(1,0,2),(1,1,0),(2,1,2)}

,(0,1,2),(1,1,0),(2,1,2)}
)

) ((0,1,0), (
) ((1,0,0), (
) ((1,1,0),(
) ((1,1,0),(
) ((1,0,0), (
) ((1,0,2),(

{(0,0,1),(0,1,1),(1,0,1),(1,1,1)}
€0 = (P 0x) ned®) U (@ 0) aen)
= {(0,0,0),(0,1,0),(1,0,0),(1,1,1)} Nn=

This, as expected, isthe same as that derived in Example 2.6.1.

2.7 Two-level Minimization of Multi-Valued Functions
We review basic definitions of two-level multi-valued minimization. For amore complete
treatment the reader isreferred to [114].

Definition 2.7.1 Let p;,7 = 1,...,n be positive integers. Define P, = {0,...,p; — 1} for i =
1,....,n,and B = {0, 1, x}. Amultiple-valuedinput, binary-valued output function, f,isafunction

fiPAXPx---xP,— B

The function f has » multiple-valued inputs. Each input variable i assumes one of the p; valuesin
P,. Thevdue x € B isused when the function valueis unspecified (i.e., it isalowed to be either 0
or 1).

2.7. TWO-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 27

An n-input, m-output switching function can berepresented by amultiple-valued function
of n + 1 variableswhere p; = 2for: = 1,...,n, and p,+1 = m. The minimization problem for
multiple-output functions is equivalent to the minimization of a multiple-valued function of this
form [119].

Definition 2.7.2 Let X; be a variabletaking a value fromthe set F;, and let S; be a subset of F,.
X5 represents the Boolean function
5 { 0 ifX; g5

' 1 ifX;es;
Xf" iscalled aliteral of variable X;. If S; = 0, then the value of the literal is dways 0, and the
literal iscaled empty. If S; = P;, then the value of the literal isaways 1, and the litera is called
full.

Two-valued (or binary) functions are a specia case of multi-valued functions where
P, ={0,1} fori = 1,...,n. Inthe case of atwo-valued single-output function, some notational
simplification is then possible. A cube may be written as a vector on a set of variables with each
position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as
—, don’t-care), signifying the true form, negated form or both of the variable corresponding to that
position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the
number of 2 entries. A cube with £ entries or bits which take the value 2 is called a k-cube. A
minterm thusis a O-cube.

A product term (or cube) isaBoolean product (AND) of literals. A minterm or O-cube
isaproduct-term in which the sets of values of all literasare singletons. If aproduct term eval uates
to 1 for agiven minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product
term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-productsis said to
contain the minterm. If aliteral in a product-term is empty, the product term contains no minterms,
and is caled the null product (written (). The on-set of afunction isthe set of mintermsfor which
the function valueis 1. Likewise, the off-set isthe set of minterms for which the function valueis
0, and the DC-s&t is the set of mintermsfor which the function valueis unspecified.

In the definitions which follow, S = X1 X3?--- X5 and T = X;1X;?--- X" repre-
sent product terms.

The product term .S’ containsthe product term 7" (T" C S) if T; € S;fori=1...n. The
complement of theliteral X5 (written X ™) istheliteral X*~5¢. The complement of the product

28 CHAPTER 2. DEFINITIONS

term S (S) isthe sum-of-products |, F

Theintersection of product terms.S and 7' (S N T') isthe product term

SlﬂTl SgﬂTg SnnT,
Xl X2 b ‘Xnn n‘

If S;NT; =0 forsomei,then SNT = () and .S and T are said to be digjoint. The intersection of
covers I'and GG istheunionof fNgforadl f € Fandg € G. The distance between S and T
(distance(S,T))is|{i|S;NT; = 0}|.

The consensus of S and T" (consensus(S, T)) isthe sum-of-products

e
U Xfl”Tl .. .XZSiUTi o Xm0 T
=1

If distance(S,T) > 2then consensus(S,T) = 0. If distance(S,T) = Land S; N T; = 0, then
consensus(S,T) isthesingle product term XflnTl X PV XS0 f distance(S, T) = 0
then consensus(S,T') isacover of n terms. If the consensusof S and 7" isnonempty, it isthe set of
maximal product terms (ordered by containment) which are contained in .S U T and which contain
minterms of both S and 7". The consensus of two covers F' and G isthe union of consensus(f, g)
fordl fe€ Fandg € G.

The cofactor (or cube restriction) of S with respect to T (S7) is empty if S and T are
disjoint. Otherwise, the cofactor isthe product term

S1UTy SoUTs SnUTn
XPh xS

The cofactor of acover F' withrespect to aproduct term S istheunionof fs foral f € F.

An implicant of afunction isa product term which does not contain any minterm in the
off-set of the function. A prime implicant of a function is an implicant which is not contained
by any other implicant of the function. An essential prime implicant is a prime implicant which
contains aminterm which is not covered by any other primeimplicant.

The product term .S’ can be represented in positional cube notation as abinary vector in
thefollowing form:

0.1 pi—1 g 1 po—1

€1€1...01° T — €5C5...C5 el Pl

where c{ =0ifj ¢ 95;, and c§ = 1if j € S;. In other words, a symbolic variable that can
take values from a set of cardinality n is represented in positional cube notation by an n-bit vector
to denote a litera of that variable such that each position in the vector corresponds to a specific
element of the set. A 1inapositionin the vector signifies the presence of an element in theliteral

2.8. MULTI-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 29

while a0 signifiesthe absence. This method of representation is commonly known as one-hot. By
complementing the n-bit vector that represents the one-hot encoding of a symbolic variable, one
gets a representation called complemented one-hot.

Up to now we have introduced multi-valued inputs and binary outputs functions, rep-
resented by multiple-valued functions where the set of binary outputs is treated as one more
multi-valued input variable. Positiona cube notation allows aso to represent any function with
multi-valued input and multi-valued output variables. This is commonly done in programs like
ESPRESSO-MV, When a function with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded
and then minimized. But the minimization problem for functionswith multi-valuedinput and output
variables is not known to be equivalent to the minimization of a multiple-valued function of this
form. After 1-hot encoding the onsets of the minterms (values) of a symbolic output are treated as
disjoint and so are minimized separately. To handle the minimization problem of functions with
multi-valued input and multi-valued output variables the concept of generalized prime implicants
will be introduced | ater.

2.8 Multi-level Minimization of Multi-Valued Functions

We now introduce multi-level networkswith multi-valued input variables. By convention,
in this section we will we use upper case | etters for multi-val ued variables and |ower-case | etters for
binary-valued variables.

A sum-of-products (Sop) isaBool ean sum (OR) of product terms. For example: X {01}y,
isacubeand X {01}y o4+ X {84,y isan sop. A functionf may berepresented by an sop expression
f. Inaddition f may be represented as a factored form. A factored form is defined recursively as
follows.

Definition 2.8.1 An SOP expression is a factored form. A sum of two factored forms is a factored

form. A product of two factored formsisa factored form.

X 1018}y (X 103y, + X {8)y3) isafactored form for the sop expression given above.

A logic circuit with a multiple-valued input is represented as an Mmv-network. An mv-
network 7, is a directed acyclic graph (DAG) such that for each node »; in 7 there is associated a
binary-valued, mv input function f;, expressed in sop form, and a binary-valued variable y; which
represents the output of this node. There is an edge from »; to n; in 5 if f; explicitly depends
on y;. Further, some of the variablesin may be classified as primary inputs or primary outputs.

30 CHAPTER 2. DEFINITIONS

These are the inputs and outputs (respectively) of the mv-network. The mv-network isan extension
of the well-known Boolean network [12] to permit MV input variables; in fact the latter reduces to
the former when al variables have binary values. Since each node in the network has a binary-
valued output, the non-binary(mMv) inputs to any node must be primary inputs to the network. The
MV-network computes logical functionsin the natural way. Each node in the DAG computes some
function, the result of whichisused in al the nodes to which an edge exists from this node.

The cost of a boolean network is typicaly estimated as the sum over al nodes of the
number of literalsin aminimum (i.e. one with aleast number of literals) factored form of the node
function. This cost estimation has a good correlation with the cost of an implementation of the
network in varioustechnologies, e.g. standard cells or CMOS gate matrix.

2.9 Multiple-Valued Relations

Definition 2.9.1 A multiple-valued relation R isa subset of D x B™. D iscalled the input set
of R andisthe Cartesian product of n sets Dy x - - - x D,,,where D; = {0, ..., P,— 1} and P, isa
positiveinteger. D; providesthe set of valuesthat the i-th variableof 1) canassume. B™ designates
a Boolean space spanned by m variables, each of which can assume either O or 1. B™ iscalled
the output set of R. If P, is2for all i's, then R iscalled a Boolean relation. The variables of the
input set and the output set are called the input variables and the output variables respectively.
R iswell-defined if for every x € D, thereexistsy € B™ such that (x,y) € R.

We represent a relation R by its characteristic function R : D x B™ — B such that
R(x,y) = 1if and only if (x,y) € R. In the implementation, we represent a characteristic
function by using a multi-valued decision diagram (MDD, see [64, 136]). An MDD is a data
structure to represent a function with multiple-valued input variables and a single binary output,
which employsaBDD [16] astheinternal data structure.

An incompletely specified function is a specia case of arelation, in the sense that for a
given incompletely specified function f : D — B™, ardation F' C D x B™ can be defined so that
(x,y) € F if and only if for each output j, the value of the j-th output in y is equal to fU/)(x),
unless x isadon’t care minterm for the output, where) designates the j-th output function of f.
We may refer to therelation F' asthe characteristic function of f.

Definition 2.9.2 For agivenrelation R andasubset A C D, theimageof A by R isaset of minterms
y € B™ for whichthereexistsamintermx € A suchthat (x,y) € R,i.e {y|3Ix € A:(x,y) € R}.

2.10. BINARY DECISION DIAGRAMS 31

Theimageis denoted by r(A4). r(A) may be empty.

Definition 2.9.3 For a given relation R C D x B™, a multiple-valued function f : D — B™ is
compatible with R, denoted by f < R, if for every mintermx € D, f(x) € r(X). Otherwise f is
incompatiblewith R. Clearly, f < R existsif and onlyif R iswell-defined.

2.10 Binary Decision Diagrams

Definition 2.10.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each
nonterminal vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs,
childo(v) and child1(v). Each terminal vertex v islabeled O or 1.

Each vertex in a BDD represents a binary input binary output function and al vertices are roots.
The terminal vertices represent the constants (functions) 0 and 1. For each nontermina vertex v
representing a function F, its child vertex childo(v) represents the function /% and its other child
vertex childy(v) representsthe function F,. i.e, FF =7 Fy+v - F,.

For a given assignment to the variables, the value yielded by the function is determined
by tracing a decision path from the root to a termina vertex, following the branches indicated by
the values assigned to the variables. The function valueis then given by the terminal vertex label.

Definition 2.10.2 A BDD is ordered if there is a total order < over the set of variables such
that for every nonterminal vertex v, var(v) < var(childo(v)) if childo(v) is nonterminal, and

var(v) < var(childy(v)) if childq(v) isnonterminal.
Definition 2.10.3 ABDD isreduced if

1. it contains no vertex v such that childy(v) = childsi(v), and

2. it does not contain two distinct vertices v and v" such that the subgraphs rooted at v and v’
are isomorphic.

Definition 2.10.4 A reduced ordered binary decision diagram (ROBDD) is an BDD which is
both reduced and ordered.

32

CHAPTER 2. DEFINITIONS

33

Chapter 3

Complexity I ssues

3.1 Computational Complexity

In this section we will present some results on the computational complexity of state
assignment for minimum area. We refer to [46, 104, 9] as standard references on computational
complexity and the theory of N P-completness in particular. Computational complexity of logic
optimization problems has been discussed in [69], from which we will draw results.

An instance of a problem is encoded as a string (or word) of alanguage. So the solution
of a problem is equivalent to decide whether a given string (an instance of the problem) isin that
language or not. A decision agorithm is usualy given by means of a Turing machine, that is a
universal computational device. The game is to find out how much of space and time resources
a Turing machine must use to recognize words in the language. The resources taken by a Turing
machine are polynomialy related to those of the other commonly used computational mechanisms
(for instancea C program running on aVVon Neumann computer). Of coursethereareasoinsolvable
problems, but they are not of interest here.

Let L C >* bealanguage. The complement of L, denoted L, isthelanguage>* — L, i.e.,
the set of al stringsin the appropriate aphabet that are not in .. The complement of a decision
problem A (sometimesdenoted A COMPLEMENT), isthe decision problem whaose answer is"yes"
whenever A answers "no" and viceversa.

Example 3.1.1 SAT isthe problem of deciding if a given Boolean expression in conjunctive nor mal
form(CNF) hasa satisfying assignment. Given areasonableruleto encode any CNF expression, the
language SAT will contain all stringsthat encode instances of CNF expressions that are satisfiable.

34 CHAPTER 3. COMPLEXITY ISSUES

Then given any string one can construct an algorithmthat first checks whether the string encodes
a CNF expression and then finds if a satisfying assignment exists. SAT COMPLEMENT is the
problem: given a CNF, isit unsatisfiable ? Srictly speaking the languages corresponding to the
problems SAT and SAT COMPLEMENT are not the compl ements of one another, since their union
isnot 2* but rather the set of all stringsthat encode CNF’s.

A set of languages (representing decision problems) recognizable with the same amount
of computational resources and/or the same computational mode (for instance, deterministic vs.
non-deterministic) are said to be a complexity class. For instance, P is the class of problems for
which polynomia time is sufficient. N P is the class of problems that can be solved by a non-
deterministic Turing machine in polynomial time. Another characterization of N P isthe class of
problemswhose solution can be verified in polynomial time. Asan example SAT isin N P because
it takeslinear timeto verify if an assignment satisfies a CNF expression, but it seems hard to decide
whether a satisfying assignment exists and it is not known whether SAT isin P. If N P istheclass
of problems that have succinct certificates, co — N P contains those problems that have succinct
disqudifications. That isa"no" instance of aproblemin co — N P has a short proof if itsbeing a
"no" instance; and only "no instances' have a short proof. Alternatively, co — N P isthe class of
problemswhose complement isin N P. In genera for any complexity class ', co — C' denotesthe
class{L: L e C}.

Example 3.1.2 VALIDITY of Boolean expressions is in co — NP. We are a given a Boolean
expression ¢, and we are asked whether it isvalid, i.e. satisfiable by all truth assignments. If ¢
isnot a valid formula, then it can be disqualified very succinctly, by providing a truth assignment
that does not satisfy it. No valid formula has such a disqualification. Also VALIDITY of restricted
Boolean expressions in sum-of-product forms (SOP) isin co — NP. VALIDITY is also called
TAUTOLOGY.

Problems as hard as any in N P are called N P-hard. Problem A is at least as hard as
problem B if B reducesto A. B reducesto A if thereis atransformation R that, for every input
of B, produces an input R(z) of A, such that the answer to R(z) asinput to A isthe same as the
answer to = as input to B. In other words, to solve B on input « it is sufficient to compute R(z)
and solve A on R(xz). Of course R should be reasonably simpleto compute: often one requires that
R is computable by a deterministic Turing machine in space O(logn). More simply one wants a
reduction R that can be computed in polynomial time.

3.1. COMPUTATIONAL COMPLEXITY 35

A fundamental result due to Cook [46] showsthat SAT isas hard as any problemin N P,
i.e. knowing how to solve SAT efficiently (in polynomial time) would enable usto solve efficiently
any other problemin N P. By transitivity, to show that aproblem is N P-hard it is enough to show
that it isas hard as SAT. Any languageL in co — N P isreducibleto VALIDITY. Indeed, if L isin
co— NP, then L isin N P, and thusthereisareduction R from L to SAT. For any string =, z € L
iff R(2) issatisfiable. The reduction from L to VALIDITY is R'(z) = —R.

N P-complete problems are the N P-hard problems that are also in N P. In generd if
C'is complexity class and L isalanguagein C, L is C-complete if any language L' € C' can be
reduced to .. No N P-completeproblemisknowntobein P, but no super-polynomial lower bound
isknown either.

A problem as hard as any in co — NP iscdled co — N P-hard, which means that its
complement is N P-hard, i.e. as hard as any problem in NP. co — N P-complete problems are
the co — N P-hard problemsthat are also in co — N P, i.e. whose complementary problem is NP-
complete. Ingeneral if L is N P-complete, then itscomplement L = 5* — L isco — N P-complete.

It is not known whether co — N P-complete are harder than N P-complete ones. Still
co — N P-complete seem harder than N P-complete ones. e.g., deciding VALIDITY intuitively
reguires checking whether all assignments satisfy a Bool ean expression, while SAT can be answered
as soon as a satisfying assignment is found. So, unless a theoretical breakthrough proves that the
two classes coincide, it is useful to classify precisely aproblem as belonging into one vs. the other,
asit isrecommended in [69], reacting against sloppy statementsin the literature on agorithms for
computer-aided design.

Beyond P and N P there is a whole world of complexity classes. We are going to
introduce the rudiments of the polynomia hierarchy because they are needed to classify correctly
some versions of state assignment.

Say that a Turing machine is equipped with an oracle, when it has avail able a subroutine
tha charges one unit of computation to give an answer, e.g., an oracle could be a subroutine that
decides whether aword isin SAT. For instance, one names as P47 the class of problems that can
be solved in polynomial time by a deterministic Turing machine augmented with a SAT oracle. In
generd, if C'is any complexity class, C is the class of languages decided by machines as those
that decide the languages of ', only that they are also equipped with oracle A.

Example 3.1.3 Let (¥, k) be an instance of the problem EQUIVALENT FORMULAS, which con-
sists of deciding whether boolean expression £ (we will use Boolean expression and Boolean

36 CHAPTER 3. COMPLEXITY ISSUES

formula as synonyms) admits an equivalent formula £’ including, at most, & occurrences of literals,
where two Boolean formulas are equivalent if for any assignment of values F is satisfied iff £’ is
satisfied.

Theorem 3.1.1 SATISFIABILITY can be solved in polynomial time by a deterministic Turing ma-
chine with oracle EQUIVALENT FORMULAS.

Proof: There are only two types of formulas equivaent to a formulaincluding O occurrences of
literds, that is, aformulaconsisting only of Boolean constants: those equivalent to true, also caled
tautologies, that are satisfied by all possible assignments of values, and those equivalent to false
which cannot be satisfied by any assignment of values.

Let ' beaformulain CNFform. To decidewhether F issatisfiableit issufficient to check
first whether F' isatautology. If so, F is satisfiable; otherwise, we have only to check whether F is
equivaent to aformula containing 0 occurrences of literals. If thisisthe case, F isnot satisfiable,
otherwise it is satisfiable. The first check can be done in polynomial time on a CNF; the second
can aso be done in polynomial time by querying the oracle EQUIVALENT FORMULAS with the
word < F, 0 >. If the oracle answers positively, F isnot satisfiable, otherwiseit issatisfiable. W
No construction is known in the opposite direction: no deterministic Turing machine having an
NP-complete language as oracle and deciding EQUIVALENT FORMULAS in polynomial timehas
been found. It is however possible to define a nondeterministic Turing machine having the above

characteristics.

Theorem 3.1.2 EQUIVALENT FORMULAScan besolvedin polynomial timeby anondeter ministic
Turing machine with oracle SAT.

Proof: Non-determinism can be exploited to generate al possibleformulas £’ including, at most, &
occurrences of literals and to query the oracle to determine whether £’ is not equivalent to F, that
is, if =((=E'V E) A (-E Vv E)) issatisfigble. If thislast formulais not satisfiable, then £’ isthe
required k-literal formula. Conversdly, if al k-literal formulas £’ are not equivalent to I/, then the
instance (¥, k) does not belong to EQUIVALENT FORMULAS. []
Given aclass of languages C' define the class P¢ as
PY =] P*
LeC
and N P° as

NPC = U N pPL
LeC

3.1. COMPUTATIONAL COMPLEXITY 37

where P* and N P” denote the classes P and N P augmented with oracle L.

It followsthat the problem SATISFIABILITY belongstotheclass PEQUIVALENT FORMULAS
while EQUIVALENT FORMULAS belongsto N P54T | By iterating the previous definitions, one
gets the polynomial hierarchy. The polynomial hierarchy is an infinite set {=}, M}, A? : k& > 0} of
classes of languages such that

1 5 =505 = P.

2. 30

b= NP = coZh, and A, = PZ withk > 0.

Theinfiniteunion of al >} ’s (or of al M}’sor of &l A}) isdenoted as PH.

An aternate characterization of the polynomial hierarchy is as follows.

Theorem 3.1.3 For each k& > 0, alanguage L belongsto %} iffalanguage A € P and apolynomial
p exist such that

x €L & (Fy1) (Vo) - (Qur)[(z,y1, -, yk) € A]

where |y;| < p(|z]) with1 < ¢ < k and where the sequence of quantifiers consists of an alternation
of existential and universal quantifiers(¢) is3 or V if £ isodd or even).

Smilarly, for each & > 0, a language L belongs to I}, iff a language A € P and a
polynomial p exist such that

v € L (Vy1)Fy2) - - - (Qur)[(x, y1, - - -, yr) € A

where |y;| < p(|z]) with1 < ¢ < k and where the sequence of quantifiers consists of an alternation
of universal and existential quantifiers(¢) isV or 4 if £ isodd or even).

A word (z, [) belongs to the language associated with EQUIVALENT FORMULASIiff a
formulay; existssuch that, for all possible possible assignments of values v, ((z, k), y1,y2) € A
holds, wherethelanguage A € P isdefined as: ((z, k), y1,y2) € Aiff yp isanassignment of values
which satisfies the formula (=2 Vv y1) A (—y1 V) where y; denotes aformulawhich includes, at
most, & occurrences of literals. So EQUIVALENT FORMULAS isin 25.

Very few interesting problems have been shown to be compl ete with respect to agiven level
of the polynomial hierarchy. For example, it isnot known whether EQUIVALENT FORMULAS s
25-complete.

Let ¥ be aBoolean formulabuilt on a set of Boolean variablesqui where X; = {z;; :
1 < j < m;} with m; positive integer. The problem k-QBF consists of deciding whether the

38 CHAPTER 3. COMPLEXITY ISSUES

formula
AE) - (QXR)[E(Xy, - -+, Xir)]

istrue, where (3.X;) reads as "there exists an assignment of values to the variables z;,, - - -, Tip "
and (V.X;) reads as "for al assignments of values to the variables @;,, - - -, z;,, ". Foral k > 1,
k-QBF is 2} -complete (and thus k-QBF is one of the hardest problemsin 7).

Of the classes in the polynomial hierarchy we will need soon %%: the class of problems
solvable in polynomia time by a non-deterministic Turing machine augmented with an oracle in
N P. To strengthen the intuition, let us say that a problem in Z5 is such that not only finding a
solution requires the power of non-determinism, but also checking it, whilefor N P-complete ones
only the first task requires the power of non-determinism and the second oneis easy. So the fact
that a problemisin X3 and not in a lower complexity class is a valuable information also for the
algorithm devel oper.

Now we have the setting to state and prove the results related to some versions of state
assignment problems. State assignment for area hasthe goal to find an encoded FSM that givesthe
best two-level or multi-level implementation (another target could be some specific Programmable
Gate Array architecture). At the core one must minimize a logic function and produce the best

two-level or multi-level representation.

Definition 3.1.1 Given a representation of a Boolean function /' by means of the minterms of the
onset and positiveintegers k& and [, MIN-SOP-1 isthe problem "is there a SOP representation of £’

with & or fewer product-termsand [or fewer literals?".
Theorem 3.1.4 MIN-SOP-1isin N P-complete.

Proof: MIN-SOP-1isin NP. A non-deterministic Turing machines can guess a SOP representation
G with k£ or fewer product-terms and / or fewer litera's, then it must check whether &' is equival ent
to F'. The check can be done by replacing each product-termin G with the mintermsthat it covers.
Giventhat F' isavailable as a sum-of-mintermsit is easy to verify whether the minterms contained
in the representation of ' are all and only the mintermsthat describe F'.

MIN-SOP-1is N P-hard. Let usshow that MINIMUM COVER * reducesto MIN-SOP-1.
Consider an instance of MINIMUM COVER, we suppose for conveniency that the subsetsin '

IMINIMUM COVER: Given acollection C of subsetsof afinite set .S and apositive integer k < |C|, doesC' contain
acover for S of size< k,i.e. asubset ¢’ C C with |C’| < k such that every element of .S belongsto at least one member
of ¢’ ? It shown to be NP-complete in [46].

3.1. COMPUTATIONAL COMPLEXITY 39

and the set S are specified by amatrix whose columns are the subsetsin € and whose rows are the
elementsof S, such that entry (7, j) isaliff element i isin subset j and O otherwise. Say that there
are n rows and m columns. It has been shown by Gimpel [47] that one can build an incompletely
specified Boolean function on the set of variables z1, z2, - - -, 2,4, . [tSONSEt has as many minterms

as rows and a generic minterm m; is given by:
my; = 212+ Tj-17T; X541, Tm4n-

L et the primes of the function be as many as the columns of the origina table, with aprime P; given
by:

b=z, H T
JEF;

where F; = {j | a;; = 0}. The minterms of the dcset are the vertices contained in the primes that
are not minterms of the onset. Since minterm m; isin prime P, iff entry (¢, j) in thetableis 1, it
followsthat an instance of MINIMUM COVER has answer "yes" iff the corresponding instance of
MIN-SOP-1 has answer "yes" (same & used in both cases, [is hot needed). [|

Definition 3.1.2 Given a sum-of-products (SOP) representation of a Boolean function £ and posi-
tiveintegersk and/, MIN-SOP-2 isthe problem"isthere a SOP representation of F' with & or fewer

product-termsand [or fewer literals ?".
Theorem 3.1.5 [69] MIN-SOP-2isin co — N P-hard (lower bound).

Proof: We show that VALIDITY for SOP forms reduces to MIN-SOP-2. We aready stated the
well-known result that VALIDITY isco — N P-hard (precisely itisco — N P-complete). Consider
an instance of VALIDITY, i.e. a SOP form V. It is easy to check whether V' has at least one
satisfying assignment, otherwisetheanswer to VALIDITY of V isno. Supposethat V issatisfiable.
Let = by aBoolean variablethat does not appear in V' and multiply it by the expression V', obtaining
W = V.z. Onecan have W in SOP form, by multiplying = by each product of V. Inthisway W is
in SOP form and therefore one can build an instance of MIN-SOP-2 where FisW and k =1 = 1.
It is the case that this instance of MIN-SOP-2 has answer "yes' iff V' has an answer "yes' for
VALIDITY, because every representation of 1 must have at least one product term and litera for
x, and V' can be either atautology or it must contribute at least one more litera to W (the case that
V' isnot satisfiable has been handled at the beginning). [|

40 CHAPTER 3. COMPLEXITY ISSUES

MIN-SOP-2 does not appear to be co — N P-easy, sinceit isnot known yet whether having
an oracle for any problemin co — N P would enable to solve MIN-SOP-2 in polynomial time. The
next theorem showsthat MIN-SOP-2 can be solved in polynomial timeby anondeterministic Turing

machine with an oraclein N P.
Theorem 3.1.6 [69] MIN-SOP-2isin 5 (upper bound).

Proof: Consider anondeterministic Turing machine equipped with SAT asan oracle. Noticethat we
need aversion of SAT for genera Boolean expressions (itisstill in NV P). Non-determinism can be
exploited to generate al possible SOP forms, with k& or fewer product termsand [or fewer literals,
say (7 isageneric one, and to query the oracle to determine whether, say, GG is not equivaent to F,
thet is, if =((-G'V F') A (=F V () issatisfiable. If thislast formulais not satisfiable, then G'is
the required POS with < % product termsand < [literals. Conversely, if no POSwith < k product
termsand < [literalsisequivaent to £, then the instance (F, k, [) does not belong to MIN-SOP-2.

|

The previous results extend easily to the case of minimum SOP forms of encoded FSM'’s.
Notice that a symbolic cover is simply a two-level SOP representation of an FSM. An encoded
cover of an FSM is the symbolic cover after syntactic replacement of each state symbol with a
code, according to an encoding function e. Basically the previous theorems can be al be rephrased
having symbolic coversinstead than two-va ued covers and adding the requirement that an encoding
function be guessed nondeterministically.

First we get an equivalent of MIN-SOP-1. For that we introduce the notion of minterm
symbolic cover, that is a symbolic cover of an FSM where each proper input and proper output isa
minterm. One can take a symbolic cover and obtain easily a minterm symbolic cover, by replacing
each symbolic cube by a set of symbolic cubes which are mintermsin the input and output space

and add up to the original cube.

Definition 3.1.3 Given a minterm symbolic representation of an FSM M and positive integers k
and [/, SA-MIN-SOP-1 is the problem "is there an encoding e that produces an encoded cover M.

that has a SOP representation with & or fewer product-termsand [or fewer literals ?".
Theorem 3.1.7 MIN-SA-SOP-1isin N P-complete.

Proof: MIN-SA-SOP-1isin N P-hard. Restrict MIN-SA-SOP-1 to MIN-SOP-1, by noticing that

aBoolean function isan FSM with no state variablein its representation.

3.1. COMPUTATIONAL COMPLEXITY 41

MIN-SA-SOP-1isin N P. By nondeterminism one can guess an encoding function ¢ and
aminimized encoded SOPform V. M, isthe SOPform obtained from M by replacing syntactically
states with codes. Each product-term of M, isaminterm. We must prove that M. isequivaent to
N. Replace each product-term in V by all mintermsthat it covers. and cal it N, interms. Since
both M. and N,,;nterms CONtain only minterms, their equality can be checked in time polynomial
in the original representation. |

Definition 3.1.4 Given a symbolic representation of an FSM M and positive integers & and [,
SA-MIN-SOP-2 isthe problem"is there an encoding e that produces an encoded cover M, that has

a SOP representation with & or fewer product-termsand [or fewer literals ?".

Theorem 3.1.8 MIN-SA-SOP-2 isco — N P-hard (lower bound).

Proof: Restrict MIN-SA-SOP-2 to MIN-SOP-2, by noticing that a Boolean function is an FSM
with no state variable in its representation. []

Theorem 3.1.9 MIN-SA-SOP-2 isin Z5 (upper bound).

Proof: As in the proof that MIN-SOP-2 is in 3. Thanks to nondeterminism one guesses an
encoding e and a minimized encoded SOP form N. M, is the SOP form obtained from M by
replacing syntactically states with codes. We must prove that the SOP form A1, isequivaent to the
SOPform N. Thisis exactly what was done with SAT as an oracle for MIN-SOP-2. |

This classification lumps together, for instance, MIN-SOP-2 and SA-MIN-SOP-2, and
therefore is not satisfactory with respect to the experimental fact that the latter problem is much
harder that the former. Thisisin part due to the lack of fine tuning of the complexity classes of the
polynomial hierarchy. It would be worthy to see if afiner classification can be achieved looking
into approximation complexity classes [46, 104, 9].

Similar results could be obtained for other optimization obj ectives, like minimum number
of literalsof multi-level implementations[69]. Also the introduction of don’t care conditionsin the
origina representations, allowing for choices in the encoded implementations, can be handled with
minor variant of the previous techniques.

42 CHAPTER 3. COMPLEXITY ISSUES

3.2 Counting State Assignments

Suppose that there are v symbols to encode and 2" codes, with » > [logv]. There are

2n
() v! possible assignments, since there are (

v
v! waysto permute them.

) ways to select v distinct state codes and
v

Suppose that a state assignment is given by a matrix, whose :-th column carries the
i-th encoding bit of every symbol and each row is the code of a symbol. One can introduce an
equivaence relation on the set of state encodings, lumping in the same equivaence class all state
encodings that produce the "same" encoded representation. The "same" means that the encoded
representation are not intrinsically different. For instance if we permute columns of an encoding
it isintuitively obvious that the encoded Boolean function does not change, except that variables
have been renamed. What happens if we complement a column of an encoding ? In case of state
assignment things depend on the chosen memory dement. If one uses D flip-flops, then the size
of aminima encoded representation is strongly affected by the chosen phase. Instead, with other
types of flip-flops, state encodings that differ only by complementation of some columns can be
considered equivalent.

The number of equivalence classes of state assignments, where equivalence is by permu-
tation and complementation of columns, and 2»~1 < v < 2", was computed in [88] as:

(2 — 1)!

A) = (27 — v)In!

The number of equivalence classes of state assignments, where equivalence is only by permutation
of columns, and 2"~ < v < 2, was computed in [149] as:

(2%)!

B(v) = (27 —v)Inl’

The fact that A(v) is correct for SR, JK and T flip-flops was pointed out first in [110]. This
does not extend to D flip-flops, for which B(v) isthe correct formula, because in a D flip-flop the
excitation expression for the complemented state variable is the complement of the expression for
the uncomplemented state variable.

The formulas for the general case, i.e., where v isnot restricted to 21 < v < 2", were
published by Harrison and Parchman ([109, 106]). They introduced the definition of degenerate
state assignments, i.e., those where a column is constant or two or more columns are equal. Let the
following definitions hold:

3.2. COUNTING STATE ASSIGNMENTS 43
1. T'(n,v) isthe number of nonequivalent state assignmentswith respect to permutations of the
columns;

2. R(n,v) isthe number of non degenerate state assignments with respect to permutations of

the columns;

3. T*(n,v) isthe number of nonequivalent state assignments with respect to permutations and
complementations of the columns;

4. R*(n,v) isthe number of non degenerate state assignments with respect to permutationsand
complementations of the columns.

Then the following identities hold, where s(v, j) are the Stirling numbers of the first kind:
1

T(n,v):i (nt2 -1) s(v, j),

= n
2.
(n >:21(””Zl_l)swm,
3.
R(n v):j:ZU:l(zjgz)s(v,j)
4,

v j—1
R*(n,v):Z(2 1)5(1},]’).
i=1 n

They have been obtained with non-elementary combinatorial tools.

CHAPTER 3. COMPLEXITY ISSUES

45

Chapter 4

Previous and Related Work

4.1 Algorithmsfor Optimal Encoding

Thefollowing optimal encoding problems may be defined:

(A) Optimal encoding of inputsof alogicfunction. A problemin classA istheoptimal assignment
of opcodes for a microprocessor.

(B) Optimal encoding of outputs of alogic function.

(C) Optima encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optima encoding of both inputs and outputs (or some inputs and some outputs) of a logic
function, where the encoding of the inputs (or someinputs) isthe same as the encoding of the
outputs (or some outputs). Encoding the states of afinite state machine (FSM) is a problem
in class D since the state variables appear both as input (present state) and output (next state)
variables. Another problemin class D isthe encoding of the signals connecting two (or more)
combinationa circuits.

Optimality may be defined in various ways. A common abjective is minimum area of
the encoded implementation. Each target implementation has a different cost function. The cost
of atwo-level implementation is the number of product-terms or the area of a programmable logic
array (PLA). A commonly used cost of a multi-level implementation is the number of literals of
a technol ogy-independent representation of the logic. Another cost function is the complexity of
an implementation with field programmable gate arrays (FPGA's). Other optimization objectives

46 CHAPTER 4. PREVIOUS AND RELATED WORK

may have to do with power consumption, speed, testability or any combination of the above. In
some cases the abjective is the satisfaction of a correctness requirement like in state assignment of
asynchronous FSM’s, where it is required that it be race-free.

Here we will describe various approaches to the problem of optima encoding from the
classical papers of the 60’s to the more recent research dating from the mid 80's. We will devote
more space to state assignment for minimum area. "state assignment” because in some sense it
subsumes the other encoding problems, and "minimum area" because it has been the most studied

objective, even though we will survey also contributions for other problems and objectives 1.

4.1.1 Early Contributions

A well-written survey of early literature on state assignment can be found in [75]. Here
we will review the key contributions.

Among thefirst to define input and output encoding problemsfor combinational networks
were [33] and [100]. The former based his theory of input encoding on partitions and set systems.
Thelatter tried to minimizethe variable dependency of the output functions and studied the problem
of the minimum number of variables required for a good encoding.

In [3] Armstrong described one of the first programmed algorithms to assign interna
codes to FSM's, with the goa of obtaining economical redlizations of the combinationa logic of
an FSM. The key idea of the method is to insure that as many vertices as possiblein the onset and
offset of each next state and output function are pairwise adjacent, so that they can be clustered in
subcubes. This may be achieved by examining the rows and columns of the state table for state
pairs that can be given adjacent codes and so directly yield simplified Boolean equations for the
next state and output variables in terms of the present state and input variables. Various adjacency
conditions were derived based on the relations between states. Then the problem was reduced to a
graph embedding problem, where a graph represents adjacency relations between the codes of the
states, to be preserved by a subgraph isomorphism on the encoding cube. The method was then
refined in[2].

Asapartia solutionto the fact that enumerating al encodings and measuring their cost is
not a practical solution, Dolottaand McCluskey in [41] proposed amethod based on the concept of
codable columns, that are fewer in number than the possible codes, and whose combinations give
the actual encodings. The codable columns for a state table are represented by a base matrix that

!We must mention that there is a rich literature on state assignment authored by researchers of the former Soviet
Union, but we are not in a position to survey it here.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 47

represents the mapping of codable columns into the next state columns; the rows of a base matrix
correspond to states and the columns correspond to codable columns. By examining each column
mapping in turn and evaluating the result in terms of some minimization objective one determines
a best coding. A "scoring procedure” was defined requiring the comparison of each base entry
column with the next state entries on a column-by-column basis and allocating a score according to
given criteria. Armstrong argued in [2] that the scoring array of [41] could be read in the framework
that he proposed.

Story, Harrison et al. [141, 138] proposed a gorithmsto derive minimal-cost assignments
based on the lower-bound approach first described by Davis [33] and extending the technique to
find the cost of an assignment proposed by Torng [141]. A set of columns, each composed of
a binary element for each row of a partidly assigned state table, is derived. From this matrix it
is possible to generate al possible distinct state assignments. Input equations for .J K bistables
are derived from the matrix based on single column partia state assignments (PSA’s), and then a
minimum number (MN), which represents alower bound on the cost, is selected for each column.
The best state assignment is then found by comparing the sets of MN’s with corresponding actual
cost numbers for complete encodings consisting of a set of PSA’'s. Notice that MN is calculated
for a particular column by applying the column to the given state table as if the column were a
complete state assignment and then deriving the input equations for, say, a .J K bistable in the
usual way. For instance the expression of the .J input of a .J K bistable includes al total states
(proper input and present state) with present to next state transitions of 0 — 1, and, as a don’t
care, those of the transitions1 — 0,1 —+ 1,0 — —,1 — —. Then the resulting combinational
equations must be minimized, in such away to guarantee alower bound (notice that we still do not
have a complete encoding); thisis done by a"modified map" method where any subset of statesis
considered to be in a subcube in the encoding space, so that the cost of the implementation cannot
be decreased in any actual coding. A lower bound for an encoding is the sum of MN’s associated
with its columns (MNS), because in the cost one does not consider sharing of logic among next
state functions. The actua cost number (AN) of an assignment is the number of actua (not lower
bound) AND-OR inputs for each bistable input equation minimized separately. The values of MN
and AN are compared for each PSA combination to determine the best encoding. The algorithm
has an exhaustive nature mitigated by lower bounding. It does not guarantee optimality (contrary
to the claim in the title) of an encoded FSM because it disregards multiple-output minimization ,
since the cost is defined to be the sum of the AND-OR inputs needed to realize each next state
transition separately - so it does not account for output encoding - and proper output logic is not

48 CHAPTER 4. PREVIOUS AND RELATED WORK

taken into consideration in the optimization procedure. Thiswork was refined and commented by
other contributions[101, 102, 103].

Others, as [54, 137, 67], proposed algebraic methods based on the algebra of partitions
and on the criterion of reduced dependency. In these methods the state assignment is made in a
such a way that each binary variable describing a next state depends on as few variables of the
present state aspossible. In general reduced dependency has various advantages that included better
testability features, but suffers from aweak connection with the logic optimization steps after the
encoding.

More recent approaches [124, 125] rely on local optimization rules defined on a control
flowgraph. There rules are expressed as constraints on the codes of the internal variables and an

encoding algorithm tries to satisfy most of these constraints.

4.1.2 Encodingfor Two-level Implementation
Reduction of Input Encoding to Multiple-Valued Minimization

A mgjor step towards an exact solution of encoding problems was the reduction of input
encoding to multi ple-val ued minimization followed by input constraints satisfaction [92]. Efficient
algorithms have been devised both for multiple-valued minimization [114] and input constraints
satisfaction [92, 145, 116].

Even though state encoding is an i nput-output encoding problem 2, it can be approximated
as an input encoding problem [92] and solved by a two-step process. In the first step, a tabular
representation of the FSM is optimized at the symbolic level, e.g., using the program ESPRESSO by
Rudell. Multiple-valued minimization generates constraints on the codes that can be assigned to
the states. In the second step, states are encoded in such a way that the constraints are satisfied.
The goal in deriving constraints from the minimized symbolic cover is to encode the statesin such
away that the cardindity of the resulting two-level Boolean implementationis no greater than the
cardinaity of the minimized symbolic cover. A sufficient condition to preserve the cardinaity of
the minimized symbolic cover after encoding is to ensure that each multiple-valued input literal
in the minimized symbolic cover translates into a single cube in the Boolean domain. In other
words, given a multiple-valued literal, the states present in it should form a face (in the Boolean
encoding space) that does not include the states absent from the same multiple-valued literal. Such
constraints are called face or input constraints and finding codes that satisfy them is the face

2Moreover the same symbols appear both in the input and in the output part.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 49

0sl 21
1sl 40
02 21 0(sl, 2, 4) 21
12 s11 1(2,¢4) sli
0s3 s30 1(sl,s3) 40
1s3 40 0(s3) 30
04 21
1s4sl1

(@) (b)

Figure 4.1: Origina and minimized symbolic cover of an FSM

embedding problem.

An example from [4] of atabular representation of an FSM is shown in Figure 4.1(a).
Multiple-valued minimization of this FSM - where the states are the possible vaues of a multiple-
valued variable - yields the cover shown in Figure 4.1(b). This can be done by representing the
symbolic variables using the positional cube notation [139, 114], and then invoking a multiple-
valued minimizer, such as [114]. The minimized cover is output digoint and al the reduction
in the cardinality of the symbolic cover is due to the input part, i.e. due to the fact that some
present states fan out to the same next state for certain primary inputs. To get acompatible boolean
representation, one must assigh each of the groups of present states obtained by multi-valued
minimization, to subcubes of a boolean k-cube, for a minimum &, in a way that each subcube
containsall and only al the codes of the statesincluded in the face constraint. Codes satisfying the
face-embedding constraints implied by the minimized symbolic cover of Figure 4.1(b) are shown
in Figure 4.2(a). Three binary variables are necessary and sufficient to satisfy the face-embedding
constraints. Figure 4.2(b) shows these codes in the Boolean 3-space. The cover obtained after
substitution of the state codesin the symbolic cover and asuccessivetwo-level Bool ean minimization
isshownin Figure 4.3.

It isworth mentioning that the face constrai nts obtai ned through straightforward symbolic
minimization are sufficient, but not necessary to find a two-valued implementation matching the
upper bound of the multi-valued minimized cover. Asit was already pointed out in [91], for each
implicant of aminimal (or minimum) multi-valued cover, one can compute an expanded implicant,
whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have
minima (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced
implicant, one gets don't cares in the input constraint, namely, in the bit positions where the
expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem

50 CHAPTER 4. PREVIOUS AND RELATED WORK

sl
sl =001
s2 =000 i3
s3=011 x." """""""""""
4 =100
o+

(a) (b)
Figure 4.2: Codes satisfying input constraints

0-1- 0110
1--1 1000
1--00011
0-0- 0001

Figure 4.3: Two-level implementation of encoded FSM

with don’t cares becomes one of finding a cube of minimum dimension &, where, for every face
constraint, one can assign the states asserted to vertices of a subcube that does not include any state
not asserted, whereas the don't care states can be put inside or outside of that subcube. One can
build examples where the presence of don’t cares allows to satisfy the input constraints in a cube
of smaller dimension, than it would be possible otherwise. Consider the state table of an FSM
and its 1-hot encoded representation shown in Figure 4.4. In Figure 4.5 the expanded and reduced
minimized multi-valued covers of the FSM of Figure 4.4 are shown. Figure 4.6 showsthe expanded
and reduced present state literals of the same FSM and the don’t care face constraints.

A novel observationisthat by choosing another minimum multi-valued cover, adifferent
set of face embedding constraints (with don't cares, if any) could be generated and they might be
satisfiable with asmaller & than the one required by the previous minimum cover.

Symbolic Minimization

Any encoding problem, where the symbolic variables appear only in the input part, can
be solved by setting up amultiple-va ued minimization followed by satisfaction of the induced face
constraints. However, the problem of state assignment of FMS's is only partialy solved by this
scheme, because the encoding of the symbolic output variables is not taken into account (e.g., the

4.1. ALGORITHMS FOR OPTIMAL ENCODING

00
10
01
10
00
11
01
00
11
00
01
01
00
11
01
01
00
00
10
10
00
11
10
10
00

st0
st0
st0
stl
stl
stl
st2
st2
st2
3
3
st4
st4
st5
st5
6
6
st7
st7
st8
st8
st9
st9

st0
st1
st2
st1
3
5
st2
st7
st9
3
st4
st4
st0
5
6
6
st0
st7
8
8
st0
st9
st10

st10 st10
st10 st

o

S T = T T T S Sy T

N e e

N

00
10
01
10
00
11
01
00
11
00
01
01
00
11
01
01
00
00
10
10
00
11
10
10
00

10000000000
10000000000
10000000000
01000000000
01000000000
01000000000
00100000000
00100000000
00100000000
00010000000
00010000000
00001000000
00001000000
00000100000
00000100000
00000010000
00000010000
00000001000
00000001000
00000000100
00000000100
00000000010
00000000010
00000000001
00000000001

10000000000
01000000000
00100000000
01000000000
00010000000
00000100000
00100000000
00000001000
00000000010
00010000000
00001000000
00001000000
10000000000
00000100000
00000010000
00000010000
10000000000
00000001000
00000000100
00000000100
10000000000
00000000010
00000000001
00000000001
10000000000

Figure 4.4: Initia and 1-hot encoded covers of FSM-1

o

S T = T = T T T e Sy S

N e e

N

51

52

CHAPTER 4. PREVIOUS AND RELATED WORK

01 01010111011 000000010001 01 00010001000 000000010001
01 01001110111 000000001001 01 00001000100 000000001001
10 00111101110 000000000101 10 00000100010 000000000101
10 00111011101 000000000011 10 00000010001 000000000011
00 01011010000 000100000001 00 01010000000 000100000001
11 11011101111 000010000001 11 01001000000 000010000001
00 00101110000 000001000001 00 00100100000 000001000001
11 10110111111 000000100001 11 00100010000 000000100001
10 11111001100 010000000001 10 11000000000 010000000001
01 11100110011 001000000001 01 10100000000 001000000001
00 10001011111 100000000000 00 10000001111 100000000000

Figure 4.5: Expanded and reduced minimized covers of FSM-1

01010111011 00010001000 0-010--10--
01001110111 00001000100 0-001--01--
00111101110 00000100010 00---10--10
00111011101 00000010001 00---01--01
01011010000 01010000000 0101- 0- 0000
11011101111 01001000000 -10-1-0----
00101110000 00100100000 0010- 1- 0000
10110111111 00100010000 -01-0-1----
11111001100 11000000000 11---00--00
11100110011 10100000000 1-100- - 00- -
10001011111 10000001111 1000-0-1111

Figure 4.6: Expanded and reduced implicantsand don’t care face constraints of FSM-1

4.1. ALGORITHMS FOR OPTIMAL ENCODING 53

next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets
of the symbolic output functions, and therefore disregards the sharing among the different output
functions taking place when they are implemented by two-valued logic. Sharing of logicis crucia
to obtain minimum encoded two-level implementations.

Therefore extensions of multiple-valued minimization have been proposed in [91, 147].
These extensions replace a single multiple-valued minimization of the whole symbolic cover by a
sequence of minimization operations on parts of the symbolic cover in such a way as to recognize
sharing of logic among next states, if some constraintson their codes are satisfied. These extensions
of multiple-valued minimization have been caled symbolic minimization. In [91, 147] symbolic
minimization was introduced to exploit bit-wise dominance relations between the binary codes
assigned to different values of a symbolic output variable. The fact is that the input cubes of a
dominating code can be used as don't cares for covering theinput cubes of adominated code. The
core of the approach is a procedure to find useful dominance (called aso covering) constraints
between the codes of output states. The translation of a cover obtained by symbolic minimization
into a compatible bool ean representation defines simultaneously a face embedding problem and an
output dominance satisfaction problem. Any output encoding problem can be solved by symbolic
minimization. Symbolic minimization was applied also in [115], where a particular form of PLA
partitioning is examined, by which the outputsare encoded to create areduced PLA that is cascaded
with a decoder.

However, to mimic the full power of two-valued logic minimization, another fact must
be taken into account. When the code of a symbolic output is the bit-wise disunction of the
codes of two or more other symbolic outputs, the on-set of the former can be minimized by using
the on-sets of the latter outputs, by redistributing the implementation of some cubes. An extended
scheme of symbolic minimization can therefore be defined to find useful dominanceand digunctive
relations between the codes of the symbolic outputs. Thiswill be thoroughly investigated in alater
chapter of the thesis. The trandation of a cover obtained by extended symbolic minimization
into a compatible boolean representation induces a face embedding, output dominance and output
disjunction satisfaction problem.

A variety of other applicationsmay al so generate similar constrai ntssati sfaction problems,
asinthecase of synthesisfor sequential testability [35], and optimal re-encoding and decomposition
of PLA's [40, 21, 122, 120, 119, 121, 123]. Given aPLA, it is possible to group the inputs into
pairs and replace the input buffers with two-bit decoders to yield a bit-paired PLA with the same
number of columns and no more product-terms than the original PLA. In a more general case, a

54 CHAPTER 4. PREVIOUS AND RELATED WORK

single PLA is decomposed into two levels of cascaded PLA's. A subset of inputsis selected such
that the cardinality of the multiple-valued cover, produced by representing all combinationsof these
inputs as different values of a single multiple-valued variable, is smaller than the cardinality of the
original binary cover. The encoding problem consistsof finding the codes of the signal sbetween the
PLA's, so that the constraints imposed by the multiple-valued cover are satisfied. This problemis
usually approximated as an input encoding problem [40, 21], but in its generdity is an input-output
encoding problem referred in [39] as four-level Boolean minimization.

Exact Encoding with Generalized Prime I mplicants

An exact procedure for output encoding has been reportedin[39]. A notion of generalized
prime implicants (GPI's), as an extension of prime implicants defined in [87], is introduced, and
appropriate rules of cancellation are given. Each GPI carries a tag with some output symbols. If
a GPI is accepted in a cover, it asserts as output the intersection (bit-wise and) of the codes of the
symbolsin the tag. To maintain functionaity, the coded output asserted by each minterm must be
equal to the bit-wiseor of the outputs asserted by each selected GPI covering that minterm. Given a
selection of GPI’s, each minterm yields a boolean equation constraining the codes of the symbolic
values. If an encoding can befound that satisfies the system of bool ean equations, then the selection
of GPI'sisencodable. We will devote some later chaptersto GPI’'s and explain in detail the notion
of encodabilities of GPI's. Given al the GPI's, one must select a minimum subset of them that
covers al the minterms and forms an encodable cover. This can be achieved by solving repeated
covering problems that return minimum covers of increasing cardinality, until an encodable cover
isfound, i.e. the minimum cover that is also encodable. Figure 4.7 shows output encoding based
on GPI’s with a simple exampl e taken from [39].

4.1.3 Encodingfor Multi-level Implementation

Automatic multi-level logic synthesis programs are now available to the logic designer
[52, 12, 8]), since sometimes a PLA implementation of the circuit does not satisfy the area'timing
specifications.

A two-level encoding program, such as those described in the previous sections, can
often give a good result when multi-level redization is required, but in order to get the maximum
advantages from multi-level logic synthesis we need a specialized approach.

This section describes such approaches, giving someinformation on the relative strengths

4.1. ALGORITHMS FOR OPTIMAL ENCODING

1101
1100
1111
0000
0001

outl
out2
out3
out4
out4

1101
1100
1111
110-
11-1
000-

(outl)
(out2)
(out3)
(outl,0ut2)
(outl,0ut3)
(out4)

110- (outl,out2) 110-
11-1 (outl,out3) 11-1
000- (outd) 000-

Figure 4.7: Initia cover, GPI's, encodable selection of GPI's and encoded cover of OUT-1

and weaknesses.

There are two main classes of multi-level encoding algorithms:

55

01
10
00

1. Estimation-based agorithms, that define a distance measure between symboals, such that if

"close" symbols are assigned "close" (in terms of Hamming distance) codes it is likely that

multi-level synthesiswill give good results. Programs such as MUSTANG [36], JEDI [77] and

PESTO [57] belong to this class.

2. Synthesis-based algorithms, that use the result of amulti-level optimization on the unencoded

or one-hot encoded symbolic cover to drive the encoding process. Programs such as MIS-Mv
[85] and MusE [42] belong to thisclass.

Mustang

weight measures the desirahility of giving the two symbols codes that are "as close as possible”.

MUSTANG uses the state transition graph to assign aweight to each pair of symbols. This

MUSTANG hastwo distinct algorithmsto assign theweights, one of them ("fanout oriented™)

takes into account the next state symbols, while the other one ("fanin oriented") takes into account

the present state symbols. Such a pair of agorithms is common to most multi-level encoding

programs, namely MUSTANG, JEDI and MUSE.

The fanout oriented algorithm is as follows:

1. For each output o build aset O° of the present states where o can be asserted. Each statep in

the set hasaweight OW; that is equal to the number of timesthat o is asserted in p.

56

CHAPTER 4. PREVIOUS AND RELATED WORK

2. For each next state » build aset N™ of the present states that have n as next state. Again

each state p in the set hasaweight NIV’ that is equal to the number of timesthat » is anext
state of p (each cube under which a transition can happen appears as a separate edge in the
state transition graph) multiplied by the number of state bits (the number of output bits that
the next state symbol generates).

. For each pair of states k, [let the weight of the edge joining them in the weight graph be

Ses NWEx NW + 5,c0 OWE x OWY.

This agorithm gives a high weight to present state pairs that have a high degree of similarity,

measured as the number of common outputs asserted by the pair.

The fanin oriented algorithm (almost symmetric with the previous one) isas follows:

1. For eachinput 4 build aset ON’ of the next states that can be reached when 7 is 1, and a set

OFF" of the next states that can be reached when i is0. Each state » in ON' has a weight
ONW/ that isequal to the number of timesthat can be reached when 7 is 1, and each state
ninOFF hasaweight OF FW, that isequal to the number of timesthat » can be reached
when ¢ is0.

. For each present state p build aset PP of the next states that have p as present state. Again

each state » in the set has aweight PW? that isequal to the number of timesthat » isanext
state of p multiplied by the number of state hits.

. For each pair of states k, [let the weight of the edge joining them in the weight graph be

S pes PWE x PWP 4+ 3, ONW] x ONW + OFFWj x OF FWj.

Thisalgorithm tries to maximize the number of common cubes in the next state function, since next

states that have similar functionswill be assigned close codes.

The embedding a gorithm identifies clusters of nodes (states) that are joined by maximal

weight edges, and greedily assigns to them minimally distant codes. It tries to minimize the sum

over al pairs of symbolsof the product of the weighted distance among the codes.

The mgjor limitation of MUSTANG is that its heuristics are only distantly related with the

fina minimization objective. It also models only common cube extraction, among al possible

multiple-level optimization operations ([12]).

4.1. ALGORITHMS FOR OPTIMAL ENCODING 57

Jedi

JEDI is aimed at generic symbol encoding rather than at state assignment, and it applies
a set of heuristics that is similar to MUSTANG'S to define a set of weights among pairs of symbals.
Then it uses either a simulated annealing algorithm or a greedy assignment algorithm to perform
the embedding.

The proximity of two cubes in a symbolic cover is defined as the number of non-empty
literds in the intersection of the cubes. It isthe "opposite" of the Hamming distance between two
cubes, defined as the number of empty literalsin their intersection. For example, cubes abe and cde
have proximity 4, because their intersection has four non-empty literas (, b, d and ¢), and distance
1, because their intersection has an empty litera (¢ N ©).

Each pair of symbols (s;, s;) has aweight that is the sum over al pairs of cubes in the
two-level symbolic cover, where s; appears in one cube and s; appears in the second one, of the
proximity between the two cubes.

The cost function of the simulated annealing a gorithm is the sum over al symbol pairs
of the weighted distance among the codes.

The greedy embedding algorithm chooses at each step the symbol that has the strongest
weight connection with already assigned symbols, and assignsto it a code that minimizesthe above
cost function.

Pesto

PESTO [57] is a new tool that resembles JEDI with respect to the basic model, but by
means of very skilled algorithmic engineering obtains codes that produce often (as of today) the
best starting points for multi-level implementations.

The modd starts form the observation, justified in [144], that if + and y are two binary

input vectors, f(z) isasingle output boolean function, and
P ={(z,y) | hamming_distance(z,y) =1 and f(z) = f(y)},

then, within a class of "related" functions, the larger the size of B, the simpler the implementation
of f.
An adjacency matrix is constructed and ametric that isafunction of the matrix and of the

state encodings is maximized by means of ssmulated annealing. For problemslike state assignment

58 CHAPTER 4. PREVIOUS AND RELATED WORK

the adjancency matrix is a weighted sum of an input adjacency matrix and an output adjacency
matrix.

Binary vectors are considered adjacent when they have Hamming distance one. For each
pair of states there is an entry in the input adjacency matrix set to the number of pairs of 1'sin the
outputsthat would be adjacent if that present state pair were adjacent. Adjacent outputs means that
the input vectors for the two outputs differ only in one bit position, i.e., the codes of the present
states are at Hamming distance one and the proper inputs are equa. For the proper outputs this
information iseasily known. For the next state outputsthisinformationis obviously unavailable, so
an average number of timesthat pairs of next states have 1's in the same bit positionsis computed
by generating random encodings.

For each pair of states there is an entry in the output adjacency matrix set to the number
of timesit has adjacent inputs. The inputs can be adjacent when the proper inputs are adjacent and
the present states are identical or the proper inputs are identical and the present states are adjacent.
The former situation is easily known. In the latter situation the information about present statesis
obviously unavailable, so an average of timesthat pairs of present states are adjacent is computed
by generating random encodings.

Thegoal istofind astate assignment that maxi mizesaweighted sum of the contributi ons of
the input and output adjacency matrices. Given a state assignment, an adjacency matrix contributes
the sum of pairs of adjacent states weighted by the coefficient of the corresponding entry.

A careful study is made of the relative importance of the weighting factor of the input
and output matrices, the number of repeated experiments (since simulated annealing is used to find
the maximizing codes), the importance of using information on input don’t cares, the parameters
of simulated annealing and others. One of the lessons that the implementation of PESTO teaches
is that even a simple mode, if all agorithmic choices are carefully evaluated, can produce high-
quality results. In this case from the experiments PESTO seems to enjoy a noti ceabl e advantage over
its competitors JEDI and MUSE especidly in the case of large examples, that are those where the

robustness of an heuristic istested and the qudity of the result matters more.

Muse

MUSE uses a multi-level representation of the finite state machine to derive the set of
weightsthat are used in the encoding problem.

Itsalgorithmisasfollows:

4.1. ALGORITHMS FOR OPTIMAL ENCODING 59

1. Encode symbolic inputs and outputswith one-hot codes.
2. Usewmisll ([12]) to generate an optimized boolean network.
3. Compute aweight for each symbol pair (see below).

4. Use a greedy embedding agorithm trying to minimize the sum over all state pairs of the

weighted distance among the codes.
5. Encode the symbolic cover, and run misll again.

The weight assignment al gorithm examines each node function (in sum-of-product form)
to seeif any of the following cases applies (S; denotes a state symboal, s; denotes the corresponding

one-hot present state variable, other variables denote primary inputs):

1. sqab+ spab+ .. .0 if 51 and S, are assigned adjacent codes, then the cubes can be simplified

to asingle cube, and we obtain a saving in the encoded network cost.

2. s1ab+ spabe+. . .o if S1and S, are assigned adjacent codes, then the cubes can be simplified
(even though they will remain distinct cubes, due to the appearance of ¢ only in the second
one) and a common cube (the common state bits and «b) can be extracted. For example, if
S1 isencoded as coerez and .S, isencoded as cgicy, the expression above can be simplified

as coerabe + coerczab.

3. s1abc+ spabd + sameas above, but only acommon cube (the common state bitsand ab)

can be extracted.

For each occurrence of the above cases the weight of the state pair is increased by an
amount that is proportiona to the estimated gain if the two states are assigned adjacent codes. For
example, if abc is extracted from f = abed, g = abee, (cost 8 literas) then we obtain f = hd,
g = he, h = abe (cost 7 literals), and the gain obtained extracting £ is 1.

Each gain is aso multiplied by the number of distinct paths from the node to a network
output. This heuristic gives a higher gain to common subexpressions that are used in many places
in the network, so that their extraction gives a high reduction in the network cost. If the codes
in the pair are assigned adjacent codes, then hopefully misll will be able to extract again useful

subexpressions after the encoding.

60 CHAPTER 4. PREVIOUS AND RELATED WORK

The agorithm described above takes into account only present state symbols. Another
heuristic agorithm is used to estimate the "similarity" among the next state functions. This"next-
state oriented" algorithm addsto theweight of each pair of statesthe gain of common subexpressions
that can be extracted from the functions generating that pair of next statesin the one-hot encoded
network. For example, if n; denotes a one-hot next state variable and /V; the corresponding state
symbol, nq = abed and ny = abee have acommon subexpression abe of gain 1 (see above), so the
weight of the (V1, V) pair isincremented by 1 due to this subexpression.

The embedding agorithm, using the weights computed above, chooses the unencoded
state that has a maximum weight connection with the aready encoded states and assignsto it acode
that has the minimum weighted distance from the already encoded states.

MUSE usesacost functionthat isacloser representation of reality with respect to MUSTANG
and JEDI, but there is no guarantee that the optimi zations performed on the one-hot encoded network
are the best ones for al possible encodings, and that misll will choose to perform the same

optimizationswhen it is run on the encoded network.

Mis-mv

In order to have a satisfactory solution of the multi-level encoding problem we must have
acloser view of the real cost function, the number of literals in the encoded network. The weight
matrix is rather far from giving a complete picture of what happens to this cost function whenever
an encoding decision is made.

Following the pattern outlined in the previous sections for the two-level case, we should
perform amulti-level symbolic minimization, and derive constraintsthat, if satisfied, can guarantee
some degree of minimality of the encoded network.

MIS-MV, unlike the previous programs, performs a full multi-level multiple-valued mini-
mization of anetwork with asymbolicinput. Itsagorithmsare an extension to the multiple-valued
case of those used by misll (the interested reader is referred to [85] for a detailed explanation of
these algorithms).

Itsoveral strategy isasfollows:

1. Read the symbolic cover. The symbolic output is encoded one-hot, the symbolic input is left

asamultiple-valued variable.

2. Perform multi-level optimization (simplification, common subexpression extraction, decom-
position) of the multiple-valued network.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 61

3. Encodethe symbolicinput so that the total number of litera sin the encoded network is mini-
mal (simulated annealing isused for this purpose, while extensions of constrained embedding
algorithmsfrom the two level case are being studied).

A set of theorems, provedin[73], guaranteesthat step 2 of theaboved gorithmiscompl ete,
i.e. that al possible optimizationsin all possible encodings can be performed in multiple-valued
mode provided that the appropriate cost function is available.

Thelast observation is akey to understand both strengths and limits of this approach: the
cost function that MIS-Mv minimizesis only an approximate lower bound on the number of literas
that the encoded network will have (much in the same spirit as what happens in the two-level case
with symbolic minimization). Thislower bound can bereached if and only if al theface constraints
from all the nodes in the multiple-valued network can be simultaneously satisfied in a minimum
length encoding, which is not possible in genera (each node has a multiple-valued function, so
the constraints can be extracted as described in Section 4.1.2). This lower bound is approximate
because further optimizations on the encoded network can still reduce the number of literals.

In order to take thislimitation into account, MIS-MV computes at each step the currently
optimal encoding, and uses it as an estimate of the cost of each multiple-valued node.

For example, if onedenotesby 511234} amultiple-valued literal representing theboolean
function that is true when variable S hasvalue 1, 2, 3 or 4, the estimated cost of 511234} with the
codes:

(ST = Ereaes, €(S12) = Eeacs, e(S18) = Fears, e(S1H) = Teaces, (S = c175e3, (S16h)
= c1c62c3

would be 1, since the minimum sum of products expression for €1¢2¢3 + ¢1¢2¢3 + ¢1¢2¢3 + €1¢203
with the don’t cares (unused codes) ¢1¢,¢3 + c1cac3 IS cy.

Currently mis-mv does not handle the output encoding problem. Its approach, though,
can be extended to handle a symbolic minimization procedure similar to what is explained in
section 4.1.2, and therefore to obtain a solution also to this problem.

Comparison of Different Methods

Programs such as MUSTANG, JEDI and PESTO rely only on the two-level representation
of the symbolic cover to extract a similarity measure between the context in which each pair of
symbols appear. This measure is used to drive a greedy embedding algorithm that tries to keep
similar symbols close in the encoded boolean space. This has clearly only a wesk relation with

62 CHAPTER 4. PREVIOUS AND RELATED WORK

the final objective (minimum cost implementation of a boolean network), and it makes an exact
analysis of the algorithm performance on benchmark examples hard. Still it must be said that the
implementation of PESTO stands out as a very skillful one, to point that this program is currently the
best achiever especially on large examples.

Some improvement can be seen in MUSE, that uses a one-hot encoding for both input and
output symbols, and then performs a multi-level optimization. In this way at least some of the
actual potential optimizations can be evaluated, and their gain can be used to guide the embedding,
but there is no guarantee of optimality in this approach, and the output encoding problem is again
solved with a similarity measure.

Full multi-level multiple-valued optimization (Mis-MV) brings us closer to our final ob-
jective, because all potential optimizations can in principle be evaluated. The complexity of the
problem, though, limitsthis potentiality to an ailmost greedy search, asin misll.

Still we do not have a complete solution to the encoding problem for multi-level imple-
mentation because:

1. We need to improve our estimate of the final cost to be used in multi-level multiple-valued

optimization.
2. The problem of optima output encoding must be addressed directly.

The agorithms described in this section, though, can and have been successfully used,
and the path towards an optimal solutionis at least clearer than before.

414 Experimental Results

We report some comparisons among available state assignment programs based on the
techniques discussed in the previous sections. For the experiments we used the MCNC ' 89 set of
benchmark FSM'’s.

The Two-level Case

We report one set of experiments that compare programs for two-level state assignments.
Table4.1 summarizestheresults obtained running the algorithms of Nova [147], KISS[92]
and random state assignments. The resultsof NOVA were obtained running ESPRESSO [114] to obtain
the input constraints and the symbolic minimizer of NOVA built on top of ESPRESSO to obtain the
mixed input/output constraints, NOVA to satisfy the constraints on the codes of the states and of the

4.1. ALGORITHMS FOR OPTIMAL ENCODING 63

symbolic inputs (if any), and ESPRESSO again to obtain the final area of the encoded FSM. The best
result of the different options of NOVA was shown in the table. The results of KiSs were obtained
running ESPRESSO to obtain the input constraints, KIss to satisfy the constraints on the codes of
the states and of the symbolic inputs (if any), and ESPRESSO again to obtain the fina area of the
encoded FSM. The areas under random assignments are the best and the average of a statistical
average of a number of different (number of states of the FSM + number of symbolic inputs, if
any) random state assignments on each example. The final areas obtained by the best solution of
NOVA average 20% less than those obtained by Kiss, and 30% less than the best of a number of
random state assignments. NOVA can use any number of encoding bits greater than or equal to
the minimum. The best results of NOvA on the benchmark of Table 4.1 have been obtained with
a minimum encoding length, but thisis not always the case. Kiss uses a code-length sufficient to
satisfy al input constraints. Since it satisfies the constraints by an heuristic algorithm it does not
always achieve the minimum necessary code-length.

Notice that the lower bound provided by symbolic minimization is often larger than the
best upper bound achieved by encoding the FSM's, even though the avail able programs model only
partialy the effects of output encoding. This means that output encoding is more important than
input encoding on the quality of final results.

Comparisonsfor some of the approaches mentioned above [124, 39] have not been carried
out for the lack of an available implementation.

The Multi-level Case

We report a set of experiments that correlate good two-level state assignment to the
corresponding multi-level logicimplementation, comparing against an estimation-based multi-level
encoding algorithm.

