
Encoding Problems in Logic Synthesis

by

Tiziano Villa

Laurea in Matematica (Università Statale di Milano, Italy), 1977
Mathematical Tripos, Part III, D.A.M.T.P., Cambridge University, U.K., 1982

M.S. (University of California at Berkeley) 1987

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering:
Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Robert Brayton
Professor Shmuel Oren

1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217490165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The dissertation of Tiziano Villa is approved:

Chair Date

Date

Date

University of California at Berkeley

1995

1

Abstract

Encoding Problems in Logic Synthesis

by

Tiziano Villa

Doctor of Philosophy in Engineering:

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

A key step in the implementation of a digital system is to map a given symbolic repre-

sentation into an implementable representation with two-valued logic variables. This step is called

encoding and it impacts area, speed, testability and power consumption of the realized circuit.

I focus on algorithms to encode symbolic input and output variables of finite state machines

(FSM’s) represented by state transition graphs (STG’s) or state transition tables (STT’s), when the

cost function is minimum two-level area. Various techniques developed here were applied or are

applicable also to encoding problems with different cost functions and objectives. The technical

contributions can be divided into two parts: algorithms based on heuristic symbolic minimization

and algorithms based on minimization of generalized prime implicants (GPI’s).

I present two main results about symbolic minimization: a new procedure to find minimal

two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame

to check encodeability of encoding constraints and find codes of minimum length that satisfy

them. This frame has been used for various types of encoding constraints arising in problems that

range from encoding for minimum multi-level representation to race-free encoding of asynchronous

FSM’s. Experiments for different applications are reported.

Then I present two main results on symbolic minimization using GPI’s: an implicit

procedure to compute minimum or minimal encodeable covers of GPI’s, and an implicit algorithm

to solve table covering problems. The implicit procedure to find minimum encodeable covers of

GPI’s features an implicit algorithm to check encodeability of encoding constraints, and it uses the

implicit table solver. The latter algorithm is a general binate table solver and as such it is applicable

2

to a variety of other applications. It has been applied also to select implicitly minimum contained

behaviors in FSM state minimization. In the second part of the thesis the emphasis is on design

of algorithms based on the manipulation of binary decision diagrams (BDD’s). The reason is that

symbolic minimization requires the construction and manipulation of very large sets that can be

often constructed efficiently with BDD’s.

__
Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chairman

iii

A mia madre, Marta Ricorda, e a mio padre, Franco Villa,

e in memoria dei miei nonni, Cleonice e Giuseppe, Melania e Valente

To my mother, Marta Ricorda, and to my father, Franco Villa,

and in memory of my grandparents, Cleonice and Giuseppe, Melania and Valente

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Logic Synthesis of Sequential Behaviors : 1
1.2 The Encoding Problem: from Symbolic to Boolean domain : : : : : : : : : : : : 3
1.3 Thesis Overview : 7

2 Definitions 11
2.1 Sequential Functions and their Representation : : : : : : : : : : : : : : : : : : : 11
2.2 Finite State Machines : 11
2.3 Taxonomy of Encoding Problems : 17
2.4 Behavior vs. Structure in Encoding Problems : : : : : : : : : : : : : : : : : : : 19
2.5 Boolean Algebras and Boolean Functions : 21
2.6 Discrete Functions as Boolean Functions : 22
2.7 Two-level Minimization of Multi-Valued Functions : : : : : : : : : : : : : : : : 26
2.8 Multi-level Minimization of Multi-Valued Functions : : : : : : : : : : : : : : : 29
2.9 Multiple-Valued Relations : 30
2.10 Binary Decision Diagrams : 31

3 Complexity Issues 33
3.1 Computational Complexity : 33
3.2 Counting State Assignments : 42

4 Previous and Related Work 45
4.1 Algorithms for Optimal Encoding : 45

4.1.1 Early Contributions : 46
4.1.2 Encoding for Two-level Implementation : : : : : : : : : : : : : : : : : : 48
4.1.3 Encoding for Multi-level Implementation : : : : : : : : : : : : : : : : : 54
4.1.4 Experimental Results : 62

4.2 Relation of State Assignment to Other Optimization Steps : : : : : : : : : : : : : 67
4.2.1 State Assignment and State Minimization : : : : : : : : : : : : : : : : : 67
4.2.2 State Assignment and State Minimization : : : : : : : : : : : : : : : : : 69

CONTENTS v

4.2.3 State Assignment and Testability : 70

5 Symbolic Minimization 71
5.1 Introduction : 71
5.2 Encoding for Two-level Implementations : 73

5.2.1 Multi-valued Minimization : 73
5.2.2 Symbolic Minimization : 74
5.2.3 Completness of Encoding Constraints : : : : : : : : : : : : : : : : : : : 76

5.3 A New Symbolic Minimization Algorithm : 78
5.3.1 Structure of the Algorithm : 78
5.3.2 Slice Minimization and Induced Face and Dominance Constraints : : : : 83

5.4 Symbolic Reduction : 83
5.5 Symbolic Oring : 88
5.6 Ordering of Symbolic Minimization : 91
5.7 Satisfaction of Encoding Constraints : 92
5.8 Symbolic Minimization by Example : 93

5.8.1 The Oring Effect in Two-level Logic : 93
5.8.2 A Worked-out Example of Symbolic Minimization : : : : : : : : : : : : 95

5.9 Experimental Results : 102
5.10 Conclusions : 107

6 Encoding Constraints 109
6.1 Introduction : 109
6.2 Statement and Complexity of the Encoding Problems : : : : : : : : : : : : : : : 111
6.3 Definitions : 113
6.4 Abstraction of the Problem : 114
6.5 Input Constraint Satisfaction : 116

6.5.1 Efficient Generation of Prime Dichotomies : : : : : : : : : : : : : : : : 117
6.6 Input and Output Constraint Satisfaction : 119

6.6.1 Output Encoding Constraints : 119
6.6.2 Satisfiability of Input and Output Constraints : : : : : : : : : : : : : : : 122
6.6.3 Exact Encoding of Input and Output Constraints : : : : : : : : : : : : : 127

6.7 Bounded Length Encoding : 129
6.7.1 Heuristic Algorithm for Input Constraints : : : : : : : : : : : : : : : : : 132

6.8 Other Applications : 135
6.8.1 Input Encoding Don’t Cares : 135
6.8.2 Distance-2 Constraints : 136
6.8.3 Asynchronous State Assignment : 137
6.8.4 Logic Decomposition : 137
6.8.5 Logic Partitioning : 137
6.8.6 Limitations of Dichotomy-based Techniques : : : : : : : : : : : : : : : 138

6.9 Results : 138
6.10 Conclusions : 142

vi CONTENTS

7 Generalized Prime Implicants 145
7.1 Introduction : 145
7.2 Basic Definitions : 147

7.2.1 Finite State Machines : 147
7.2.2 Multi-valued Functions : 148

7.3 Generalized Prime Implicants : 150
7.3.1 Definition of Generalized Prime Implicants : : : : : : : : : : : : : : : : 150
7.3.2 Generalized Prime Implicants by Consensus Operation : : : : : : : : : : 153
7.3.3 Encodeability of Generalized Prime Implicants : : : : : : : : : : : : : : 155
7.3.4 Sufficiency of GPI’s : 157

7.4 Reduction of GPI’s Computation to MV Primes Computation : : : : : : : : : : : 158
7.4.1 An Example : 159
7.4.2 Definition of the Transformation : 160
7.4.3 Correctness of the Transformation : 161
7.4.4 Definition of a Max-Min Family of Transformations : : : : : : : : : : : 168

7.5 Relation between GPI’s and Primes of Encoded FSM’s : : : : : : : : : : : : : : 169
7.5.1 Minimum Cover of Encoded FSM and Minimum Cover of Encoded GPI’s 169
7.5.2 Primes of Encoded FSM vs. Primes of Encoded GPI’s : : : : : : : : : : 170
7.5.3 An Analysis Procedure : 177

8 Minimization of GPI’s 179
8.1 Reduction of GPI Minimization to Unate Covering : : : : : : : : : : : : : : : : 179

8.1.1 Exact Selection of an Encodeable Cover of GPI’s : : : : : : : : : : : : : 190
8.1.2 Approximate Selection of an Encodeable Cover of GPI’s : : : : : : : : : 193

8.2 Reduction of GPI Minimization to Binate Covering : : : : : : : : : : : : : : : : 194
8.3 GPI’s and Non-Determinism : 198

8.3.1 Symbolic Don’t Cares and Beyond : 198
8.3.2 GPI’s for Decomposition : 203

9 Encodeability of GPI’s 209
9.1 A Theory of Encodeability of GPI’s : 209

9.1.1 Efficient Encodeability Check of GPI’s : : : : : : : : : : : : : : : : : : 209
9.1.2 Encoding of a Set of Encodeable GPI’s : : : : : : : : : : : : : : : : : : 215
9.1.3 Updating Sets and Raising Graphs : 217
9.1.4 Choice of a Branching Column : 224
9.1.5 Computation of a Lower Bound : 226

10 Binate Covering 229
10.1 Introduction : 229
10.2 Relation to 0-1 Integer Linear Programming : 233
10.3 Branch-and-Bound as a General Technique : 234
10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Covering : : : : : : : 235

10.4.1 The Binary Recursion Procedure : 237
10.4.2 N -way Partitioning : 240
10.4.3 Maximal Independent Set : 241

CONTENTS vii

10.4.4 Selection of a Branching Column : 242
10.5 Reduction Techniques : 243

10.5.1 Row Dominance : 243
10.5.2 Row Consensus : 245
10.5.3 Column �-Dominance : 246
10.5.4 Column �-Dominance : 247
10.5.5 Column Dominance : 248
10.5.6 Column Mutual Dominance : 248
10.5.7 Essential Column : 249
10.5.8 Unacceptable Column : 249
10.5.9 Unnecessary Column : 250
10.5.10 Trial Rule : 250
10.5.11 Infeasible Subproblem : 251
10.5.12 Gimpel’s Reduction Step : 251

10.6 Implicit Binate Covering : 253
10.7 Implicit Table Generation : 255
10.8 Implicit Reduction Techniques : 256

10.8.1 Duplicated Columns : 258
10.8.2 Duplicated Rows : 259
10.8.3 Column Dominance : 260
10.8.4 Row Dominance : 261
10.8.5 Essential Columns : 262
10.8.6 Unacceptable Columns : 263
10.8.7 Unnecessary Columns : 264

10.9 Other Implicit Covering Table Manipulations : : : : : : : : : : : : : : : : : : : 264
10.9.1 Selection of Columns with Maximum Number of 1’s : : : : : : : : : : : 264
10.9.2 Implicit Selection of a Branching Column : : : : : : : : : : : : : : : : : 266
10.9.3 Implicit Selection of a Maximal Independent Set of Rows : : : : : : : : : 268
10.9.4 Implicit Covering Table Partitioning : 268

10.10Implicit Two-level Logic Minimization : 270

11 Implicit Minimization of GPI’s 279
11.1 Implicit Representations and Manipulations : 279

11.1.1 Implicit FSM Representation : 279
11.1.2 Positional-set Representation : 280
11.1.3 Operations on Positional-sets : 280
11.1.4 Relations for Implicit Encodeability of GPI’s : : : : : : : : : : : : : : : 282

11.2 Implicit Generation of GPI’s and Minterms : 283
11.2.1 Implicit Generation of GPI’s : 283
11.2.2 Reduced Representation of GPI’s and Minterms : : : : : : : : : : : : : : 285
11.2.3 Pruning of Primes : 286

11.3 Implicit Selection of GPI’s : 286
11.3.1 Implicit Selection of a Cover of GPI’s : : : : : : : : : : : : : : : : : : : 286
11.3.2 Implicit Computations for Encodeability : : : : : : : : : : : : : : : : : 288
11.3.3 Implicit Encoding of an Encodeable Set of GPI’s : : : : : : : : : : : : : 298

viii CONTENTS

11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI’s : : : : : 299
11.4 A Worked Example : 299
11.5 Verification of Correctness : 302
11.6 Implementation Issues : 304

11.6.1 Order of BDD Variables : 304
11.6.2 Computation of Set Minimal : 306
11.6.3 The Filtering Heuristic : 306

11.7 Experiments : 307
11.7.1 Analysis of the Experiments : 308
11.7.2 Evaluation of the Experiments : 312

11.8 Conclusions : 313

12 Conclusions 319

Bibliography 322

ix

List of Figures

1.1 Views of a sequential circuit : 3
1.2 Hardware description language representation of traffic light controller : : : : : : 4
1.3 STG of traffic light controller example : 5

4.1 Original and minimized symbolic cover of an FSM : : : : : : : : : : : : : : : : 49
4.2 Codes satisfying input constraints : 50
4.3 Two-level implementation of encoded FSM : 50
4.4 Initial and 1-hot encoded covers of FSM-1 : 51
4.5 Expanded and reduced minimized covers of FSM-1 : : : : : : : : : : : : : : : : 52
4.6 Expanded and reduced implicants and don’t care face constraints of FSM-1 : : : : 52
4.7 Initial cover, GPI’s, encodable selection of GPI’s and encoded cover of OUT-1 : : 55

5.1 Covers of FSM-2 before and after symbolic minimization : : : : : : : : : : : : : 75
5.2 Encoded cover of FSM-2 : 76
5.3 Old Symbolic Minimization Scheme : 79
5.4 New Symbolic Minimization Scheme : 82
5.5 Derivation of face and dominance constraints : : : : : : : : : : : : : : : : : : : 84
5.6 Symbolic reduction - Part1 : 86
5.7 Symbolic reduction - Part2 : 87
5.8 Symbolic oring : 90
5.9 First scheme to compute the gain : 92
5.10 Second scheme to compute the gain : 93
5.11 Ordering of symbolic minimization : 94

6.1 Satisfaction of encoding constraints using binate covering : : : : : : : : : : : : : 116
6.2 Efficient generation of prime dichotomies : 120
6.3 Input encoding example : 121
6.4 Example of feasibility check with input and output constraints : : : : : : : : : : 123
6.5 Removal of invalid dichotomies : 124
6.6 Maximal raising of dichotomies : 125
6.7 Feasibility check of input and output constraints : : : : : : : : : : : : : : : : : : 126
6.8 Exact encoding constraint satisfaction : 129
6.9 Example of exact encoding with input and output constraints : : : : : : : : : : : 130
6.10 Example of cost function evaluation : 132

x LIST OF FIGURES

7.1 Covers of FSM leoncino : 159
7.2 GPI’s of FSM leoncino before post-processing : : : : : : : : : : : : : : : : : : : 162
7.3 The circle of encodings : 171
7.4 The circle of primes : 172

8.1 Minterms of FSM leoncino : 180
8.2 Extended representation of the minterms of FSM leoncino : : : : : : : : : : : : 181
8.3 GPI’s of FSM leoncino : 182
8.4 Covering table of FSM leoncino : 183
8.5 Output covering table of FSM leoncino : 185
8.6 Next-state covering table of FSM leoncino : 186
8.7 Exact selection of GPI’s : 192
8.8 Approximate selection of GPI’s : 194
8.9 Primes of the symbolic relation. : 202

9.1 Encodeability check : 211
9.2 Detection of invalid dichotomies : 212
9.3 Raising of dichotomies : 212
9.4 Exact encoding of constraints : 216

10.1 Transformation from linear inequality to Boolean expression. : : : : : : : : : : : 234
10.2 Structure of branch-and-bound. : 236
10.3 Detailed branch-and-bound algorithm. : 239
10.4 N -way partitioning. : 241
10.5 Flow of reduction rules. : 244
10.6 Implicit branch-and-bound algorithm. : 253
10.7 Implicit reduction loop. : 257
10.8 Pseudo-code for Lmax. : 265
10.9 BDD of F (r; c) to illustrate the routine Lmax : : : : : : : : : : : : : : : : : : : 267
10.10Implicit n-way partitioning of a covering table. : : : : : : : : : : : : : : : : : : 269
10.11Recursive computation of max��Q(Q) : 274
10.12Recursive computation of max��P (P) : 276

11.1 Implicit computation of prime implicants : 285
11.2 Implicit encodeability computations : 290
11.3 Implicit encodeability computations : 295
11.4 Computation of codes satisfying a selection of GPI’s : : : : : : : : : : : : : : : 298
11.5 Approximate implicit selection of GPI’s - Detailed view : : : : : : : : : : : : : : 300
11.6 Computation of minimized encoded covers and correctness check : : : : : : : : : 303

xi

List of Tables

4.1 Comparison of FSM’s encoding for two-level implementation : : : : : : : : : : : 64
4.2 Experiments on FSM’s encoding for two and multi-level implementation : : : : : 66
4.3 Multi-level input encoding comparison : 68

5.1 Statistics of FSM’s : 103
5.2 Results of ESP SA with different ordering heuristics : : : : : : : : : : : : : : : : 104
5.3 Measured parameters of ESP SA : 105
5.4 Comparison of FSM’s encodings for two-level implementation : : : : : : : : : : 106

11.1 GPI’s of small examples from the MCNC benchmark and others. : : : : : : : : : 310
11.2 GPI’s of medium examples from the MCNC benchmark and others. : : : : : : : : 311
11.3 Selection of a minimal encodeable GPI cover : : : : : : : : : : : : : : : : : : : 315
11.4 Selection of a minimal encodeable GPI cover : : : : : : : : : : : : : : : : : : : 316
11.5 Final solutions and comparison with NOVA : 317
11.6 Final solutions and comparison with NOVA : 318

Acknowledgements

I am very grateful to Prof. Alberto Sangiovanni-Vincentelli, who has been my research

advisor throughout all the years in graduate school and has made me possible to pursue higher

education in Berkeley, by associating me to a very distinguished research group that he, more than

anybody else, contributed to create. I hope to continue my association with him and to carry on his

vision of rigorous mathematical modelling applied to relevant engineering problems.