Table 4.2 reports the number of literas after running through the standard boolean opti-
mi zation script in the multi-level logic synthesissystem misl [12] with encodingsobtained by NOVA,
MUSTANG [36], JEDI [77] and random state assignments. In the case of NOvVA only the best minimum
code-length two-level result was given to Misll . MUSTANG was run with -p, -n, -pt, -nt options and
minimum code-length. JEDI was run with all available options and minimum code-length [76]. In
all cases ESPRESSO was run before misll. The final literal counts in a factored form of the logic
encoded by NovA average 30% less than the literal counts of the best of a number of random state

assignments. The best (minimum code-length) two-level results of MUSTANG, and JEDI versus the

64

CHAPTER 4. PREVIOUS AND RELATED WORK

example random KISS NOVA

b-area | aarea || #bits | #cubes area || #hits | #cubes area
bbara 616 649 5 26 650 4 24 528
bbsse 1089 | 1144 6 27 | 1053 4 29 957
bbtas 165 215 3 13 195 3 8 120
beecount 285 293 4 11 242 3 10 190
cse 1947 | 2087 6 45 | 1756 4 45 | 1485
dk14 720 809 9 24 550 6 25 500
dk15 357 376 6 17 391 5 17 289
dk16 1826 | 1994 12 55 | 2035 7 54 | 1188
dk17 320 368 6 19 361 5 17 272
dk27 143 143 4 9 117 4 7 91
dk512 374 418 7 18 414 5 17 289
donfile 1200 | 1360 12 24 984 5 28 560
ex1 3120 | 3317 7 42 | 2436 6 37| 2035
ex2 798 912 6 31 744 5 27 567
ex3 342 387 6 18 432 4 17 306
ex5 324 358 5 15 315 4 14 252
ex6 810 850 5 24 792 3 25 675
iofsm 560 579 4 16 448 4 15 420
keyb 3069 | 3416 8 47 | 1880 5 48 | 1488
mark1 760 782 5 19 779 4 17 646
physrec 1677 | 1741 5 34 | 1564 4 33 1419
planet 4896 | 5249 6 89 | 4539 6 86 | 4386
sl 3441 | 3733 5 81| 2997 5 63 | 2331
sand 4278 | 4933 6 95 | 4655 6 89 | 4361
scf 19650 | 21278 8 140 | 18760 7 137 | 17947
scud 2262 | 2533 6 71| 2698 3 62 | 1798
shiftreg 132 132 3 6 72 3 4 48
styr 5031 | 5591 6 91 | 4186 5 94 | 4042
tbk 5040 | 6114 na na na 5 57 | 1710
trainll 221 241 6 10 230 4 9 153
TOTAL 65453 | 72002 na 51053
% 100 110 na a4

Table 4.1: Comparison of FSM’s encoding for two-level implementation

4.1. ALGORITHMS FOR OPTIMAL ENCODING 65

best (minimum code-length) two-level results of NOVA are aso reported. Notice that in the case of
MUSTANG and JEDI the run that achieved the minimum number of cubesisnot necessarily the same
that achieved the minimum number of literals. In the case of NOvA only the best two-level result
was fed into misll, so the data reported refer to the same minimized cover. Even though NOvVA was
not designed asamulti-leve state-assignment program, itsperformances compare successfully with
MUSTANG. Among the three programs, the best literal counts are often given by JEDI. These data
show that a state assignment that gives a good two-level implementation provides a good starting
point for a multi-level implementation, but it does not match the quality reached by agorithms
specidized for multi-level implementations. Early claimsin [151, 152, 150] that two-level tools
were good enough also for multi-level implementations reflected mainly atemporary lack of good
toolsfor multi-level implementations.

We report two kinds of experiments to verify the vaidity of Mis-mMv as input encoder:
e Compare the relative importance of the various multi-val ued optimization steps.

o CompareMIs-MV with someexisting stateassignment programs, such asJepi [77], MUSE [42],
MUSTANG [36] and NOVA [147]. Notice that we want to compare only the input encoding
algorithms of these programs and so we heed to "shut off" all effects due to the encoding of
the output part, captured by purpose (these programs embody aso heuristics for the output
encoding problem) or by chance. Therefore we replaced the codes returned by each program

in the present state only, while the next state was simply replaced by one-hot codes.
The experiments were conducted as follows:

e A single simplified boolean script (using simplify only once) was used both for multi-valued
and binary valued optimization.

e Thescript wasrun twicein al cases.
e MISMV:

1. ESPRESSO was run on the unencoded machine.
2. All or part of thefirst script was run in Mis-MVv’s multi-valued mode.
3. Theinputswere encoded, using the simulated annealing algorithm.

4. The remaining part of the first script and the second script were run in binary-valued

mode.

66

CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI | MUSTANG | NOVA || JEDI | MUSTANG | NOVA | random

#cubes #cubes | #cubes #lit #lit #lit #lit
bbara 24 25 24 57 64 61 84
bbsse 30 31 29| 111 106 | 132 149
bbtas 9 10 8 21 25 21 31
beecount 12 12 10 39 45 40 59
cse 52 48 45 || 200 206 | 190 274
dk14x 29 32 26| 106 117 98 164
dk15x 19 19 17 67 69 65 73
dk16x 64 71 52 || 225 259 | 246 402
donfile 33 49 28 76 160 88 193
ex1 48 55 44 || 250 280 | 215 313
ex2 35 36 27| 122 119 96 162
ex3 19 19 17 66 71 76 83
keyb 52 58 48 || 140 167 | 200 256
mark1 17 19 17 66 76 86 116
physrec 39 37 33| 132 159 | 150 178
planet 93 97 86 || 547 544 | 560 576
sl 57 69 63| 152 183 | 265 444
sand 105 108 96 || 549 535 | 533 462
scf 147 148 137 || 812 791 | 839 890
scud 57 83 62| 127 286 | 182 222
shiftreg 4 4 4 0 2 0 16
styr 100 112 94 || 508 546 | 511 591
tbk 57 136 57 || 278 547 | 289 625
trainll 11 10 9 27 37 43 44
TOTAL 1113 1288 1033 || 4678 5394 | 4986 6407
% 107 124 100 93 108 | 100 130

Table 4.2: Experiments on FSM’s encoding for two and multi-level implementation

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 67

e JEDI, MUSE, MUSTANG and NOVA:
1. Each program was run in input oriented mode ("-ei" for JEDI, "-e p" for MUSE, "-pc" for
MUSTANG and "-eih" for NOvA) to generate the codes.
2. The symbolic input was encoded.
3. ESPRESSO was run again, using theinvalid states as don’t cares.
4. The script was executed twice.
We performed seven experiments on each machine, four using JEDI, MUSE, MUSTANG and
NOVA, and three using Mis-MV. The experiments on mis-Mv differed in the point of the script where

the symbolic inputs were encoded (MIS-MV can carry on the multi-level optimizing operationson a
multiple-valued network or on the encoded binary-valued network):

1. At the beginning. At this point, both Mis-Mv and NOVA extract the same face constraints
by multiple-valued minimization. The two programs get different results because of the
different face constraints satisfaction strategies. Mis-Mv satisfies the face constraints with a
simulated annealing algorithm that minimizestheliteral count of atwo-level implementation.
The cost function is computed by calling ESPRESSO and counting the literals. NOVA satisfies
the input constraints with a heuristic deterministic agorithm that minimizes the number of

product-terms of atwo-level implementation.
2. After smplify, to verify multiple-valued boolean resubstitution.
3. After dgebraic optimization (gkx, gcx, . . .), to verify the full power of MiIS-MV.

Table 4.3 contains the results, expressed as factored form literas.

4.2 Relation of State Assignment to Other Optimization Steps

In this section we mention very briefly some issuesin the interaction of state assignment

(and encoding in general) to other steps of sequentia synthesis.

421 State Assgnment and State Minimization

State assignment interacts with the other traditional steps of sequentia synthesis. Con-
sider FSM decomposition, i.e., the process of replacing an FSM by a network of interconnected

68

CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI | MUSE | MUSTANG | NOVA best || beginning | simplify algebraic

MIS-MV optimization
bbara %] 99 9% | 106 84 84 84 85
bbsse 125 | 126 148 | 151 131 130 132 131
bbtas 34| 36 37| 3R 31 35 31 31
beecount 56| 60 65| 70 56 62 56 58
cse 189 | 192 208 | 214 195 191 199 195
dk14 9 | 102 108 | 98 79 97 79 81
dk15 65| 65 65| 65 68 65 68 69
dk16 254 | 244 314 | 31 247 225 247 261
dk17 63| 58 69| 58 62 58 62 64
dk27 30| 29 34| 38 27 27 27 27
dk512 73| 73 78| 93 68 70 68 69
donfile 132 | 131 195 | 186 123 127 123 123
exl 256 | 239 252 | 246 232 240 232 237
ex2 176 | 169 197 | 167 144 143 144 154
ex3 87| 96 9| 98 82 82 86 82
ex4 1| 72 73| 84 72 90 74 72
ex5 79 79 80| 83 69 67 69 69
ex6 93| 92 90| 98 84 85 85 84
ex7 87| 84 100| 94 78 89 79 78
keyb 186 | 180 203 | 195 146 186 172 146
lion 16| 16 14| 16 16 16 16 16
lion9 55| 55 61| 43 38 40 38 38
mark1 9| 92 89| 105 92 90 94 92
mc 32| 30 30| 3R 30 35 30 30
modulol2 | 58| 72 771 71 71 71 71
opus 83 70 88 90 70 87 70 74
planet 453 | 511 538 | 551 466 512 466 473
sl 339 291 377 | 345 249 335 253 251
sla 262 | 195 264 | 253 214 217 214 225
8 50| 52 47| 48 48 52 48 48
sand 556 | 498 519 | 542 509 523 509 529
shiftreg 24| 25 34| 35 24 24 24 24
styr 427 | 418 460 | 501 438 442 438 473
tav 27| 27 27| 27 27 27 27 27

| TOTAL || 4724 | 4578 | 5135 | 5186 | 4370 || 4624 | 4415 | 4487 ||

Table 4.3: Multi-level input encoding comparison

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 69

FSM'’s, preserving the sequentia behavior. One can see state assignment as producing an FSM
decomposition: thereisacomponent FSM of two states (1 memory element) for each encoding bit,
and each component FSM depends on the the state of the other components. Connections between
state assignment and FSM decomposition have been considered in [34, 37, 6, 5].

422 State Assgnment and State Minimization

A sequentia behavior may be represented by many different STG's, and different STG's
of the same behavior may |lead to different logical implementations. This makes elusive the goal of

obtaining the best implementation of agiven sequential behavior. We demonstrate with an example

the problem.
Consider FSM’s M (left) and M (right):
0 sl1s21 0 s1s21
1 s1s30 1s1s20
- s2s4 1 - s2s4 1
- s3s41 - 84 s10
- s4 s11

FSM M, isastateminimizedversionof FSM AM7. Anencodingof M>is: s; = 00, s, = 01, s3 = 10
and a corresponding minimum encoded implementation of M is:

000 011

100 010

-01 101

-10 000

This implementation could not have been obtained by encoding M, it was necessary instead to
obtainfirst adifferent STG representation of the same behavior by means of state minimization. So
one could think that by doing state minimization and then state assignment the best implementation
could be obtained. It is not dways so, as it was recognized long ago by Hartmanis and Stearns,
who gavein [55] an example of an FSM whose best implementation has fewer product-terms than
the best implementation obtained after state minimization of the original machine. Therefore in
order to get a minimum implementation one should merge the steps of state minimization and state
assignment. We will see, when discussing generalized prime implicants, how the introduction of
symbolic Boolean rel ations allows doing the two steps at the sametime, for CSFSM’s. Eventhislast
technique will not allow to explore al possible STG representations of a given sequential behavior,
but if the original STG is redundant it allows to choose a reduced STG in such away to optimize
the state assignment step.

70 CHAPTER 4. PREVIOUS AND RELATED WORK

Wewill mentionlater that by using symboalicrelations somecases of theinteraction of state
minimization and state assignment can be model ed exactly, but withlittle hope of practical solutions.
Recently Calazans [17] proposed an heuristic algorithm to use information about compatible states
of ISFSM’s while doing state assignment.

4.2.3 State Assignment and Testability

Unate state assignments to guarantee testability by construction were proposed first
in [140]. The logic to compute the outputs and the encoding of the next state is said to be
unate in a given state variable, if the output and next state functions can be expressed as sums of
products where the given variable appears either uncomplemented or complemented, but not both.
In[111] a case was made for avariation of unate encoding called half-hot encoding that may allow
sometimes savingsin the number of columnsof the encoded PLA. Haf-hot encodings have exactly
haf the total number of state variables set to 1. The penalty on the number of necessary product
terms was not addressed. The issue of encoding for testable implementations of small area using
(k, p) codes was addressed recently in [83]. (k, p) codes have length p with exactly £ bits set to
1 and they result in unate realizations of the encoded FSM. Information on compatibility between
states was al so used in the state assignment phase.

71

Chapter 5

Symbolic Minimization

5.1 Introduction

The optimization of logic functions performed on the Boolean representation depends
heavily on the encoding chosen to represent the symbolic variables.

The cost function that estimates the area optimality of an encoding depends on the target
implementation: two-level or multi-level or field-programmable gate arrays (FPGA's). The cost of
a two-level implementation is the number of product-terms or the area of a programmable logic
array (PLA). A commonly used cost of a multi-level implementation is the number of literals of a
technol ogy-independent representation of the logic. FPGA’'s come in different architectures with
associated costs. Other optimization objectives may be related to power consumption, speed and
testability. It may even be the case that the objectiveisa correctness requirement, asis race-freeness
in state assignment of asynchronous circuits.

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputsof alogicfunction. A problemin classA istheoptimal assignment
of opcodes for a microprocessor.

(B) Optimal encoding of outputs of alogic function.

(C) Optima encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optima encoding of both inputs and outputs (or some inputs and some outputs) of a logic
function, where the encoding of the inputs (or someinputs) isthe same as the encoding of the

72 CHAPTER 5. SYMBOLIC MINIMIZATION

outputs (or some outputs). Encoding the states of afinite state machine (FSM) is a problem
in class D since the state variables appear both as input (present state) and output (next state)
variables. Another problemin class D isthe encoding of the signals connecting two (or more)

combinational circuits.

Here we concentrate on problemsin class D for optimal two-level implementations. In
particular wewill refer mostly to the problem of encoding FSM's, sincethereisno lossof generality
and they are of great practical interest.

We will build on the paradigm started by [92]. It involves optimizing the symbolic
representation (symbolic minimization), and then transforming the optimized symbolic description
into a compatible two-valued representation, by satisfying encoding constraints (bit-wise logic
relations) imposed on the binary codes that replace the symbols. This approach guarantees an
upper bound on the size of the encoded symbolic function provided al the encoding constraints
are satisfied. Encoding via symbolic minimization may be considered a three step process. The
first phase consists of multiple-valued optimization. The second step isto extract constraintson the
codes of the symbolic variables, which, if satisfied, guarantee the existence of acompatible Boolean
implementation. The third step is assigning to the symbols codes of minimum length that satisfy
these constraints, if the latter imply aset of non-contradictory bit-wiselogic relations.

When thetarget i mplementationistwo-level logic, thefirst step may consist of one or more
cals[92, 91] to a multiple-valued minimizer [114], after representing the symbolic variables with
positional cube notation [139, 114]. Then constraints are extracted and a constraints satisfaction
problem isset up.

Using the paradigm of symbolic minimization followed by constraints satisfaction, the
most common types of constraints that may be generated [92, 91, 39, 116] are four. The first
type, generated by the input variables, are face-embedding constraints. The three types generated
by the output variables are dominance, disunctive and disjunctive-conjunctive constraints. Each
face-embedding constraint specifies that a set of symbolsisto be assigned to one face of a binary
n-dimensional cubeand no other symbol should beinthat sameface. Dominance constraintsrequire
that the code of asymbol covers bit-wisethe code of another symbol. Disjunctiveconstraintsspecify
that the code of a symbol must be expressed as the bit-wise digunction (oring) of the codes of two
or more other symbols. Disjunctive-conjunctive constraints specify that the code of a symbol must
be expressed as the bit-wise disjunction (oring) of the bit-wise conjunction (anding) of the codes of

two or more other symbols.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 73

The presentation is organized as follows. In Section 5.2 we present the encoding problem
for optimal two-level implementations. In Section 5.3 the new symbolic minimization algorithmis
described, while procedures for symbolic reduction and symbolic oring are explained, respectively,
in Section 5.4 and in Section 5.5. Section 5.6 analyzes some ordering schemes. In Section 5.7
mention is made of the agorithms used for checking encodeability. An example is demonstrated
in Section 5.8, and experiments are reported in Section 5.9, with final conclusions drawn in Sec-
tion 5.10.

5.2 Encoding for Two-level | mplementations

5.2.1 Multi-valued Minimization

Advancesinthe state assignment problem, reported in[93, 11, 92], madeakey connection
to multiple-valued logic minimization, by representing the states of a FSM as the set of possible
values of a single multiple-valued variable. A multiple-valued minimizer, such as [114], can
be invoked on the symbolic representation of the FSM. This can be done by representing the
symbolic variables using the positional cube notation [139, 114]. The effect of multiple-valued
logic minimization is to group together the states that are mapped by some input into the same
next-state and assert the same output. To get a compatible boolean representation, one must assign
each of the groups of states obtained by MV minimization, (called face or input constraints) to
subcubes of a boolean k-cube, for aminimum £, in away that each subcube contains all and only
all the codes of the states included in the face constraint. This problem is called face embedding
problem.

It isworth mentioning that the face constrai nts obtai ned through straightforward symbolic
minimization are sufficient, but not necessary to find a two-valued implementation matching the
upper bound of the multi-valued minimized cover. Asit was already pointed out in [91], for each
implicant of aminimal (or minimum) multi-valued cover, one can compute an expanded implicant,
whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have
minima (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced
implicant, one gets don't cares in the input constraint, namely, in the bit positions where the
expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem
with don’t cares becomes one of finding a cube of minimum dimension &, where, for every face
constraint, one can assign the states asserted to vertices of a subcube that does not include any state

74 CHAPTER 5. SYMBOLIC MINIMIZATION

not asserted, whereas the don't care states can be put inside or outside of that subcube. One can
build examples where the presence of don't cares allowsto satisfy the input constraints in acube of

smaller dimension, than it would be possibl e otherwise.

5.2.2 Symbolic Minimization

Any encoding problem, where the symbolic variables only appear in theinput part, can be
solved by setting up amultiple-val ued minimization problem followed by satisfaction of theinduced
face constraints. However, the problem of state assignment of FMS'sisonly partialy solved by this
scheme, because the encoding of the symbolic output variables is not taken into account (e.g. the
next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets
of the symbolic output functions, and therefore disregards the sharing among the different output
functions taking often place when they are implemented by two-valued logic. We will see how
more powerful schemesto deal with both input and output encoding.

In [91, 147] a new scheme was proposed, caled symbolic minimization. Symbolic
minimization was introduced to exploit bit-wise dominance relations between the binary codes
assigned to different vaues of a symbolic output variable. The fact is that the input cubes of the
onset of a dominating code can be used as don't cares for covering the input cubes of the onset
of a dominated code. The core of the approach is a procedure to find useful dominance (caled
also covering) constraints between the codes of output states. The translation of a cover obtained
by symbolic minimization into a compatible boolean representation defines simultaneously a face
embedding problem and an output dominance sati sfaction problem. Noticethat any output encoding
problem can be solved by symbolicminimization. Symbolic minimizationwasapplied alsoin[115],
where aparticular form of PLA partitioning isexamined, by which the outputsare encoded to create
areduced PLA that is cascaded with a decoder.

However, to mimic the full power of two-valued logic minimization, another fact must
be taken into account. When the code of a symbolic output is the bit-wise disjunction of the codes
of two or more other symbolic outputs, the on-set of the former can be minimized by using the
on-sets of thelatter outputs, by "redistributing” the task of implementing some cubes. An extended
scheme of symbolic minimization can therefore be defined to find useful dominance and disjunctive
rel ations between the codes of the symbolicoutputs. Thetrangation of acover obtained by extended
symbolic minimization into a compatibl e bool ean representation induces a face embedding, output

dominance and output disjunction satisfaction problem.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 75

@ 10 s1 s2 11 @) -0 s1s2 2 11
2 00 s2 s2 1 (2) 0 «2s3 2 00
3 01 s2 s2 00 (3) 10 s2s3 1 11
4 00 s3 s2 00 @) 00 s sl --
G5) 10 s2 st1 11 (5) 01 <3 0 00
6) 10 <3 st1 11 6) 11 €10 st 10
7 0 sl sl -- (7) 11 €0s3 &3 01

8 01 &3 0 00
@ 11 sl sl 10
100 11 s3 s3 01
1) 11 s0 s0 11

Figure 5.1: Covers of FSM-2 before and after symbolic minimization

In Figure 5.1, we show theinitial description of aFSM and an equivalent symbolic cover
returned by an extended symbolic minimization procedure.

Thereduced cover isequivalent to the original oneif we imposethe following constraints
on the codes of the states.

Product terms (1'), (3') and (4') are consistent with the original product terms (5) and (7)
if weimpose code(stl) > code(st2). In asimilar way, product terms (2') and (5’) are consistent
with the original product term (8) if weimpose code(st0) > code(st2). The product terms (1) and
(2) yield dso theface constraints face(st1, st2) and face(st2, st3), meaning that the codes of st1
and st2 (st2 and st3) span aface of acube, to which the code of no other state can be assigned. The
previous face and dominance constraintstogether allow to represent the four original transitions(1),
(2), (3), (4) by two product terms (1) and (2').

Product term (3') is equivaent to the origina transitions (5) and (6) and yields the face
constraint face(st2, st3). Thissaving is due to apure input encoding join effect.

Finally the product terms (6'), (7') represent the origina transitions (9), (10) and (11).
The next state of (11) is st0, that does not appear in (6’) and (7’). But, if we imposethe disunctive
constraint code(st0) = code(stl) V code(st3), i.e., we force the code of st0 to be the bit-wise
or of the codes of st1 and st3, we can redistribute the transition (11) between the product terms
(6") and (7). The product terms (6') and (7’) yield aso the face constraints face(st1, st0) and

76 CHAPTER 5. SYMBOLIC MINIMIZATION

1) -0 o 00 11
() 0 -0 00 00
(3 10 -0 01 11
@) 00 01 01 --
() 01 10 11 00
6) 11 -1 01 10
7) 11 1- 10 o1

Figure 5.2: Encoded cover of FSM-2

face(st0, st3); together with the previous disunctive constraint they alow the redistribution of
transition (11).

We point out that if we perform asimple MV minimization on the origina descriptionwe
save only one product term, by the join effect taking placein transition (3').

An encoding satisfying al constraints can be found and the minimum code length is two.
A solution is given by stg = 11, st; = 01, st, = 00, st3 = 10. If we replace the states by the
codes in the minimized symbolic cover, we obtain an equivalent Boolean representation that can be
implemented with a PLA, as shown in Figure 5.2. Note that we replace the groups of states in the
present state field with the unique face assigned to them and that product term (2") is not needed,
because it asserts only zero outputs. Therefore the final cover has only six product terms.

5.2.3 Completnessof Encoding Constraints

Animportant questioniswhether the constraints described earlier are sufficient to explore
the space of al encodings. More precisdly, the question is: find the class of encoding constraints
suchthat by exploring al of them oneisguaranteed to produce aminimumencoded i mplementation.
Of course exploring al the encoding constraintsof agiven classmay beimpractical, but if the answer
to the previous question is affirmative, one has characterized a complete class that can lead in line-
of-principle to an optimal solution. This would make more attractive an heuristic that explores the
codes satisfying the constraints of such a class.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 77

Theorem 5.2.1 Face and disjunctive constraints are sufficient to obtain a minimum two-level im-
plementation of a state-minimized FSM if the minimumimplementation has as many hardware states

asthere are symbolic states.

Proof: Consider an FSM F. Let the codes that produce a minimum implementation of the
FSM be given, together with the best implementation C' (here minimum or best refers to the
smallest cardinality of atwo-level cover). Suppose that the product-terms of the minimum encoded
implementation C' are al prime implicants. Consider each cube of C'. Its present state part will
contain the codes of one or more states and it will tranglate into aface constraint. Itsnext state part
will correspond to the code of asymbolic state (using the hypothesisthat there are as many hardware
states as symbolic states). Consider now each minterm of the original FSM F. It will be covered in
the input part (proper input and present state) by one or more cubes of C'; thiswill translate into a
disjunctive constraint whose parent is the next state of the minterm and whose children are the next
states of the covering cubes of C'.

The face constraints and digjunctive constraints so obtained are necessary for a set of
codes to produce such aminimum implementation, when they are replaced in the origina cover and
then the cover is minimized. But are they sufficient ? There may be many sets of codes that satisfy
these constraints. Is any such set sufficient to obtain a minimum cover ? The answer if yes, if after
that the set of codes is replaced in the origina FSM, an exact logic minimizer is used. Indeed, if
this set of codes satisfies the encoding constraints, by construction they make possibleto represent
the minterms of the original FSM cover by the cubes of the minimum cover C'. Therefore an exact

logic minimizer will produce either C' or adifferent cover of the same cardinality as C' 2. [|

Theorem 5.2.2 Face and digjunctive-conjunctive constraints are sufficient to obtain a minimum

two-level implementation of a state-minimized FSM.

Proof: If there are as many hardware states as there are symboalic states the previous result applies.
If the best implementation has more hardware states than symbolic states, one must introduce
disjunctive-conjunctive constraints. The reason is that it is not anymore always true that the next
state of a cube ¢ € ' corresponds to the code of a symbolic state. Suppose that the next state of
a cube ¢ is not the code of a symboalic state. ¢ cannot be a minterm in the input part, otherwise,

since we supposethat C' containsonly primeimplicants, the next state of ¢ must be exactly the code

1The hypothesis that the FSM is state-minimized guarantees that the minimum implementation does not have fewer
hardware states than there are symbolic states.

78 CHAPTER 5. SYMBOLIC MINIMIZATION

of the state of the symbolic minterm in F’ to which ¢ corresponds. So ¢ must contain more than
one minterm in the input part, say w.l.0.g. that ¢ contains exactly two minterms m1 and m;, each
corresponding to a symbolic minterm of the care set of . If the symbolic minterms corresponding
in ' to ¢y and cp assert next states s; and s», the next state of ¢ must be the intersection of the codes
of s; and s, (for sure the next state of ¢ must be dominated by the intersection of the codes of s1
and s,, but we supposethat ¢ isa primeimplicant and that it contains exactly mintermsmq and mo
of the care set, so we can say that the next state of ¢ is exactly the intersection of the codes of s1
and sp).

Therefore for each symbolic minterm m, in I’ one defines a disjunctive-conjunctive
constraint enforcing that the code of the next state of m; is a disunction of conjunctions, where
each digunct is contributed by one of the cubes of C' that contain the input part of the minterm
corresponding to m, and for each such cube ¢, the conjuncts are the codes of the next states
asserted by al the care set minterms that ¢,,,, contains. The rest of the reasoning goes as in the
previous theorem. [|

Digjunctive-conjunctive constraints were introduced for the first time in [39], as the
constraintsinduced by generalized primeimplicants. Our derivation showsthat they arise naturally
when one wants to find a complete class of encoding constraints. In our symbolic minimization
algorithm we used as the class of encoding constraints face constraints, dominance constraints and
disjunctive constraints. Dominance constraints are not necessary, but they have been considered
useful in devel oping an heuristic search strategy. We did not use disjunctive-conjunctive constraints

in the heuristic procedure presented here.

5.3 A New Symbolic Minimization Algorithm

53.1 Structureof the Algorithm

In this section anew more powerful paradigm of symbolic minimizationispresented. An
intuitive explanation of symbolic minimization as proposed in [91] and enhanced in [147] has been
givenin Section 5.2. To help in highlighting the differences of the two schemes, theonein [147] is
summarized in Figure 5.3.

The new scheme of symbolic minimization features the following novelties.

e Symbolic oring. Digjunctive constraints are generated corresponding to the case of transi-
tions of the initia cover implicitly expressed by other transitions in the encoded two-level

53. A NEW SYMBOLIC MINIMIZATION ALGORITHM

10.

Input data cover C' with ¢ symbolic outputs,
optional binary outputs,

empty acyclic graph &,

and empty cover FinaP

Output isthe graph G and the minimal cover Fina P
Ony, = on-set implicants of k-th output symbol
with the corresponding binary outputs unchanged
Repeat Steps 4 through 9 ¢ times

+ = select asymbol

De; = UO0n;,

for al 7 for which there is no path from vertex :
tovertex j inGG

Offi =U0n;,

for al 7 for which thereisa path from vertex :
tovertex j inGG

M B; = minimiz&(On;, De;, O f f;)

M; =implicantsof M B;

that are in the on-set of symbol i

G = GU{(j, 1) suchthat M; intersects On; }
P=PUMB;

Final P = minimize(P)

Figure 5.3: Old Symbolic Minimization Scheme

79

80 CHAPTER 5. SYMBOLIC MINIMIZATION

representation, because of the oring effects in the output part.

o Implementability. Product-terms are accepted in the symbolic cover, only when they yield

satisfiable encoding constraints.

e Symbolic reduction. Symbolic minimization is iterated until an implementable cover is
produced. A symbolic reduction procedure guarantees that this always happens.

At last, codes satisfying the given encoding constraints are generated. The accuracy of
the synthesis procedure can be measured by the fact that the cardinality of the symbolic minimized
cover is very close to the cardinality of the original encoded FSM minimized by ESPRESSO [11].
Thiswill be shown in the section of results.

We introduce the following abbreviations useful in the description of the algorithm:

e IniCov = (Fec, De, Re) istheinitial cover of a1-hot encoded FSM, where F'e, De and Re
are, respectively, the on-set, dc-set and off-set of the 1-hot encoded FSM.

e Nsisthe set of next states of a FSM. Fe,s, De,s and Re,; are the set of product-terms
asserting n.s, respectively, in F'e, Dcand Re,Vns € Ns.

e Ony,, Deare,; and O f f,; are, respectively, the on-set, dc-set and off-set of next state ns,
VYns € Ns,On,,.

e Ony,, Dey, and O f fi,, are, respectively, the on-set, dc-set and off-set of the binary output

functions.

e PartCov = (OnCov, DcCouv, O f fCov)isthecover of afragment of a1-hot encoded FSM,
where OnCov, DeCov and O f fCov are, respectively, the on-set, dc-set and off-set of the

given fragment.

e Cons,, isthe set of input and output constraintsyielded by symbolic minimization of Fe,,,
Vns € Ns. ThesetsCons,, are cumulatedin C'ons.

o FupCov,s and RedCov,, are, respectively, amaximally expanded and amaximally reduced
minimized cover of F¢,,, Vns € Ns. The sets FapCov,, and RedCov,, are cumulated,
respectively, in FxpCov and RedCov.

At the each step of the symbolic minimization loop a new next state ns is chosen by
the procedure SelectState, described in Section 5.6. The god is to determine a small set of

53. A NEW SYMBOLIC MINIMIZATION ALGORITHM 81

multiple-valued product-terms that represent the transitions of F'c,s. The procedure SymbQOring,
described in Section 5.5, determines Or,,;, thetransitionsof F'c,,; that can berealized by expanding
some product-terms in the current RedC'ov and choosing the expansionsin the interva (RedC'ov,
FxpCov). This expansion operation yields updated encoding constraints (here aso disunctive
constraints are generated) that must be imposed to derive an equivalent two-level implementation.
The rest of Fe,, isminimized, putting in its off-set the on-sets of all states selected previously 2.
The minimization is done caling ESPRESSO, without the fina make sparse step. This produces
FaxpCov,s, amaximaly expanded minimized cover. Calling the ESPRESSO procedure mv_reduce
on FxpCov, s produces RedCov,,;, amaximally reduced minimized cover. Thereduced minimized
cover RedC'ov, s yields new encoding constraints C'ons,,;.

If it turns out that the constraints in C'ons,,; are not compatible with the constraints
aready in C'ons, a SymbReduce procedure is invoked to redo the minimizations of Fe,, and
produce covers that yield encoding constraints compatible with those currently accepted in C'ons.
In Section 5.4, where symb_reduce is described, it is shown that this aways happens, i.e. this
symbolic reduction step always produces an implementable symbolic minimized cover of Fe,;.
The compatible constraintsC'ons,,s are added to C'ons and the new accepted covers FzpCov, s and
RedCov, s are added, respectively, to FapCov and RedC'ov. Finally, codes satisfying the encoding
constraints in C'ons are found and replaced in the reduced symbolic minimized cover RedC'ov.
Theresulting encoded minimized cover EncRedCovisusualy of the same cardinality asthe cover
obtai ned by repl acing the codesintheoriginal symboliccover and then minimizingit with ESPRESSO.
EncRedCov can be minimized again using ESPRESSO to produce a cover MinEncRedC'ov, that
rarely has fewer product-terms than EncRedCov. These statements will be supported by results
in the experimenta section. To check the correctness of this complex procedure a verification is
made of MinFEncRedCov against FnclniCov. A non-equivaence of them signalsan error inthe
implementation.

Theoutlined procedureisshownin Figure 5.4. Theroutineswithinitial letter in thelower
case are directly availablein ESPRESSO (hot necessarily with the same name and syntactical usage),
whiletheroutineswith initial | etter in the upper case are new and will be described in the following

sections.
Proposition 5.3.1 The algorithm of Figure 5.4 generates an implementable symboalic cover.

Proof: By construction a product term is added to the symbolic cover, only if it carries constraints

2Thisis not required: one should put only those statesthat n.s covers.

82 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure symbolic(F'e, De, Re) {
do { /* repeat until al next states are selected */
[* Sel isaset of currently selected states */
ns = SelectState(Vs — Sel); Sel = Sel Uns
I* Or,s arethetransitionsof F'e,,; expressed by oring */
(Orys, FxpCov, RedCov, Cons)
= SymbOring(/ n:C'ov,EapCov,RedCov,Cons)
I* OnC'ov are the transitions to be covered */
OnCov =Fc,, — Or,,
/* add the on-sets of states previously selected to the off-set */
OffCov=U;eser—ns Oni
/* add binary output off-set */
OffCov=0ffCovUOf fp,
[* everything else (including Or,,,) isin dc-set */
DeClov = complement(OnClov,O f fCov)
* invoke espresso with no makesparse */
ExpCouv,s = espresso(OnC'ov,DcCov,0 f fCov)
RedCov,; = mv_reduce(FapCov,g,DeCov)
Cons,s = Congtraints(IniCov,FxpCov,s,RedCov,;)
if (ConstraintsCompatible(Cons,Cons,;) fails)
(FapCovps,RedCov,s,Cons,,) =
SymbReduce(IniCov,PartCov,FaxpCov,s,RedCov,;,Cons,Cons,s)
FapCov = FzpCov U ExpCovy,;
RedCov = RedCov U RedCov,,,
Cons =ConsU Cons,,
} while (at least one statein Ns — Sel)
C'odes = EncodeConstraints(C'ons)
EncRedCov = Encode(RedC'ov, C'odes) [* encode symbolic min. cover */
MinEncRedCov =minimize(EncRedCov)
EnclniCov = Encode(IniCov, C'odes) I* encode initial FSM */
MinEncIniCov=minimize(EnclniCov)
if (verify(MinFEncRedCov, EncIniCov) fals) ERROR

Figure 5.4: New Symbolic Minimization Scheme

54. SYMBOLIC REDUCTION 83

on the codes that are compatible with the constraints of all the symbolic cubes cumulated up to
then. Therefore one guarantees that the symbolic cover isawaysimplementable at any stage of its

construction.]

5.3.2 Slice Minimization and Induced Face and Dominance Constraints

The procedure Constraints computes the face and dominance constraints induced by a
pair of minimized covers (RedCov,,s, ExpCouv,,) with respect to the original cover F'c. For each
product-term pexp € FxzpCov,, there isacompanion product-term pred € RedCov, obtained
from pexp by applying to it the multiple-valued reduce routine of ESPRESSO. For each pair of
product-terms (pred, pexp) € (RedCov,s, ExpCouv,,) one gets the implied face constraint by
considering the 1-hot representation of the input part. For each position % in the input part of the
1-hot representation of pred and pexp, opposite bits yield a don’t care in the face constraint and
equa bitsyield the common care bit in the face constraint. Face constraints are generated for all
symbolic input variables, including proper symbolicinputs, if any.

Dominance constraints are computed by determining, for each product-term pred €
RedCov, the transitions of the origina cover F'e that pred intersects in the input part. The next
statesthat these transitions assert must cover the next state of pred, for the functionality of the FSM
to be maintained. Notice that currently we compute only the dominance constraintsimplied by the
product-termsin RedC'ov. Computing them both for RedC'ov and FapCov (as we do in the case
of input face constraints with the notion of don’t care input constraints), would alow to explore a
larger part of the solution space. Thisis not currently done, because it would make the constraint
satisfaction problem more complex.

Oring constraintsare generated only inthe SymbOring procedure described in Section 5.5.

In Figure 5.5 the pseudo-code of Constraintsis shown.

5.4 Symbolic Reduction

Theprocedure SymbReduceisinvoked to set up aseriesof new minimizationsthat produce
an implementable minimized cover of OnC'ov. Thisis required when a set of constraints C'ons,,s
incompatible with thosein C'ons are obtained at a certain iteration in the loop of symbolic. When
thishappens, it means that we cannot minimizethe current OnC'ov (with the current DcC'ov) in one
shot, because the minimization process would merge multiple-valued product-terms in such a way

84 CHAPTER 5. SYMBOLIC MINIMIZATION

I* face and dominance constraintsinduced by (RedCov,,s, ExpCouv,;) */
Constraints(/ niCov,FExpCov,s,RedCov,) {
foreach (pair of product-terms (pred, pexp) € (RedCouv,s, ExpCov,s)) {
foreach (position k& in the 1-hot representation) {
if (I (pred)[k]and I(pexp)[k] are opposite bits) face[k] = dc
ese facelk] = I(pred)[k]
}
foreach (transitiont € F'e) {
/* don’'t intersect if t and pred assert same next state */
if (t and pred assert different next states) {
if (distance(! (pred),I(t)) = 0) {
create covering constraint (nazst(t) > nast(pred))

}

Figure 5.5: Derivation of face and dominance constraints

54. SYMBOLIC REDUCTION 85

that incompatibleconstraints are generated. 1nstead we can minimizeOnC'ov by blocksand control
the alowed companion dc-sets so that only compatible constraints are generated. It is evident that
in the worst-case, if only onetransition of OnC'ov isminimized at atime, with an empty dc-set, we
always aobtain implementable product-terms. Thisis equivaent to perform no minimization at all.
In SymbReduce, thetransitionsof OnC'ov are partitioned into maximal sets of transitionsthat can be
minimized together. Maximal companion dc-sets are found for each previous on-set of transitions.

The routine SymbReduce is divided in two steps. In the first step, a maximal subset of
C'ons,, issought that is compatible with C'ons. Therationaleisthat the companion product-terms
of FapCov,, and RedCov,, are an acceptable cover for a subset of OnCov. Thisisdonein a
greedy fashion. The constraints of C'ons, s compatible with Cons are saved into AConsTmp. A
new constraint of C'ons,,; ischecked for compatibility withC'onsU AConsTmp. If itiscompatible,
itisadded to AC'onsT mp, otherwise the product-term companion to the constraint is deleted from
both FzpCov,; and RedCov,s. Thetransitionsof OnC'ov not covered by theresulting RedC ov,,
are the new cover that must be minimized in such a way that only implementable multiple-valued
product-termsare found. Thetransitionsof OnC'ov covered by theresulting RedC'ov,,; areinstead
added to the dc-set.

In the second part, the current OnC'ov (i.€. thepart of theinitial OnCov left uncovered by
the previous step) isminimized. Thetransitionsof OnC'ov that can be minimized together are saved
into OnCovTmp. A new transition ¢t of OnC'ov is minimized together with OnCovTmp to return
both ExpCovT Mp and RedCovTmp. Theimplied constraints are computed in AConsTmp. If
they are compatible with C'ons, t is added to OnCovTmp. In this way one determines sets of
transitionsthat can be minimized together. The dc-set of each such set of transitionsisenlarged in a
similar greedy fashion. Therationaeisthat one may obtain more expanded resulting product-terms
useful in later stages of the algorithm. Then FazpCov,s, RedCov,s and Cons,s are updated,
respectively, with the saved accepted sets FaxpCovT'mp, RedCovTmp and AConsTmp. Thisis
iterated until all transitions of OnC'ov are minimized.

The outlined procedureis shownin Figures 5.6 and 5.7. Theroutineswithinitial letterin
the lower case are directly available in ESPRESSO (not necessarily with the same name and syntactic
usage), while the routines with initia letter in the upper case are new.

86 CHAPTER 5. SYMBOLIC MINIMIZATION

I* PartCov isthetriple (OnC'ov,DcCov,0 f fCov) */
procedure SymbReducePart1(/ niCov,PartCov,FxpCov,s,RedCov,s,Cons,Cons,s) {
[* choose greedily a maximal subset of compatible constraints */
I* pt(c) isaproduct-term companion to constraint ¢ */
AConsTmp isempty
foreach (constraint ¢ € C'ons,;) {
if (ConstraintsCompatible(C'ons,AC'onsTmp,c) succeeds) {
AConsTmp = AconsTmp U ¢
}else{
ExpCov,s = ExpCov,s — pt(c) I* pt(c) € ExpCov,, */
RedCov,s = RedCov,s — pt(c) I* pt(c) € RedCov,s */

}

Cons,s =Cons,, U AconsTmp
foreach (transitiont in OnCov) {
[* if the product-termsin RedCov,,s cover t */
if (sharp(t, RedCov,s) returns empty) {
OnCov=0nCov —t
DcCov=DcCov+1t

Figure 5.6: Symbolic reduction - Partl

54. SYMBOLIC REDUCTION 87

procedure SymbReducePart2(/niCov,PartCov,ExpCouv, s, RedCov,s,Cons,Cons,s) {
do { /* piece-wise minimizations of what leftin OnCov */
OnCovT'mp = 0; DcCovTmp =
/* choose greedily a maximal on-set */
foreach (transition¢ in OnC'ov) {
Of fCovTmp =complement(OnCovTmp Ut, DeCovT'mp)
/* invoke espresso with no makesparse */
ExpCovTmp = expresso(OnCovTmp Ut,DeCovTmp,O f fCov T mp)
RedCovTmp = mv_reduce(ExpCovT'mp,DcCovT'mp)
AConsTmp = Congrants(/niCov, ExpCovTmp, RedCovT'mp)
if (ConstraintsCompatible(C'ons,AConsTmp) succeeds) {
OnCovT'mp =O0OnCovTmp Ut
OnCov=0nCov —t
SaveExpCovl'mp = ExpCovTmp, SaveRedCovI'mp = RedCovI'mp
SaveAConsTmp = AConsTmp

1

/* choose greedily a maximal dc-set of previous on-set */
foreach (transitiont in DeClov) {
OffCovT'mp = complement(OnCovil'mp, DeCovl'mpUt)
[* invoke espresso with no makesparse */
ExpCovTmp = expresso(OnCovTmp,DeCovT'mp Ut,0ffCovTmp)
RedCovTmp = mv_reduce(ExpCovT'mp,DcCovT'mp)
AConsTmp = Congrants(/niCov, ExpCovTmp, RedCovT'mp)
if (ConstraintsCompatible(C'ons, AConsTmp) succeeds) {
DeCovTmp = DeCovl'mp Ut
SaveExpCovl'mp = ExpCovTmp, SaveRedCovI'mp = RedCovI'mp
SaveAConsTmp = AConsTmp

1

Cons,s = Cons,s U Save AConsTmp

ErxpCovps = EFxpCovps U Save ExpCovTmp;

RedC'ov,s = RedCovy, s U Save RedCovT mp
} while (at least one transitionin OnCov)

Figure 5.7: Symboalic reduction - Part2

88 CHAPTER 5. SYMBOLIC MINIMIZATION

5.5 Symbolic Oring

In two-level logic minimization of multi-output functionsthefact of sharing cubes among
single outputs reduces the cardinality of the cover. When minimizing symbolic logic to obtain
minima encodable two-level implementations, one should detect the most profitable disjunctive
constraints so that - after encoding - sharing of cubes is maximized. In Section 5.3 an example
was given where oring in the output part accounts for most savings in the minimum cover. In the
symbolic minimization loop presented in Section 5.3, SymbOring isinvoked to that purpose.

Thegoa of the procedure SymbOring isto determineasubset (if it exists) of thetransitions
of Fe,, that can be redized using the product-terms of the partia minimized symbolic cover
(EzpCov, RedCov). If so, that subset is moved from the on-set to the dc-set of the cover to
minimize in the current step. The procedure is heuristic because it handles a transition of Fc,,s
a atime and it introduces some approximations with respect to an exact computation. For each
transition ¢ of F'¢,s the following agorithm decides whether ¢ can be realized using or modifying
product-termsin RedC'ov. Here we present the main features, leaving out minor design choices.

At acertain step of the procedure symbolic a pair of partia covers (EzpCov,RedCov)
is available. For each cube pexp € FxpCov there is a companion cube pred € RedCov (and
viceversa) such that pred isobtained by pexzp by applying to it the multiple-valued reduce routine
of ESPRESSO. A cube pred € RedCov potentialy useful to espress implicitly ¢ must satisfy the
conditionsthat itsinput part (denoted / (pred)) has non-empty intersection with /(¢) and the output
part of ¢ (denoted O(t)) covers O (pred). All such cubes are collected in the cover Inter(t). It may
happen that I (pred) doesnotintersect 1 (¢), but that 1 (pexp) intersects I (¢), because in pred the bit
of the present state of ¢ islowered, whilein pexp itisraised. If so, one may raise temptatively aso
thebit in pred to obtain another potentially useful cubethat isadded to I nter(t). The product-term
pred raised in the present state of ¢ is denoted by raised(pred); 3.

The set Or N states(Inter(t)) of next states of cubesin Inter(t) is computed. Define
Inter(t)s asthe set of transitions of Inter(t) with next state included in set 5. In order that a
digunctive effect occurs it is necessary that, for at least two next states s1 and s2, I(t) is covered
both by the union of theinput parts of all cubesin Inter(t)s1 and by the union of theinput parts of
al cubesin I'nter(t)s2. Here covering is meant to be restricted to the next state function assumed

3In the current implementation p is not added to Tnter(t) if I(p) is covered by theinput part of another cube already
in Inter(t). Therationaleis that product-terms whith a more expanded input part are preferred, because they are more
likely to cover other transitions in the future. An exact algorithm should define the notion of don't-care intersecting
product-terms, if one knows how to handle conditional dominance constraints.

55. SYMBOLIC ORING 89

as asingle output. Suppose that Or N states has at least two elements. We determine the states
s of Or N states such that the union of the input parts of the cubesin Inter(t), covers I(t), and
discard the others. Moreover, in order that a disunctive effect occurs it is necessary that, for al
binary output functions, /() is covered by the union of theinput parts of al cubesin Inter(t). If

all previous tests are not satisfied, the attempt of expressing ¢ by symbolic oring fails.

If the previous necessary conditions are satisfied, all subsets of elements in the set
OrN states are computed in Subset(Or N states). Each such subset, denoted by or, is an or-
ing pattern potentialy useful to espress implicitly the transition . For each oring pattern or, the
procedure OringCover returnsOrC'ov(t), asubset of transitionsof Inter(t),,uq (it meansnter(t)
restricted to next states in or or empty next state) that cover ¢, both in the next state output space
and in the binary output spaces. Notice that OringCover may fail to find a cover even if it exists,
because while the input space of the binary output functions can be covered by considering the
whole Inter(t), only a subset of it (Inter(t).,us) isconsidered by OringCover. Notice aso that
there may be many possible such covers, but only one is found. This may penalize the quality of
the fina results, because the computed cover may yield uncompatible constraints, while there is
another cover that yields compatible constraints. We do not give the details of OringCover, that is
based on a greedy strategy.

If a cover OrCou(t) is found, one considers the modified partial minimized cover
RedCovTmp, obtained from RedCov by raising the present state bits according to what done
in the generation of Inter(t). Then the constraintsimplied by the modified cover are derived and
checked for compatibility with the oring constraint or (since some product-terms of RedC'ov have
been raised in the present state, there are raised face constraints and by consegquence dominance
constraints must be recomputed). If theanswer ispositive, thetransitiont isimplementableby oring
and both RedC'ov and C'ons are updated. Otherwiseanew oring pattern from Subset (Or N states)
isconsidered. When they have been all exhausted, a new transition of F'c,,; istaken into consider-

ation. 4.

The outlined procedure is shown in Figures 5.8. The routines with initia letter in the
lower case are directly available in ESPRESSO (not hecessarily with the same name and syntactic

usage), while the routines with initia letter in the upper case are new.

“A better alternative would be to check for constraints compatibility while building OrCou(t): do not add a new
product-term to the subset of OrCouv(t) currently accepted, if together with it, it yieldsinfeasible constraints .

90 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure SymbOring(I/niCov,ExpCov,RedCov,Cons) {
foreach (transitiont € Fe,) {
foreach (pair of product-terms (pred, pexp) € (RedCov, ExpCov)) {
if ((pred) N 1(t) non-empty and O(t) 2 O(pred)) {
Inter(t) = Inter(t) U pred
}else{
if (Z(pexp) N I(t) non-empty and O(t) 2 O(pexp)) {
Inter(t) = Inter(t) U raised(pred),

1

compute Or N states(Inter(t))
if (at least two statesin Or N states) {
foreach (next state s € Or N states)
if (UpEInter(t)s I(p) 2 I(t)) OrNstates =OrNstates — s
foreach (binary output function)
it Uyernrercn) [(p) 2 1()) OrNstates empty

}
if (at least two statesin Or N states) {

generate Subset(Or N states)
foreach (element or of Subset) {
OrCou(t) = OringCover(Inter(t)orug t, ExpCov,RedCov)
if (OrCou(t) isnot empty) {
RedCovTmp = Raise(RedCov,Inter(t)t)
ConsT'mp = Congraints(/niCov,EzpCov,RedCov'mp)
if (ConstraintsCompatible(C'onsT'mp,or) succeeds) {
Orps =Orp; Ut
RedCov = RedCovT'mp
Cons =ConsTmp U or
goto outer foreach loop

Figure 5.8: Symbolic oring

5.6. ORDERING OF SYMBOLIC MINIMIZATION 91

5.6 Orderingof Symbolic Minimization

In the procedure symbolic described in Section 5.3, at each cycle of the symbolic mini-
mization loop, states are partitioned intwo sets. those selected in previousiterations (Sel) and those
still unselected (Vs — Sel). At the start of anew cycle, anew state ns is selected by the procedure
SHectSate from Ns — Sel and the state partition is updated.

The transitions of the FSM are partitioned, accordingly, in the transitions asserting the
statesin Sel and already minimized and the transitions asserting the statesin Ns — Sel and not yet
minimized. We observe the following facts:

1. When anew state ns is selected, the transitions asserting it cannot be used later to minimize
the transitions asserting statesin Ns — Sel — ns. Therefore if one measures how much an
unsel ected state can hel pin minimizing the other unsel ected statesby dominance (DomGain),
the state of minimum gain should be selected first.

2. When a new state ns is selected, the transitions asserting it cannot be espressed later using
the transitions asserting states in Ns — Sel — ns. Therefore if one measures how much
the minimization of an unselected state is helped by the other unselected states by oring
(OrGain), the state of minimum gain should be selected first.

Summarizing, the problem of the best selection of a new state can be reduced to one of
measuring the dominance and oring gains and then choosing the state that minimizes their sum
(TotGain = DomGain + OrGain).

Asanexample, consider that Ns = st0, stl, st2, st3, st4, st5, st6. Supposethat currently
st0, st5, st6 have been already selected and that a new state must be chosen among st1, st2, st3,
st4, by computing their gain and choosing the minimum. We have devised two slightly different
schemes for computing the gain of a state. In thefirst scheme, the gain of a state, for instance st1,
can be computed by setting up a minimization as shown in Figure 5.9 (in the figure the covers are
shown for the next state functions asserted by the unselected states). After the minimization, the
difference in cardinality between the resulting and original covers gives one component of thegain,
DomG ain (associated to thedominanceconstraints: st1 > st2, st1 > st3, st1 > st4). Thesecond
component of the gain, OrGain (associated to the digunctive constraints. stl = st2 V st3V st4,
stl = st2V st3, stl = st2V std, stl = st3V std), is found by computing, for each transition
asserting st1, whether itsinput part is covered by the input parts of the transitions asserting at |east
two other unselected states, for the related next state functions and al binary output functions.

92 CHAPTER 5. SYMBOLIC MINIMIZATION

OnCov:

on-set of st2 0010000
on-set of st3 0001000
on-set of st4 0000100
OffCov:

on-set of st2 0001100
on-set of st3 0010100
on-set of st4 0011000
on-set of st0 0011100
on-set of st5 0011100
on-set of st6 0011100
DcCov:

on-set of st1 0011100

Figure 5.9: First scheme to computethe gain

In the second scheme, the gain of astate can be computed by setting up aminimization as
shownin Figure 5.10 (referring again to st in the previous example). After the minimization, the
difference in cardinality between the resulting and original covers givesthe overal gain TotGain,
inclusive of both the dominance and disjunctive components.

The pseudo-code in Figure 5.11 shows the first scheme to compute the gain. The sec-
ond one is simpler, since it does not include explicitly the covering check to measure the oring
contribution (that isimplicitly taken into account by the minimization process) and it is not shown
here.

5.7 Satisfaction of Encoding Constraints

The described procedures require algorithmsto check satisfiability of a set of face, dom-
inance and digunctive constraints, and to find minimum codes that satisfy them. We used the
algorithms reported in [116], to which we refer for a complete description. They are based on
the notion of encoding dichotomies that are candidate encoding columns. The notion of encoding
dichotomy was pioneered in [143] and the connection with satisfaction of face constraints was

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 93

OnCov:

on-set of st2 0010000
on-set of st3 0001000
on-set of st4 0000100
on-set of st1 0011100
OffCov:

on-set of st2 0001100
on-set of st3 0010100
on-set of st4 0011000
on-set of st0 0011100
on-set of st5 0011100
on-set of st6 0011100

Figure 5.10: Second scheme to compute the gain

established in [154]. Other contributions on the subject can be found in[126, 20] and more recently
in[44, 45].

5.8 Symbolic Minimization by Example

In this section we clarify with an example the mechanics by which the oring effects plays
an important role in the minimization of symbolic logic. Then we demonstrate our algorithm for

symbolic minimization on a simple example.

5.8.1 TheOring Effect in Two-level Logic

In two-level 1ogic minimization of multi-output functionsthefact of sharing cubes among
single outputs reduces the cardinality of the cover. Asan example, consider the following cover of

alogic function of four input and four output variables:

1000 0100
0100 0001
1100 0101
0001 1000
1001 1100

94 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure SelectState(UnSel) {
foreach (state st € UnSel) {
gain(st) = ComputeGain(st,UnSel)
}
sel = st € UnSel withminimum gain(st)
}
procedure ComputeGain(IniC'ov,st,UnSel) {
[* measure potentia gains by dominance */
OnCov =Uigwnser—st) £
OldCard =#OnCov)
foreach (state j € UnSel — st)
OffCov; = Uicunsei—j—st Oni UUiens—tnse Oni
OffCov=(Ujevnsei—st O fCov;) UOS fio
DeClov = complement(OnClov,O f fCov)
* invoke espresso with no makesparse */
OnCov = espresso(OnCov,,DcC'ov,0O f fCov)
DomGain =OldCard — #(OnCov)
/* measure potential gainsby oring */
foreach (transitiont € Feg) {
foreach (state: € UnSel — st) {
OnCov; = product-terms of OnC'ov asserting next state
if (1(t) C I(OnCov;) for next state and binary output functions) {
increment OrCount
if (OrCount > 1) { /* t can be expressed by oring */
increment OrGain
goto outer foreach loop

}
TotGain = DomGain + OrGain

Figure 5.11: Ordering of symbolic minimization

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 95

0101 1001
1101 1101
0010 0010
1010 0110
0110 0011
1110 0111
0011 1010
1011 1110
0111 1011
1111 1111

and an equivalent minimum cover, as found by ESPRESSO:

---1 1000
1--- 0100
--1- 0010
-1-- 0001.

Consider the product term 1001 1100 that appears in the origina cover. In the minimum
cover, when the input cube 1001 is true, the first two product terms of the minimum cover are
excited and the output part 1100 is asserted. Therefore the product term 1001 1100 isimplemented
by means of the product terms — — —1 1000 and 1 — — — 0100. Notice that two product terms
must be in any cover to realize the following product terms of the origina cover 1000 0100 and
0001 1000. Therefore anet saving of one product term (the one needed to realize 1001 1100) has
been achieved in the minimum cover. We say that the product term 1001 1100 has been redized by
oring or digunctive effect (due to the semantics of the output part of a two-level implementation)
or that it has been redistributed through the two product terms — — —1 1000 and 1 — — — 0100.
The oring effect accounts for most savingsin the minimum cover of this example.

5.8.2 A Worked-out Example of Symbolic Minimization

This subsection contains an example of symbolic minimization. The exampleis shiftreg
from the MCNC suite. The symboalic cover of shiftreg, using the syntax of ESPRESSO, is:

.nv 41 -8 -81
.type fr

. ki ss

0 st0O st0 O

1 st0 st4 0

0 stl st0 1

1 stl st4 1

(o]
(o]

CHAPTER 5. SYMBOLIC MINIMIZATION

st2 stl
st2 stb
st3 stl
st3 st5
st4 st2
st4 st6
st5 st2
st5 st6
st6 st3
st6 st7
st7 st3
st7 st7

POPFRPOPFRPOPFPOFRLOFrO
PP OORFRPRFRPOORFR,PF OO

Suppose that the ordering routine returned st0, st4, stl, st2, st5, st3, st6, st7 as the order in which
the slices of next states must be minimized. Let each position in the 1-hot encoded notation
correspond respectively to the states st0, st4, stl, st2, stb, st3, st6, st7. For instance 10000000
represents st0, while 01000000 represents st4. Slices including all the transitions that have the
same next state are minimized in the given order. The result of each minimization is a set of
symbolic cubes which realize the slice. A dc-set as specified by the theory is provided in each
minimization. If terms of the dc-set having a different next state are used in a minimization, then
covering constraints are introduced, together with companion face constraints (face constraints not
related to output constraints can be introduced aso, when transitions having the same next state
are merged). Before each minimization, the algorithm figures out whether some transitions of the
given slice can be realized by symbolic cubes aready in the partial minimized symbolic cover,
when a satisfiable oring constraint isimposed. Only the remaining transitions are kept in the onset
of the slice under minimization. Whenever symbolic cubes that impose constraints on the codes
are added to the cover, their consistency with respect to the constraints cumulated up to then is
verified. Aslong as the consistency verification fails, different symbolic cubes are tried; eventually
an encodeable symbolic cover isconstructed. At the end codes of minimum code-length that satisfy
the constraints are found and the codes are replaced in the symbolic cover and in the original FSM
(itisnot necessary, but convenient to do both, because don’t cares can be used differently, producing
covers not of the same cardindlity). A fina step of two-valued minimization produces a minimal
encoded FSM.

e Minimization of the slice of next state st0.
Theonset is:

58 SYMBOLIC MINIMIZATION BY EXAMPLE 97

0 10000000 100000000
0 00100000 100000001

Thedcset is:

1 11000000 100000000
- 01010010 100000000
1 00100000 111111111
- 00001101 111111111
- 11111111 011111110

The minimized expanded cover is:

- 11111111 111111110
- 00101101 111111111

The minimized reduced cover is:

- 11111111 100000000
- 00100000 000000001

The constraints code(st4) > code(st0), code(stl) > code(st0), code(st2) > code(st0),
code(st5) > code(st0), code(st3) > code(st0), code(st6) > code(st0) and code(st7) >
code(st0) are introduced. The companion face constraints are trivial.

o Minimization of the glice of next state st4.
Theonseat is:

1 10000000 010000000
1 00100000 010000001

Thedcset is:

- 01010010 010000000
0 00100000 000000001
- 00001101 111111111
- 11111111 101111110

The minimized expanded cover is:

- 00101101 101111111
1111111711 111111110

CHAPTER 5. SYMBOLIC MINIMIZATION

The minimized reduced cover is:

- 00100000 000000001
1 11111111 010000000

The constraints code(st5) > code(st4), code(st6) > code(std) and code(st7) > code(st4)
are introduced. The companion face constraints are trivial.

Minimization of the slice of next state s¢1.
Theonseat is:

0 00010000
0 00000100

001000000
001000001

Thedcset is:

Bt

The minimized expanded cover is:

The minimized reduced cover is:

01000010
00100000
00010110
00000100
00001001
11111111

00101101
01011111

00000100
00010100

001000000
000000001
001000000
111111111
111111111
110111110

110111111
111111110

000000001
001000000

The constraints code(st5) > code(stl) and face(st2, st3) areintroduced.

Minimization of the slice of next state s¢2.
Theonset is:

onset
0 01000000 000100000
0 00001000 000100001

Thedcset is:

01011110
00100100
00001100
00000010
00000001
11111111

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE

000100000
000000001
111111111
000100000
111111111
111011110

99

The minimized expanded cover is:

- 00101101 111011111
- 01001011 111111110

The minimized reduced cover is:

- 00001000 000000001
- 01001000 000100000

The constraints code(st6) > code(st2) and face(st4, st5) areintroduced.

e Minimization of the dice of next state st5.
The transitions of this dice are redized by oring symbolic cubes previously added to the
cover, if oneintroduces the constraint code(st5) = code(st4) V code(stl).

e Minimization of the slice of next state st¢3.
One of the two transitions of this dliceis realized by oring symbolic cubes previously added
to the cover, if oneintroduces the constraint code(st3) = code(stl) V code(st2). Consider
the remaining transition.
Theonsetis:

0 00000001 000001001

Thedcset is:

1 01000011 000001000
- 00101100 000000001
1 00001001 111111111
- 00000010 000001000
- 11111111 111110110

The minimized expanded cover is:

100

CHAPTER 5. SYMBOLIC MINIMIZATION

- 00000001 111111111

The minimized reduced cover is:

- 00000001 000001001

The constraint code(st7) > code(st3) isintroduced.

Minimization of the slice of next state st6.
The transitions of this dice are redized by oring symbolic cubes previously added to the
cover, if oneintroduces the constraint code(st6) = code(st4) V code(st2).

Minimization of the slice of next state st7.

One of the two transitions of this dliceis realized by oring symbolic cubes previously added
to the cover, if oneintroducesthe constraint code(st7) = code(st4) V code(stl) V code(st2).
Consider the remaining transition.

Theonsetis:

onset
1 00000010 000000010

Thedcset is:
- 00101101 000000001

1 00000001 111111111
- 11111111 111111100

The minimized expanded cover is:

1 00000011 111111110

The minimized reduced cover is:

1 00000010 000000010

No other constraint isintroduced.

Minimization of the slice of the proper binary outputs.
Theonsetis:

00101101
00100000
00000100
00001000

58 SYMBOLIC MINIMIZATION BY EXAMPLE

000000001
000000001
000000001
000000001

101

Thedcset is:

- 111112111 111111110

The minimized expanded cover is:

- 00101101 111111111

The minimized reduced cover is:

- 00101101 000000001

The constraint face(stl, st5, st3, st7) isintroduced.

e Thefina symbolic cover is:

11111111
11111111
00010111
01001011
00000001
00000010
00101101

100000000
010000000
001000000
000100000
000001001
000000010
000000001

Codes of the states that satisfy the previous constraints are: code(st0) = 000, code(st4) =
010, code(stl) = 100, code(st2) = 001, code(st5) = 110, code(st3) = 101, code(st6) =
011, code(st7) = 111. The minimized encoded symbolic cover is:

---1 1000
1--- 0100
--1- 0010
-1-- 0001

The minimized encoded FSM is;

---1 1000
1--- 0100
--1- 0010
-1-- 0001

102 CHAPTER 5. SYMBOLIC MINIMIZATION

59 Experimental Results

The agorithms described have been implemented in a program, caled ESP_sA, that is
built on top of ESPRESSO. We report one set of experiments that compare the results of performing
state assignments of FSM’s with ESP_SA and NOvA, a state-of-art tool. The FSM's come from the
MCNC suite and other benchmarks. The experiments were run on a DEC 3100 work-station. Our
program ESP_SA uses a library of routines described in [116] to check encodeability of constraints
and produce minimum-length codes that satisfy them. Table 5.1 shows the statistics of the FSM’s
used. The statistics include the number of states, proper inputs and proper outputs, together with
the number of symbolic produc-terms ("#cubes') of the original FSM description, the cardinality
of aminimized 1-hot encoded cover of the FSM ("#1-hot") and the number of bitsfor an encoding

of minimum length ("#bits").

In Table 5.2, data are reported for runs of ESP_sA with three different ordering options
("ordl", "ord2", "ord2n"). For each run, "#scubes" indicates the number of cubes of the cover of
symboliccubes obtained by EsP_sA, after encoding withthe codesfound by ESP_sa and minimization
with ESPRESSO; "#cubes' indicates the number of cubes after encoding the origina cover with the
codes found by ESP_sa and minimization with ESPRESSO; "#bits" indicates the length of the codes
found by ESP_sA.

In Table 5.3, some data related to the best of the three previous runs are reported. Under
"cover", "#incomp" gives the number of pairwise incompatibilitiesin the final step of computing
codes the satisfy the encoding constraints, and "size" gives the number of prime dichotomies.
Under "cals', "#esp" gives the number of calls to ESPRESSO and "#check" gives the number of
encodeability checks. Under "CPU times(sec.)", "order" gives the time in seconds for the ordering
routine, "symb" gives the time for symbolic minimization, not including the time spent by the
encodeability routines that is reported under "constr(enc)" ("enc" is the time spent for finding the

codes satisfying the constraints at the end), while "total" sums up al the contributions.

Table 5.4 comparestheresultsof EsP_sa withthoseof NOVA, astate-of-art state assignment
tool, providing the number of cubes of the minimized encoded FSM ("'#cubes") and the code-length
("#bits"). Of the results by NOvA, it is reported the one the minimizes the final cover cardinality
(under the heading "NovA(min.#cubes)") and the one that minimizesthe final cover cardinality, if
the code-length is kept to the minimum one, i e. to thelogarithm of the number of states (under the
heading "NOvA(min.#bits)").

5.9. EXPERIMENTAL RESULTS

example || #states || #inputs || #outputs || #cubes || #1-hot || #bits
bbara 10 4 2 60 34 4
bbsse 16 7 7 56 30 4
bbtas 6 2 2 24 16 3
beecount 7 3 4 28 12 3
cse 16 7 7 91 55 4
dk14 7 3 5 56 25 3
dk15 4 3 5 32 17 2
dk17 8 2 3 32 20 3
dk27 7 1 2 14 10 3
dk512 15 1 3 30 21 4
donfile 24 2 1 96 24 5
ex1 20 9 19 138 44 5
ex2 19 2 2 72 38 5
ex3 10 2 2 36 21 4
ex4 14 6 9 21 21 4
ex5 9 2 2 32 19 4
ex6 8 5 8 34 23 3
e’ 10 2 2 36 20 4
keyb 19 7 2 179 77 5
Kirkman 16 12 6 370 61 4
lion9 9 2 1 25 10 4
maincont 16 11 4 40 27 4
mark1 15 5 16 22 19 4
master 15 23 31 86 79 4
modul 012 12 1 1 24 24 4
opus 10 5 6 22 19 4
ricks 13 10 23 51 33 4
sl 20 8 6 107 92 5
sla 20 8 6 107 92 5
s8 5 4 1 20 14 3
saucier 20 9 9 32 30 5
scud 8 7 6 127 8 3
shiftreg 8 1 1 16 9 3
slave 10 16 29 75 46 4
trainll 11 2 1 25 11 4

Table 5.1: Statistics of FSM's

103

104 CHAPTER 5. SYMBOLIC MINIMIZATION

example ordl ord2 ord2n

#scubes | #cubes | #bits || #scubes | #cubes | #bits || #scubes | #cubes | #bits
bbara 27 27 5 31 28 6 24 23 5
bbsse 31 31 6 26 26 7 24 24 8
bbtas 10 9 3 10 10 4 11 11 4
beecount 10 10 4 12 12 6 10 10 4
cse 58 55 7 42 42 5 42 42 5
dk14 26 27 4 27 27 4 26 26 4
dk15 17 17 4 17 17 4 17 17 4
dk17 19 17 5 19 17 5 19 19 6
dk27 7 7 5 9 8 5 7 7 5
dk512 19 18 7 18 16 9 15 15 8
donfile 26 25 12 25 25 13 26 25 12
ex1 37 36 9 42 40 9 42 40 9
ex2 34 35 10 36 32 12 30 31 9
ex3 20 18 6 21 18 7 17 17 6
ex4 14 14 5 15 15 5 14 14 5
ex5 17 16 9 18 18 6 14 13 4
ex6 25 25 4 26 25 4 26 25 4
e’ 20 20 8 20 18 4 15 15 5
keyb 75 65 9 45 46 6 47 47 5
kirkman 102 74 11 54 53 10 55 54 9
lion9 8 7 6 9 8 5 9 8 6
maincont 12 12 8 14 14 7 13 13 9
mark1 17 18 6 17 17 6 17 17 6
master 69 68 5 70 68 5 70 69 5
modulo12 22 22 11 20 20 10 22 22 11
opus 15 15 4 15 15 4 15 15 4
ricks 29 29 4 30 30 4 30 30 4
sl 62 59 6 49 44 7 49 44 7
sla 62 61 11 61 61 13 60 60 9
s8 11 9 4 11 10 4 11 10 4
saucier 24 23 6 25 24 8 22 22 6
scud 70 63 7 68 65 8 68 65 8
shiftreg 4 4 3 4 4 3 4 4 3
slave 39 39 5 35 35 4 35 35 4
trainll 10 9 5 13 12 6 10 9 5

Table 5.2: Results of EsP_sA with different ordering heuristics

59. EXPERIMENTAL RESULTS 105

example cover cals CPU times (sec.)