Prof. Robert Brayton has been a constant source of scientific inspiration and has followed

closely my progress, contributing with advice to most of my research activities. He has been a

model of dedication to scholarship and gentleman’s style.

Prof. Shmuel Oren kindly agreed to be in my Thesis Committee. He was part also of my

Qualifying Committee, together with Prof. Jan Rabaey.

I was honoured to embark, 3 years ago, on a joint research project, SILK, with Timothy

Kam. The results of this common endeavor are documented in many chapters of this dissertation

and in published papers. Tim has always been a source of ingenious ideas, effective solutions and

an example of personal and scholarly integrity. I will count him always as a great friend and a

precious work colleague.

Since my early time in Berkeley I shared personal friendship and work cooperation with

Luciano Lavagno and Alex Saldanha. I carried on fruitful research with Alex presented also in

some chapters of this dissertation. I met Luciano as a colleague in Italy and since then we have

been faithful friends and co-workers. I looked often for Rajeev Murgai to discuss a hard technical

point or share a personal discussion, relying on his keen mind and human wisdom.

Among those with whom I interacted in the group a special mention goes to Arlindo

De Oliveira, with whom I hope to continue a Southern European research connection, Yosinori

Watanabe, Felice Balarin, William Lam, Huey-Yih Wang, Yuji Kukimoto, Rick McGeer, Gitanjali

Swamy who contributed efficient software for a prototype of mine, and Tom Shiple. They were

always available for discussing sticky points, sharing an impressive knowledge in their fields of

expertise.

Among established professors and researchers outside, Fabio Somenzi, Ney Calazans,

Sharad Malik, Giovanni De Micheli, Srinivas Devadas, Pranav Ashar, Bruce Holmer, and Kurt

Keutzer were available to discuss technical questions and share literature. I thank Kurt for sending

me a draft of a paper on computational complexity of logic synthesis. Prof. Eugene Goldberg of the

Academy of Sciences of Belarus has been recently in contact with me, updating me on his progress

in topics of common interest. I look forward to intensify our cooperation.

The Berkeley CAD group has been a lively place thanks to the many outstanding students

that are (or have been) part of it: Krishnan Sriram, Jagesh Sanghavi, Chris Lennard, Cho Moon,

Serdar Tasiran, Szu-Tsung Cheng, Stephen Edwards, Vigyan Singhal, Adnan Aziz, Desmond

Kirkpatrick, Mark Beardslee, Paul Stephan, Sunil Khatri, Harry Hsieh, Amit Narayan, Luca Carloni.

A special acknowledgement goes to my wife, Maria De Nigris, who has been a blessing

for me since when we met and then started a family, enriched four years ago by the birth of Marta

(and soon to be increased by a new member). Maria and Marta put up with me putting work duties

above family duties. I am looking forward to long years of joyful life in common. I hope to prove

to Maria that it was worthy for her to leave her secure life in Italy to join me here.

No words would be enough to thank my mother, Marta Ricorda, and father, Franco, for

having nurtured me throughout the years, and always supported me in any possible way. Given that

I was in a far away country during the last years, I was almost never to the side of my mother who

has been fighting an uphill battle against illness. May the God of life give her strength and some

more time to spend with us. To them, and to the grandparents, I dedicate this humble achievement

as a token of gratitude.

1

Chapter 1

Introduction

1.1 Logic Synthesis of Sequential Behaviors

The task of logic synthesis is to produce a circuit that realizes a given behavior. We will be

concerned with sequential behaviors, that can be defined as mappings of sequences of input vectors

to sequences of output vectors. When the mapping of an input vector does not depend on the input

vectors previously seen in the current input sequence, the behavior is said to be combinational. The

original specification may be described in ways ranging from natural languages to formal hardware

description languages or algorithmic formalisms. Often the wanted behavior is specified only on a

subset of the input sequences, leaving the rest as a don’t care condition to be freely exploited by the

implementor, or the specification may admit some possible behaviors as equally acceptable. These

situations are referred also as non-determinism of the specification. A given specification (or set of

specifications, if we interpret nondeterminism as expressing a set of behaviors, out of which one is

implemented) may be realized by a large variety of circuits all reproducing the wanted sequential

behavior, but very different in terms of structure and characteristics.

An automatic way of synthesizing digital circuits is to input a description of the behavior

in textual or graph format to an high-level synthesis system, that will perform scheduling and

allocation and produce a register-transfer level description of the synthesized design, that consists

of a controller and a data path. A controller captures the dynamics of a sequential behavior, while

the data path operates on the data under the supervision of the controller. This RTL description can

then be optimized by means of logic synthesis.

A controller can be produced by an high-level synthesis tool, or it can be provided directly

by the designer or extracted from an already existing circuit. A controller is usually specified by

2 CHAPTER 1. INTRODUCTION

means of a finite state machine (FSM), that is a discrete dynamical system translating sequences of

input vectors into sequences of output vectors. FSM’s are a formalism growing from the theory of

finite automata in computer science. An FSM has a set of states and of transitions between states;

the transitions are triggered by input vectors and produce output vectors. The states can be seen as

recording the past input sequence, so that when the next input is seen a transition can be taken based

on the information of the past history. If a system is such that there is no need to look into past

history to decide what output to produce, it has only one state and therefore it yields a combinational

circuit. From the other side, systems whose past history cannot be condensed in a finite number

of states are not physically realizable. FSM’s are usually represented by state transition graphs

(STG’s) and state transition tables (STT’s), that are equivalent ways of enumerating all transitions

as edges of a graph or rows of a table. They can be seen as symbolic two-level representations,

because they map naturally into two-level logic after encoding the states (and any other symbolic

variables) with binary vectors. In the other words, the edges of the graph (rows of the table) can be

interpreted as symbolic representations of and-or logic.

A typical logic synthesis procedure includes FSM restructuring, like state minimization,

followed by a state assignment step to obtain a logic description that can be mapped optimally

into a target technology. Often optimization is done first on a representation independent from the

technology, as in the multi-level synthesis system SIS, where the number of literals of a Boolean

network is minimized first, and then the Boolean network is mapped using the cells of a given library.

Optimization and mapping depend not only on the target technology (PLA’s, custom IC’s, Standard

Cells, Field Programmable Gate Arrays), but also on the cost functions: besides area, speed and

power consumption are of growing importance. Moreover, issues like testing and verificability play

an important role. At the end of logic synthesis a sequential behavior is represented by a set of logic

gates. Views of a sequential behavior are shown in Fig. 1.1.

Given a system, the overall theoretical objective is to synthesize a circuit that optimizes

a cost function involving area, delay, power and testability. It is very difficult to come up with

mathematical models that capture the problem in its generality. Furthermore, only for very limited

domains, e.g., two-level logic implementations, there is a clearly defined notion of optimality and

algorithms to achieve optimality. Moreover, with complex cost functions and a very large solution

space, a good model must not only be "exact", but also amenable to efficient synthesis algorithms on

problems instances of practical interest. A way to cope with complexity is to pursue the optimization

objective by breaking down the global problem into independent steps, each having a restricted cost

function, at the expense of jeopardizing global optimality. For instance it is customary to minimize

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN 3

out 1

Latch
Present State Next State

in 1

in 2

in 3

in 4

P
ri

m
ar

y
O

ut
pu

t

P
ri

m
ar

y
In

pu
t

Registers and Latches

0

1

−
−

−
−

/1
−−−1/1

(−
−

00, 11−
0)/0

(1010, 0110)/1

State Transition Graph

Figure 1.1: Views of a sequential circuit

the states of an FSM before encoding it: there is no theoretical guarantee that a state-minimized

FSM is always a better starting point for state assignment than an FSM that has not been state-

minimized [55], yet in practice this approach leads to good solutions, because it couples a step of

behavioral optimization on the state transition graph (STG) with an encoding step on a reduced

STG, so that the complexity of the latter’s task is alleviated.

1.2 The Encoding Problem: from Symbolic to Boolean domain

The specification of a sequential behavior may include binary and symbolic variables.

As an example, consider the well-known Mead-Conway traffic light controller [90]. Figure 1.2

presents a description in the BDS language from [127], as slightly modified in [84] to highlight the

symbolic nature of the variables. An STG and STT representation of the FSM denoted by the BDS

description is shown in Fig. 1.3.

The specific syntax and semantics of BDS are unimportant here: it suffices to say that

they express naturally the evolution of the traffic light controller. Let us focus on the use of

symbolic variables, i.e. variables that take on values from a set of symbols. For instance, the

4 CHAPTER 1. INTRODUCTION

MODEL traffic_light
hl, fl ! control for highway and farm lights
st<0>, ! to start the interval timer
nextState =
c<0>, ! indicating a car on the farm road
ts<0>, tl<0> ! timeout of short and long interval timers
presentState ;

ROUTINE traffic_light_controller;
nextState = presentState; st = 0;
SELECT presentState FROM

[HG]: BEGIN
hl = GREEN; fl = RED;
IF c AND tl THEN BEGIN

nextState = HY; st = 1;
END;

END;
[HY]:BEGIN

hl = YELLOW; fl = RED;
IF ts THEN BEGIN

nextState = FG; st = 1;
END;

END;
[FG]: BEGIN

hl = RED; fl = GREEN;
IF NOT c or tl THEN BEGIN

nextState = FY; st = 1;
END;

END;
[FY]:BEGIN

hl = RED; fl = YELLOW;
IF ts THEN BEGIN

nextState = HG; st = 1;
END;

END;
ENDSELECT;

ENDROUTINE;
ENDMODEL;

Figure 1.2: Hardware description language representation of traffic light controller

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN 5

HG

HY

FG

FY

State Transition Graph: Example

PS IN NS OUT

HG c and t1 HY hl = GREEN; fl = RED; st = 1

HG (not(c and t1) HG hl = GREEN; fl = RED; st = 0

HY not(ts) HY hl = YELLOW; fl = RED; st = 0

HY ts FG hl = YELLOW; fl = RED; st = 1

FG FG hl = RED; fl = GREEN; st = 0

FG

not(not(c) or t1)

FYnot(c) or t1 hl = RED; fl = GREEN; st = 1

FY not(ts) FY hl = RED; fl = YELLOW; st = 0

FY ts HG hl = RED; fl = YELLOW; st = 1

State Transition Table: Example

not(c and t1)/
hl = GREEN; fl = RED; st = 0

c and t1/
hl = GREEN; fl = RED; st = 1

not(ts)/
hl = YELLOW; fl = RED; st = 0

ts/
hl = YELLOW; fl = RED; st = 1

not(not(c) or t1)/
hl = RED; fl = GREEN; st = 0

not(c) or t1/
hl = RED; fl = GREEN, st = 1

not(ts)/
hl = RED; fl = YELLOW; st = 0

ts/
hl = RED; fl = YELLOW; st = 0

Figure 1.3: STG of traffic light controller example

6 CHAPTER 1. INTRODUCTION

variable representing the state of the traffic lights is represented in symbolic form and can take on

four possible values. Similarly, the output variables representing the highway and farm lights are

symbolic and can take on three values. Because there are symbolic variables, we say that this is a

symbolic specification.

Current digital circuits can only store one of two values, since available storage elements

are bistable circuits (even though experimental multistable circuits have been investigated and built).

Therefore one says that symbolic variables need to be encoded, i.e., each symbolic variable must be

replaced by a set of binary-valued (or two-valued) variables, to map an abstract specification onto

a physical circuit. Let us examine more carefully the last statement.

Notice that also two-valued variables need to be encoded, for instance, given a variableC with values fgreen; redg one might map green to 0 and red to 1, or vice-versa. In this case,

given a two-valued variable, one assigns to each of the two symbolic values one of the values of a

variable defined on the Boolean algebra f0; 1g (called a logic variable) 1. Problems like optimal

phase assignment of two-level logic attest that even the encoding of a two-valued variable may

affect considerably the size of the final representation.

Therefore, rigorously speaking, encoding is the process of assigning to each value of a

symbolic variable X a unique combination of values of a set of logic variables defined on f0; 1gn.

To have enough codes, it is necessary that logn � jX j, where jX j is the cardinality of X . Then the

values of the encoding logic variables are mapped into stable levels of circuit signals. These subtle

distinctions are often ignored in common parlance, so that one simply says that encoding is a map

from values of symbolic variables to values of sets of binary variables.

When variables are defined on Boolean algebras, it is possible to use the formalism of the

latter in the manipulation of logic circuits, as was discovered independently by Nakasima, Shestakov

and Shannon [15].

For example, in the case of the traffic light controller, the four state values HG, HY, FG,

FY may be represented as the bit patterns 00, 01, 10, 11 on two binary-valued encoding variables.

The resulting logic depends on the chosen encoding and so do area, performance and testability

of the circuit. This gives rise to the encoding problem in logic synthesis wherein an encoding

needs to be determined for a symbolic variable such that the resulting logic is optimal under some

metric. The versions of the problem where the symbolic variables are inputs or outputs of the

combinational logic are referred to as the input and output encoding problems respectively. An

1Alternatively, one could encodeC with two logic variables, mapping, say, green to 01 and red to 10.

1.3. THESIS OVERVIEW 7

FSM has a symbolic variable, the state, that appears both as input (present state) and output (next

state) variable. The encoding problem for FSM’s is referred to as the state assignment problem and

is a case of input-output encoding, with the constraint that the values of the present state must be

given the same codes as the values of the next states. This taxonomy was first introduced in [91].

1.3 Thesis Overview

This thesis focusses on algorithms to encode symbolic input and output variables of

sequential behaviors represented by STG’s or STT’s, when the cost function is minimum two-level

area. Various techniques developed here were applied or are applicable also to encoding problems

with different cost functions and objectives.

We can divide the technical contributions into two parts: algorithms based on heuristic

symbolic minimization (Chapters 5 and 6) and algorithms based on minimization of generalized

prime implicants (Chapters 7, 8, 9 and 11). Minimization of GPI’s required the development of

implicit techniques developed in Chapters 11 and 10.

Let us clarify briefly the two approaches. Classical logic minimization aims to find a min-

imum sum-of-products 2 expression of binary-valued inputs binary-valued outputs functions [87].

It was extended to functions with multi-valued inputs and binary-valued outputs in [139, 114, 112],

as multi-valued minimization.

This extension inspired a solution to the input encoding problem in [92], that was applied

to encoding the present states of an FSM, and to other problems in combinational synthesis.

The solution consists of performing a multi-valued minimization of the given function and then

converting the result to a two-valued sum-of-products 3, by satisfying certain conditions on the

codes of the states that are called input or face constraints. For any group of face constraints there

is a satisfying encoding, but one wants to find codes of minimum code-length that satusfy the

face constraints. We call encoding constraints any types of conditions imposed on the codes of a

set of symbols. We call encodeable a symbolic sum-of-products whose encoding constraints are

satisfiable.

When there are multi-valued output variables, we call symbolic minimization, according

to the terminology established in [91, 147], the problem of finding a minimum symbolic sum-

of-products that can be converted into a two-valued sum-of-products of the same cardinality. A

2A sum-of-product is also called a cover of product-terms.
3Also called an encoded sum-of-products.

8 CHAPTER 1. INTRODUCTION

procedure for symbolic minimization is complete if it can yield at least a minimum encoded sum-

of-products. A procedure for symbolic minimization has a part to construct a cover of symbolic

product-terms and a part to satisfy encoding constraints 4 that let transform the symbolic cover

into an equivalent encoded cover. The encoding constraints required for a complete symbolic

minimization procedure involve new types of conditions on the codes of the states, that go under the

name of dominance, disjunctive and disjunctive-conjunctive constraints. In [91, 147] algorithms

for symbolic minimization were proposed that used only face and dominance constraints.

The first part of this dissertation contains two main results on symbolic minimization: a

new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive

constraints (Chapter 5), and a unified frame to check encodeability of encoding constraints and

find codes of minimum length that satisfy them (Chapter 6). This frame has been used for various

types of encoding constraints arising in problems that range from encoding for minimum multi-

level representation 5 to race-free encoding of asynchronous FSM’s [74]. Experiments for different

applications are reported.

The procedure for symbolic minimization presented in Chapter 5 is not complete because

it is not able to explore all possible symbolic cubes needed to build minimum symbolic covers.

Moreover, it does not use disjunctive-conjunctive constraints, that are required for completness

in some cases. This is why it is described also as heuristic symbolic minimization, and it is

reminiscent of the heuristic mode for classical minimization of two-valued logic. A complete

symbolic minimization algorithm was proposed in [39]. It extends to the symbolic case the two

main features of exact classic two-level minimization: generation of a set of product-terms sufficient

to find at least a minimum cover, i.e. the prime implicants, and computation of a minimum cover as

solution of a set covering problem, represented as a table covering problem [87]. To handle symbolic

minimization, in [39] the notion of prime implicants is extended to the notion of generalized prime

implicants (GPI’s) and the set covering problem is extended to a constrained set covering problem,

because it is not sufficient to find a minimum symbolic cover, but one must find a minimum

encodeable symbolic cover, i.e., a minimum symbolic cover whose associated encoding constraints

are satisfiable so that it can be mapped into an equivalent encoded cover. We will refer to this exact

algorithm for symbolic minimization as minimization of GPI’s.

The second part of this dissertation contains two main results on symbolic minimization

4More precisely, one must check satisfiability of sets of encoding constraints, and, if they are satisfiable, find codes of
minimum length that satisfy them.

5Theory and algorithms for multi-level minimization of multi-valued input functions were presented in [85] and
applied to the encoding of the present state of an FSM for minimum multi-level literals.

1.3. THESIS OVERVIEW 9

using GPI’s: a novel theory of encodeability of GPI’s (Chapter 9), an implicit procedure to compute

minimum or minimal encodeable covers of GPI’s (Chapter 11), and an implicit algorithm to solve

table covering problems (Chapter 10) 6. The implicit procedure to find minimum encodeable covers

of GPI’s features an implicit algorithm to check encodeability of encoding constraints, and it uses

as a key subroutine the implicit algorithm to solve covering problems described in Chapter 10. The

latter algorithm is a general binate table solver 7 and as such it is applicable to a variety of other

applications. Indeed it was originally developed to select implicitly minimum contained behaviors

in FSM minimization [66].

In the second part of the thesis the emphasis is on design of implicit algorithms. The reason

is that symbolic minimization requires the construction and manipulation of very large sets (the set

of GPI’s, the set of encoding constraints and many others). Implicit techniques have been shown to

outperform traditional methods in the task of computing the primes of logic functions [27, 53] and

of solving unate covering tables [53, 29]. Therefore, we deemed our application to be the perfect

challenge for implicit techniques and we did not save efforts to extend their capabilities.

We stress that GPI minimization is harder than standard logic minimization:

1. The number of GPI’s is much larger than the number of primes of functions with multi-valued

inputs binary-valued outputs.

2. Choosing a minimum cover of GPI’s is not sufficient. The cover must be also encodeable,

i.e. it must be possible to find encoding functions such that the chosen symbolic primes

can be converted into two-valued primes. A consequence is that some of the traditional

simplifications that can be applied to unate tables are disallowed 8.

In other words, potentially we are exploring all possible primes of all possible encodings. GPI’s can

be seen as templates of primes of encoded representations, by means of the existence of encodings

that map symbolic cubes into two-valued cubes. Experimental results are reported that assess the

progress made and the bottlenecks still remaining.

This thesis contains 10 main chapters. In Chapter 2 basic definitions regarding FSM’s,

Boolean logic, multi-valued minimization and Boolean networks are provided.

6We say that an algorithm is implicit if it represents and manipulates sets and functions using binary decision
diagrams [16] as data structure.

7A binate table represents general product-of-sums expressions, while a unate table represents product-of-sums
expressions with only positive literals

8Constrained binate covering appears also in different problems, like finding minimum contained behaviors of nonde-
terministic FSM’s that can be composed with a given FSM [63].

10 CHAPTER 1. INTRODUCTION

In Chapter 3 the computational complexity of some key problems in logic minimization

and state assignment is demonstrated.

In Chapter 4 a survey of previous approaches to state assignment and other encoding

problems is presented. Special attention is given to the techniques based on symbolic minimization

that are at the heart of the technical contributions reported in this dissertation.

In Chapter 5 we present a new algorithm for encoding input-output symbolic variables for

two-level implementations. In particular the case of state assignments of FSM’s is considered. The

new algorithm is based on an extension of the scheme of symbolic minimization presented in [91]

and obtains better results than previously known through state-of-art tools [147].

In Chapter 6 we present comprehensive algorithms to check encodeability of sets of

encoding constraints, including face, dominance, disjunctive, conjunctive-disjunctive constraints.

If a set of encoding constraints is encodeable, it is shown how to find codes of minimum code-length

that satisfy them. These algorithms have been already used in various applications, including our

symbolic minimization scheme, that motivated first their development.

In Chapters 7 and 8 a theory of GPI minimization is presented. The theory is an exact frame

to solve input and output encoding problems targetting optimal two-level area implementations.

The paradygm is based on extending the traditional notion of prime implicants to generalized prime

implicants. Optimum state assignment for two-level implementation is solved by finding a minimum

encodeable cover of GPI’s. The theory of encodeability of GPI’s is established in Chapter 9, with

an host of new results based on the notions of raising graphs and updating sets.

In Chapter 10 an implicit solution of table covering problems and other implicit compu-

tations needed to solve implicit GPI minimization are presented. The algorithms described here

may solve exactly binate table covering problems occurring in various phases of logic synthesis.

In Chapter 11 implicit algorithms to generate and compute minimum encodeable sets of GPI’s are

presented. Results of a prototype implementation are discussed.

Finally Chapter 12 summarizes what has been achieved and what is left to be done.

11

Chapter 2

Definitions

2.1 Sequential Functions and their Representation

Sequential functions 1 transform input sequences into output sequences. A sequence is a

function from the set of natural numbers to any set. Here we are interested only to finite sets and

to "well-behaved" or "regular" sequential functions: those such that at any stage the output symbol

depends only on the sequence of input symbols which have been already received and such that they

can "hold" only a certain amount of the information received, i.e., they cannot always make use of

all the information contained in that portion of the input sequence which has been received. Such

sequential functions have been called retrospective finitary sequential functions by Raney [49]. A

sequential function can be represented in many possible ways. A naive representation would be to

give a collection of pairs of input and output sequences. Since these sequences are of unbounded

length, this would not be a practical way. For the class of regular functions mentioned above it is

possible to derive a finite state representation, that corresponds to the usual notion of finite state

machine (FSM) 2.

2.2 Finite State Machines

Retrospective finitary functions admit of a finite state representation. We are now going

to define formally FSM’s, that are the most common way of representing a finite state system. We

1Called also sequential machines or mathematical machines. A sequential machine receives input symbols in a
sequence, works on this sequence in some way, and yields a sequence of output symbols.

2We note that the notion of state is usually introduced at the structural level, but it can be done also at the function (or
behavioral level) as shown by Raney [49].

12 CHAPTER 2. DEFINITIONS

will see that an FSM represents a "behavior", i.e., a regular sequential function and that collections

of behaviors can be represented by adding non-determinism to the FSM, that so becomes a non-

deterministic FSM (NDFSM). The same behavior of course may have many different representations.

We will see that the chosen representation (or the one that happens to be available) affects the quality

of the implemention derived by an encoding step.

Definition 2.2.1 A non-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tupleM = hS; I; O; T;Ri where S represents the finite state space, I represents the finite input space

and O represents the finite output space. T is the transition relation defined as a characteristic

function T : I � S � S � O ! B. On an input i, the NDFSM at present state p can transit to a

next state n and output o if and only if T (i; p; n; o) = 1 (i.e., (i; p; n; o) is a transition). There exists

one or more transitions for each combination of present state p and input i. R � S represents the

set of reset states.

In this and subsequent definitions, the state space S, the input space I and the output

space O can be generic discrete spaces and so S, I and O can assume symbolic values [32, 114]. A

special case is when S, I and O are the Cartesian product of copies of the space B = f0; 1g, i.e.,

they are binary variables.

The above is the most general definition of an FSM and it contains, as special cases,

different well-known classes of FSM’s. An FSM can be specified by a state transition table (STT)

which is a tabular list of the transitions in T . An FSM defines a transition structure that can also be

described by a state transition graph (STG). By an edge p i=o�! n, the FSM transits from state p on

input i to state n with output o.

Definition 2.2.2 Given an FSM M = hS; I; O; T;Ri, the state transition graph of M , STG(M)= hV;Ei, is a labeled directed graph where each state s 2 S corresponds to a vertex in V labeleds and each transition (i; p; n; o) 2 T corresponds to a directed edge inE from vertex p to vertex q,

and the edge is labeled by the input/output pair i=o.

To capture flexibility in the next state n and/or the output o from a state p at an inputi, one can specify one or more transitions (i; p; n; o) 2 T . As said above, we assume that the

state transition relations T is complete with respect to i and p, i.e., there is always at least one

transition from each state on each input. This differs from the situation in formal verification where

incomplete automata are considered.

2.2. FINITE STATE MACHINES 13

Relational representation of T allows non-deterministic transitions with respect to next

states and/or outputs, and also allows correlations between next states and outputs. More specialized

forms of FSM’s are derived by restricting the type of transitions allowed in T . FSM’s can be

categorized by answering the following questions:

Classical texts usually describe the Mealy and Moore model of FSM’s. For completeness,

they are also defined here as subclasses of NDFSM. A Mealy NDFSM is an NDFSM where there

exists a next state relation3 ∆ : I�S�S ! B and an output relation4 Λ : I�S�O ! B such that

for all (i; p; n; o)2 I�S�S�O, T (i; p; n; o) = 1 if and only if ∆(i; p; n) = 1 and Λ(i; p; o) = 1.

Definition 2.2.3 A Mealy NDFSM is a 6-tuple M = hS; I; O;∆;Λ; Ri. S represents the finite

state space, I represents the finite input space andO represents the finite output space. ∆ is the next

state relation defined as a characteristic function ∆ : I � S � S ! B where each combination of

input and present state is related to a non-empty set of next states. Λ is the output relation defined

as a characteristic function Λ : I �S�O! B where each combination of input and present state

is related to a non-empty set of outputs. R � S represents the set of reset states.

A Moore NDFSM is an NDFSM where there exists a next state relation ∆ : I�S�S ! B
and an output relation Λ : S�O ! B such that for all (i; p; n; o)2 I�S�S�O, T (i; p; n; o) = 1

if and only if ∆(i; p; n) = 1 and Λ(p; o) = 1.

Definition 2.2.4 A Moore NDFSM is a 6-tuple M = hS; I; O;∆;Λ;Ri. S represents the finite

state space, I represents the finite input space andO represents the finite output space. ∆ is the next

state relation defined as a characteristic function ∆ : I � S � S ! B where each combination of

input and present state is related to a non-empty set of next states. Λ is the output relation defined

as a characteristic function Λ : S �O ! B where each present state is related to a non-empty set

of outputs. R � S represents the set of reset states.

As a special case of Mealy machine, Moore machines have its output depends on its present state

only (but not on the input).

The definition of Moore machine presented here is the one given by Moore itself in [96]

and followed by other authors [148]. The key fact is that the output is associated with the present

state. In other words, the common output associated to a given state, goes on all edges that leave

3∆ can be viewed as a function ∆ : I � S ! 2S , and n 2 ∆(i; p) if and only if n is a possible next state of state p on
input i.

4Λ can be viewed as a function Λ : I � S ! 2O , and o 2 Λ(i; p) if and only if o is a possible output of state p on
input i.

14 CHAPTER 2. DEFINITIONS

that state. This is a reasonable assumption when modeling an hardware system. However, it is

common to find in textbooks [70, 58] a "dual" definition where the output is associated with the

next state. In other words, the common output associated to a given state is on all edges that go into

that state, while edges leaving a given state may carry different outputs.

This second definition has the advantage that it is always possible to convert a Mealy

machine into a Moore machine. Instead with the first definition there are Mealy machines that have

no Moore equivalent. For example a wire can be consider a Mealy machine with one state and with

its input connecting directly to its output. It does not have an equivalent Moore machine.

An NDFSM is an incompletely specified FSM (ISFSM) if and only if for each pair(i; p) 2 I � S such that T (i; p; n; o) = 1, (1) the machine can transit to a unique next state n or to

any next state, and (2) the machine can produce a unique output o or produce any output.

Definition 2.2.5 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =hS; I; O;∆;Λ;Ri. S represents the finite state space, I represents the finite input space and O
represents the finite output space. ∆ is the next state relation defined as a characteristic function

∆ : I � S � S ! B where each combination of input and present state is related to a single next

state or to all states. Λ is the output relation defined as a characteristic function Λ : I�S�O! B
where each combination of input and present state is related to a single output or to all outputs.R � S represents the set of reset states.

Incomplete specification is used here to express don’t cares in the next states and/or

outputs. We warn that even though “incompletely specified" is established terminology in the logic

synthesis literature, it conflicts with the fact that ISFSM’s have a transition relation T that is actually

completely specified with respect to present state p and input i, because there is at least one transition

for each (i; p) pair in T .

Other classes of NDFSM’s have been recently characterized in logic synthesis applica-

tions. Most noticeable are pseudo non-deterministic FSM’s (PNDFSM’s) that are such that for each

triple (i; p; o) 2 I � S � O, there is a unique state n such that T (i; p; n; o) = 1 5. Since these

machines are not of direct interest to the investigations reported in this dissertation we will not give

a formal taxonomy.

A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM

where for each pair (i; p) 2 I � S, there is a unique next state n and a unique output o such that

5They are called "pseudo" non-deterministic because their underlying finite automaton is deterministic.

2.2. FINITE STATE MACHINES 15T (i; p; n; o) = 1, i.e., there is a unique transition from (i; p). In addition,R contains a unique reset

state.

Definition 2.2.6 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be

defined as a 6-tuple M = hS; I; O; �; �; ri. S represents the finite state space, I represents the

finite input space and O represents the finite output space. � is the next state function defined as� : I � S ! S where n 2 S is the next state of present state p 2 S on input i 2 I if and only ifn = �(i; p). � is the output function defined as � : I �S ! O where o 2 O is the output of present

state p 2 S on input i 2 I if and only if o = �(i; p). r 2 S represents the unique reset state.

A Moore DFSM is a Moore NDFSM where for each pair (i; p) 2 I � S, there is a unique

next state n and for each p 2 S a unique output o such that T (i; p; n; o) = 1. In addition,R contains

a unique reset state.

Definition 2.2.7 A Moore DFSM can be defined as a 6-tupleM = hS; I; O; �; �; ri. S represents

the finite state space, I represents the finite input space and O represents the finite output space. �
is the next state function defined as � : I � S ! S where n 2 S is the next state of present statep 2 S on input i 2 I if and only if n = �(i; p). � is the output function defined as � : S ! O whereo 2 O is the output of present state p 2 S if and only if o = �(p). r 2 S represents the reset state.

We now show that a DFSM realizes a behavior while an NDFSM realizes a set of behaviors.