#incomp | size || #esp | #check order | symb | constr(enc) total
bbara 38 8 96 173 74 12.9 0.6(0.1) 20.8
bbsse 458 | 168 | 155 46 41.6 104 4.3(0.8) 56.4
bbtas 9 4 30 80 1.0 0.9 0.2(0.0) 21
beecount 104 15 66 55 25 17 0.3(0.0) 45
cse 1170 | 629 | 155 80 99.9 45.6 19.6(7.9) | 1451
dk14 316 | 186 38 29 7.1 2.3 1.9(0.5) 11.3
dk15 256 | 238 17 19 18 04 1.2(0.5) 34
dk17 30 14 47 24 51 14 0.7(0.0) 7.2
dk27 1 2 38 30 0.9 0.6 0.1(0.0) 17
dk512 1 2| 138 140 111 32.7 2.8(0.0) 46.6
donfile 17929 | 2701 || 432 | 1254 98.9 | 2044.0 | 143.4(117.1) | 2286.3
ex1 2282 | 815 410 542 || 794.8 | 759.0 39.0(10.8) | 1592.7
ex2 3934 | 826 | 212 | 1161 37.3 | 1493.7 28.2(21.4) | 1559.2
ex3 148 14 68 52 34 3.7 0.7(0.1) 7.8
ex4 1048 | 359 | 122 22 15.9 5.0 3.5(2.8) 24.4
ex5 285 27 57 46 31 2.7 0.4(0.1) 6.2
ex6 219 16 47 29 8.8 17 0.9(0.1) 114
ex7 352 34 68 43 6.5 34 0.8(0.2) 10.7
keyb 967 | 1094 | 212 71| 129.9 76.7 32.3(27.6) | 239.0
kirkman 716 84 | 155 1164 || 1385.8 | 1187.5 172.8(3.6) | 2746.1
lion9 26 7 86 75 54 2.6 0.4(0.0) 8.4
maincont 363 55 || 194 196 345 48.6 2.5(0.5) 85.5
markl 443 | 112 || 247 155 44.7 42.8 2.1(0.8) 89.5
master 281 | 300 | 327 315 | 271.0| 2405 18.6(3.0) | 530.1
modul 012 45 10 93| 2358 48 | 2272 1.3(0.2) | 2333
opus 312 | 151 68 18 6.4 17 0.9(0.6) 9.0
ricks 353 | 408 | 107 60 534 19.3 7.7(3.9) 80.4
sl 969 | 288 | 233 92 || 2531 | 126.9 10.9(4.8) | 390.9
sla 225 67 | 317 639 | 151.3 | 661.8 13.0(2.8) | 826.1
s8 6 4 46 103 17 13 0.3(0.0) 34
saucier 1401 | 3340 | 256 124 45.0 99.1 | 157.2(156.2) | 301.3
scud 70 11 || 457 | 1011 59.4 | 2289 12.3(0.3) | 300.5
shiftreg 3 3 47 54 13 1.0 0.1(0.0) 25
save 229 | 132 68 41 39.1 8.2 3.8(0.5) 51.1
trainll 156 23 | 105 86 9.5 5.2 0.4(0.1) 15.1

Table 5.3: Measured parameters of ESP_SA

106 CHAPTER 5. SYMBOLIC MINIMIZATION

example ESP_SA NOVA(min.#cubes) || NOVA(min.#bits)

#cubes | #bits || #cubes #hits || #cubes | #bits
bbara 23 5 24 4 24 4
bbsse 24 8 27 5 29 4
bbtas 9 3 8 3 8 3
beecount 10 4 10 3 10 3
cse 42 5 44 5 45 4
dk14 26 4 22 4 25 3
dk15 17 4 16 3 17 2
dk17 17 5 17 4 17 3
dk27 7 5 7 3 7 3
dk512 15 8 17 4 17 4
donfile 25 12 24 14 28 5
exl 36 9 37 6 44 5
ex2 31 9 26 6 27 5
ex3 17 6 17 4 17 4
ex4 14 5 14 4 14 4
exb 13 4 14 4 14 4
ex6 25 4 23 4 25 3
ex’ 15 5 15 4 15 4
keyb 46 6 47 6 48 5
Kirkman 53 10 52 6 a4 4
lion9 7 6 8 4 8 4
maincont 12 8 16 4 16 4
mark1 17 6 17 4 17 4
master 68 5 71 4 71 4
modulo12 20 10 11 4 11 4
opus 15 4 15 4 15 4
ricks 29 4 39 4 30 4
sl 44 7 63 5 63 5
sla 60 9 65 5 65 5
s8 9 4 9 3 9 3
saucier 22 6 25 5 25 5
scud 63 7 60 5 62 3
shiftreg 4 3 4 3 4 3
slave 35 4 35 4 35 4
trainll 9 5 9 4 9 4

Table 5.4: Comparison of FSM’s encodings for two-level implementation

5.10. CONCLUSIONS 107

5.10 Conclusions

We have presented a symbolic minimization procedure that advances theory and practice
with respect to the seminal contributionin[91]. Thealgorithm described hereiscapabl e of exploring
minima symbolic covers by using face, dominance and disjunctive constraints to guarantee that
they can be mapped into encoded covers. The treatment of disjunctive constraints is a novelty
of this work. Conditions on the completness of sets of encoding constraints and a bridge to
disjunctive-conjunctive constraints (presented in [39]) are given.

A key feature of the algorithm is that it keeps as invariant the property that the minimal
symbolic cover under construction is encodeable, by means of efficient procedures that check
encodeability of the encoding constraints induced by a candidate cover. Therefore this synthesis
procedure has predictive power that precedent toolslacked, i.e. the cardinality of the cover obtained
by symbolic minimization and of the cover obtained by replacing the codes in the initial cover
and then minimizing with ESPRESSO are very close. Experiments show cases where our procedure
improves on the best results of state-of-art tools.

A direction of futureinvestigationisto exploremoreat |arge the sol ution space of symbolic
covers by escaping from local minima using some iterated expansion and reduction scheme, as it
isdonein ESPRESSO. Currently the agorithm builds a minimal symbolic cover, exploring basically
a neighborhood of the origina FSM cover. Another issue requiring more investigation is how
to predict somehow the final code-length while building a minimal symbolic cover, to trade-off
product-terms vs. encoding length.

108 CHAPTER 5. SYMBOLIC MINIMIZATION

109

Chapter 6

Encoding Constraints

6.1 Introduction

The various techniques for exact and heuristic encoding based on multiple-valued or
symbolic minimization of two-level and multi-level logic, reported in [92, 91, 115, 39, 85, 18],
produce various types of encoding constraints. By encoding constraints we mean requirements on
the codes to be assigned to the symbols.

A first type are face-embedding constraints generated by the multiple-valued input vari-
ables (input constraints). These constraints specify that aset of symbolsisto be assignedto oneface
of abinary n-dimensional cube, without any other symbol sharing the same face. Given symbols
a,b,c,d, e, aninput constraint involving symbols a, b and ¢ is denoted by (a, b, ¢). An encoding
satisfying (a, b, ¢) isgiven by ¢ = 111, b = 011, ¢ = 001. Vertex 101 cannot be assigned to any
other symbol.

Two other types are dominance and disjunctive constraints generated by the multiple-
valued output variables (output constraints). A dominance constraint, denoted by >, eg., ¢ > b
requires that the code of a symbol bit-wise covers the code of another symbol. A disjunctive
constraint specifies that the code of a symbol (the parent symboal) is the bit-wise digunction,
denoted by v, eg., « = bV ¢, of the codes of two or more other symbols (the children symbols).

The minimization procedure described in [39] produces disjunctive-conjunctive con-
straints. They require that the code of a symbol is the bit-wise disunction (denoted by V)
of the conjunctions, denoted by A), of the codes of two or more symbols. An example is:
(anbAc)V(andne)V (aN fAg)= a Anin-depth discussion of disjunctive-conjunctive
constraintsis postponed to the chapter on encodeability of generalized prime implicants.

110 CHAPTER 6. ENCODING CONSTRAINTS

An example containing input, dominance and disjunctive constraints is. (b, ¢), (¢, d),
(b,a), (a,d),b> ¢, a > c,a=>bVd. Anencoding satisfying al constraints with minimum code
length of twoisa = 11,56 = 01, ¢ = 00, d = 10.

In this chapter, we focus on the following problems. Given a set of encoding constraints:
P-1: Determine whether the constraints are satisfiable.
P-2: Determine the binary codes that use a minimum number of bitsand satisfy al the constraints.

P-3: Using afixed number of code bits, minimize a cost function of the constraints that are not
satisfiable.

Previous work on encoding constraint satisfaction has dealt mostly, but not exclusively,
with input constraints. Exact algorithms and efficient heuristics (restricted to input and dominance
constraints) for solving problems P-2 and P-3 are reported in [147]. An approximate solutionto P-3
for input constraints based on atheory of intersecting cubesis described in [126, 43] and a solution
based on simulated annealing is reported in [81]. An exact solution to P-2 for input constraints
based on the notion of prime sectionsis described in [44, 45]. This approach seemsvery promising
because of the claim that prime sections are fewer than prime dichotomies, the latter being the
building blocks of encodings in the theory that we are going to usein this chapter. An approximate
solution to P-2 and P-3 for input constraints based on a greedy strategy to find an encoding bit by
bit and on an iterative method to improve the obtained solution is reported in [129]. The answer
to Problem P-1 is dways affirmative for input constraints only. A solution to P-1 and a heuristic
algorithmto solve P-3 when both input and output dominance constraintsoccur are provided in [91],
extending an algorithm for input constraints described in [92]. A solution to P-1, when both input
and output constraints (including disjunctive constraints) are present, is described in [39], and
corrected in [38]. A solution to problem P-2 based on compatible graph coloring is provided for
input constraints in [154] and extended to output constraints in [20]. To date, to the best of our
knowledge, no efficient algorithmsexist for solving al three problemswhen al types of constraints
occur. In most previous contributions, techniques to generate constraints and to satisfy them were
intermixed. Instead, we concentrate only on the problem of satisfying encoding constraints.

We propose a framework and efficient a gorithmsto solve P-1, P-2 and P-3 for input and
output encoding constraints. A polynomial time agorithm to answer P-1, and, exact and heuristic
algorithms to solve P-2 and P-3 are provided. We solve P-3 with different cost functions, such
as the number of constraints satisfied and the number of cubes or literas required in the encoded

6.2. STATEMENT AND COMPLEXITY OF THE ENCODING PROBLEM S 111

implementation. These algorithms also handle encoding don't cares [91, 85] and can be easily
extended to other types of constraints. We aso prove the NP-completeness of problems P-2 and
P-3. Thisresult has not been shown previously, though it has been conjectured [91].

The approach used here is based on a formulation provided in [154], which in turn is
related to the state assignment technique employed by Tracey in 1966 [143]. We first demonstrate
the difficulty of finding codes that satisfy encoding constraints by proving it NP-complete in
Section 6.2. Section 6.3 provides some definitions. In Section 6.4 an abstraction of the problem
is presented. In Section 6.5 we describe a new agorithm to satisfy input constraints only. Thisis
extended to handle input and output constraints in Section 6.6. This includes a polynomial time
algorithm for checking the satisfiability of a set of encoding constraints. A heuristic algorithm
is sketched in Section 6.7. Extensions of the framework to handle various types of constraints
and cost functions are discussed in Section 6.8. Experimental results are provided in Section 6.9.
Section 6.10 concludes the chapter.

6.2 Statement and Complexity of the Encoding Problems

In this section we formally state Problem P-2 both as a decision and an optimization
problem and show that the decision (optimization) version with input constraints aone is NP-
complete (NP-hard). We will show later that Problem P-1 can be solved by a polynomial time
algorithm.

A few preliminary definitions are required. An n-dimensional hypercube (or n-cube) isa
graph of 2™ vertices labeled uniquely by the integersfrom 0 and 2* — 1. An edgejoinstwo vertices
whose binary representations of their integer labels differ by exactly one bit. The minimum %-cube
that contains a given subset of vertices of an-cube (k < n) isthe k-face (or smallest face) spanned
by the given vertices.

Decision version of P-2:

Instance: Set of input and output constraints defined on a set of symbols .S, and a positive integer
k.

Question: Isthereafunction f from S to the vertices of a k-cube such that:

1. symbolsin the same input constraint are mapped to vertices spanning a face that does
not contain the image of any other symbol, and

112 CHAPTER 6. ENCODING CONSTRAINTS

2. thebinary labels of the images of the symbols satisfy the output constraints?
Optimization version of P-2:
Instance: Set of input and output constraints defined on a set of symbols, S

Objective: Find the minimum k-cube and a function f from .S to the vertices of the k-cube such
that:

1. symbolsin the same input constraint are mapped to vertices spanning a face that does

not contain the image of any other symbol, and

2. thebinary labels of the images of the symbols satisfy the output constraints.

Answering the decision version for different dimensions repeatedly solves the optimiza-
tion problem (with a polynomial number of callsto the decision procedure) and, of course, solving
the optimization problem answers the decision version for al dimensions. Clearly, by assigning a
weight of 1 to each constraint, P-2 can be seen asa specia case of P-3. Hence, P-3isno easier than
P-2.

The decision version of P-2 with input constraints aone is defined as face hypercube
embedding. To prove that face hypercube embedding is NP-complete afew more preliminaries are
needed.

A given graph G = (V, F) is a subgraph of an n-cube if there is a function mapping
vertices of & into vertices of the n-cube that preserves the adjacency relations. G can be embedded
in an n-cube if GG is a subgraph of the n-cube. The problem of deciding whether a given graph
is embeddable into an arbitrary dimension hypercube has been shown to be NP-complete [71]. It
has also been proved that even the problem of deciding whether a graph can be embedded into a
fixed-size hypercube is NP-complete [31]. The proof in [31] actually shows that the problem of
determining whether agraph of 2* nodes can be embedded in a k-cube is NP-complete. This result
can be used to prove that face hypercube embedding is NP-complete.

Theorem 6.2.1 Face hypercube embedding is NP-complete.

Proof: Face hypercube embedding isin NP. Consider the set of positions P where dl the codesin
a given constraint agree (this set must not be empty unless a constraint involves al symboals). The
codes of the symbols not in that constraint must differ in at least one position of P from the codes
of the symbolsin that constraint. This can checked in time linear in the product of the number of

constraints, number of symbols and integer %.

6.3. DEFINITIONS 113

Suppose k isthe dimension of the hypercube into which the face constraints composed of
symbols from set .S must be embedded. Let us restrict face hypercube embedding to the instances
where the symbols involved in the face constraints are 2° and each face constraint involves only
two symbols. For these instances it is possible to define a graph G/(V, £) induced by the face
constraints. The set of hodes V' isin correspondence with the symbolsin S and there is an edge
between two nodes when the two corresponding symbols are in the same face constraint. The set
of face constraints can be embedded into a k-cube if and only if the companion graph is asubgraph
of ak-cube. Notice that in this case the concept of face embedding reduces to the familiar notion
of graph adjacency. The problem of determining whether a graph of 2* nodes is a subgraph of a
k-cube is NP-complete by reduction from 3-partition [31]. Therefore the problem of determining
whether for 2¥ symbols a set of face constraints each with exactly two symbols can be embedded
into a k-cube is NP-complete. But this is a restricted version of face hypercube embedding and

hence the latter is NP-compl ete. [|

6.3 Definitions

An encoding dichatomy (or, more simply, dichotomy) is a 2-block partition of a subset
of the symbolsto be encoded. The symbolsintheleft block are associated with the bit 0 whilethose
in the right block are associated with the bit 1. If an dichotomy is used in generating an encoding,
then one code bit of the symbolsin theleft block is assigned 0 while the same code bit is assigned
1 for the symbolsin the right block.

For example, (sos1; s2s3) isadichotomy in which so and s, are associated with the bit 0
and s, and s3 with thebit 1. Thisdefinition of dichotomy differs from the onein [143, 154], which
allowsthe left block of adichotomy to assume either the encoding bit O or 1, and it is equivalent to
the definition of fixed dichotomy givenin [20].

A dichotomy is complete if each symbol appears in either block. A completion of a
dichotomy (/, r) is adichotomy (', r’) such that {" > [, »" O r, and each symbol appears exactly
oncein either I or »’.

Two dichotomiesd; and d; are compatibleif theleft block of d; isdigoint from the right
block of d, and the right block of d1 isdigjoint from the left block of d. Otherwise, d; and d, are
incompatible. Note again that this definition differs from the definition of compatibility described
in [143, 154]. The union of two compatible dichotomies, d1 and d», is the dichotomy whose | ft
and right blocks are the union of the left and right blocks of d; and d» respectively. The union

114 CHAPTER 6. ENCODING CONSTRAINTS

operation is not defined for incompatible dichotomies. A dichotomy d; covers a dichotomy d> if
the left and right blocks of d» are subsets respectively either of the left and right blocks, or of the
right and left blocks of d1. For example, (so; s1s2) is covered by (spss; s15254) and (s1s52s3; So),
but not by (sps1; s2). A prime dichotomy of agiven set of dichotomiesis one that isincompatible
with al dichotomies not covered by it.

A set of complete dichotomies generates an encoding as follows. Each complete di-
chotomy generates one column of the encoding, with symbolsin the left (right) block assigned a0
(1) in that column. For example, given the complete dichotomies (sgs1; s2s3) and (soss; s152), the
unique encoding derived is sg = 00, s1 = 01, s, = 11, and s3 = 10.

A dichotomy violates an output constraint if the encoding bit generated for the symbols
in the dichotomy does not satisfy the bit-wise requirement for the output constraint. A valid
dichotomy isonethat doesnot violate any output constraint. For example, the dichotomy (so; s152)
violates the constraint sg > s1, Since sg is assigned bit O whereas s; is assigned bit 1 by this
dichotomy. Hence, so does not cover s; in thisbit. The dichotomy (sgs1; s2) does not violate this

constraint.

6.4 Abstraction of the Problem

Satisfaction of encoding constraints may be abstracted as a binate covering problem
(BCP) [113].

Suppose that aset S = {s1,...,s,} isgiven. The cost of s; is¢; where ¢; > 0. By
associatingabinary variable z; to s;, whichis 1if s; isselected and O otherwise, BCP can be defined

asfinding S’ C S that minimizes
Z Ci%y, (6.2)
=1

subject to the constraint

Az, 22,.. ., 2,) =1, (6.2

where A is a Boolean function, sometimes called the constraint function. The constraint function
specifies a set of subsets of S that can be a solution. BCP is the problem of finding a solution of
minimum cost of the Boolean equation A(z1, 2, ...,2,) = 1.

If Aisgivenin product-of-sumsform, A can bewritten as an array of cubes (that form a
matrix with coefficients from the set {0, 1, 2}). Each variable of A denotes a column, and each sum

6.4. ABSTRACTION OF THE PROBLEM 115

(or clause) denotesarow. The problem can be interpreted as one of finding a subset €' of columns

of minimum cost, such that for every row r;, either
1. 3j suchthata;; = landc; € C, or
2. dj suchthata;; = 0andc; ¢ C.

In other words, each clause must be satisfied by setting to 1 avariable appearing in it in the positive
phase or by setting to O avariable appearing in it in the negative phase. 1n aunate covering problem,
the coefficients of A are restricted to the values 1 and 2 and only the first condition must hold.

Suppose that symbols a, b, ¢ and three constraints (a, b),b > ¢,b = a V c are given. An
encoding column is a column vector whose :-th component is a bit (i.e. a0 or 1) assigned to the
+-th symbol. All possible encodings can be represented as sets of encoding columns. The column
encodings for the example are: ¢; = 001, ¢o = 010, c3 = 011, ¢4 = 100, c5 = 101, ¢g = 110,
where the order of symbolsinacolumnisa, b, ¢*. Since each symbol inacolumnis either assigned
1 or 0, acolumn partitionsthe symbol sinto a 1-block and a0-block. For example, c¢g = 110 placesa
and b inthe 1-block and ¢ inthe 0-block. For each face constraint consider the encoding dichotomies
that have the symbols of the face constraint in one block, and have one of the remaining symbolsin
the other block [154]. In the example, thisis (ab; ¢) or (¢; ab). This meansthat by covering either
(ab; ¢) or (c; ab), the face constraint (a, b) is satisfied. Add the encoding dichotomies expressing
the uniqueness of the codes; these are («; b) or (b; a), (a; ¢) or (¢; a), (b; c) or (c;b). Build atable
whose columns are the encoding columns and whose rows are the encoding dichotomies. A column
covers a row representing an encoding dichotomy if the symbols of each block of the dichotomy
are in the same partition of the column. For example, cg = 110 covers (c; a) since c is set to 0 and
a isset to 1, but does not cover («; b) because a and b are both set to 1. Likewise cg = 110 covers
(c;b). Putalinentry (7, j)if column j coversrow :. For each output constraint, add arow for each
encoding column that cannot be chosen if that output constraint must be satisfied and put a0 in the
corresponding entry. In the example, b > ¢ yields two rows, one has a 0 in column ¢z, the other
has a0 in column ¢s. One could imagine more complex types of constraints that add rows carrying
two or more 0’'s and no 1's to denote that al the columnswith a0 in them cannot be simultaneously
selected. The binate table for the exampleis shownin Figure 6.1.

A minimum column cover of the given rows gives a minimum set of encoding columns
that satisfy al given constraints. This requires the solution of abinate covering problem. However,
the problem reduces to a unate covering problem when only face constraints are present [143].

1000 and 111 are excluded becausethey do not carry useful information.

116 CHAPTER 6. ENCODING CONSTRAINTS

cl c2 c3 c4 c5 c6
a; b b; a 1 1 1 1
a; c c;a 1 1 1
c;b b; c 1 1 1
ab; c c;ab 1 1
b>c 0
b>c 0
b=a+c | O
b=a+c 0
b=a+c 0
b=a+c 0
? 0 0

Figure 6.1: Satisfaction of encoding constraints using binate covering

Although BCP offers a unified framework for solving encoding constraints, the design of
efficient algorithms requires exploiting specific features of the problems at hand. In the sequel we
demonstrate thisfact by developing exact and heuristic algorithms.

6.5 Input Constraint Satisfaction

We first present a new agorithm for satisfying input encoding constraints that, compared
to previous approaches [147, 154], significantly improves the efficiency of the input encoding
process.

The encoding constraint satisfaction problem is a three-step process. The first is the
generation of the dichotomies that represent the face embedding constraints [154]. Each face
embedding constraint generates severd dichotomies, called initial dichotomies. The symbolsthat
are to be on aface are placed in one block of each dichotomy representing that constraint, while
the other block contains one of the symbols not on the face. Thus, for » symbols sy, s», ..., s, and
a face embedding constraint that requires the [symbols s1, s», .., s; to be on one face, we generate
2 (n — [) dichotomies each with the symbols s1, s», ..., s; in one block (either Ieft or right) and
exactly one of the remaining » — [symbolsin the other block. Natice that initial dichotomies are
generated in pairs, for instance, given the symbols s1, sz, s3, s4 and the face constraint (1, s3), the

6.5. INPUT CONSTRAINT SATISFACTION 117

initial dichotomies (s1, s3; s2), (s2; 51, 3), and (s1, s3; sa), (sa; s1, s3) are generated. Sometimes
we say that dichotomy (sy; s1, s3) isthedual of dichotomy (s1, s3; s2) and viceversa

These dichotomies exactly capture the face embedding constraints. We also require that
each symbol get adistinct code. Thisisrepresented by adichotomy with one symbol in each block.
When there are » symbols and no encoding constraints, the number of uniqueness constraints is
n? — n; these would generate an exponential number (2 — 2) of prime dichotomies. We need to
add only those uniqueness constraints that are not covered by the dichotomies generated from the
face-embedding constraints, because any encoding that satisfies the covering dichotomy satisfies
also the covered dichotomy.

The second step of encoding isthe generation of primedichotomiesfrom the dichotomies.
[143] describes an approach similar to the process of iterated consensus for prime generation in
two-level logic minimization [11]. However, the number of iterations required to generate all
the prime dichotomies may be formidable even for small problems. Using this approach, several
different compatible merges often yield the same prime dichotomy. This results in a substantial
waste of computation time [154]. In Section 6.5.1, we describe a method of generating al prime
dichotomies and demonstrate its effectiveness in determining an exact solution.

Thefina step of encoding isto obtain acover of theinitial dichotomiesusing a minimum
number of primes. Thisis a classical unate covering problem and efficient branch and bound
techniques, both for exact and heuristic solutions, are well known [113].

6.5.1 Efficient Generation of Prime Dichotomies

By definition, each prime dichotomy is a maximal compatible of the dichotomies since
it is not compatible with any dichotomy that it does not cover. As in [86], an incompatibility
between two dichotomies represented by the literals ¢ and b, is written as (¢ + b). When the
product of the sum terms representing al the pairwise incompatibilitiesiswritten as an irredundant
sum-of-products expression, a maximal compatible is generated as the union of those dichotomies
whose literas are missing in any product term [86]. For example, assume that we wish to find
the maximal compatibles for five dichotomies, a, b, ¢, d, e. Assume that the incompatibilities are
(a+b)(a+c)(b+c)(c+d)(d+ e). Thenthe equivalent irredundant sum-of-products expressionis
abd + acd + ace + bed + bee. Thefive primes are then formed by the unions of the missing literas:
{c,e},{b,e},{b,d},{a,e},{a,d}.

The problem is how to efficiently derive the equivalent sum-of-products expression from

118 CHAPTER 6. ENCODING CONSTRAINTS

the product-of-sums expression representing the incompatibilities. In the past, this has been per-

formed using an approach based on Shannon decomposition [153]:
f(xlv"'7xi7"'7xn) :wi'f($l7"'717"'7$n)+x_i'f($l7"'707"'7xn)

Basicaly one splits on a variable at a time and generates recursively two subproblems. The
complexity of performing the recursive Shannon expansion is exponential since a binary tree is
constructed. We describe an agorithm that can generate al the primes, but only uses a linear
number of operationsin the size of the output.

The product-of-sums expressions previously generated have two features:
1. Each clause has exactly two literals;
2. Literas appear only in the positive phase, i.e,, the function is unate.

By exploiting these propertiesit is possible to simplify the algorithm based on Shannon expansion.
The algorithm is described in pseudo-code in Fig. 6.2. Given a product-of-sums expression, a
splitting variable, X, is chosen. Since all clauses have exactly two literals in the positive phase, the
product of all sum terms containing x, call it x_expr, after simplification, consists of two terms, the
firstisx aone and the second isthe product of all the other variablesin x_expr. Therefore arecursive
call is needed only for the product of the sum-termsin the initial expression that do not contain
X, caled reduced_expr. The two product terms, x_expr and cs(reduced_expr), are multiplied and
single cube-containment is used to obtain the minimum sum-of-products expression. Again single
cube-containment can be used to find the minimum expression since the function is unate [11].

This algorithm replaces exponential (in the number of dichotomies) calls as required in
the worst-case by a Shannon expansion based approach by a linear number of them. Of course,
the runtime of the algorithm is still proportiona to the fina number of primes, which may be
exponentia (in the number of dichotomies).

The example in Fig. 6.3 illustrates the complete input encoding process. A set of input
constraintsis shown and the corresponding initia dichotomiesare derived. The maximal compati-
bles are generated by aprocedure csthat recurs on the splitting variable. Variable 0ischosen asfirst
splitting variable. The procedure returns the minimal product ps of the following two expressions:
thefirst isthe product of all sum terms containing O (in this case simplified into 0 and 234567) and
the second isthe result of therecursive cal of the procedure cs on the sum termsthat do not contain
0. By minimal product itis meant that the two expressions, when avail able after a series of recursive

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 119

calls, are multiplied out and then single cube-containment is performed on them. Once the maximal
compatibles are found, the prime dichotomies are easily obtained and a standard unate covering
routine produces a minimum subset of primes that cover al given initia dichotomies. Notice that
to simplify the example we have forced the symbol s, to be alwaysin aright block. This reduces

the number of prime dichotomies but does not affect the solution to the input encoding problem?.

6.6 Input and Output Constraint Satisfaction

6.6.1 Output Encoding Constraints

A dominance constraint « > b, requires that the encoding for a bit-wise covers the
encoding for b. This means that any dichotomy chosen in the final cover cannot have « in the left
block while b is in the right block. Hence, any dichotomy that has this property may be deleted

from consideration.

A disjunctive constraint « = b V ¢, implies that the encoding for symbol « must be the
same as the bit-wise or of the encodings of b and ¢. This means that any dichotomy in afeasible
solution must have at least one of & and ¢ appear in the same block as a. Any dichotomy that does
not possess this property may be deleted. This property is easily extended to the case where the

disjunctive constraint involves more than two symbols or has nested conjunctive constraints.

A preiminary agorithm follows from the discussion above. In the first step, the di-
chotomies corresponding to the input constraints are generated. Next the prime dichotomies are
generated using the agorithm described in Section 6.5.1; those that violate any of the dominance
or disjunctive constraints are eliminated. Finally, the remaining dichotomiesare used in selecting a
minimum cover of all theinitia dichotomies representing the input constraints. If thereis at least

oneinitial dichotomy that cannot be covered, then thereis no solution.

This procedure may be used to answer two questions. The first is whether a feasible
encoding exists for a set of input and output constraints. The second is to find the minimum length
encoding satisfying the constraints, if it exists. An obvious drawback of this method is that many
prime dichotomies may be generated but later deleted since they violate output constraints. We
present an efficient algorithm that avoids the generation of usel ess prime dichotomies.

2In general, this symmetry cannot be exploited when there are both input and output constraints.

120 CHAPTER 6. ENCODING CONSTRAINTS

/* Given pairwise incompatibilitiesamong alist of dichotomies
as a product-of-sums expression generate all prime dichotomies.
Each sum term has two literals and there are n variables,

each corresponding to adistinct initial dichotomy. */

[* Convert 2-CNF to sum-of-products expression
O(n) recursivecalls*/
procedure cs (expr) {
x = gplitting variable
C = dl sum terms with variable x
reduced_expr = expr without the sum-termsin C
x_expr = sum-of-product expression of C'
return (ps (x_expr, cs(reduced_expr)))
}

/* Obtain the product of two expressions.
exprl has 2 terms, where thefirst termisasingle variable */
procedure ps (exprl, expr2) {
product_expr = product of expr1 and expr2
result_expr = single_cube_containment (product_expr)
return (result_expr)

1

procedure prime_dichotomy_generate (expr) {
result = cs (expr)
foreach (term 7" in result)
missing = list of variablesnot in 7'
new_prime_dichotomy = union of dichotomies corresponding to missing
add new_prime_dichotomy to prime_list

return (prime.list)

Figure 6.2: Efficient generation of prime dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 121

Constraints (s0, 52, $4) (so, 51, 54) (s1, 82, $3) (s1, 83, s4)

I'nitial dichotomies 0 : (s08254; 51) (s3; 808284) 2 (s3;s08184) 31 (S2;808184)

1:
4: (So; 515253) 5: (54; 515253)
7:

6: (So; 515354) (52; 515354)

Deriving mazximal compatibles (prime dichotomies)
¢s((04+2)(0+3)(0+4)(0+5)(0+6)(0+ 7)(1+3)(1+4)(1+5)(1+6)(1+ 7)(2+ 4)(2+5)(2+ 6)(2+ 7)(3+
4)(3+5)(3+6)(4+7)(5+6)(5+7))

ps((04 234567),cs((14 3)(1+ 4)(1+ 5)(1+ 6)(1+ 7)(2+ 4)(2+ 5)(2+ 6)(2+ 7)(3+ 4)(3+ 5)(3+ 6)(4 +
NE+E)(E+7)))

ps((04 234567), ps((1+ 34567), cs((24 4)(2+ 5)(2+ 6)(2+ 7)(3+ 4)(3+ 5)(3+ 6)(4+ 7)(5+ 6)(5+ 7))))
ps((04 234567), ps((1 + 34567), ps((2+ 4567),cs((34 4)(3+ 5)(3+ 6)(4+7)(5+6)(5+7))))))

ps((04 234567), ps((1 + 34567), ps((2+ 4567), ps((4+ 7),cs((3+4)(3+5)(3+6)(5+6)(5+7))))))
ps((0 + 234567), ps((1 + 34567), ps((2 + 4567), ps((4+ 7), ps((34 456),cs((5+6)(5+7)))))))

ps((04 234567), ps((1 + 34567), ps((2+ 4567), ps((4+ 7), ps((3+ 456),(5+67))))))

ps((04 234567), ps((1 + 34567), ps((2+ 4567), ps((4+ 7), (35+ 367+ 456)))))

ps((04 234567), ps((1 + 34567), ps((2+ 4567), (345 + 357 + 367 + 456))))

ps((0 + 234567), ps((1 + 34567), (2345 + 2357 + 2456 + 2367 + 4567)))

ps((0+ 234567), (12345 + 12357 + 12456 + 12367 + 14567 + 34567))

(012345 + 012357 + 012456 + 012367 + 034567 + 014567 + 234567)

Mazximal compatible sets {6, 7} {4, 6} {4, 5} {3, 7}
{2,3} {1,2} {0,1}
Prime dichotomies (s082; 518354) (s0;81825384) (S084; 515283) (S2; S0818354)

(5253, 505152) (53 50515254) (505254; 5153)

Minimum cover (s08254; 5183) (s283; s05184) (S084; 515283) (S0S2; $18354)

Figure 6.3: Input encoding example

122 CHAPTER 6. ENCODING CONSTRAINTS

6.6.2 Satisfiability of Input and Output Constraints

We motivatethe constraint satisfaction procedure using the examplein Fig. 6.4. Giventhe
encoding constraints, 26initial dichotomiesare obtained. Consider theinitial dichotomies(sg; s1s5)
and (s1ss; so) that are generated from the face embedding constraint (si, ss). Since sg > s1, the
dichotomy (so; s1s5) isnot alowed and is deleted from consideration. The dichotomy (s1ss; sg) IS
valid and will be used in afeasible encoding. Consider the dichotomy (s1; s2ss). If thisdichotomy
is to be expanded to a vaid prime dichotomy, symbol s is forced to be in the right block, since
so > s2. Also, since s; > s3, s3 must be in the left block and since s4 > ss, s4 isforced into the
right block. Thus, adl valid dichotomies covering thisinitia encoding dichotomy must cover the
“raised” dichotomy (s1s3; sos2sass). Similarly, we obtain the six raised dichotomies shown. On
generating the prime dichotomies from these raised dichotomies, we abtain five primes.

A dichotomy israised by adding symbols into either its left or right block as implied
by the output constraints. For example, the dichotomy (so; s152) may be raised to the dichotomy
(sos3; s152). A dichotomy is said to be maximally raised if no further symbols can be added into
either the left or right block by the output constraints. The procedure raise-dichotomy in Fig. 6.6
describes an agorithm that maximally raises a dichotomy with respect to a set of output constraints.

When the problem is to determine if a set of constraints is satisfiable, we do not have
to generate the prime dichotomies. Instead we use the set of maximally raised valid dichotomies,
which are far fewer in number than the prime dichotomies, and we merely check if al the initia
dichotomies are covered by the maximally raised and valid dichotomies.

An dgorithm to check for the satisfiability of input and output constraints is shown in
Figs.6.5,6.6 and 6.7. Thefollowing exampleshowswhy thesecond call to remove_invalid_dichotomies
in Fig. 6.7 is needed. Consider the constraints (a; bc),d = b+ ¢ and « > d. After raise_dichotomy
the following dichotomy is generated (ad; bc) (by constraint a > d), but (ad; be) isan invalid di-
chotomy becauseit conflictswith constraint d = b4-¢. So anew passof remove_invalid_dichotomies
isrequired to deleteit. Alternatively, we could suppressin Fig. 6.7 thefirst call to raise dichotomy,
and leave only the second one.

Sincetheraising of each dichotomy is performed intimelinear in the number of symbols
times the number of initia dichotomies, the running time of the agorithm is polynomia in the

number of symbolsand constraints.

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 123

Face embedding constraints .

(s1, 55) (52, 55) (s4, s5)

Dominance constraints .

So > S1 Sg > S2 So > 83
So > S S1 > 83 Sp > 83
Sq4 > Sg S5 > 82 Sg > 83

Disjunctive constrainis .
sop = 51V s2

Initial dichotomies :

Maximally raised dichotomies :

(5153; 50525455) (5253; 50515455) (52535455, 5051)
(s051525355; 54) (525355, S051)

(525385;84)

Uncovered initial dichotomies :

(s0; $155)

(s155; 50)

Figure 6.4: Example of feasibility check with input and output constraints

124 CHAPTER 6. ENCODING CONSTRAINTS

/* S isthe set of symbolsto be encoded */
procedure remove_invalid_dichotomies (D, constraints) {
foreach (dichotomy d € D)
/* to handle dominance constraints */
foreach (pair of symbolss, m € .S)
if (s > m & sinleft block & m inright block)
delete d
/* to handle digunctive constraints */
foreach (digjunctive constraint)
if (parent inleft block & at least one child in right block)
delete d
if (parent inright block & al childrenin left block)
delete d
/* to handle digjunctive-conjunctive constraints*/
foreach (extended dig unctive-conjunctive constraint)
if (parent inright block & one child of each conjunctionin |eft block)
delete d

Figure 6.5: Removal of invalid dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 125

/* d isavalid dichotomy */
procedure raise_dichatomy (d, constraints) {
do {
/* to handle dominance constraints */
foreach (symbol s € 5)
if (sinleft block & s > m)
insert m into left block of d
if (sinright block & m > s)
insert i into right block of d
/* to handle digunctive constraints */
foreach (parent symbol s in a disjunctive constraint)
if (al childrenin left block)
insert s into left block
if (@l children but one child ¢ inleft block & s inright block)
insert child ¢ into right block
/* to handle di g unctive-conjunctive constraints */
foreach (parent s in a digunctive-conjunctive constraint ¢)
if (one child of each conjunctionin left block)
insert s into left block
if (one child of al but one conjunctionin left block & s in right block)
insert all children of remaining conjunctioninto right block

} while (at least one insertion within loop)

Figure 6.6: Maximal raising of dichotomies

126 CHAPTER 6. ENCODING CONSTRAINTS

procedure check_feasible (constraints) {

1 = generate_initial_dichotomies (constraints)
D =remove_invalid_dichotomies (/, constraints)
foreach (dichotomy d in D)

raise_dichotomy (d, constraints)
D =remove_invalid_dichotomies (D, constraints)
foreach (dichotomy ¢ € I)

if i isnot covered by somed € D

return (INFEAS BLE)

return (FEASIBLE)

Figure 6.7: Feasibility check of input and output constraints

We now prove that the feasibility algorithm is correct.

Theorem 6.6.1 Given a set of input and output constraints, let I be the set of initial dichotomies
generated from the input constraints, including all unigueness constraints that are not already
covered by aninitial dichotomy. Let each valid dichotomy in I be maximally raised to obtain a set
of valid dichotomies D. A dichotomy that becomes invalid on raising is deleted from . The input
and output constraints are satisfiableif and only if each : € I iscovered by somed € D.

Proof: If Part Consider avalid maximally raised dichotomy d = (L1; R1), where L1 and R
are digoint subsets of the symbolsto be encoded. Consider asymbol s ¢ d. There are no output
constraintsthat either require any of the symbolsin 1 to cover s, or s to cover any of the symbols
in R1. Otherwise d is not raised maximally. Add al symbols F' = {s : s ¢ d}, totheright block
of d. There may be output constraints among the symbolsin £, but these are satisfied since all the
symbolsin I are inserted into the right block. Repeat the same operation of adding uncommitted
symbols to the right block for al valid maximally raised dichotomies. Call the dichotomies so
obtained compl ete, because every symbol appearsin either block of each of them. A valid encoding
exists by deriving the codes from any set of complete valid maximally raised dichotomiesthat cover
al initial dichotomiesin I.

Only If Part Assumethat someinitial dichotomy ¢ € I isnot covered by any of the dichotomies
in D. It means that thereisno d € D that contains block-wise ¢ or the dual of «. At the start of
check feasible: was putin D, unlessremoved by thefirst call of remove_invalid_dichotomies. Then

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 127

itwasraised to d(z) and it must have been removed by the second call to remove_invalid_dichotomies,
otherwise d(¢) € D would contain block-wise i. Suppose that there exists a dichotomy p whose
right and left blocks contain theright and left blocks of i. Then the conditionsthat caused invalidity
of ¢ or caused raising and then invalidity of d(¢) are satisfied aso for p (it can be seen by case
analysis of the conditions of remove_invalid_dichotomies and raise_dichotomy) and so either p is
invalid or it can be maximally raised to an invalid d(p). Therefore there can be no valid dichotomy
that contains block-wise:.

Similar reasoning holds for the dual dichotomy of i (blocks are reversed), i.e. from the
fact that the dual of 7 wasinitialy putin D it is deduced that there can be no valid dichotomy that
contains the dual of :. Therefore there can be no valid dichotomy that covers i, i.e., no feasible

solution exists.]

6.6.3 Exact Encoding of Input and Output Constraints

Once the feasibility check of aset of input and output constraintsis passed, a problemis
to find codes of minimum length that satisfy the constraints. If the requirement that codes are of
minimumlengthisdropped, thenitissufficient totakethevalid maximally raised dichotomies, make
each of them complete by adding to the right block any state absent from the dichotomy and then
choose aminimal set of complete maximally raised dichotomies that cover al initial dichotomies.
By adding absent states to the right block no invalid dichotomy can be produced, since no removal
or raising rule becomes applicable to the complete maximally raised dichotomies so obtained.

We will now discuss the case when codes of minimum length are wanted. An encoding
column must be a complete and valid dichotomy. When there are input constraints only, the notions
of vaid prime dichotomies and of valid complete dichotomies coincide. In general, there are two
ways of computing all valid complete dichotomies:

1. Ingenerate.initial dichotomies add all uniqueness constraintsto /7, asdonein[116].

2. After the prime encoding dichotomies have been generated, make them complete, by adding
in al possibleways the missing symbolsto the right and left blocks.

We will adopt here the first option because it is more practical in thisagorithmic frame.

An agorithm for satisfying both input and output constraintsis shown in Fig. 6.8. Fol-
lowing the generation of the initia dichotomies from the input and uniqueness constraints, those
that violate output constraints are deleted. The remaining dichotomies are raised maximally. Any

128 CHAPTER 6. ENCODING CONSTRAINTS

raised dichotomy that becomes invalid is deleted. If each of the initial dichotomiesis covered by
a least one of the valid and maximally raised dichotomies, al prime dichotomies are generated
from the valid raised dichotomiesand invalid dichotomies are removed again. Using an exact unate
covering algorithm, a minimum cover of theinitial dichotomies by valid prime dichotomiesyields
the exact solution.

Thefollowing example showswhy thethird call to remove_invalid_dichotomiesin Fig. 6.8
is needed. Consider the symbols a, b, ¢, d, the uniqueness constraints («; b), (b; a), (a; c), (¢;a),
(a;d), (d;a), (b;c), (¢;b), (b;d), (d;b), (c; d), (d; ¢) and the disjunctive constraint b = ¢ + d. The
first call to remove_invalid_dichotomiesremoves (b; ¢) and (b; d). By raising, (c; b) becomes (¢; bd)
and (d; b) becomes (d; be). By merging (b; a) and (c; d) the invalid prime dichotomy (bc; ad) is
obtained.

An example is given in Fig. 6.9. Notice that, given the initia dichotomies (sy; sps1),
(sos1; 52), (s3; 5051), (S0S1; 53), (S0; 51), (51 S0), (s2; s3) and (ss; s2), the following are removed
because they are invalid: (sgs1; s2) (it conflicts with s3> s2), (sos1; s3) (it conflicts with so =
s1V s3) and (sg; s1) (it conflicts with s > s1). By raising the remaining valid dichotomies one
obtains the following raised dichotomies: (s1s2; sos3) (from the initia dichotomy (s1; so), Since
s1 > sp forces s, into the left block and sg = s1 Vv s3 forces s3 into the right block) that subsumes
the valid dichotomy (sy; s3), (s3; s251) (from (s3; s2), Since sy > s, forces s; into the right block),
(s2; s0s1) and (s3; sps1) (the last two are initial dichotomies unmodified by the raising process).
Since each initia dichotomy is covered by some raised dichotomy, an encoding satisfying al
constraints existsby Theorem 6.6.1. The prime dichotomiesare (szs3; sos1) (by merging (s2; sos1)
and (s3; s0s1)), (s3;s05152) (by merging (ss3; sos1) and (s3; s2s1)), (s1s2; s0s3) and (s2; s051).
Notice that the last dichotomy is not complete. i.e, s3 does not appear in either block. The
completionsof (sz; sos1) are (s2ss; sos1) and (sg; sps153). Thefirst onehad been aready generated
by merging, the second one replaces (sz; sps1). Even though in the proposed agorithmin Fig. 6.8
we do not use the step of completions, but we add instead all uniqueness constraintsto /, in the
example we have preferred the former way for compactness of expasition.

Theorem 6.6.2 Given a set of input and output constraints, let I be the set of initial dichotomies
generated fromthe input constraints, including all uniqueness constraints. The algorithm shown in
Fig. 6.8 generates codes of minimum length for a set of input and output constraints, if a solution
exists.

Proof: The proof isbased on Theorem 6.6.1. If asolution exists,aminimum sol ution can be obtained

6.7. BOUNDED LENGTH ENCODING 129

procedure exact_encode (constraints) {

1 = generate_initial_dichotomies (constraints)
D =remove_invalid_dichotomies (/, constraints)
foreach (dichotomy d € D)

raise_dichotomy (d, constraints)
D =remove_invalid_dichotomies (D, constraints)
foreach (dichotomy ¢ € I)

if i isnot covered by somed € D

return (INFEAS BLE)

P = prime_dichotomy_generate (D)
valid_primes = remove_invalid_dichotomies (P, constraints)
mincov = minimum_cover (/, valid_primes)

return (derive_codes (mincov))

Figure 6.8: Exact encoding constraint satisfaction

from the maximally raised and valid dichotomies by generating prime dichotomies, and then finding
aminimum covering of theinitia dichotomies. Noticethat werequirethat all uniquenessconstraints
arein [to guarantee that no valid dichotomy is missed. It may be that a subset of the uniqueness

constraintsis sufficient to the purpose, but we do not explore the issue more. [|

6.7 Bounded Length Encoding

The solution of problem P-3 (c.f. Section 10.1) requires a fixed-length encoding that
minimizes a cost function on the constraints. In practice, this problem is more relevant than
problem P-2 which requires that al constraints be satisfied using a minimum number of encoding
bits. The reason is the trade-off between the increased code-length and the area gain obtained
by satisfying al constraints. For example, optimal encoding for finite state machines (FSM’s)
implemented by two-level logic may be viewed asthe process of generating a set of mixed input and
output constraints. Satisfying al the constraints may require an encoding whose length is greater
than the minimum code-length. This translates into extra columns of the PLA, and may result in
sub-optimal PLA area and performance. The same reasoning applies to multi-level logic, where

130 CHAPTER 6. ENCODING CONSTRAINTS

Face embedding constraints :

(s0, 51)

Domainance constraints .

S0 > S1 §1 > S2
Disjunctive constraints .

S0 =51V s3

Initial dichotomies :

(82;8081) (8081;82) (83§8081)
(8081;83) (80;81) (81;80)
(82;83) (83;82)

Raised dichotomies :

(52: 5051) (s3;5051) (5152; 5053)
(s3; 5251)

Prime dichotomies :

(525 5051) (s253;5051) (53; 505152)
(s152; 5053)

Complete dichotomies .

(82;808183) (8283;8081) (83;808182)
(5152, 5083)

Mintmum cover .

(8283;8081) (8182;8083)

Final encoding

S0 = ll, 51 = 10, §2 = OO, 53 = 01

Figure 6.9: Example of exact encoding with input and output constraints

6.7. BOUNDED LENGTH ENCODING 131

literal counts are used instead of cubes. Therefore, logic synthesis applications require an encoding
algorithm that:

e considers different cost functions; and,
e Mminimizesa chosen cost function for encodings of fixed length.
There are three cost functions that are useful in such applications:

the number of constraints satisfied;

the number of product-termsin a sum-of-product representation of the encoded constraints;

and,

the number of literals in a sum-of-product representation of the encoded constraints [85].

We illustrate the meaning and technigue of computation of these cost functions with an
example. Consider the following input constraints: (e, f,¢), (e, d,g), (a,b,d), (a,qg, f,d). To
satisfy al the constraints, an encoding of 4 bitsis required. A solutionisae = 1010, 5 = 0010,
¢ = 0011, d = 1110, ¢ = 0111, f = 1011, ¢ = 1100. Suppose instead that the code-length
isfixed at 3 hits. Irrespective of which 3-bit encoding is chosen, it must be the case that one or
more input constraints are not satisfied. This leads to the problem of estimating the “goodness’
of each 3-bit encoding. For each input constraint 7, define a Boolean function F; whose on-set
contains the codes of the symbols in the constraint and whose off-set contains the codes of the
symbols not in the constraint. The unused codes are in the don't care set. For instance, given
the previous encoding, the points in the on-set of F{. ;. are (0111,1011,0011), those in the
off-set are (1010, 0010, 1110, 1100) while the don’t care set contains the remaining unused nine
codes. If constraint / is satisfied, two-level minimization of 7 yields a single product-term. If a
constraint isnot satisfied, therewill be at least two product-termsin the minimized result. Thus, the
number of product-terms after two-level minimization is a measure of the satisfaction of the input
constraints. For constraints arising from encoding problemsof two-level logic, thisisan appropriate
cost function. An algorithm based on this cost function may require a number of two-level logic
minimizations. Thismay be approximated by a singlelogic minimization of amulti-output Boolean
function, where each constraint is represented by a distinct output of the multiple-output function.
The number of literals of atwo-level implementation of the constrai nts can be computed in the same
way; literals are counted instead of product-terms.

132 CHAPTER 6. ENCODING CONSTRAINTS

011 111

e d

101
g
010 110
b C
000 100

a f

(e,f,¢) — = {1-0,0-1}

(e,d,g) — = {1

(@,b,d —= {111,0-0}
(@a,g,f,d ——= {111, -0-}

Figure 6.10: Example of cost function evaluation

In Figure 6.10, a 3-bit encoding for the previous set of constraintsis shown, together with
the product-terms needed to implement the encoded constraints. The given 3-bit encoding violates
3 face constraints. They are (e, f, ¢), (a,b,d), (a, g, f,d). 7 cubes and 14 literals are required to

represent the encoded constraints.

6.7.1 Heuristic Algorithm for Input Constraints

Consider the input constraint satisfaction problem where an encoding of length ¢ bitsis
desired, while minimizing the number of violated constraints. Thisis an exact version of problem
P-3. We require a selection of prime dichotomies that must have two properties. First, the primes
must ensure that each symbol gets a unique code, that is, dl the uniqueness constraints must be
covered by the selected primes. Second, the fewest face constraints must be violated. The only
apparent way this can be doneisto enumerate all 2" — 2 prime dichotomies (using » symbols) and
then solve an exact weighted unate covering problem. This approach is clearly infeasible on all but
trivial instances of P-3.

Heuristic a gorithms can be easily devel oped within the encoding framework presentedin
thischapter. 1nthissubsectionwe describe aheuristica gorithm based on the concept of dichotomies
to solve P-3 approximately.

6.7. BOUNDED LENGTH ENCODING 133

As indicated above, the first phase of an exact solution to problem P-3 involves the
enumeration of all 2* — 2 prime dichotomiesthat exist for » symbols. Thisstepistermed candidate
dichotomy generation (or candidate generation in short). The second phase is to determine a
selection of afixed number of these encoding dichotomies that minimize the desired cost function.
Thisis termed selection. While candidate generation is clearly exponential in the input size, the
selection phase requires examination of a polynomia (in the code-length ¢) number of sets of
candidate encoding dichotomies. A heuristic algorithm that avoids this enumeration of dichotomies
while retaining the structure of the exact approach is detailed now.

Let S = s1,s9,..., 8, beaset of symbolsand let D be a set of encoding dichotomies
using these symbols. Consider some subset of symbols, P = s;,, 5p,, ..., Sp,. The restricted
dichotomies of D with respect to P are the elements of the set Dp of dichotomies obtained by
removing al symbolsnot in P from each dichotomy d € D.

The agorithm has three main phases. splitting of a set of symbols, merging of restricted
dichotomiesand selection of the ¢ best restricted dichotomiesfor asubset of symbols. The splitting
phase is used to divide the given encoding problem into two smaller problems, each to be encoded
using onelessbit. Assuming that each sub-problemis solved optimally, the solutionfor the origina
encoding problem is generated by the steps of merging and selection.

Let a code of length ¢ be desired for n symboals, s, ..., s,. Consider a partition of the
symbolsinto two groups s, ..., sy and sxy1...s,. Let Dy be the ¢ — 1 best dichotomies restricted
to s1, ..., s,. Similarly, let D, be the ¢ — 1 best dichotomies restricted to s;1, ..., s,. Then, the
candidate dichotomiesfor sq, ..., s,, isthe set

D= {(81...Sk; Sk+1...8n)} U (Dl X Dz) U (Dz X Dl).

The best selection of ¢ dichotomies from D is used to obtain a desired encoding. By repeatedly
applying this technique until each partition contains a single symbol, a bounded-length encoding is
achieved following the merging and selection steps.

Splitting of symbols: We are interested in obtaining two sub-problems, each using one
less code bit than the given problem does. In splitting the symbolsinto disjoint partitions, the fewest
constraints should be violated. Thisis achieved by using a modification of the Kernighan-Lin [68]

agorithm for partitioning®.

3This step can also be performed by using the notion of incompatibility between dichotomies. The prime dichotomy
that covers the maximum number of dichotomiesis desired. Given the pairwise incompatibilities between dichotomies,
this can be obtained by choosing the minimum cover of the pairwise incompatibilities (cf. Section 6.5.1). We do not

134 CHAPTER 6. ENCODING CONSTRAINTS

Each partition P can be considered as yieding a dichotomy, dp. For example, the
partition of n symbols into two blocks of symbols {s1,...,s;} and {sxi1,...,s,} gives dp =
(S1...5k; Sk+1---S). The choice of partition P is determined by a cost function evaluation on the
dichotomy dp. For example, if the number of violated face constraintsis to be minimized, then
P is chosen such that the fewest face constraints are violated by dp. If the number of literals (or
cubes) is being minimized, then P is chosen such that the maximum number of restricted initial
dichotomies are covered by dp. This corresponds to minimizing the number of uncovered initial
dichotomies. Thus, for the partitioning algorithm [68], the nodes are the symbols being partitioned
and the nets are either face constraints or initial dichotomies.

The procedure is performed recursively on each resulting partition. Each partition again
yields candidate dichotomies restricted to the subset of symbols that appear in it. When only two
symbolsremain, a single dichotomy that corresponds to the uniqueness constraint between themiis
generated.

Consider the example shown in Fig. 6.3, where an encoding of length 3 is required to
minimize the number of literals in sum-of-product form. In the first step, at least four initia
dichotomies must be violated by any partition. Assume that the symbols are partitioned into
Py = {sp, s1, s2, s4} and P> = {s3}, which violates 6 of theinitia dichotomies (numbered 0, 3, 4,
5, 6, 7). Further partition of the symbolsin P; yields P11 = {so, s4} and P1» = {s1, s2}, which
violatesfour of the initial dichotomies(numbered 0, 3, 6, 7 in the example).

Mergingof restricted dichotomies: Heretherestricted dichotomiesgenerated from each
of the sub-partitions, say P; and P>, are merged to obtain a set of dichotomiesthat ensures unique
codesfor all the symbolsin the merged partition, P = P, U P». Since the sets of symbolsin P; and
P, are digoint, each dichotomy in P is a union of one dichotomy each from P; and . Thus, m
dichotomiesfor P, and n dichotomiesfor P, yield mn candidate dichotomiesfor P.

Consider partitions P; = {so, s1, s2, s4} and P, = {s3} which are to be merged for the
exampleof Fig. 6.3. Assumethat the encoding dichotomies chosen (by recursive application of this
agorithm) for Py are D1 = {(sos4; s152), (sos2; s154) }. Theonly choicefor P is Dy = {(s3;)}.
The merged dichotomies to be considered are D = {(sos15254; 53), (S05354; $152), (S0S4; 515253),
(sos2s3; s154), (sos2; s1s3s4)}. The best encoding of length 3 is chosen from this set by the next
step.

Selection of best restricted dichotomies: The objective of thisfinal step isto choose a

employ this technique since the number of incompatibilities is often enormous. Additionally, the prime dichotomy is
required to have a bounded number of symbolsin each block, which further complicates the approach.

6.8. OTHER APPLICATIONS 135

minimal number of candidatedichotomiesthat violatethe minimumnumber of encoding constraints,
yet covers al the uniqueness constraints. It is important to note that when the best selection of
dichotomies restricted to a subset of symbols is sought, a global view of constraints (and cost
function) must be employed. For example, consider the subset of symbols P = {p1,...px} with
candidate dichotomies D,. A cover of size cp, isdesired. The constraints of the entire problem
are first restricted to the symbols py, ...pr. The cost function evaluation technique mentioned in the
previous section is applied to each selection of cp,, dichotomiesfrom D,,. The set that minimizes
the given cost function is chosen as the best selection of restricted dichotomies.

Continuing with the example of Fig. 6.3, following the merging step described above, the
3 best dichotomies selected are (sps15254; s3), (S0s2; S15354) and (spsa; s1s2s3). Thisis done by
evaluating al selections of size 3 from the set D that cover all uniqueness constraintsand minimize
the litera count. In the general case the number of evauations can be restricted to some fixed
number to reduce the search space.

This heuristic agorithm has shown promising results and has been successfully applied
to other encoding constraint satisfaction problems[97, 7].

6.8 Other Applications

In this section we illustrate that the formulation presented in Section 6.6 provides a

uniform framework for the satisfaction of various other encoding problems.

6.8.1 Input Encoding Don’t Cares

The notion of an encoding don't care was first described in [91], and an example of
how encoding don't cares are generated in the two-level caseis given in [145]. A face constraint
containing symbols «, b and e and with symbols ¢ and d as encoding don’t cares is denoted
(a,b,[c,d],e). This constraint specifies that a, b, e must be assigned to one face of a binary n-
dimensiona cube, with ¢ and d free to be included or excluded from this face, and no other symbol
sharing thisface. Encoding don’t cares have been shown to be essential for determining good factors
in deriving a multi-level implementation of a given multi-valued description [85].

A simple example shows that suboptimal solutions of P-2 are computed when input en-
coding don’t cares are disregarded. Giventhesymbols.S = {«, b, ¢, d, e, f} and theface constraints
(a,b), (a,c), (a,d), (a,b,[c,d],e), aminimum length encoding uses 3 primes, e.g. (a,b,¢;d, f),

136 CHAPTER 6. ENCODING CONSTRAINTS

(a,c,d;b,e, f),(a,b,d;c e, f). If theencoding don't cares are forced to be in the face constraint,
i.e. (a,b,[c,d],e) isreplaced by (a,b,c,d,e) then a minimum length encoding uses 4 primes,
eg. (a,b,c,d,e; f),(a,b,c;d,e, f), (a,c,d;b,e, f), (a,b,d;c,e, f). Inthe case that the encoding
don't cares are forced not to be in the face constraint, i.e. (a, b, [c,d],€) is replaced by (a, b, €)
a minimum length encoding uses 4 primes, eg. (a, b, ¢€;¢,d, f), (a,b,c;d, e, f), (a,d;b,c,e,),
(a,c,d;b,e, f).

Theframework described in Section 6.6 naturally handles encoding don’t cares. Consider
the face constraint (sps1s3[ss]), which impliesthat ss may or may not be chosen to be on the same
face as sp, s1 and s3. Converting this constraint to initial dichotomies is simply a matter of not
generating the dichotomies (sgs1s3; s5) and (ss; sgs1s3). The absence of these dichotomies enables
s5 to be either inside or outside the face that includes sg, s1 and s3. In the presence of encoding
don't cares, a prime dichotomy may be a bi-partition of a subset of the symbols. In contrast,
when encoding don't cares are not used, each prime dichotomy is a bi-partition of the entire set
of symbols. For instance, if we consider the set of face constraints of the previous example (a, b),
(a,c), (a,d), (a,b,[c,d],e),the prime dichotomiesgenerated by the extended definition of compat-
ibility are: (a,b,¢; f), (a,b,e;d, f), (a,b,e;¢,), (a,b;¢,d,e, f), (a,c;b,d,e, f), (a,d; b, c e, f),
(a,b,c;d,e, f),(a,c,d;b,e, f),(a,b,d;c e, f),(a,b,c,d; e, f). Aminimum cover of 3 primescan
be extracted out of them, as shown before.

The agorithms described for the feasibility check and exact encoding, shown in Fig-
ures 9.1, 9.2 and ?? respectively, extend naturally to encoding don’'t cares. Note that the satisfia-
bility check algorithm described in [39] cannot be easily extended to handle encoding don't cares
without asignificant penalty in run-time. The encoding algorithm presented in[147] also cannot be
extended to handle don’t cares.

6.8.2 Distance-2 Constraints

In[135, 134, 35] a condition for easy and full sequential testability requires an encoding
such that the codes assigned to a selected pair of states, say @ and b, must be at least distance-2 apart.
This condition may be easily satisfied by selecting at least two prime dichotomiesin the minimum
cover, each having « and b in different blocks. Suppose that, of al the prime dichotomies, the pairs
{p1, p2} and {p3, p4} have a and b in different blocks. At least one of the two pairs must be chosen
inafinal cover. Thisisenforced by augmenting the binate covering formulation with the clauses

(p1+ b1) (p2+ b1) (p3 + b2) (pa + b2) (b1 + b2),

6.8. OTHER APPLICATIONS 137

where b, and b, are two new columns of the covering table.

6.8.3 Asynchronous State Assignment

The state assignment algorithm proposed by Tracey [143] may also be applied in per-
forming state assignment for asynchronous state machines [74]. The basic idea is that whenever
a pair of state transitions occur under the same input (so that the input values cannot be used to
distinguish among them), at least one state signal must remain constant during both transitionsand
have adifferent valuefor each transition. Thisset of constant signalsallowsthecircuit to distinguish
among different transitions thus avoiding critical races. Tracey was thefirst to propose the concept
of dichotomy as corresponding informally to theidea of acolumn (bit) in the binary encoding of the
internal states. It distinguishes one set of states from another by a single bit in the corresponding
encodings. The implementation in [74] successfully uses our exact input encoding agorithm (cf.
Section 6.5).

6.8.4 Logic Decomposition

In [97] it is investigated the problem of decomposing a function so that the resulting
sub-functions have a small number of cubes or literals. The decomposition problem is formulated
as an encoding problem. In general, an input-output encoding formulation has to be employed
to solve the problem. However, it is shown that for programmable gate array architectures which
use look-up tables, the input encoding formulation suffices, provided one uses minimum-length
codes. The unused codes are used as don't cares for simplifying the sub-functions. An average
improvement of over 20% is achieved when encoding is used while performing the decomposition.
The encoding is performed using the heuristic algorithm described in Section 6.7.1.

6.8.5 Logic Partitioning

In [7] the problem of encoding the communication between two logic blocks is studied.
Two separate blocks of ogic can communicate unidirectionally through a channel that consistsof a
number of communicationlines. Theencoding of the symbolscommuni cated across the channel has
two requirements: first, the encoding width is fixed (usualy to the minimum possible width), and
second, the encoding must minimize the amount of logic in the sending and receiving blocks while
bal ancing the size of the blocks. By definition, the input encoding constraints and output encoding
constraints are each taken from different blocks of logic. Consequently, balancing the size of the

138 CHAPTER 6. ENCODING CONSTRAINTS

blocks trand ates into balancing the amount of constraint satisfaction in the two sets of constraints.
Sincetheexisting constrai nt sati sfacti on a gorithmsdo not perform constraint satisfactionbalancing,
only the encoding constraints generated from the receiving block are considered. Theheuristicinput
encoding a gorithm described in Section 6.7.1 is used among others.

6.8.6 Limitationsof Dichotomy-based Techniques

This section has illustrated how new classes of encoding constraints, together with face
and output constraints, can be accommodated in the dichotomy-based frame. It is legitimate to
ask what kind of constraints cannot be naturally solved using dichotomies. Such an example of
unwieldy encoding constraints are chain constraints [1] used to derive area-optimal finite state
machine implementations that use counter-based PLA structures. State assignment in [1] consists
of a step of deriving face and chain constraints and a step of satisfying them. A chain constraint
reguires that increasing binary numbers be assigned to the codes of the ordered sequence of states.
The first element in the chain can be given any code. For instance, a chain constraint involving
the ordered sequence a, b, ¢, d, e, f, g, h,tisdenoted by (¢ —b—c—-d—e— f—g—h —1)and
is satisfied by the encoding « = 0010, # = 0011, ¢ = 0100, d = 0101, ¢ = 0110, f = 0111,
¢ = 1000, ~ = 1001, + = 1010. For every pair of adjacent statesin the chain the code of the right
state is equal to the code of the |eft state increased by one in binary arithmetic. As an example of
encoding problem with face and chain constraints, consider the face constraints (b, ¢), («,b), and
thechain (d — b — ¢ — a). A satisfying assignment is: « = 00,6 = 10, ¢ = 11,d = 01.

Even though it is possible, for a given code length, to add to the covering expression the
clauses that impose the chain conditions, a straightforward solution seems to require a computa-
tionally expensive enumeration.

6.9 Results

Table 1 givestheresults of using the exact encoding algorithm on a set of examplesusing
both input and output encoding constraints. These constraints are generated using an extension of
the procedure described in [91] that dso generates good disjunctive constraints. The procedure
has been described in Chapter 5. The procedure for generating encoding constraints ensures that
the constraints are satisfiable by calling the algorithm in Figure 9.3. The number of vaid prime
encoding-dichotomiesis shown in the third column. As seen from the table, all the examples with

6.9. RESULTS

Name # States | #Primes | #Bits | Time

(secs)
bbsse 16 1449 7 20
cse 16 201 7 3
dk16 27 24316 12 | 1050
dk512 15 35 9 1
donfile 24 673 12 17
exl 20 2023 9 45
keyb 19 189 9 4
Kirkman 16 54 11 8
master 15 972 5 4
planet 48 | > 50000 * *
sl 20 469 7 10
sla 20 50 7 3
sand 32 2481 11 88
scf 121 | > 50000 * *
styr 30 | > 50000 * *
tbk 32 13 12 41
viterbi 68 | > 50000 * *
vmecont 32 | > 50000 * *

* indicates results not available

Larger examples were not experimented with

Table 1: Exact input and output encoding

139

140 CHAPTER 6. ENCODING CONSTRAINTS

Name States | # Constraints || Constraints Cubes
NOVA | ENC || NOVA | ENC
bbsse 16 5 3 3 12 8
cse 16 12 8 8 24| 18
dk16 27 33 25 20 43 | 48
dk512 15 10 8 9 12| 11
donfile 24 24 8 11 48 | 39
exl 20 11 8 8 19| 19
kirkman 16 25 9 9 58 | 58
planet 48 12 12 12 12| 12
sl 20 14 14 14 14 14
sla 20 14 14 14 14 14
sand 31 7 6 6 8 8
styr 30 18 14 14 29| 26
scf 121 14 11 * 21 *
tbk 32 98 44 39 284 | 237
viterbi 68 6 6 6 6 6
vmecont 32 40 24 25 81 67

Constraints: Number of constraintsto be satisfied

Constraints: Number of satisfied constraints

Cubes: Number of cubesin atwo-level implementation of the constraints
NOVA: Encoding using NOVA [147], minimum code length

ENC: Heuristic encoding, minimum code length

* . Out of memory

Table 2 : Two-level heuristic minimum code length input encoding

less than 50000 primes completed in very little CPU time on a DEC 3100 workstation. In the
case of planet there are only nine dominance constraints and no disjunctive constraints, which lead
to almost no decrease in the number of primes generated from the face constraints (exponential
in the worst case). In the case of vmecont there are only eight different face constraints (six of
them have only two states), which lead to a huge number of primes being generated from the large
number of un-implied uniquenessconstraints. Thousandsof satisfiability checksoninput and output
encoding constraints can be performed routinely in a matter of seconds, showing the efficiency of
our algorithm. The previous approach suggested for prime generation in [154] does not complete

on any of the examples.

6.9. RESULTS 141

Table 2 compares an implementation of the heuristic algorithm described in Section 6.7.1
with the best bounded-length input encoding algorithm implemented in NOvA [147] (option -e
ih). NOvA is a state assignment program for two-level implementations, that features a variety
of constraint satisfaction algorithms. The input constraints are generated by calling the two-level
multiple-valued logic minimizer ESPRESSO [114]. The number of satisfied face constraints and the
number of cubesin atwo-level implementation of the constrai ntsusing the minimum possiblelength
for encoding are compared in the table. While both agorithms perform comparably with regard
to the number of constraints satisfied, our approach has a significant advantage with respect to the
number of cubes needed to implement the input constraints in two-level form. This cost function
is very important because it measures the advantage of satisfying a subset of input constraintsin
a fixed code-length more precisely. Our agorithm in amost al cases needs fewer cubes than the
algorithmin NOvA. On the benchmark set it requires on average 13% fewer cubes and in some cases
the gain is more than 20%. The number of cubes listed in Table 2 under the column NOVA, is not
the same as the number of cubes of the fina FSM implementation obtained by NOVA [147]. NOVA
performs additional encoding tasks to approximate the input-output encoding problem that arises
in FSM’s. Instead, we compare only the quality of the input encoding algorithms. For instance,
we report 284 cubes for thk using NovA and 237 cubes for our algorithm. This means that if tbk
were to be encoded with 5 bits using only input constraint information, the encoding agorithmin
NOVA would require 284 and our algorithm 237 cubes to implement the input constraints. In reality
with the option -e ih NOVA achieves 147 cubes, because it does not limit itself to input constraints
satisfaction (and with the option -eioh it achieves 57 cubes, using a better model of theinput-output
encoding problem). A heuristic agorithm that considers partial satisfaction of a set of input and
output constraints remains to be developed. In the example of sand only 8 cubes are reported
for both agorithms, because these are the cubes needed to implement the cubes generating input
constraints. However, there are many more cubesin the FSM that do not generate input constraints,
and are not reflected in the table.

Table 3 compares our approach to simulated annealing for multi-level examples. Input
constraintswith don’t cares are generated by the multiplevalued multi-level synthesisprogram mis-
MV [85] with the number of factored form literals in the encoded implementation as cost function
(in practice, the number of literals in a sum-of-product representation of the encoded constraints
is used as an approximation to this cost function). Because of the presence of encoding don’t
cares and the cost function of literas, simulated annealing was the only other known a gorithm for
solving this problem. We use two sets of experiments to compare the effectiveness of our heuristic

142 CHAPTER 6. ENCODING CONSTRAINTS

bounded-length algorithm versus the version of simulated annealing agorithm implemented in
MIS-MV. Minimum-length encoding is aways used. MIS-MV isrun using a script that invokes the
constraints satisfaction routinesix times; five timesto perform acost eval uation that drivesthe multi-
valued multi-level optimization steps and onefinal timeto produce the actual codes that replace the
symbolicinputs [85]. Simulated annealing is called the first five times with 1 pairwise code swap
per temperature point, while the last call performed 10 pairwise code swaps per temperature point.
Simulated annealing does not complete on the larger examples with 10 pairwise swaps per step.
These examples are marked with a 1 in the table, and only 4 swaps were allowed per temperature
step for these examples. When using our heuristic algorithm, the full-fledged encoder is called all
six times. See [85] for a detailed explanation of the scripts.