Definition 2.2.8 Given a finite set of inputs I and a finite set of outputs O, a trace between I andO is a pair of input and output sequences (�i; �o) where �i 2 I�; �o 2 O� and j�ij = j�oj.
Definition 2.2.9 A trace set is simply a set of traces.

Definition 2.2.10 An NDFSMM = hS; I; O; T;Ri realizes a trace set between I andO from states0 2 S, denoted by L(M js0) 6, if for every trace (fi0; i1; : : : ; ijg; fo0; o1; : : : ; ojg) in the trace set,

there exists a state sequence s1; s2; : : : ; sj+1 such that 8k : 0 � k � j, T (ik; sk; sk+1; ok) = 1.

Definition 2.2.11 An ISFSM M = hS; I; O;∆;Λ;Ri realizes a trace set between I and O from

state s0 2 S, denoted by L(M js0), if for every trace (fi0; i1; : : : ; ijg; fo0; o1; : : : ; ojg) in the trace

set, there exists a state sequence s1; s2; : : : ; sj+1 such that 8k : 0 � k � j,

6If the NDFSMM is viewed as a NFAAwhich alphabet is Σ = I�O, the trace set ofM from a state s0 corresponds
to the language ofA from s0, and both will be denoted by L(M js0).

16 CHAPTER 2. DEFINITIONS� sk+1 2 ∆(ik; sk), and� ok 2 Λ(ik; sk).
The trace set realized by a deterministic FSM with inputs I and outputs O is called a

behavior between the inputs I and the outputsO. A formal definition follows.

Definition 2.2.12 Given a finite set of inputs I and a finite set of outputsO, a behavior between I
and O is a trace set, B = f(�i; �o) j j�ij = j�ojg, which satisfies the following conditions:

1. Completeness:

For an arbitrary sequence �i on I , there exists a unique pair in B whose input sequence is

equal to �i.
2. Regularity:

There exists a DFSMM = hS; I; O; �; �; s0i such that, for each ((i0; : : : ; ij); (o1; : : : ; oj)) 2B, there is a sequence of states s1; s2; : : : ; sj+1 with the property that sk+1 = �(ik; sk) andok = �(ik; sk) for every k : 0 � k � j.

For each state in a deterministic FSM, each input sequence corresponds to exactly one

possible output sequence. Given an initial state, a deterministic FSM realizes a unique input-output

behavior. But given a behavior, there can be (possibly infinitely) many DFSM’s that realize the

behavior. Thus, the mapping between behaviors and DFSM realizations is a one-to-many relation.

Any other kinds of FSM’s, on the other hand, can represent a set of behaviors because

by different choices of next states and/or outputs, more than one output sequence can be associated

with an input sequence. Moreover, multiple reset states allow alternative trace sets be specified;

depending on the choice of the reset state, a behavior within the trace set from the chosen reset state

can be implemented. Therefore, while a DFSM represents a single behavior, a non-deterministic

FSM (NDFSM) can be viewed as representing a set of behaviors. Each such behavior within its trace

set is called a contained behavior of the NDFSM. Then an NDFSM expresses handily flexibilities

in sequential synthesis. Using an NDFSM, a user can specify that one of a set of behaviors is to

be implemented. The choice of a particular behavior for implementation is based on some cost

function such as the number of states.

2.3. TAXONOMY OF ENCODING PROBLEMS 17

2.3 Taxonomy of Encoding Problems

Synthesis of an FSM is the process of producing an implementation starting from a

behavioral specification of a sequential function. In our case we suppose that the starting point is

an STG or an STT. Combinational functions are FSM’s with only one state. It was mentioned in the

introduction that we assume the usual paradigm of state minimization followed by state assignment,

even though our encoding techniques do not depend on it.

The step that translates a representation where some variables are symbolic into one where

they are all binary-valued is called encoding. An encoding must at least be correct, which means

that the encoded representation must behave as the symbolic representation (usually an encoding

must establish an injection from symbols to codes), but more interestingly it is often required that

the encoded implementation satisfies some further condition or optimality criterion. For instance,

suppose that the encoded representation must be implemented with two-level logic, then a definition

of optimum encoding may be that the encoded implementation after two-level minimization has

smallest area, or smallest number of product-terms. Also an encoding can be used to enforce a

structural property, like testability, of the encoded representation, i.e. that it is possibile to find

sequences of input vectors that distinguish a good and a faulty physical realization of the encoded

representation.

It should be noticed that also the choice of the memory element (JK or RS or T or D
flip-flop) matters since an encoding can be optimal with one type of bistable, but not with another

one. We will assume that unless otherwise stated memory elements are of type D, i.e., they simply

transfer the input to the output at the appropriate time.

There is almost no end to the variations of optimality objectives that can be imposed,

according to different applications. We will review later a number of them.

Definition 2.3.1 Given the sets of symbols Si = fsi1; si2; � � � ; sipg and So = fso1 ; so2; � � � ; soqg,

and a Boolean function: f : f0; 1; 2gn� Si ! So � f0; 1; 2gm;
an input-output encoding is given by a pair of integers ki; ko and a pair of injective functionsei : Si ! f0; 1gki and eo : Si ! f0; 1gko . The encoded representation of f , i.e. the representation

of f where the symbols are replaced by Boolean vectors in Bki andBko , according to ei and eo , is

denoted by fei;eo .

18 CHAPTER 2. DEFINITIONS

Notice that the case of more than one symbolic variable in the input or output part can be treated

similarly 7.

The definition of encoding can be specialized if symbolic variables appear only as input

or output variables. For instance, if symbolic variables appear only as input variables, one has an

input encoding problem:

Definition 2.3.2 Given a set of symbols Si = fs1; s2; � � � ; spg and a Boolean function:f : f0; 1gn � Si ! f0; 1; 2gm;
an input encoding is given by an integer ki and an injective function ei : Si ! f0; 1gki. The

encoded representation of f , i.e. the representation of f where the symbols are replaced by Boolean

vectors in Bki , according to ei, is denoted by fei .
If symbolic variables appear only as output variables, one has an output encoding problem:

Definition 2.3.3 Given a set of symbols So = fs1; s2; � � � ; sqg and a Boolean function:f : f0; 1gn ! So � f0; 1; 2gm;
an output encoding is given by an integer ko and an injective function eo : So ! f0; 1gko. The

encoded representation of f , i.e. the representation of f where the symbols are replaced by Boolean

vectors in Bko , according to eo, is denoted by feo .

Since e is an injective function, different symbols are mapped into different codes and so

the encoded representation behaves as the symbolic representation.

Definition 2.3.4 Given an operatorO an encoding ẽ is optimal with respect to O ifO(fẽ) = opte(O(fe)):
As an example, O can be the cardinality of a two-level minimized encoded cover of fe and opt the

minimum.

Definition 2.3.5 Given a decision operatorO an encoding ẽ satisfies O if:O(fẽ)
is true.

7Let V1 and V2 be two symbolic variables taking values from sets SV1 and SV2 respectively. These may be replaced
by a single symbolic variable V taking values from SV1 � SV2 . This is in fact potentially better than considering V1 andV2 separately since the encoding for V takes into account the interactions between V1 and V2.

2.4. BEHAVIOR VS. STRUCTURE IN ENCODING PROBLEMS 19

As an example, O can be a testability procedure that given an encoded cover returns true if it is

testable, false otherwise.

Some encoding problems may have various sets of symbolic variables with mutual depen-

dencies. A well-known one is the problem of assigning codes to the states of FSM’s, where the state

variable appears both as input variable (present state) and output variable (next state). Therefore a

common value must be assigned to the same symbol in the present state and next state variable. We

are going to repeat the definition for the state encoding or state assignment problem, since it is one

of the most widely studied encoding problems.

Definition 2.3.6 Given the sets of symbols S = fs1; s2; � � � ; spg and an FSM with transition

function: f : f0; 1; 2gn� S ! S � f0; 1; 2gm;
a state assignment or state encoding is given by an integer k and an injective functions e : S !f0; 1gk. The encoded representation of f , i.e. the representation of f where the symbols are

replaced by Boolean vectors in Bk , according to e, is denoted by fe.
The optimality criteria investigated for state assignment have been more commonly the best two-

level or multi-level area of the encoded circuit. Attention has been paid also to state assignment of

asynchronous circuits, where one must guarantee correctness, for instance that the change of the

state of the circuit does not depend on races among the transitions of signal values. Some work

has been done on state assignment for testability. Little work has been done on state assignment to

improve performance. Recently state assignment for low-power has received some attention, likely

to grow in the near future.

2.4 Behavior vs. Structure in Encoding Problems

Some issues deserve discussion at this point. Does the encoding always need to be a

function or can it be a mapping that assigns more than one code to a state (still preserving the

fact that a code cannot be assigned to more than one symbol) ? The answer is that in general it is

possible to derive e as a mapping that is not a function. Given n symbols to encode, one needs at

least k = log n bits to distinguish them. The difference n� 2k gives the number of spare codes that

are available and could be used to assign more than one code to a state. Therefore one could replace

"function e" with "relation e" in the previous definitions. An intermediate degree of freedom would

be to define e as a function into the set f0; 1; �g, where � denotes for output encoding a don’t care

20 CHAPTER 2. DEFINITIONS

condition, for input encoding both 0 and 1. One must say that rarely existing encoding algorithms

are able to exploit directly this degree of freedom, so we choose the more restrictive definition wheref is a function, unless otherwise specified 8.

Does the encoding function need to be always injective or two different symbols can be

given the same code ? The answer is that in general injectivity is necessary, unless in a given

application one has an equivalence relation among the symbols such that symbols in the same class

of the equivalence relation do not need to be distinguished. We will see later such examples, as for

instance equivalent states of a CSFSM.

It is important to underline that the optimality of an encoding can only be guaranteed

with respect to the starting symbolic representation. To be more specific, consider optimal state

assignment. If we start with a given symbolic cover of a CSFSM and try, say in an exhaustive way,

all possible encodings and choose the best according to a given cost function, we cannot rule out

that a different symbolic cover representing the same behavior can produce, after encoding, a better

result. The fact is that a CSFSM represents a behavior and that many different representations can

be given of the same behavior. We do not know how to explore all possible representations of a

behavior, for instance all possible STG’s 9. So we restrict our notion of optimality to the best that

can be done starting from a given representation.

The situation is even more complex with state assignment of ISFSM’s. An ISFSM

represents a collection of behaviors. We will see that optimal state assignment procedures for two-

level implementations have a limited capability of exploring different behaviors by the flexibility

of choosing how to implement the don’t care transitions (edges not specified or partially specified

in the description). But they cannot explore all possible contained behaviors as for instance it is

done by computing closed covers of compatible sets of states (a set of states is compatible if for

every sequence there is at least one output sequence that all the states in the set can produce).

Therefore when doing state assignment of an ISFSM (or another type of FSM that contains more

than one behavior), one must gauge the optimality of state assignment against the fact that neither

all behaviors nor all representations of the same behavior can be explored (unless otherwise shown).

Some proposals to use more behavioral information when encoding CSFSM’s (equivalent states)

and ISFSM’s (compatible states) will be seen later.

8Unused codes are usually given as don’t care conditions when the smallest area of an encoded representation is
obtained.

9Of course it may not be necessary to explore all possible STG’s representing a given behavior, one should characterize
the class of interesting STG’s with respect to a certain notion of optimal encoding.

2.5. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 21

2.5 Boolean Algebras and Boolean Functions

This section provides a brief review of the background material on Boolean algebras and

Boolean functions. There are many classical expositions of it. We refer to [15, 32] for a complete

treatment.

Definition 2.5.1 Consider a quintuple (B;+; �; 0; 1) in which B is a set, called the carrier, + and� are binary operations on B, and 0 and 1 are distinct members of B. The algebraic system so

defined is a Boolean algebra provided the following postulates are satisfied:

1. Commutative Laws. For all a; b 2 B:a+ b = b+ aa � b = b � a
2. Distributive Laws. For all a; b; c 2 B:a+ (b � c) = (a+ b) � (a+ c)a � (b+ c) = (a � b) + (a � c)
3. Identities. For all a 2 B:

0 + a = a
1 � a = a

4. Complements. For any a 2 B, there is a unique element a0 2 B such that:a+ a0 = 1a � a0 = 0

Useful identities can be derived from the axioms. Of very common use are De Morgan’s laws.

Definition 2.5.2 Given a Boolean algebra B, the set of Boolean formulas on the n symbolsx1; x2; : : : ; xn is defined by the following rules:

1. The elements of B are Boolean formulas.

2. The symbols x1; x2; : : : ; xn are Boolean formulas.

22 CHAPTER 2. DEFINITIONS

3. If g and h are Boolean formulas, then so are:

(a) (g) + (h)
(b) (g) � (h)
(c) (g)0

4. A string is a Boolean formula if and only if its being so follows from finitely many applications

of the rules above.

Definition 2.5.3 An n-variable function f : Bn 7! B is called a Boolean function if and only if it

can be expressed as an n-variable Boolean formula.

2.6 Discrete Functions as Boolean Functions

Many functions needed to specify the behavior of digital systems are binary-valued

functions of binary-valued variables (f0; 1gn 7! f0; 1g). These are also referred to as switching

functions [15]. The fact that all switching functions are also Boolean functions [15] enables all

properties of Boolean functions to be directly applied to switching functions.

However not all functions that arise in the context of circuit specification and design are

switching functions. We are especially interested here to those functions, like the transition function

of an FSM, that are usually given as symbolic functions. These symbolic or discrete functions are

in the most general case multiple-valued functions of multiple-valued variables, It would be very

useful if discrete functions would be Boolean functions, as switching functions are. Apparently

this is not the case, or at least one should check case by case if the requirements for being Boolean

functions are satisfied. Fortunately one can associate to a discrete function a Boolean function

which can be used to represent and manipulate the discrete function, capitalizing on all the niceties

of Boolean algebra, including compactness of representation. This association can be done both if

one takes the relational or functional view of a discrete function. This section is heavily indebted to

the exposition in [84].

Let f : P0 � P1 � : : :� Pn�1 7! Pn be a discrete function with Pj = f0; 1; : : : ; pj�1g.

Let P = fP0�P1� : : :�Png. f is not a Boolean function since it does not meet the condition thatf : Bn 7! B for some Boolean algebra B. Corresponding to f there is the relation R � P defined

in the natural way as the set of points in P consistent with f . Let B = 2P , the power set of P , i.e.

2.6. DISCRETE FUNCTIONS AS BOOLEAN FUNCTIONS 23

the set of all subsets of P . B is a Boolean algebra described by (2P ;[;\; �; P). Let � : B 7! B
be defined as: �(x) = R \ x x 2 B (2.1)R\x is a Boolean formula and hence � is a Boolean function. Equation 2.1 is the minterm canonical

form for this function.

Letm 2 fP0�P1� : : :�Pn�1g and (m) = fmg�Pn. (m) is the set of n+1-tuples

corresponding to the n-tuple m that have all pn possible values in the last field. � corresponds to f
in the sense that given any m, f(m) may be computed by � as follows. �((m)) is a singleton set

containing the tuple in R with the first n fields the same as that of m. Field n + 1 in this tuple isf(m).
Example 2.6.1 The switching function corresponding to an AND gate is used to illustrate the above.

Here f : f0; 1g2 7! f0; 1g. Consider m = (0; 1).R = f(0; 0; 0); (0; 1; 0); (1; 0; 0); (1; 1; 1)g (m) = f(0; 1)g� f0; 1g= f(0; 1; 0); (0; 1; 1)g�((m)) = f(0; 0; 0); (0; 1; 0); (1; 0; 0); (1; 1; 1)g\ f(0; 1; 0); (0; 1; 1)g= f(0; 1; 0)gf(m) is the last field of the n+ 1-tuple (0; 1; 0), i.e. f(m) = 0.

Example 2.6.2 Each person in a certain university town in to be classified as being one of f
good, bad, uglyg (abbreviated as fg; b; ug). This classification is to be done based on the person’s

occupation which is one of fprofessor, teaching assistant, outlawg (abbreviated as fp; t; og) and

their nature which is one of fhonest, selfish, cruelg (abbreviated as fh; s; cg). To be good you have

to be a professor or be honest and not an outlaw. Cruel outlaws are ugly. Everyone else is just bad.

The classification function is a discrete function f : fp; t; og � fh; s; cg 7! fg; b; ug.