As can be seen from Table 3, our agorithm on average performs a little better than
simulated annealing in terms of literal count. Thisis significant especialy in the large examples,
whereit reduces theliterals counts up to 10% further than simul ated annealing. When our agorithm
does worse, it is within 5% of the simulated anneding result. However, a significant parameter
here is the amount of time taken. Simulated annealing consumes at least an order of magnitude
of time (two orders or more for larger sized examples) more than our algorithm when a better
quality solutionisdesired, i.e. using 10 swaps per step. On attempting to reduce the runtimeto be
comparabl eto our approach, anoticeabl el ossof optimization quality compared to our approach may

be observed in the table. Further improvementsto the heuristic encoding a gorithm are possible.

6.10 Conclusions

Thischapter has presented acomprehensive sol ution to the problem of satisfying encoding
constraints. We have shown that the problem of determining a minimum length encoding to satisfy
both input and output constraints is NP-complete. Based on an earlier method for satisfying
input constraints [154], we have provided an efficient formulation of an algorithm that determines
the minimum length encoding that satisfies both input and output constraints. It is shown how
this algorithm can be used to determine the feasibility of a set of input and output constraints
in polynomia time in the size of the input. While al previous exact formulations have failed
to provide efficient algorithms, an agorithm that efficiently solves the input and output encoding
constraintsexactly has been described. A heuristic procedure for solvinginput encoding constraints
with bounded code-length in both two-level and multi-level implementationsis aso demonstrated.
In the multi-level case, only a very time-consuming agorithm based on simulated annealing was

6.10. CONCLUSIONS

Name States | Literals Time

SA | ENC SA ENC
bbsse 16 || 162 | 164 3017 175
cse 16 || 229 | 236 || 3969 234
dk16 27 || 336 | 380 || 27823 | 1523
dk512 15| 82| 85| 2090 138
donfile 24 || 154 | 172 || 16265 935
kirkman 16 || 201 | 229 || 2621 322
master 15| 392 | 398 || 2069 423
sl 20 | 280 | 304 || 16297 833
sla 20 || 240 | 254 || 4878 241
tsand 31 || 763 | 737 || 1926 | 2332
7scf 121 * * * *
Tstyr 30| 581 | 608 || 3128 | 1359
Tplanet 48 || 648 | 639 || 10298 | 14983
Ttbk 32 || 560 | 498 || 3774 | 4090
Tviterbi 68 || 327 | 322 860 | 1013
Tvmecont 32 || 378 | 364 || 2074 | 2883

SA: Simulated annealing (5 callswith 1 move per step and 1 call with 10 moves per step)
ENC: Heuristic encoding in minimum code length (6 calls)

Time sa : Timefor sA; includes run time for minimization script [85]

TimeEeNC : Timefor ENC; includes run time for minimization script [85]

T SA does not complete in 10 hours with 10 moves per step; sa limited to 4 steps per move

*: Does not completein 10 hours

Table 3 : Multi-level heuristic minimum code length input encoding

143

144 CHAPTER 6. ENCODING CONSTRAINTS

known before. This framework has also been used for solving a variety of encoding constraint

satisfaction problems generated by other applications.

145

Chapter 7

Generalized Prime Implicants

7.1 Introduction

A method for exploring globally the solution space of optimal two-level encodings was
proposed by Devadas and Newton in [39]. Their key contribution was the definition of Generalized
Prime Implicants (GPI’s), as a counterpart of prime implicantsin two-level minimization.

Unfortunately, the number of GPI'sis so large even for small FSM’s, that in practiceit is
out of question to compute them and afortiori to solvetheinduced covering problem for non-trivial
examples.

Recently, enumeration and manipulation of very large sets have been successfully per-
formed by representing their characteristic functions with Binary Decision Diagrams (BDD's). In
many cases of practical interest these sets have aregular structure that trand ates into small-sized
BDD’s, even when an explicit representation would be impossibleto compute. Here, loosely, we
consider a representation as explicit if it requires space lineraly proportiona to the size of the
represented set.

In particular, researchers at Bull and UCB [25, 79, 53] investigated implicit computations
of primeimplicantsof atwo-valued or multi-valued function. In some examplesall primes could be
computed implicitly, even when explicit techniques implemented in ESPRESSO [11] failed to do so.
Moreover, implicit a gorithmshave been designed to reduce the unate tabl e of the Quine-McCluskey
procedure toits cyclic core[29, 53], and to solve the binate covering problem associated with exact
state minimization [66].

In the present work we capitalize on these al gorithmic technol ogiesto propose acomplete
procedure to generate and select GPI's based on implicit computations. This approach combines

146 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

techniques for implicit enumeration of primes and implicit solution of covering tables together
with a new formulation of the problem of selecting an encodeable cover of GPI's. The proposed
algorithms have been implemented using state assignment of FSM’s as atest case. The experiments
exhibit aset of medium FSM’swhere large GPI problems could be solved for thefirst time, showing
that these techniques open anew direction in the minimization of symboliclogic. Sincethe problem
of symbolic minimization is harder than two-valued logic minimization, more practical work is
required to improve the efficiency of theimplementation and to tie it with good heuristicsto explore
the solution space of encoding problems. The present contribution shows how to extract a minimal
encodeable cover from a large set of GPI's, alowing - in line of principle - the exploration of
all minimal encodeable covers. This advances the state-of-art of symbolic minimization, which
up to now has been done with various heuristic tools [92, 147, 42, 77], often very well-tuned for
their domain of application, but lacking a rigorous connection beween an exact theory and the
approximations made. For instance it is noticeable that these tools, with the exception of ESP_sA,
cannot predict the cardinality of the covers that they produce, whilethe size of aminimized encoded
cover of GPI's matches the size of the cover obtained after encoding (with the same codes) and

minimizing the original cover.

The presentation is organized on a number of chapters as follows. In Section 7.2 we
introduce some basic definitions. In Section 7.3 we introduce GPI's. In Section 7.4 we show
how generation of GPI's of a symbolic cover can be reduced to finding the prime implicants of a
companion multi-valued function. The relations of GPI's to primes of encoded covers is analyzed
in Section 7.5. The problem of selecting a minimum set of encodeable GPI’s by reduction to unate
covering isdescribed in Section 8.1, and by reduction to binate covering is described in Section 8.2.
The issue of non-determinism and GPI's is discussed in Section 8.3. A theory of encodeability of
GPI’'s based on the new notions of raising graphs and updating setsis presented in Section 9.1. The
passage to implicit algorithms is done in Sections 11.1 and 11.2. In Section 11.3 we present an
implicit solution of the GPI selection problem, while Section 11.4 demonstrates on an example the
implicit agorithm. The correctness of the resultsis verified with the method shownin Section 11.5.
Implementationissuesare discussed in Section 11.6. In Section 11.7 experimental results are given,
while conclusions are drawn in Section 11.8.

7.2. BASIC DEFINITIONS 147

7.2 Basic Definitions

7.2.1 Finite State Machines

A Finite-State Machine (FSM) is represented by its State Transition Graph (STG) or
equivaently, by itsStateTransition Table(STT). A STGisdenoted by asextuple{/,0, S, IS, 4, A},
where I and O are the sets of inputs and outputs, .S is the set of statesand 7.5 is the set of initia
states. ¢ (next state function) isamapping from 7 x S to S that given an input and a present state
defines a next state. A (output function) is a mapping from 7 x .S to O that given an input and a
present state defines an output. An STG where one next-state and one output for every possible
transition from every state are defined corresponds to a completely specified finite state machine
(CSFSM). An STT is atabular representation of the FSM. Each row of the table corresponds to a
singleedgeinthe STG. Conventionally, theleftmost columnsin the table correspond to the primary
inputs and the rightmost columns to the primary outputs. The column following the primary inputs

is the present-state column and the column following that is the next-state column.

An incompletely specified finite state machine (ISFSM) is one where either § or A or
both are arelation of arestricted kind, i.e. thereis at least one pair (¢, s) on which either §(z, s)
or A(7, s) (or both) is equal to the set of al possible values, written usualy in cube notation. For
instance, suppose that O = B3, then iy s1 s, — —— denotes a transition under input i1 from s;
to s, which outputs any of the possible 8 mintermsin B3; iy s; ANY 01— denotes a transition
under input ¢1 from s; to any statein .S which outputs either 010 or 011 (instead of ANY one can
write x or —). Lastly, i1 s1 ANY — —— denotes atransition under input ¢1 from s; to any state
in S which outputs any minterm in B3; for economy of representation, one usually omits these
transitions (sometimes called missing or unspecified transitions) from an FSM description. When
doing state assignment, if there are more hardware states than symbolic states!, AN'Y of amissing
transition can beimplemented by any possible hardware state. To every STG contai ning unspecified
next-states one can construct an equivalent STG where al unspecified next states are replaced by a
trap state 7', asin [98]. The transitionsfrom 7" under any input go to 7" itself and their outputs are

unspecified. The new STG describes exactly the same behaviours as the old one.

!Supposethat 3 symbolic states are encoded with 2 bits, then there are 4 hardware states.

148 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.2.2 Multi-valued Functions

We review the definitions used for multi-valued (also known as symbolic) input binary-
valued functions. For a more complete treatment the reader is referred to [114].

Definition 7.2.1 Let p;,7 = 1,...,n be positive integers. Define P, = {0,...,p; — 1} for i =
1,....,n,and B = {0,1,x}. A multiple-valued input, binary-valued output function, f, is a
mapping

fiPAXPx---xP,— B

Thefunction f has n multiple-valued inputs. Each input variable i assumes one of the p;
valuesin P;. Thevadue x € B isused when the function value is unspecified (i.e., it isallowed to
be either O or 1).

An n-input, m-output switching function can berepresented by amultiple-valued function
of n + 1 variableswhere p; = 2for: = 1,...,n, and p,+1 = m. The minimization problem for
multiple-output functions is equivalent to the minimization of a multiple-valued function of this
form [119].

Definition 7.2.2 Let X; be a variabletaking a value fromthe set F;, and let S; be a subset of F,.

X represents the Boolean function

s 0 itxigs
] 1 ifxes;

Xf" iscalled aliteral of variable X;. If S; = 0, then the value of the literal is dways 0, and the
literal iscaled empty. If S; = P;, then the value of the literal isaways 1, and the litera iscalled
full.

Two-valued (or binary) functions are a special case of multi-valued functions where
P, ={0,1} fori = 1,...,n. Inthe case of atwo-valued single-output function, some notational
simplification is then possible. A cube may be written as a vector on a set of variables with each
position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as
—, don’t-care), signifying the true form, negated form or both of the variable corresponding to that
position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the
number of 2 entries. A cube with £ entries or bits which take the value 2 is called a k-cube. A

minterm thusis a 0-cube.

7.2. BASIC DEFINITIONS 149

A product term (or cube) isaBoolean product (AND) of literals. A minterm or O-cube
isaproduct-term in which the sets of values of all literasare singletons. If aproduct term evaluates
to 1 for agiven minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product
term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-productsis said to
contain the minterm. If aliteral in a product-term is empty, the product term contains no minterms,
and is caled the null product (written (). The on-set of afunction isthe set of mintermsfor which
the function valueis 1. Likewise, the off-set isthe set of minterms for which the function valueis
0, and the DC-s&t is the set of mintermsfor which the function valueis unspecified.

In the definitions which follow, S = X X3?--- X5 and T = X;1X;?--- X" repre-
sent product terms.

The product term .S’ containsthe product term 7" (T" € S) if T; € S;fori=1...n. The

complement of theliteral X (written X) istheliteral X~ . The complement of the product

term S (S) isthe sum-of-products | J7_; X f" .
Theintersection of product terms.S and 7' (S N T') isthe product term

SlﬂTl SgﬂTg SnnT,
Xl X2 b ‘Xnn n‘

If S;NT; =0 forsomei, then SNT = () and .S and T are said to be disjoint. The intersection of
covers I'and GG istheunionof fNg foradl f € F andg € G. The distance between S and T
(distance(S,T))is|{i|S;NT; = 0}|.

The consensus of S and T" (consensus(S, T)) isthe sum-of-products

e
U Xfl”Tl .. .XZSiUTi o Xm0 T
=1

If distance(S,T) > 2then consensus(S,T) = 0. If distance(S,T) = Land S; N T; = 0, then
consensus(S, T) isthesingleproduct term X177t ... X5V X a0 Tn If distance(S, T) = 0
then consensus(S,T') isacover of n terms. If the consensusof S and 7" isnonempty, it isthe set of
maximal product terms (ordered by containment) which are contained in .S U T' and which contain
minterms of both S and 7". The consensus of two covers F and G isthe union of consensus(f, g)
fordl f e Fandg € G.

The cofactor (or cube restriction) of S with respect to T (S7) isempty if S and T are

disoint. Otherwise, the cofactor isthe product term

S1uTy SouTy SnUT,
X; X5 B G

150 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

The cofactor of acover F' withrespect to aproduct term S istheunionof fsforal f € F.

An implicant of afunction is a product term which does not contain any minterm in the
off-set of the function. A prime implicant of a function is an implicant which is not contained
by any other implicant of the function. An essential prime implicant is a prime implicant which
contains aminterm which is not covered by any other primeimplicant.

The product term .S’ can be represented in positional cube notation as abinary vector in
thefollowing form:

0.1 pi—1 g 1 po—1

€1€1...01° T — €5C5...C5 el Pl

where c{ =0ifj ¢ 95;, and c§ = 1if j € S;. In other words, a symbolic variable that can
take values from a set of cardinaity » is represented in positional cube notation by an n-bit vector
to denote a litera of that variable such that each position in the vector corresponds to a specific
element of the set. A 1inapositionin the vector signifies the presence of an element in theliteral
while a0 signifiesthe absence. This method of representation is commonly known as one-hot. By
complementing the n-bit vector that represents the one-hot encoding of a symbolic variable, one
gets a representation called complemented one-hot.

7.3 Generalized Prime Implicants

7.3.1 Definition of Generalized Prime Implicants

Multi-valued inputs and binary-valued outputs functions can be represented by multiple-
valued functions where the set of binary outputs is treated as another multi-valued input variable.
Positional cube notation allows also to represent any function with multi-valued input and multi-
valued output variables. Thisis commonly done in programs like ESPRESSO-MV, when a function
with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded and then minimized. But the
minimization problem for functions with multi-valued input and multi-valued output variables is
not known to be equivaent to the minimization of a multiple-valued function of this form. After
1-hot encoding the onsets of the minterms (values) of a symbolic output are minimized separately.
To handle the minimization problem of functions with multi-valued input and multi-valued output
variables the concept of generalized prime implicants has been introduced [39].

Consider adiscrete (alias symboalic) function whose domain and range are finite sets. The
previous theory of multi-valued minimization does not take into account the effect of encoding the
symbolic output variables to get a minimum two-level encoded function. More precisely it does

7.3. GENERALIZED PRIME IMPLICANTS 151

not model the fact that after encoding the onsets of the symbolic outputs are not anymore disjoint.
To overcome this limitation a concept of generalized prime implicants has been introduced in [39].
Even though the concept can be defined for functionswith many symbolicinputsand many symbolic
outputs, for simplicity we will restrict most of the discussion to the case of afunction with binary
inputs, one symbolicinput variable, one symbolic output variable and binary outputs. This handles
symbolic descriptions of FSM’s. In what follows we will often not make a distinction between a
function f and acover that represents f.

Consider an FSM M given by asymboliccover f: 1 x £ — Z x O. Given an integer n
and an encoding function e : ¥ — B™, let e(f) be the encoded cover of f, i.e. the cover obtained
from f after replacement of the states with their codes, according to e. Consider a primeimplicant
s = 1 pn o of thefunction represented by the encoded cover e(f). Associate to the encoded
present state field p the set of states S, C %, whose codes are contained in p. Associate to the
encoded next state field n the set of states S,, C ¥, whose intersection of the codesis» 2. Both
operations are well-defined. Then one can associate to s the following symbolic product-term
S = X" XSno.

Given f : I x £ = Z x O, consider a symbolic product-term S = iX];gPano. S
isamulti-valued input binary-valued output product-term, except that it has a multi-valued output
variable X,, whose multi-valued literal does not need to be asingleton. Thislatter feature makesit
"generaized". A question arises. what isthe meaning of asuch ageneralized product-term ? Such
ageneralized product-term isatemplate for corresponding encoded product-terms, as the following
definitions clarify.

Definition 7.3.1 Given a set of symbols S C X and an encoding function e : S — B”", let
e(s) = e(s)1e(s)2- - -e(s), for s € S. Then ly¢(S) is the product-term X1 X2 ... X 5 where
S; = {0,1} iff 35,5 € Sst. e(s); = Land e(5); = 0; S; = {0} iff Vs € S e(s); = 0; S; = {1}
iff Vs €S e(s); =1

|+ defines the minimum Boolean subspace of B™ spanned by the codes of the states of .S.

Definition 7.3.2 Given a set of symbols S C X and an encoding function e : S — B”", let
e(s) = e(s)1e(s)2---e(s), for s € S. Thene() is the product-term X1X52 - - . X 5» where
S; ={0} iff 3s € Sst. e(s);=0; 5, ={1} iff Vs €5 e(s); = 1.

2Consider the next statesin f of the transitions with mintermsin ¢ S,,, the intersection of their codes must be equal to
n if s isaprime implicant (an exceptionis the case of transitionswith AN'Y next state and specified proper outputs), and
must be < n if s isan implicant that is not a prime.

152 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

() defines the vertex of B™ obtained by bit-wise intersection of the codes of the states of .S.

Definition 7.3.3 Given a product-term .S = iX];gPX;fno of a symbolic function f : I X £ —

> x O, and an encoding function e : S — B", the encoded product-term e(.5) is given by:

e(9) = tle(S,) NelSy)o.

Example 7.3.1 Consider the symbolic product-term 1 — 0 stl, st3, st4 st2,st3 1001 and the
encoding e(st0) = 011, e(st1) = 000, e(st2) = 111, e(st3) = 100, e(st4) = 010, e(st5) = 101.
We(S, = {stl, st3, std})is——0,Ne(S, = {st2, st3})is100,e(1—-0 stl, st3, st4 st2, st3 1001)
isl-0 — —0 100 1001.

Definition 7.3.4 A generalized implicant (Gl) S of a symbolic function f : I x £ — £ x O isa
product-term of the form S = iXZ;9 » X %n0 such that there are an integer » and an encoding
functione : ¥ — B” sothat e(.S) isanimplicant of e(f).

Definition 7.3.5 A generalized primeimplicant (GPI) .S of a symbolicfunction f : I x ¥ - Z x O
isa generalized implicant such that there are an integer » and an encoding functione : Z — B™ so
that e(.5) isa primeimplicant of e(f).

It istrue that for each prime implicant of an encoded FSM thereisa GPI.

Theorem 7.3.1 For each primeimplicant of the Boolean function represented by an encoded cover
thereisat least one GPI.

Proof: Given aprime of a Boolean function represented by an encoded cover, consider the present
state subcube and find all states whose codes are contained in it, discarding those that do not
correspond to a state in the symbolic cover. This gives.S,,. Find inthe original symbolic cover the
next states of the statesin 5, under the proper inputs of the prime. This gives S, (the intersection
of the codes of the states in 5,, dominates the next state subcube of the prime). The proper input
and output subcubes of the GPI are the same as those of the prime. [|
A similar theorem holds replacing prime implicant with implicant. The given definition does not
tell us how to computethe GPI's. GPI’s can be obtained by a symbolic equivaent of the consensus
operation. Actually thisishow they werefirst introduced in [39], as we will seein the next section.

Definition 7.3.6 A Gl g1 covers another Gl ¢, iff the proper input and output of ¢; contain,
respectively, the proper input and output of g, the present state literal of ¢, is a superset of the
present state literal of g, and the next stateliteral of g1 isa subset of the next stateliteral of g».

7.3. GENERALIZED PRIME IMPLICANTS 153

7.3.2 Generalized Prime Implicants by Consensus Operation

In old textbooks [94] it was common to represent a multiple-output function by a cover
of the function consisting of a set of cubes in the common input space, with an output tag attached
to each cube to specify the functions to whose onset the cube belongs. We cal it functiona
view. Instead in the more modern relational view the outputs are treated as one more multi-va ued
variable [118, 114]. For instance a minterm in the relational view is a product-term in the input
and output variables where each literal is asingleton; in the functional view it is a product-term in
the input variables where each literal is a singleton, with an attached tag that specifies one or more
output functions. Therefore a minterm in the functiona view may correspond to more than one

minterm in the relational view.

Generaized Implicants (GI's) extend the definition of multiple-output implicants to the
case that some output variables are symbolic. In analogy to an output tag, the notion of symbolic
tag has been introduced in [39]. A GI can bewritten as a cube with associated tagsfor the multiple-
valued and binary-valued output functions. The tag of a cube for a multiple-valued output variable
gives the output symbol to whose onset the cube belongs. We let the tag of a symbolic output
variable contain more that one symbol, under the convention that - after encoding - the symbolic
tag will be replaced by acube that isthe bit-wise intersection of the codes of the symbolsin the tag.

Prime implicants are maximal implicants of a Boolean function. Implicants of multiple-
output functions (multiple-output implicants) can cover 0-cubesin more than one output function. A
multi-output primeimplicant isamaximal implicant for a set of output functions. Prime implicants
can be computed by the consensus method [107, 94]. Maximality of amultiple-output prime means
that itsinput part cannot be expanded without intersecting the offset of at least one function in the
output tag, nor any new function can be added to the output tag without the input part intersecting
the offset of this added function. The consensus operation of two product-terms p1 and p, isthe
largest product-term p such that p does not imply (i.e. is hot contained in) either p1 or py, but p
implies p1 + po. Iterative consensus consists of successive addition of derived consensus terms to
asum-of-product espression and removal of termswhich are included in other terms. Theiteration
of this procedure yields the set of all primeimplicants.

Boolean Consensus. Generation of all primeimplicantsinthe Boolean domain by iterated
consensusisthe merging of k-cubestoform (% +1)-cubesuntil no new cubesare generated. (k-+1)-
cubes remove from the list of candidate primes those k-cubes that are covered by a (k + 1)-cube.
When two k-cubes are merged, the output part of the (& 4 1)-cube cannot dominate the output

154 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

parts of the k-cubes from which it was derived, since it is the conjunction of the output parts of
the k-cubes. A (k + 1)-cube removes a k-cube only if the input part of the (k£ + 1)-cube covers
the input part of the k-cube and the output part of the k-cube is the same as the output part of the
(k + 1)-cube.

Consensus can be extended to GlI's by defining the symbolic tag of a consensus cube as
the union of the symbolic tags of the merged cubes. From now we will indicate by CON S the
consensus operator. By the context it will be clear if itis Boolean consensus or symbolic consensus.

Example 7.3.2
CONS(11stl st001;11 st2 st211) = 11 stl, st2 st0, st2 01

Snce these two minterms (or, O-cubes) are distance-1 from each other in the input part, they can
be merged together to form a 1-cube, with the binary output part of the 1-cube being the bitwise
conjunction of the binary output parts of the individual O-cubes. The symbolic output parts are
merged too, and the output part of the 1-cube is the union of the output parts of the O-cubes. If
so gets the code 101 and s; gets the code 011, then the output part of the encoded 1-cube is 001,
saying that the cube 11 st1, st2 belongsto the onset of the third (and fifth) output function.

GPI’'s are maximal implicantsobtained after repeated applications of symbolic consensus. Consider
theruleto generate GPI's of FSM’s. We supposethat the proper inputs and outputs are binary, even
though it would be easy to handle multiple-valued proper inputs and outputs.

Symbolic Consensus. (k + 1)-cubes are generated by merging %-cubes until no new
primes can be generated. A (k + 1)-cube formed from two k-cubes has anext state tag that is the
union of the two k-cubes’ next state tags and an output tag that is the intersection of the outputsin
the k-cubes’ output tags. The binary inputs of the k + 1-cube are obtained with the usual consensus
rule for binary cubes. The present-state part of the & + 1-cubeisthe union of the present state parts
of the k-cubes. A (k + 1)-cube cancels ak-cube only if their multiple-valued present state parts are
identical or if the multiple-valued present state part of the (k& + 1)-cube contains al the symbolic
states. 3 The binary input part of the k + 1-cube must cover the binary input part of the k-cube. In
addition, the next state and output tags have to be identical. A cube with anext state tag containing
al the symbolic states and with a null output tag can be discarded.

3Therule has no Boolean domain counterpart and it isdueto the fact that when replacing symbolswith boolean vectors,
the present state part yields an input constraint whose satisfiability depends on the encoding. Each of these GPI's is a
multiple-output prime in the Boolean domain associated to an encoding where the input constraint is satisfied. Keeping
all GPI'sthat differ only in the present state part, all multiple-output primes for all possible encodings are generated.

7.3. GENERALIZED PRIME IMPLICANTS 155

Proposition 7.3.1 A GPI corresponding to a prime implicant of an encoded cover can always be

obtained by symbolic consensus.

Proof: Given a prime implicant of an encoded cover, consider the corresponding GPI (found asin
the proof of theorem 7.3.1) and the minterms of the original symbolic cover that are contained in it.
By performing symbolic consensus on the cover of the contained minterms one obtains exactly the
corresponding GPI. [|
Viceversa, consider aproduct term obtai ned by symbolic consensus, thenthereisalwaysan encoding
such that theencoded GPI isaprimeimplicant of the encoded symboliccover. For instance consider
1-hot encoding padded by afinal 1, i.e., alisadded at the end of all codes.

7.3.3 Encodeability of Generalized Prime Implicants

Given a set of GPI's the goal is to realize the original symbolic cover. There are two

issues here:

1. There may not exist a single encoding function that works for all GPI's of the cover and
translates them into primes of the encoded initial cover.

2. Theencoded cover of GPI’s may not redize (yet) the encoded initial cover.

The first issue is one of encodeability, i.e., of finding codes that map a symbolic cover into a
corresponding two-valued cover. The second issue is one of covering, i.e., of redlizing al the
behavior of theinitial symbolic cover. We will now define carefully the conditions to satisfy both
types of requirements. They will be phrased in terms of encoding constraints, expressing both
encodeability and covering.

Supposethat aset of GPI's, P, isgiven. Consider aminterm i (in the primary input and
present state space), of the origina symbolic cover (a O-cube is determined by a minterm in the
proper input space and a present state) and say that it asserts the next state s,,,. In an encoded cover
m will assert the code assigned to s,,,, denoted by e(s,,). Supposethat GPI’S p,,,,, . . ., P, Of those
in P cover m. Minterm m assertsin P the intersection of next states in thetags of py,,, ..., Py,
In order that the cover of GPI's P be equivaent to the original FSM, each minterm must assert in
P the same output asin the original FSM. Therefore the following next-state encoding constraint
(or minterm encoding constraint or consistency equation) must be satisfied for every minterm
m:

e(sm) = Lj[ﬂe(sm) (7.2)

=m1 J

156 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

where s; ;s are the next states in the tag of the GPI p,,,; and e(s) is the code assigned to state s. ()
corresponds to bitwise conjunction and | J correspondsto bitwisedisjunction. The state s,,, iscalled
the parent and the states s; ; are called the children of the next-state constraint.

If no GPI in P covers m, then the constraint for m reduces to:

e(sm) = 0 (7.2

Clearly this constraint (empty next-state constraint) is unsatisfiable, if some GPI that covers m is
not added to P.

For example, if two GPI’s, one with next state tag (s1, sz, s3) and another with next state
tag (s1,s4) are the ones in P covering minterm 10 s; s; 11, the constraint for the minterm
10 s1 s1 11wouldbee(s1) = e(s1) Ne(s2) Ne(sz) U e(s1) Ne(sa).

Moreover, in order that the cover of GPI's P be equivaent to the original FSM, each
minterm must assert in P the same proper outputsasin the original FSM. Say that each GPI p; has
a corresponding output tag o; and that the output tag of minterm m is o,,,. Suppose as before that
GPI'S py,, .. ., Pm,, Of thosein P cover m. The following proper output covering constraint
must be satisfied for every minterm m:

om = U 0; (7.3)

1=m1
If minterms are defined as a product of multi-valued singleton literals as in Section 8.1, proper
output covering constraints are satisfied iff a set of GPI's that covers every row is selected, i.e. by
reduction to an ordinary unate covering problem.

Each GPI yieldsalso aninput encoding constraint (or face embedding constraint), i.e.,
the set of statesin the multi-valued literal of the present state variable. Aninput encoding constraint
is satisfiable if there is an encoding such that the codes of the states form a face (in the Boolean
encoding space) that does not include the codes of the states absent from it. An input encoding
constraint is satisfied in a given encoding if the codes of the statesin it form aface (in the Boolean
encoding space) that does not include the codes of the states absent from it. If it containsall statesor
only one state, the input constraint istrivial, sinceit does not impose any limitation on the encoding
of the states.

Finally uniqueness encoding constraints imposethat different codes states are assigned
to different states (e.g., e(s;) # e(s;), for ¢ # j). Unless otherwise stated, we suppose that they
must always be satisfied. They can be modelled in the same way as input constraints, and when not
necessary we will not distinguish between the two types of constraints.

7.3. GENERALIZED PRIME IMPLICANTS 157

Sometimes constraints of various types are caled collectively encoding constraints. It
will be clear from the context which types of constraints are meant.

A set of of GPI's or of encoding constraintsinduced by them is said to be encodeable or
feasible or satisfiableif thereis an assignment of states to codes (Boolean vectors) such that each
constraint is satisfied, according to the definition of satisfaction of its specific type of constraint.
Such an assignment is called an encoding.

The sdection of a minimum set of GPI's that satisfies both the (next state and input)
encoding constraints and the (proper output) covering constraints can be modelled as a table
covering problem (either a constrained unate covering or binate covering problem). This reduction
will be fully developed in Section 8.1.

The tag of a GPl may contain from one to all the states. If one generates only GPI's
whose tag has a cardinality less than a given bound, one has an approximate agorithm for the
state assignment problem. By setting the bound to 1, a digjoint minimization problem is defined,
equivalent to approximating state assignment as an input encoding problem asin [92]. By setting
the bound to less than the number of states, one can trade-off quality of the solution vs. running

time.

7.3.4 Sufficiency of GPI's

The problem of obtaining the minimum two-level representation of a function can be
reduced to one of finding the minimum number of prime-implicantscovering all the minterms. The
same holdstruefor symbolicfunctionsby meansof GPI’s, with the caveat that the chosen GPI’s must
be encodeable. Thus, if one selects aminimum set of encodeable GPI’s that cover all the minterms,
thisis a minimum solution of the state assignment problem for two-level implementations. It is
a solution because of encodeahility, i.e., enforcing the consistency equations makes sure that each
minterm asserts the same output both in the origina and in the GPI cover (and so in the encoded
cover). Itisaso aminimum solution, as the following theorem shows.

Theorem 7.3.2 A minimum cardinality symbolic cover of an FSM can be made up exclusively of
GPI’s.

Proof: We suppose that no cube of the cover has a next state tag containing all the symbolic states
and a null output tag, otherwise it can be dropped and the cover would not be minimal. Assume
that we have a minimum cardinality solution with a cube ¢1 that is not a GPI. Let the tag of ¢1 be
the. We know that a GPI p; exists such that

158 CHAPTER 7. GENERALIZED PRIME IMPLICANTS
1. thebinary input part of p; covers the binary input part of ¢;;
2. p1 and ¢1 have same present state part;
3. p1 and ¢1 have same next state and binary outputstags.

Replacing ¢1 with p; will not change the cardinality of the cover. The only question is whether the
set of GPI's so obtained is encodeable. We show now that itisthe case. The generalized implicants
(GI's) of the given cover are encodeable by hypothesis. The constraints of the GPI’s of the new
cover are the same asthose of the given GI’s, except for the mintermsin p; — ¢;. For each minterm
in p1 — c1 we add new diguncts to its consistency equation. Each disjunct is a conjunction of
symbols each of which isanext state originaly asserted by the minterm, because when generating
GPI's (e.g. p1) we take the union of the next states tags of the merged GI’s. One of the merged
Gl's must cover the minterm and a Gl covers a minterm only if it includes in its next state tag
the next state that the minterm asserts. Since each added disjunct contains the next state asserted
by the minterm, whatever encoding satisfies the old consistency equation, it satisfies also the new
consistency equation. Notice that the input constraints of the GPI's of the new cover coincide with
those of the given GI's, because the GPI cancellation rule requires the same present state part to
delete a Gl 4. Therefore any encoding that satisfies the given Gl’s satisfies also the GPI’s of the

new cover and therefore encodeability is preserved. [|

7.4 Reduction of GPI's Computation to MV Primes Computation

The next question is how to compute efficiently GPI's. In[39] it is shown how to reduce
the computation of GPI’s to the computation of the primes of a multiple-va ued function obtained
by transformation of the given FSM. We will generaize the transformation to the case of ISFSM’s
and prove the correctness of the reduction.

Thisreduction is of great interest because it allowsto exploit existing efficient a gorithms
for prime generation [114, 53]. We will describe briefly in Section 11.2 efficient algorithms for

generation of large sets of primes and report on their application to this problem.

4GPl cancellation when the present state part of the cancelling cubeis full preserves encodeability becauseit actually
relaxes input constraints.

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 159

-0 st0 st0 01 -0 100 100 01 -0 100 011 10 01 100 000 11
11 st0 st0O 00 11 100 100 0O 11 100 011 11 0- 010 000 01
01 stO stl -- 01 100 010 00 01 100 101 0O -1 010 000 01
0- stl stl 1- 0- 010 010 10 0- 010 101 0O 01 001 111 11
11 st1 stO O- 11 010 100 OO 11 010 011 10

10 st1 st2 10 10 010 001 10 10 010 110 01
1- st2 st2 11 1- 001 001 11 1- 001 110 00
00 st2 st1 10 00 001 010 10 00 001 101 01
01 st2 ANY --

Figure 7.1: Covers of FSM leoncino

741 An Example

Fig. 7.1 shows on left a symbolic cover of an example of ISFSM, leoncino, that will
be used throughout the exposition of GPI minimization. It isan ISFSM because there are some
don't cares in the proper output part and one unspecified next state, denoted by ANY. In the
tabular format, it is customary to omit transitions which have the next state and all proper outputs
unspecified. The input variables of this symboalic function are the proper inputs and the present
state; the output variables are the next state and the proper outputs.

AnFSM can beinterpreted as a multiple-valued function by representing both the present
state and the next state with 1-hot encoding. For instance, use ESPRESSO with the keywords:
.mv52-3-32, typefr, .kiss. The meaning is that the given FSM is a function with 5 multiple-
valued variables, two of which are binary, two 3-valued and one 2-valued. Type fr specifiesthat a

cube isin the offset of an output variable where a 0 appears °.

The one-hot encoded representation of the onset, offset and dcset of leoncino are the
second, third and fourth cover from left, respectively, of Fig. 7.1. The cover of the onset and offset
are read directly from the input (since type fr is specified). By complementing the union of the
covers of the onset and offset, acover of the dcset is obtained °:

5As amatter of fact, ESPRESSO treats . binary output variables as one n-valued input variable; moreover, a s-valued
next state variable and an n-valued proper output variable are replaced by one s + n-valued variable. In the example, the
function has 4 multiple-valued variables, two of which are binary, one 3-valued and one 5-valued.

5Complementation is performed only with respect to the proper inputs and present state universe.

160 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.4.2 Definition of the Transfor mation

We will exhibit a multi-val ued function whose primes are the GPI's of the FSM leoncino,
modul o a post-processing step.

To do that define afunction, called companion function of the symbolicfunction, with 4
multiple-valued variabl es, two of which are binary, one 3-valued and one 8-valued. We represent the
companion function by acompanion cover of thesymbolic cover, constructed asfollows. Transform
the cover of the onset of the original function by transforming each cube into acompanion cubein

the following way:
1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Transformthe cover of thedcset of theorigina function by transforming each cubeinto acompanion

cube in the following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.
The transformed cover of the onset of the symbolic functionis:

-0 100 01101101
11 100 01101100
01 100 10101100
0- 010 10110110
11 010 01110100
10 010 11010110
1- 001 11011011
00 001 10111010

The transformed cover of the dcset of the symbolic functioniis:

01 100 00001111
0- 010 00010101
-1 010 00010101
01 001 11111011

Finally, the companion function is the function represented by the companion cover
obtained by joining the transformed covers of the onset and dcset of the symbolic function:

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 161

.mv 4 2 38

-0 100 01101101
11 100 01101100
01 100 10101100
0- 010 10110110
11 010 01110100
10 010 11010110
1- 001 11011011
00 001 10111010
01 100 00001111
0- 010 00010101
-1 010 00010101
01 001 11111011

In the next section we will show that the primes of thisfunctionare in 1-1 correspondence
with the GPI's of the original FSM, modul o an easy post-processing step that del etes some primes.
The primes of the companion MV function are shownin Fig. 7.2.

Some primes can be removed because they do not correspond to GPI's. Primes of one of

the two following types are removed:

1. Primesthat are covered by another prime, with full present state part and with the same next
state and output tags. It is always better to select the covering prime since it induces no face

constraint and covers the same mintermsin the next state and output spaces.

2. Primes with full next state tag and null output tag. Since the next state tag is full, after
encoding, it would be replaced by the intersection of al the codes, that is the all zero code,
for any encoding. Therefore such aprime would not contributeto cover any mintermin next
state spaces, nor in the output spaces (null output tag).

Fig. 8.3 showsthe set of 26 GPI’s obtained after post-processing.

7.4.3 Correctness of the Transfor mation

Theorem 7.4.1 The computation of GPI’'s can be reduced to the computation of the primes of the
companion multival ued function (MV primes) foll owed by a post-processing step that cancels 1) any
MV prime contained by an MV primewith coinciding next state and output tags and whose present
state part contains all the symbolic states and 2) any MV prime with a next state tag containing all
the symbolic states and with a null output tag.

162 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

.mv 4 2 38

.p 39

0- 010 10110111
01 001 11111011
1- 001 11011011
-1 001 11011011
01 100 10101111
01 110 10100111
01 101 10101011
01 011 10110011
01 111 10100011
-0 100 01101101
0- 001 10111010
-- 001 10011010
0- 011 10110010
0- 100 00101101
11 010 01110101
-1 010 00110101
0- 110 00100101
10 010 11010110
-0 010 10010110
10 011 11010010
-0 011 10010010
1- 100 01101100
-- 100 00101100
10 101 01001001
11 011 01010001
-1 011 00010001
1- 010 01010100
-- 010 00010100
11 110 01100100
-1 110 00100100
1- 110 01000100
-- 110 00000100
0- 101 00101000
1- 101 01001000
-- 101 00001000
1- 011 01010000
-- 011 00010000
0- 111 00100000
1- 111 01000000

Figure 7.2: GPI's of FSM leoncino before post-processing

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 163

Proof: In the course of the proof we will refer to a symboalic cover (symbolic product-term) and
an MV cover (MV product-term) as companion of each other if they are obtained by means of the
previous transformation.

One must prove that for every GPI there is a prime of the function (modulo a post-
processing step) and viceversa. In the sequel, unless otherwise stated, we will call MV primes
those left after the post-processing step applied to the set of primes of the MV function. In [39]
the rules for consensus and cancellation originally defined for binary cubes (e.g., in [94]) were
extended to symbolic cubes. We call them GPI consensus and GPI cancellation. GPI’s are defined
as the fixed point of the computation that takes an initial symbolic cover and iteratively applies
to it GPI consensus and cancellation. Primes of the companion MV function can be computed in
different ways. They can be found as the fixed point of the computation that takes an initiad MV
cover and iteratively appliesto it MV consensus and cancellation. We suppose that both fixed-point
computations proceed as follows:

Start with the initial cover. For each pair of cubes in the cover, repeat until the cover does not
change:

1. computetheir consensus,

2. apply cancellation to the consensus cubes;

3. add the consensus cubesto the cover, unlesstheir are cancelled by acube already in the cover;
4. cancd any other cube covered by a consensus cube.

We show that at each step (and at fortiori at the end) of both fixed-point computations, performed
respectively on the symbolicand MV cover, two companion covers are maintai ned.

We are now going to describe carefully and contrast consensus and cancellation in both
domains.

GPI consensus. GPI consensus formsak + 1-cube from two k-cubes that either have
1. same binary-vaued parts and different present state part; or
2. unidistant binary-valued parts and same present state part.

Merging two k-cubesformsak + 1-cubethat has anext state tag that is the union of the two k-cubes
next state tags and an output tag that is the intersection of the outputsin the %-cubes output tags.
Thebinary inputsof the £ + 1-cube are obtai ned with the usual consensusrule for binary cubes. The

164 CHAPTER 7. GENERALIZED PRIME IMPLICANTS
present-state part of the & + 1-cube is the union of the present state parts of the %-cubes. Example
of GPI consensusin case 1:
CONS(00st0 st001;00st2 stl10) = 00 st0, st2 st0, st1 00
Example of GPI consensusin case 2
CONS(10st2 st211;00st2 st110) = —0st2 st2,st110

MV consensus. Consider twoMV cubesS = X171 X5%2... X, and T = X, 11X, %2, X, 1.

Theintersection of S and T isthe product-term
O X]_SlnTlXZSZnTZ...X SnNTh
1

which is the largest product term contained in both S and 7. If S; NT; = ¢ for some ¢, then
SNT =¢andS and T are said to be digoint. The distance between S and T" equals the number
of empty literalsin their intersection. The consensus of .S and T is the sum-of-products

n
| x0T xSeh X o
1

If thedistance of .S and T is> 2 then their consensusis empty. If the distance of S and 7" is1 and

S; N'T; = ¢, then their consensusis the single product-term

X5 x ST Se T

If the distance of S and T is O, then their consensus is a cover of n terms. Summarizing, MV
consensus forms one cube from two MV cubes that have distance 1, and & + 2 cubes - if £ isthe
number of binary inputs- from two two MV cubesthat have distance 0. Example of MV consensus
of unidistant cubes:

CON S(00100 01101101; 00001 10111010) = 00 101 00101000
Example of MV consensus of O-distant cubes:
C'ONS(00110 00100101; 00101 00101000) =

00 100 00100000, 00100 00100000, 00111 00100000,00100 00101101

Notice that the transformation rule for cubes in the onset ensures that the next state in the output
field has a complemented 1-hot encoding so that MV intersection of encoded next states has the

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 165

same effect as GPI union of next state tags. For the same reason, the transformation rule for cubes
in the dcset does not complement the 1-hot encoding of the next state in the output field. The
following facts account for the asymmetry. There are two types of cubesin the dcset. Thefirst type
isgenerated by transitionswith next state ANY, e.g.,: 01st2 ANY — — (01001 11111011). The
fact that the next state isencoded by 111 means that the cube carries no information about the next
state. When this cube is merged with other cubes at distance < 1, it does not add any information
to the next state, same as when taking consensus of the companion GPI's. The second type is
generated by transitions with a specified next state and some unspecified proper outputs. These
transitionsgenerate apair of cubes, oneinthedcset and oneintheonset, asfollows: 0— stl st11—,
corresponding to 0 — 010 00010101inthedcset and 0 — 010 10110110in the onset.

When the onset and the dcset are joined, these two cubes are merged into one cube that
corresponds to the original transition where all unspecified proper outputs have been set to 1, in
agreement with the fact that the GPI's computed starting from onset f and dcset d coincide with the
GPI's computed starting from onset f + d and empty dcset (as it is true in general for the primes
of aboolean function).The example shows the cube resulting from merging and the corresponding
transition: 0 — 010 10110111 (0 — st1 st111).

GPI cancellation. A k + 1 cube cancels a k-cube if one of the following istrue:

1. Thebinary input part of the k& + 1-cube covers the binary input part of the k-cube.
2. They have the same present state part, and the next state and output tags are identical.

3. Thepresent state part of the k& + 1-cube contains al the symbolic states and the next state and
output tags are identical.

Thelast case is part of the post-processing step in the MV domain. In addition, a cube with a next
state tag containing al the symbolic states and with a null output tag is cancelled. Thiscasetoois
part of the post-processing step inthe MV domain, except when aMV prime has aso afull present
state part (then the present statefield in the output part isal 0's).

MV cancellation. An MV cube contains another MV cube if the parts of the former
contain the corresponding parts of thelatter. An MV cube cancels another MV cubeif it containsit.
Notice that the present state field in the output part has been introduced to avoid MV cancellation
when there is strict containment between present state parts, as shown here where the upper MV
cube 10 011 11010010 (10 stl, st2 st2 10) does not cancel the lower one 10 010 11010110
(10 st1 st2 10), consistently with the GPI cancellation rule.

166 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

GPI consensusto MV consensus. Suppose that GPI consensus applies to two symbolic
cubes. Does MV consensus apply to their companion MV cubes ? If so, does GPI consensus result
in a symbolic cube whose MV companion isequd to the MV cube obtained by MV consensus ?

a Suppose that the two symboalic cubes have the same binary-valued parts and different present

state part. The companion MV cubes may have distance 1 or distance 0.

al If thecompanion MV cubes have distance 1, GPI consensusworksas MV consensus. Example

of GPI consensus and companion MV cubes:
CONS(00st0 st001;00st2 stl10) = 00 st0, st2 st0, st1 00
CON S(00100 01101101; 00001 10111010) = 00 101 00101000

a2 If thecompanion MV cubes have distance 0, GPI consensus generates 1 consensus cube, while
MV consensus generates k& + 2 consensus cubes, if 4 isthe number of proper binary inputs.
But & + 1 consensus cubes are cancelled and the only one | eft is the companion cube of the

symbolic consensus cube. Example of GPI consensus and companion MV cubes:
CONS(00st0, stl st0, st101; 00 st0, st2 st0, st1 00) = 00 st0, stl, st2 st0, st1 00

C'ON S(00110 00100101; 00101 00101000) =
00 100 00100000, 00100 00100000,00111 00100000, 00100 00101101

Thefirst two terms are absorbed by thetwo origina MV cubes, the third oneisthe companion
MYV cube of the result of GPI consensus. The fourth term is cancelled by another MV cube
companion of a symbolic cube created by GPI consensus. In this exampleit is cancelled by
0— 100 00101101, an MV primewhose companion symbolic cubeis0— st0 st0, st1 OL.

b Suppose that the two symbolic cubes have unidistant binary-valued parts and same present state
part. In this case the companion MV cubes have distance 1 and GPI consensus works as MV

consensus.

MYV consensusto GPI consensus. Supposethat MV consensusappliestotwo MV cubes.
Does GPI consensus apply to their companion symbolic cubes ? If so, doesMV consensusresultin
aMV cube whose symboalic companionis equal to the symbolic cube obtained by GPI consensus ?

1 Supposethat thetwo MV cubes have distance 1.

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 167

la If they differ in abinary input, MV consensusworks as GPl consensus
1b If they differ in the present state part, MV consensus works as GPI consensus.

1c If they differ in the output part, GPI consensus does not apply, while MV consensus does. But
the MV consensus cubeis cancelled by an aready existing cube, so the net effect is the same

in both cases

2 Suppose that thetwo MV cubes have distance 0. Apparently GPI consensus and MV consensus
behave differently, but the same reasoning as in case a2 of the analysis of GPI consensus to
MYV consensus shows that the net effect is the same.

GPI cancdllation to MV cancellation. Suppose that GPI cancellation applies between
two symboalic cubes. Does MV cancellation apply to their companion MV cubes ? Yes. GPI
cancellation applies only when two symbolic cubes have the same present state part and the next
state and output tags are identical. Obviously a containment relation is satisfied by binary-valued
inputs. The companion MV cubes satisfy the same containment relation and MV cancellation
appliestoo.

MV cancellation to GPI cancellation Suppose that MV cancellation applies between
two MV cubes. Does GPI cancellation apply to their companion symbolic cubes ? There are
cases when MV cancellation applies, but GPI cancellation does not. But they happen only when
cancelling the last cube generated by MV consensus between cubes with distance 0. ThisMV cube
has no symbolic companion and therefore the net effect is the same, as argued in case a2 of the

analysisof GPI consensusto MV consensus. Exampleof GPI consensus and companion MV cubes:

CONS(10st0, stl st0, st2 00; 10 st0, st2 st0, st2 01) = 10 st0, stl, stl st0, st2 00

C'ONS(10110 01000100; 10101 01001001) =

10 100 01000000, 10 100 01000000, 10111 01000000, 10100 01001101

In this exampl e the fourth term is cancelled by the MV cube —0 100 01101101. The companion
symbolic cubes are respectively 10 st0, stl, st2 st0, st2 01 and —0 st0 st0 01. Notice that the
symbolic cube companion of the cancelling cube does not cancel the symbolic cube companion of
the cancelled cube. But this cancellation in the GPI domain is not required because the companion
symbolic cube of the cancelled MV cube isnot generated by GPI consensus. [|

168 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.4.4 Definition of a Max-Min Family of Transformations

The transformation in Section 7.4.2 produces a function whose primes correspond to the
GPI's, after a pruning step is applied to them. It is of practica interest to define functions whose
primes correspond to a subset of the GPI's, in order to generate a part of the GPI's, when the whole
set cannot be built or manipulated.

We are going now to define a family of such transformations. We remind that the onset
of the companion function defined in Section 7.4.2 is obtained from the onset of the symbolic FSM

by transforming each cube in the following way:
1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

The deset of this new function is obtained from the previous dcset by transforming each cube in the

following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Notice the key step of inserting the complemented 1-hot encoding of the present state between the
next state and the proper outputs. Thisstep avoids cancellation of cubes whose present stateliteral is
included properly in another cubes' present stateliteral, sincetheformer cube might be necessary for
encodeability reasons. But suppose that, instead than inserting the complemented 1-hot encoding
of the present state, we insert any literal that is contained in it. The effect is that some unwanted
cube cancellation can take place, and therefore that we will get a proper subset of the GPI's. Inthe
extreme limit we can replace the complemented 1-hot encoding of the present state with an empty
cube and this will make possible the most of cancellation, producing the smallest subset of GPI's
definable in this way. We cal maximal transformation the one presented in Section 7.4.2 and
minimal transformation the onewith an empty subcube. The Max-Min family of transformations
includes any transformation that for any cubein the original cover inserts between the next state and
the proper outputs any literal included between the complemented 1-hot encoding of the present

state and the empty literal. This proves the next statement.

Proposition 7.4.1 Each transformation in the Max-Min family generates a subset of GPI’s.

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 169

7.5 Relation between GPI’'sand Primes of Encoded FSM'’s

In this section we demonstrate by examples the relation between GPI's and primes of
encoded FSM'’s.

75.1 Minimum Cover of Encoded FSM and Minimum Cover of Encoded GPI’s

We analyze the foll owing two experiments:

1. Givenasatisfying encoding, replacethecodesinthe FSM and minimizeit (without makesparse,

to obtain a minimum cover of primes).

2. Given acorresponding set of GPI's, replace the codesin the GPI's and minimizethe resulting

cover.

The two covers are the same, up to exceptions explained by the theory.
Encode the FSM |eoncino with the following codes: e(st0) = 00, e(st1) = 10, e(st2) =
11. Theencoded FSM is :

-0 00 00 01
11 00 00 00
01 00 10 --
0- 10 10 1-
11 10 00 O-
10 10 11 10
1- 11 11 11
00 11 10 10
01 11 -- --
- 01 -- --

A minimum cover of primes of the encoded FSM is:

-01- 1010
01-- 1011
-00- 0001
101- 1110
1--1 1111

2. The GPI’'s in the minimum encodeabl e solution are:

"One can omit the last two cubes and specify .type fr, which tells to ESPRESSO to put the unspecified input minterms
in the dcset of all outputs.

170

3
5
6
16
17
11
18

3
5
6
16
17
11
18

1-
01
-0
10
-0
11
1-

1- st2 st 2 11
01 stO,stl1,st2 stl 11
-0 stO stO 01
10 st1,st2 st 2 10
-0 st1,st2 stl,st?2 10
11 st1 stO 01
1- stO stO 00
The encoded GPI's in the minimum encodeabl e solution are:
1- 11 11 11
01 -- 10 11
-0 00 00 01
10 1- 11 10
-0 1- 10 10
11 10 00 01
1- 00 00 00
introduced as an artifact of encoding):
11 11 11
-- 10 11
00 00 01
1- 11 10
1- 10 10
10 00 01
00 00 00
01 -- --
A minimum cover of primes of the encoded GPI's is:

1 1111

1011

1110

0001

0001

1010

for the cube —11 — 0001, explained by al zeroes effect (see discussion in subsection 8.1 before).

The previous transformations are summarized by Figure 7.3.

75.2 Primesof Encoded FSM vs. Primes of Encoded GPI’s

Add cube — — 01 — — — — (dcare conditions on 01, that is the code of st3, a state

This coincides with the previous minimum cover of primes of the encoded FSM, except

GPI’s can be seen as templates of the primes of every encoded FSM. The following two

experiments clarify the statement:

CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 171

optimum

. encoded cover minimize
encoding ~ of FSM cover
N\
original cover min cover of primes
of FSM of encoded FSM
Vd
) . : ded minimize cover,
GPI generation _ Mmin selection enco ina d t
i of GPIs —————— setof GPIs using dc se
and selection optimum

encoding

Figure 7.3: Thecircle of encodings

1. If one takes the primes of an encoded FSM and extracts the underlying GPI's, one gets a
subset of the GPI’s.

2. If one takes al the GPI's, encodes them with a given encoding and then raises them to
primality in the encoding space (by removing the encoded GPI’s that are not primes and
expanding them with the appropriate dcset), one gets the primes of the encoded FSM (with

the same encoding).

We illustrate the previous statements with examples. The previoustransformations are summarized

by Figure 7.4.

1. From primes of the encoded FSM to GPI’s.
The primes of the previous encoded FSM are;

1--1 1111
-1-1 1111
--01 1111
01-- 1011
---1 1010
0-10 1011
101- 1110
0-1- 1010
-01- 1010
-11- 0001
0-0- 0001
-00- 0001

172 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

extract
underlying GPIs _ aset

the set of

primes of
encoded FSM all GPIs

N\

minimize encode
using dc set encoded set =<
of GPIs

Figure 7.4: Thecircle of primes

0--0 0001

The companion MV cubes are:

1- st2,st3 st2 11
-1 st2,st3 st2 11
-- st3 st2 11
01 stO,stl,st2,st3 stl 11
-- st2,st3 stl 10
0- st1l stl1 11
10 st1,st2 st2 10
0- stl,st2 stl 10
-0 stl,st2 stl 10
-1 stl1,st2 st0 01
0- stO,st3 st0 01
-0 stO,st3 st0 01
0- stO,stl st0 01

The corresponding GPI's are 8:

3 1- st2 st 2 11
4 -1 st2 st 2 11
5 01 stO,stl,st2 stl 11
8 -- st2 stl,st?2 10
1 0- stil stl 11
16 10 st1,st?2 st 2 10
9 O0- stl,st2 stl 10
17 -0 stl1,st?2 stl,st?2 10

8Thereisno GPI for — — st3 st2 11 sinceit belongsto the don't care set of st3.

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 173

22 -1 stl,st?2 st0,stl,st2 01
10 0- stO st0,stl 01
6 -0 stO stO 01
13 0- stO,stl st0,stl 01

2. From encoded GPI’'sto primes of the encoded FSM.
The encoded GPI's are:

1 0- 10 10 11
2 01 11 -- 11
3 1- 11 11 11
4 -1 11 11 11
5 01 -- 10 11
6 -0 00 00 01
7 0- 11 10 10
8 -- 11 10 10
9 0- 1- 10 10
10 0- 00 00 01
11 11 10 00 01
12 -1 10 00 01
13 0- -0 00 01
14 10 10 11 10
15 -0 10 10 10
16 10 1- 11 10
17 -0 1- 10 10
18 1- 00 00 00
19 -- 00 00 00
21 11 1- 00 01
22 -1 1- 00 01
23 11 -0 00 00
24 -1 -0 00 00
25 0- -- 00 00
26 1- -- 00 00

Notice that there may be GPI’s that cannot be encoded. For instance, the encoding of the

MV literal st0, st2 of 20: 10 st0, st2 st0, st2 01 would be ——, that includes also st1.

Notice that to establish a 1-1 correspondance with the primes of the encoded FSM, it is
necessary to find the primes of the encoded GPI's, because some encoded GPI’'s subsume some
other encoded GPI's, e.g. 9,

9GPl 14 and GPI 16 were kept, becauseit could be that no selection of GPI’sthat satisfiesthe input constraint st1, s¢2
is the smallest one, so that the smallest selection of encodeable GPI's would not include GPI 16, but might include GPI
14.

174 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

14 10 st1 st2 10
16 10 stl1,st2 st2 10
14 10 10 11 10
16 10 1- 11 10

Notice aso that, before computing the primes, one must add to the encoded GPI’s the
following cube — — 01 — — — —, that specifies as don’t care for al output functions the input
minterms with present state 01, introduced as an artifact of the encoding. In general, one computes
the primes of the cover that includes the encoded GPI's and all the globa don’t care minterms
related to encoded present states not corresponding to symbolic present states of the original FSM.
The primes of the encoded GPI’s coincide with the primes of the encoded FSM and are:

1--1 1111
-1-1 1111
--01 1111
01-- 1011
---1 1010
0-10 1011
101- 1110
0-1- 1010
-01- 1010
-11- 0001
0-0- 0001
-00- 0001
0--0 0001

Now let uswork out the exampl e choosing a1-hot encoding: e(st0) = 100, e(st1) = 010,
e(st2) = 001

1. From primes of the encoded FSM to GPI’s.
The primes of the encoded FSM and the corresponding GPI's are:

--11- 11111 dcset
--1-1 11111 dcset
---11 11111 dcset

01--1 11111 01 st2 - 11 gpi 2
--000 11111 dcset

0100- 11111 01 st2 - 11 gpi 2
1---1 00111 1- st2 st2 11 gpi 3
-1--1 00111 -1 st2 st 2 11 gpi 4
01--- 01011 01 stO,stl,st2 stl 11 gpi 5
0--1- 01011 O- st1 stl 11 gpi 1
1-00- 00111 1- st2 st2 11 gpi 3
-100- 00111 -1 st2 st 2 11 gpi 4

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 175

0-0-0 01011 O- st1 stl 11 gpi 1
-01-- 10001 -0 stO st0 01 gpi 6
0-0-- 01010 O- st1,st2 stl 10 gpi 9
0---1 01010 O- st2 stl 10 gpi 7
----1 00010 -- st2 stl,st2 10 gpi 8
11-1- 10001 11 st1 st0 01 gpi 11
-0-00 10001 -0 stO stO 01 gpi 6
0-1-- 00001 O- stO st0,stl 01 gpi 10
-10-- 00001 -1 stl,st2 st0,stl,st2 01 gpi 22
-1-1- 00001 -1 st1 stO,stl 01 gpi 12
0---0 00001 O- stO,stl stO,stl 01 gpi 13
100-- 00110 10 st1,st2 st2 10 gpi 16
10-1- 00110 10 st1 st 2 10 gpi 14
-00-- 00010 -0 st1,st2 stl,st2 10 gpi 17
-0-1- 00010 -0 st1 stl,st2 10 gpi 15
--00- 00010 -- st2 stl,st2 10 gpi 8
1-1-- 10000 1- stO st0 00 gpi 18
110-0 10001 11 st1 stO 01 gpi 11
10-0- 00001 10 stO,st2 st0,st2 01 gpi 20
11--0 10000 11 stO,stl st0 00 gpi 23
1--00 10000 1- stO stO 00 gpi 18

2. From encoded GPI’'sto primes of the encoded FSM.
Theencoded GPI's are:

1 0- 010 010 11
2 01 001 --- 11
3 1- 001 001 11
4 -1 001 001 11
5 01 --- 010 11
6 -0 100 100 01
7 0- 001 010 10
8 -- 001 000 10
9 0- O0-- 010 10
10 0- 100 000 01
11 11 010 100 01
12 -1 010 000 01
13 0- --0 000 01
14 10 010 001 10
15 -0 010 000 10
16 10 O-- 001 10
17 -0 O-- 000 10
18 1- 100 100 00

19 -- 100 000 00

176 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

20 10 -0- 000 01
21 11 O-- 000 01
22 -1 0-- 000 01
23 11 --0 100 00
24 -1 --0 000 00
25 0- --- 000 00
26 1- --- 000 00

Thefollowing global dcare minterms are added:

The primes of the encoded GPI’s are:

--11- 11111
--1-1 11111
---11 11111
01--1 11111
--000 11111
0100- 11111
1---1 00111
-1--1 00111
01--- 01011
0--1- 01011
1-00- 00111
-100- 00111
0-0-0 01011
-01-- 10001
0-0-- 01010
0---1 01010
----1 00010
11-1- 10001
-0-00 10001
0-1-- 00001
-10-- 00001
-1-1- 00001
0---0 00001
100-- 00110
10-1- 00110
-00-- 00010
-0-1- 00010
--00- 00010
1-1-- 10000

7.5. RELATION BETWEEN GPI’'S AND PRIMES OF ENCODED FSM’S 177

110-0 10001
10-0- 00001
11--0 10000
1--00 10000

They coincide with the primes of the encoded FSM.
Summarizing, we point out that each GPI corresponds to various primes in different
encoded FSM'’s, for instance, the GPI 3 1 — st2 st2 11 corresponds to the following primes:

1. 1— —1 1111in FSM encoded by 00, 10, 11
2. 1— —0 1011in FSM encoded by 01, 11, 10
3. 1-——1 00111in FSM encoded by 100, 010, 001
4. 1- 00— 00111 inFSM encoded by 100, 010, 001

In the last case it is noticeable that the same GPI corresponds to two different primesin the same
encoded FSM (only one of them is needed for covering purposes, they differ in minterms of the
don't care set of every output function). The number of GPI's is not only much smaller than the
total number of primes over al encoded FSM’s, but it may be even smaller than the number of

primes of one encoded FSM, as the case of 1-hot encoding shows 1°.

7.5.3 An AnalysisProcedure

Given a symbolic FSM and an encoding (from which one derives the corresponding
minimized encoded FSM), it may be of interest to study the encoding from the point-of-view of
GPI analysis. For instance, if an encoding produces avery small cover, the anaysiswill revea how
the symbolic cover was mapped into such a compact representation. The previous discussion on
the relation between GPI’s and primes of a minimized encoded FSM can be put to use in devising
a procedure that analyzes an encoding. Here we sketch the main steps. More specific information
could be extracted to drive an intelligent heuristic search of a small encodeable cover of GPI's.

1. Encode and minimize the FSM, making sure that a cover of primesis returned 11,

2. Computethe set of GPI's.

ONotice that GPI's arethe MV primes of the companion MV function, after post-processing.
1 For instance, with ESPRESSO disable the step of makesparse.

178 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

3. Match the primes of the encoded minimized cover with the corresponding GPI’s. To do this,
given a prime, consider the present state subcube and find all the states included in it, then
take away al hardware states that do not correspond to a state in the symbolic cover. Asa
result we have the proper input subcube and the set of present states. It isafact that thereis
aunique GPI that has the same input subcube and the same set of states in the present state
literd. It isthe (only) one which corresponds to the given prime.

4. Derivethe consistency equations of the given set of GPI's (for each minterm of the symbolic
FSM, and for each GPI that coversitin theinput part, add oneterm to the consi stency equation
of that minterm).

5. Derivethe face constraints and check that they are satisfied.

As an example, consider the following encoded and minimized redlization of the FSM
leoncino:

-01- 1010
01-- 1011
-00- 0001
101- 1110
1--1 1111

The corresponding GPI's are:

17 -0 stl1,st?2 stl,st?2 10
5 01 stO,stl,st2 stl 11
6 -0 stO stO 01
16 10 st1,st?2 st 2 10
3 1- st2 st 2 11

1. GPI 17 covers minterms 12,13,14,16;

2. GPI 5 covers minterms 1,2,3,4;

3. GPI 6 covers minterms 6,9,10;

4. GPI 16 covers minterms 7,8,20,21;

5. GPI 3 covers minterms 14,15,16,17,18,19;

6. minterms5 and 11 are not implemented because st has zero code.

179

Chapter 8

Minimization of GPI’s

8.1 Reduction of GPI Minimization to Unate Covering

Given al the GPI's, one must select a minimum encodesble subset of them that covers
each minterm of the origina FSM in the next state variables and in the proper output variables
asserted by the minterm.

An approach reduces the problem to unate covering with encodeability and it has been
proposed in [39]. A reduction to binate covering, where encodesbility is translated into binate
clauses, has been outlined in [133, 132]. Here we introduce the two approaches and discuss their
respective merits. We start with reduction of GPI minimization to unate covering.

In [39] it is summarily proposed a modification of unate covering to solve the problem
of selecting a minimum encodeable set of GPI's. Here we present a more compl ete version of it,
clarifying issues arising in the case of state assignment. We will illustrate the discussion with the
exampleleoncino shownin Fig. 7.1.

Minterms of the example. Minterms are product-terms where each literal is the char-
acteristic function of a singleton. The minterms generated by the symbolic cubes of the previous
cover are shown in Fig. 8.1. A — means an empty next state tag. Given the semantics of ANY,
no minterm is contributed by transition 01 st2 ANY — —. It follows that no related encodeability
constraint will be generated, ensuring that ANY of a missing transition is implemented by any
possible hardware state. Thisis more than having al symbolic next states as possible, instead al
hardware next states are possible (thisis apoint never mentioned in the literature). If we have mul-
tiple next states (non-deterministic FSM’s), the minterm equations will have more choices. Notice
that aminterm like 11 st0 st0 00 does hot need to be implemented (i.e., it is not in the onset of the

180 CHAPTER 8. MINIMIZATION OF GPI'S

-0 st0 st0O 01: 1 00 stO - 01 00 100 00001
2 00 stO stO 00 00 100 10000
3 10 stO - 01 10 100 00001
4 10 stO stO0 00 10 100 10000
11 st0 st0 00: 5 11 stO stO 00 11 100 10000
01 stO st1 --: 6 01 stO st1 00 01 100 01000
0- stl stl1 1-: 7 00 stl1 - 10 00 010 00010
8 00 stl stl 00 00 010 01000
9 01 stl - 10 01 010 00010
10 01 st1 stl 00 01 010 01000
11 stl1 stO O-: 11 11 stl1 stO 00 11 010 10000
10 st1 st2 10: 12 10 stl - 10 10 010 00010
13 10 st1 st2 00 10 010 00100
1- st2 st2 11: 14 10 st2 - 10 10 001 00010
15 10 st2 - 01 10 001 00001
16 10 st2 st2 00 10 001 00100
17 11 st2 - 10 11 001 00010
18 11 st2 - 01 11 001 00001
19 11 st2 st2 00 11 001 00100
00 st2 st1 10: 20 00 st2 - 10 00 001 00010
21 00 st2 st1 00 00 001 01000

01 st2 ANY --:

Figure 8.1: Mintermsof FSM leoncino

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 181

1 00 100 11101101 00 stO - 01 00 100 00001
2 00 100 01101100 00 stO st0 00 00 100 10000
3 10 100 11101101 10 stO - 01 10 100 00001
4 10 100 01101100 10 st0 stO 00 10 100 10000
5 11 100 01101100 11 st0 stO 00 11 100 10000
6 01 100 10101100 01 stO stl1l 00 01 100 01000
7 00 010 11110110 00 stl - 10 00 010 00010
8 00 010 10110100 00 stl1l stl1l 00 00 010 01000
9 01 010 11110110 01 stl - 10 01 010 00010
10 01 010 10110100 01 stl1l stl1l 00 01 010 01000
11 11 010 01110100 11 st1 stO 00 11 010 10000
12 10 010 11110110 10 st1 - 10 10 010 00010
13 10 010 11010100 10 st1 st2 00 10 010 00100
14 10 001 11111010 10 st2 - 10 10 001 00010
15 10 001 11111001 10 st2 - 01 10 001 00001
16 10 001 11011000 10 st2 st2 00 10 001 00100
17 11 001 11111010 11 st2 - 10 11 001 00010
18 11 001 11111001 11 st2 - 01 11 001 00001
19 11 001 11011000 11 st2 st2 00 11 001 00100
20 00 001 11111010 00 st2 - 10 00 001 00010
21 00 001 10111000 00 st2 st1l 00 00 001 01000

Figure 8.2: Extended representation of the minterms of FSM |leoncino

next state variable) if st0 isassigned the all zeroes code.

We defined a companion MV function whose primes (modul o a post-processing step) are
the GPI's of the original symbolic function. The product terms of the companion MV function that
correspond to the minterms of the original symbolic function are shown in Fig. 8.2 1. The cover on
the right shows the minterms represented with 1-hot encoding (and with the augmenting state set
in the output part removed). We call the representation on the left extended representation and the
one on the right reduced representation.

GPI’'s of the example. The GPI's of leoncino are shown in Fig. 8.3. The cover on the
right shows the GPI's represented with 1-hot encoding (and with the augmenting state set in the
output part removed). We call the representation on the | eft extended representation and the one on
the right reduced representation.

The covering tables of the example. Now we can compute the covering table whose

1These cubes are not minterms of the companion function because the output variable has been augmented with one
more state set and the states in the output variable are represented with complemented 1-hot encoding.