Consider m = (t; c).R = f(p; h; g); (p; s; g); (p; c; g); (t; h; g); (t; s; b); (t; c; b); (o; h; b); (o; s; b); (o; c; u)g (m) = f(t; c)g� fg; b; ug�((m)) = R \ (m)= f(t; c; b)g

24 CHAPTER 2. DEFINITIONSf(m) is the last field of the n+ 1-tuple (t; c; b), i.e. f(m) = b.
By clustering points in the domain one can get a more compact representation of f . LetB = 2P and m 2 P . Let m[j] be the value of field j in m. One natural way to cluster points inP is to group all points with the same value of m[j] (for some given j) together and refer to them

collectively. Let �Sjj = P0� : : :�Pj�1�Sj �Pj+1� : : :�Pn . Thus, �Sjj has all points for whichm[j] 2 Sj . For Example 2.6.2 �fpg0 is the set of all points for which m[0] = p. Note that �Sjj 2 B
and �Sjj = �Pj�Sjj .

Theorem 2.6.1 Let � = f�Sjj jj 2 f0; 1; : : : ; ng; Sj � Pjg. Let b 2 B. b can be expressed in terms

of a Boolean expression restricted to elements of �.

Proof: The statement needs to be proven only for the atoms ofB, the singleton sets, since any other

element of B can be obtained by a union of the atoms. Let fag be an atom and a[i] be field i of a,

then a = \i ��ifa[i]g�.

An immediate corollary of this result is that R can be expressed as a Boolean expression restricted

to elements of �. Thus the Boolean formula in Equation 2.1 can be re-written by expressing R as a

Boolean expression restricted to the elements of �. In practice Theorem 2.6.1 is not used to re-writeR, but rather R is derived directly from some description of the function.

Example 2.6.3 Consider f in Example 2.6.2. R is derived directly from the conditions specified

as follows. The set of points in P that represent professors or honest people who are not outlaws is

naturally expressed as: �fpg0 [��fhg1 \ �fog0

�
This can be simplified to: �fpg0 [��fhg1 \ �ftg0

�
Similarly the set of points that represent cruel outlaws is: �fog0 \ �fcg1 . The rest of the people are

obviously expressed as: �fpg0 [��fhg1 \ �ftg0

� [��fog0 \ �fcg1

�
This can be simplified to: ��ftg0 \ �fs;cg1

� [��fog0 \ �fh;sg1

�
Thus, R can be expressed as:(�fgg2 \(�fpg0 [(�fhg1 \�ftg0)))[(�fbg2 \((�ftg0 \�fs;cg1)[(�fog0 \�fh;sg1)))[(�fug2 \(�fog0 \�fcg1))

2.6. DISCRETE FUNCTIONS AS BOOLEAN FUNCTIONS 25

In conclusion, taking the relational view of a discrete function, we have associated a Boolean function

to a discrete function and described how the Boolean formula corresponding to this Boolean function

can be represented compactly. This enables to apply any Boolean identity to simplify the Boolean

expression.

Instead of the relational view, we can manipulate discrete functions taking the functional

view. Suppose that the domain is partitioned based on the value of the function. Let Π =f�0; �1; : : : ; �pn�1g be a partition of P0 � P1 � : : :� Pn�1 such that: m 2 �i , f(m) = i. For

the switching function f in Example 2.6.1, �0 = f(0; 0); (0; 1); (1; 0)g and �1 = f(1; 1)g.

Each �i may be described by its characteristic function f̃i defined as follows.f̃i : P0 � P1 � : : :� Pn�1 7! f0; 1g i 2 Pnf̃i(m) = 8<: 1 if m 2 �i
0 otherwisef̃i tests for membership in �i; it evaluates to 1 for exactly the points in �i. The following

representation has been commonly used to describe the f̃i in the literature. Let Sj � Pj andXj be a pj-valued variable. XSjj is termed a literal of Xj and is defined as:XSjj (m) = 8<: 1 if m[j] 2 Sj
0 otherwiseXSj1j1

�XSj2j2
is defined as the logical AND of XSj1j1

and XSj2j2
. Similarly, XSj1j1

+XSj2j2
is defined as

the logical OR of XSj1j1
and XSj2j2

. The complement of a literal XSjj is denoted as XSjj and defined

as XSjj = XPj�Sjj . In this way sum-of-products (SOP’s) and factored forms (recursive products

and sums of SOP forms) are constructed.

Example 2.6.4 For f in Example 2.6.1 the following is the SOP representation of the f̃i:f̃0 = Xf0g
0 +Xf0g

1f̃1 = Xf1g
0 �Xf1g

1

Example 2.6.5 For f in Example 2.6.2 the following is the SOP representation for f̃g and f̃u:f̃g = Xfpg
0 [�Xfhg

1 \Xfog
0

�f̃u = Xfog
0 \Xfcg

1

26 CHAPTER 2. DEFINITIONS

However, there seems to be no direct way to obtain f̃b since these expressions are not Boolean and

De Morgan’s identities cannot be directly applied in this case, and if they do apply, it must be proven

separately for each expression. This is a limitation of this representation.

Along the lines of the previous derivation of the Boolean function � from the relation R,

one can obtain � from the expressions representing the characteristic functions of the partitions. First

one derives a Boolean formula for each factored form expression. Then these Boolean formulas are

combined to give �(x). So all properties for Boolean formulas hold for factored form expressions

and they need not be proven separately. We refer to [84] for a detailed derivation, that we simply

demonstrate on an example.

Example 2.6.6 For the switching function in Example 2.6.1:�f0g
0 = f(0; 0; 0); (0; 0; 1); (0; 1; 0); (0; 1; 1)g�f0g
1 = f(0; 0; 0); (0; 0; 1); (1; 0; 0); (1; 0; 1)g�f1g
0 = f(1; 0; 0); (1; 0; 1); (1; 1; 0); (1; 1; 1)g�f1g
1 = f(0; 1; 0); (0; 1; 1); (1; 1; 0); (1; 1; 1)g�f0g
2 = f(0; 0; 0); (0; 1; 0); (1; 0; 0); (1; 1; 0)g�f1g
2 = f(0; 0; 1); (0; 1; 1); (1; 0; 1); (1; 1; 1)g�(x) = ���f0g

0 [�f0g
1

� \ x \ �f0g
2

� [���f1g
0 \ �f1g

1

� \ x \ �f1g
2

�= f(0; 0; 0); (0; 1; 0); (1; 0; 0); (1; 1; 1)g\ x
This, as expected, is the same as that derived in Example 2.6.1.

2.7 Two-level Minimization of Multi-Valued Functions

We review basic definitions of two-level multi-valued minimization. For a more complete

treatment the reader is referred to [114].

Definition 2.7.1 Let pi; i = 1; : : : ; n be positive integers. Define Pi = f0; : : : ; pi � 1g for i =
1; : : : ; n, andB = f0; 1; �g. A multiple-valued input, binary-valued output function, f , is a functionf : P1 � P2 � � � � � Pn ! B
The function f has n multiple-valued inputs. Each input variable i assumes one of the pi values inPi. The value � 2 B is used when the function value is unspecified (i.e., it is allowed to be either 0

or 1).

2.7. TWO-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 27

Ann-input,m-output switching function can be represented by a multiple-valued function

of n + 1 variables where pi = 2 for i = 1; : : : ; n, and pn+1 = m. The minimization problem for

multiple-output functions is equivalent to the minimization of a multiple-valued function of this

form [119].

Definition 2.7.2 Let Xi be a variable taking a value from the set Pi, and let Si be a subset of Pi.XSii represents the Boolean functionXSii = 8<: 0 if Xi 62 Si
1 if Xi 2 SiXSii is called a literal of variable Xi. If Si � ;, then the value of the literal is always 0, and the

literal is called empty. If Si � Pi, then the value of the literal is always 1, and the literal is called

full.

Two-valued (or binary) functions are a special case of multi-valued functions wherePi = f0; 1g for i = 1; : : : ; n. In the case of a two-valued single-output function, some notational

simplification is then possible. A cube may be written as a vector on a set of variables with each

position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as�, don’t-care), signifying the true form, negated form or both of the variable corresponding to that

position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the

number of 2 entries. A cube with k entries or bits which take the value 2 is called a k-cube. A

minterm thus is a 0-cube.

A product term (or cube) is a Boolean product (AND) of literals. A minterm or 0-cube

is a product-term in which the sets of values of all literals are singletons. If a product term evaluates

to 1 for a given minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product

term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-products is said to

contain the minterm. If a literal in a product-term is empty, the product term contains no minterms,

and is called the null product (written ;). The on-set of a function is the set of minterms for which

the function value is 1. Likewise, the off-set is the set of minterms for which the function value is

0, and the DC-set is the set of minterms for which the function value is unspecified.

In the definitions which follow, S = XS1
1 XS2

2 � � �XSnn and T = XT1
1 XT2

2 � � �XTnn repre-

sent product terms.

The product term S contains the product term T (T � S) if Ti � Si for i = 1 : : :n. The

complement of the literal XSii (writtenXSii) is the literalXPi�Sii . The complement of the product

28 CHAPTER 2. DEFINITIONS

term S (S) is the sum-of-products
Sni=1 XSii .

The intersection of product terms S and T (S \ T) is the product termXS1\T1
1 XS2\T2

2 � � �XSn\Tnn :
If Si \ Ti = ; for some i, then S \ T = ; and S and T are said to be disjoint. The intersection of

covers F and G is the union of f \ g for all f 2 F and g 2 G. The distance between S and T
(distance(S; T)) is jfijSi \ Ti = ;gj.

The consensus of S and T (consensus(S; T)) is the sum-of-productsn[i=1

XS1\T1
1 � � �XSi[Tii � � �XSn\Tnn :

If distance(S; T) � 2 then consensus(S; T) = ;. If distance(S; T) = 1 and Si \ Ti = ;, thenconsensus(S; T) is the single product termXS1\T1
1 � � �XSi[Tii � � �XSn\Tnn . If distance(S; T) = 0

then consensus(S; T) is a cover of n terms. If the consensus of S and T is nonempty, it is the set of

maximal product terms (ordered by containment) which are contained in S [T and which contain

minterms of both S and T . The consensus of two covers F and G is the union of consensus(f; g)
for all f 2 F and g 2 G.

The cofactor (or cube restriction) of S with respect to T (ST) is empty if S and T are

disjoint. Otherwise, the cofactor is the product termXS1[T1
1 � � �XS2[T2

2 � � �XSn[Tnn :
The cofactor of a cover F with respect to a product term S is the union of fS for all f 2 F .

An implicant of a function is a product term which does not contain any minterm in the

off-set of the function. A prime implicant of a function is an implicant which is not contained

by any other implicant of the function. An essential prime implicant is a prime implicant which

contains a minterm which is not covered by any other prime implicant.

The product term S can be represented in positional cube notation as a binary vector in

the following form: c0
1c1

1:::cp1�1
1 � c0

2c1
2:::cp2�1

2 � c0nc1n:::cpn�1n
where cji = 0 if j 62 Si, and cij = 1 if j 2 Si. In other words, a symbolic variable that can

take values from a set of cardinality n is represented in positional cube notation by an n-bit vector

to denote a literal of that variable such that each position in the vector corresponds to a specific

element of the set. A 1 in a position in the vector signifies the presence of an element in the literal

2.8. MULTI-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 29

while a 0 signifies the absence. This method of representation is commonly known as one-hot. By

complementing the n-bit vector that represents the one-hot encoding of a symbolic variable, one

gets a representation called complemented one-hot.

Up to now we have introduced multi-valued inputs and binary outputs functions, rep-

resented by multiple-valued functions where the set of binary outputs is treated as one more

multi-valued input variable. Positional cube notation allows also to represent any function with

multi-valued input and multi-valued output variables. This is commonly done in programs like

ESPRESSO-MV, when a function with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded

and then minimized. But the minimization problem for functions with multi-valued input and output

variables is not known to be equivalent to the minimization of a multiple-valued function of this

form. After 1-hot encoding the onsets of the minterms (values) of a symbolic output are treated as

disjoint and so are minimized separately. To handle the minimization problem of functions with

multi-valued input and multi-valued output variables the concept of generalized prime implicants

will be introduced later.

2.8 Multi-level Minimization of Multi-Valued Functions

We now introduce multi-level networks with multi-valued input variables. By convention,

in this section we will we use upper case letters for multi-valued variables and lower-case letters for

binary-valued variables.

A sum-of-products (SOP) is a Boolean sum (OR) of product terms. For example: Xf0;1gy1y2

is a cube andXf0;1gy1y2+Xf3gy2y3 is an SOP. A function f may be represented by an SOP expressionf . In addition f may be represented as a factored form. A factored form is defined recursively as

follows.

Definition 2.8.1 An SOP expression is a factored form. A sum of two factored forms is a factored

form. A product of two factored forms is a factored form.Xf0;1;3gy2(Xf0;1gy1 +Xf3gy3) is a factored form for the SOP expression given above.

A logic circuit with a multiple-valued input is represented as an MV-network. An MV-

network �, is a directed acyclic graph (DAG) such that for each node ni in � there is associated a

binary-valued, MV input function fi, expressed in SOP form, and a binary-valued variable yi which

represents the output of this node. There is an edge from ni to nj in � if fj explicitly depends

on yi. Further, some of the variables in � may be classified as primary inputs or primary outputs.

30 CHAPTER 2. DEFINITIONS

These are the inputs and outputs (respectively) of the MV-network. The MV-network is an extension

of the well-known Boolean network [12] to permit MV input variables; in fact the latter reduces to

the former when all variables have binary values. Since each node in the network has a binary-

valued output, the non-binary(MV) inputs to any node must be primary inputs to the network. The

MV-network computes logical functions in the natural way. Each node in the DAG computes some

function, the result of which is used in all the nodes to which an edge exists from this node.

The cost of a boolean network is typically estimated as the sum over all nodes of the

number of literals in a minimum (i.e. one with a least number of literals) factored form of the node

function. This cost estimation has a good correlation with the cost of an implementation of the

network in various technologies, e.g. standard cells or CMOS gate matrix.

2.9 Multiple-Valued Relations

Definition 2.9.1 A multiple-valued relation R is a subset of D � Bm. D is called the input set

ofR and is the Cartesian product of n setsD1� � � ��Dn, where Di = f0; : : : ; Pi� 1g and Pi is a

positive integer. Di provides the set of values that the i-th variable ofD can assume. Bm designates

a Boolean space spanned by m variables, each of which can assume either 0 or 1. Bm is called

the output set of R. If Pi is 2 for all i’s, then R is called a Boolean relation. The variables of the

input set and the output set are called the input variables and the output variables respectively.R is well-defined if for every x 2 D, there exists y 2 Bm such that (x; y) 2 R.

We represent a relation R by its characteristic function R : D � Bm ! B such thatR(x;y) = 1 if and only if (x;y) 2 R. In the implementation, we represent a characteristic

function by using a multi-valued decision diagram (MDD, see [64, 136]). An MDD is a data

structure to represent a function with multiple-valued input variables and a single binary output,

which employs a BDD [16] as the internal data structure.

An incompletely specified function is a special case of a relation, in the sense that for a

given incompletely specified function f : D ! Bm, a relation F � D�Bm can be defined so that(x;y) 2 F if and only if for each output j, the value of the j-th output in y is equal to f (j)(x),
unless x is a don’t care minterm for the output, where f (j) designates the j-th output function of f .

We may refer to the relation F as the characteristic function of f .

Definition 2.9.2 For a given relationR and a subsetA � D, the image ofA byR is a set of minterms

y 2 Bm for which there exists a minterm x 2 A such that (x; y) 2 R, i.e. fy j 9x 2 A : (x; y) 2 Rg.

2.10. BINARY DECISION DIAGRAMS 31

The image is denoted by r(A). r(A) may be empty.

Definition 2.9.3 For a given relation R � D � Bm, a multiple-valued function f : D ! Bm is

compatible with R, denoted by f � R, if for every minterm x 2 D, f(x) 2 r(x). Otherwise f is

incompatible with R. Clearly, f � R exists if and only if R is well-defined.

2.10 Binary Decision Diagrams

Definition 2.10.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each

nonterminal vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs,child0(v) and child1(v). Each terminal vertex u is labeled 0 or 1.

Each vertex in a BDD represents a binary input binary output function and all vertices are roots.

The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F , its child vertex child0(v) represents the function Fv and its other child

vertex child1(v) represents the function Fv . i.e., F = v � Fv + v � Fv .