182

©CoOoO~NOULA, WN PP

010
001
001
001
111
100
001
001
011
100
010
010
110
010
010
011
011
100
100
101
011
011
110
110
111
111

10110111
11111011
11011011
11011011
10100011
01101101
10111010
10011010
10110010
00101101
01110101
00110101
00100101
11010110
10010110
11010010
10010010
01101100
00101100
01001001
01010001
00010001
01100100
00100100
00100000
01000000

Figure 8.3: GPI's of FSM leoncino

stl
st2
st2
st2

stO,stl,st2

stO
st2
st2
stl,st2
stO
stl
stl
st0,stl
stl
stl
stl,st2
stl,st2
stO
stO
st0,st2
stl,st2
stl,st2
st0,stl
st0,stl

CHAPTER 8. MINIMIZATION OF GPI'S

stl
st2
st2
stl
stO
stl
stl,st2
stl
st0,stl
stO
st0,stl
st0,stl
st2
stl,st2
st2
stl,st2
stO
st0,stl
st0,st2
st0,st2

stO,stl,st2

stO
stO,stl

st0,stl,st2 stO,stl
st0,stl,st2 stO,st?2

11
11
11
11
11
01
10
10
10
01
01
01
01
10
10
10
10
00
00
01
01
01
00
00
00
00

010
001
001
001
111
100
001
001
011
100
010
010
110
010
010
011
011
100
100
101
011
011
110
110
111
111

01011
00011
00111
00111
01011
10001
01010
01110
01010
11001
10001
11001
11001
00110
01110
00110
01110
10000
11000
10101
10101
11101
10000
11000
11000
10100

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 183

0000O0OO0O0OOO0O1111111111222222272
12345678901234567890123456
1 X X X
2 X X X X X
3 X X
4 X X X X X
5 X X X X X
6 X X X X X X
7 X X X X
8 X X X X X X
9 X X X
10 x X X X X X X X
11 X X X X X X X
12 X X X X
13 X X X X X
14 X X X X
15 X X
16 X X X X X X
17 X X X
18 X X X X
19 X X X X X X
20 X X X X
21 X X X X X

Figure 8.4: Covering table of FSM leoncino

columns are GPI's and whose rows are minterms. One can use either the extended or the reduced
representation for the GPI's and minterms. The extended representation has the advantage that
column dominance, that requires same present state literal and next state tag (or next state tag of the
dominating column as a subset of the next state tag of the dominated column), can be done smply
by checking containment of the representations: aGPl (column) covers aminterm (row) iff the GPI
contains the minterm. Natice that by construction the tag of a GPl may contain a superset of the
next statesin the tag of a covered minterm, but not a subset. When it contains a proper superset, the
encodeability check tells whether the next state of the minterm can be produced by a column (or set
of columns). The resulting table is shown in Fig. 8.4. The second column does not any intersect
any row because it corresponds to a GPI that covers only pointsin the don’t care set of the original
function (from the unspecified transition 01 st2 — 11).

We call next-state minterms the minterms that assert a next state and output mintermsthe

184 CHAPTER 8. MINIMIZATION OF GPI'S

minterms that assert a proper output. The next-state minterms insure that the correct next state is
produced for agiveninput. The output mintermsinsure that the correct proper outputs are produced
for a given input. The two types of minterms differ in the definition of when they are covered.
Output minterms are covered as long as a GPI that containsthem isselected. A row corresponding
to anext-state minterm may require morethan one column to be covered (i.e. to satisfy itsencoding
constraint) because each column may contribute only part of the next state (given that a GPI asserts
as next state the conjunction of the codes of the statesin itstag). Indeed if the tag of acolumn ¢ is
aproper superset of the tag of an intersected row r, then ¢ might not be sufficient to cover r.

Each next-state minterm yields a constraint (or consistency equation) where the code of
the next stateis set equal to the disjunction of the conjunctions of the codes of the next statesin the
tags of the selected GPI's that cover the minterm. These output constraints have a specia feature:
the next state on the left side appears in al the conjunctions on the right side. This fact will be
exploited to establish properties of the covering agorithm and to simplify the algorithm to check the
satisfiability of constraints. Moreover, each GPI contributes an input constraint (the present states
initsinput part), abeit sometimesatrivial one.

The previous table cannot be used as an input to a covering routine because of the
noted difference between next-state and output minterms. For instance, one cannot perform row-
dominance between two rows of different kinds; e.g., in the previous table one cannot say that
row 2 is eliminated by row 1, because row 2 is a next-state minterm and, even if row 1 (an output
minterm) is covered, row 2 may still be unsatisfied after selecting one column that covers row 1
(in other words, the encoding constraint of row 2 may be unsatisfiable, given the current selection
of columns). We will see that row dominance cannot be performed a so between two rows each of
which corresponds to a next state minterm. A way to handle the problem is to split the table into
two tables: the (proper) output table and the next-state table. They have the same columns, the
rows of the former are the output minterms and the rows of the latter are the next-state minterms.

Itispossibleto apply column dominanceto the combined tables, if werestrict theordinary
definition of column dominance. The ordinary definition is that a column dominates another one
if the former covers at least as many rows as the latter. Restricted column dominance holds iff
ordinary column dominance holds, the two columns have the same present state and the next state
tag of the dominating column is a subset (proper or not) of the next state tag of the dominated
column. The reason isthat such adominating column covers at least as many output and next state
minterms as the dominated column and contributesto the consi stency equation of each covered next
state minterm a term that bitwise dominates or is equa to the one contributed by the dominated

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 185

0000O0OO0O0OOO0O1111111111222222272
12345678901234567890123456

1 X X X

3 X X

7 X X X X

9 X X X

12 X X X X

14 X X X X

15 X X

17 X X X

18 X X X X

20 X X X X

Figure 8.5: Output covering table of FSM leoncino

column. For instance, if thetag of thedominating columnis{st1, st2} and thetag of the dominated
column is {stl, st2, st3}, then e(stl).e(st2) > e(stl).e(st2).e(st3), whatever encoding e(.) is
given to st1, st2, st3 2. Notice that restricted column dominance arises because of the next state
table. Column dominance must be applied to the combined tablesto guarantee the optimality of the
solution.

In the cancellation rule of the consensus procedure to compute GPI's there is a condition
that the next state tag of the cancelling Gl must be equa to the next state tag of thecancelled GI. This
is more restrictive than the condition for restricted column dominance requiring that the next state
tag of the dominating column must be a subset (proper or not) of the next state tag of the dominated
column. An interesting question is when it happens that a column covers at least as many rows of
another column and its next state tag is a proper subset of the next state tag of the other column.

The output table is shown in Fig. 8.5. This table defines an ordinary unate covering
problem. Here row dominance can be performed without conditions. Restricted column dominance
can be applied to the combined tables. As alower bound one can use the maximal independent
set. Thisbound islooser than in standard unate covering because even if a solution can be found of
cardinality equal to the lower bound, it may not satisfy the next state constraints.

The next-state table isshown in Fig. 8.6. This table defines a constrained unate covering
problem. Thistableis covered iff some columns are selected that satisfy the encoding constraints

(next state constraints, input constraints and unigueness constraints). The next state constraints are

2In [39] the "same present state" condition is overlooked.

186 CHAPTER 8. MINIMIZATION OF GPI'S

000O0O0OO0O0OOO0O1111111111222222272

123456789012345678901234586
2 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X X
8 X X X X X X
10 x X X X X X X X
11 X X X X X X X
13 X X X X X
16 X X X X X X
19 X X X X X X
21 X X X X X

Figure 8.6: Next-state covering table of FSM leoncino

aconsistency equation for each row; to satisfy a consistency equation it is necessary that a column
intersecting therelated row is selected (covering problem), but in generd it isnot sufficient because
of the interaction with the input and uniqueness constraints (constrained covering problem). Given
the structure of the encoding constraints, they can always be satisfied by adding more columnsto a
given selection that solves the ordinary covering problem. 3. Every input and uniqueness constraint
yields a set of initia encoding dichotomies [116]. For each initial encoding dichotomy thereis a
companion one, where the same blocks of states appear moved from left to right and viceversa
Only one of two companion encoding-dichotomies must be satisfied. Next state constraints can be
viewed as del eting encoding dichotomies. A removed encoding dichotomy issaid to be unsatisfied,
otherwiseit is satisfied. Wewill show that by selecting enough columnsthat cover rows responsible
of cancelling an encoding dichotomy, thelatter can be satisfied. The goal isto choose the minimum
number of columns such that the encoding constraints are satisfied (a necessary conditionisthat the
next state table is covered). Row dominance is meaningless in the next-state table. Consider the

example:
ri| 2
c1 | x T
|z

Even though column ¢, covers rows r1 and r», we may have to choose also column ¢, to avoid

30nly input and uniqueness constraints were generated in the output table, so satisfiability of encoding constraintsis
always guaranteed there.

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 187

that the next state constraint of row r; removes an encoding dichotomy. Therefore removing row
r1 as row dominated by row r, would not guarantee a correct solution of the origina problem. A
new lower bound will be later defined, based on a maximal independent set of violated encoding

dichotomies (similar to the notion of digoint violationsin [39]).

A solution of the example. Let us select a set of encodeable GPI's that cover the output
and next state tables. The output table can be covered by choosing columns 3,5,6,17. In the
next-state table two rows (m5 and m11) are not covered by columns 3,5,6,17; we choose column
18 to cover row 5 and column 11 to cover row 11. At this point the next state constraints are;

m2: 00 100 00 st0 st0O = stO

mi: 10 100 10 stO0 stO = stO

nb: 11 100 11 st0 st0 = stO

nm6: 01 100 01 st0 stl = stl

m8: 00 010 00 stl stl = stl.st2
mlO: 01 010 01 stl1 stl = stl
mll: 11 010 11 stl st0O = stO
mL3: 10 010 10 stl1 st2 = stl.st2
nl6: 10 001 10 st2 st2 = st2 + stl.st2 (= st2)
ml9: 11 001 11 st2 st2 = st?2
m21: 00 001 00 st2 stl = stl.st2

Only m8, m13 and m21 have non-trivia next state constraints. Theonly non-trivial input
constraint is (st1, s¢t2), from column 17.

We now check if the previous constraints are satisfiable. Theinitial encoding dichotomies
are: (stlst2; st0), (st0; stlst2), (stl; st2), (st2; stl). Next state constraint st1 = stl.st2 (from
both m8 and m21) diminates (st2; st1); the reason is that this encoding dichotomy corresponds
to an encoding bit where st2 is assigned 0 and st1 is assigned 1, but the digunctive constraints
m8 and m21 force stl to be assigned O, if st2 is assigned 0. For the same reason, next state
constraint st2 = stl.st2 (from m13) eliminates (st1; st2). Since both (st1; st2) and (st2; st1)
are eliminated (st1 cannot be distinguished from st2) by m8, m13 and m21, a column that covers
a least one of m8, m13, m21 is selected: e.g., we choose column 16 that covers row m13 (but
does not cover m8 and m?21). The previous constraints remain the same, except for the following
update: m13: 10010 10stl st2 = st2 + stl.st2 (= st2). Noticethat a new column could
introduce anew input constraint, but column 16 does not. If we check again satisfiability, we notice
that (st1; st2) is not anymore removed by 713 and so we have an encodeable selection of GPI's
that solves our origina problem. An encoding that satisfies al constraints with a minimum code

length is: enc(st0) = 00, enc(stl) = 10, enc(st2) = 11.
The GPI's in the final solution, together with the corresponding encoded GPI's, are:

188 CHAPTER 8. MINIMIZATION OF GPI'S

3 1- st2 st 2 11
1- 11 11 11
5 01 stO,stl,st2 stl 11
01 -- 10 11
6 -0 stO stO 01
-0 00 00 01
16 10 st1,st?2 st 2 10
10 1- 11 10
17 -0 stl1,st?2 stl,st?2 10
-0 1- 10 10
11 11 st1 st0 01
11 10 00 01
18 1- stO stO 00
1- 00 00 00

By assigning to st0 the all zeroes code GPI 18 is not needed. It should be the case that
also GPI 11 isnot needed, because it covers only minterm 11 s¢t1in 11 st1 st0 00, but it is not so.
The reason being that GPI 11 is chosen to cover next state st0 in minterm 11 st1; it happens that
GPI 11 when raised to primality expands al so to the onset of aproper output, so that, when encoding
GPI 11 with 00 for st0, it is not recognized that GPI 11 isuseless. This motivatesalater discussion
on the necessity of repeating the minimization procedure to model the al zeroes code effect.

The all zeroes code issue. If a next state is encoded with all zeroes then the minterms
with that next-state do not need to be covered by a GPI; in terms of the origina FSM, one does not
implement the product-termswith a next-state encoded with all zeroes and proper outputsall zeroes.
This fact is not modelled by GPI's. For instance, the following minterms of the origina FSM do
not need to be implemented if st0 isassigned the code 00: 11 st0 st0 00 and 11 st1 st0 0—.

Knowing beforehand that those two minterms do not need to be reaized may change the
best solution. The only known way to cope with this problem is to repeat the previous procedure
up to N + 1times, if N isthe number of next states; once as before 4, and then once for each
next state, dropping from the origina cover al the minterms producing a given next-state (called
reserved state) and all zeroes as proper outputs. If all minterms belong to the onset of at least one
binary-valued output, then thereis no advantage in using an al-zero code and so only one covering
must be made. If an all-zero code is aready reserved, when at the end codes of minimum length
that satisfy the encoding constraints of the optimal solution must be determined, one must take
into account that the all-zero code cannot be used anymore. Suppose that the only set of codes of
minimum length that satisfy the encoding constraints require a state to have the al-zero code. Then

“We do not know whether the best solution has at all acodewith all zeroes.

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 189

we can add an encoding bit, setting it to 1 for al the codes but the reserved state that getsa 0. The
encoding constraints will be satisfied by these new codes, with apenalty of one more encoding bit.
Notice that even if we reach the conclusion that one of the states in a given optimal selection of
k GPI's requires the all-zero code, there may be another selection of & GPI’s where this does not
happen. To find this other selection we should replace the current satisfiability check with aroutine
that tells whether the encoding constraints are satisfiable without using the al-zero code; in the
worst-case, this can be achieved by exploring al codes that satisfy those constraints. But we are
allowed to assign to the reserved state the dl-zero code (not needed by the remaining states) without
adding an encoding bit, if the reserved state was taken into account in the input and unigqueness
constraints. In thisway we are guaranteed to optimize a so the secondary cost function (number of
encoding bits). In practice this would be too expensive to compute, so we will only minimize the
primary cost function (number of product-terms), adding one more encoding bit, when it is needed
to handle the issue of the all-zero reserved code.

Summing up towards an exact algorithm. The problem is to select a minimum set
of GPI's that cover the output table and satisfy the encoding constraints of the next state table.
One can explore the space of solutions by solving the output table first and then computing its
minimum extension to a solution of the next state table. This procedure is well-defined because of
the following result:

Proposition 8.1.1 Any solution of the output table can be extended to a global solution.

Proof: Taketheoriginal FSM, replace each cube (asserting anext state) by a GPI that containsit and
has the same present state literal and next state. This GPI exists because therule for cancelling GI's
requires the same present stateliteral and next state and, moreover, such aGPl isnever cancelled by
column domination because its next state tag cannot be a subset of another tag. This gives an upper
bound on the number of GPI’s necessary to cover the next-state table. These GPI’'s are compatible
with theinput constraints of any selected set of GPI's that coversthe output table. Thereasonisthat
the suggested way of covering the next-state table yieldsonly trivia output constraints (of theform
a = a + ab + a.c+ ..)and whatever input constraints there are, they can aways be satisfied
(in the worst-case by 1-hot encoding). [|

The minimum of al such solutions solves exactly the original problem. In other words,
for a given solution of the output table, we find the minimum set of GPI's which extends it to a
solution of the next state table. Thisis the current best solution. One then goes back to the unate
covering problem and finds a second solution to it, that in turn will be extended optimally to satisfy

190 CHAPTER 8. MINIMIZATION OF GPI'S

the next state table, and so on, until an optimal solution to the globa problem is found. When
back to the unate covering problem we use as best current solution the best global one, not the best
solution of the unate problem. Therefore if there is a solution of the output table, worse than the
previous best sol ution of the output table, but such that it can be extended to a better global solution,
it can be found. This guarantees that a global optimum is reached. At the end, when a minimum
solution of the original problem has been found, codes of minimum length that satisfy the encoding
constraints of the optimal solution must be determined.

In the output table we must solve an ordinary unate covering problem, for which well-
known algorithmsexist [114]. In the next state table we must solve a constrained covering problem:
choose a minimum number of columns such that all encoding constraints are satisfied. An exact
algorithm can be designed using a branch-and-bound scheme as for table covering. It isalso helpful
to maintain the same mode of the problem as a table with a set of columns (GPI's) and rows
(minterms). At each step anew columnischosen that extendsthe current partia solutionto one that
satisfiesmore therelated encoding constraints. A key operation of the algorithmisto check whether
aset of selected GPI's satisfies the rel ated encoding constraints. If so, we have a compl ete sol ution,
otherwise a new GPI must be selected and the feasibility check applied again. New criteria must
be defined for selection of a branching column and for computing a lower bound. This constraint
satisfaction problem can also be solved by a variant strategy in two steps. ordinary unate covering
of the next state table, and then selection of more GPI’s to satisfy the encoding constraints. In this
variant the strategy of exploring the solution space is modified to favour choosing first GPI's that
cover at least once every minterm of the next state table.

8.1.1 Exact Selection of an Encodeable Cover of GPI’s

Figure 8.7 shows an exact agorithm to find a minimum selection of GPI’s that is a cover
of the original FSM and that is encodeable. The procedure is patterned on the branch-and-bound

algorithm used to find an exact solution to unate covering [66].

Theorem 8.1.1 The algorithmof Figure 8.7 finds a minimum cardinality selection of GPI's that is

a cover of the original FSM and that is encodeable.

Proof: The god isto select columns of P to cover the output minterms and satisfy the encoding
constraints induced by the next state minterms. The latter goa requires that for each next state
minterm one or more GPI’s are chosen so that the encoding constraintsare satisfied. For thispurpose
at first columns are chosen until the next state minterms are satisfied, as certified by encodeable,

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 191

then a call to mincov (a unate solver) selects a set of additional GPI's to complete the covering
of the output minterms (if needed). Thisis done for each new solution to the next state minterms
problem, i.e. each partial solution is extended optimally to a complete solution. The algorithm
has the same control structure as the branch-and-bound procedure designed to solve exactly unate

covering. Differences are:

1. Inthetable reduction step column dominanceis restricted and row dominanceis disallowed.
Both restricted column dominance and detection of essentias are performed on the complete

set of mintermsto guarantee correctness.

2. The procedures to check encodeability (encodeable °), and to compute a lower bound
({bound) and a branching column (select_column) are specific to the problem. Designs of
these procedures will be presented after that encodeability of GPI’s will have been discussed
in depth.

3. After invoking mincov the current solution is bounded away, if the cost of the new complete
solution is worse than the current upper bound.

The algorithm explores in the worst-case al solutions. At the beginning it reduces
correctly the global matrix. It handles first the next state minterms and whenever it has found a
new partial solution that satisfies all the encoding constraints, it extends it optimally to a complete
solution. The bounding mechanismisthe same asin the case of unate covering. It relieson aglobal
upper bound, while alower bound is computed only by considering the next state minterms. This
weakens the lower bound, but guarantees correctness. Also the branching columnis computed only
by considering the next state minterms. The procedure mincov isinvoked on the output minterms
table, after output minterms covered as a side-effect by the current partial solution are removed.
The best solution in thistable is found using a unate table solver. The current complete solution is
compared against the upper bound ©. [|
Notice that when dealing with next state mintermsthere is no notion of a covered minterm, but we
speak instead of satisfied dichotomies, asit will be seen in detail later. Therefore next state rows
are not deleted until al encoding constraints are satisfied.

51t replaces the simpler check that all rows of the matrix have been covered.

5When solving exactly unate covering, if the new lower bound is less than the upper bound and the table is empty, it
meansthat a better solution hasbeenfound. Here, if encodeable succeeds, we must compare again the complete solution
with the upper bound, because in the previous comparison the new lower bound was not yet (in general) a complete
solution, since the output minterms had not been covered yet (in general).

192 CHAPTER 8. MINIMIZATION OF GPI'S

procedure exact_gpi_selection(P, M., , M, G, lbound, ubound) {
/* restricted column dominance, empty columnsand essentials*/
P_dom = restricted_dominated_columns(P, M, U M,)
P=P— P.dom
. = essential(P, My, U M,)
if ((cost(Ge) + cost(G)) > ubound) return(®)
elseG=GUG.
/* find lower bound from here to final solution by independent set */
indep = lbound(P, My,)
/* make sure the lower bound is monotonically increasing */
lbound_new = M AX (card(G) + card(indep), lbound)
/* bounding based on no better solution possible*/
if (lbound_new > ubound) best = 0
I* check for new best solution */
elseif (encodeable(G, My,)) { I* newbest’ solution at current level */
M, =M, - M,.G
best, = mincov(P, M,, G, lbound_new, ubound)
if ((cost(best,) + cost(G)) > ubound) best = 0
elsebest = G U best,
} else{ /* no more reductions: split and recur */
pick = select_column(P, M)
/* branching column in the covering set */
bestl = exact_gpi_selection(P — pick, My, M., G U pick, lbound_new, ubound)
/* update the upper bound if a better solution is found */
if (bestl # 0 and ubound > card(bestl)) ubound = card(bestl)
/* no branching if heuristic covering */
if (bestl # 0 and heuristic_covering) return(best1)
/* no branching if lower bound matched */
if (bestl # 0 and card(bestl) == lbound_new) return(best1)
[* branching column not in the covering set */
best2 = exact_gpi_selection(P — pick, My, M., G, lbound_new, ubound)
best = solution_choose best(bestl, best2)

}

return(best)

Figure 8.7: Exact selection of GPI's

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 193

8.1.2 Approximate Selection of an Encodeable Cover of GPI's

The bottleneck of the proposed exact selection algorithm is likely to be the very large
number of branchings to guarantee exactness of the solution. Since the number of branchingsis
a (complex) function of the number of GPI's, one could try to restrict branching by generating or
keeping only a subset of the GPI's. For instance a simple-minded heuristic would be to generate
only the GPI's that have in the next state tag a number of states not larger than the logarithm of
the number of states of the FSM. Another shortcut in the exact algorithm would be to stop at the
first solution. In general an exact solution should makeits quality more noticed in the case of next
state intensive problems, i.e., state assignment problemswhose final result depends strongly on the
realization of the next states logic.

A different family of heuristics, presented in this section, starts with the complete set of
GPI's, but selects a solution greedily, instead of bulding the full (branch-and-bound) computation
tree. A fine tuning isrequired to trade-off efficiency vs. running timevs. ease of implementation.

Fig. 8.8 shows an approximate a gorithm to find a sel ection of GPI’s that is a cover of the
original FSM and that isencodeable. The algorithmis approximate becauseit findsonly one partial
solution (that covers al minterms of the FSM) by invoking unate_encoding and then extends it to
a complete solution by selecting greedily new GPI’s needed to make thefirst selection encodeable.
Since output and next state minterms together are fed to a standard unate table solver, " prohibited"
table reductions may be carried on. In the step to extend the solution, minterms and GPI’s that
have been incorrectly discarded may be taken back in the solution, if needed. In opposition to the
exact dgorithm presented previously, this agorithm covers first optimally the output minterms and
then extends greedily the partial solution to handle aso the next state minterms. One could say
that it is geared more towards output intensive problems. The exact and heuristic algorithms take
the opposite view about covering next state mintermsfirst vs. covering output mintermsfirst. The

following considerations discuss the issue.

1. Inorder to cover the output mintermsfirst in the exact a gorithm, one should modify astandard
unate solver to restrict the table reduction operations. Thiswas considered undesirable from

an implementative point of view.

2. In the heuristic algorithm we did not take care of the next state minterms first, based on the
expectation that it would have been less efficient than taking care of the output mintermsfirst.
The expectation is justified by the fact that we have an high quality unate table solver, not

194 CHAPTER 8. MINIMIZATION OF GPI'S

procedure approx_gpi_selection(P, M,,, M,) {

G(i,p',n') = unate_encoding(P, M,, + M,)

G'i,p' n'y =P, p,n') =G, p',n')

unsat_FID(z,y) =1

while (unsat_FID(z,y) # 0) {
GPIselected(i', p',n') = select_column(G', My,)
G, p,n') =G, p',n') + GPIselected(i ,p', n')
G'(¢,p',n'y = G'(¢,p',n') — GPI_selected (i, p',n')
unsat_FID(x,y) = encodeable(G, My,)

}
return(G)

Figure 8.8: Approximate selection of GPI's

likely to be matched in efficiency by a selector of encodeable GPI's. Experimentswill assess
the vaidity of this choice.

The simplified description of the algorithm highlightsthat it does a greedy search, by showing that
after acall to unate_encoding, one GPI at atimeis chosen until the problem issolved. Thereisno

backtacking to improve the solution (and no usage of alower bound).

8.2 Reduction of GPI Minimization to Binate Covering

The encodeability check for aset of GPI's, given abound on the number of encoding bits,
was adready formulated in [39] as a Boolean satisfiability problem.

The idea has been advanced further in [133, 132], to cast the whole problem of selecting
a minimum encodeabl e cover of GPI's, for afixed code-length, as a binate covering problem. An
implementation has been described in [19]. A binate covering problem asks for the minimum
solution of a formula written as a POS. Each literal in the POS can be chosen in the positive or
negative phase in the solution and the cost of a solution is the sum of the cost of literals chosen
in the positive phase, in the hypothesis that each literal has associated a cost (usually the cost is
1). In our case, the literas are the GPI's and the bits of the codes of the states; the cost of a
GPI is 1 and the cost of a bitis 0. Choosing a literal of a GPI in positive phase corresponds to

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 195

selecting that GPI in the cover. Choosing aliteral of abit in positive or negative phase corresponds
to setting it to 1 or to 0 in the encoding. In a sense, this reduction to binate covering lumps a
genuine table covering problem (selecting a cover of GPI’'s) with a satisfiability problem (finding
codesthat satisfy constraints). Apparently thisis appealing because everything issolved in aunique
algorithmic frame, but the disadvantage is that a good algorithm for table covering may not be a
good agorithm for satisfiability.

We will illustrate the reduction to binate covering using the same example leoncino.
Suppose that we encode the states st0, st1 and st2 with 2 bits. The encoding bits are eq1, e, €11,
e12, €21, €22, Where e;; isthe j-th bit of the code of state :. We denote e(st:) the code of state sti.
We are going to build a binate table whose columns are the GPI's (denoted by ¢; fori = 1, ..., 26)
and the encoding bits (e;;, ¢ = 0,1, 2, j = 1,2). In our example there are 32 columns. The rows
are clauses which state the conditions under which GPI’s can be chosen to cover the minterms and
an encoding compatible with them exists. There are clauses that express that next-state and output
minterms are covered; other clauses represent input constraints induced by GPI's; findly, other
clauses insure that a unique encoding is determined. We will now survey in detail each type of
clauses.

The GPI's selected in the final cover must assert the same next state and proper outputs
asserted by each minterm in the FSM. So we have clauses for both conditions.

For each next-state minterm, for all GPI's that cover it, we impose that the code of the
next-state of the minterm is equal to the the digunction of the conjunction of the next-statesin the
tags of the selected GPI's. Basically we read the next-state table and write-down an equation for
each row. The big difference isthat each row of the unate next-state table gives rise to many rows

in the binate table, as the example shows.

e(st0) = e(st0)(ge + groe(stl) + gize(stl) + groe(stl) + goae(stl))

e(st0) = e(st0)(ge + g18 + g19e(st1) + gooe(st2) + gape(st2))

e(st0) = e(st0)(g18 + g19e(stl) + go3 + goae(stl) + gope(st2))

e(stl) = e(stl)(gs+ groe(st0) 4 gize(st0) + gige(st0) + gose(st0) 4 gose(st0))

e(stl) = e(stl)(g1+ go + g13e(st0) + gise(st2) + gaze(st2) + gase(st0))

e(stl) = e(std)(g1+ g5+ g9+ g12¢(st0) + gaze(st0) 4 gaze(st0)e(st2) + goae(st0) + gose(st0))
e(st0) = e(st0)(g11+ g1ze(stl) + gore(st2) + gaze(stl)e(st2) 4 gaz + goae(stl) + gose(st2)
e(st2) = e(st2)(g1a+ g15e(stl) + g16 + gaze(stl) + gope(st0)

196 CHAPTER 8. MINIMIZATION OF GPI'S

e(st2) = e(st2)(gs+ gse(stl) + g16 + g17e(stl) + gooe(st0) + gose(st0)
e(st2) = e(st2)(ga+ ga+ gse(stl) + goie(stO) + gaoe(st0)e(stl) + gope(stO)
e(stl) = e(stl)(g7+ gse(st2) + gg + gi7e(st2)

Consider thefirst of the previous equations. It is equivalent to two equationsin SOP:

eor = eo1(ge+ g10e11 + g13€11 + g10€11 + g24€11)

ez = en2(96+ g10e12 + g13€12 + g10€12 + 924€12)
or, equivalently:

€01+ g6 + g10€11 + g13€11 + g19€11 + g24€11

€02 + g6 + g10€12 + 913€12 + g19€12 + g24€12

They can be rewritten in POS as:

(€01 + g6 + 910 + 913+ 919 + 924) (€01 + g6 + €11)

(o2 + g6 + 910 + 913+ 919 + 924) (€02 + g6 + €12)

Notice that a possible solution of these clausesis eg; = egp = 0, and in that case no GPI is needed
to cover minterm m2. This solves the problem of the al zeroes code that requiresinstead a clumsy
repetition of minimizations in the unate reduction in subsection 8.1. The problem of efficient
conversion from SOP to POS requires that one avoids generating duplicated and subsumed clauses.
Thepoint isillustrated by the following examples. Consider the SOP a + be + de f. 1t can rewritten
asthe following POS:

(a+b+d)(a+b+e)la+b+ fllatc+d)(a+c+e)(a+c+ f).

Consider the SOP « + bc 4 dc, where some literals occur in more than one disjunct (literal ¢). It

can berewritten as:

(a+b+d)y(a+b+c)la+c+d)(a+ c+c).

Taking away duplicated and subsumed clauses one gets:

(a+b+d)(a+c).

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 197

Itisreported in[19] that adistributive method, which recursively generates clauses and immediately
eliminates those duplicated and subsumed, reduces very effectively the number of clauses. The
clauses of a reported example went down from 631, 000 to 184. No description of the algorithm is
provided in the report. The only existing documentation is the code itself, that | have not yet read.

Summarizing, each next-state minterm equation yields some clauses to be added to the
binate table. For instance, the next-state equation of minterm m?2 yields four clauses. In the
worst-case, if there are m minterms, the length of the code is &, each minterm involves ¢ GPI's
and each GPI hasn next-states in itstag, we have O (m.k.n?) clauses. But in practice this number
can be reduced to O (m.k.n) if an efficient SOP to POS conversion isin place, given that the same
next-states occur in many GPI's (this is elimination of dominated rows, in the binate covering
formulation).

For each output minterm, one GPI that covers it must be selected. Basicaly each row of
the output table transl ates into one row of the binate table. In our example, thefirst four clauses of

thistype are:

g6+ 910 + 913)
g6+ 920)
g1+ 99+ 915+ 917)

(
(
(
(91+ 95+ o)

Some clauses must enforce that the input constraint associated to each selected GPI is
satisfied. This can be trandated into the logical condition that, if a GPI is selected, each state not
in the face must be assigned an opposite phase with respect to the states in the face in at least one
encoding column. Input constraints with only one state or with all the states are trivial and no
clauses are generated for them. In our example, face constraint (st1, st2) is associated to GPI’s
9,16,17,21,22, (st0, st1) to GPI's 13,23,24 and (st0, st2) to GPI 20. For instance, the logical
condition to satisfy st1, st2, if GPI 9issdected, is:

Jg + €01€11€21 + €01€11€21 + €02€12€22 + €02€12€22.

A conversion from SOP to POS must be made. But in thiscaseit happensrarely that simplifications
can be made, differently from next-state covering clauses (the only simplification that occurs hereis
of clauseswith aliteral anditsnegation). The experimenta fact isthat these clauses are a bottleneck

of the binate covering approach. For instance, [19] reportsthefollowing data: from 256, 000 clauses

198 CHAPTER 8. MINIMIZATION OF GPI'S

for an FSM of 4 states and a code of length 2, to 11, 764, 900 clauses for an FSM of 8 states and
a code of length 3. In the worst-case, if the states are s, the length of the codeis &, and there are
f states in a face constraints, the number of clauses introduced by a GPI with a non trivial face
congtraint isO((s — f).(f + 1)) clauses.

Some clausesinsurethat no pair of states are assigned the same code. In our casethey are
e(st0) # e(stl), e(st0) # e(stl) and e(stl) # e(st2). The condition e(st0) # e(stl), i.e, that
the codes of the two states differ in at |east one bit, is expressed by the following SOP:

€01€11 + €01€11 + €02€12 + €02€12-

A conversion from SOP to POS is required. In the worst-case, if the states are s and the length of
the code is &, the number of clausesto insure distinct codesis O (22%.C'3). Other clausesinsure that

a state is not assigned more than one code. In our example, they are:
(eo1 D @o1) (€02 @ €oz) (11 P €11) (€12 D €12) (€21 P €21) (€22 D €22)

In the worst-case, if the states are s and the length of the codeis k, the number of clausesto insure
unique codesis O (k.s). All together these clauses make sure that an encoding is produced.

Once the binate tabl e has been completed, one can use any binate solver to find asolution.
In practice the size of the table istoo large for available tools. Since both the number of columns
(roughly, the number of GPI’s) and of rows (even larger thanthe number of columns) become quickly
very large, even approaches that solve binate covering by means of a shortest path computation of
the clauses represented by BDD's as in [82, 62] have been unable to solve non-trivia instances.
Indeed the methodsin [82, 62] may succeed in handling huge numbers of clauses, but they are still
limited by the numbers of columns, which are the support variables of the required BDD’s.

8.3 GPI'sand Non-Deter minism

8.3.1 Symbolic Don’t Caresand Beyond

In [39] mention is made of symbolic don't cares. In the state assignment context, they
arisewhen morethan one next stateisallowed for atransition (don't caretransitions). We introduced
already such a situation when the next stateis ANY, i.e. any of all the states, but a more general
case is when the next state can be any of a subset of states. GPI’s can be generated also for this
more genera case. Suppose that we have adon't care transition iy s; so/s2 01 Where the next-state

8.3. GPI’'SAND NON-DETERMINISM 199

sp/s2 meansthat sp and s, are both acceptable next states. We can replace the don't care transition
by two caretransitions 1 s; sg 01 and i1 s1 s2 01, and then apply the algorithm for generating GPI's
asin Subsection 7.3.1. One more ruleisrequired to handle k-cubes with identical proper inputsand
present states: a k-cube cancels another k-cube, if they have identical input parts and the tag of the
first isasubset of the tag of the second. The reason isthat the cancelling cube covers the same input
subspace in more next-state spaces. The encodeability condition is modified, by replacing asingle
next state by adisjunction of next statesin the consistency equation of each don’'t care minterm. The
next statesin the digjunction are those that appear in the original don’t care transition that coversthe
given don't care minterm. Moreover, if a GPI corresponding to some next states being asserted by
asymbolic don’t care minterm is selected, other GPI’s corresponding to different next states being

asserted by the same don’t care minterm cannot be selected in the cover 7.

Don't care transitions arise naturaly in FSM’s, as a way to represent different STG's
that describe the same sequential function. A given STG is only one representation of a sequential
function (a collection of input-output traces). An STG can be restructured in different ways and
still represent the same sequential function. It isnot known apriori which of these representations
is the starting point leading to the most compact representation after state assignment. A state
assignment procedure optimal for a sequentia function (and not only for a given representation
of the function) should capture all equivalent STG’s and find out which one is the best to encode.
No such a procedure is currently known in the general case. Currently it is common to do state
minimization first and then to perform state assignment, since an STG with minimum number of
states is usualy a good starting point for state assignment. But it is a suboptimal procedure, as
pointed out first in [55].

GivenaCSFSM, state minimizationreturns auniguereduced FSM (up to state renaming).
State minimization of CSFSM’s merges al equivalent states into one state. Since it is not known
apriori the amount of merging that produces the best starting point for state assignment, one can pass
to the state assignment step the mergeability information, instead of the reduced FSM. The state
assignment routineis given the task to decide the merging, while assigning the codes to the states.
In thisway, a family of equivalent STGs, complete under state merging and state re-direction, is
explored during state assignment. Such acombined state minimization and encoding procedure has
been proposed in [78], in the following form:

"Anticipating a future discussion, we say that the selection of encodeable GPI’s reduces to binate covering and
encodeability when there are don’t care transitions. When don’t care transitions are not present, one can reduce the
selection of encodeable GPI's to unate covering and encodeability.

200 CHAPTER 8. MINIMIZATION OF GPI'S

1. Identify equivalent states and implied state pairs.

2. Modify the FSM representation by letting the next-state of any transition be any one of the
equivaent states.

3. In the state assignment step, alow equivalent states to have the same code (i.e., equivaent
states need not have different codes) and assign the same code to al implied state pairs of

equivalent states encoded with the same code.

This way of coupling state minimization and state assignment gives rise to don’t care transitions,
because some transitions have more than a possible next state.

Given an ISFSM, a state minimization procedure returns an ISFSM with a minimum
number of states. Another way of lookingto it isthat state minimization of ISFSM’s takes afamily
of CSFSM’s and returns asubfamily of CSFSM’s, al characterized by having the minimum number
of states. We do not know of an exact procedure that explores at the same time state minimization
and state assignment of ISFSM’s. In [133], the problem of mapping the implied classes into
compatibles in the reduced FSM (problem of unique mapped representation) has been modelled
with don’t cares transitionsin the reduced FSM.

Theintroductionof don't care transitionsisaspecia case of symboalicrelations, pioneered
in [82, 78]. Symbolic relations tie together the notion of GPI (that accounts for symbolic in the
name) with the notion of relation. It is clear that with don’t care transitions we have arelation, and
not anymore afunction, because the output responseis a number of choices and not just one. They
are symbolic relations because the output response is symbolic, so GPI's are required. To solve
the symbolic relation problem, the notion of GPI’s is extended to the one of generalized candidate
primes (GCPI’s), & similar to the notion of a candidate prime in a boolean relation. An appropriate
covering problem isthen set up, whereby aminimum subset of GCPI’s is selected to implement the
symbolic relation. We refer the reader to the references for a detailed presentation of the theory.
It suffices to say here that covering with GCPI's involves a binate table covering step, while for
covering with GPI’s (constrained) unate table covering suffices.

In thisthesiswe only consider symbolic don’'t cares arising with anext state ANY . They
can be handled in the frame of GPI's, without a need to extend the theory to GCPI's. Before leaving
the topic of symbolicdon’t cares, we report an examplefrom [133] of unique mapped representation
modelled using GCPI's. Consider the ISFSM given in the table.

8A generalized candidate prime of a symbolic relation R is a cube (c/o) € D x I such that there exists an input
encoding ¢ : D — B" and an output encoding ¢ : > — B™ for which (£(c)|« (o)) isaprime of amappingf <. 41 R.

8.3. GPI’'SAND NON-DETERMINISM 201

01
1{10]20
2| — |41
311-]20
411150
513031

A solution with minimum number of states can be formed with the compatibles:
a = {17 3}7 b= {27 5}7 c= {37 4}

When constructing the reduced FSM there is a choice for the next state of b under input 0 °. So,

we get:
0 1
a a,0 b,0
b|(a,¢)0] ¢l
c a,l b,0
The STT of the reduced FSM is:
0 «a a 0
1 «a b 0
0 b (a,c) O
1 b c 1
0 ¢ a 1
1 ¢ b 0

The primes of this symbolic relation are listed in Figure 8.9. Let the encoding of « be [,1/,2.
Similarly for & and ¢. We now proceed to derive the covering constraints.

x=0a
(la1 + e1+ c7ly1 + cg + colet + 10 + crolpt + 20 + c21l.1)
(L2 + c1+ c7lsp + cg + colep + 10 + c1ol2 + 20 + c21l.2)
XxX=1a
(o1 + €2+ c7lat + c1aler + c12 + c19lar + c22le1)
(b2 + €2+ c7lap + c11lea + c12 + c19laz + c22l2)
Xx=0b

(la1+ c3+ cg+ coler + cazler + c15 + ca6ler + co0 + c21lc1) 14

(lag+ e3+ cg+ colea + c13le2 + 15 + c16le1 + €20 + ¢21le2)c1a+

(lea+ cola1 + c13la1 + c1a + ca6la1 + c21la1) €3c8¢15C20

(le2 + colaz + c13la2 + c1a + c16la2 + c21l42) €3c8C15C20

*The solutiona = {1},b = {2, 5}, ¢ = {3, 4} hasno mapping options.

202 CHAPTER 8. MINIMIZATION OF GPI'S

c1. O a a 0
c 1 a b 0
c3. 0 b a 0
ca. 1 b c 1
5. 0 c a 1
cg. 1 c b 0
c7. - a anb O
cg. 0 aUb a 0
cg: 0 aUb anc O
cioo 0 aUc a 0
cii. 1 aUb bne O
c1. 1 aUc b 0
c13. — b anNc O
c14: — b c 0
c15. 0 bUc a 0
c16. O bUc anNc O
a7 1 bUc bne O
c1g. — c andb O
19 — alUc andb O
co: 0 aUbUc a 0
co1. 0 aUbUe ane O
c. 1 aUubUe bne O

Figure 8.9: Primes of the symbolic relation.

8.3. GPI’'SAND NON-DETERMINISM 203

x=1b

4
x=0c¢

s
x=1lc

(I + 6 + c12 + c17le1 + c1glar + c10la1 + c20le1)

(I2 + 6 + c12 + c17le2 + c18laz + c10laz + c20l22)

Let us turn now our attention to the face embedding constraints. The non-trivial face embedding

constraints, the related sets of primes, and the corresponding constraints are:

aUb: cg, cg,c11
cgcoc11 + (la1 @ lea) (o1 B lea) + (La2 B 1e2) (b2 B Le2)

aJc: e, €12, €19

c10€12¢19 + (a1 D 1) (11 @ lo1) + (la2 B 1p2) (12 © lp2)

bUc: c15,c16, €17
c15¢16€17 + (Ip1 @ 1a1) (11 D Laa) + (L2 D 1a2) (le2 @ 1a2)

Finally, the disjointness constraints are given by:

((laa B 1) + (La2® 12)) ((Lar B le1) + (La2 B 12)) (lia B Lea) + (L2 B 1e2))

The optimum encoding is given by the minimum cost assignment satisfying the product of all the
constraintsderived so far. Putting these constraintsin POSform resultsin ahuge number of clauses,

in spite of the simplicity of the example.

8.3.2 GPI'sfor Decomposition

Another application of GPI's is for the decomposition of FSM’s into interconnected
submachines. A formulation of FSM decomposition targeting two-level logic as symbolic-output
partitioning has been proposed in [6]. The algorithm proposed requires the generation of GPI's of
submachines and the solution of a constrained covering problem. We refer the interested reader to

the original paper. Here the novel aspects of this application of GPI's are outlined.

204 CHAPTER 8. MINIMIZATION OF GPI'S

Suppose that the problem is to decompose a given FSM, M, into two interconnected
FSM's, M, and M>, with the objective to minimize the total number of product terms in the
minimized symbolic representations of the submachines. Let the number of product terms in
the prototype machine, M, after one-hot coding and two-level logic minimization be P. Let the
number of product terms in the submachines M, and M, after one-hot coding and two-level logic
minimizationbe P; and P, respectively. An optimal decompositionminimizes Py + . An upper
boundto P, + P»is P, corresponding to the case when no good decomposition can be found and
so the original FSM is not decomposed.

One decides a-priori a decomposition topology and a number of submachines. Outputs
can be partitioned between the various submachines. Decomposition topol ogiesvary from agenera
one where each submachine knows the state of every other submachine to a parallel one, where
no submachine knows the state of any other submachine. Of course a given decomposition does
not need to exist. A way to find decompositions is to come up with one partition of the origina
states for each submachine. These partitions must satisfy some properties to induce a functionally
correct decomposition. The properties depend on the chosen topology. In the case of a general
decomposition it is sufficient the minimum requirement that the product of the partitions be the
zero-partition; for aparalel decomposition every partition must be closed. Instead of partitionsone
could look for set systems [56] (states may be in more than one block) and explore alarger solution
space, but it isnot done in the referred project.

Suppose that one looks for a general decomposition into two submachines (it always
exists). Conceptually each stateintheorigina FSM issplitinto the concatenation of two companion
states. Two copies of the origina FSM are made, where each copy is defined on one of the two sets
of companion states. Since each copy reads the state of the other, it followsthat each copy seesthe
global present state asin the original FSM. The outputs can be distributed between the two copies.
For instance, al outputs can be given to one of the two copies.

The symbolic covers of the two submachines are then minimized. A multi-valued min-
imization of the 1-hot encoded covers would not yield any more information, than a multi-valued
minimization of the 1-hot encoded original FSM. Instead the goa here is to find a pair of valid
partitions (whose product is the zero-partition) such that the minimized multi-valued covers of
the two submachines, where merged states are identified, are minimum. 1°. Now enter the GPI’s.

OMulti-valued minimization of a 1-hot encoded cover is a concise way of saying that multi-valued minimization of a
symbolic cover returns a minimized multi-valued cover, that can be realized with an equivalent two-valued cover by 1-hot
encoding the minimized multi-valued cover; alternatively, one can say that 1-hot encoding of a symbolic cover followed
by two-valued minimization is eguivalent to multi-valued minimization of a symbolic cover followed by 1-hot encoding

8.3. GPI’'SAND NON-DETERMINISM 205

Suppose that we compute the set of GPI's of each submachine (thisis more than computing the set
of PI's of each submachine). We know that each GPI carries a next state tag whose interpretation
is that the encoded GPI produces as next state the intersection of the codes of the states in the
tag. Since we are computing a bound when the encoding is one-hot, the bitwise intersection of the
codes of two statesis null unlessthey have the same code. Therefore the tag of each GPI forces to
merge the statesin it into one. So we can use the next state tags of the GPI's to explore al possible
partitions. The selection of two minimum sets of GPI’s which induce valid partitionsand such that
the mergingsforced by their tags do not conflict with the input constraints induced by their present
state literals gives two submachines whose 1-hot encoded implementations have a total minimum
cardinality. Different topologiesinduce different requirements on the selections of GPI's that yield
correct decompositions. Notice that there may be codes shorter than 1-hot and still satisfying the
input constraints and merging conditions, but here we are not interested in encoding the states, but
in decomposing the original FSM by means of a preprocessing step. L.

The two selected sets of GPI’s define the symbolic covers of the two submachines. Each
state in the present state literal of a GPI in a submachine denotes the pair of companion states of
both submachines: oneis the present state of the current submachine and the other stateis an input
from the other submachine. Each state of a submachine is replaced by the representative of the
equivaence class to which it belongs. The two symbolic covers must now be encoded. Since each
submachine reads as input the state of the other submachine, the state assignment routine should
take into account such an interaction between the two submachines. Thisis an instance of state
assignment of a network of FSM’s, for which no good algorithm is known up to now. It is not
mentioned in [6] how the problem of encoding mutually interacting FSM’s has been solved in the
reported experiments. It is only stated that a state-of-art state assignment tool for single FSM’s
(nova) has been somehow used.

The following exampl e shows the main steps of a decomposition. The original FSM is:

sl s2 1
sl s3 1
s2 s3 0
s2 s4 0
s3s30

OPFrOr o

of the minimized symbolic cover.

11 GPI's of each submachineare used without this restriction on achosen encoding, then the GPI’s of each submachine
would carry the sameinformation asthe GPI’s of the original FSM. GPI's are independent of an encoding (GPI's are used
to find an optimal encoded cover), but here they are used with a presupposed encoding, so that here GPl minimization is
equivalent to multi-valued minimization and simultaneous exploration of the partitions.

206

Thetwo copies are:

(1)

(2)

o -

P OPFPOPFROPFrO

POPFPORFR,ORFrRO

s3 s
s4 s
s4 s

sal
sal
sa2
sa2
sa3
sa3
sa4
sa4

sal
sal
sa2
sa2
sa3
sa3
sa4
sa4

4 0
21
11

sbl
sbl
sb2
sb2
sb3
sb3
sb4
sb4

sbl
sbl
sb2
sb2
sb3
sb3
sb4
sb4

CHAPTER 8. MINIMIZATION OF GPI'S

sa2
sa3
sa3
sad
sa3
sa4
sa2
sal

sb2
sb3
sb3
sb4
sb3
sb4
sb2
sbl

PP OOOORR

They have the following minimum covers of GPI's:

(3)

(4)

PO k' O

o

1000
1111
0001
0110

1000
1000
0110
0001
0001

(sal sa2 sa3l)
(sal sa2 sa3l)
(sal sa2 sa3l)
(sa4)

(sb2)
(sb3 sh4)
(sb3 sh4)
(sb2)
(sbl)

PR OR PR

Replace the present state literas in (3),(4) with a concatenation of the codes of the submachines.

The covers are:

(3")

O oOoOoo!

sal
sal
sa2
sa3
sa4

sbl
sbl
sb2
sb3
sb4

(sal, sa2, sa3)
(sal, sa2, sa3)
(sal, sa2, sa3)
(sal, sa2, sa3)
(sal, sa2, sa3)

8.3. GPI’'SAND NON-DETERMINISM 207

- sad4 sb4 (sal,sa2, sa3)
1 sa2 sh2 (sa4d)
1 sa3 sh3 (sa4d)

0 sal sbhl (sb2)
(4") 1 sal sbl (sb3, sb4)

- sa2 sh2 (sb3,sh4)

- sa3 sh3 (sb3,sh4)

0 sad4 sbh4 (sb2)

1 sad4 sh4 (sbl)

PR OOR R

Replaceeach stateby arepresentativeof itsequivalenceclass(sal, sa2, sa3 areoneclassrepresented
by sal; sb3, sb4 are one class represented by sb3). Thefina symbolic covers are:

sal sbl sal

(37) 0 sal sbh2 sal
0 sal sb3 sal
- sa4 sb3 sal
1 sal sb2 sa4
1 sal sbh3 sa4
0 sal sbl sb2
(4") 1 sal sbl sb3

- sal sb2 sb3
- sal sb3 sb3
0 sa4 sb3 sb2
1 sa4 sb3 sbil

PR OOR R

An optima state assignment of both submachines should take into account their interactions.
For instance, when encoding submachine (3") the symboalic input sb appears as state variable in
submachine (4”).

In summary, decomposition does not carry out the complete encoding of the states, it
merely ‘preprocesses’ them so that the subsequent state encoding applied on the preprocessed set of
stateswill be guaranteed to realize the decompositionwith the desired topology. The decomposition
problem is simpler than the classical state assignment problem since a one-hot coding has aready
been assumed, and the only degree of freedom isin givingthe same codetothe states. Itisinteresting
to mention that state encoding can be viewed as the problem of finding an optimal decomposition of
the prototype machine into as many submachines as there are state bitsin the fina state encoding.
The number of submachines (number of bits), topology of interconnections and distribution of the
proper outputs are al unknowns that an optimal state assignment decides , thereby producing an
optimal decomposition.

208 CHAPTER 8. MINIMIZATION OF GPI'S

Redecomposition of interconnected FSM's via GPI's is briefly touched upon in [5]. The
claim isthat one can generate the GPI’s of the submachines and after some operations deduce from
them GPI’s of the overal FSM. These operationsare described very briefly and are not clear, but the
point made is that one can explore the GPI's of the overall FSM, without a need to flatten the FSM
network into alumped FSM to compute them. This corresponds to a re-encoding/re-partitioning of

theinitial implementation.

209

Chapter 9

Encodeability of GPI’s

9.1 A Theory of Encodeability of GPI’'s

We present a theory of encodeability of GPI’'s based on the notion of raising graphs and
updating sets. It isat the core of new agorithmsfor the computation of abranching column and of
alower bound to be used in a branch-and-bound scheme to find a minimum encodeable cover of
GPI's.

9.1.1 Efficient Encodeability Check of GPI's

A set of selected GPI's and the origina cover of the FSM yield a set of constraints. the
input constraints of the GPI's, the uniqueness constraints and the next state constraints. Then one
must find if the selected GPI’'s are encodeable, i.e., if there is an assignment of codes to states such
that al associated encoding constraints are satisfied. |f so, codes of minimum length that satisfy
the constraints must be found in order to convert the cover of encodeable GPI's into a two-valued
cover that implementsthe original FSM. Theory and algorithmsto check satisfiability of encoding
constraints have been proposed in [116], to which we refer for details. Here we review necessary
definitions and theorems. Moreover, we present novel results on encodesbility of GPI's that will
be the basis for a new feasibility check algorithm very suitable for a BDD-based representation.
We suppose that a set of GPI's and an FSM cover (therefore a set of states and a set of next state
constraints) are given.

An encoding dichotomy (or, more simply, dichotomy) 7 = (; r) isa2-block partition of
asubset of the states to be encoded. The states in the | eft block are associated with the bit O while

210 CHAPTER 9. ENCODEABILITY OF GPI'S

those in the right block are associated with the bit 1. If a dichotomy is used in generating codes,
then a code bit of the states in the left block is assigned O while the same code bit is assigned 1 for
the states in the right block. For example, (ab; c¢d) isan dichotomy in which « and b are associated
with the bit 0 and ¢ and d with the bit 1.

A face constraint yields pairs of initial dichotomies (ID). For instance, given the states
a,b,c,d, e and the face constraint (abc), the initia dichotomies are (abc; d), (d; abc), (abe;e),
(e; abe). Since dichotomies have a fixed O or 1 assignment, for each of them there is a dual
one where the blocks are switched. So there is natural equivaence relation I on the initial di-
chotomies I (duality_equivalence). Two initial dichotomiesare in the same class iff they are dua
of each other (the dua of the dua of dichotomy ¢ is ¢). In the example there are two classes
{(abc; d), (d; abe)}, {(abe; e), (e; abe)}. A dassi = {ir, ir} of theduality equivalence relation is
called afreeinitial dichotomy (FID). A FID can be represented by either initial dichotomy that is
in the class. Uniqueness constraints too generate initial dichotomies.

A dichotomy i’ = (I, ") orderly or block-wise covers another dichotomy i = (I,r),
notedas:’ D 4,iff I’ O [and r’ O r. Noticethat this definition differs from the one given in [116],
whereit issaid that adichotomy i, coversadichotomy ¢ if theleft and right blocks of i, are subsets
respectively either of theleft and right blocks, or of theright and | eft blocks of 1. Wereserveinstead
this unordered definition of covering to the case of a dichotomy covering a free initial dichotomy.
A dichotomy i = (I, ") unorderly coversaFID i = (I, r),noted as:’ D ¢, iff '’ D landr’' D r
or!’ D randr’ D I. Wewill often drop the qualification and simply say "covers’, when it will be
clear from the context which oneis meant.

A dichotomy is complete if each state appears in either block. A completion of a
dichotomy i = (I, r) isadichotomy c(i) = (¢(l), c(r) suchthat ¢(l) D 1, ¢(r) 2 r,c(l) Ne(r) = 0,
c(l)yUe(r)=U(l,r), where U isthe universe set.

A dichotomy violates a next-state encoding constraint if the encoding bit generated for
the states in the dichotomy does not satisfy the bit-wise requirements of the next-state encoding
constraint. A valid dichotomy isonethat does not violate any next-state encoding constraint. The
notion of vaid and complete dichotomy coincides with the notion of prime dichotomy proposed
in [116], but here we will not use the | atter term since we do not rely on iterated union to generate
valid and complete dichotomies.

A dichotomy israised by adding statesinto either itsleft or right block asimplied by the
next-state encoding constraints. A dichotomy is said to be maximally raised if no further states
can be added into either the left or right block by the next-state encoding constraints.

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 211

procedure check_feasible (constraints) {
1 = generate_initial_dichotomies (constraints)
D = copy(/)
foreach (dichotomy d in D)
raise_dichotomy (d, constraints)
D =remove_invalid_dichotomies (D, constraints)
I = duality_equivalence (1)
foreach (free dichotomy i = {iz,ir} € 1)
if (7isnot covered by d(iz) € D orby d(ir) € D)
return (INFEAS BLE)
return (FEASIBLE)

Figure 9.1: Encodesbility check

The procedure check feasible (modified from [116]) generates initial dichotomies from
face constraints and uniqueness constraints, raises and del etes them using the next state constraints
(procedures raise_dichotomy and remove_invalid_dichotomies) and finally reports the unsatisfied
initial dichotomies.

Given an initial dichotomy ¢ = (/;r) and a next state constraint e, the procedure

raise_dichotomy defines two raising rules:

1. If one child of each conjunction of e isin theleft block of ¢, then insert the parent s of e into
theleft block of ¢ (Ieft raising rule).

2. If one child of al but one conjunction of e isin theleft block of ¢ and the parent s of e isin
the right block of 7, then insert al children of the remaining conjunction of e into the right
block of ¢ (right raising rule).

For agiven e and : at most one of thetwo rulesis applicable, because the conditionsfor applicability
are contradictory. To model the semantics of an empty next-state constraint (e.g., « =), it is
stipulated that in remove_invalid_dichotomies any dichotomy d with the parent of the constraint in
the right block is removed. In raise dichotomy an empty next-state constraint does not force any
raising.

Given an initia dichotomy ¢ = (/;r), we denote by d(z) = (d(!); d(r)) the maximally

212 CHAPTER 9. ENCODEABILITY OF GPI'S

procedure remove_invalid_dichotomies (D, constraints) {
foreach (dichotomy d € D)
foreach (next-state constraint ¢)
if (parent inright block of d &
one child of each conjunctionin left block of d)
delete d

Figure 9.2: Detection of invalid dichotomies

procedure raise_dichatomy (d, constraints) {
do {
foreach (parent s in a next-state constraint e)

if (one child of each conjunctionin left block of d)
insert s into left block of d

if (one child of al but one conjunctionin left block of d &
s inright block of d)
insert al children of remaining conjunctioninto right block of d

} while (at least one insertion within loop)

Figure 9.3: Raising of dichotomies

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 213

raised dichotomy that raise dichotomy generates. This definition is well-posed, because if a di-
chotomy ¢ is given as an input to raise_dichotomy, aunique d(z) is returned, according to the order
of application of the next-state constraints and rules.

An initial dichotomy is satisfied if there is a valid maximaly raised dichotomy that
coversit. A freeinitial dichotomy is satisfied if at least one of the two initia dichotomiesin it
is satisfied 1. We will show that any maximally raised dichotomy that covers an ID i isinvalid if
d(¢) isinvalid. Therefore, afreeinitial dichotomy is unsatisfied if raise_dichotomy obtainsinvalid
maximally raised dichotomies from both of its two initia dichotomies. One says also that a free
initial dichotomy 7 = {iy,, g} (or aninitial dichotomy 7) isviolated by thenext state constraintsthat
are responsible for the deletion of d(i;) and d(ir) (of d(7)). Summarizing, next state constraints
remove raised dichotomies and so they violate initia dichotomies, and therefore some face or
uniqueness constraints cannot be satisfied.

We now provethat it is sufficient to check whether d(7) isinvalid to determineif 3’ such

that 7 is covered by d(i’). This proves that check_infeasible detects correctly infeasibility.

Theorem 9.1.1 Given an initial dichotomy ¢ and the corresponding maximally raised dichotomy
d(¢). If d(7) isinvalid, : cannot be covered by another maximally raised dichotomy d(:’), unless
d(i') isinvalid too.

Proof: We provefirst that if 3¢ = (I/; '), ' # 7, suchthat ({;r) C d(¢') = (d(');d(r")),i.e. (I;r)
iscovered by amaximally raised dichotomy d(i'), then d(i) = (d({); d(r)) C d(') = (d(I'); d(r")).
Suppose that some raising steps are needed to maximally raise (/;r) to (d(l);d(r)); we prove
the statement by induction on the number % of raising steps. Denote the dichotomy (/; r), after
the application of the first k raising steps, as (/x; rx). The statement is true for £ = 0, since if
(I;7) = (d(1); d(r)),i.e 7isaready maximally raised, then (d({); d(r)) C (d(I); d(r")). Suppose
that it istrue for k, i.e. (Ig;rx) C (d(I'); d(r")), we want to show that it holds for k£ + 1, i.e that
(lg+1; k1) € (d(1'); d(r")). Either theleftraising ruleor theright raising ruleis applied to go from
(lk; k) 10 (lgg1; riy1). |f theleft raising rule for next-state constraint e with parent p is applied,
then (lx+1; 76+1) = (lx U {p};rx). Sincel, C d(!), e isapplicable aso to (d(!); d(r’)) and so it
inserts p in the left block d(1’). But, since (d(!'); d(r’)) ismaximally raised, p is aready in d(!'),
and so (Ix41; rx+1) C (d(I'); d(r")). If theright raising rule for next state constraint e with parent
p and uncommitted conjunct bs . .. b,,, is applied, then (Ix41; rx+1) = (lk; 7 U {b1...b,}). Since
Iy € d(I"), and r; C d(r'), e isaso applicable to (d(!'); d(r')), unless one child of b;...b,, is

INote that "satisfied" is here an overloaded word.

214 CHAPTER 9. ENCODEABILITY OF GPI'S

ind(!"), making (d(!"); d(r’)) invalid, because p isin d(r’). But, since (d(!’); d(r')) is maximally
raised, by .. .b,, isaready ind(r') and SO ({x4+1; rk+1) C (d(I'); d(r")).

Finally we prove that if (d({); d(r)) isinvalid, then (d(!’); d(+’)) isinvalid too. Suppose
that (d({); d(r)) isremoved by e, then the parent of e must bein d(r) and one child of each conjunct
must be in d(!). Since we proved previously that (d(l); d(r)) C (d(l);d(r")), then the parent
of e must be dso in d(r’) and one child of each conjunct must be in d(/’), i.e. e removes aso
d(i') = (d(l');d(r")). [|

We will now look into the properties of the raising process, proving that not only in case
of infeasibility all maximally raised dichotomies are invalid (as stated by Theorem 9.1.1), but also
that in case of feasibility the same valid maximally raised encoding dichotomy is obtained, so that

raise_dichotomy is sufficient to find all valid maximally raised dichotomies.

Theorem 9.1.2 For any order of application of the next state constraints and of the raising rules
to a given dichotomy, either the same valid maximally raised dichotomy is produced or no valid
maximally raised dichotomy is produced.

Proof: We show that if we start with : we get a maximally raised dichotomy that is uniqueif it is
valid, i.e. the same maximally raised dichotomy is obtai ned independently of the order in which the
next state constraints are used (the choice of theleft or right ruleis fixed once a next state constraint
has been chosen). This shows that the procedure raise dichotomy computes al valid maximally
raised dichotomies. Since Theorem 9.1.1 shows that if d(7) isinvalid, any other maximally raised
dichotomy that covers ¢ isinvalid, the theorem is proved.

Supposethat, given i, thenext state constraintses, ey, . . ., ¢; are applicable. We will show
that for any choice of e, after applying e to 7, we get a raised dichotomy to which the remaining
e’s are still applicable with exactly the same rule, if the raised dichotomy is still valid 2. Since the
application of a next state constraint with a rule produces the same effect on the two sides of an
dichotomy, if the conditions of applicability of a next-state constraint become true after applying
a certain sequence of raising actions, these conditions will become true soon or later in any other
sequence of raising actions. Therefore any order of raising ends up with the same valid maximally
raised dichotomy.

Suppose that e;, and e; are both applicable to 7 = (I, r) and that e is applied first,
producing i.,. We show that ¢; is applicable to ¢, with the same rule as it was to 7, unless an

2|t may happen that, after applying an applicable next state constraint, as a consequence some other applicable next
state constraint does not need to be applied anymore.

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 215

invalid dichotomy is obtained. If e; was applicable to 7 with the left rule, i.e. one child of each
conjunction of e; wasin/, then e; isstill applicabletoi., with theleft rule. If ¢; was applicableto
¢ with theright rule, i.e. one child of al but one conjunction ¢ of e; wasin ! and the parent of ¢;
wasin r, then e; is still applicable to 7., with theright rule, unless a previous raising has inserted
in onechild of ¢ previously unassigned; but in thelast case e; isapplicableto ., withtheleft rule
and so it forces its parent into /, but its parent must have been aready in r for e; to be applicable
with theright rule to ¢ and so an invalid dichotomy is obtained. [|

9.1.2 Encoding of a Set of Encodeable GPI’s

Once aset of GPI's is known to be encodeable, one must find codes of minimum length
that satisfy the encoding constraints. If therequirement that codesare of minimumlengthisdropped,
then it is sufficient to take the vaid maximally raised dichotomies, make each of them complete
by adding to the right block any state absent from the dichotomy and then choose a minimal set
of complete maximally raised dichotomiesthat cover al free initial dichotomies[116]. Note that
by adding absent states to the right block no invalid dichotomy can be produced, since no existing
encoding constraints become applicable to the complete maximally rai sed dichotomies so obtained.

We will now discuss the case where codes of minimum length are wanted. An encoding
column of a valid encoding corresponds to a complete and valid dichotomy. The next theorem
proves that set of valid complete dichotomiesis exactly the set of valid completions of the set of
valid maximally raised dichotomies.

Theorem 9.1.3 The set of valid complete dichotomies is the set of valid completions of valid
maximally raised dichotomies.

Proof: A freeinitial dichotomy generatestwo initial dichotomies. A dichotomy covers afreeinitia
dichotomy iff it contains either initial dichotomy. From an initia dichotomy either one obtains a
uniquevalid maximally raised dichotomy or no vaid maximally raised dichotomy. We suppose that
the given set of GPI’'sisencodeable, sofor agivenfreeinitia dichotomy (z, y) at |east oneof thetwo
initial dichotomies (/, r) yields avalid maximally raised dichotomy (d({), d(r)). A valid complete
dichotomy that covers a given free initia dichotomy (z,y) by block-wise containig (/,) must
contain the valid maximally raised dichotomy (d(!), d(r)), because adding symbols |eft and right
to (/,r) does not invalidate any raising on (Z, r) if avalid maximally raised dichotomy (d (1), d(r))
isobtained by maximally raising ({, r) (araising by left ruleis still applicable to supersets of / and

216 CHAPTER 9. ENCODEABILITY OF GPI'S

procedure exact_encode (constraints) {
1 = generate_initial _dichotomies (constraints)
D = copy(/)
foreach (dichotomy d in D)
raise_dichotomy (d, constraints)
D =remove_invalid_dichotomies (D, constraints)
I = duality_equivalence (1)
foreach (free dichotomy i = {iz,ir} € 1)
if (7 isnot covered by d(iz) € D orby d(ir) € D)
return (INFEAS BLE)
C = complete_dichotomy_generate (D)
valid_compl ete = remove_invalid_dichotomies (C', constraints)
mincov = minimum_cover (7, valid_complete)

return (derive_codes (mincov))

Figure 9.4: Exact encoding of constraints

r; araising by right ruleis still applicableif avalid maximally raised dichotomy is obtained) and a

valid complete dichotomy is afortiori maximally raised.

By considering all possiblecompletionsof (d(!), d(r)) onegetsal complete dichotomies
that contain block-wise (, r). By keeping only the valid completions one gets the set of vaid and

compl ete dichotomiesthat contain block-wise (, r). []

The selection of aminimum set of valid complete dichotomiesthat cover the origina free
initial dichotomies can then be cast again as a table covering problem. Attention must paid to the
fact that avalid complete dichotomy covers afreeinitial dichotomy by covering any of itstwoinitial
dichotomies. In other words, each row of the covering table correspondsto afreeinitial dichotomy
that has a 1 in a column corresponding to a valid complete that covers either initial dichotomy
in that free initial dichotomy. Procedure exact_encode shows the full sequence of steps to check
encodeability and, if the latter holds, to encode the set of GPI’'s with codes of minimum length.

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 217

9.1.3 Updating Setsand Raising Graphs

In this section we address the issue of adding more GPI's to a set of GPI's that is not
encodeable. We know by Proposition 8.1.1 that thereis an addition of GPI's that makes the current
set encodeable, but the problem is which GPI's to add. Our strategy is to use the information
gathered in checking encodeability to drive the choice of useful GPI’s to add to the current cover.
New notions of updating sets and raising graphs will be introduced to that purpose.

If no valid maximally raised dichotomy is produced, then, according to the order of
raising, different invalid maximally raised dichotomies can be produced, as the following example
shows. Consider the initial dichotomy (bc; d) and the next state constraintsa = ab + ac and
d = da+ de. Let L and R denote respectively the left and right raising rule.

Two different sequences of raising actions are:

(berd) ab+ac(L) (abe: d)

(abe;) T YY) (abed; @) invalid
(abed; d) =23 (abed; d)

(abed; d) =23 (abed; d)

(be; d) T EEE (pes da)

(be; da) w=abtacdl) (abe; da) invalid
(abe; da) d=datdelt) (abed; da) invalid
(abed; da) * ﬁac (abed; da)

(abed, da) (abcd; da)

At thefirst step botha = ab+ acwith L ord = da+ dcwith R can beapplied. If a = ab+ ac
with L isapplied first, thend = da + de with R cannot be applied anymore because its condition
has been falsified. Instead d = da + de with I can be applied, but it must result in an invaid
dichotomy because the parent of d = da + dc was aready in the right block and now isinserted
in the left block. Applyingfirst d = da 4 de with R has the advantage that both « = ab 4 ac
and d = da + dc are recognized as responsible for removing (bc¢; d), alowing more freedom to
update the minterm constraints. For instance, update ¢ = ab + acintoa = ab+ ac + ad, then
(bc; d) israised to (be; ad) and it is not anymore invalid. Alternatively, update d = da + dc to
d = da—+ dc+ d, then (be; d) israised to (abe; d) and it is not anymore invalid. If we would
consider only d = da + dc asresponsible of deleting (bc; d) we would miss that also by updating
a = ab+ ac the cancellation does not take place anymore.

218 CHAPTER 9. ENCODEABILITY OF GPI'S

When a free initia dichotomy is violated (and therefore a face constraint cannot be
satisfied), by Proposition 8.1.1 thereis alwaysa set of GPI’'s whose addition to the current selection
makes the new set of GPI’s encodeable. An optimization problem isto add the smallest number of
GPI’s that achieves the god. The following result guarantees that, after adding a GPI, an existing

set of freeinitial dichotomiesis not less satisfied.

Proposition 9.1.1 If a set of freeinitial dichotomies I D is satisfied by the next-state constraints of
aset of GPI's G, then I D issatisfied by the next-state constraintsinduced by a set of GPI's G’ D G.