For a given assignment to the variables, the value yielded by the function is determined

by tracing a decision path from the root to a terminal vertex, following the branches indicated by

the values assigned to the variables. The function value is then given by the terminal vertex label.

Definition 2.10.2 A BDD is ordered if there is a total order � over the set of variables such

that for every nonterminal vertex v, var(v) � var(child0(v)) if child0(v) is nonterminal, andvar(v) � var(child1(v)) if child1(v) is nonterminal.

Definition 2.10.3 A BDD is reduced if

1. it contains no vertex v such that child0(v) = child1(v), and

2. it does not contain two distinct vertices v and v0 such that the subgraphs rooted at v and v0
are isomorphic.

Definition 2.10.4 A reduced ordered binary decision diagram (ROBDD) is an BDD which is

both reduced and ordered.

32 CHAPTER 2. DEFINITIONS

33

Chapter 3

Complexity Issues

3.1 Computational Complexity

In this section we will present some results on the computational complexity of state

assignment for minimum area. We refer to [46, 104, 9] as standard references on computational

complexity and the theory of NP -completness in particular. Computational complexity of logic

optimization problems has been discussed in [69], from which we will draw results.

An instance of a problem is encoded as a string (or word) of a language. So the solution

of a problem is equivalent to decide whether a given string (an instance of the problem) is in that

language or not. A decision algorithm is usually given by means of a Turing machine, that is a

universal computational device. The game is to find out how much of space and time resources

a Turing machine must use to recognize words in the language. The resources taken by a Turing

machine are polynomially related to those of the other commonly used computational mechanisms

(for instance a C program running on a Von Neumann computer). Of course there are also insolvable

problems, but they are not of interest here.

Let L � Σ� be a language. The complement of L, denoted L, is the language Σ��L, i.e.,

the set of all strings in the appropriate alphabet that are not in L. The complement of a decision

problem A (sometimes denoted A COMPLEMENT), is the decision problem whose answer is "yes"

whenever A answers "no" and viceversa.

Example 3.1.1 SAT is the problem of deciding if a given Boolean expression in conjunctive normal

form (CNF) has a satisfying assignment. Given a reasonable rule to encode any CNF expression, the

language SAT will contain all strings that encode instances of CNF expressions that are satisfiable.

34 CHAPTER 3. COMPLEXITY ISSUES

Then given any string one can construct an algorithm that first checks whether the string encodes

a CNF expression and then finds if a satisfying assignment exists. SAT COMPLEMENT is the

problem: given a CNF, is it unsatisfiable ? Strictly speaking the languages corresponding to the

problems SAT and SAT COMPLEMENT are not the complements of one another, since their union

is not Σ� but rather the set of all strings that encode CNF’s.

A set of languages (representing decision problems) recognizable with the same amount

of computational resources and/or the same computational mode (for instance, deterministic vs.

non-deterministic) are said to be a complexity class. For instance, P is the class of problems for

which polynomial time is sufficient. NP is the class of problems that can be solved by a non-

deterministic Turing machine in polynomial time. Another characterization of NP is the class of

problems whose solution can be verified in polynomial time. As an example SAT is inNP because

it takes linear time to verify if an assignment satisfies a CNF expression, but it seems hard to decide

whether a satisfying assignment exists and it is not known whether SAT is in P . If NP is the class

of problems that have succinct certificates, co � NP contains those problems that have succinct

disqualifications. That is a "no" instance of a problem in co�NP has a short proof if its being a

"no" instance; and only "no instances" have a short proof. Alternatively, co � NP is the class of

problems whose complement is in NP . In general for any complexity class C, co� C denotes the

class fL : L 2 Cg.

Example 3.1.2 VALIDITY of Boolean expressions is in co � NP . We are a given a Boolean

expression �, and we are asked whether it is valid, i.e. satisfiable by all truth assignments. If �
is not a valid formula, then it can be disqualified very succinctly, by providing a truth assignment

that does not satisfy it. No valid formula has such a disqualification. Also VALIDITY of restricted

Boolean expressions in sum-of-product forms (SOP) is in co � NP . VALIDITY is also called

TAUTOLOGY.

Problems as hard as any in NP are called NP -hard. Problem A is at least as hard as

problem B if B reduces to A. B reduces to A if there is a transformationR that, for every input x
of B, produces an input R(x) of A, such that the answer to R(x) as input to A is the same as the

answer to x as input to B. In other words, to solve B on input x it is sufficient to compute R(x)
and solveA onR(x). Of courseR should be reasonably simple to compute: often one requires thatR is computable by a deterministic Turing machine in space O(logn). More simply one wants a

reduction R that can be computed in polynomial time.

3.1. COMPUTATIONAL COMPLEXITY 35

A fundamental result due to Cook [46] shows that SAT is as hard as any problem in NP ,

i.e. knowing how to solve SAT efficiently (in polynomial time) would enable us to solve efficiently

any other problem in NP . By transitivity, to show that a problem is NP -hard it is enough to show

that it is as hard as SAT. Any language L in co�NP is reducible to VALIDITY. Indeed, if L is inco�NP , then L is in NP , and thus there is a reduction R from L to SAT. For any string x, x 2 L
iff R(x) is satisfiable. The reduction from L to VALIDITY is R0(x) = :R.NP -complete problems are the NP -hard problems that are also in NP . In general ifC is complexity class and L is a language in C, L is C-complete if any language L0 2 C can be

reduced toL. NoNP -complete problem is known to be inP , but no super-polynomial lower bound

is known either.

A problem as hard as any in co � NP is called co � NP -hard, which means that its

complement is NP -hard, i.e. as hard as any problem in NP . co � NP -complete problems are

the co �NP -hard problems that are also in co �NP , i.e. whose complementary problem is NP-

complete. In general if L isNP -complete, then its complementL = Σ��L is co�NP -complete.

It is not known whether co � NP -complete are harder than NP -complete ones. Stillco � NP -complete seem harder than NP -complete ones: e.g., deciding VALIDITY intuitively

requires checking whether all assignments satisfy a Boolean expression, while SAT can be answered

as soon as a satisfying assignment is found. So, unless a theoretical breakthrough proves that the

two classes coincide, it is useful to classify precisely a problem as belonging into one vs. the other,

as it is recommended in [69], reacting against sloppy statements in the literature on algorithms for

computer-aided design.

Beyond P and NP there is a whole world of complexity classes. We are going to

introduce the rudiments of the polynomial hierarchy because they are needed to classify correctly

some versions of state assignment.

Say that a Turing machine is equipped with an oracle, when it has available a subroutine

tha charges one unit of computation to give an answer, e.g., an oracle could be a subroutine that

decides whether a word is in SAT. For instance, one names as PSAT the class of problems that can

be solved in polynomial time by a deterministic Turing machine augmented with a SAT oracle. In

general, if C is any complexity class, CA is the class of languages decided by machines as those

that decide the languages of C, only that they are also equipped with oracle A.

Example 3.1.3 Let hE; ki be an instance of the problem EQUIVALENT FORMULAS, which con-

sists of deciding whether boolean expression E (we will use Boolean expression and Boolean

36 CHAPTER 3. COMPLEXITY ISSUES

formula as synonyms) admits an equivalent formulaE 0 including, at most, k occurrences of literals,

where two Boolean formulas are equivalent if for any assignment of values E is satisfied iff E 0 is

satisfied.

Theorem 3.1.1 SATISFIABILITY can be solved in polynomial time by a deterministic Turing ma-

chine with oracle EQUIVALENT FORMULAS.

Proof: There are only two types of formulas equivalent to a formula including 0 occurrences of

literals, that is, a formula consisting only of Boolean constants: those equivalent to true, also called

tautologies, that are satisfied by all possible assignments of values, and those equivalent to false

which cannot be satisfied by any assignment of values.

LetE be a formula in CNF form. To decide whetherE is satisfiable it is sufficient to check

first whetherE is a tautology. If so,E is satisfiable; otherwise, we have only to check whether E is

equivalent to a formula containing 0 occurrences of literals. If this is the case, E is not satisfiable,

otherwise it is satisfiable. The first check can be done in polynomial time on a CNF; the second

can also be done in polynomial time by querying the oracle EQUIVALENT FORMULAS with the

word < E; 0 >. If the oracle answers positively, E is not satisfiable, otherwise it is satisfiable.

No construction is known in the opposite direction: no deterministic Turing machine having an

NP-complete language as oracle and deciding EQUIVALENT FORMULAS in polynomial time has

been found. It is however possible to define a nondeterministic Turing machine having the above

characteristics.

Theorem 3.1.2 EQUIVALENT FORMULAS can be solved in polynomial time by a nondeterministic

Turing machine with oracle SAT.

Proof: Non-determinism can be exploited to generate all possible formulasE 0 including, at most, k
occurrences of literals and to query the oracle to determine whether E 0 is not equivalent to E, that

is, if :((:E 0 _ E)^ (:E _E 0)) is satisfiable. If this last formula is not satisfiable, then E 0 is the

required k-literal formula. Conversely, if all k-literal formulas E 0 are not equivalent to E, then the

instance hE; ki does not belong to EQUIVALENT FORMULAS .

Given a class of languages C define the class PC asPC = [L2C PL
and NPC as NPC = [L2CNPL

3.1. COMPUTATIONAL COMPLEXITY 37

where PL and NPL denote the classes P and NP augmented with oracle L.

It follows that the problem SATISFIABILITY belongs to the classPEQUIVALENT FORMULAS
while EQUIVALENT FORMULAS belongs to NPSAT . By iterating the previous definitions, one

gets the polynomial hierarchy. The polynomial hierarchy is an infinite set fΣpk;Πpk;∆pk : k � 0g of

classes of languages such that

1. Σp0 = Πp
0;∆p0 = P:

2. Σpk+1 = NP Σpk ;Πpk+1 = coΣpk+1 and ∆pk+1 = P Σpk with k � 0.

The infinite union of all Σpk’s (or of all Πpk’s or of all ∆pk) is denoted as PH .

An alternate characterization of the polynomial hierarchy is as follows.

Theorem 3.1.3 For each k � 0, a languageL belongs to Σpk iff a languageA 2 P and a polynomialp exist such that x 2 L$ (9y1)(8y2) � � �(QyK)[hx; y1; � � � ; yki 2 A]
where jyij � p(jxj) with 1 � i � k and where the sequence of quantifiers consists of an alternation

of existential and universal quantifiers (Q is 9 or 8 if k is odd or even).

Similarly, for each k � 0, a language L belongs to Πpk iff a language A 2 P and a

polynomial p exist such thatx 2 L$ (8y1)(9y2) � � �(QyK)[hx; y1; � � � ; yki 2 A]
where jyij � p(jxj) with 1 � i � k and where the sequence of quantifiers consists of an alternation

of universal and existential quantifiers (Q is 8 or 9 if k is odd or even).

A word hx; li belongs to the language associated with EQUIVALENT FORMULAS iff a

formula y1 exists such that, for all possible possible assignments of values y2, hhx; ki; y1; y2i 2 A
holds, where the languageA 2 P is defined as: hhx; ki; y1; y2i 2 A iff y2 is an assignment of values

which satisfies the formula (:x _ y1) ^ (:y1 _ x) where y1 denotes a formula which includes, at

most, k occurrences of literals. So EQUIVALENT FORMULAS is in Σp2.

Very few interesting problems have been shown to be complete with respect to a given level

of the polynomial hierarchy. For example, it is not known whether EQUIVALENT FORMULAS is

Σp2-complete.

Let E be a Boolean formula built on a set of Boolean variables [kiXi where Xi = fxij :

1 � j � mig with mi positive integer. The problem k-QBF consists of deciding whether the

38 CHAPTER 3. COMPLEXITY ISSUES

formula (9)(8) � � �(QXk)[E(X1; � � � ; Xk)]
is true, where (9Xi) reads as "there exists an assignment of values to the variables xi1; � � � ; ximi ",

and (8Xi) reads as "for all assignments of values to the variables xi1; � � � ; ximi ". For all k � 1,k-QBF is Σpk-complete (and thus k-QBF is one of the hardest problems in Σpk).

Of the classes in the polynomial hierarchy we will need soon Σp2: the class of problems

solvable in polynomial time by a non-deterministic Turing machine augmented with an oracle inNP . To strengthen the intuition, let us say that a problem in Σp2 is such that not only finding a

solution requires the power of non-determinism, but also checking it, while for NP -complete ones

only the first task requires the power of non-determinism and the second one is easy. So the fact

that a problem is in Σp2 and not in a lower complexity class is a valuable information also for the

algorithm developer.

Now we have the setting to state and prove the results related to some versions of state

assignment problems. State assignment for area has the goal to find an encoded FSM that gives the

best two-level or multi-level implementation (another target could be some specific Programmable

Gate Array architecture). At the core one must minimize a logic function and produce the best

two-level or multi-level representation.

Definition 3.1.1 Given a representation of a Boolean function F by means of the minterms of the

onset and positive integers k and l, MIN-SOP-1 is the problem "is there a SOP representation of F
with k or fewer product-terms and l or fewer literals ?".

Theorem 3.1.4 MIN-SOP-1 is in NP -complete.

Proof: MIN-SOP-1 is in NP. A non-deterministic Turing machines can guess a SOP representationG with k or fewer product-terms and l or fewer literals, then it must check whether G is equivalent

to F . The check can be done by replacing each product-term in G with the minterms that it covers.

Given that F is available as a sum-of-minterms it is easy to verify whether the minterms contained

in the representation of G are all and only the minterms that describe F .

MIN-SOP-1 isNP -hard. Let us show that MINIMUM COVER 1 reduces to MIN-SOP-1.

Consider an instance of MINIMUM COVER, we suppose for conveniency that the subsets in C
1MINIMUM COVER: Given a collection C of subsets of a finite set S and a positive integer k � jCj, doesC contain

a cover for S of size� k, i.e. a subsetC 0 � C with jC 0j � k such that every element of S belongs to at least one member
of C 0 ? It shown to be NP-complete in [46].

3.1. COMPUTATIONAL COMPLEXITY 39

and the set S are specified by a matrix whose columns are the subsets in C and whose rows are the

elements of S, such that entry (i; j) is a 1 iff element i is in subset j and 0 otherwise. Say that there

are n rows and m columns. It has been shown by Gimpel [47] that one can build an incompletely

specified Boolean function on the set of variables x1; x2; � � � ; xm+n. Its onset has as many minterms

as rows and a generic mintermmj is given by:mj = x1x2 � � �xj�1:xjxj+1; xm+n:
Let the primes of the function be as many as the columns of the original table, with a primePi given

by: Pi = xn+i Yj2Fi xj
where Fi = fj j aij = 0g. The minterms of the dcset are the vertices contained in the primes that

are not minterms of the onset. Since minterm mj is in prime Pi iff entry (i; j) in the table is 1, it

follows that an instance of MINIMUM COVER has answer "yes" iff the corresponding instance of

MIN-SOP-1 has answer "yes" (same k used in both cases, l is not needed).

Definition 3.1.2 Given a sum-of-products (SOP) representation of a Boolean function F and posi-

tive integers k and l, MIN-SOP-2 is the problem "is there a SOP representation of F with k or fewer

product-terms and l or fewer literals ?".

Theorem 3.1.5 [69] MIN-SOP-2 is in co�NP -hard (lower bound).

Proof: We show that VALIDITY for SOP forms reduces to MIN-SOP-2. We already stated the

well-known result that VALIDITY is co�NP -hard (precisely it is co�NP -complete). Consider

an instance of VALIDITY, i.e. a SOP form V . It is easy to check whether V has at least one

satisfying assignment, otherwise the answer to VALIDITY of V is no. Suppose that V is satisfiable.

Let x by a Boolean variable that does not appear in V and multiply it by the expression V , obtainingW = V:x. One can have W in SOP form, by multiplyingx by each product of V . In this wayW is

in SOP form and therefore one can build an instance of MIN-SOP-2 where F is W and k = l = 1.

It is the case that this instance of MIN-SOP-2 has answer "yes" iff V has an answer "yes" for

VALIDITY, because every representation of W must have at least one product term and literal forx, and V can be either a tautology or it must contribute at least one more literal to W (the case thatV is not satisfiable has been handled at the beginning).

40 CHAPTER 3. COMPLEXITY ISSUES

MIN-SOP-2 does not appear to be co�NP -easy, since it is not known yet whether having

an oracle for any problem in co�NP would enable to solve MIN-SOP-2 in polynomial time. The

next theorem shows that MIN-SOP-2 can be solved in polynomial time by a nondeterministic Turing

machine with an oracle in NP .

Theorem 3.1.6 [69] MIN-SOP-2 is in Σp2 (upper bound).

Proof: Consider a nondeterministic Turing machine equipped with SAT as an oracle. Notice that we

need a version of SAT for general Boolean expressions (it is still inNP). Non-determinism can be

exploited to generate all possible SOP forms, with k or fewer product terms and l or fewer literals,

say G is a generic one, and to query the oracle to determine whether, say, G is not equivalent to F ,

that is, if :((:G _ F) ^ (:F _ G)) is satisfiable. If this last formula is not satisfiable, then G is

the required POS with � k product terms and � l literals. Conversely, if no POS with� k product

terms and � l literals is equivalent to E, then the instance hF; k; li does not belong to MIN-SOP-2.

The previous results extend easily to the case of minimum SOP forms of encoded FSM’s.

Notice that a symbolic cover is simply a two-level SOP representation of an FSM. An encoded

cover of an FSM is the symbolic cover after syntactic replacement of each state symbol with a

code, according to an encoding function e. Basically the previous theorems can be all be rephrased

having symbolic covers instead than two-valued covers and adding the requirement that an encoding

function be guessed nondeterministically.

First we get an equivalent of MIN-SOP-1. For that we introduce the notion of minterm

symbolic cover, that is a symbolic cover of an FSM where each proper input and proper output is a

minterm. One can take a symbolic cover and obtain easily a minterm symbolic cover, by replacing

each symbolic cube by a set of symbolic cubes which are minterms in the input and output space

and add up to the original cube.

Definition 3.1.3 Given a minterm symbolic representation of an FSM M and positive integers k
and l, SA-MIN-SOP-1 is the problem "is there an encoding e that produces an encoded cover Me
that has a SOP representation with k or fewer product-terms and l or fewer literals ?".

Theorem 3.1.7 MIN-SA-SOP-1 is in NP -complete.

Proof: MIN-SA-SOP-1 is in NP -hard. Restrict MIN-SA-SOP-1 to MIN-SOP-1, by noticing that

a Boolean function is an FSM with no state variable in its representation.

3.1. COMPUTATIONAL COMPLEXITY 41

MIN-SA-SOP-1 is inNP . By nondeterminism one can guess an encoding function e and

a minimized encoded SOP formN . Me is the SOP form obtained fromM by replacing syntactically

states with codes. Each product-term of Me is a minterm. We must prove that Me is equivalent toN . Replace each product-term in N by all minterms that it covers. and call it Nminterms. Since

both Me and Nminterms contain only minterms, their equality can be checked in time polynomial

in the original representation.

Definition 3.1.4 Given a symbolic representation of an FSM M and positive integers k and l,
SA-MIN-SOP-2 is the problem "is there an encoding e that produces an encoded cover Me that has

a SOP representation with k or fewer product-terms and l or fewer literals ?".

Theorem 3.1.8 MIN-SA-SOP-2 is co�NP -hard (lower bound).

Proof: Restrict MIN-SA-SOP-2 to MIN-SOP-2, by noticing that a Boolean function is an FSM

with no state variable in its representation.

Theorem 3.1.9 MIN-SA-SOP-2 is in Σp2 (upper bound).

Proof: As in the proof that MIN-SOP-2 is in Σp2. Thanks to nondeterminism one guesses an

encoding e and a minimized encoded SOP form N . Me is the SOP form obtained from M by

replacing syntactically states with codes. We must prove that the SOP form Me is equivalent to the

SOP form N . This is exactly what was done with SAT as an oracle for MIN-SOP-2.

This classification lumps together, for instance, MIN-SOP-2 and SA-MIN-SOP-2, and

therefore is not satisfactory with respect to the experimental fact that the latter problem is much

harder that the former. This is in part due to the lack of fine tuning of the complexity classes of the

polynomial hierarchy. It would be worthy to see if a finer classification can be achieved looking

into approximation complexity classes [46, 104, 9].

Similar results could be obtained for other optimization objectives, like minimum number

of literals of multi-level implementations [69]. Also the introduction of don’t care conditions in the

original representations, allowing for choices in the encoded implementations, can be handled with

minor variant of the previous techniques.

42 CHAPTER 3. COMPLEXITY ISSUES

3.2 Counting State Assignments

Suppose that there are v symbols to encode and 2n codes, with n � dlog ve. There are0@ 2nv 1A v! possible assignments, since there are

0@ 2nv 1A ways to select v distinct state codes andv! ways to permute them.

Suppose that a state assignment is given by a matrix, whose i-th column carries thei-th encoding bit of every symbol and each row is the code of a symbol. One can introduce an

equivalence relation on the set of state encodings, lumping in the same equivalence class all state

encodings that produce the "same" encoded representation. The "same" means that the encoded

representation are not intrinsically different. For instance if we permute columns of an encoding

it is intuitively obvious that the encoded Boolean function does not change, except that variables

have been renamed. What happens if we complement a column of an encoding ? In case of state

assignment things depend on the chosen memory element. If one uses D flip-flops, then the size

of a minimal encoded representation is strongly affected by the chosen phase. Instead, with other

types of flip-flops, state encodings that differ only by complementation of some columns can be

considered equivalent.

The number of equivalence classes of state assignments, where equivalence is by permu-

tation and complementation of columns, and 2n�1 < v � 2n, was computed in [88] as:A(v) = (2n � 1)!(2n � v)!n!
:

The number of equivalence classes of state assignments, where equivalence is only by permutation

of columns, and 2n�1 < v � 2n, was computed in [149] as:B(v) = (2n)!(2n � v)!n!
:

The fact that A(v) is correct for SR, JK and T flip-flops was pointed out first in [110]. This

does not extend to D flip-flops, for which B(v) is the correct formula, because in a D flip-flop the

excitation expression for the complemented state variable is the complement of the expression for

the uncomplemented state variable.

The formulas for the general case, i.e., where v is not restricted to 2n�1 < v � 2n, were

published by Harrison and Parchman ([109, 106]). They introduced the definition of degenerate

state assignments, i.e., those where a column is constant or two or more columns are equal. Let the

following definitions hold:

3.2. COUNTING STATE ASSIGNMENTS 43

1. T (n; v) is the number of nonequivalent state assignments with respect to permutations of the

columns;

2. R(n; v) is the number of non degenerate state assignments with respect to permutations of

the columns;

3. T �(n; v) is the number of nonequivalent state assignments with respect to permutations and

complementations of the columns;

4. R�(n; v) is the number of non degenerate state assignments with respect to permutations and

complementations of the columns.

Then the following identities hold, where s(v; j) are the Stirling numbers of the first kind:

1. T (n; v) = vXj=1

0@ n+ 2j � 1n 1A s(v; j);
2. T �(n; v) = vXj=1

0@ n + 2j�1 � 1n 1A s(v; j);
3. R(n; v) = vXj=1

0@ 2j � 2n 1A s(v; j)
4. R�(n; v) = vXj=1

0@ 2j�1 � 1n 1A s(v; j):
They have been obtained with non-elementary combinatorial tools.

44 CHAPTER 3. COMPLEXITY ISSUES

45

Chapter 4

Previous and Related Work

4.1 Algorithms for Optimal Encoding

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment

of opcodes for a microprocessor.

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function, where the encoding of the inputs (or some inputs) is the same as the encoding of the

outputs (or some outputs). Encoding the states of a finite state machine (FSM) is a problem

in class D since the state variables appear both as input (present state) and output (next state)

variables. Another problem in class D is the encoding of the signals connecting two (or more)

combinational circuits.

Optimality may be defined in various ways. A common objective is minimum area of

the encoded implementation. Each target implementation has a different cost function. The cost

of a two-level implementation is the number of product-terms or the area of a programmable logic

array (PLA). A commonly used cost of a multi-level implementation is the number of literals of

a technology-independent representation of the logic. Another cost function is the complexity of

an implementation with field programmable gate arrays (FPGA’s). Other optimization objectives

46 CHAPTER 4. PREVIOUS AND RELATED WORK

may have to do with power consumption, speed, testability or any combination of the above. In

some cases the objective is the satisfaction of a correctness requirement like in state assignment of

asynchronous FSM’s, where it is required that it be race-free.

Here we will describe various approaches to the problem of optimal encoding from the

classical papers of the 60’s to the more recent research dating from the mid 80’s. We will devote

more space to state assignment for minimum area: "state assignment" because in some sense it

subsumes the other encoding problems, and "minimum area" because it has been the most studied

objective, even though we will survey also contributions for other problems and objectives 1.

4.1.1 Early Contributions

A well-written survey of early literature on state assignment can be found in [75]. Here

we will review the key contributions.

Among the first to define input and output encoding problems for combinational networks

were [33] and [100]. The former based his theory of input encoding on partitions and set systems.

The latter tried to minimize the variable dependency of the output functions and studied the problem

of the minimum number of variables required for a good encoding.

In [3] Armstrong described one of the first programmed algorithms to assign internal

codes to FSM’s, with the goal of obtaining economical realizations of the combinational logic of

an FSM. The key idea of the method is to insure that as many vertices as possible in the onset and

offset of each next state and output function are pairwise adjacent, so that they can be clustered in

subcubes. This may be achieved by examining the rows and columns of the state table for state

pairs that can be given adjacent codes and so directly yield simplified Boolean equations for the

next state and output variables in terms of the present state and input variables. Various adjacency

conditions were derived based on the relations between states. Then the problem was reduced to a

graph embedding problem, where a graph represents adjacency relations between the codes of the

states, to be preserved by a subgraph isomorphism on the encoding cube. The method was then

refined in [2].

As a partial solution to the fact that enumerating all encodings and measuring their cost is

not a practical solution, Dolotta and McCluskey in [41] proposed a method based on the concept of

codable columns, that are fewer in number than the possible codes, and whose combinations give

the actual encodings. The codable columns for a state table are represented by a base matrix that

1We must mention that there is a rich literature on state assignment authored by researchers of the former Soviet
Union, but we are not in a position to survey it here.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 47

represents the mapping of codable columns into the next state columns; the rows of a base matrix

correspond to states and the columns correspond to codable columns. By examining each column

mapping in turn and evaluating the result in terms of some minimization objective one determines

a best coding. A "scoring procedure" was defined requiring the comparison of each base entry

column with the next state entries on a column-by-column basis and allocating a score according to

given criteria. Armstrong argued in [2] that the scoring array of [41] could be read in the framework

that he proposed.

Story, Harrison et al. [141, 138] proposed algorithms to derive minimal-cost assignments

based on the lower-bound approach first described by Davis [33] and extending the technique to

find the cost of an assignment proposed by Torng [141]. A set of columns, each composed of

a binary element for each row of a partially assigned state table, is derived. From this matrix it

is possible to generate all possible distinct state assignments. Input equations for JK bistables

are derived from the matrix based on single column partial state assignments (PSA’s), and then a

minimum number (MN), which represents a lower bound on the cost, is selected for each column.

The best state assignment is then found by comparing the sets of MN’s with corresponding actual

cost numbers for complete encodings consisting of a set of PSA’s. Notice that MN is calculated

for a particular column by applying the column to the given state table as if the column were a

complete state assignment and then deriving the input equations for, say, a JK bistable in the

usual way. For instance the expression of the J input of a JK bistable includes all total states

(proper input and present state) with present to next state transitions of 0 ! 1, and, as a don’t

care, those of the transitions 1 ! 0; 1 ! 1; 0 ! �; 1 ! �. Then the resulting combinational

equations must be minimized, in such a way to guarantee a lower bound (notice that we still do not

have a complete encoding); this is done by a "modified map" method where any subset of states is

considered to be in a subcube in the encoding space, so that the cost of the implementation cannot

be decreased in any actual coding. A lower bound for an encoding is the sum of MN’s associated

with its columns (MNS), because in the cost one does not consider sharing of logic among next

state functions. The actual cost number (AN) of an assignment is the number of actual (not lower

bound) AND-OR inputs for each bistable input equation minimized separately. The values of MN

and AN are compared for each PSA combination to determine the best encoding. The algorithm

has an exhaustive nature mitigated by lower bounding. It does not guarantee optimality (contrary

to the claim in the title) of an encoded FSM because it disregards multiple-output minimization ,

since the cost is defined to be the sum of the AND-OR inputs needed to realize each next state

transition separately - so it does not account for output encoding - and proper output logic is not

48 CHAPTER 4. PREVIOUS AND RELATED WORK

taken into consideration in the optimization procedure. This work was refined and commented by

other contributions [101, 102, 103].

Others, as [54, 137, 67], proposed algebraic methods based on the algebra of partitions

and on the criterion of reduced dependency. In these methods the state assignment is made in a

such a way that each binary variable describing a next state depends on as few variables of the

present state as possible. In general reduced dependency has various advantages that included better

testability features, but suffers from a weak connection with the logic optimization steps after the

encoding.

More recent approaches [124, 125] rely on local optimization rules defined on a control

flowgraph. There rules are expressed as constraints on the codes of the internal variables and an

encoding algorithm tries to satisfy most of these constraints.

4.1.2 Encoding for Two-level Implementation

Reduction of Input Encoding to Multiple-Valued Minimization

A major step towards an exact solution of encoding problems was the reduction of input

encoding to multiple-valued minimization followed by input constraints satisfaction [92]. Efficient

algorithms have been devised both for multiple-valued minimization [114] and input constraints

satisfaction [92, 145, 116].

Even though state encoding is an input-output encoding problem 2, it can be approximated

as an input encoding problem [92] and solved by a two-step process. In the first step, a tabular

representation of the FSM is optimized at the symbolic level, e.g., using the program ESPRESSO by

Rudell. Multiple-valued minimization generates constraints on the codes that can be assigned to

the states. In the second step, states are encoded in such a way that the constraints are satisfied.

The goal in deriving constraints from the minimized symbolic cover is to encode the states in such

a way that the cardinality of the resulting two-level Boolean implementation is no greater than the

cardinality of the minimized symbolic cover. A sufficient condition to preserve the cardinality of

the minimized symbolic cover after encoding is to ensure that each multiple-valued input literal

in the minimized symbolic cover translates into a single cube in the Boolean domain. In other

words, given a multiple-valued literal, the states present in it should form a face (in the Boolean

encoding space) that does not include the states absent from the same multiple-valued literal. Such

constraints are called face or input constraints and finding codes that satisfy them is the face

2Moreover the same symbols appear both in the input and in the output part.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 49

0 s1 s2 1
1 s1 s4 0
0 s2 s2 1
1 s2 s1 1
0 s3 s3 0
1 s3 s4 0
0 s4 s2 1
1 s4 s1 1

(a)

0 (s1, s2, s4) s2 1
1 (s2, s4) s1 1
1 (s1, s3) s4 0
0 (s3) s3 0

(b)

Figure 4.1: Original and minimized symbolic cover of an FSM

embedding problem.

An example from [4] of a tabular representation of an FSM is shown in Figure 4.1(a).

Multiple-valued minimization of this FSM - where the states are the possible values of a multiple-

valued variable - yields the cover shown in Figure 4.1(b). This can be done by representing the

symbolic variables using the positional cube notation [139, 114], and then invoking a multiple-

valued minimizer, such as [114]. The minimized cover is output disjoint and all the reduction

in the cardinality of the symbolic cover is due to the input part, i.e. due to the fact that some

present states fan out to the same next state for certain primary inputs. To get a compatible boolean

representation, one must assign each of the groups of present states obtained by multi-valued

minimization, to subcubes of a boolean k-cube, for a minimum k, in a way that each subcube

contains all and only all the codes of the states included in the face constraint. Codes satisfying the

face-embedding constraints implied by the minimized symbolic cover of Figure 4.1(b) are shown

in Figure 4.2(a). Three binary variables are necessary and sufficient to satisfy the face-embedding

constraints. Figure 4.2(b) shows these codes in the Boolean 3-space. The cover obtained after

substitution of the state codes in the symbolic cover and a successive two-level Boolean minimization

is shown in Figure 4.3.