Proof: The consistency equations of minterms covered by the newly added GPI are updated. By
the rule of removal, given a dichotomy and a consistency equation, if the left state of the equation
isin the right block of the dichotomy and one state in each conjunct of the equation isin the left
block then the dichotomy is deleted. When the equation is updated, one more conjunct is added
to it and so the condition of the previous rule may fail to be true. Also it may be the case that a
removal isaconsequence of some previousraising. By adding a conjunct to a consistency equation
it may happen that the conditionsin the raising rules may not be anymore true, making impossible
the raising and consequent removal. [|
Notice that the addition of a GPI may introduce more initial dichotomies (because of new face
constraints), temporily making harder the overall encodeability problem.

We would like to add the smallest number of GPI’'s so that the resulting encoding con-
straints are satisfied. In the worst-case, a branch-and-bound search technique may have to explore
all solutions, but a good choice of a new GPI at the branching step will bound more quickly the
search. To this effect we annotate each unsatisfied free dichotomy with the next-state constraints

that violated it. The following facts are important:

1. Next-stateconstraintsof theforma = «a+... aredwaystrivialy satisfied and onceaconstraint
becomes such it does not need to be anymore considered (trivial next state constraint).

2. Next-state constrai nts with the same consi stency equation, but associated to different minterms
are different next state constraints. The reason isthat, if they delete an initia dichotomy, al
of them must be properly updated to avoid any violation of that initial dichotomy and this
may require the addition of different GPI's.

3. Next-state constraints with different consistency equations may remove the same dichotomy,
for different encoding violations. The procedure remove_invalid_dichotomies can be made to

enumerate them all.

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 219

In order to choose an "effective" branching column, we need to annotate each unsatisfied
initial dichotomy with the next-state constraints violating it. The annotation must capture exactly
all sets of next-state constraints causing unsatisfiability. We highlight first some issues by means of
the following examples.

1. A maximaly raised dichotomy may be removed as a consequence of a previous raising
action. Both the raising next-state constraint and deleting next-state constraint are therefore
responsible of the cancellation. Selecting a GPI that updates either of them could make
the cancellation go avay. Consider the dichotomy (ab; ¢) and the next state constraints
d = da+db, f = fa+ fd,c = ca+ cf:

(ab; c) A=t L) (abd; c)

abd,)f:fm;d(L) (abdf; c)

abdf; c) CZC”—%“L) (abedf; ¢) invalid

abedf; ¢) 2P (abedf; o)

abedf; ¢) 7L (abedf; ¢)

Updatingany of d = da+db, f = fa+ fd, ¢ = ca+ cf can make the cancellation go

(ab
(
(
(

away. For instance, updated = da+ dbtod = da+ db+ de:
d=da+db+de(L)
) — (ab; c)

f de (ab; c)

Updatef = fa+ fdtof = fa+ fd+ fe
)d dﬂb(! (a bd'c)

a)c ca-l——c{() (abd; cf)

abd; cf) XY (abd; o f)

abd; cf) =TT (abd; e f)

abd; cf) T2 (abd; e f)

Updatec = ca+cftoc = ca+cf +c:

(ab; c) A= dat) (abd; c)

(ab
(ab
(ab
(
(
(

220

CHAPTER 9. ENCODEABILITY OF GPI'S

(abd; ¢) T (qpdf; o)
(abdf,c)c S (abdf; c)
<abdf,c> - b(bdf’)
(

The proposed annotation is not order-independent, because invalid maximally raised di-
chotomies and next state constraints which remove them are order-dependent. Consider the
dichotomy (abe; ¢) and the next state constraintsd = da + db, ¢ = c¢d + ce, in the given
order:

(abe; c) (abde; c)

(abde; c) medte(t) (abede; c) invalid

(abede; ¢) d=daydb (abede; ¢)

Updatec = c¢d+ cetoc = cd + ce + c:

(abe; c) A=t L) (abde; c)

(abde; c) e=edhgete (abde; c)

Let us now exchange the order of the two next state constraints:

(abe; c) et (R) (abe; cd)

(abe; cd) A=t (L) (abde; cd) invalid

(abde; cd) eteel(h) (abede; ed) invalid

(abede; cd) E (abcde; cd)

Updatec = c¢d+ cetoc = cd + ce + c:

(abe; c) e=edigete (abe; c)

(abe; c) A=t L) (abde; c)

(abde; c) e=edhgete (abde; c)

Updated = da+dbtod = da+ db+ de:

(abe; c) et (R) (abe' cd)

(abe; cd) d=dutdptd “ (abe; cd)

d=da+db(L)
—

In al previous examples, it was aways sufficient to update a single next state constraint

to make satisfiable the given initial dichotomy. It isnot always so, as the following example shows.

1. Consider the dichotomy (ab; ¢) and the next state constraintsd = da + db, f = fa + fd,

¢ =ca+cf,c = ca+ecd Updated = da+ dbtod = da+ db+ de:
(ab; c) d=datdbtde (ab; c)

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 221

ab; cdf)d AR b cdf)
ab; cdf) d fit s (ab cdf)

Updatef = fa +fdtof = fa+ fd+ fe
ab; c) = ﬂb(L) (abd; c)

(
(ab
(abd;)C C”—%f()(abd;cf)

(abd; cf) =S *)(abcd; cf) invalid
(abed, cf) (abcd; cf)

(abed, cf) =fatfdtie (abed; cf)

(abed; cf) e=catef (abed; cf)

Updatec = ca+cftoc = ca+cf +c:

(ab; c) A=t L) (abd; c)

(abd; ¢) "= (b
(abdf,c)c ST (abdf;)

(abdf; ¢) = Lil) (abedf; ¢) invalid
(abedf; ¢) T2 (abedf;)
(abedf;) =L (abedf; o)
(abedf; ¢) =T (abedf;)

The conclusionisthat to make the cancellation go awvay one must update either d = da + db
or(f = fa+ fdande = ca+ed)or(c = ca+cfandc = ca+ cd),i.e theminima
sets of next state constraints that must be updated have cardinality > 1.

The last examples motivate the following definitions. A next state constraint is updated
when a digunct that has the parent among its conjuncts is added to it. When the added digjunct
contains only the parent, the updated next-state constraint istrivial. A trivia next-state constraint
can aways bereduced in theform parent = parent. So anext-state constraint can be madetrivial
by adding adigjunct that is a singleton coinciding with the parent.

Given an initia dichotomy : and a set of next-state constraints ', a set of updating
next-state constraints or updating set U C (' isaset of next-state constraints such that, if they

222 CHAPTER 9. ENCODEABILITY OF GPI'S

are replaced by trivia next-state constraints U, then ¢ is not anymore violated by (C' — U) U U’.
If 7isnotviolated by any ¢ € C', then U = (. If 7 isnot satisfied by C, atrivia updating set is '
itself. A minimal updating set is an updating set that does not contain properly a set of updating
next-state constraints.

The support of the set of all minimal updating sets is the union of all minimal updating
sets. The support can be used in the computation of acorrect lower bound. As an example, suppose
that the set of dl minimal updating setsis

{{d = da+db},{f = fa+ fd,c = ca+cd},{c = cat+cf,c = ca+cd}}, (9.0

thenits support is
{d = da+db, f = fa+ fd,c = ca+ cd}. (9.2

We need agorithmsto find:
1. anupdating set;
2. aminimal updating set;
3. al minima updating sets;
4. the support of all minimal updating sets.

We present next an elegant characterization of updating setsin terms of theraising graph,
that is a graph describing all possible raisings that can be acted upon an initid dichotomy. This
characterization is the basis of agorithms discussed in Section 11.3.

We state first some facts about applicability of next-state constraints to dichotomies.
Given an initial dichotomy, a next-state constraint is applicable to it iff the conditions of either
raising rule are satisfied by the dichotomy and the application of the next-state constraint adds at
least one state to either block. If the former condition is true and the latter is false the constraint
is vacuously applicable. Since the conditions for the two raising rules are mutually exclusive, at
most one of them is applicable. Therefore we can say that a next-state constraint isleft applicable
or right applicable to a dichotomy. If a next-state constraint is applicable to a dichotomy it stays
applicable to it until it isapplied or until it becomes vacuously applicable (because another raising
action produces the same effect), with at most a change of type of rule. Precisely, aleft applicable
next-state constraint stays left applicable or becomes vacuously applicable. A right applicable
next-state constraint either stays right applicable or becomes vacuously applicable or becomes | eft

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 223

applicable, because aleft raising adds to the | eft a state of a conjunct that before had no state to the
left. Inthelatter case, invalidity isreached. Given adichotomy ¢ and a set of next-state constraints
C, the latter can be partitioned into a set €, of the ones applicable, a set C',,, of the ones not
applicable or vacuously applicable and a set C',, of the ones already applied (used). The three sets
are apartition of C'.

Given an initial dichotomy and a set of next-state constraints, suppose that the onesin
C, areapplied in paralld to an initial dichotomy so that raised dichotomies are obtained. For each
raised dichotomy, move the applied next-state constraint (which now become vacuously applicable)
from C', to ', and check if any next-state constraint in C',,, is how applicable, in which case it
must migrate from C',, to C',. At each step the sets C,,, C,,, €', @e a partition of C'. By this
process one builds araising graph whose nodes are dichotomies, and whose directed edges are
next-state constraints that raise the predecessor dichotomy to the successor dichotomies. After a
new node (raised dichotomy) is added, one checks whether it isinvalid; if so, one does not raise
that node anymore. When no node can be raised, the process is terminated. The resulting graph is
the collection of all possiblewaysto apply the next-state constraintsin C' to theinitial dichotomy i.

Theorem 9.1.4 The set of outgoing edges of any node (that is not a sink) of the raising graph of a
violated initial dichotomy is an updating set.

Proof: By Theorem 9.1.2, either all sinksof thegraph arethe samevalid maximally rai sed dichotomy
or they are invalid raised dichotomies (not necessarily the same). In the latter case, consider the
outgoing edges F,, of anode n that isnot asink. If each of the next-state constraints associated to
F, isupdated, say to atrivial next state constraint, the node » becomes a valid maximally raised
dichotomy; it is maximally raised because C', has been emptied, and it is valid because it has been
valid up to now and no raising has been performed. But consider now the raising graph that would
be obtained by starting al over the process, without using the next-state constraintsin F,,. Since
along a path a valid maximally raised dichotomy is reached, then all sinks must be the same valid
maximally raised dichotomy, again by Theorem 9.1.2. In other words, the outgoing edges of »
yield an updating set. Therefore any path in the original raising graph from the source to an invalid
sink must include at least one of these edges, so that by updating the related next-state constraints
an invalid raised dichotomy is not reached. [|

Corollary 9.1.1 A minimal set of outgoing edges, i.e., not properly contained in any other set of
outgoing edges, is a minimal updating set. All minimal sets of outgoing edges are all minimal

224 CHAPTER 9. ENCODEABILITY OF GPI'S

updating sets. The union of all minimal sets of outgoing edges gives the support of all minimal

updating sets.

9.1.4 Choice of a Branching Column

Given aset of selected GPI's and of unsatisfied free initial dichotomies, we add one more
GPI to minimizethe violations that make unsatisfied those free initial dichotomies.

An examplewill helpin clarifying the notion. Let iy = {i1, i1, } and iy = {i2, 72, } be
unsatisfied free initial dichotomies. Suppose that for each of them we know the minimal updating
sets. For instance, suppose that the disjunction of minimal updating sets of i1, isc; + ¢; + ¢5, of
i1, IS¢ + ¢, Of ip, iScjcy + ¢; and of ip, iS¢, + ¢, where the ¢’s are next state constraints. From
the updating next-state constraints we know the minterms that must be updated. The step from

next-state constraints to mintermsis clarified by the following statements:
1. the same next-state constraint may be associated to more than one minterm;
2. to update a next-state constraint a new conjunct must be or-ed to it;
3. to or anew conjunct anew GPlI must be chosen that providesit by its next state tag;

4. aGPI contributesaconjunct only to the mintermsthat it covers, i.e. aGPl updatesanext-state

constraint only for the mintermsthat it covers;

5. if the same next state constraint comes with more than one minterm it may be necessary to
update it differently for each minterm, i.e. a different GPI may be have to be selected to
update that next-state constraint for each minterm to which it is associated.

For instance, supposethat ¢; is associated to minterm m;, ¢; to mintermsm; and my, ¢, to m, and
my, ¢p 0 my, ¢, 10 m, and ¢, to m, (indexes of constraints and minterms vary in different sets).
Then the set of all mintermsto be updated of i1, ism; + m;my + mymy, of i1, ism; + m,, Of ip,

ism;mpm, + m; and of ip,, ism, + m,. We can summarize the updating conditions of i1 as.
(mq + mymy + msmy) + (m; + my) 9.3

and of ¢, as:
(mjmemg + my) + (my +m,). (9.4)

For ¢, to be satisfied it is necessary to find a GPI such that

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 225

1. itsproper input and present state part covers the proper input and present state part of m; and
no stateinitstag isin theleft block of i1, (otherwise, onedoesnot invalidatethe: f condition
of raise_dichotomy and remove_invalid_dichotomies); or,

2. itsproper input and present state part covers the proper input and present state part of 12, and

my, and no state initstag isin the left block of i1, ; or,

3. itsproper input and present state part covers the proper input and present state part of m and
my and no statein itstag isin the left block of ¢4, ; or,

4. itsproper input and present state part covers the proper input and present state part of m; and
no state in itstag isin the left block of i1,

5. itsproper input and present state part covers the proper input and present state part of ., and
no state in itstag isin the left block of i1 ,.

There may be no single GPI that achieves the goal, but a set of them may be needed. So we want to
select the GPI that improvesthe overall satisfiability of unsatisfiedinitia dichotomies, evenif it does
not succeed in making satisfiable any single of them. Transform in POS the updating conditions of

~

.
(my 4 mj + mg+ my) (my 4+ m; + me + my) (m; + my + ms + my) (m; + my + me +my) (9.5)

and do the same for those of 4, 3. In thisway, the updating conditionsof ¢; and > can be expressed
by a set of updating clauses.

In general, consider a set of clauses of the form 7(m; + ... + m,,), for each unsatisfied
free initial dichotomy 7, and each updating clause (m; + ...+ m,) obtained for 7. These clauses
can be seen as the rows of a unate covering table, whose columns are the candidate GPI's to
extend the current solution. There is an dement in the table at the intersection of GPI ¢;, and row
i(mi + ...+ my) iff

1. the proper input and present state part of g5 covers the proper input and present state part of
m,; and no state in thetag of ¢, isin theleft block of iz ; or,

2. ...0r,

3Boolean identities alow simplification of the clauses, so that subsumed literals and clauses can be cancelled. For
instancethe first clause simplifiesfrom m; + m; + m. + m; + my tom; + m; + m. + m,. Apparently this atersthe
choice of the branching column.

226 CHAPTER 9. ENCODEABILITY OF GPI'S

3. the proper input and present state part of ¢;. covers the proper input and present state part of
m,, and no state in the tag of g; isin the left block of ir.

Such atable (called the full satisfiability table) requires a knowledge of all the updating sets and it
would be difficult to manipulate with implicit techniques, because each clause refers to avariable
number of conditions. Thedifficulty isnot with having many clauses for the same, but with having
many literals per clause. Each clause is a row of the table, but we do not know an appropriate
labelling scheme for a row with avariable number of literals.

A cruder estimate is made by restriction to one minimal updating set for each initia
dichotomy. Inthat case, each updating clausewill have exactly two literalsand an implicit labelling
scheme for rows and columns can be devised. For instance, consider m ;m, for i1, and m,, for iy,

that give the POS

mimy + my = (mj + my) (my + my). (9.6)

Thereisan element in the table at the intersection of GPI g;, and row i1 (m; + m,) iff

1. the proper input and present state part of g5 covers the proper input and present state part of

m; and no statein thetag of g, isintheleft block of i1, ; or,

2. the proper input and present state part of ¢, covers the proper input and present state part of
m, and no state in the tag of gz isin the left block of i1,,.

Such atable iscalled partial satisfiabilitytable.

This restriction affects only the quality of branching column selection, not the exactness
of afinal solution, that is guaranteed by the completness of the search technique. The GPI that has
more entriesin the table is considered to be the most desirabl e to choose as next branching column.
This proposed agorithm requires to build a matrix and to find the column in it with maximum

number of ones.

9.1.5 Computation of a Lower Bound

In ordinary unate covering, the cardinality of a maximum set of pairwise disjoint rows
(i.e. no 1'sin the same column) is alower bound on the cardinality of the solution to the covering
problem, because a different element must be selected for each of the independent rows in order
to cover them. Since finding a maximum independent set is an NP-complete problem, in practice
an heuristic is used that provides a weaker lower bound. A row is found that is digoint from a

9.1. A THEORY OF ENCODEABILITY OF GPI’'S 227

maximum number of rows (i.e. arow of minimum length). All rows having e ementsin common
with it are then deleted. This processis iterated until a set of pairwise digoint rows (independent
set) isfound.

Consider again the example used to describe the branching column selection, where the

unsatisfied free initial dichotomies:; and 7, had respectively the updating conditions:
(mq + mymy + msmy) + (m; + my) (9.7)

and:
(mjmemg + my) + (my +m,). (9.8)

Suppose that we build thefull satisfiability table, asdescribed above. The cardinality of amaximum
set of pairwise digoint rowsis alower bound on the cardinality of the solution to the constrained
covering problem, because a different e ement must be selected for each of the independent rowsin
order to satisfy them. This captures the notion of a maximum set of pairwise digjoint violations of
freeinitia dichotomies.

We already observed that buildingthefull satisfiability table may be difficult and not prone
to asimpleimplicit manipulation scheme. Unfortunately here we cannot usethe partial satisfiability
tableeither, becauseit doesnot yield acorrect lower bound, since we would be choosing an arbitrary
updating set for each initial dichotomy and we cannot claim that thisis the best that can be done.

A way out of this difficulty isto build the support satisfiability table. Replace the and
operatorswith or operatorsin the previous updating conditionsto get "relaxed” updating conditions:

(mi +mj; + my + ms 4+ mye) + (m; + myp) (9.9
and:
(mj; + my 4+ mg + m;) + (my + m,). (9.20)

If the original updating conditions are satisfied, the relaxed ones are too. Again, these clauses can
be seen as the rows of a unate covering table. Thereisan element in the table at the intersection of

GPI g5, and row 71, which is associated to (m; + m; + my 4+ ms + my) + (m; + m,), iff:

1. the proper input and present state part of g5 covers the proper input and present state part of
any of {m,, ..., m:} and no statein thetag of g;, isin theleft block of i1, ; or,

2. the proper input and present state part of ¢, covers the proper input and present state part of
any of {m;, m,} and no statein thetag of ¢, isin theleft block of i1,,.

228 CHAPTER 9. ENCODEABILITY OF GPI'S

Such atable iscaled support satisfiability table.

A maxima set of parwise digjoint rows of this table still provides a correct lower bound,
albeit alower one than the full satisfiability table does. One can manipulate this table with implicit
techiques, as shown precisely in Section 11.3; the set of rows are thei’s. To compute the entries of
the table one can use a relation on dichotomies and minterms, such that for instance ¢1m; isin the
relation iff m; isalitera in the clause associated to ;. Thisworks because there is a uni gue clause
associated to each 7.

This table can be used also for branching column selection, but it would degrade the
guality of the choice even more than the partial satisfiability table.

A weaker lower bound can be computed considering only the next state constraints of the
typea = (). Since for each of them a GPI must be chosen to cover the related minterm, one can use

acovering tablewith entriesto 1 iff a GPI contains a minterm, as in ordinary unate covering.

229

Chapter 10

Binate Covering

10.1 Introduction

Itisnot feasible to generate GPI’s and to set up arelated unate or binate covering table by
explicit techniques on non-trivial examples [19]. By means of techniquesasin [79, 53, 30], GPI's
can be generated using BDD-based (aias implicit) representations. The next step is to select an
encodeable cover of GPI's using implicit representations. This motivates the development of new
algorithms to solve covering problems based on the representation and manipulation of covering
tables represented with BDD's. Since covering problems are ubiquitous in logic synthesis and
combinatoria optimization, in this chapter we will develop a genera theory of implicit solutions
of binate covering problems. It is a development of large applicability, as shown by its successful
application to an host of problemsin state minimization [63]. In the next chapter we will see how
thisformulation is employed in the GPl minimization problem.

At the core of the exact solution of various logic synthesis problems lies often a so-caled
covering step that requires the choice of a set of elements of minimum cost that cover a set of
ground items, under certain conditions. Prominent among these problems are the covering stepsin
the Quine-McCluskey procedure for minimizing logic functions, selection of a minimum number
of encoding columns that satisfy a set of encoding constraints, selection of a set of encodeable
generalized prime implicants, state minimization of finite state machines, technology mapping and
Boolean relations. Let usreview first how covering problems are defined formally.

Supposethat aset S = {s1,...,s,} isgiven. The cost of selecting s; isc¢; where ¢; > 0.
By associating a binary variable z; to s;, whichis 1 if s; is selected and O otherwise, the binate

230 CHAPTER 10. BINATE COVERING

covering problem (BCP) can be defined asfinding S’ C .S that minimizes

n
E Ciy,
=1

subject to the constraint

Az, 22,.. ., 2,) =1,

where A is a Boolean function, sometimes called the constraint function. The constraint function
specifies aset of subsetsof .5 that can be asolution. No structural hypothesisismade on A. Binate
refers to the fact that A isin general abinate function (afunctionisbinateif it has at least a binate
variable). BCP is the problem of finding an onset minterm of A that minimizes the cost function
(i.e., asolution of minimum cost of the Boolean equation A(z1, 2, ...,2,) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the
problem SAT, the prototypical N P-complete problem [46]. In this case it also possibleto write A
as an array of cubes (that form amatrix with coefficients from the set {0, 1, 2}). Each variable of A
isacolumn and each sum (or clause) is arow and the problem can be interpreted as one of finding
asubset C' of columns of minimum cost, such that for every row r;, either

1. 3j suchthata;; = landc; € C, or
2. dj suchthat a;; = 0andc; ¢ C.

In other words, each clause must be satisfied by setting to 1 avariable appearing in it in the positive
phase or by setting to O avariable appearing in it in the negative phase. 1n aunate covering problem,
the coefficients of A arerestricted tothevaues 1 and 2 and only thefirst condition must hold. Inthis
chapter, we shall consider the minimum binate covering problem where A is given in product-of-
sumsform. Inthiscase, theterm coveringisfully justified because one can say that the assignment
of avariableto O or 1 covers some rows that are satisfied by that choice. The product-of-sums A is
called covering matrix or covering table.

As an example of binate covering formulation of awell-known logic synthesis problem,
consider the problem of finding the minimum number of prime compatibles that are a minimum
closed cover of agiven FSM. A binate covering problem can be set up, where each column of the
tableisaprimecompatibleand each row isoneof the covering or closure clauses of the problem [50].
There are as many covering clauses as states of the origina machine and each of them requires that
astate is covered by selecting any of the prime compatiblesin which it is contained. There are as
many closure clauses as prime compatibles and each of them states that if agiven prime compatible

10.1. INTRODUCTION 231

is selected, then for each implied class in its corresponding class set, one of the prime compatibles
containing it must be chosen too. In the matrix representation, table entry (¢, j) is 1 or 0 according
to the phase of theliteral corresponding to prime compatible 7 in clause ¢; if such aliteral isabsent,
theentry is 2.

A specia case of binate covering problem is a unate covering problem, where no litera
in the negative phase is present. Exact two-level minimization [87, 113] can be cast as a unate
covering problem. The columns are the prime implicants, the rows are the minterms and thereis a
1 entry in the matrix when a prime contains a minterm.

Various techniques have been proposed to solve binate covering problems. A class of
them [14, 72] are branch-and-bound techniques that build explicitly the table of the constraints
expressed as product-of-sum expressions and explore in the worst-case al possible solutions, but
avoid the generation of some of the suboptimal solutions by a clever use of reduction steps and
bounding of search space for solutions. We will refer to these methods as explicit.

A second approach [82] formulates the problem with Binary Decision Diagrams (BDD’s)
and reduces finding a minimum cost assignment to a shortest path computation. In that case the
number of variables of the BDD isthe number of columns of the binate table.

Recently, a mixed technique has been proposed in [61]. It is a branch-and-bound ago-
rithm, where the clauses are represented as a conjunction of BDD’s. The usage of BDD’s leads to
an effective method to compute alower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for
thelatter solve aso the former. In the other direction, exact state minimization, a problem naturally
formulated as a binate covering problem, can be reduced to a unate covering problem, after the
generation of irredundant prime closed sets[117]. But there isacatch here: the cost functionisnot
any more additive, so that the reduction techniques so convenient to solve covering problems, are
not any more applicable asthey are.

In this chapter, we are interested in exact solutions of binate covering. Existing explicit
methods do quite well on small and medium-sized examples, but fail to complete on larger ones.
Thereason isthat either they cannot build the binate table because the number of rows and columns
is too large, or that the branch-and-bound procedure would take too long to complete. For the
approach of building a BDD of the constraint function and computing the shortest path fails, it fails
when the number of variables (i.e., columns) istoo large because it islikely that a BDD with many
thousands of variables will blow up.

The crux of the matter, when explicit techniques fail, is that we are representing and

232 CHAPTER 10. BINATE COVERING

manipulating sets that are too large to be exhaustively listed and operated upon. Fortunately we
know of an aternative way to represent and manipulate sets: it is by defining the set over an
appropriate Boolean space (i.e., encoding the elements of the set), associating to it a Boolean
characteristic function and then representing this function by a binary decision diagram (BDD).
Since now on, by BDD of a set we will denote the BDD of the characteristic function of the set
over an appropriate Boolean space. A BDD [16, 10] is a canonical directed acyclic graph data
structure that represents logic functions. The items that a BDD can represent are determined by
the number of paths of the BDD, while the size of the BDD is determined by the number of
nodes of the DAG. There is no monotonic relation between the size of a BDD and the number
of elements that it represents. It is an experimentd fact that often very large sets, that cannot be
represented explicitly, have a compact BDD representation. Set operations are easily turned into
Boolean operations on the corresponding BDD’s. So we can manipulate sets by a series of BDD
operations (Boolean connectives and quantifications) with a complexity depending on the sizes of
the manipulated BDD’s and not on the cardinality of the setsthat are represented. The hope hereis
that complex set manipulations have as counterparts Boolean propositionsthat can be represented
with compact BDD’s. Of course, thisisnot awaysthe case and it may happen that an intermediate
BDD computation, in a sequence of operations|eading to a set, blowsup. The name of thegameis
acareful analysisof how propositional sentences can be transformed into logically egquivalent ones,
that can be computed more easily with BDD manipulations. Specia care must be exercised with
quantifications, that bring more danger of BDD blowups. All of this goes often under the name of
implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at
Bull [23] and UC Berkeley [142] produced powerful techniquesfor implicit enumeration of subsets
of states of a Finite State Machine (FSM). Later work at Bull [25, 79] has shown how implicants,
primesand essential primesof atwo-val ued or multi-val ued function can al so be computed implicitly.
Reported experiments show a suite of examples where al primes could be computed, whereas
explicit techniquesimplementedin ESPRESSO [11] failedto do so. Finally, thefixed-point dominance
computation in the covering step of the Quine-McCluskey procedure has been made implicit in
current work [29, 53]. The experiments reported show that the cyclic core of al logic functions
of the ESPRESSO benchmark can be successfully computed. For some of them ESPRESSO failed the
task.

Thischapter describesan implicit formulation of the binate covering problem and presents
animplementation. Theimplicit binate solver has been tested for the sel ection of an encodabl e set of

10.2. RELATION TO 0-1 INTEGER LINEAR PROGRAMMING 233

GPI’s, asreported in Chapter 11, and for state minimization of ISFSM’s and pseudo NDFSM's [63].
The reported experiments show that implicit techniques have pushed the frontier of instanceswhere
binate covering problems can be solved exactly, resulting in better optimizationsin key steps of
sequential logic synthesis.

Inthefollowing sections, wewill review the known algorithmsto solve covering problems
and then we will describe a new branch-and-bound algorithm based on implicit computations. The
remainder of the chapter is organized as follows. We have defined the minimum cost binate
covering problem in this section. In Section 10.2, we will compare this problem with 0-1 integer
linear programming. Thebranch-and-bound schemewill beintroducedin Section 10.3 which hasbe
used in explicit binate covering algorithms summarized in Section 10.4. In Section 10.5, we survey
the classical reduction rules used in explicit agorithms. Our implicit binate covering algorithm is
then introduced in Section 10.6 and its program input, an implicit table representation, is described
in Section 10.7. Section 10.8 illustrates how reduction techniques can be implicitized. Other kinds
of implicit table manipulations are introduced in Section 10.9.

10.2 Relationto 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integer linear programming (ILP) and binate
covering problem (BCP). For every instance of ILP, there is an instance of BCP with the same
feasible set (i.e., satisfying solutions) and therefore with the same optimum solutions and vice
versa. As an example, theinteger inequality constraint

31— 232 + 4x3 > 2,
with 0 < 1, 22, 23 < 1 corresponds to the Boolean equality constraint
1T+ 23 =1,
that can be written in product-of-sumsform as:
(z1+ 23)(FT2+23) = L.

Given a problem instance, it is not clear a-priori which formulation is better. It is an interesting
guestion to characterize the class of problems that can be better formulated and solved with one
technique or the other.

234 CHAPTER 10. BINATE COVERING

LI_to.BDD(I) {
let Ibed 7t jw;-a; >T
if (maz(I) < T) return O
if (min(l) > T) return 1
¢+ = ChooseSplittingVar (1)
I'=(Cpwi-2; 2T —w)
I°= (Cjpiwj-2; 2 T)
fi=LIto_BDD(IY)
fo=LIto_BDD(I°
return f = a; - f147; - f°

Figure 10.1: Transformation from linear inequality to Boolean expression.

As an example of reduction from ILP to BCP, a procedure (taken from [61]) that derives
the Boolean expression corresponding to 3 °7_; w;.z; > 1" isshownin Figure 10.1.

The idea of the recursion relies on the observation that:
1 f=0ifandonlyif maz(l) =3, sow; < T,
2. f=1lifandonlyif min(I) =3, ow; > T,

When neither case occurs, the two subproblems 7't and 1°, obtained by setting the splitting variable
x; to 1 and O respectively, are solved recursively.

10.3 Branch-and-Bound asa General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by
successive partitioning of the solution space. The branch refers to this partitioning process; the
bound refers to lower bounds that are used to construct a proof of optimality without exhaustive
search. A set of solutions can be represented by a node in a search tree of solutions, and it is
partitioned in mutually exclusive sets. Each subset in the partition is represented by a child of the

10.4. ABRANCH-AND-BOUND ALGORITHM FORMINIMUM COST BINATE COVERING235

origina node. In thisway, a computation tree is built. An agorithm that computes a lower bound
on the cost of any solution in a given subset allows to stop further searches from a given node, if
the best cost found so far is smaller than the cost of the best solution that can be obtained from the
node (lower bound computed at the node). In this case the node is killed and therefore none of its
children needs to be searched; otherwiseit is aive.

If we can show at any point that the best descendant of anode y isat least as good as the
best descendant of node x, then we say that iy dominates z, and y can kill x.

Figure 10.2 shows the classical algorithm [105]. An activeset holds the live nodes at
any point. A variable U is an upper bound on the optimal cost (cost of the best complete solution
obtained at any given time). The branching process needs not produce only two children of agiven
node, but any finite number.

We will seeinthe next section that BCP can be solved by thefollowing recursive equation

BCP(My) = BestSolution(BCP(My,)U{xz;}, BOP(M;_))

where M; is the binate table that corresponds to a function in product-of-sum form f, and
BCP(My,) (respectively, BC'P(My_)) is the subproblem expressed by the function fa, (re-
spectively, fz). BC'P(M{) returns an onset minterm of f that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems,
but powerful dominance and bounding techniques as well as good branching heuristics help in
keeping the combinatorial explosion under control.

10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Cover-
ing

We will survey in this section a branch-and-bound solution of minimum cost binate
covering. This technique has been described in [51, 50, 13, 14], and implemented in successful
computer programs [112, 108, 130]. The branch-and-bound solution of minimum binate covering
is based on arecursive procedure. A run of the algorithm can be described by its computation tree.
Theroot of the computationtreeistheinput of the problem, an edge represents acall to sm_mincov,
an internal node is a reduced input. A leaf is reached when a complete solution is found or the
search isbounded away. From the root to any internal nodethereisaunique path, that isthe current

path for that node. In the sequel, we will describe in detail the binary recursion procedure. The
presentation will refer to the pseudo-code sm_mincov, shown at the end of this subsection.

236 CHAPTER 10. BINATE COVERING

branch_and_bound() {
activeset = original problem
U=o0
currentbest = anything
while (activeset isnot empty) {
choose abranching node k € activeset
remove node & from activeset
generate the children of node &: childe = 1,..., ng
and the corresponding lower bounds z;
fori=1ton; {
if (z; > U)kill child:
elseif (child i isacomplete solution) {
U=z
currentbest = child

else add child 7 to activeset

Figure 10.2: Structure of branch-and-bound.

10.4. ABRANCH-AND-BOUND ALGORITHM FORMINIMUM COST BINATE COVERING237

10.4.1 TheBinary Recursion Procedure

The inputsto the algorithm are:
e acovering matrix M
e acurrent-path partia solution select (initially empty);

e arow of non-negative integers weight, whose i-th element is the cost or weight of the :-th
column of M;

¢ alower bound Ibound (initially set to 0), which isamonotonicincreasing quantity a ong each
path of the computation tree equal to the cost of the partial solution on the current path;

e an upper bound ubound (initially set to the sum of weights of al columnsin M), which
is the cost of the best overall complete solution previously obtained (a globally monotonic
decreasing quantity);

The output isthe best column cover for input M extended from the partial solution select
along the current path, called best current solution, if this solution costsless than ubound. An empty
solutionisreturned if asolution cannot be found which beats ubound or an infeasibility is detected.
By infeasibility, it is meant the case when no satisfying assignment of the product of clauses exists.
Even thoughtheinitial probleminatypical logic synthesisapplication has usually at |east asolution,
some subproblemsin the branch and bound tree may be infeasible. When sm_mincov is called with
an empty partia solution select and initial Ibound and ubound, it returns a best global solution.

The agorithm calls first a procedure sm reduce that applies to M essential column
detection and dominance reductions. The type of domination operations and the way in which they
are applied are the subject of Section 10.5. Another more complex reduction criterion (Gimpel’s
rule) can a so be applied (see Subsection 10.5.12). These reduction operations delete from M some
rows, columns and entries. What is left after reduction is called a cyclic core. Thefina god isto
get an empty cyclic core. Thevaue of the lower bound is updated using a maximal independent set
computation (see Subsection 10.4.3). If no bounding is possible and the reductions do not suffice
to solve completely the problem, a partition of the reduced problem into digoint subproblemsis
attempted (see Subsection 10.4.2) and each of them is solved recursively. When everything fails,
binary recursion is performed by choosing a branch column (see Subsection 10.4.4). Solutionsto
the subproblems obtained by including the chosen column in the covering set or by excluding it

238 CHAPTER 10. BINATE COVERING

from the covering set are computed recursively and the best solution is kept (the second recursion
isskipped if the solution to the first one matches the updated lower bound).
The procedure sm_mincov returns when:

e The cost of a partia solution, found by adding essential columns to select, is more than
ubound or infeasibility is detected when applying the domination rules (line 1). An empty
solutionis returned.

e The best current solution is found by applying Gimpel's reduction technique (line 2). Since
gimpel _reduce calls recursively sm_mincov, an empty solution could be returned too.

e The updated lower bound, determined by adding to Ibound the cost of the essential primes
and of the maximal independent set, is not less than ubound (line 5). An empty solution is
returned.

e Thereisno cyclic core and we are not in the previous case. The best current solutionisfound
by updating select with the new essential and unacceptable columns (line 6).

e The best current solution is found by partitioning the problem (line 7). The procedure
sm_mincoviscalled recursively ontwo smaller covering matrices determined by sm block partition
(line8and 10). An empty solution can be returned by either recursive call. If thefirst call to
sm_mincov returns an empty solution, the second one is not invoked (line 9). If neither call
returns empty, each contributes its returned value to the current solution.

e A branching column is chosen and sm.mincov is called recursively with the branch column
in the covering set (line 12). If the recursive call of sm_mincov returns a non-empty solution
that matches the current lower bound (Ibound_new), that solution is returned as the current
solution (line 14). If the cost of the current solution isless than ubound, ubound is updated,
i.e., the current solutionis also the best global solution (line 13).

e Asin the previous case, but sm_mincov is called recursively with the branch column not in
the covering set (line 15). The best among the solution found in the previous case and the
one computed here is the current solution.

Notice the following facts about the procedure sm_mincov:

e Theparameter Ibound isupdated once (line4). Thereasonisthat after the computation of the
essential columns (line 1) and of the independent set (line 3), the cost of the previous partial

10.4. ABRANCH-AND-BOUND ALGORITHM FORMINIMUM COST BINATE COVERING239

sm_mincov(M, select, weight, lbound, ubound) {

/* Apply row dominance, column dominance, and select essentials*/ D

if (lsm_reduce(M, select, weight, ubound)) return empty_solution

/* Seeif Gimpel’s reduction technique applies*/ 2

if (gimpel_reduce(M, select, weight, lbound, ubound, &best)) return best

/* Find lower bound from here to final solution by independent set */ 3

indep = sm_maximal_independent_set(M, weight)

/* Make sure the lower bound is monotonically increasing */ 4

lbound_new = max(cost(select) + cost(indep), lbound)

/* Bounding based on no better solution possible*/ (5)

if (lbound_new > ubound) best = empty_solution

elseif (M isempty) { /* New best solution a current level */ (6)
best = solution_dup(select)

} dseif (sm_block_partition(M, & My, & M) gives non-trivia bi-partitions) { (7
bestl = sm_mincov(My, selectl, weight, O, ubound — cost(select)) (8)
/* Add best solutionto the selected set */ (9)

if (bestl = empty_solution) best = empty_solution

ese{ (20)
select = select U bestl
best = sm_mincov(My, select, weight, lbound_new, ubound)

}

+ else { /* Branch on cyclic core and recur */ (11)
branch = select_column(M, weight, indep)
selectl = solution_dup(select) U branch

let Mprancy bethereduced table assuming branch columnisnot in solution (12)
bestl = sm_mincov(Mpranch, select, weight, lbound_new, ubound)

/* Update the upper bound if we found a better solution */ (13)
if (bestl # empty_solution) and (ubound > cost(bestl)) ubound = cost(bestl)

/* Do not branch if lower bound matched */ (19
if (bestl # empty_solution) and (cost(bestl) = lbound_new) return best1

let M7 —— be the reduced table assuming branch column not in solution (15)

best2 = sm_mincov(M—r
branch’

best = best_solution(bestl, best2)

select, weight, lbound_new, ubound)

1

return best

Figure 10.3: Detailed branch-and-bound agorithm.

240 CHAPTER 10. BINATE COVERING

solution summed to the cost of the essentia columnsand of the independent set is potentially
a sharper lower bound on any complete solution obtained from this node of the recursion
tree. The updated value Ibound_new is used in the rest of the routine. The lower bound is a

monotonically increasing quantity aong each path of the computation tree.

e The parameter ubound is updated once (line 13). At that point a new complete solution has
just been returned by therecursive call to sm_mincov (line 12) and an updated val ue of ubound
must be recomputed for the following recursive call of sm_mincov (line 15). The reason is
that when a new complete solution is obtained, the current ubound is not any more valid and
therefore it must be updated before it is used again. To be updated, ubound is compared
against the cost of the newly found solution, and the minimum of the two is the new ubound.
The upper bound is a monotonically decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign-

ment to the problem.

10.4.2 N-way Partitioning

If the covering matrix M can be partitioned into two digoint blocks M; and M>, the
covering problem can be reduced to two independent covering subproblems, and the minimum
covering for M isthe union of the minimum coverings for M7 and M». Such bi-partition can be
found by putting in M; arow and al columns that have an element in common with the row (i.e.,
the columns intersecting the row) and recursively all rows and columns intersecting any row or
columnin M;. The remaining rows and columns (i.e., not intersecting any row or column in A7)
are put in M. Thisagorithm can be generalized to find partitions made by N blocks, as shownin
Figure 10.4.

Theorem 10.4.1 If acoveringmatrix M can be partitionedinton digoint blocks M1, Mo, ..., M,
the union of the minimum covers of M1, M5, ..., M, isthe minimum cover of M.

Bi-partitioningisimplemented in [108, 130] as follows. When checking for a partition of
the problem (line 7), the routine sm_mincov is called recursively on two independents subproblems
(lines 8 and 10), if they exist. When solving the smaller of the two subproblems (line 8), theinitial
solution is empty, theinitia lower bound is set to O, theinitial upper bound is set to the difference
between the current ubound and the cost of the current partial solution. When solving the larger

10.4. ABRANCH-AND-BOUND ALGORITHM FORMINIMUM COST BINATE COVERING241

noway_partition(M) {
while (thereisarow r; not in any partition) {
put r; inanew partition Mj,
while (thereisarow r; connected to any row in partition A/},) {
put row r; in partition Mj,

Figure 10.4: N-way partitioning.

of the two subproblems (line 10), the initial solution is the current solution (to which the solution
of the smaller subproblem is added, if it is not empty), theinitial lower bound is set to the current

lower bound Ibound_new, theinitial upper bound is set to the current ubound.
Theorem 10.4.2 The upper bound set in the smaller subproblemis correct.

Proof: Let select be the partia solution along the current path. It holds that (cost of the fina
solution along the current path) > (cost of solving M1 + cost(select) + 1). If (cost of solving M)
> (ubound — cost(select)), then (cost of thefinal solution along the current path) > (ubound + 1),
i.e., (cost of the final solution along the current path) > wbound. Thisisruled out by setting the
upper bound when solving M to (ubound — cost(select)), Since sm_mincov returns a non-empty
solution only if it can beat the given upper bound. [|

10.4.3 Maximal Independent Set

The cardinality of amaximum set of pairwise disjoint rowsof M (i.e., no 1'sin the same
column) is a lower bound on the cardinality of the solution to the covering problem, because a
different element must be selected for each of the independent rows in order to cover them. If the
size of current solution plus the size of the independent set is greater or equal to the best solution
seen so far, the search a ong thisbranch can be terminated because no sol ution better than the current
one can possibly befound. It isalso true that the size of the independent set at thefirst level of the

242 CHAPTER 10. BINATE COVERING

recursion is a lower bound for the final minimum cover, so that the search can be terminated if a
solutionisfound of size equd to thislower bound. Since finding a maximum independent set is an
NP-complete problem, in practice an heuristic is used that provides a wesker lower bound. Notice
that even the lower bound provided by solving exactly maximum independent set is not sharp.

In[112, 108, 130], the adjacency matrix B of a graph whose nodes correspond to rowsin
the cover matrix M iscreated. In the binate case, only rows are taken into consideration which do
not contain any 0 element. An edgeis placed between two nodesif the two rows have an element in
common. While B is non-empty, arow R; of B isfound that is digoint from a maximum number
of rows (i.e.,, the row of minimum length in B). The column of minimum weight intersecting R;
isaso found. The weight is cumulated in the independent set cost. All rows having elementsin
commonwith R; arethen deleted from B. Attheend of the while-iteration aset of pairwisedigjoint
rows (independent set) and their minimum covering cost is found. Notice that one could think to
the problem in adual way asfinding amaximal cliquein agraph with the same rows as before, and

edges between two nodes representing two digjoint rows.

10.4.4 Selection of a Branching Column

The selection of agood branching columnis essentia for the efficiency of the branch and
bound agorithm. Since the time taken by the selection is a significant part of the total, a trade-off
must be made between quality and efficiency.

In[112, 108, 130], the selection of the branching variable is restricted to columns inter-
secting the rows of the independent set, because a unique column must eventually be selected from
each row of the maximal independent set. Among thoserows, the selection strategy favors columns
with large number of 1's and intersecting many short rows. Short rows are considered difficult rows
and choosing them first favors the creation of essential columns. More precisaly, the column of
highest merit is chosen. The merit of a given column is computed as the product of the inverse of
the weight of the column multiplied by the sum of the contributionsof al rowsintersected inal by
the column. The inverse of the contribution of arow isequa to the number of al non-2 e ements
(each can contributein covering the row) minus 1. Theinverseiswell-defined, because at this stage
each row has at |east two-elements (it is not essential).

10.5. REDUCTION TECHNIQUES 243

10.5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Sdection of a column: a column must be selected if it is the only column that satisfies
a required constraint (Section 10.5.7). A dual statement holds for unacceptable columns
(Section 10.5.8). Also related is the case of unnecessary columns (Section 10.5.9).

2. Elimination of acolumn: acolumn C’; can be eliminated, if its elimination does not preclude
obtaining a minimal cover, i.e., if there existsin M another column C'; that satisfies at |east
all the constraints satisfied by C; (Section 10.5.5).

3. Elimination of arow: arow R; can be eliminated if there exists in A/ another row R; that
expresses the same or a stronger constraint (Section 10.5.1).

Even though more complex criteria of dominance have been investigated (for instance,
Section 10.5.12), the previous ones are basic in any table covering solver. Reduction rules have
previously been stated for the binate covering case [50, 51, 14, 13], and aso for the unate covering
case [87, 113, 13]. Here we will present the known reduction rules directly for binate covering
and indicate how they simplify for unate covering, when applicable. For each of them, we will
first define the reduction rule, and then a theorem showing how that rule is applied. Proofs for
the correctness of these reduction rules have been given in [50, 51, 14, 13], and they will not be
repeated here, except for afew less common ones. We will provide a survey comparing different
related reduction rules used in the literature.

The effect of reductions depends on the order of their application. Reductions are usually
attempted in a given order, until nothing changes any more (i.e., the covering matrix has been
reduced to a cyclic core). Figure 10.5 shows how reductions are applied in [112, 108, 130]*.

10.5.1 Row Dominance

Definition 10.5.1 Arow R; dominates another row R; if R; hasall the1’'sand O's of R;; i.e,, for

each column C}, of M, one of the following occurs:
o Mi,k =1and M]‘JC =1,

° Mi,k —=0and M]‘Jg =0,

1The reductions 8-dominance and row_consensusare only in [108] and the reduction by implication is only in [130].

244

CHAPTER 10. BINATE COVERING

sm_reduce(A, solution, weight, ubound) {
do {
apply 3-dominance or «-dominance
find essential columns
find unacceptable columns
if (acolumn isboth essential and unacceptable)
return empty_solution
for each essential column {
delete each row intersecting the columninal
if (arow of length 1 intersects the columnin a0)
return empty_solution
delete column
add column to solution
if (cost of solution > ubound)
return empty_solution
}
for each unacceptable column {
delete each row intersecting the columnina0
if (arow of length 1 intersectsthe columninal)
return empty_solution
delete column
}
apply row_consensus
apply row_dominance
} while (reductions are applicable)

return solution

Figure 10.5: Flow of reduction rules.

10.5. REDUCTION TECHNIQUES 245

o M, =2

Theorem 10.5.1 If arow R;isdominated by another row E;, R ; can be eliminated without affecting

the solutionsto the covering problem.

This definition of row dominanceis

e similar to column dominance (Rule 3) in [50], except that the labels of dominator row, R;,
and dominated row, R;, are reversed (i.e., reverse definition of dominance),

e similar to column dominance (Rule 3) in [51], except that the labels of dominator row, R;,
and dominated row, E;, are reversed (i.e., reverse definition of dominance),

e equivaent to row dominance (Definition 10) in [14],

e identical to row dominance (Definition 2.11) in [13].

Row Dominance for a Unate Table

Definition 10.5.2 Arow R; dominatesanother row R; if for all columnsC'y, M; . = 1= M, = 1.

10.5.2 Row Consensus

Theorem 10.5.2 If R; dominates R;, except for a (unique) column C; where R; and R; have
different values, element M; ;, can be eliminated fromthe matrix M (i.e., theentry in position M; j,

becomes a 2) without affecting the solutions of the covering problem.

Proof: Supposethat entry M 5, is1and entry M; i isO. Theargument isthe sameif entry A 5, isO
and entry M, ;. is 1. If entry M; ;. isremoved, the problem arises that we are not able to satisfy row
R; by setting 2, to 1. A problem arises if aminimum-cost solution requires z set to 1, because we
could missthefact that setting . to 1 satisfiesalso row R;. Instead we could obtain an higher-cost
solution, by selecting another column in order to satisfy row R; — M; ;. We now show that this
is not the case. If a minimum-cost solution requires x. set to 1, we must still satisfy row R; that
cannot be satisfied by =, set to 1. Whatever choice will be made to satisfy R;, it will satisfy also
R; — M; (since R; — M, hasal 1'sand O's of R;) and therefore no more cost will be incurred
to satisfy row R; — M; ;. The previous argument failsif B; — M; ; isempty and there are casesin
which an higher-cost solution would be found. One could claim that if B; — M; ; is empty, then
R; hasonly entry M; ;, and therefore z;, is an essential, that is taken care by the essential column

246 CHAPTER 10. BINATE COVERING

detection. In reality it may happen that by applying row consensus many timesto the same row R;

(using different rows R;) at acertain point £; isemptied. In that case the |ast application of row

consensusis potentially faulty and should not be done. [|
Row consensusis applied in [108]. This criterion generdizes the one given in [59].

10.5.3 Column a-Dominance

Definition 10.5.3 A column C'; a-dominates another column C, if
o ¢; < cp,
o (' hasall thel'sof Cy,
o (' hasall theO'sof C};
i.e, ¢; < ¢, and for each row R; of M, none of the following can occur:
o M;;=2and M;; =1,
e M;;=0and M, ; =1,
o M;; =0and M, = 2.
Alternatively, ¢; < ¢, and for each row R; of M, one of the following occurs:
o M;; =1,
o M;;=2and M;; # 1,
o M;; =0and M;; =0.
Note that these last 3 cases are exactly the complement of the cases excluded above.

Theorem 10.5.3 Let M be satisfiable. If a column C}, is a-dominated by another column C';, there
is at least one minimum cost solution with column C';, eiminated (z;, = 0), together with all the
rowsinwhichit hasO's.

This definition of column a-dominanceis

e an extension to row a-dominance (Rule 1) in[50], because the latter doesn’t include the case
Mm‘ =0and Mi,k =0,

10.5. REDUCTION TECHNIQUES 247

o equivalent to first half of Rule 4in [51]: (a) C; hasal the 1's of C} and (bl) C}; hasall the
O'sof C,

e identical to column dominance (Definition 11, Theorem 3) in [14],

e identica to column dominance (Definition 2.12, Theorem 2.4.1) in[13].

Column Dominance for a Unate Table

Definition 10.5.4 A column C; dominates another column C; if for all rows Ry, My ; = 1 =
My; =1

10.5.4 Column G-Dominance

Definition 10.5.5 A column C; 3-dominates another column C; if
e ¢; <g¢y,
e (; hasall thel'sof C},

o for every row R, inwhich C; hasa0, either C; hasa0 or thereexistsarow R, in which C’;
hasa 0 and C’; does not have a 0, such that disregarding entries in columns C; and C';, R,
dominates &,,.

Theorem 10.5.4 Let M be satisfiable. If C'; f-dominates C';, there is at least one minimum cost
solution with column C'; eliminated (z; = 0), together with all the rows in which it has0’s.

Proof: We must show that given a solution, one can find another solution, of cost lesser or equal,
with column C; eliminated (z; = 0). There are two cases for the original solution: either z; = 1
andz; = 1orz; = 0andz; = 1(if z; = 0, we are done). The new solution has z; = 1 and
x; = 0and coincidesfor the rest with the given solution. The casewhenz; = 1and z; = lisessy,
because column C’; has all 1's of column C'; and therefore C'; is useless.

Consider now the case when z; = O and z; = 1. The clauses with a 0 in column C;
are satisfied by not choosing C; and the clauses with a 1 in column C'; are satisfied by choosing
C';. Each clause with a 0 in column C'; (and without a 0 in column) is satisfied by a proper
assignment of a column different from C; and C';, say C. Notice that the hypothesis that column
C; does not have a0 inthe clause is essential here, otherwise this clause would be satisfied already

by not choosing C';, without resorting to a column Cj.. Now consider the assignment with column

248 CHAPTER 10. BINATE COVERING

C'; and without columnC'; (z; = 1and z; = 0) and the same remaining assignments asthe previous
one. It costs no mare than the previous one. We show that it is a solution. In order to do that we
must make sure that the 0's covered by C; and the 1's covered by C'; by setting z; = Oand z; = 1,
are still covered in the new assignment where z; = 1 and 2; = 0. The clauseswithalinC; are
satisfied by C';, because C; hasall 1's of C';. Each clause, say R, witha0in column C; is satisfied
too, because thereis acorresponding clause, say R,, witha0in columnC';, and we aready noticed
that there exists another column, C', that satisfies i,,. But by hypothesis R, dominates R,,, i.e., R,
hasdl the 1's and O's of R, hence column (', satisfies also clause R,, (if entry M, , = 1(0), then
entry M, ,, = 1(0) also and 2, = 1 (2}, = 0) satisfies both clauses). [|
This definition of column G-dominanceis

e strictly stronger than column «-dominance givenin 10.5.3,

e more genera than row G-dominance (Rule 5) in [50], because the latter assumes that the

covering table contains only rows with no or one 0,

o equivalent to second half of Rule4in[51]: (a) C; hasall the 1's of C'; and (b2) for every row
R, in which C; has a0, there exists arow R, in which C; has a0, such that disregarding
entries in row C; and C';, R, dominates R, (with reverse definition of row dominance),

noticing that by mistake the condition that C’; does not have a0 in row R, was omitted,

e not mentioned in [14] and [13].

10.5.5 Column Dominance

Definition 10.5.6 A column C’; dominates another column C'; if either C; a-dominates C'; or C;

3-dominates C';.
Theorem 10.5.5 Let M be satisfiable. 1f C; dominates C';, there is at least one minimum cost

solution with column C'; diminated (z; = 0), together with all therows inwhich it has0's.

10.5.6 Column Mutual Dominance

Definition 10.5.7 Two columns C'; and C'; mutually dominate each other if
e (; hasaOinevery rowwhereC'; hasal,

e (; hasaOinevery rowwhere(; hasal.

10.5. REDUCTION TECHNIQUES 249

Theorem 10.5.6 Let M be satisfiable. If C; and C'; mutually dominate each other, there is at least
one minimum cost solutionwith columns C; and C'; eliminated (z; = «; = 0), together with all the

rows in which they have 0’s.
This definition of column mutual dominanceis
e identica torule for mutually reducible variablesin [128],

e not mentioned in other papers.

10.5.7 Essential Column

Definition 10.5.8 A column C'; isan essential columnif there existsarow R; having a 1 in column
C'; and 2's everywhere else.

Theorem 10.5.7 If C; is an essential column, it must be selected (z; = 1) in every solutions.
Column C; must then be deleted together with all therowsinwhichithas1's.

This definition of essentia columnis

identical to essentia row (Rule 2) in[50],

e identica toRule1lin[51],

¢ includedinDefinition9in[14]: therow R; inthe above definition correspondsto asingleton-1
essential row in[14],

¢ included in Definition 2.10 in [13]: the row R; in the above definition corresponds to a

singleton-1 essential row in [13].

Essential Column for a Unate Table

Definition 10.5.9 A columnisan essential column if it containsthe 1 of a singleton row.

10.5.8 Unacceptable Column

Definition 10.5.10 A column C'; is an unacceptable column if there existsa row R; having a 0 in

column C'; and 2's everywhere else.

This reduction rule isadua of the essential column rule.

250 CHAPTER 10. BINATE COVERING

Theorem 10.5.8 If C'; isan unacceptable column, it must be eliminated (z; = 0) in every solution,
together with all the rowsin which it has0's.

This definition of unacceptable columniis
e identica to that of nonselectionable row in [50],
e identical toRule2in[51],

¢ includedinDefinition9in[14]: therow R; inthe above definition correspondsto asingleton-0

essentia row in[14],
¢ included in Definition 2.10 in [13]: the row R; in the above definition corresponds to a

singleton-0 essentia row in [13].

10.5.9 Unnecessary Column

Definition 10.5.11 A column of only O'sand 2's is an unnecessary column.

Notice that there is no symmetric rule for columns of 1's and 2's. The reason is that selecting a

column to be in the solution has a cost, while eiminating it has no cost.

Theorem 10.5.9 If C'; isan unnecessary column, it may be eliminated (x; = 0), together with all
therowsinwhich it hasO's.

This definition of unnecessary columnis
e identical toRule4in[50],
e identica toRule5in[51],

e not mentioned in [14] and [13].

10.5.10 Trial Rule

Theorem 10.5.10 If there exists in a covering table M arow R; having a 0 incolumn C';, alin

column C', and 2'sin the rest, then apply the following test:

e eliminate ('}, together with the rowsinwhich it has0's,

10.5. REDUCTION TECHNIQUES 251

¢ eliminate C';, which is now an unacceptable column, together with the rows in which it has
0's,

e continue aslong as possibleto eliminate the columns which becomes unacceptable columns.

If at least one row of M has only 2's at the end of this test, then column C; must be selected
(zz = 1)°. Therefore, C', can be deleted together with all the columnsin which it has 1's.

Thisreductionruleis
e identical toRule6in[50],

e not mentioned in other papers.

10.5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In
particular, an intermediate covering matrix A/ may found to be unsatisfiable by the following
theorem. When an infeasible subproblem is found, that branch of the binary recursion is pruned.

Theorem 10.5.11 A covering problem M is infeasible if there exists a column C'; which is both
essential and unacceptable (implying z; = 1 and z; = 0).

This definition of infeasibility is
e not mentioned in [50] and [51],
e briefly mentionedin[14],

e identica to the unfeasible problemin [13].

10.5.12 Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gim-
pe [48]. Gimpd proposed a reduction step which simplifies the covering matrix when it has a
specia form. This simplification is possible without further branching, and hence is useful at
each step of the branch and bound agorithm. In practice, Gimpel’s reduction step is applied after

reducing the covering matrix to the cyclic core.

2|t is possiblethat arow is left with only 2's by a sequenceof reduction steps.

252 CHAPTER 10. BINATE COVERING

Gimpel’s reduction can be described in terms of the product-of-sums represented by a
covering table. The product-of-sums is examined to see if any clause has only two literals of the
same cost. For example, assume the expression has the form:

p= R(Cl—I—CZ)(Cl—I—Sl) ...(Cl—I—Sn)(Cz—I—Tl) ...(Cz—I—Tm)

where ¢ and ¢ are singlevariableswithacost C, S;,¢ = 1...nandT;,j = 1...m are sums of
variables not containing ¢, or ¢, and R is a product of sums of variables not containing ¢1 or c;.
Because the covering table is assumed minimal, if thereisaclause (¢1 + ¢2), thenm > 1, n > 1,
and none of S; or T isidentically zero.

Note that with the expression written in this form, each parenthesized expression corre-
sponds directly to a single row in the covering table. By agebraic manipulations, the expression

can bere-written as:

p = R(cica+ 1T + ¢25)

where S ==, S;,andT = [[\24 15
A second covering problem is derived from the origina covering problem with the fol-

lowing form:

pLr = R(Cz—I—S—I—T)

= R[[II(c2+ Si+71y)
i=15=1

The main theorem of Gimpel is:

Theorem 10.5.12 Let M; be a minimum cover for p;. A cover for p can be derived from M,
according to therule: if Sis covered by M; then add ¢, to M; to derive a cover of p; otherwise,

add ¢4 to M, to derive acover of p. The resulting cover isa minimum cover for p.

A proof can be found in [113], where a more extended discussion is presented.

Gimpel’s reduction step was originaly stated for covering problems where each column
had cost 1. Robinson and House [60] showed that the reduction remains valid even for weighted
covering problems if the cost of the column ¢; egquals the cost of the column ¢, as it has been
presented here. Gimpel’s rule has been first proposed in [48] and then implemented in [112]. In
[108, 130] Gimpe’s rule has been extended to handle the binate case. This extension has been
described in [131].

10.6. IMPLICIT BINATE COVERING 253

10.6 Implicit Binate Covering

mincov(R,C,U)A{

(R,C) = Reduce(R,C, U)

if (Termina _Case(R, C))
if (cost(R,C) > U) return no solution
else U =cost(R, C'); return solution

I =Lower_Bound(R, (")

if (L > U) return no solution

¢; = Choose_Column(R, ()

St =mincov(R,,,C.,,U)

S0 = mincov(Rz, Cz, U)

return Best_Solution(S* U {¢;}, S9)

Figure 10.6: Implicit branch-and-bound algorithm.

Theclassica branch-and-bound a gorithm [50, 51] for minimum-cost binate covering has
been described in previous sections, and implemented by means of efficient computer programs
(ESPRESSO and STAMINA). These state-of-the-art binate table solvers represent binate tables effi-
ciently using sparse matrix packages. But the fact that each non-empty table entry still has to be
explicitly represented put a bound on the size of the tables that can be handled by these binate
solvers. For example, we would not expect these binate solvers to handle examples requiring over
10° columns (up to 215% columns), reported in state minimization of FSM's [63]. To keep with
our stated objective, the binate table has to be represented implicitly. We do not represent (even
implicitly) the elements of thetable, but we make use only of a set of row labelsand a set of column
labels, each represented implicitly asaBDD. They are chosen so that the existence and value of any
table entry can be readily inferred by examining its corresponding row and column labels. In the
sequel, we shall assume that every row has a unit cost.

A binate covering problem instance can be characterized by a 6-tuple (r, ¢, R, C,0,1),

defined as follows:

254 CHAPTER 10. BINATE COVERING

e thegroup of variablesfor labeling therows: r

the group of variables for labeling the columns: ¢

the set of row labels: R(r)

the set of column labels: C'(r)

the O-entries relation at the intersection of row » and column ¢: 0(r, ¢)

the 1-entries relation at the intersection of row » and column ¢: 1(r, ¢)

In other words, the user of our implicit binate solver would first choose an encoding for
the rows and columns. Given a binate table, the user will then supply a set of row labelsasaBDD
R(r) and a set of column labels as a BDD C'(¢), and also the two inference rules in the form of
BDD relations, O(r, ¢) and 1(r, ¢), capturing the O-entries and 1-entries.

Theclassica branch-and-bound solution of minimum cost binate covering is based on the
recursive procedure as shown in Figure 10.3. In our implicit formulation, we keep the branch-and-
bound scheme summarized in Figure 10.6, but we replace the traditional description of thetable as
a(sparse) matrix with animplicit representation, using BDD’s for the characteristic functions of the
rows and columns of the table. Moreover, we have implicit versions of the manipulations on the
binate table required to implement the branch-and-bound scheme. In the following sections we are
going to describe the following:

e implicit representation of the covering table,
e implicit reduction,

¢ implicit branching column selection,

e implicit computation of the lower bound, and
¢ implicit table partitioning.

At each cal of the binate cover routine mincov, the binate table undergoes a reduction
step Reduce and, if termination conditionsare not met, a branching column is selected and mincov
is called recursively twice, once assuming the selected column ¢; in the solution set (on the table
R.,,C.,) and once out of the solution set (on the table Rz, Cz). Some suboptimal solutions are

bounded away by computing a lower bound 7. on the current partial solution and comparing it

10.7. IMPLICIT TABLE GENERATION 255

against an upper bound U (best solution obtained so far). A good lower bound is based on the
computation of a maximal independent set.

10.7 Implicit Table Generation

Here we define three ways of specifying the binate covering table in decreasing order of
generdity. A tableisdefined implicitly by generating BDD-based representations of the rows and
columns and by giving relations specifying the 1 and 0 entries, given the rows and columns. By
imposing restrictions on the way in which rows and columns are labeled and entries are defined,
one gets representations with varying degrees of generdity. Historicaly the third (less general)
way was implemented first to solve exact state minimization of ISFSM’s [65]. It is applicable to
other problemswhaose covering table can be represented in the sameway, e.g., the exact formulation
of technology mapping for area minimization [113]. The difference between the first and second
formulation isonly in some computation simplification in the latter one, for tablesthat have at most
one O per row. There is a trade-off between generality of the representation and efficiency of the
computations: "hard-wiring" the rules that define a table may speed up table manipulations, to the
price of more limited applicability.

In Chapter 11 we will see how the covering tables occurring in GPI minimization are
generated. In [63] it is shown how covering tables occurring in state minimization of FSM's are
constructed. In the next section, we will describe how a binate covering table can be manipul ated

implicitly so as to solve the minimum cost binate covering problem.

1. Genera binate covering table

e thegroup of variablesfor labeling therows: r

the group of variables for labeling the columns: ¢

o theset of row labels: R(r)

the set of column labels: C'(c)
o the O-entriesrelation at the intersection of row r and column ¢: O(r, ¢)

o the 1-entriesrelation at the intersection of row r and column ¢: 1(r, c)
2. Binate covering table assuming each row has at most one O:

e thegroup of variablesfor labeling therows: r

256 CHAPTER 10. BINATE COVERING

the group of variables for labeling the columns: ¢

the set of row labels: R(r)

the set of column labels: C'(c)
o the O-entriesrelation at the intersection of row r and column ¢: O(r, ¢)

o the 1-entriesrelation at the intersection of row r and column ¢: 1(r, c)
3. Specidized binate covering table for exact state minimization and similar problems:

e thegroup of variablesfor labeling the rows (each label isapair): (¢, d)

the group of variables for labeling the columns: p

o theset of row labels: R(c, d)

e theset of column labels: C'(p)

o theO-entriesrelation at the intersection of row (¢, d) and column p: O((¢, d), p) = (p =
c)

o thel-entriesrelation at the intersection of row (¢, d) and column p: 1((c¢,d),p) = (p 2

d)

In the sequel, each implicit table operation will be expressed by three BDD formulas,
each representing a redlization for a different implicit binate solver. Each equation will be labeled
1, 2, or 3, depending on which of the above set of assumptionsare made.

10.8 Implicit Reduction Techniques

Reduction rules aim to the following:

1. Sdection of a column. A column must be selected if it is the only column that satisfies a
givenrow. A dual statement holds for columnsthat must not be part of the solution in order

to satisfy a given row.

2. Elimination of acolumn. A column ¢; can be eliminated if its elimination does not preclude
obtaining a minimum cover, i.e., if there is another column ¢; that setisfies at least &l the
rows satisfied by ¢;.

3. Eliminationof arow. A row r; can be eliminated if there exists another row r; that expresses
the same or a stronger constraint.

10.8. IMPLICIT REDUCTION TECHNIQUES 257

The order of the reductions affects the fina result. Reductions are usualy attempted
in a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a
cyclic core). The reductions and order implemented in our reduction algorithm are summarized in
Figure 10.7.

Reduce(R, C,U) {

repeat {
Collapse_Columns(C)
Column_Dominance(R, ()
Sol = Sol U Essentiad_Columns(R, ()
if (|Sol| > U) return no solution
Unacceptable_Columns(R,)
Unnecessary_Columns(R, ()
if (C' doesnot cover R) return no solution
Collapse_Rows(R)
Row_Dominance(R, ()

} until (both R and C' unchanged)

return (R,)

Figure 10.7: Implicit reduction loop.

In the reduction, there are two cases when no solution is generated:

1. Theadded cardinality of the set of essentia columns, and of the partial solution computed so
far, Sol, islarger or equal than the upper bound U. In this case, a better solution is known
than the one that can be found from now on and so the current computation branch can be
bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows,
it may happen that the rest of the rows cannot be covered by the remaining columns. In this
case, the current partial solution cannot be extended to any full solution.

258 CHAPTER 10. BINATE COVERING

We are going to describe how the reduction operations are performed implicitly using

BDD’s on the three table representations described in the previous section.

10.8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows)
that coincide element by element. We need to identify such duplicated columns (rows) and collapse
them into a single column (row). Thisavoidsthe problem of columns (rows) dominating each other
when performing implicitly column (row) dominance. The following computations can be seen as
finding the equivalence relation of duplicated columns (rows) and selecting one representative for

each equivalence class.

Definition 10.8.1 Two columns are duplicates, if on every row, their corresponding table entries
areidentical.

Theorem 10.8.1 Duplicated columns can be computed as:
dup_col(c,¢) 1= VYr{R(r) = [(0(r,¢) & 0O(r,c)) - (1(r,) & 1(r,c))]}
dup_col(c',¢) 2= Vr {R(r) = [-0(r,c)-=0(r,c)- (1(r,c) & 1(r,c))]}
dup-col(p,p) *= B R(Y,d)- Bd Rp,d)-¥d {Be R(e,d)] = [(¢) 2 d) & (p 2 D]}

Proof: Asdiscussed at the end of Section 10.7, thefirst equation computes the duplicated columns
relation for the most general binate table, and the second equation for the binate table with the
assumptionthat thereisat most one 0in each row, and the third equationisfor the specialized binate
table for state minimization, assuming the columns are prime compatibles p, and the rows are pairs
(c,d).

For the column labels ¢’ and ¢ to bein therelation dup_col, the first equation requires the
following conditions to be met for every row label » € R: (1) the entry (r,c) isa O if and only
if theentry (r,c) isag, (i.e, 0(r,¢’) < 0(r,c)), and (2) theentry (r,c¢) isalif and only if the
entry (r,c) isal, (i.e, 1(r,¢’) < 1(r, c)). Assuming each row has at most one O for the second
equation, condition 2 requires that the row labeled r cannot intersect either column at a 0, (i.e,
=0(r, ') - =0(r, ¢)). []

Theorem 10.8.2 Duplicated columns can be collapsed by:
Cle) 2= Cle) AL [C() - (' < ¢) - dup_col(c,c)]
Clp) %= Cp) A CW) 0 <p)- dupcol(p', p)]

10.8. IMPLICIT REDUCTION TECHNIQUES 259

Proof: This computation picks a representative column label out of a set of column labels corre-
sponding to duplicated columns. A column label ¢ isdeleted from C'if and only if there is another
columnlabel ¢’ which has asmaller binary value than ¢ (denoted by ¢’ < ¢) and both |abel the same
duplicated column. Here we exploit the fact that any positional-set ¢ can beinterpreted as a binary
number. Therefore, a unique representative from a set can be selected by picking the one with the
smallest binary value. 3 [

10.8.2 Duplicated Rows

Definition 10.8.2 Two rows are duplicates if, on every column, their corresponding table entries
areidentical.

Detection of duplicated rows, selection of a representative row, and table updating are
performed by the following equations as in the case of duplicated columns.

Theorem 10.8.3 Duplicated rows can be computed as:

duprow(r’,r) 2= Ve{C(c)=[(0(+',c) < O(r,c)) - (1(r',¢) & L(r,c))]}
duprow(d,d'e,d) *=('=c) Bp[Clp)-((p2d) & (p2d))]

Proof: Similar to the proof for Theorem 10.8.1. For the row labels r’ and r to be in the relation
dup_row, the first equation requires the following conditions to be met for every column label
c € C: (1) theentry (r,c)isa0if and only if theentry (', ¢) isaO, (i.e, 0(r', ¢) < 0(r, ¢)), and
(2) theentry (r,c)isalif and only if theentry (', c) isal, (i.e, 1(r', ¢) < 1(r, ¢)). [|

Theorem 10.8.4 Duplicated rows can be collapsed by:

R(r) 2= R(r) A'[R(')-(r' <7)-duprow(r’, r)]
R(c,d) 3= R(c,d)- Ad,d' [R(c,d') - (d' < d)-duprow(cd,d, c,d)]

Proof: The proof is similar to that for Theorem 10.8.2, except we are delete al duplicating rows
here except the representative ones. [|
From now on, sometimes we will blur the distinction between a column (row) label and

the column (row) itself, but the context should say clearly which oneit is meant.

SAlternatively, one could have used the cproject BDD operator introduced in [80] to pick arepresentative column out
of each set of duplicated columns.

260 CHAPTER 10. BINATE COVERING

10.8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others.

Classically, there are two notions of column dominance: «-dominance and 5-dominance.

Definition 10.8.3 A column ¢’ a-dominates another column ¢ if ¢ has all the 1's of ¢, and ¢ has
all theO'sof ¢'.

Theorem 10.8.5 The a-dominance relation can be computed as:

adom(c',c) Y= Ar{R(r)-[1(r,c) - =1(r,d)]+[0(r,¢) - =0(r,)]}
r)-[A(r,e)-=1(r,)+ 0(r,)]}
b

Oe_dom(p/,p) 3= Ac,d[R(c,d)- (p 2 d)- (p/ 2 d)]- Ad R(plv d)

(r) - [
adom(c,e) 2= Ar{R(r)-[
Proof: For column ¢’ to a-dominate ¢, the first equation ensures that there doesn’t exists a row
r € R suchthat either (1) thetableentry (r, ¢) isal but thetable entry (r, ¢’) isnot, or (2) thetable
entry (r, ¢') isa0 but thetable entry (r, ¢) isnot. Assuming each row has at most one 0, condition
2 can be simplified to the second equation that table entry (r, ¢) isaO. [|

Definition 10.8.4 A column ¢’ 3-dominates another column ¢ if (1) ¢’ hasall the 1's of ¢, and (2)
for every row r’ in which ¢’ contains a 0, there exists another row r in which ¢ has a 0 such that
disregarding entriesin column ¢/, ' hasall the 1's of r.

Theorem 10.8.6 The /3-dominance relation can be computed by:
fdom(c'c) V2= A {R(r)-[1(',c) - 21(r",¢)

+0(,) Br[R(r) -0(r,c)- A [C(") - (¢ # ') - 1(r.c") - =1(",)]]}
Bdom(p',p) = Ad {3 (R(d,d)-(p2d)-(2 d)}

- Bd {R(,) Bd [R(p,d)- Bq[C(q) - (a £) (g2 d)- (¢ 2 d)]]}}
Proof: According to thedefinition, thetableshould not containarow ' € Rif either of thefollowing
two casesistrueat that row: (1) tableentry at columncisalwhileentry at column ¢’ isnotal (i.e,
1(r',c) - =1(r",), or (2) ¢ hasaOinrow r (i.e., O(+’, ¢’)) but there does not exist arow r € R
such that its column ¢ isa 0 and disregarding entriesin column ¢/, row ' has dl the 1's of row r.
Rephrasing thelast part of thecondition2, theexpression Ac” [C'(")- (" # ¢)-1(r, ") -=1(r', ¢")]
requires that there isno column ¢’ € C apart from column ¢’ such that ¢ hasa1in row r, but not

inrow r'. []

10.8. IMPLICIT REDUCTION TECHNIQUES 261

The conditions for a-dominance are a strict subset of those for -dominance, but «-
dominance is easier to compute implicitly. Either of them can be used as the column dominance

relation col _dom.

Theorem 10.8.7 The set of dominated columnsin atable (R, C') can be computed as:

-
—
=

=
N
|
aQ
—
o

)y -3 [C() - (¢ # ¢) - col [dom(,)]

D(p) 3= C(p)-W[CH)- (' #p)-coldom(p,p)]

Proof: A columnc € C'isdominated if thereis another ¢/ € C' different from ¢ (i.e., ¢’ # ¢) which

column dominates ¢ (i.e., col_dom (¢, ¢)). []

Theorem 10.8.8 The following computations delete a set of columns D(c¢) fromatable (R, C') and

all rows intersecting these columnsin a 0.

Proof: The first computation removes columns in D(c) from the set of columns C'(¢). The
expression 3¢ [D(c) - O(r, ¢)] defines al rows r intersecting the columnsin D ina0. They are
deleted from the set of rows R. [|

10.8.4 Row Dominance

Definition 10.8.5 Arow ' dominates another row r if » hasall the 1'sand 0's of .
Theorem 10.8.9 The row dominance relation can be computed by:

row_dom(r',r) 2= Ac{C(c)-[1(r',¢)-—1(r,c)+0(r',¢) - —0(r, c)]}
rowdom(¢,de,d) 3= Bp[C(p)-(p2 d)-(p 2 d)]-[unaterow(d) + (¢ = c)]
Proof: For r’ to dominate r, the equation requiresthat thereisno column ¢ € C such that either (1)

thetableentry (1, ¢) isal but theentry (r, ¢) isnot, or (2) theentry (', ¢) isa0 but theentry (r, ¢)
isnot. []

262 CHAPTER 10. BINATE COVERING

Theorem 10.8.10 Givenatable (R(r),C(c)),the set of unate row labels » can be computed as
unate_row(r) 12 = Ae [C'(c) - O(r, ¢)].
Givenatable (R(c, d),C(p)), the set of unate row labels ¢ can be computed as
unate_row(c)® = Bp [C(p) - (p = o)) = Be C(e).

Theorem 10.8.11 The set of rows not dominated by other rows can be computed as:

R(r) Y2= R(r)- B [R() - (' #r) - rowdom(r',r)]

R(c,d) 3= R(c,d)- Ac,d' {R(c,d)-[(c',d') # (¢, d)]- row_dom(c,d',c,d)]}

Proof: The equation expresses that any row r € R, dominated by another different row »’ € R, is
deleted from the set of rows R(r) in thetable. []

10.8.5 Essential Columns

Definition 10.8.6 A column ¢ is an essential column if thereisarow having a 1 in column ¢ and
2 everywhere else.

Theorem 10.8.12 The set of essential columns can be computed by:

ess_col(c) 1= C(c)-Ir{R(r)-1(r,c)- AC[C()- (' #¢)-(0(r,) + 1(r,)]}
ess_col(c) 2= C(c)-Ir {R(r)-L(r,c) - unate_row(r)- Ac [C()- (' #¢)-L(r,d)]}
ess col(p) = C(p)-Te,d {R(e,d) - (p 2 d) - unate row(e): B [CH) - (0 £) (0 2 D]}

Proof: For acolumn ¢ € C' to be essential, there must exist arow » € R which (1) containsalin
columne (i.e, 1(r, ¢)), and (2) thereis not another different column intersecting therow inal or 0
(e, A [C() - (¢ £ ¢) - (0(r.¢) + 1(r.c')))

Assuming that a row can have at most one 0, a column ¢ € C'is essentid if and only if
thereisarow r» € R which (1) containsalin column ¢ (i.e., 1(r, ¢)), and (2) does not contain any
0 (i.e, unate_row(r)), and (3) thereis not another different columnintersectingtherowinal (i.e,

A [C() - (¢! # e) - 1(r,)]). u

Theorem 10.8.13 Essential columns must be in the solution. Each essential column must then be
deleted from the table together with all rownswhere it has1's.

10.8. IMPLICIT REDUCTION TECHNIQUES 263

The following computations add essential columns to the solution, delete them from the

set of columns and delete all rows in which they have 1's:

solution(c) 2= solution(c) + ess_col(c)

C(c) 2= C(c)-—ess_col(c)
R(r) 2= R(r)- Acless_col(c)-1(r,c)]

solution(p) = solution(p) + ess_col(p)
Clp) 3= C(p)--esscol(p)
R(c,d) 3= R(c,d)-—ess_col(c)

Proof: The first two equations move the essential columnsfrom the column set to the solution set.

The third equation del etes from the set of rows R all rowsintersecting an essential column cinal.
|

10.8.6 Unacceptable Columns

Definition 10.8.7 A column ¢ isan unacceptable column if thereisa row having a 0 in column ¢

and 2 everywhere else.

Theorem 10.8.14 The set of unacceptable columns can be computed by:

unaceeptable_col(c) Y= C(c)-3r {R(r)-0(r,¢) B [C(¢) - (' ¢) -O(r,)]}
B [O() - 1,)]}

unacceptable_col(c) 2= C(c)-3r {R(r)-0(r,¢)- A [C(¢) - 1(r,)]}

unacceptable_col(p) 3= C(p)-3d{R(p.d)- Bp'[C(p)- (' 2)]}

Proof: For column ¢ € C to be unacceptable, there must bearow » € R such that (1) it intersects
the column ¢ at a0, and (2) there does not exists another column ¢’ different from ¢ which intersects
that row r» at a0 (i.e, Ac [C(¢) - (¢ # ¢) - 0(r, ¢)]), and (3) no column ¢ intersects that row r in
al(i.e, A [C(d)-1(r,c)]). Condition 2 isnot needed if we assume that each row contains at

most one 0. u

264 CHAPTER 10. BINATE COVERING

10.8.7 Unnecessary Columns

Definition 10.8.8 A column isan unnecessary column if it does not haveany 1init.
Theorem 10.8.15 The set of unnecessary columns can be computed as:

unnecessary_col(c) 2= C(c)- Ar[R(r)-1(r,c)]
unnecessary_col(p) 3= C(p)- Ac,d[R(c,d)- (p 2 d)]

Proof: A column ¢ € C isunnecessary if norow r € R intersectsitinal. [|

Theorem 10.8.16 Unacceptable and unnecessary columns should be eiminated from the table,
together with all the rows in which such columns have 0's.
Thetable (R, C') is updated according to Theorem 10.8.8 by setting

D(c) 2= wunacceptable_col(c) + unnecessary_col(c)

D(p) 3= unacceptable_col(p) + unnecessary_col (p)

Proof: Obvious.]

10.9 Other Implicit Covering Table Manipulations

To have afully implicit binate covering algorithm as described in Section 10.6, we must
also compute implicitly a branching column and a lower bound. These computations as well as
table partitioning invol ve solving a common subproblem of finding columnsin a table which have

the maximum number of 1's.

10.9.1 Sdection of Columnswith Maximum Number of 1's

Given abinary relation F'(r, ¢) asaBDD, the abstracted problem isto find a subset of ¢’s
each of which relates to the maximum number of ’sin F'(r, ¢). Aninefficient methodisto cofactor
F with respect to ¢ taking each possible values ¢;, count the number of onset minterms of each
F(r,c)|.=c,, and pick the ¢;’s with the maximum count. Instead our algorithm, Lmax, traverses
each node of F' exactly once as shown by the pseudo-codein Figure 10.8.

Lmaz takesarelaion F'(r, ¢) and the variables set » as arguments and returns the set ¢
of ¢’'swhich are related to the maximum number of r’sin F', together with the maximum count.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 265

Lmax(F, r) {
v = bdd_top_var(F)
if (ver)
return (1, bdd_count_onset(£’))
else{ /* visacvariable*/
(T, countI') = Lmax(bdd_then(F),)
(£, count _IV) = Lmax(bdd_else(F'), r)
count = max(countT', count_E)
if (countT" = count_F)
G = ITE(v, T, E)
eseif (count = count T')
G =ITE(v, T, 0)
eseif (count = count_FE)
G = ITE(v,0, E)
return (G, count)

Figure 10.8: Pseudo-code for I max.

266 CHAPTER 10. BINATE COVERING

Variablesin ¢ are required to be ordered before variablesin ». Starting from theroot of BDD F’, the
algorithm traverses down the graph by recursively calling Lmaz on itsthen and else subgraphs.
Thisrecursion stopswhen thetop variable v of I iswithin thevariable set ». In thiscase, the BDD
rooted at v corresponds to acofactor I'(r, c)|.=., for somec;. Themintermsin itsonset are counted
and returned as count, which is the number of r’s that are related to ¢;.

During the upward traversal of I, we construct a new BDD (' in a bottom up fashion,
representing the set of ¢’s with maximum count. The two recursive calls of Lmaa return the sets
T(c) and E(c) with maximum counts count_T" and count_L for the then and the else subgraphs.
The larger of the two counts is returned. If the two counts are the same, the columnsin T and F
aremerged by ITF (v, T,) and returned. If count_T islarger, only 7" is retained as the updated
columns of maximum count. And symmetrically for the other case. To guarantee that each node
of BDD F(r,c) is traversed once, the results of Lmaa and bdd_count_onset are memoized in
computed tables. Note that Lmax returns a set of ¢’s of maximum count. If we need only one ¢,
some heuristic can be used to break theties.

To understand how Lmax works consider the explicit binate table:

00 01 10 11
o0 1 2 1 1
0L 2 1 1 2
10 2 1 2 1
117 2 1 2 1

with four rows and four columns. The columnsthat maximize the number of 1's are the second and
the fourth. If the rows and columns are encoded by 2 boolean variables each, using the encodings
given on top of each column and to the left of each row, the 1 entries of the table are represented
implicitly by therelation F(c, r) 4 whose minterms are:

{0000, 1000, 1100, 0101, 1001, 0110, 1110, 0111, 1111}

The BDD representing I isshownin Figure 10.9. Theresult of invoking Lmax on F'(r, ¢) isaBDD
representing the relation G/(¢) whose minterms are: {01, 11}, corresponding to the encodings of
the second and fourth column.

10.9.2 Implicit Selection of a Branching Column

The selection of abranching columnisakey ingredient of an efficient branch-and-bound
covering agorithm. A good choice reduces the number of recursive calls, by helping to discover

4 and ¢ are swappedin F' so that minterms are listed in the order of the BDD variables.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 267

01, 00 11,01, 10

o s s

Figure 10.9: BDD of F'(r, c) to illustrate the routine Lmax

268 CHAPTER 10. BINATE COVERING

more quickly a good solution. We adopt a simplified selection criterion: select a column with
amaximum number of 1's. By defining F'(r,c¢) = R(r) - C'(c) - 1(r, ¢) which evaluates true if
and only table entry (r, ¢) isa 1, our column selection problem reduces to one of finding the ¢
related to the maximum number of r’sin therelation F'(r, ¢), and so it can be found implicitly by
calling Lmax(F’,r). A more refined strategy isto restrict our selection of a branching column to
columnsintersecting rows of amaximal independent set, because a unique column must eventually
be selected from each independent row. A maximal independent set can be computed as follows.

10.9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually alower bound is obtained by computing a maximum independent set of the unate
rows. A maximum independent set of rowsis a (maximum) set of rows, no two of which intersect
the same column at a 1. Maximum independent set is an NP-hard problem and an approximate
one (only maximal) can be computed by a greedy algorithm. The strategy isto select short unate
rows from the table, so we construct arelation I/ (c, r) = R(r) - unate_row(r) - C'(c) - 1(r, c).
Variablesin r are ordered before thosein ¢. The rowswith the minimum number of 1'sin F”’ can be
computed by Lmin(F", c), by replacing in Lmaz the expression max (count_T, count_F) with
min(count T, count_F'). Onceashortest row, shortest(r), isselected, all rowshaving 1-elements
in common with shortest(r) are discarded from F”(c,) by:

F"(e,r) = F"(c,r). A {3 [shortest(r') - F"(,r")]- F" (', r)}

Another shortest row can then be extracted from the remaining table F” and so on, until £ becomes
empty. The maximum independent set consists of all shortest(r) so selected.

10.9.4 Implicit Covering Table Partitioning

If a covering table can be partitioned into » digoint blocks, the minimum covering for
the origina table is the union of the minimum coverings for the » sub-blocks. Let us define the
nonempty-entry relation 01 (r, ¢) = 0(r, ¢) + 1(r, ¢). Theimplicit algorithm in Figure 10.10 takes
atable description in terms of its set of rows R(r), itsset of columns C'(¢) and the nonempty-entry
relation 01(r, c), partitions it into » disjoint sub-blocks, and return them as n pairs of (R', C"),
each corresponding to the rows and columnsfor the ¢-th sub-block.

n-way partitioning can be accomplished by successive extraction of digjoint blocks from
the table. When the following iteration reaches a fixed point, (R, C)) corresponds to a disjoint

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 269

noway_partition(R(r),C(c),01(r,c)) {
n=20
while (R not empty) {
k=0
Ro(r) = Lmax(R(r)-C(c)-01(r,c))
repeat {
k=k+1
Cr(c) =C(e) - Ir {Rg_1(r) - 01(r,c)}
Ri(r) = R(r)-3c {Ck(c) -01(r,c)}
until (R = Ri—1)
R" = Ry,

}
return {(R",C") :0<i<n—1}

Figure 10.10: Implicit n-way partitioning of a covering table.

sub-block in (R, C').

Ro(r) = Lmaxz(R(r)-C(c)-01(r,c), c)
Cr(c) = C(e)-Ir {Rp-1(r)-01(r,c)}
Ri(r) = R(r)-3c{Ck(c)-01(r,c)}

This sub-block is extracted from the table (R, C') and the above iteration is applied again to the
remaining table, until the table becomes empty. [65] provides a more detailed explanation.

Given acovering table, asinglerow Ro(r), which hasthe maximum number of nonempty
entries, is first picked using Lmaz(). The set of columns C'q(c) intersecting this row at 0 or 1

270 CHAPTER 10. BINATE COVERING

entries is given by C'(¢) - 3r [Ro(r) - 01(r, ¢)] (we want ¢ € C such that thereisarow r € Ry
which intersects ¢ at a0 or 1). Next we find the set of rows R; intersecting the columnsin C'; via
nonempty entries, by a similar computation R(r) - 3¢ [C1(c) - 01(r, ¢)]. Then we can extract ll
the rows R»(r) which intersects C'1(c), and so on. This pair of computationsis iteratively applied
within the repeat loop in Figure 10.10 until no new connected row or column can be found (i.e.,
Ry = Ry_1). Effectively, starting from a row, we have extracted a digjoint block (R?*, C1) from
the table, which will later be returned. The remaining table after bi-partition simply contains the
rows R — R and the columns C' — C'. If the remaining table is not empty, we will extract another
partition (R, C?) by passing through the outer while loop a second time. If the original table
contains n digjoint blocks, the algorithm is guaranteed to return exactly the n sub-blocksby passing

through the outer while loop » times.

10.10 Implicit Two-level Logic Minimization

The implicit computations presented to manipulate a binate table are valid a fortiori
when the table is unate. In the latter case, however, more specialized algorithms can be designed
to exploit fully the features of the simpler problem. Historically spesking, an implicitization of
covering problemshas been carried onfirst for the case of unate tables generated in the minimization
of two-level logic functions.

Given aboolean function f, consider the problem of finding a minimum two-level cover.
A classical exact agorithm by Quine and McCluskey reduces it to a unate covering problem where
the rows of the table are minterms and the columns of the table are primes of the function. There
isal at the intersection of arow and column, if the prime associated to the column contains the
minterm associated to the row. An efficient implementation of unate covering is provided in the
program ESPRESSO. |n that implementation an improvement has been introduced, because there is
only one row for each set of mintermsthat are covered by the same set of primes. In other words,

thetableis constructed in such away that there are no equal rowsiniit.

The set of al primes and minterms may be exponentid in the number of input variables.
M anipul ating a table with an exponential number of rows and columns may add another exponential
blow-up. To overcome these problems, researchers at Bull [29, 30] and UCB [53] have represented
the set of primes and the unate table with logic functions implemented with ROBDD’s. The key
steps have been:

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 271

1. Define aboolean space where all those sets could be represented.

2. Transform the computation of the primes, unate table and the tabl e reduction operations into

operations on bool ean functions defined on the boolean space of the problem.

Anwhol e suite of papers has been produced by the French group [25, 79, 27, 26, 24, 28, 29, 30, 22].
Here we will outline only the key steps of this approach.

We remind that alitera isa propositiond variable ;. or itsnegation 7. P, isthe set of
products that can be built from the set of variables {x1, ..., 2, }. The subset relation C isapartia
order ontheset P,,. P ismaximal iff there do not exist two products p and p’ of P suchthat p C p'.
A product p isan implicant of aboolean function f iff p C {z € {0,1}" | f(z) # 0}. A product p
isaprimeimplicant of f iff it isamaximal element of the set of implicantsof f with respect to C.

Any subset P of P, can be partitioned in the following way:
P= Py U7} x Prp) U ({2 X Pry)

where P, istheset of products of P where neither the variable z;, nor j; occurs; Pr- (respectively
P.,) isthe set of products of P wherezy, («1) occurs, after dropping z ().

A boolean spaceto represent al products can be obtained by a number of variablesdouble
with respect to the number of input variables of f. It is the metaproduct representation in the
literature by researchers at Bull and the extended space in the literature by researchers at UCB. The
basic ideaisto encode the presence of z; or T or both (i.e. neither literal appears explicitly in the
product) with two bits.

The computation of primes reduces to finding the maximal products over al implicants
of f. Thefollowing recursive computation finds al prime implicants:

Prime(f) = Prime(faz A fz)
U{ar} x (Prime(fz) \ Prime(fa A fz))
U{zg} X (Prime(fy,) \ Prime(fzm A fz))

It is easy to transpose this computation to the case of the extended space or metaproducts represen-
tation.

Thetable covering problem can now be described by thetriple< @, P, C>, where() isthe
set of mintermsof f, P istheset of primesof f and C describes the table building relation. Notice
that thisis aready a progress with respect to the traditional approach because we do not represent

272 CHAPTER 10. BINATE COVERING

directly the table, but we have instead an operator (C) to infer the table entries. Thisis a special
case of the encoding scheme of binate tables for exact state minimization, previously reported.
Strictly speaking, this reformulation is not tied to the fact of using an implicit representation. It
could be used a so with an explicit representation. When coupled with a BDD-based representation
it lendsitself to very efficient agorithms, because the final size of the representation is not linearly
proportional to the number of primes computed.

A unate table is reduced by applying row and column dominance and detecting essentia
primes. Row dominance is stated as follows.

Definition 10.10.1 Arow R; dominatesanother row R; if for all columnsC', M; , = 1= M, ;, =
1.

Inthecase of < @), P, C>, thistrandates into:

g=2gq <= (WpeP(d Cp = (¢Cp)

Moreover, if there are rows that intersect exactly the same set of columns, i.e. they are equivalent,
one should compute this equivaence relation and then replace each equivalence class with one
representative (called sometimesprojection operation [78]). Row dominance should then be applied
to these representatives only.

Instead of using such a projection and then applying the definition of dominance relation,
one can define a row transposing function that maps the rows on objects whose manipulation can
be done more efficiently. The maximal elements of the transposed objects are the dominating rows.

Thebasicideaisthat each row of acovering table corresponds to a cube, called signature
cube, that is the intersection of the primes covering the minterm associated to the row. This was
noticed first in [99]. A rigoroustheory and an efficient algorithm were developed at UCB [89]. The
steps of the agorithm follow. Compute the signature cube of the each cube of an arbitrary initial
cover and make irredundant the resulting cover. Using the fact that for each cube of an arbitrary
irredundant cover of signature cubes, there is some essential signature cube contained by it, obtain
theirredundant cover of essential signature cubes (called minimum canonical cover). For each cube
of the minimum canonical cover, generate the set of primes containing it (the essentia signature
set). Solve the resulting unate covering problem as usua. The resulting unate covering problem is
exactly what one could get by applying row domination to the minterms/primestable.

One can define arow transposing function 7 (¢)) based on the idea of signature cubes.

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 273

Definition 10.10.2 79 : (Q — P, isdefined as:

o= () »

{pePlqCp}

In other words, each element of ¢ ((?) isobtained by an element ¢ of (), by intersecting all elements
of P that cover q.
The following theorem relates row dominance to the row transposing function.

Theorem 10.10.1 The function g is such that

q¢=2qq e 1lq) Cold).

Given aset covering problem (Q, P, C), thefunction maz c 7o (@) computesthe maximal elements
of the set 7 (@), i.e., the dominating rows.

Since the range 7 is P,,, the computation of 7o can be easily transposed to the case of
the extended space or metaproducts representation. The most obvious implementation would use
guantified boolean formulas, but in practice they tend to produce huge intermediate ROBDD’s. A
quantifier free recursive computation of maxc 7 (()) has given better experimental results.

We present now a pseudo-code description of M azT auQ(Q, P, k), the recursive proce-

dure used to compute max c 7o (()). We define first two auxiliary functions Supset and Subset:

Supset(P,Q)={pe€ P|3q€Qp2q}

Subset(P,Q)={pe P|3q€QpCq}

Theorem 10.10.2 MazTauQ(Q, P, 1) computes mazc g (Q).

Proof: The termina cases are easy. Consider a variable ;. One can divide the set P in three
subsets: P, , the products of P in which zj occurs, Pz, the products of P in which 7 occurs
and Py, , the products of P in which neither =5, nor zj; occurs. Similarly, one can divide the set @
in three subsets: ()., , the products of) in which z; occurs, ()=, the products of @ in which 3
occurs and ()1, , the products of () in which neither 2, nor z;; occurs.

The products of ()= can be contained by products of P or by products of P;,. The
products of ()., can be contained by products of ., or by products of of P,. The products of
(1% can be contained only by products of Py, . K0 hasthe products of)z contained by products

274 CHAPTER 10. BINATE COVERING

MazTauQ(Q, P, k) {
ifQ=0orQ =101
if P={1} return {1}
KO0 = Subset(Qzr, Prr)
K1= Subset(Qg,, Px,)
KO0=Qu U (Qz\ KO)U (Q,, \ K1)
R=MazTauQ(K, P1,,k+ 1)
RO = MaxzTauQ(KO, P, U Ps), k+1)
Rl1= MaxzTauQ (K1, P, UP,,), k+1)
return kU
{Tx} X Subset(RO, R))U
{z} X Subset(R1, R))U

Figure 10.11: Recursive computation of maxzc g (Q)

of Pr-. K1 has the products of 7, contained by products of P, . K has the products of @1, ,
the products of () that are not contained by products of P~ and the products of ¢}, that are not
contained by products of P, .

Also the set MaxzTauQ(Q, P,1) can be divided in three subsets: the set of productsin
which z; occurs, the set of products in which Z; occurs and the set of products of P in which
neither z, nor i, occurs. The last setisgiven by R, that is MazTau() (K, Py, k + 1). Indeed in
R the second argument is P, , the set of products of P where neither x; nor z;; occurs. The first
argument is K that includesthe products of) where ;. nor 7z occurs and so can be contained only
by products of P4, , and the products of () where either z;, or Z} occurs but they are not covered
by P., or Pz and so they can be covered only by P, . The second set is obtained from RO, that
is MazTau@)(KO, P1, U Ps, k + 1), by the following modification. In the first argument of R0
there are the products of where T} occurs, which are contained by the products of P in the
second argument. A product in RO must be multiplied by {77} because for sure each ¢ € KOs
contained by a product of P, and by definition of 7 (¢) one must intersect all the products that
contain ¢. But before multiplying by {7z} we must subtract from RO the products contained in R
(Subset(RO, R)), because if a product 0 of R0 is contained by a product » of R (or isequal to) it

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 275

meansthat thereareq € K and ¢0 € KOsuchthat 7 (¢) 2 7o (¢0) (becauser containsrOand rOis
multiplied by {Z}) and we want to keep only 7¢ (¢) because we are computing mazc 7o . Instead
if aproduct of R iscontained by aproduct of R0, thefact that the product of £O must be multiplied
by {z%} makes the two products not comparable. Therefore {z;} x (RO\ Subset(RO, R)) isthe
set of products of MaazTau@(Q, P, 1) in whichz}; occurs. Replacing verbatim {z;} with z, the
same reasoning applies for the addition coming from R1, from which thefirst set isobtained. B

After theset Q' = maxc g (Q) has been computed, theproblem < @, P, C> transforms
to< Q',P,R >, where ¢ R'p iff ¢ = 79(¢) and ¢ C p. R' =C, sinceq C piff 7g(q) C p.
Therefore the new covering problemis < @', P, C>.

A similar development holdsfor column dominance.

Definition 10.10.3 A column C’; dominates another column C'; if for all rows Ry, My ; = 1 =
My; =1

Inthecase of < @), P, C>, thistrandates into:

p=pp e VMeQqCp) = (¢Cp))

Moreover, if there are columns that intersect exactly the same set of rows, i.e. they are equivalent,
one should computethisequiva encerelation and then repl ace each equiva enceclasswith onerepre-
sentative (projection operation). Column dominance should then be applied to these representatives
only.

Instead of using such a projection and then applying the definition of dominance relation,
one can define a column transposi ng function that maps the col umns on obj ects whose manipulation
can be done more efficiently. The maximal e ements of the transposed objects are the dominating
columns.

Consider the following column transposing function 77 (p):

Definition 10.10.4

{9€QlqCp}
where C'(E) = minc{p € P, | p 2 E}.
C'(F) isthe unique smallest product that contains the set 2. Here min isan intersection operator,

SO
Tp(p) = minc{p € P, | p O F},

276 CHAPTER 10. BINATE COVERING

MazTauP(Q, P, k) {

ifQ=0orQ =101
if Q = p, return P
K = Supset(P1,,Q1,)U

Supset(Py, , Qz;) N Supset(P1,, Q)
KO = Supset(P1, U Pe, Qz) \ K K1= Subset(P1, U P, Q) \ K
R=MazTauP(Q1, UQz UQy,, K, k+ 1)
RO= MazTauP(Qz), KO, k+ 1)
Rl1=MazTauQ(Qy,), K1, k+1)
return kU

{Tx} X Subset(RO, R))U

{z} X Subset(R1, R))U

Figure 10.12: Recursive computation of mazc 7p(P)

or,

) =(rer.lp2 U -

{9€Ql9Cp}

The following theorem rel ates column dominance to the column transposing function.

Theorem 10.10.3 The function 7p is such that

p=pp < 1p(p) CTR(Y).

Given aset covering problem (Q, P, C), thefunction max ¢ 7p (P) computesthe maximal elements
of the set 7p(P), i.e. the dominating columns.

Since therange 7p is F,,, the computation of 7 can be easily transposed to the case of
the extended space or metaproducts representation. The most obvious implementation would use
guantified boolean formulas, but in practice they tend to produce huge intermediate ROBDD’s. A
quantifier free recursive computation of maxc 7p (P) has given better experimental results.

We present now a pseudo-code description of MazTauP(Q), P, k), the recursive proce-

dure used to compute maxzc 7o (Q).

Theorem 10.10.4 MazTauP(Q, P, 1) computes mazcp(P).

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 277

Proof: The terminal cases are easy. Consider a variable z;.. The set K isthe set of products of
Py, that contain a product of ()1, , or that contain a product of (), and a product of ¢),,,. So K
is the set of products p of P such that 7p(p) does not contain the literd z;, nor 7. Therefore the
set R isthe set of products of maxc7p(P) that do not contain the literal =), nor z;. The set K0
(respectively K1) isthe set of of products p of P that only contain products of ¢) where thelitera
Ty (respectively z ;) occurs. Since in the definition of 7p(p) one takes an intersection of products
(primes that contain the products contained by p), the set R0 is the set of products of 7p(P) that
contain the literal 73, and that are maximal with respect to 7p(P)z;. Since we want only the
maximal products with respect to 7 (P), from R0 one subtracts the products that are contained by
aproduct of R. [|

After theset P’ = maxc7p(P) hasbeen computed, the problem < @, P, C> transforms
to< Q, P, R >, where ¢R'p' iff p’ = 7p(p) and ¢ C p. R’ =C, sinceq C piff ¢ C 7p(p).
Therefore the new covering problemis < @, P, C>.

One more table reduction operation is the detection of essential columns.

Definition 10.10.5 A column isan essential columnif it containsthe 1 of a singleton row.
Theorem 10.10.5 The set of essential productsis & = P N maxzcmg(Q).

After the set I/ = P N maxzctg(Q) has been computed, the problem < @, P, C>
transformsto< Q \ £, P\ F,C>.

Successive application of row dominance, essential detection and column dominance
computes the cyclic core of the unate covering problem. A branch-and-bound procedure, where
table reduction isinvoked on subtables splitted along a branching column, leads to a final solution,
that is a minimum number of primes needed to cover al the minterms. Notice that in the papers
by the researchers at Bull no implicitization is reported of the choice of a branching column and
of alower bound computation. Implicit formulations of such operationswere instead reported first
in[66].

In [30] it is stated that the usage of Zero-Suppressed BDD’s by Minato [95] instead
of ROBDD'’s [16] resulted in more efficient implicit representations of the computations of the

problem.

278 CHAPTER 10. BINATE COVERING

279

Chapter 11

Implicit Minimization of GPI’s

11.1 Implicit Representations and M anipulations

Algorithms for sequential synthesis have been developed primarily for State Transition
Graphs (STG’s). STG's have been usually represented in two-level form where state transitions
are stored explicitly, one by one. Alternatively, STG'’s can be represented implicitly with Binary
Decision Diagrams (BDD’s) [16, 10]. BDD'’s represent Boolean functions (e.g. characteristic
functions of sets and relations) and have been amply reported in the literature [16, 10], to which we

refer.

11.1.1 Implicit FSM Representation

A Finite State Machine (FSM) can be represented by a 5-tuple (1,0, S,7,0). I and O
are the sets of input patterns and output patterns. .S isthe set of states. 7 C I x S x S isthe
transition relation that relates a next state to an input and a present state. © C I x S x O isthe
output relation that relates an output to an input and a present state. An FSM, where each (input,
state) pair is related to exactly one next state and one output, is a completely specified FSM. An
incompletely specified FSM is one where either the next state or the output is not specified for at
least one (input, state) pair.

If anext stateis unspecified, no transitions on the (input, state) pair need to be considered
for the purpose of state minimization, so they are omitted from 7. On the other hand, we represent
al unspecified output patterns in O corresponding to an (input, state) pair. The transition and

280 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

output relations are given by:

T (¢, p,n) = 1 iff nisthe specified next state of state p on input :
O(i, p,0) = 1 iff o isa(possibly unspecified) output of state p on

where ¢ and o are Boolean vectors of signalswhile p and » are represented by positional-setsdefined
bel ow.

11.1.2 Positional-set Representation

To perform sequential optimization, one needsto represent and mani pul ate efficiently sets
of states, or state sets, (such as compatibles) and sets of sets of states (such as sets of compatibles).
Our godl is to represent any set of sets of states implicitly as asingle BDD, and manipulate such
state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots
with asingle shared BDD.

Suppose aFSM has n states, there are 2™ possible distinct subsets of states. In order to
represent collections of them, each subset of statesis represented in positional-set form, using a set
of n Boolean variables, = x125 .. .2,. The presence of astate s;. inthe set isdenoted by the fact
that variable z;, takesthevalue 1 in the positional-set, whereas z;. takesthevaue O if state s isnot
amember of the set. One Boolean variable is needed for each state because the state can either be
present or absent in the set. For example, if n = 6, the set with asingle state s is represented by
000100 while the set of states s»s3ss is represented by 011010.

A set of setsof statesisrepresented asaset S of positiona -setsby acharacteristic function
Xs : B" = Bas ys(z) = 1iff the set of states represented by the positional-set = isinthe set S.
A BDD representing x s () will contain minterms, each corresponding to astate set in S.

11.1.3 Operationson Positional-sets

With our definitions of relations and positional-set notation for representing set of states,
useful operatorson setsand sets of setscan be derived. We have proposedin [65] aunified notational
framework for set manipulation, extending the work by Lin et al. in [79]. Here we define some

basic operators.

Proposition 11.1.1 Set equality, mirroring, containment, and strict-containment between two
positional-sets = and y can be computed by: (¢ = y) = [[i—1(2r & yi); compl(z,y) =
[Ti1(er & k)i (v 2 y) =hzalyr = 20); (@ DY) = (2 2 y) - (2 # y).

11.1. IMPLICIT REPRESENTATIONS AND MANIPULATIONS 281

Proposition 11.1.2 Given two sets of positional -sets, complementation, union, intersection, and

shar p can be performed on themaslogical operations(—, +, -, -—) ontheir characteristic functions.

Proposition 11.1.3 The Maximal of a set I of sets is the set containing sets in /7 not strictly
contained by any other setin F', and isgiven by:

Mazimal,(xr) = xr(z)- Ay [xr(y) - (y D 2)].

Theterm 3y [xr(y) - (v D)] istrueiff there isa positional-set y in xr such that y O . Insuch
acase, « cannot be in the maximal set by definition, and are taken away from yz(z). One defines
symmetrically the Minimal of a set.

Proposition 11.1.4 The operation Set_Minimal,(F'(a, b)) keeps in the relation F'(a, b) only the
pairs (a, b) such that thereis no «’ related to exactly a proper subset of the b’s with which « isin

relation and it is computed by:
Set_Minimaly,(F(a,b)) = F(a,b)- Ac{3d F(c,d)-Vd[F(c,d) = F(a,d)]-3d[-F(c,d)-F(a,d)]}.

Each « is connected to a set of &'s. By varying a, we have all sets of 4’s and we keep the minimal
ones of them. We keep in the minimality relation only the pairs (a, b) where a is connected to a
minimal set of b’s. Thefact that the minimality is computed over the b’sisindicated by the subscript
b of Set_Minimal. Itisnecessary to add the term 3d F'(c, d) in order to constrain the ¢’s in the

following implication.

Example 11.1.1 Given the relation F'(a, b) with elements (001, 011, 100, 101, 211, 201, 210), the
relation Set_Minimal _b(F'(«, b)) haselements (001, 011, 101, 111), therelationMinimal _b(F'(a, b))
has elements (001, 100, 201, 210).

An often used family of operators is Tuple that computes for a given & the k-out-of-n
positional-sets. For instance T'uple,|(z) gives the universe set on the support z, T'upleo(x) gives
the empty set on the support z.

Finally we need the operators of the family Lmin and L max, first proposed in [66], to
which we refer for detailed explanations. Besides those already described in [66], we introduce a
new operator Multi_Lmin, that is a variant of Lmin. Given abinary relation F'(r, ¢) as a BDD,
Lmin(F(r,c),r) computes I, (c), the set of ¢'s which relate to the minimum number of »’sin

F(r,c). Aninefficient method is to cofactor /' with respect to ¢ taking each possible values ¢;,

282 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

count the number of onset mintermsof each F'(r, ¢)|.=.,, and pick the ¢;'swith the minimum count.
Instead the algorithm Lmin isimplemented as a primitive BDD operator that traverses each node
of F exactly once. Variablesin ¢ are required to be ordered above (before) variablesin r.

As a variant of the Lmin operator, the Multi_Lmin(R(l,r,i,p, x,y), (i,p)) operator
computesarelation Rys ..., (I, r, z,y) suchthat, for each (z, y), (I,) relatesto the minimum number
of (¢, p)inR(l,r,4,p,z,y),i.e, foragven (z,y),itfinds Lmin(R|, ,({,r, i, p,z,y), (¢,p)). Agan
the computation is performed with aBDD primitive that traverses once each node of R. Variables
(x,y) arerequired to be ordered above (before) (/, r) which in turn must be above (7, p).

11.1.4 Reationsfor Implicit Encodeability of GPI's

In the next sections we will present in detail a set of implicit computationsthat generate
the GPI's and select a minimal subset of encodeable GPI's that cover the original FSM. Here we
introduce the basic relations used in theimplicit algorithms. Otherswill be presented in the coming

sections.

e ¢ = input vector

p = positional set of present states

n = positional set of next states (tag)

m = positional set of next states (tag)

o = output vector (tag)

e cover_f(i,p,n, m, o) = onset of the originad FSM
where the combination (¢, p) denotes a cube in the input/present-state part of the STT, »
represents the next state tag of the cube, and o isthe output vector.
cover_fd(i, p, n, m, o) = union of onset and dcset of the original FSM
cover r(i,p,n, m, o) = offset of the originad FSM

e M(i,p,n,0) = mintermsof aSTT
where the combination (7, p) denotes a minterm in the input/present-state part of the STT, n
represents the next state tag of the minterm, and o is the output vector.
M (i, p,n) =30 M(i,p,n,0)
M (i, p) = 3In, o M(i,p,n,0)

11.2.

11.2

IMPLICIT GENERATION OF GPI’'SAND MINTERMS 283

M, (i, p, n, 0) = next-state mintermsof aSTT

where thefield o is null

M, (¢, p, n, 0) = output mintermsof aSTT

where thefidld » isnull

GMI(i,p,n,m,o0) = mintermsof aSTT

where the combination (7, p) denotes a minterm in the input/present-state part of the STT, n
represents the complemented next state tag of the minterm, m represents the complemented
present state part, and o is the output vector.

GPI({,p',n',m’, o) = the set of the GPI's

where the combination (i’, p') denotes a cube (GP1) in theinput/present-state part of the STT,
n’ represents the complemented next state tag of the GPI, m’ represents the complemented
present state part, and o’ is the output tag.

Py p',n', o) = the set of the GPI's
where the combination (i, p') denotes a cube (GP1) in theinput/present-state part of the STT,
n’ represents the next state tag of the GPI, and o’ is the output tag.

G, p',n', o) = asdection of GPI's

where the combination (', p’) denotesa cube (GPI) in theinput/present-state part of the STT,
n’ represents the next state tag of the GPI, and ¢’ is the output tag.

G, p',n') =3 G, p'\n', o)

G'(#', p',n") = the set of GPI’s which have not been selected yet

D(l,r) = aset of encoding dichotomies
Each dichotomy (I1, {2, ..., {;; 1,72, ..., r;) iSrepresented by apair of positional sets (I, r).

Implicit Generation of GPI'sand Minterms

11.2.1 Implicit Generation of GPI’'s

The step of computing the set of GPI's can be reduced to computing the primeimplicants

of aboolean function associated to thegiven FSM [39]. A very fruitful recent research effort [53, 30]

succeeded in finding efficiently by implicit computationsthe primeimplicants of aboolean function.

284 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

We refer to [53, 30] for acomplete treatment of the topic and we report here afew factsrequired in
our application.

If a multiple-valued function is represented in positional notation [114], cubes of the
onset (or decset or offset) of the function can be mapped into vertices of a suitable Boolean space
(extended Boolean space), which has as many variables as thelength of a positiona vector. So sets
of minterms, implicantsand primes of a multiple-valued boolean function are subsets of verticesin
the extended Boolean space. Key properties of thisextended space representation are that primality
of an implicant corresponds to maximality when the order is given by set inclusion and that set
operations can be performed as bool ean operations on the characteristic functions of the sets. Here
we review only some core facts and show the sequence of computations to compute the prime
implicants of a multi-valued function.

Consider acube S = X7 x X55,...x X3, Each S; isasubsetof 0,1,..., P;, where
P, isthe set of possible values of the ¢-th variable X;.

Definition 11.2.1 Acube S = Xfl X X2597...% X;f” is represented by the vertex [], ;z;;, where
v;; = 0ifj ¢ S;and z;; = 1if j € S;, inthe boolean space B2-17:!. This representation is called

extended space representation .

Example 11.2.1 The cube X {02 x X {01} where P, = {0,1,2} and P, = {0, 1} is represented

by the vertex z 11T 12021222223, 1.€., (].7 0,11, 1) in BS.

In this way, each cube is mapped into a unique vertex of the extended Boolean space,
except for the empty cube (i.e., the cube which has at least a part completely empty). The empty
cube is mapped into a set of pointsin the extended Boolean space, the so-called null points.

Definition 11.2.2 The null set or set of null points isthe representation in the extended space of

the null cube of the original function space.
Proposition 11.2.1 The set of null pointsis given by null(z) = 5°,T1,7;

Definition 11.2.3 The vertex set is the representation in the extended space of all the vertices of

the original function space.
The vertex set can be computed by the following proposition.
Proposition 11.2.2 The vertex set isgiven by vertexz(z) = ;3" ;25 [Tz, Tik-

Figure 11.1 shows how to compute implicitly the prime implicants of a multi-valued

function.

11.2. IMPLICIT GENERATION OF GPI’'SAND MINTERMS 285

procedure implicit_pi_generation(cover_fd) {
/* minterms of (onset + dcset) */
vertex_fd(i'p'm'n’o') = Jipmno[cover_fd(ipmno)vertex (i p'm'n’o')(ipmno D i'p'm'n’o')]
/* minterms of offset */
vertex_r(i'p'm/n'o") = vertex(i'p'm'n’o") — vertex_fd(i'p'm'n'o")
/* implicants of (onset + deset) and null cubes */
impl_null(i'p'm/n'o") = U(#'p'm'n'o’) — Jipmno vertex_r(ipmno)(i'p'm'n’'o’ D ipmno)
[* primeimplicants*/
eprime(i'p'm/n’o") = mazimal (impl_null(i'p'm'n’o'))
/* remove remaining null cubes (e.g., 00 11 111 11111111) */

prime(i'p'm'n'o") = cprime(i'p'm'n’ o'y — null_cube(i'p'm'n'o’)

Figure 11.1: Implicit computation of prime implicants

11.2.2 Reduced Representation of GPI’'s and Minterms

GPI's are found in a (extended) representation G PI(i', p', n', m’, o'), that can be easily
converted to a (reduced) representation P(i', p', n’,0’). The meaning of the different fields of
GPI and P has been given in Section 11.1.4. The extended representation has the advantage that
column dominance, which reguires the same present state literal, can be done simply by checking
containment of the representations. A GPI (column) covers a minterm (row) iff the GPI contains
the minterm. The reduced representation has the advantage that a smaller number of variables is
required. This advantageis not trivial when many sets of variables are required.

To get the reduced representation one must transform back from the (¢, p, n, m, o) space
intotheorigina (7, p, n, o) space, while enforcing that the transformation conventions are satisfied.

The reduced representation of the primesis given by:
P p n' o) = (m—)3 @EM'GPI, p',n/,m', o) - compl(n’,m))

Theequation dropsthe m’ field of G PI and convertsthe »’ field from complemented 1-hot encoding
to 1-hot encoding.

The reduced representation of the mintermsis given by:

red_cover_f (', p',n’, o) = (i — n)3In/(Im/cover_f (&', p',n’, m’, 0') - compl(n’, 7))

286 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

M (i, p,n,0) = Im(vertex(i,p,n, m,o)Tupleg(m))

AN N

3’ p'n’ o' [red_cover_f (', p',n’, o) (ipno C i'p'n’0')]

red_cover_f is the reduced representation of the onset of the original FSM. It is obtained by
dropping the m field of cover_f and converting the » field from complemented 1-hot encoding
to 1-hot encoding. The equation for M selects the minterms of vertex with an empty m field
and then keeps only those that are in the reduced representation of the onset of the origina FSM.
Output minterm isaminterm where n = T'upleg(n) and next-state minterm isaminterm where
o = Tupleg(o).

11.2.3 Pruning of Primes

Some primes can be removed because they do not correspond to GPI's. One removes

primes of one of the two following types:

1. Primesthat are covered by another prime, with full present state part and with the same next

state and output tags.
2. Primeswith full next state tag and null output tag.
Thefirst operation isimplemented by:
P p'n' o) = P, p', 0/, ") = 3i, p(P(i, p, ', 0') (0 2 ") Tupley,(p) (ip # i'p'))

Notice that the clause ip # 'p’ avoids the self-cancellation of primes with afull present state part.
The second operation isimplemented by:

P p'n oy =P p,n' o) - Tuple|n/|(n’)Tupleo(0’)

11.3 Implicit Selection of GPI’s

Oncethe GPI’s, or asubset of them, have been computed one must select a subset of them
that is encodeable and covers the original FSM.
11.3.1 Implicit Selection of a Cover of GPI’'s

Once GPI's and minterms are obtained, one sets up a covering problem. The rows of the
table are the minterms and the columns are the GPI’s. If the next state tag of a GPI is a superset of

11.3. IMPLICIT SELECTION OF GPI'S 287

the next state tag of aminterm and the GPI assertsall the outputsthat the mintermsassertsthen there
isalat theintersection of the given GPl and minterm. Thetableisunate, i.e., either anentryis1 or
itisempty. We will use an implicit table solver to select a subset of GPI's that cover the minterms.
Implicit algorithmsto solve binate covering problemswere presented in [66]. We implemented two
implicit binate solvers: aspecialized one with afixed table definition rule and agenera one, where
one specifies by means of functions how entries are evaluated. Notice that for this application only
aunate solver is required, but we do not have a speciaized unate solver, which could capitalize on
the restricted type of input. Here we could use either binate solver program and the specialized one
might be faster. But in Section 11.3.3 it will be necessary to use the general implicit binate solver.
So the latter will be used in both cases. In our application thereisa 1 at the intersection of agiven
minterm and GPI iff the next state tag of the GPI is a superset of the next state tag of the minterm
and the GPI assertsal the outputsthat the minterm does. Theimplicit genera binate solver requires
the sets of columns and rows and a rule to compute atable entry. In this case they are:

1. Columnsare C'(q) = P(q).

2. Rowsare R(d) = R,(d) = M(d).

3. Thetableentry at theintersection of the columnlabelled by ¢ € C and of the row |abelled by
de Risliff ¢ D d.

4. Thetableentry at theintersection of the column labelled by ¢ € €' and of therow labelled by
d € Risnever 0.

If the minterms and GPI’s are in the reduced representation it is sufficient toset d = ¢, p, n, 0o and
qg=1,p,n', o toguarantee that thereisalat row c, d and column q iff ¢ O d, sincethereisaliff

AR AN A | . 1
Z7p7n70 227])7”70 .

LIf, instead, the minterms and GPI's are in the extended representation, setting d = i,p,n,m,0 and ¢ =
v, p',n',m' o thereisalat row c,d and column ¢ iff ' D 4,p" D p,n’ C n,m’ C m,0’ O o. The latter rule
isdifferent fromtherule:s’ 2 ¢,p’ O p,n’ D n,m’ O m,0’ D o hardwired in the specialized binate solver. Therefore
with an extended representation one cannot use the specialized binate solver. It is also the case that the larger number of
variables of the extended representation will slow down the binate solver. An advantage of an extended representation
isthat if one would implement column dominance as a maximal operation on columns, restricted column dominance (or
better, a strenghtened version of it) would correspond to a maximal operation on columns in extended representation.
But our binate solvers implement a more general definition of column dominance, that does not reduce to a maximal
operation.

288 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

11.3.2 Implicit Computationsfor Encodeability

Given a set of minterms M corresponding to a FSM (STT) and a selection of GPI's &,
one must check if the unigueness constraints, the face embedding constraints and the encoding
constraints induced by the GPI's are satisfiable. If not, one selects one more GPI from the set of
unselected GPI's G’, with the objective to minimize the number of unsatisfied face constraints.

Figure 11.2 shows computations to check for constraint satisfaction, to select one more
GPI to improve satisfiability and to compute a lower bound on the number of GPI’s to be added to
maketheproblem feasible. They differ significantly from those proposedin [116] becausethefact of
using a BDD-base representation has motivated a different formulation of the encodeability check.
The encodeability problem is such that the number of encoding constraints is proportional to the
number of minterms. The characteristic functionsof setsof dichotomiesand of encoding constraints
arerepresented implicitly using BDD’s. Furthermore, implicit operations can be applied to multiple
objects simultaneously. As aresult, enumerative processes such as the raising of dichotomies can
performed efficiently with the proposed representation.

Each of the following mgjor stepsis described in a separate subsection:

Computation of encoding constraints.

Compuitation of freeinitial dichotomiesfrom face embedding constraints.

Compurtation of freeinitial dichotomiesfrom uniqueness constraints.

Duplication of freeinitial dichotomiesinto pairs of fixed initial dichotomies.
e |terativeraising of initia dichotomies, until they become maximally raised or invalid.

If a problem is infeasible, one disregards the free initia dichotomies and raised di-
chotomies that have been satisfied and carries on, instead, the following steps on the unsatisfied

dichotomies:
e Computation of the set of minimal updating sets of encoding constraints.
e Selection of abranching column (i.e., aGPI in G').
e Computation of alower bound.

Theroutineimplicit_encodeability returns(unsat _F'I D, G PI _selected, lower bound)
to the calling routine. If the given constraints are satisfiable, implicit_encodeability will return

11.3. IMPLICIT SELECTION OF GPI'S 289

unsat_FID = GPI _selected = (). Otherwise, the calling routine receives a non-empty set of un-
satisfied freeinitia dichotomiesunsat_F'1D; moreover, it can set thelower boundto lower_bound,
and then perform branching with the columnin G P _selected.

Encoding Constraints

Each encoding constraint, represented by a set of quadruples (¢, p, n, n’), isassociated to
aminterm denoted by (i, p).2 Theleft hand-side of the encoding constraintisasinglestaten (called
the parent) and the right hand-side is a disjunction of conjuncts, so that the right hand-side can be
represented by a set of positional sets»’ (each element of »’ is called a child of the conjunct). In
other words, if an ' isrelated to 4, p, n in such a quadruple, »’ represents one of the conjuncts on
the right hand-side of the encoding constraint.

Givenamintermintheinput part, (¢, p), theparent » isuniquely determinedby M (7, p, n).
By definition, each conjunct »’ correspondsto anext statetag of aGPI containing that i nput minterm.
Thus the set of encoding constraints can be computed as:

encoding_constraints(i,p,n,n’) = M(i,p,n) -3, p' [G(,p',n') - (1 C4') - (p C p')].

These constraints can be further simplified as illustrated by the following example:
a = a + abc. First, we know that the set {a} is contained in the set {abc} and thus the latter
conjunct is redundant in the right hand-side. Such redundancies can be removed by the M inimal,/
operator [66]. The constraint is then simplified to ¢« = a which is trivially satisfiable. Then the
trivial constraints can be taken awvay by theterm (n # n’):

constraints(i, p,n,n') = Minimal,(encoding_constraints(i,p,n,n’)) - (n # n').

FreeInitial Dichotomies from Face Embedding Constraints

Face embedding constraints are state sets of present state literals in the selected GPI’s,
and can be derived by the following expression: 3:/, »’ [G/ (7', p’, n’)]. To generate the free initia
dichotomy originated from a face embedding constraint, we choose (arbitrarily) the left block, z,
of the freeinitia dichotomy to represent the present state literal of a GPI, and the right block, ¥, to
represent asinglestate (i.e., T'uples(y) istrue) not present in thelitera (i.e., (y € «)). Thusthe set
of freeinitia dichotomies originated from face embedding constraints can be computed by:

FIDjaee(w,y) = W {3 0" [GEp'n")] - (2 = ')} - Tuples(y) - (y €)

2The relation between encoding constraints and input mintermsis, in general, a one-to-many function.

290 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

procedure implicit_encodeability(G, G, M) {
encoding_constraints(i,p,n,n') = M(3,p,n) - I, p' [G(,p",n') - (1 C ') (p C p')]
constraints(i,p,n,n’') = Minimal,/ (encoding_constraints(i, p,n,n’)) - (n # n’)
FIDjqce(z,y) = 3, n' [G(i', 2, n")] - Tuplea(y) - (v € =) — Tuples(x) - Tuple(y)
FIDuynigue(z,y) = Tupler(x) - Tuplei(y) - (z > y)
« Ar' y {FIDqcc(s',y) - [(w€a’)- (weV)+ (z €y) (v ez}

FID(,5) = FIDfaee(,9) + F1Dunique (2,9)
ID(ry29) = FID(0) - [=2)- (- =) + (1= v) - (- = 2)]
leftorule(U,r' l,r,i,p) = (r = ') - In {3n/ constraints(i, p,n,n/)(n U =) - (nN ' = 0)

-Vn'! [constraints(i, p,n,n') = (n/ N1 # 0)]}
rightorule(U', v Lr,i,p) = (I=U) -3 {(n Ur' =r) - (v’ vy’ #7n') - In[(n Cr') - constraints(s, p,n,n’)

('l =0)- V' [((n" #n') - constraints(i, p,n,n")) = (n" 0l £ O]}
rules(l',r', 1, r,4,p) = leftorule(l’,r', 1, r i, p) + rightrule(U',r',l,r, 1, p)
mvalid(l,r) = (Inr #0)
mazimallyraised(l',r’)y = Al,r, 4, p rules(U', v, 4,p,1,7)
[* traverseraising graphs*/
Dyariall,r,z,y) = ratsing_graphs(ID(l,r,z,y), rules(l', v, 1, 7,1, p), tnvalid(l,r, z,y))
[* prune satisfied raising graphs*/
unsat-FID(z,y) = FID(z,y)- Al,r [Dyaiia(l,r, @, y) - mazimally_raised(l,r)]
Dy aiia(lyr,z,y) = Dygriallsr, @,y) - unsat FID(z,y)
/* compute set of min updating sets */
updating_sets(l,r,1,p,z,y) = A, v’ [Dyqriallir, z,y) - rules(l, vl v’ i, p)]
min_updating_sets(l,r, 4, p, x,y) = Set_Minimal; p(updating_sets(l,r,%,p, z,y))
/* select branch column */
min_outdeg_node(l, r,z,y) = Multi_Lmin(min_updating_sets(l,r,i,p, z,y), (1,p), (z,¥))
min_outdeg_edges(l,r,1,p, ,y) = min_outdeg_node(l,r, x,y) - min_updating_sets(l,r,1,p, z,y)
Ti(é,p, @, 9,1, p',n') = 3l,r [min_outdeg_edges(l,r,i,p,z,y) - (n' Ni=0)]-G'(¢/,p',n')- (¢’ D7) - (p’ D p)
GPI_selected(i,p',n') = Lmaz(T1, (i,p, =, y))
/* compute lower bound */
To(w,y; 7', p'yn') = 3, p {3, r [min_updating sets(l, v, i,p, x,9) - (0 0= O)] - G'(I',p",n') - (&' 2 4) - (' 2 p)}

lower bound = Mawz_Indep_Set(Ts, (z,y), (¢/,p',n'))

return (unsat_FID, GPI_selected, lower_bound)

Figure 11.2: Implicit encodeability computations

11.3. IMPLICIT SELECTION OF GPI'S 291
= A 0 [G 2, n)] - Tupler(y) - (y € z).

Free Initial Dichotomiesfrom Uniqueness Constraints

Uniqueness constraints generate initial dichotomies with a singleton state in the = and y
blocks(i.e., Tuples(x) - Tuples(y) istrue). We need to generate an initia dichotomy (z, y) if states
x and y are not aready distinguished by any free initial dichotomy resulting from face embedding
constraints. This conditionisexpressed by: Ax’,y' {FIDy..(2',y) - [(x € 2') - (y € y') + (z €
y) - (y €)]}

The previous relation generates the set of fixed initia dichotomiesrelated to uniqueness
constraints. However for subsequent computations, we need a so the set of freeinitial dichotomies.
So we must pick one dichotomy out of each complementary pair of fixedinitial dichotomies, and this
can be done systematically by the clause (¢ > y). Here we exploit the fact that any positional -set
can be represented as a binary number, and we only pick an initia dichotomy (z, y) to be a free
initial dichotomy if the binary representation of z is greater than that of y. In summary, the set of

freeinitia dichotomies originated from uniqueness constraints can be computed by:
FIDunique($7 y) = Tuplel(x) : Tuplel(y)) (x > y)
- Bl Y {F I Dyoce (2, y) - [(z € 2") - (y € ') + (x € y) - (y €)]}
Now we combine these two sets to form the set of freeinitial dichotomies as follows:

FID(z,y) = FIDfqee(2,y) + FIDypigue (2, y).

Initial Dichotomies

Each freeinitia dichotomy (z, y) in £’ D corresponds to two fixed dichotomies (z, y),
(y,x) € ID. They can be computed as follows:

ID(l,r) = Fo,y{FID(x,y)-[l=2)-(r=y)+(=y) (r=2)]}
= FID(l,r)+ FID(r,1).

In the algorithm shown in Figure 11.2, each dichotomy (/,) is actually annotated by the
freeinitial dichotomy (z, y) fromwhichitisoriginaly derived or raised. A raising graphisarooted
connected graph. The (z, y) label is useful to distinguish dichotomies in different raising graphs.
In other words, the same dichotomy (i.e., same |eft and right blocks) can be reached starting from

292 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

different free initial dichotomies, but the reached dichotomies are treated as different. Asaresult,
raising graphs will not overlap. To obtain theannotated / D (I, r, z, y), the existential quantification

over z and y is omitted from the 7 D computation in Figure 11.2.

Raising Graphsand Implicit Toolsfor their Traversal

The problem of branch column selection and lower bound computation requires the
exploration of different raising actions. The process of raising can be modeled by a forest of
raising graphs. Each raising graph has a free initial dichotomy as itsroot. Its intermediate nodes
are non-maximally raised valid dichotomies, while its leaves are either al invalid dichotomies
or al maximally raised valid dichotomies. The properties of the leaves have been proved in
Section 9.1.1 and will be exploited by our agorithm. The outgoing edges from a dichotomy are
labeled by encoding constraints which are applicable to that dichotomy. The edges point to their
corresponding raised dichotomies.

The advantage of casting the problem to one of graph traversal is that efficient implicit
graph traversal techniques can be employed. Asaresult, we can perform all the following compu-

tationsin asingleimplicit iterative step:
1. manipulate al separate raising graphs simultaneously,
2. for each raising graph, operate on al leaf-dichotomiesin it simultaneously,

3. for each raising graph and each leaf-dichotomy in it, test applicability of al encoding con-
straints and obtain al raised dichotomies simultaneously.

As mentioned before, each node of araising graph islabeled by adichotomy (possibly an
invalid or amaximally raised valid one). Each edge islabeled by an applicable encoding constraint.
Thus each edge can be expressed by a6-tuple (I, ', i, p, I,) which islabeled by the input minterm
(¢,p), originates from the dichotomy (!, ') and is raised (or pointed) to the dichotomy (/,r).
Pictorialy, we have (', r') (Lp; (1,7).2 The set of possible raising edges is represented by the set
rules(l';r' 4, p, 1, r), which represents the rules that raise dichotomies. The set rules consists of
thesetslie ft_rule and right rule:

rules(I';r' v i, p) = leftrule(l',r' 1, r 4, p) + right rule(l', v’ 1, r, 4, p).

3Note that a single encoding constraint can be associated to more than one input minterm. Such a case is correctly
modelled by multiple edges between nodes (', r') and (1, 7).

11.3. IMPLICIT SELECTION OF GPI'S 293

A le ft_rule does not modify theright block, but adds astate » originally absent from the
left block I/, (nN 1" = 0), toform anew left block /, (n U’ = [). Thustheraising rules here cannot
be applied vacuously (because each rule must add at least one state to one block). In addition, the
raising conditions as described in Section 9.1.1 require that at least one child of each conjunctisin
the left block:

Vn' [constraints(i,p,n,n') = (n' N1 £ 0)].

Thele ft_rule iscomputed by:

leftorule(l',r' lryt,p) = (r=7)-In{(nul' =1 -(nnl =0)

-Vn! [constraints(i,p,n,n') = (n' NI £ 0)].
The right rule issimilarly computed by:

right rule(l';r' Lryi,p) = (I=0)-3In" {(n'ur' =r)- (' 0r' £ 0
An[(n Cr') - constraints(i,p,n,n’) - (n' N1 = 0)

" [((n" # n') - constraints(i, p,n,n")) = (" N1 #£0)]]}.

The above computations are not specific to a particular set of dichotomies and thus they can be
computed once and for all before theiterative loop.

To test for termination, one checksif adichotomy isinvalid or not. Ascompared with the
explicit algorithm in [116], raising is stopped once an invalid dichotomy is detected by a simpler
way of testing invalidity. A dichotomy (/, r) defined to be invalid if an element is common to both
itsleft and right blocks (I N r # 0):

invalid(l,r) = (INr £ 0).

A valid dichotomy has been maximally raised if no encoding constraint in rules can be
applied toit. The maximality of adichotomy (I’ ') istested as follows:

maximally_raised(l',r"y = Al,r, i, prules(l';r' i, p, 1, r).

Raising by Implicit Graph Traversal

Theraising graphs are traversed in an iterative manner. The god isto collect the reached
dichotomies into two sets. D14 representing the set of valid (partially or maximally) raised
dichotomies and D;,,,.;:.4 denoting the set of invalid dichotomies. A free initial dichotomy is

294 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

unsatisfied if the raising subgraphs® rooted at both of its fixed initial dichotomies have al their
leavesin D, q1i4. 1N this case, one wants the GPI that, once added, improves more satisfiability.
On the other hand, if any leaf of araising subgraph is valid and maximally raised, one concludes
by Theorem 9.1.2 that the free initial dichotomy is satisfiable. In this case, the whole raising graph
should be ignored during the computation of a branching column and lower bound.

We start with the set of fixed initial dichotomies (Do = D). At the k-th iteration, a
current set of dichotomies Dy (I, ') israised with respect to al applicable rules to give anew set
of raised dichotomies Dy 1(Z,). The current set of dichotomiesis transformed as follows:

DLz, y)y =307 6, p[Dp(U, 7" 2, y) - rules(U', 7' 1 e, 4, p)].
I

Invaid dichotomies obtained above are then detected and added to the set D;,,q154, @nd they are
removed from the set Dy1. Thisremaining set Dy, is added to the set of valid dichotomies

Dyq1:4. These updatings are performed by the following computations:

Dinvalid(l7 r,z, y) = Dinvalid(lv r,x, y) + Dk-l-l(lv r,zx, y) . vaalld(lv T‘)
Dk-l-l(lv r,, y) = Dk-l-l(lv r,, y) ’ _'invalid(lv T‘)

Dvalid(lvr7$7y) = Dvalid(lvr7x7y) + Dk+1(l,7‘7$7y)-

The value of & isincremented, and the next iteration is applied again if Dy # 0. Note that if al
dichotomiesin Dy (!’, ") have been maximally raised, no ruleswill beapplicabletoany (', ') init,
and therefore Dy 1(/, r) becomes empty after the k-th iteration. Alsoif al dichotomies Dy 11(/,)
becomeinvalid, the above computationswill leave Dy, empty. Theiteration will terminatein both

cases. A procedure to computetheraising graphsisshownin Fig. 11.3.

Pruning Satisfied Free Initial Dichotomies and their Raising Graphs

Asdiscussed in Section 9.1.1, afree initial dichotomy is satisfied iff it can be maximally
raised to avalid dichotomy. In other words, afreeinitial dichotomy (z, y) isunsatisfied if it cannot
be raised to a dichotomy (!, r) that is both valid (i.e., Dyqi4(l, 7, 2, y)) and maximally-raised (i.e.,
mazimally_raised(l,r)). The set of unsatisfied freeinitial dichotomies can be computed by:

unsat_FID(z,y) = Al r [Dyaia(l,r, 2, y) - mazimally raised(l, r)].

“The root of araising graph is a free initial dichotomy in F7D(z,y), and has two children which are fixed initial
dichotomiesin ID(l,r, z,y). In the sequel, the term raising subgraphswill be used to refer to the subgraphs rooted at
those fixed initial dichotomies.

11.3. IMPLICIT SELECTION OF GPI'S 295

procedure raising_graphs(7 D, rules, invalid) {

k=0; Dg(l,r,z,y) = Dyaiia(l,7,2,y) = ID(,r,2,9); Dinvatia(l,7,2,y) =0

do {
DLy, y) =37 i p DU, 2, y) - rules(l ' L r, i, p)]
Dinvaiiall, 7,2, y) = Dinvaiia(l, 7,2, y) + Deya(l, 7, 2, y) - invalid(l, r)
Diyi(l,ry 2, y) = Diga(l, vy, y) - —invalid(l, r)
Dyaiia(l, 7, 2,y) = Dyaia(l, 7,2, y) + Diga(l, v, 2, y)
k=k+1

Yuntil (D (L, r, 2, y) = 0)

return (D_valid)

Figure 11.3: Implicit encodeability computations

Once a free initial dichotomy is satisfied, it will remain satisfied even if we add more
GPI's to our selection. As a result, there is no reason to traverse the raising graph rooted at each
satisfied free initial dichotomy again. To ignore these satisfied raising graphs when computing
updating sets in the next section, the dichotomies annotated with (z, y) ¢ unsat_F'I D are taken
away fromtheset D, q4:

Dvalid(lv r,z, y) = Dvalid(lv r,z, y) : unsat—FID($7 y)

Computing the Set of Minimal Updating Sets

If afreeinitia dichotomy is removed, we find and update a set of encoding constraints
responsible of removing the dichotomy. Such a set of encoding constraintsis called an updating
set, and it is associated with a particular freeinitial dichotomy (z, y) (and the raising graph rooted
there). Asmentionedin Section 9.1.3, each updating set correspondsto adichotomy node (/, r) inthe
raising graph, and the updating encoding constraints correspond to the labels of the outgoing edges
of that node. We represent the set of updating setsby therelation updating_sets(l, r, i, p, x,y): an
encoding constraint denoted by input minterm (¢, p) isin an updating set associated with dichotomy
({,r) within theraising graph rooted at (z, y) iff the 6-tuple (I, r, 7, p, 2, y) isin the updating_sets
relation. The (I, r) label is kept because it will be used later. The set of dl updating sets can be
obtained implicitly as shown below, by considering al annotated valid dichotomiesand identifying

296 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

all applicable encoding constraints (via rules) from each of these valid dichotomies:
updating_sets(l,ryi,p,x,y) = ' 17" [Dyaria(l, vz, y) - rules(l,r, U ' 1, p)].

Inthe subsequent computations, only asubset of minimal updating sets, cledmin_updating_sets,
matters. Anupdating set isin men_updating_sets if no encoding constraint can be removed from
it, whilethe set still remains an updating set. The set of all minimal updating sets can be computed
by identifying nodes (/, r) whose sets of outgoing edgelabels (¢, p) are not subsets of other updating
Sets:

man_updating_sets(l,r, i, p,z,y) = Set_Minimal; ,(updating_sets(l,r,i,p,z,y)).

Branching Column Selection

Astheexisting selection of GPI’sdoesnot satisfy al freeinitia dichotomies(if unsat _F 1D
(), at least one more GPI must be selected. The objective of GPI (branching column) selection
is to maximally improve the overall satisfiability of the unsatisfied free initial dichotomies. The
addition of a GPI will update a number of encoding constraints, and therefore will improve (or at
least not worsen) the satisfiability of unsat_F1D. To select such a GPI optimally, we must use the
set of al updating sets of encoding constraints (updating_set) to construct afull satisfiability table.
Here heuristically, we build asimplified partial satisfiability table ° instead.

For each unsatisfied free initial dichotomy (z, y), we find an updating set with the mini-
mum number of encoding constraints, i.e., a minimum cardinality updating set. Because any GPI
selection that updates these constraints may satisfy the given free initia dichotomy, one hopes that
by updating constraintsin aminimum cardinality updating set, asmall number of GPI's will suffice
to find an encodeable cover. A minimum cardinaity updating set corresponds to the minimum
out-degree node in the raising graph.

The minimum out-degree node (I, r, z,y) in the raising graph rooted at (z, y) can be
extracted by the M ult:_Lmin operator on the set of minimal updating sets:

min_outdeg_node(l,r, x,y) = Multi_Lmin(min_updating_sets(l,r,i,p,x,y), (1, p), (z,y)).
The edges (i, p) associated with each minimum cardinality updating set are obtained by:
min_outdeg_edges(l,r,i,p,x,y) = min_outdeg_node(l,r,z,y)

-min_updating _sets(l,r,i,p,x,y).

SWith respect to the partial satisfiability table presentedin Section 9.1.4, this tableis simplified, becauseeach updating
clause has exactly oneliteral, and not two.

11.3. IMPLICIT SELECTION OF GPI'S 297

The columns of the simplified partial satisfiability table, T4, are labeled by the unsel ected
GPI's G'(i', p', n'). The rows of table T3 are divided into sections corresponding to different un-
satisfied free initia dichotomies. Thus a part of the row label is (z, y) to distinguish the sections.
Within asection, arow isalso labeled by (:, p) corresponding to an encoding constraint in the min-
imum cardinality updating set (i.e., (i, p) € min_outdeg_edges). A tableentry (i, p, z,y; 7', p', n')
isa l-entry iff theinput part of the GPI covers the input minterm of the encoding constraint (i.e.,
(¢ 2 4) - (p' 2 p)) and no child of the conjunct »" isin theleft block, (n’ N1 = 0). Theimplicit
tableis obtained by the following computation:

Ti(4, pyz,y; 7 p'sn'y = 3l r [min_outdeg_edges(l,r,i,p,x,y)- (0’ N1 =0)]
'G/(ilvplv n/) . (ll 2 7/) . (p/ 2 p)

To select a GPI to improve the overall satisfiability of unsat_F' 1D, we select acolumnintable 77
that contains the maximum number of 1's. The Lmaz operator is used to pick such a column as
follows:

GPI _selected(i,p',n') = Lmaz(Ty, (¢, p, z,y)).

Lower Bound Computation

For reasons described in Section 9.1.5, we cannot use the simplified partia satisfiability
table 77 for lower bound computation. Instead, we construct the support satisfiability table, 7%.
We still start with the set of minimal updating sets. The rows are now labeled only by (z,y) €
unsat _F'1D. Eachrow representsan or clauseof theencoding constraintsinall min_updating sets
associated with (z,y). The 1-entries in table 7% are obtained as those in 7', except that here all
edgesin the support are used instead of only thosein min_outdeg_edges, and the whole right-hand
expression is existentially quantified by ¢, p because each clause represents an or of all encoding
constraintsin the support. Table 75 is computed as follows:

To(w,y; ¢, p'sn') = Fi,p {3l r [min_updating_sets(l,r,i,p,z,y)- (' N1 =0)]
'G/(i/,p/,n/) . ('L/ 2 7/) . (p/ 2 p)}

A lower bound on the number of additiona GPI's to make the problem satisfiable
can be found by computing the maximal independent set of rows in table 75, by means of the
Max_Indep_Set operator [66] asfollows:

lower bound = Max_Indep_Set(T, (x,y), (¢, p',n)).

298 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

procedure codes_implicit_gpi_selection(Dy qii 4, maximally_raised, FID) {
/* find valid maximally raised dichotomies*/
Dstare(l,) = 2, yDyaisa(l, 7, 2, y) - mazimally_raised(l, r)
/* complete valid maximally raised dichotomies™*/
Deomptete (L) = 3, Dagare (1, #') (L 2 1) (r 27 (-7 =) BelTuples(x)(l 2 2)(r D 2)]}
/* removeinvalid dichotomies*/
Dyaiia(l,7) = Deompiete (I, 7) — ' r'ip[rules(l, v, ', v i, p) - invalid(', 7))
/* select aminimum set of valid compl ete dichotomiesthat cover the FID's*/

Deotumns (I, 7) = unate_encoding(Dyqiia, FI1D)

Figure 11.4: Computation of codes satisfying a selection of GPI's

11.3.3 Implicit Encoding of an Encodeable Set of GPI's

In this section we describe the generation of codes that satisfy an encodeabl e set of GPI’s.
The cost function is the number of encoding bits. The problem is to generate valid complete
dichotomies and then set up and solve a unate covering problem.

Figure 11.4 shows an exact implicit agorithm to find codes of minimum length that
satisfy a given set of encoding constraints (in this case aready known to be encodesble), based on
the notion of completion of a dichotomy. The agorithm computes the completion D, piete (I,)
of theset Dy,,+({,) oOf valid maximally raised dichotomies. Then it removes from D..piete ({, 1)
the invalid dichotomies, i.e., the dichotomies that could be raised again. Since the dichotomies
iN Deompiete (I,) are complete, if raising is still possible, it must introduce some invalidity. By
Theorem 9.1.3 this procedure finds a minimum set of encoding columns.

The last step solves a table covering problem. The rows of the table are the free initia
dichotomies and the columns are the valid complete dichotomies. If avalid complete dichotomy
covers one of the two initial encoding dichotomies associated to afree initial dichotomy (itself and
the one with the two blocks exchanged) ©, thenthereisa 1 at the intersection of the valid complete
dichotomy and the free initia dichotomy. Thetableisunate, i.e. either an entry is1 or it isempty.
Theimplicit general binate solver previously mentioned is used here.

The genera binate solver requires the sets of columns and rows and arule to compute a

81n other words, the left and right blocks of the free initial dichotomy are subsets respectively either of the left and
right blocks, or of the right and left blocks of the valid complete dichotomy.

11.4. A WORKED EXAMPLE 299

table entry. In this case they are:

1. Columnsare C'(q) = Dyaua(l,), whereq = [, r.
2. Rowsare R(d) = R,(d) = FID(z,y),whered = z, y.

3. Thetableentry at theintersection of the column labelled by (I,) € C and of therow labelled
by (z,y) € Risliff Il D a,r DyorlDy,r D .

4. Thetableentry at theintersection of thecolumn labelled by (/, r) € C and of therow labelled
by (z,y) € Risnever 0.

Asaresult aset of valid complete dichotomies D ojymns ({,) isselected. The columnsin Deoiymns

are aminimum cover of al therows.

11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI's

Fig. 11.5 shows a detailed description of an approximate implicit agorithm to find a
selection of GPI’s that is a cover of the origina FSM and that is encodeable. A simplified view
of the algorithm was aready shown in Fig. 8.8 and related issues commented. The computations
introduced in Section 11.3.2 are used to check encodeability and select a branching column. One
minor efficiency improvement is the addition of a set acc_sat_F'I D(z, y) to accumulate the free
initial dichotomies (z, y) aready shown to be satisfied, because by Theorem 9.1.1, they will stay
satisfied when adding more GPI’s to the solution. Notice aso that a FID (z,y) aready verified
could be generated again by a newly selected GPI. So when we recompute the FID’s generated by
the augmented set of GPI's, we check that none of them has been found satisfiable already. To
update the set acc_sat_F1D(x,y), a each iteration one adds to it sat_F'ID(z,y), the set of the
FID’s (z, y) found satisfied in the current iteration. There are various efficiency issues regarding
partially duplicated computationsin the while loop. We consider them an implementative detail
not to be discussed here. Animplementation of thisimplicit approximate algorithmwill be reported

next.

11.4 A Worked Example

We show the main steps of the agorithm presented in 11.3.4 on the FSM leoncino. The
first call to the implicit binate solver returns the following cover of GPI's 7:

"The numbers within () identify them in the lists of GPI’s and covering tables given in Section 8.1.

300 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

procedure approx_implicit_gpi_selection(P, M) {
G(',p',n',0') = unate_encoding (P, M);
G, p'\n', o)y = P(,p',n', o) — G, p’',n',0'); unsat_FID(z,y) =1; accsat FID(z,y) =0
while (unsat_FID(z,y) # 0){
FID¢gee(z,y) =3, n' [G(',z,n")] - Tuplei(y) - (v € ©) — Tupler(x) - Tuplei(y)
FIDuynigue(z,y) = Tupler(x) - Tuplei(y) - (z > y)
Bl {FID paue(a’s ') (e C#') - (y C¥') + (2 C o) (y C)]}
FID(z,y) = FID¢qce(2,y) + FIDunique(2,y); FID(x,y) = FID(z,y) — acc_sat FID(x,y)
ID(l,r,z,y) = FID(z,y)-[(l=2) - (r=y)+ (I=vy) - (r =)]
encoding_constraints(i,p,n,n') = Myn(z,p,n) - I, p' [G(',p',n") - C ') (p C p')]
constraints(i,p,n,n’') = Minimal,/ (encoding_constraints(i, p,n,n’)) - (n # n’)
leftorule(U,r',lr,i,p) = (r = r') - In{3n’ constraints(i, p,n,n')(n U =) - (n0 ' = ()
-Vn! [constraints(i, p,n,n') = (' O U # 0)]}
rightorule(U', v Lr,i,p) = (I=U) -3 {(n Ur' =r) - (v’ vy’ #7n') - In[(n Cr') - constraints(s, p,n,n’)
{(n' 0 l=0)- Vo' [((n"” #n') - constraints(i,p,n,n")) = (n"” 0l # 0)]]}
rules(I',r',{,r,1,p) = leftrule(U',r’ 1,74, p) + rightrule(U',r',1,r,4,p)
invalid(l,r) = (Inr £ 0); mazimallyraised(l',r’)y = Al,r, ¢, prules(’,r’,4,p,1,7)
[* traverseraising graphs*/
Dyariall,r,z,y) = ratsing_graphs(ID(l,r,z,y), rules(l', v, 1, 7,1, p), tnvalid(l,r, z,y))
[* prune satisfied raising graphs*/
unsat-FID(z,y) = FID(z,y)- Al,r [Dyaiia(l,r, @, y) - mazimally_raised(l,r)]
sat FID(z,y) = FID(z,y) — unsat_-FID(z,y); acc_sat_FID(z,y) = acc_sat FID(z,y) 4+ sat_FID(z,y)
Doynsat_vatia(l,rs2,y) = Dygria(l, iz, y) - unsat _FID(z,y)
/* compute set of min updating sets and select branching column */
updating_sets(l,r,1,p,z,y) = A',v’ [Dunsatvaria(l,r, z,y) - rules(l,r, U, v’ 4, p)]
min_updating_sets(l,r, 4, p, x,y) = Set_Minimal; p(updating_sets(l,r,%,p, z,y))
min_outdeg_node(l, r,z,y) = Multi_Lmin(min_updating_sets(l,r,i,p, z,y), (1,p), (z,¥))
min_outdeg_edges(l,r,1,p, ,y) = min_outdeg_node(l,r, x,y) - min_updating_sets(l,r,1,p, z,y)
Tu(é,p, ¢,y ¢, p'sn’) = 3, r [min_outdeg-edges(l,r,i,p,x,y) - (/' N 1= 0)]- G'(¢',p",n") - (¢ 2¢) - (p' 2 p)
GPI_selected(i,p',n') = Lmaz(T1, (i,p, =, y))
G, p',n'") = G(',p',n") + GPI_selected(i/,p',n"); G'(¢',p',n') = G'(¢,p',n') — GPI_selected(i',p',n’)
}

return(P(i!, p'n’, o) - G(i',p' n'))

Figure 11.5: Approximate implicit selection of GPI’s - Detailed view

11.4. A WORKED EXAMPLE 301

1 - 00100111 (3), 0111101011 (5), —111011000 (24), —010010001 (6), —001101110 (17).
The next-state constraints are:
my st0 = st0
myg st0 = stO
ms st0 = st0.stl
meg stl = stl + st0.stl
mg stl = stl.st2
myg stl = stl 4+ stO.stl
mq1 st0 = st0.stl
myz st2 = stl.st2
mig St2 = st2 + stl.st2
mig St2 = st2
mo stl = stl.st2
Trivial next-state constraints are ms, mg, m11, mM13, M21.
The non-trivial face constraints are (st0, st1) and (st1, st2). Thefreeinitia dichotomies
e (st0, stl; st2) and (stl, st2; st0). Theinitial dichotomies are (st0, st1; st2), (st2; st0, stl),
(stl, st2; st0) and (st0; stl, st2).
There are two raising graphs, one rooted at (st0, st1; st2) and the other rooted at

(stl, st2; st0). The edges of the raising graph rooted at (st0, st1; st2) are:
(st0, stl; st2) — (st0, stl; st2),

(st0, stl; st2) — (st2; st0, stl),

(stO, stl; st2) ™8 (st2, st0, st; st2),

(st2; st0, st1) =% (stl, st2; st0, stl),

(st2; st0, stl) 7% (stl, st2; stO, stl).

All maximally raised dichotomies (sinks of the graph), i.e,, the nodes (st2, st0, st1; st2) and
(stl, st2; stO, st1), areinvalid, so the FID (st0, st1; st2) is violated.

The edges of the raising graph rooted at (st1, st2; st0) are:

(stl, st2; st0) — (stl, st2; st0),

(stl, st2; st0) — (st0; stl, st2),

(stl, st2; st0) =% (st0, stl, st2; st0),

(stl, st2; st0) =5 (st0, stl, st2; st0).

While sink (st0, st1, st2; st0) isinvalid, sink (st0; st1, st2) isvalid, so the FID (st1, st2; st0) is
not violated. In this example, al raising actions happen to be due to the | ft rule.

302 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

Since the FID (st0, st1; st2) is violated, the given selection of GPI’s is not encode-
able. A new GPI is added to it, returned by Lmaz: 1001100110 (16). The non-trivia next-
state constraints are the same as before, except the one corresponding to m 13 that is updated to
miz st2 = stl.st2 + st2 becoming atrivia next-state constraint. If we repeat the pro-
cess of building the raising graphs, we aobtain the same graphs as before except that the edge
(st0, st1; st2) =8 (st2, st0, st1; st2) will be missing, because 113 cannot force anymore raisings.
Therefore aso the FID (st0, st1; st2) is not anymore violated, because it has a valid sink, i.e,
(st0, st1; st2). So an encodeable cover of 6 GPI's has been obtained.

11.5 Verification of Correctness

After obtaining an encodesble cover of GPI's and codes that satisfy the constraints, one
replaces the codes in the GPI cover and minimizes it to get a minimized encoded GPI cover,
Frin_gpi- 1t isuseful also to replace the codes in the original FSM cover and then to minimizeit,
getting F,.in_ssm. Since the don’t care set can be used differently, the two minimized covers may
differ and the smallest one is picked.

It is aso important to verify that the minimized encoded GPI cover, Fiip_gpi, IS Still @
cover of the onset of the original FSM. This can be achieved by checking that F7,,;,, 4, iScontained
in the union of the onset and dcset of the encoded (not minimized!) FSM cover and that the onset
of the encoded (not minimized!) FSM cover is contained in the union of F,;,, ,,; and the dcset of
the encoded FSM cover. If thischeck isroutinely successful oneis confident that the algorithm has
been implemented correctly. Thischeck is aways performed at the end of our program.

Figure 11.6 shows the operationsto encode and verify the correctness. F, DD and R denote
respectively onset, dcset and offset.

We demonstratethe procedure on the example previously utilized to explain thea gorithm.
The set of selected GPI's, (7, is:

1- 001 001 11
10 011 001 10
01 111 010 11
-1 110 110 00
-0 100 100 01
-0 011 011 10

The codes are: enc(st0) = 00, enc(stl) = 10, enc(st2) = 11. By encoding the GPI cover, one
obtainsthe covers F,,; and R,

11.5. VERIFICATION OF CORRECTNESS 303

procedure code_and_verify(G, Deowumns, FSM) {

/* encode the GPI cover */

Fypi = encode_gpi(G, Deotumns, F.SM)

/* minimize encoded GPI cover */

Dgpi = O(cover)

Rgpi = complement (Fyp;)

Frnin_gpi = espresso(Fygpi, Dgpi, Rgpi)

[* encode the FSM cover */

(Ftsm, Resm) = encode_fsm(Deotumns, FSM)

Dy = complement(From U Rfom)

[* verify correctness */

if (Frnin_gpi € From U Dsom @0 From C Frin_gpi U Dfsm) {
/* minimize encoded FSM cover */
Frnin_fsm = espresso(Frsm, Dism, Rfsm)
return(Frnin_gpi> Finin_fsm)

} elsereturn("error")

Figure 11.6: Computation of minimized encoded covers and correctness check

1111
1110
1011
0000
0001
1010

1110
0100
1111
1100
1111
0001
0001
1111

CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

The minimized encoded GPI cover, F,in_gpi, IS:

- 000
101-
01--
-01-
1-11

0001
0100
1011
1010
1111

By encoding the FSM cover, one obtainsthe covers F,,, R gy and Dy,

- 000
0100
0-10
1010
1-11
0011

0001
1000
1010
1110
1111
1010

- 000
1100
0100
0-10
1110
1010
0011

1110
1111
0100
0100
1110
0001
0101

--01 1111
01-1 1111
010- 0011
0-10 0001
-110 0001

The minimized encoded FSM cover, Fi,i,_fsm, IS

101-
-00-
01- -
-01-
1--1

11.6

11.6.1 Order of BDD Variables

0100
0001
1010
1010
1111

I mplementation | ssues

The ordering of the BDD variables is one of the most excruciating problems encountered
whileimplementing BDD-based computations. Four arrays of variablesareneeded: Ag, A1, Ay, As,
where in turn each array is composed of five subarrays of variables: 7, P, N, M,O. I isan array
of input variables, P, N, and M are each an array of state variables and O is an array of output
variables. Consider an example with 1 input, 1 output and 3 states; A will consist of:

11.6. IMPLEMENTATION ISSUES 305

i plp2p3 n1n2n3 mnm nB o
I P N M O

Inthe computation of prime compatiblesonly arrays Agand A, areused. Inthesolutionof
thefirst covering table al four of them are used. It isimperativethat thevariablesin Ag, Ay, A5, A3
be interleaved, in order to have linear-sized BDD representations of various key intermediate

computations both when computing the primes and solving the first covering table.
We show a compatible order for two arrays of variables Ag and A;. Unprimed variables
arethosein Ag and primed (') arethosein Ajy:

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i i pl pl' p2 p2° p3 p3 nl nl®” n2 n2” n3 n3 nml nl” n2 N2’ nB8 n®
20 21
o 0o

Notice that within each array of the type A there is freedom of ordering the variablesin

I, P, N, M,0O. We refer to this ordering as single interleaving. When primes are computed, we

keep enabled the dynamic reordering routine available in the CMU BDD package.

But it is a'so necessary that the variables in the arrays P, N and M are interleaved, in
order to have linear-sized BDD representations of various key intermediate computations in the
encodeability step and when solving the second covering table. We show an order compatible with
both requirements for two arrays of variables Ag and A;. Unprimed variables are thosein Ap and
primed (') arethosein A;:

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i i’ pl pl' nl nl’” nl nl’ p2 p2' n2 n2’ n2 nm2’ p3 p3 n3 n3' nB nB’
20 21
0 0O

This order insures both:
1. interleaving between the variablesin Ag and A7; and
2. interleaving between the variablesin P, N, M withinarray Ap and within array A;.

Notice that within each array of thetype P or N or M thereis freedom of ordering the variables.
There is aso freedom in ordering 7 and O with respect to P, N, M. We refer to this ordering as
double interleaving. Doubleinterleaving is required only for the encodeability computations and
the second covering table. We have implemented two variants of double interleaving. In both cases
one startswith singleinterleaving, thenin thefirst variant one switchesto doubleinterleaving before
invoking the table solver (on the first covering table), while in the second variant one switches to

306 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

double interleaving after invoking the table solver (on the first covering table). Again dynamic
reordering is alowed during the computation of primes. The second variant is to be preferred
because it constrains less the ordering when solving the first covering table, and the experiments
confirm it. The ordering with only single interleaving, instead, is not recommended because it is
often unable to pass successfully through the second covering table solver.

Dynamic reordering has not been applied yet to the computations in the encodeability
step. It will be interesting to find out whether some hard computationsin this part can be sped-up
by reordering. One must pay attention to the fact that the computations that use the line_count
primitive BDD operator must be carried on with dynamic reordering disabled.

11.6.2 Computation of Set_Minimal
In the encodeability step it is necessary to compute the following relation:
Set_Minimaly(F(a,b)) = F(a,b)- Ac{3d F(c,d)Vd[F(c,d) = F(a,d)]-3d[-F(c,d)-F(a,d)]}.

It turns out that thisis a difficult operation with BDD’s even when implemented with the

BDD and-smaooth operator by rewriting it as:
Set_Minimaly(F(a,b)) = F(a,b)- Ac{3d F(c,d)- Ad[F(c,d)-—F(a,d)]-3d[~F(c,d)-F(a,d)]}.
A solution is to approximate the computation using the following logical vaidities:
[3d F(c,d) = Vd F(a,d)] = VYd [F(c,d) = Fl(a,d)],

and
[3d —~F(e,d) -Vd F(a,d)] = 3d [-F(c,d) - F(a,d)].

If we replace in the computation of Set_Minimaly(F(a, b)) the right-hand sides with
the | eft-hand sides of the previouslogic vaiditieswe obtain a superset of Set_Minimaly(F(a,b)),

which is a conservative approximation.

11.6.3 TheFiltering Heuristic

After acover of GPI'sisreturned from the first table covering step, more GPI's are added
oneat atimeto makeit encodeable. An alternativeisto add to the cover aset of GPI's guaranteed to
makeit encodeabl e, find codesthat satisfy all of them and then let thefinal minimization step choose
aminimal cover of encoded GPI's. Theset of GPI'sthat weadd contains, out of al unselected GPI's,

11.7. EXPERIMENTS 307

those with full or singleton present state literal or with a present state literal already occurring in a
GPI of the cover. Also the generalized implicants of the origina cover are added, to guarantee that
at least one encodeabl e cover can be found. A motivation of this choiceisto avoid the introduction
of GPI's that add new initia dichotomies, making encodeability temporarily harder to satisfy.

Thisheuristicisapreliminary attempt in an interesting direction to improve on the present
strategy of adding greedily one more GPI at atime. When this heuristic is active we stop at the
first solution of the second covering table. The reason is that since the encodeability problem is
less constrained one gets more primes dichotomies and therefore the second covering table is not
relatively simple as it is often otherwise. In particular it is an experimental fact that these tables
generate a lot of branching activities not adequately controlled by the bounding mechanism, so
that suboptimal regions of the solution space are explored in depth before being recognized as
suboptimal.

11.7 Experiments

We have implemented a program 1sA, an acronym for implicit state assignment, that
computes the set of GPI's or a subset of them and then implements the procedure for approximate
implicit selection of an encodeable cover of GPI's described in Section 11.3.4. The program
capitalizes on different existing software technologies. It is built on top of ESPRESSO, to exploit the
logic optimization capabilities of the latter in the two-level domain. Two-level logic optimization
capabilities are needed at the beginning to do pre-processing (reading a symbolic FSM cover,
building its onset, don't care set and offset, computing a cover of the companion function), and at
the end to do post-processing (repl acing the codes in the encodeabl e set of GPI's and in the original
FSM cover and minimizing them - with an appropriate don’t care set - to measure the quality of the
final result). The program 1sa computes the primes of the companion function (from which GPI's
are obtained after a reduction process) using routines kindly provided by G.M.Swamy from her
two-level logic minimizer [53]. Then 1sa selects a cover of GPI's calling the implicit table solver
described in [66]. As anext step, we have implemented the computations shown in Figure 11.5 to
obtain aminimal encodeable cover of GPI's.

The core computations are based on the representation of the characteristic functions of
relations by means of BDD’s. The program can use both the UCB and the CMU BDD packages
through the BDD interface developed at UCB. All reported experiments have been done linking the
CMU package.

308 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

11.7.1 Analysisof the Experiments

Wereport hereaset of experimentsto demonstratethe statusof the current implementation,
which is still in a development phase. GPI's can mode an host of encoding problems targetting
two-level implementations. Here we have used FSM's as a test case, because they exhibit the most
genera formulation of encodeability and so they test fully the theory. Other applications can be
handled by simple modifications. All run timesare reported in CPU seconds on a DEC DS5900/260
with 440 Mb of memory, unless otherwise stated.

The objective of the current implementation has not been to compete with existing state
assignment programs like NOVA [147] that have been heavily optimized, but to show that implicit
techniques are mature enough to generate and select encodeable sets of GPI's. While up to now
it has not been practical to manipulate sets of GPI's because they are very large even for small
symbolic covers, our contribution shows that large sets of GPI's for non-trivial examples can be
manipulated with implicit techniques. Improvements to the implicit algorithms can extend the
frontier of the problemsthat can be handled.

Anopenissueleft for futureinvestigationsis how to use effectively thiscapability in order
to do state assignment or other types of encoding. An exact algorithm that explores al possible
subsets of GPI's to find a minimum encodeable one is hardly practical, so one must introduce
heuristic restrictionsin the search of the solution space. We have used the simplest possible strategy
of adding one more GPI at a time (chosen to maximize a cost function measuring the lack of
encodeability of the current cover), and then of stopping at thisfirst solution. In order to produce
an high-quality result (measured by the size of the minimized encoded cover) this greedy strategy
must be replaced by one with alimited amount of backtracking to explore increasingly smaller sets
of encodeable covers of GPI's. Here it would help the implicit lower bound criterion presented in
Section 11.3.2, currently not used in 1SA.

Tables 11.1 and 11.2 report the results of generating GPI's for FSM’s of the MCNC
benchmark and other examples. We have included FSM’s with up to around 30 states, that is the
Size that can be currently handled. We report the number of primes of the companion function
and the number of GPI's. Comparisons of run times to generate the primes of the companion
function *only* are made with ESPRESSO [11]. Both programs were timed out at 7200 seconds of
CPU time. Notice that we report also the number of variables of the companion function (given
by 2 i+ 3 p+ o, Wwhere 1, p, o are respectively the number of inputs, states and outputs of the
FSM), because it is a more indicative measure (than the number of states) of the the complexity of

11.7. EXPERIMENTS 309

the computation to generate the GPI's.

Tables11.3 and 11.4 report the results of running 1SA to select aminimal encodeabl e cover
of GPI's. For these experiments 1sA has been run with option —m, that computes a subset of the
GPI’s, by applying the minimal transformation, instead of the maximal transformation that givesall
GPI’s (see Section 7.4.4 for adefinition of minimal and maximal transformations). The reason is
that smaller tables are generated, to the price of a solution of lesser quality. The tables provide the

following information:

¢ Under the column "table size" we provide the dimensionsof the original table and of itscyclic
core, i.e., the dimensions of the table obtained when thefirst cycle of reductions converges.

e "mincov cals" isthe number of recursive cals of theimplicit table solver.
e Thecolumn "table sol." isthe cardindlity of the cover of GPI's returned by the table solver.
e Thecolumn "final sol.” isthe cardinality of thefinal encodeable cover of GPI's.

e CPU time gives the time for the first call to the table solver under the column "table red.".
Under the column "tota" there is the total time of 1SA on the example, inclusive of the time
to compute the primes, get a cover of GPI's by caling the implicit table solver, find an
encodeable cover of GPI's and get the codes by another call to theimplicit table solver. Since
the latter call isusualy on asmall table, it islumped with the rest.

Out of the examplesin Table 11.3, 1sA failsto complete the first table reduction of slave
because of timeout at 18000 seconds, during collapse columns. Ouf of the examplesin Table 11.4,
IsA fails to complete some of them, again due to timeout or no more memory in the collapse
column step of the first table reduction. The runs of ex2, maincont, saucier did not complete
because of timeouts during the selection of new GPI’s: the time-consuming operations there are
i set_minimum (which can be successfully approximated as seen in Section 11.6.2) and changes of
BDD variables support necessary for the multi_Imin computation. Causes of failure are described
more precisaly in the tables. The results reported for cse, dk512, keyb were obtained with option -q
(heuristic of Section 11.6.3), and those for ex2, maincont, pkheader with option -k (approximation
to Set_Minimal in Section 11.6.2). FSM’s cse, dk512, keyb, ex2, maincont, pkheader, markl were
run on a DEC 7000 Model 610 AXP with 1Gb of memory.

Tables 11.5 and 11.6 report the cover size of the encoded and minimized covers produced

by 1sa and comparethem with thebest resultsof NOVA. Thetablesprovidethefollowinginformation:

310 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

#vars. CPU time (sec)

FSM | states | companfn. | primes | GPI's | ISA | ESPRESSO
bbara 10 40 | 14760 | 13518 9 532
bbtas 6 24 252 230 0 0
beecount 7 31 1834 959 4 1
chanstb 4 44 619 571 8 0
cpab 5 49 3509 2841 | 44 17
dk14 7 32 2850 1228 3 2
dk15 4 23 231 143 0 0
dk17 8 31 2021 1575 2 2
dk27 7 25 377 296 0 0
dol2 5 20 194 170 0 0
es 4 18 101 80 0 0
ex3 10 36 8686 8125 7 181
ex5 9 33 4232 3741 3 20
ex6 8 42 5720 3495 | 12 26
e’ 10 36 8538 7931 6 147
fstate 8 45 5949 5231 | 14 23
leoncino 3 15 39 26 0 0
lion 4 17 79 51 0 0
lion9 9 32 2122 1136 3 7
mc 4 23 94 77 0 0
ofsync 4 28 185 155 1 0
opus 10 46 | 16735 | 15934 | 23 329
s8 5 24 326 316 0 0
scud 8 44 | 43602 | 30259 | 74 2026
shiftreg 8 27 764 527 0 0
dave 10 91 | 273027 | 228463 | 147 7135
tav 4 24 81 81 0 0
test 2 10 5 5 0 0
virmach 4 44 257 216 | 11 0

Table 11.1: GPI's of small examples from the MCNC benchmark and others.

11.7. EXPERIMENTS

CPU time (sec)
FSM states | transf. primes GPI's | ISA | ESPRESSO
bbsse 16 53 1493485 1399079 | 136 1286
cf 13 69 2206595 2134887 | 178 -
cse 16 69 2335927 1832229 | 109 -
dk512 15 50 98238 91947 | 11 -
ex1 20 97 | 149755546 | 146394042 | 336 -
ex2 19 63 4640888 4597063 | 151 -
ex4 14 63 120835 120721 | 29 -
keyb 19 73| 28592198 | 27327259 | 212 -
Kirkman 16 78 2106843 2106783 | 252 -
maincont 16 74 1484786 1418800 37 -
mark1 15 71 733697 728799 | 89 -
master 15| 122 | 269304493 | 264757774 | 5630 -
modul 012 12 39 12282 11961 4 5246
pkheader 16 85 229946 229726 | 823 -
ricks 13 82 120576 119488 | 80 -
sl 20| 8 - - @ -
sla 20 82 | 693626434 | 616527717 | 3902 -
saucier 20 87 | 111895231 | 111852040 | 126 -
tma 20 80 12324742 12118857 | 3711 -
trainll 11 38 6444 4856 11 207
donfile 24 77 | 150994935 | 64959680 | 2348 -
dk16 27 88 | 1207950375 | 1179949953 | 3775 -
pma 24 96 | 1267371428 | 1248519820 | 2671 -
rpss 22 | 115 | 1229747382 | 1226813350 | 536 -
tr4 22 | 105 | 2770731006 | 2769352444 | 138 -

(@) out of memory

al runstimed out 7200 seconds

Table 11.2: GPI's of medium examples from the MCNC benchmark and others.

312 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

e Thecolumn"FSM cover" givesthe cardinality of the originad FSM cover.

e The column "1-hot cover" gives the cardinality of the FSM cover, after 1-hot encoding and
minimization.

e Under "results of 1SA", the column "min.gpi" gives the cardinality of the encoded and mini-
mized cover of GPI's, while the column "min.FSM" givesthe cardinality of the encoded and
minimizedinitial cover. In both cases the codes used are those returned by the second call to
the tabl e solver, which satisfy the encoding constraints. The column "bits" returns the length
of the codes, that isthe cardindlity of the solution of the second call to the table solver. When
two numbers in the same column are given the second one is the result with the filtering
heuristic, option -q.

e Under "results of NOVA", the column "best." givesthe cardinality of the smallest cover found
by NovA, using the options-eig -r, -eih -r, -eioh -r. The length of the codesisin the column
"bits".

Itisafact that NOvA does consistently better both as cardinality of the cover and length of the codes.
It must be pointed out that the results of NOVA are the best out of many runswith different encoding
options (the option -r effectively tries all possible complementations of the codes). In terms of
cover cardinality 1SA gets often close to the best of NOVA. The encoding length required by IsA is
instead hard to justify. It is aweakness that should be investigated, if one wantsto do high-quality
state assignment using GPI's. We reiterate that the current version of 1A is addressing the problem
of manipulating GPI's with implicit techniques. The next step is to search efficiently encodeable

cover of GPI's for specific applications.

11.7.2 Evaluation of the Experiments

We have presented a compl ete algorithm to compute implicitly minimal covers of GPI's.
After the seminal contribution in [39], this is the first in-depth algorithmic study that probes the
feasibility of generating and selecting sets of GPI's. Since even small symbolic covers generate
large sets of GPI's, implicit techniques have been used to generate GPI's, solve table covering
problems and verify encodeability. The implicit procedure to check encodeahility is a novelty of
thiswork, together with the technique to select GPI’'s based on minima updating sets.

A fair conclusion is that GPI's push to the limit even the most efficient BDD-based
computations. For instance the generation of prime implicantsinduced by GPI's is usualy harder

11.8. CONCLUSIONS 313

than the generation of primesfor thelogic functions of the ESPRESSO benchmark. Also the covering
problems faced to select covers of GPI's and of prime encoding dichotomies, even though they
are unate, are often tougher than those encountered in the ESPRESSO benchmark and in the state
minimization of FSM’s [66], areason being the larger variable support of the BDD representations
of columnsand rows. To be ableto solvethe examples of the previous tables, the package described
in [66] had to be further optimized and inadequacies still remain to be addressed. The implicit
check of feasibility has not been a bottleneck in experiments tried so far. Instead the selection of
new GPI’s based on minimal updating sets failed sometimes due to explosive intermediate BDD
operations; they have been partly solved by replacing the computation of Set_Minimal with a
conservative approximation, but for others there is not yet a satisfactory solution. It is an open
problem how to drive the selection of GPI’'s with amore global view, in order to obtain encodeable
covers of cardinality less or equal to the best encoded covers obtained by varioustools[147]. This
was hot an objective of this work, even though the experience gained here will be very useful to
attack the issue.

The demonstrated techniques exhibit a window of small-medium examples where it is
possible to compute minimal symbolic covers using GPI's. Further computational optimizations
and improvementsto the quality of the search will make it competitive with the best existing toals.

11.8 Conclusions

We have presented a complete procedure to generate and select GPI's [39] based on
implicit computations. This approach combines techniques for implicit enumeration of primes and
implicit solution of covering tables together with a new formulation of the problem of selecting an
encodeable cover of GPI's. The proposed al gorithmshave been implemented using state assignment
of FSM’s asatest case. The experiments exhibit aset of medium FSM’s where large GPI problems
could be solved for the first time, showing that these techniques open a new direction in the
minimization of symbolic logic. Since the problem of symbolic minimization is harder than
two-vaued logic minimization, more practical work is required to improve the efficiency of the
implementationand to tieit with good heuristicsto expl ore the sol ution space of encoding problems.
The present contribution shows how to extract aminimal encodesbl e cover from alarge set of GPI's,
alowing - in line of principle - the exploration of al minimal encodesble covers. This advances
the state-of-art of symbolic minimization, which up to now has been done with various heuristic
tools[92, 147, 42, 77], often very well-tuned for their domain of application, but lacking arigorous

314 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

connection beween an exact theory and the approximations made. For instance it is noticeable
that these tools (with the exception of ESP_SA) cannot predict the cardinality of the covers that
they produce, while the size of a minimized encoded cover of GPI’'s matches the size of the cover

obtained after encoding (with the same codes) and minimizing the original cover.

11.8. CONCLUSIONS

315

table size (row x col) mincov | table | final | CPU time (seconds)
FSM beforered. | after red. cals | sol. | sol. | tablered. | total
bbara 187 x 4124 98 x 35 9 8 33 329 872
bbtas 28 x 107 9x6 3 4 17 3 32
beecount 153 x 176 0x0 1 6 12 44 82
chanstb 169216 x 525 0x0 1 11 36 1218 1407
cpab 208896 x 1892 | 683 x 73 4 8| 48 7774 | 11279
dk14 157 x 199 0x0 1 17 31 129 311
dk15 88 x 68 0x0 1 14 17 9 13
dk17 64 x 164 0x0 1 9 19 46 435
dk27 20x 71 0x0 1 4 9 5 23
dol2 20x 113 19x 25 2 2 15 8 47
€s 23x45 0x0 1 5 11 1 2
ex3 42 x 495 0x0 1 5 21 563 4026
ex5 50 x 301 0x0 1 3 19 139 508
ex6 908 x 423 0x0 1 22 24 645 672
ex7 48 x 583 0x0 1 4 20 106 1101
fstate 5360 x 1605 11x11 2 8 21 12770 | 13402
leoncino 21x 22 0x0 1 5 6 0 1
lion 25x 29 0x0 1 4 10 0 4
lion9 42 x 175 0x0 1 2 11 10 55
mc 9% x 71 0x0 1 7 11 5 10
ofsync 300 x 97 48 x 24 18 12 33 69 107
opus 914 x 2830 0x0 1 14 23 704 958
s8 40 x 206 0x0 1 1 13 8 27
scud 2966 x 2533 0x0 1 57 95 15633 16885
shiftreg 24 x 89 8x6 5 3 8 6 21
save 2207744x 16845 | -(*) - - - | timeout -
tav 100 x 81 4x4 5 10 11 10 11
test 8x5 0x0 1 3 3 0 0
virmach 4992 x 144 0x0 1 16 17 778 793

(=) timeout 18000 in collapse columns

Table 11.3: Sdlection of aminimal encodeable GPI cover

316

CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

table size (row x col) mincov | table | fina | CPU time (seconds)
FSM before red. | after red. cals | sol. | sol. | tablered. | total
bbsse 3480 x 34727 -(a) - - -] timeout -
cf 30208 x 102781 -() - - - - -
cse 2588 x 21798 0x0 1| 23| 232 6534 | 14484
dk512 43x 1777 0x0 1 6| 52 4150 6108
ex2 86 x 38410 0x0 1 3| -(c3) 830 | timeout
ex4 1072 x 26759 0x0 1| 10| 20 803 1762
keyb 2666 x 361240 0x0 1 8| 373 1706 3398
kirkman | 100252 x 1081088 -(a) - - - | timeout -
maincont | 67586 x 245784 0x0 1 4| (<4 115 | timeout
mark1 1936 x 50258 5x5 3 71 20 1313 5194
modulo12 24 x 9039 24 x 36 17 2 24 50 416
pkheader | 140288 x 29099 0x0 1| 19| 36 5850 | 10299
ricks 31232 x 16561 14 x 14 18 27 39 3301 5378
sl 15336 x 586240 -() - - - - -
sla 5120 x 586240 -(0) - - - - -
saucier 18496 x 7106239 | 0xO0 1| 15| @ 6802 | timeout
tma 2028 x 287558 -() - - - - -
trainll 43 x 583 0x0 1 2| 13 177 711

(=) timeout 18000 in collapse columns

() out-of-memory in collapse columns
(<3) timed out 18000 in adding 3rd GPI
(¢4) timed out 18000 in adding 1st GPI
(4) timed out 18000 in i _set_minimum

Table 11.4: Sdlection of aminimal encodeable GPI cover

11.8. CONCLUSIONS

FSM | 1-hot results of 1saA results of NOvA
FSM cover | cover | mingpi | min.FSM | bits | best | bits
bbara 60 34 29 27129 | 7/5| 24 4
bbtas 24 16 13 11/10 | 6/3 8 3
beecount 28 12 12 10/15 | 5/4| 10 3
chanstb 52 49 26 26/26 | 2/2 | 26 2
cpab 76 49 43 43 5| 32 3
dk14 56 25 28 25/26 | 7/5| 24 5
dk15 32 17 16 16/18 | 4/4 16 4
dk17 32 20 18 18/20 | 8/6 | 17 3
dk27 14 10 9 9/4 | 6/9 7 3
dol2 20 13 13 13/10 | 5/3 9 3
es 12 10 11 8/9 | 4/3 6 2
ex3 36 21 21 19/22 | 8/6 | 17 4
ex5 32 19 18 16/23 | 9/6 | 14 4
ex6 34 23 24 24/24 | 8/6 | 23 5
e’ 36 20 19 16/24 | 9/6 | 15 4
fstate 30 22 21 21 6| 16 3
leoncino 8 6 5 5/6 | 2/2 5 2
lion 11 8 8 8/8 | 3/3 6 2
lion9 25 10 10 8/10 | 8/4 8 4
mc 6 10 11 10/10 | 4/2 8 2
ofsync 41 31 31 32/25 | 4/4 | 22 2
opus 22 19 22 16/19 | 8/7| 15 4
s8 22 14 12 12/10 | 4/3 9 3
scud 127 86 90 78| 11| 60 5
shiftreg 16 9 6 6/6 | 5/4 4 3
slave 75 46 - -| 35 4
tav 49 12 11 11/11 | 3/3 11 2
test 4 3 2 202 | 12 2 1
virmach 18 16 16 16/16 | 3/3| 14 2

Table 11.5: Fina solutions and comparison with NOvA

317

318 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

FSM | 1-hot results of 1sA results of NOVA
FSM cover | cover | min.gpi | min.FSM | hits | best | bits
cse 91 55 -/78 -/55 -/9 45 4
dk512 30 21 -128 -123 -/5| 18 4
ex4 21 21 18/26 18/21 | 12/5 14 4
keyb 170 a4 -/86 -[72 | -110 | 47 6
mark1 22 19 19/27 16/20 | 13/8 17 4
modul 012 24 24 20/17 20/15 | 11/5 11 4
pkheader | 1804 26 32/33 24/26 | 13/7 | 24 5
ricks 51 33 39/46 32/32 | 10/6 | 30 4
trainll 25 11 13/22 12/15 | 10/5 9 4

Table 11.6: Fina solutions and comparison with NOvA

319

Chapter 12

Conclusions

This thesis investigated algorithms to encode symbolic input and output variables of
sequential behaviors represented by STG's or STT's, when the cost function is minimum two-level
area. Various techniques developed here were applied or are applicable aso to encoding problems
with different cost functions and objectives.

Technical contributions have been presented in theareaof heuristic symbolic minimization
(Chapters 5), satisfaction of encoding constraints (Chapter 6), minimization of GPI's (Chapters 7, 8,
9 and 11) and implicit binate covering (Chapter 10).

In Chapter 5 we have presented a symbolic minimization procedure capable of exploring
minimal symbolic covers by using face, dominance and disjunctive constraints. The treatment of
disiunctive constraintsis a novelty of thiswork. Conditions on the completness of sets of encoding
constraints and a bridge to disjunctive-conjunctive constraints (presented in [39]) have been given.

An invariant of the algorithm is that the minimal symbolic cover under construction is
always guaranteed to be encodeable. Encodeability is checked efficiently using the procedures
described in Chapter 6. Therefore, this synthesis procedure has predictive power that precedent
tools lacked, i.e. the cardinality of the cover obtained by symbolic minimization and of the cover
obtained by replacing the codes in the initial cover and then minimizing with ESPRESSO are very
close. Experiments show that the encoded covers produced by our procedure are usually smaller or
equal than those of the best option of state-of-art toolslike NOVA [147].

An improvement to the procedure would be to introduce some iterated expansion and
reduction scheme, asin ESPRESSO [11], to escape from local minima. Currently the a gorithm builds
aminimal symbolic cover, exploring a neighborhood of the original FSM cover, with variations of
one single expansion and reduction for each slice of the FSM. A wesk point of the current algorithm

320 CHAPTER 12. CONCLUSIONS

is that the final code-length is often too long. Currently the agorithm is unable to trade-off fina
code-length vs. cardindity of the encoded cover.

In Chapter 6 we have presented a comprehensive solution to the problem of satisfying
encoding constraints. We have shown that the problem of determining a minimum length encoding
to satisfy face constraints is NP-complete. Based on an earlier method for satisfying face con-
straints [154], we have provided an efficient a gorithm that determines the minimum length encod-
ing that satisfies both input (face) and output (dominance, disjunctive and disjunctive-conjunctive)
constraints. It is shown how this agorithm can be used to determine the feasibility of aset of input
and output constraints in polynomial timein the size of the input.

A heuristic procedure for solving input encoding constraints with bounded code-lengthiin
both two-level and multi-level implementationsis a so demonstrated. 1nthe multi-level case, only a
very time-consuming algorithm based on simulated annealing was known before. This framework
has a so been used for solving avariety of encoding constraints generated by other applications.

In Chapter 11 we have presented a compl ete procedure to generate and select GPI's [39]
based on implicit computations. This approach combines techniques for implicit enumeration of
primes and implicit solution of covering tables together with a new formulation of the problem
of sdlecting an encodeable cover of GPI's. A nove theory of encodeability of GPI's has been
developed in Chapter 9.

The proposed a gorithms have been implemented using stateassignment of FSM’s asatest
case. Theexperimentsexhibit aset of medium FSM’swhere hard GPI minimization problemscould
be solved for thefirst time, showingthat these techniques open anew directionin the minimization of
symboliclogic. Since symbolic minimizationhas an eumerative complexity higher than two-valued
logic minimization, more practical work isrequired to improve the efficiency of theimplementation
and to tieit with good heuristics to explore the solution space of encoding problems.

The present contribution shows how to extract a minimal encodeable cover from alarge
set of GPI's, dlowing - inline of principle - the exploration of al minimal encodeable covers. This
advances the state-of -art of symbolic minimization, otherwiserestricted to the use of heuristic tools.
that do not guarantee acomplete exploration of the solution space. It istrue, though, that competing
algorithms[92, 147, 146] are often well-tuned for their domain of application, while our prototype
of GPI minimizationis not yet mature for field applications.

In Chapter 10 we have presented an implicit procedure to solve binate covering problems.
It isbased on theideaof representing the columnsand the rows of atable by labelling functionssuch
that the existence of a1 or O entry at the intersection of a given row and column can be computed

321

by applying a simple computation on the labels (both the labels and the table entry computation
depend from the prablem). All sets are represented and manipul ated based on BDD’s. New BDD
operations to manipulate sets and sets of sets were designed, including a primitive operation that,
given abinary relation R(a, b),findsthea’s (b's) that occur the most or theleast with b’s (a’s). This
operation was needed to find implicitly a branching column and compute a maximum independent
set to lower bound the computation.

This procedure has been applied both to finding a cover of GPI's and to selecting a
minimum-state behavior of anondeterministic FSM. It has potential applicationsto many problems
of logic synthesisand combinatorial optimization. Very large covering tables that could not be gen-
erated or solved with traditional techniqueswere handled by thisimplicit algorithm, as experiments
in Chapter 11 show.

322

Bibliography

[1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

[9]

R. Amann and U. Baitinger. Optimal state chains and state codes in finite state machines.

| EEE Transactions on Computer-Aided Design, February 1989.

D. Armstrong. On the efficient assignment of internal codes to sequentia machines. IRE

Transactions on Electronic Computers, pages 611-622, October 1962.

D. Armstrong. A programmed algorithm for assigning internal codes to sequentia machines.
IRE Transactions on Electronic Computers, pages 466472, August 1962.

P. Ashar. Synthesisof sequential circuitsfor VLS design. PhD thesis, University of California,
Berkeley, 1992.

P. Ashar, S. Devadas, and A. R. Newton. A unified approach to the decompoasition and
re-decomposition of sequential machines. In The Proceedings of the Design Automation
Conference, pages 601-606, June 1990.

P. Ashar, S. Devadas, and A. R. Newton. Optimum and heuristic algorithmsfor an approach
to finite state machine decomposition. |EEE Transactions on Computer-Aided Design, pages
296-310, March 1991.

M. Beardslee and A. Sangiovanni-Vincentelli. An algorithm for improving partitions of
pin-limited multi-chip systems. In The Proceedings of the International Conference on
Computer-Aided Design, November 1993.

D. Bostick, G. Hachtel, R. Jacoby, M. Lightner, P. Moceyunas, C. Morrison, and D. Raven-
scroft. The Boulder optimal logic design system. In The Proceedings of the International

Conference on Computer-Aided Design, November 1987.

D. Bovet and P. Crescenzi. Introduction to the theory of complexity. Prentice Hall, 1994.

BIBLIOGRAPHY 323

[10] K. Brace, R. Ruddll, and R. Bryant. Efficient implementation of a BDD package. In The

[11]

Proceedings of the Design Automation Conference, pages 4045, June 1990.

R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization
Algorithmsfor VLS Synthesis. Kluwer Academic Publishers, 1984.

[12] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

logic optimization system. | EEE Transactions on Computer-Aided Design, November 1987.

R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthe-
sis. Unpublished book, 1992.

R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of
the International Conference on Computer-Aided Design, pages 316319, November 1989.

F. M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

R. Bryant. Graph based algorithm for Boolean function manipulation. In |EEE Transactions
on Computers, pages C-35(8):667—691, 1986.

N. Calazans. Boolean constrained encoding: a new formulation and a case study. In The
Proceedings of the International Conference on Computer-Aided Design, November 1994,

K-T. Cheng and V.D. Agrawal. State assignment for initializable synthesis. In The Proceed-
ings of the International Conference on Computer-Aided Design, November 1989.

S.M. Chiu. Exact state assignment via binate covering. EE290ls Project, May 1990.

M. Ciesielski, JJ. Shen, and M. Davio. A unified approach to i nput-output encoding for FSM
state assignment. The Proceedings of the Design Automation Conference, pages 176-181,
June 1991.

M. Ciesielski and S. Yang. PLADE: atwo stage PLA decomposition. |EEE Transactions on
Computer-Aided Design, pages 943-954, August 1992.

O. Coudert. Two-level logic minimization: an overview. Integration, 17-2:97-140, October
1994,

O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machinesusing functional
Boolean vectors. IFIP Conference, November 1989.

324

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

O. Coudert, H.Fraisse, and J.C. Madre. Towards a symbolic logic minimization algorithm.
In The Proceedings of the VLS Design 1993 Conference, pages 329-334, January 1993.

O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential
prime implicants of Boolean functions. In The Proceedings of the Design Automation

Conference, pages 36—39, June 1992.

O. Coudert and J.C. Madre. A new implicit graph based prime and essentia prime compu-
tation technique. In Proceedings of the International Symposium on Information Sciences,
pages 124-131, July 1992.

O. Coudert and J.C. Madre. A new method to compute prime and essential prime implicants
of boolean functions. In Advanced Research in VLS and Parallel Systems, pages 113-128.
The MIT Press, T. Knight and J. Savage Editors, March 1992.

O. Coudert and J.C. Madre. A new viewpoint on two-level logic minimization. Bull Research
Report N. 92026, November 1992,

O. Coudert, J.C. Madre, and H.Fraisse. A new viewpoint on two-level logic minimization.

In The Proceedings of the Design Automation Conference, pages 625-630, June 1993.

O. Coudert, J.C. Madre, H.Fraisse, and H. Touati. Implicit prime cover computation: an
overview. In The Proceedings of the SASIMI Conference, pages 413422, 1993.

G. Cybenko, D. Krumme, and K. Venkataraman. Fixed hypercube embedding. Information
Processing Letters, April 1987.

M. Davio, J.-P. Deschamps, and A. Thayse. Discrete and Switching Functions. Georgi
Publishing Co. and McGraw-Hill International Book Company, 1978.

[33] W. Davis. An approach to the assignment of input codes. |EEE Transactions on Electronic

[34]

Computers, August 1967.

S. Devadas. General decomposition of sequential machines: Relationships to state assign-
ment. In The Proceedings of the Design Automation Conference, pages 314-320, June
1989.

BIBLIOGRAPHY 325

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. Devadas, H-T.Ma, R. Newton, and A. Sangiovanni-Vincentelli. Synthesisand optimization
procedures for fully and easily testable sequentia machines. In The Proceedings of the
International Conference on Computer-Aided Design, November 1987.

S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli. Mustang: state assignment
of finite state machines targeting multi-level logic implementations. |EEE Transactions on
Computer-Aided Design, December 1988.

S. Devadas and A. R. Newton. Decomposition and factorization of sequentia finite state
machines. In |EEE Transactions on CAD, pages 1206-1217, November 1989.

S. Devadas and R. Newton. Corrections to "Exact algorithms for output encoding, state
assignment and four-level Boolean minimization". |EEE Transactions on Computer-Aided
Design, 10(11):1469-1469, November 1991.

S. Devadas and R. Newton. Exact algorithmsfor output encoding, state assignment and four-
level Boolean minimization. |EEE Transactions on Computer-Aided Design, pages 13-27,
January 1991.

S. Devadas, A. Wang, R. Newton, and A. Sangiovanni-Vincentelli. Boolean decomposition

in multilevel logic optimization. IEEE Journal of solid-state circuits, April 1989.

T. Dolottaand E. McCluskey. The coding of interna states of sequential machines. IEEE

Transactions on Electronic Computers, October 1964.

X. Du, G.D.Hachtel, B. Lin, and A.R.Newton. MUSE:a MUItilevel Symbolic Encoding
algorithmfor state assignment. | EEE Transactions on Computer-Aided Design, pages CAD—
10(1):28-38, January 1991.

C. Duff. Codage d’automates et theorie des cubes intersectants. These, Institut National
Polytechnique de Grenoble, March 1991.

E.|.Goldberg. Matrix formulation of constrained encoding problemsin optima PLA synthe-
sis. Preprint No. 19, Institute of Engineering Cybernetics, Academy of Sciences of Belarus,
1993.

E.l.Goldberg. Face embedding by componentwise construction of intersecting cubes.
Preprint No. 1, Institute of Engineering Cybernetics, Academy of Sciences of Belarus, 1995.

326

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

BIBLIOGRAPHY

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Company, 1979.

J. Gimpel. A method of producing a boolean function having an arbitrarily prescribed prime
implicant table. IRE Transactions on Electronic Computers, EC-14:485-488, June 1965.

J. Gimpel. A reduction technique for primeimplicant tables. IRE Transactionson Electronic
Computers, EC-14:535-541, August 1965.

G.N.Raney. Sequentia functions. Journal of the Associati on of Computing Machinery, pages
177-180, 1958.

A. Grassdli and F. Luccio. A method for minimizing the number of internal states in
incompletely specified sequentia networks. IRE Transactions on Electronic Computers,
EC-14(3):350-359, June 1965.

A. Grassdlli and F. Luccio. Some covering problems in switching theory. In Networks and
Switching Theory, pages 536-557. Academic Press, New York, 1968.

D. Gregory, K. Bartlett, A. DeGeus, and G. Hachtel. SOCRATES: A system for automat-
ically synthesizing and optimizing combinational logic. In The Proceedings of the Design

Automation Conference, 1986.

G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McCluskey procedure using
BDD’s. Tech. Report No. UCB/ERL M92/127, 1992.

J. Hartmanis. On the state assignment problem for sequential machines- 1. IRE Transactions

on Electronic Computers, June 1961.

J. Hartmanis and R. E. Stearns. Some dangers in the state reduction of sequential machines.
In Information and Control, volume 5, pages 252—260, September 1962.

J. Hartmanisand R. E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-
Hall, Englewood Cliffs, N. J., 1966.

B. Holmer. What are the ingredients for a good state assignment program ? Tech. Report
No. CSE-95-002, EECS Department, Northwestern University, April 1995.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Company, 1979.

BIBLIOGRAPHY 327

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

R. W. House and D.W. Stevens. A new rule for reducing cc tables. |EEE Transactions on
Computers, C-19:1108-1111, November 1970.

S. Robinson I11 and R. House. Gimpel’sreducti on techni que extended to the covering problem
with costs. |RE Transactions on Electronic Computers, EC-16:509-514, August 1967.

S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary decision
diagrams. In Proceedings of |SKIT-92, Inter. symp. on logic synthesis and microproc. arch.,
lizuka, Japan, pages 177-184, July 1992,

S.-W. Jeong and F. Somenzi. A new agorithm for the binate covering problem and its
application to the minimization of boolean relations. In The Proceedings of the International
Conference on Computer-Aided Design, November 1992.

T. Kam. State minimization of finite state machines using implicit techniques. Ph.D. Thesis,
University of California, Berkeley, 1995.

T. Kam and RK. Brayton. Multi-valued decision diagrams. Tech. Report No. UCB/ERL
M90/125, December 1990.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for
exact state minimization. Tech. Report No. UCB/ERL M93/79, November 1993.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for
exact state minimization. In The Proceedings of the Design Automation Conference, pages
684—690, June 1994.

R. Karp. Some techniques for state assignment for synchronous sequential machines. |EEE

Transactions on Electronic Computers, October 1964.

B. Kernighanand S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System
Technical Journal, February 1970.

K. Keutzer and D. Richards. Computational complexity of logic optimization. Unpublished
manuscript, March 1994,

Z. Kohavi. Switching and Finite Automata Theory. M cGraw-Hill Book Company, New York,
New York, second edition, 1978.

328

[71]

[72]

[73]

[74]

[79]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

D. Krumme, K. Venkataraman, and G. Cybenko. Hypercube embedding is NP-complete. In
Proceedings of SAM Hypercube Conference, September 1985.

L. Lavagno. Heuristic and exact methods for binate covering. EE290Is Report, May 1989.

L. Lavagno, S. Mdik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization
of multi-level logic with multiple valued inputs. In The Proceedings of the International
Conference on Computer-Aided Design, November 1990.

L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state
assignment problem for signal transition graphs. The Proceedings of the Design Automation
Conference, pages 568-572, June 1992,

D. Lewin. Computer-Aided Design of Digital Systems. Russak-Arnold, 1977.
B. Lin. Experimentswith jedi. Private communication, October 1989.

B. Lin. Synthesis of multiple level logic from symbolic high-level description languages.
Proceedings of the IFIP International Conference on VLS, pages 187-196, August 1989.

B. Lin. Synthesis of VLSl designs with symbolic techniques. Tech. Report No. UCB/ERL
M91/105, November 1991.

B. Lin, O. Coudert, and J.C. Madre. Symboalic prime generation for multiple-val ued functions.
In The Proceedings of the Design Automation Conference, pages 4044, June 1992.

B. Linand A.R. Newton. Implicit manipulation of equivalence classes using binary decision
diagrams. In The Proceedings of the International Conference on Computer Design, pages
81-85, September 1991.

B.Linand R. Newton. A generalized approachto the constrained cubical embedding problem.

In The Proceedings of the International Conference on Computer Design, 1989.

B. Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings of the
International Conference on Computer-Aided Design, November 1990.

C.Y.Liu. A systemfor for synthesisof area-efficient testableFSM’s. Ph.D. Thesis, University
of Wisconsin, 1994.

BIBLIOGRAPHY 329

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

S. Malik. Combinational logic optimization techniques in sequential logic synthesis. Tech.
Report No. UCB/ERL M90/115, November 1990.

S.Malik, L. Lavagno, R. Brayton, and A. Sangiovanni-Vincentelli. Symbolic minimization of
multilevel logic and the input encoding problem. In IEEE Transactions on Computer-Aided

Design, volumeval.11, (no.7), pages 82543, July 1992.

M. Marcus. Derivation of maximal compatibles using Boolean algebra. 1BM Journal of

Research and Devel opment, November 1964.

E. McCluskey. Minimization of Boolean functions. Bell Laboratories Technical Journal,
November 1956.

E.J. McCluskey and S.H. Unger. A note on the number of internal variable assignments for
sequential switching circuits. IRE Transactions on Electronic Computers, pages 439440,
December 1959.

P. McGeser, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincenetelli. Espresso-signature:
a new exact minimizer for logic functions. IEEE Transactions on VLS Systems, pages
432-440, December 1993.

C. Mead and L. Conway. Introduction to VLS Systems, chapter 3, pages 85-86. Addison
Wesley, 1980.

G. De Michdi. Symbolic design of combinational and sequential logic circuits implemented

by two-level logic macros. |EEE Transactions on Computer-Aided Design, October 1986.

G. De Michdli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for
finite state machines. |EEE Transactions on Computer-Aided Design, July 1985.

G. De Michdi, T. Villa, and A. Sangiovanni-Vincentelli. Computer-aided synthesis of
PLA-based finite state machines. In The Proceedings of the International Conference on
Computer-Aided Design, September 1983.

R. E. Miller. Snitching theory. Volume |: combinational circuits. J. Wiley and & Co., N.Y.,
1965.

S. Minato. Zero-suppressed BDD’s for set manipulation in combinatorial problems. In The
Proceedings of the Design Automation Conference, pages 272-277, June 1993,

330

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY
E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. McCarthy,
editors, Automata Sudies. Princeton University Press, 1956.

R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli. Using encoding in functional de-
composition. Submitted for publication, 1993.

R. Narasimhan. Minimizing incompletely specified sequential switching functions. IRE
Transactions on Electronic Computers, EC-10:531-532, September 1961.

L. Nguyen, M. Perkowski, and N. Goldstein. Palmini - fast boolean minimizer for personal
computers. In The Proceedings of the Design Automation Conference, pages 615621, July
1987.

A. Nicholsand A. Bernstein. State assignmentsin combinational networks. |EEE Transac-
tions on Electronic Computers, June 1965.

PS. Noe. Remarks on the SHR-optima state assignment procedure. |EEE Transactions on
Computers, pages 873-875, September 1973.

PS. Noe and V.T. Rhyne. A madification to the SHR-optimal state assignment procedure.
|EEE Transactions on Computers, pages 327-329, March 1974,

PS. Noe and V.T. Rhyne. Optimum state assignment for the D flip-flop. IEEE Transactions
on Computers, pages 306—311, March 1976.

C. Papadimitriou. Computational complexity. Addison Wesley, 1994.

C. H. Papadimitriou, J.D. Ullman, and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

R. Parchman. The number of state assignmentsfor sequential machines. |EEE Transactions
on Computers, pages 613-614, June 1972.

W. Quine. A way to simplify truth functions. Amer. Math. Monthly, 62:627-631, November
1955.

J--K. Rho and F. Somenzi. Stamina. Computer Program, 1991.

V.T. Rhyne and PS. Noe. On equivalence of state assgnments. |EEE Transactions on
Computer s, pages 55-57, January 1968.

BIBLIOGRAPHY 331

[110] V.T. Rhyne and PS. Noe. On the number of distinct state assignments for a sequential
machine. |EEE Transactions on Computers, pages 73-75, January 1977.

[111] D. Rosenkrantz. Half-hot state assignments for finite state machines. |EEE Transactions on
Computer-Aided Design, May 1990.

[112] R. Rudell. Espresso. Computer Program, 1987.

[113] R. Rudell. Logic synthesis for VLS| design. Tech. Report No. UCB/ERL M89/49, April
1989.

[114] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimiza-
tion. |EEE Transactions on Computer-Aided Design, CAD-6:727-750, September 1987.

[115] A. Sddanhaand R. Katz. PLA optimization using output encoding. In The Proceedings of

the International Conference on Computer-Aided Design, November 1988.

[116] A.Sddanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Satisfaction of input and
output encoding constraints. |EEE Transactions on Computer-Aided Design, 13:589-602,
May 1994.

[117] S.C. De Sarkar, A.K. Basu, and A.K. Choudhury. Simplification of incompletely specified
flow tables with the help of prime closed sets. IEEE Transactions on Computers, pages
953-956, October 1969.

[118] T. Sasao. An application of multiple-valued logicto adesign of Programmable Logic Arrays.
In The Proceedings of the International Symposium on Multiple-Valued Logic, 1978.

[119] T. Sasan. Multiple-valued decomposition of generalized Boolean functions and the com-
plexity of Programmable Logic Arrays. |EEE Transactions on Computers, C-30:635-643,
September 1981.

[120] T. Sasaon. Input variable assignment and output phase optimization of PLA’s. In IEEE
Transactions on Computers, October 1984.

[121] T. Sasan. Multiple-valued logic and optimization of programmable logic arrays. Computer,
pages 71-80, April 1988.

[122] T. Sasao. Application of multiple-valued logic to a seria decomposition of PLA’s. In The
Proceedings of the Inter national Symposium on Multiple-Valued Logic, June 1989.

332

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

BIBLIOGRAPHY

T. Sasao. Ontheoptimal design of multiple-valued PLA’s. |EEE Transactionson Computers,
C-38, n.4:582-592, April 1989.

G. Saucier, M. Crastes de Paulet, and P. Sicard. Asyl: a rule-based system for controller
synthesis. IEEE Transactions on Computer-Aided Design, November 1987.

G. Saucier, C. Duff, and F. Poirot. A new embedding method for state assignment. The
Proceedings of the Inter national Workshop on Logic Synthesis, May 1989.

G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based
on an intersecting cube theory. In The Proceedings of the Design Automation Conference,
1989.

R. B. Segal. BDSY N: Logic description translator; BDSIM: Switch level simulator. Master’'s
Thesis M87/33, Electronics Research Lab., University of California, Berkeley, May 1987.

M. Servit and J. Zamazal. Exact approaches to binate covering problem. Manuscript in
preparation, October 1992.

C.-J. Shi and J. Brzozowski. An efficient algorithm for constrained encoding and its ap-
plications. IEEE Transactions on Computer-Aided Design, pages 1813-1826, December
1993.

F. Somenzi. Cookie. Computer Program, 1989.

F. Somenzi. Gimpel’s reduction technique extended to the binate covering problem. Unpub-
lished manuscript, 1989.

F. Somenzi. Binate covering formulation of exact two-level encoding. Unpublished
manuscript, March 1990.

F. Somenzi. An example of symboalic relations applied to state encoding. Unpublished
manuscript, May 1990.

P. Srimani. MOS networks and fault-tolerant sequential machines. Computersand Electrical
Engineering, 8(4), 1981.

P. Srimani and B. Sinha. Fail-safe realisation of sequentia machines with a new two-level
MOS module. Computersand Electrical Engineering, 7, 1980.

BIBLIOGRAPHY 333

[136] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithmsfor discrete function manipu-

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

lation. Proc. Int. Conf. CAD (ICCAD-90), pages 92—95, November 1990.

R. Stearns and J. Hartmanis. On the state assignment problem for sequentia machines - 2.
IRE Transactions on Electronic Computers, December 1961.

J. Storey, H. Harrison, and E. Reinhard. Optimum state assignment for synchronous sequential
machines. |EEE Transactions on Computers, pages 1365-1373, December 1972.

Y. Su and P. Cheung. Computer minimization of multi-valued switching functions. 1EEE

Transactions on Computers, September 1972,

Y. Tohma, Y. Ohyama, and R. Sakai. Redlization of fail-safe sequential machines by using a
k-out-of-n code. |EEE Transactions on Computers, November 1971.

H.C. Torng. An dgorithm for finding secondary assignments of synchronous sequential
circuits. |EEE Transactions on Computers, pages 461469, May 1968.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state
enumeration of finite state machines using BDD’s. The Proceedings of the International
Conference on Computer-Aided Design, pages 130—133, November 1990.

J. Tracey. Internal state assignment for asynchronous sequential machines. |RE Transactions
on Electronic Computers, August 1966.

D. Varmaand E.A. Trachtenberg. Design automation tools for efficient implementation of
logic functions by decomposition. |EEE Transactions on Computer-Aided Design, 8-8:901—
916, August 1989.

T. Villa, L. Lavagno, and A. Sangiovanni-Vincentelli. Advances in encoding for logic
synthesis. In Digital Logic Analysisand Design, G. Zobrist ed. Ablex, Norwood, 1995.

T. Villa, A. Sddanha, R. Brayton, and A. Sangiovanni-Vincentelli. Symbolic two-level
minimization. Submitted for publication, 1995.

T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level
logic implementations. In IEEE Transactions on Computer-Aided Design, pages 905-924,
September 1990.

334

[148]

[149]

[150]

[151]

[152]

[153]

[154]

BIBLIOGRAPHY

Y. Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic fsm’'s. In

European Conference on Design Automation, pages 184-191, 1994.

P. Weiner and E.J. Smith. On the number of state assignments for synchronous sequential
machines. |IEEE Transactions on Computers, pages 220-221, April 1967.

W. Wolf. Recoding-derived bounds for input encoding. Submitted for publication, January
1990.

W. Wolf, K. Keutzer, and J. Akella. A kernel-finding state assignment agorithm for multi-

level logic. In The Proceedings of the Design Automation Conference, June 1988.

W. Wolf, K. Keutzer, and J. Akella. Addendum to "A kernel-finding state assignment

algorithm for multi-level logic". In IEEE Transactions on Computer-Aided Design, August
1989.

C-C. Yang. On the equivalence of two agorithmsfor finding al maximal compatibles. IEEE
Transactions on Computers, pages 977-979, October 1975.

S. Yang and M. Ciesielski. Optimum and suboptimum algorithms for input encoding and its
relationship to logic minimization. |EEE Transactions on Computer-Aided Design, January
1991.