It is worth mentioning that the face constraints obtained through straightforward symbolic

minimization are sufficient, but not necessary to find a two-valued implementation matching the

upper bound of the multi-valued minimized cover. As it was already pointed out in [91], for each

implicant of a minimal (or minimum) multi-valued cover, one can compute an expanded implicant,

whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have

minimal (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced

implicant, one gets don’t cares in the input constraint, namely, in the bit positions where the

expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem

50 CHAPTER 4. PREVIOUS AND RELATED WORK

s1 = 001
s2 = 000
s3 = 011
s4 = 100

s1

s2

s3

s4

(a) (b)

Figure 4.2: Codes satisfying input constraints

0 −1− 011 0
1 −−1 100 0
1 −−0 001 1
0 −0− 000 1

Figure 4.3: Two-level implementation of encoded FSM

with don’t cares becomes one of finding a cube of minimum dimension k, where, for every face

constraint, one can assign the states asserted to vertices of a subcube that does not include any state

not asserted, whereas the don’t care states can be put inside or outside of that subcube. One can

build examples where the presence of don’t cares allows to satisfy the input constraints in a cube

of smaller dimension, than it would be possible otherwise. Consider the state table of an FSM

and its 1-hot encoded representation shown in Figure 4.4. In Figure 4.5 the expanded and reduced

minimized multi-valued covers of the FSM of Figure 4.4 are shown. Figure 4.6 shows the expanded

and reduced present state literals of the same FSM and the don’t care face constraints.

A novel observation is that by choosing another minimum multi-valued cover, a different

set of face embedding constraints (with don’t cares, if any) could be generated and they might be

satisfiable with a smaller k than the one required by the previous minimum cover.

Symbolic Minimization

Any encoding problem, where the symbolic variables appear only in the input part, can

be solved by setting up a multiple-valued minimization followed by satisfaction of the induced face

constraints. However, the problem of state assignment of FMS’s is only partially solved by this

scheme, because the encoding of the symbolic output variables is not taken into account (e.g., the

4.1. ALGORITHMS FOR OPTIMAL ENCODING 51

00 st0 st0 0 00 10000000000 10000000000 0

10 st0 st1 - 10 10000000000 01000000000 -

01 st0 st2 - 01 10000000000 00100000000 -

10 st1 st1 1 10 01000000000 01000000000 1

00 st1 st3 1 00 01000000000 00010000000 1

11 st1 st5 1 11 01000000000 00000100000 1

01 st2 st2 1 01 00100000000 00100000000 1

00 st2 st7 1 00 00100000000 00000001000 1

11 st2 st9 1 11 00100000000 00000000010 1

00 st3 st3 1 00 00010000000 00010000000 1

01 st3 st4 1 01 00010000000 00001000000 1

01 st4 st4 1 01 00001000000 00001000000 1

00 st4 st0 - 00 00001000000 10000000000 -

11 st5 st5 1 11 00000100000 00000100000 1

01 st5 st6 1 01 00000100000 00000010000 1

01 st6 st6 1 01 00000010000 00000010000 1

00 st6 st0 - 00 00000010000 10000000000 -

00 st7 st7 1 00 00000001000 00000001000 1

10 st7 st8 1 10 00000001000 00000000100 1

10 st8 st8 1 10 00000000100 00000000100 1

00 st8 st0 - 00 00000000100 10000000000 -

11 st9 st9 1 11 00000000010 00000000010 1

10 st9 st10 1 10 00000000010 00000000001 1

10 st10 st10 1 10 00000000001 00000000001 1

00 st10 st0 - 00 00000000001 10000000000 -

Figure 4.4: Initial and 1-hot encoded covers of FSM-1

52 CHAPTER 4. PREVIOUS AND RELATED WORK

01 01010111011 000000010001 01 00010001000 000000010001

01 01001110111 000000001001 01 00001000100 000000001001

10 00111101110 000000000101 10 00000100010 000000000101

10 00111011101 000000000011 10 00000010001 000000000011

00 01011010000 000100000001 00 01010000000 000100000001

11 11011101111 000010000001 11 01001000000 000010000001

00 00101110000 000001000001 00 00100100000 000001000001

11 10110111111 000000100001 11 00100010000 000000100001

10 11111001100 010000000001 10 11000000000 010000000001

01 11100110011 001000000001 01 10100000000 001000000001

00 10001011111 100000000000 00 10000001111 100000000000

Figure 4.5: Expanded and reduced minimized covers of FSM-1

01010111011 00010001000 0-010--10--

01001110111 00001000100 0-001--01--

00111101110 00000100010 00---10--10

00111011101 00000010001 00---01--01

01011010000 01010000000 0101-0-0000

11011101111 01001000000 -10-1-0----

00101110000 00100100000 0010-1-0000

10110111111 00100010000 -01-0-1----

11111001100 11000000000 11---00--00

11100110011 10100000000 1-100--00--

10001011111 10000001111 1000-0-1111

Figure 4.6: Expanded and reduced implicants and don’t care face constraints of FSM-1

4.1. ALGORITHMS FOR OPTIMAL ENCODING 53

next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets

of the symbolic output functions, and therefore disregards the sharing among the different output

functions taking place when they are implemented by two-valued logic. Sharing of logic is crucial

to obtain minimum encoded two-level implementations.

Therefore extensions of multiple-valued minimization have been proposed in [91, 147].

These extensions replace a single multiple-valued minimization of the whole symbolic cover by a

sequence of minimization operations on parts of the symbolic cover in such a way as to recognize

sharing of logic among next states, if some constraints on their codes are satisfied. These extensions

of multiple-valued minimization have been called symbolic minimization. In [91, 147] symbolic

minimization was introduced to exploit bit-wise dominance relations between the binary codes

assigned to different values of a symbolic output variable. The fact is that the input cubes of a

dominating code can be used as don’t cares for covering the input cubes of a dominated code. The

core of the approach is a procedure to find useful dominance (called also covering) constraints

between the codes of output states. The translation of a cover obtained by symbolic minimization

into a compatible boolean representation defines simultaneously a face embedding problem and an

output dominance satisfaction problem. Any output encoding problem can be solved by symbolic

minimization. Symbolic minimization was applied also in [115], where a particular form of PLA

partitioning is examined, by which the outputs are encoded to create a reduced PLA that is cascaded

with a decoder.

However, to mimic the full power of two-valued logic minimization, another fact must

be taken into account. When the code of a symbolic output is the bit-wise disjunction of the

codes of two or more other symbolic outputs, the on-set of the former can be minimized by using

the on-sets of the latter outputs, by redistributing the implementation of some cubes. An extended

scheme of symbolic minimization can therefore be defined to find useful dominance and disjunctive

relations between the codes of the symbolic outputs. This will be thoroughly investigated in a later

chapter of the thesis. The translation of a cover obtained by extended symbolic minimization

into a compatible boolean representation induces a face embedding, output dominance and output

disjunction satisfaction problem.

A variety of other applications may also generate similar constraints satisfaction problems,

as in the case of synthesis for sequential testability [35], and optimal re-encoding and decomposition

of PLA’s [40, 21, 122, 120, 119, 121, 123]. Given a PLA, it is possible to group the inputs into

pairs and replace the input buffers with two-bit decoders to yield a bit-paired PLA with the same

number of columns and no more product-terms than the original PLA. In a more general case, a

54 CHAPTER 4. PREVIOUS AND RELATED WORK

single PLA is decomposed into two levels of cascaded PLA’s. A subset of inputs is selected such

that the cardinality of the multiple-valued cover, produced by representing all combinations of these

inputs as different values of a single multiple-valued variable, is smaller than the cardinality of the

original binary cover. The encoding problem consists of finding the codes of the signals between the

PLA’s, so that the constraints imposed by the multiple-valued cover are satisfied. This problem is

usually approximated as an input encoding problem [40, 21], but in its generality is an input-output

encoding problem referred in [39] as four-level Boolean minimization.

Exact Encoding with Generalized Prime Implicants

An exact procedure for output encoding has been reported in [39]. A notion of generalized

prime implicants (GPI’s), as an extension of prime implicants defined in [87], is introduced, and

appropriate rules of cancellation are given. Each GPI carries a tag with some output symbols. If

a GPI is accepted in a cover, it asserts as output the intersection (bit-wise and) of the codes of the

symbols in the tag. To maintain functionality, the coded output asserted by each minterm must be

equal to the bit-wise or of the outputs asserted by each selected GPI covering that minterm. Given a

selection of GPI’s, each minterm yields a boolean equation constraining the codes of the symbolic

values. If an encoding can be found that satisfies the system of boolean equations, then the selection

of GPI’s is encodable. We will devote some later chapters to GPI’s and explain in detail the notion

of encodabilities of GPI’s. Given all the GPI’s, one must select a minimum subset of them that

covers all the minterms and forms an encodable cover. This can be achieved by solving repeated

covering problems that return minimum covers of increasing cardinality, until an encodable cover

is found, i.e. the minimum cover that is also encodable. Figure 4.7 shows output encoding based

on GPI’s with a simple example taken from [39].

4.1.3 Encoding for Multi-level Implementation

Automatic multi-level logic synthesis programs are now available to the logic designer

[52, 12, 8]), since sometimes a PLA implementation of the circuit does not satisfy the area/timing

specifications.

A two-level encoding program, such as those described in the previous sections, can

often give a good result when multi-level realization is required, but in order to get the maximum

advantages from multi-level logic synthesis we need a specialized approach.

This section describes such approaches, giving some information on the relative strengths

4.1. ALGORITHMS FOR OPTIMAL ENCODING 55

1101 out1 1101 (out1) 110- (out1,out2) 110- 01

1100 out2 1100 (out2) 11-1 (out1,out3) 11-1 10

1111 out3 1111 (out3) 000- (out4) 000- 00

0000 out4 110- (out1,out2)

0001 out4 11-1 (out1,out3)

000- (out4)

Figure 4.7: Initial cover, GPI’s, encodable selection of GPI’s and encoded cover of OUT-1

and weaknesses.

There are two main classes of multi-level encoding algorithms:

1. Estimation-based algorithms, that define a distance measure between symbols, such that if

"close" symbols are assigned "close" (in terms of Hamming distance) codes it is likely that

multi-level synthesis will give good results. Programs such as MUSTANG [36], JEDI [77] and

PESTO [57] belong to this class.

2. Synthesis-based algorithms, that use the result of a multi-level optimization on the unencoded

or one-hot encoded symbolic cover to drive the encoding process. Programs such as MIS-MV

[85] and MUSE [42] belong to this class.

Mustang

MUSTANG uses the state transition graph to assign a weight to each pair of symbols. This

weight measures the desirability of giving the two symbols codes that are "as close as possible".

MUSTANG has two distinct algorithms to assign the weights,one of them ("fanout oriented")

takes into account the next state symbols, while the other one ("fanin oriented") takes into account

the present state symbols. Such a pair of algorithms is common to most multi-level encoding

programs, namely MUSTANG, JEDI and MUSE.

The fanout oriented algorithm is as follows:

1. For each output o build a set Oo of the present states where o can be asserted. Each state p in

the set has a weight OW op that is equal to the number of times that o is asserted in p.

56 CHAPTER 4. PREVIOUS AND RELATED WORK

2. For each next state n build a set Nn of the present states that have n as next state. Again

each state p in the set has a weightNWnp that is equal to the number of times that n is a next

state of p (each cube under which a transition can happen appears as a separate edge in the

state transition graph) multiplied by the number of state bits (the number of output bits that

the next state symbol generates).

3. For each pair of states k; l let the weight of the edge joining them in the weight graph bePn2S NWnk �NWnl +Po2OOW ok � OW ol .

This algorithm gives a high weight to present state pairs that have a high degree of similarity,

measured as the number of common outputs asserted by the pair.

The fanin oriented algorithm (almost symmetric with the previous one) is as follows:

1. For each input i build a set ON i of the next states that can be reached when i is 1, and a setOFF i of the next states that can be reached when i is 0. Each state n in ON i has a weightONW in that is equal to the number of times that n can be reached when i is 1, and each staten in OFF i has a weightOFFW in that is equal to the number of times that n can be reached

when i is 0.

2. For each present state p build a set P p of the next states that have p as present state. Again

each state n in the set has a weight PW pn that is equal to the number of times that n is a next

state of p multiplied by the number of state bits.

3. For each pair of states k; l let the weight of the edge joining them in the weight graph bePp2S PW pk � PW pl +Pi2I ONW ik �ONW il +OFFW ik �OFFW il .

This algorithm tries to maximize the number of common cubes in the next state function, since next

states that have similar functions will be assigned close codes.

The embedding algorithm identifies clusters of nodes (states) that are joined by maximal

weight edges, and greedily assigns to them minimally distant codes. It tries to minimize the sum

over all pairs of symbols of the product of the weighted distance among the codes.

The major limitation of MUSTANG is that its heuristics are only distantly related with the

final minimization objective. It also models only common cube extraction, among all possible

multiple-level optimization operations ([12]).

4.1. ALGORITHMS FOR OPTIMAL ENCODING 57

Jedi

JEDI is aimed at generic symbol encoding rather than at state assignment, and it applies

a set of heuristics that is similar to MUSTANG’s to define a set of weights among pairs of symbols.

Then it uses either a simulated annealing algorithm or a greedy assignment algorithm to perform

the embedding.

The proximity of two cubes in a symbolic cover is defined as the number of non-empty

literals in the intersection of the cubes. It is the "opposite" of the Hamming distance between two

cubes, defined as the number of empty literals in their intersection. For example, cubes abc and cde
have proximity 4, because their intersection has four non-empty literals (a; b; d and e), and distance

1, because their intersection has an empty literal (c\ c).
Each pair of symbols (si; sj) has a weight that is the sum over all pairs of cubes in the

two-level symbolic cover, where si appears in one cube and sj appears in the second one, of the

proximity between the two cubes.

The cost function of the simulated annealing algorithm is the sum over all symbol pairs

of the weighted distance among the codes.

The greedy embedding algorithm chooses at each step the symbol that has the strongest

weight connection with already assigned symbols, and assigns to it a code that minimizes the above

cost function.

Pesto

PESTO [57] is a new tool that resembles JEDI with respect to the basic model, but by

means of very skilled algorithmic engineering obtains codes that produce often (as of today) the

best starting points for multi-level implementations.

The model starts form the observation, justified in [144], that if x and y are two binary

input vectors, f(x) is a single output boolean function, andP = f(x; y) j hamming distance(x; y) = 1 and f(x) = f(y)g;
then, within a class of "related" functions, the larger the size of P, the simpler the implementation

of f .

An adjacency matrix is constructed and a metric that is a function of the matrix and of the

state encodings is maximized by means of simulated annealing. For problems like state assignment

58 CHAPTER 4. PREVIOUS AND RELATED WORK

the adjancency matrix is a weighted sum of an input adjacency matrix and an output adjacency

matrix.

Binary vectors are considered adjacent when they have Hamming distance one. For each

pair of states there is an entry in the input adjacency matrix set to the number of pairs of 1’s in the

outputs that would be adjacent if that present state pair were adjacent. Adjacent outputs means that

the input vectors for the two outputs differ only in one bit position, i.e., the codes of the present

states are at Hamming distance one and the proper inputs are equal. For the proper outputs this

information is easily known. For the next state outputs this information is obviously unavailable, so

an average number of times that pairs of next states have 1’s in the same bit positions is computed

by generating random encodings.

For each pair of states there is an entry in the output adjacency matrix set to the number

of times it has adjacent inputs. The inputs can be adjacent when the proper inputs are adjacent and

the present states are identical or the proper inputs are identical and the present states are adjacent.

The former situation is easily known. In the latter situation the information about present states is

obviously unavailable, so an average of times that pairs of present states are adjacent is computed

by generating random encodings.

The goal is to find a state assignment that maximizes a weighted sum of the contributions of

the input and output adjacency matrices. Given a state assignment, an adjacency matrix contributes

the sum of pairs of adjacent states weighted by the coefficient of the corresponding entry.

A careful study is made of the relative importance of the weighting factor of the input

and output matrices, the number of repeated experiments (since simulated annealing is used to find

the maximizing codes), the importance of using information on input don’t cares, the parameters

of simulated annealing and others. One of the lessons that the implementation of PESTO teaches

is that even a simple model, if all algorithmic choices are carefully evaluated, can produce high-

quality results. In this case from the experiments PESTO seems to enjoy a noticeable advantage over

its competitors JEDI and MUSE especially in the case of large examples, that are those where the

robustness of an heuristic is tested and the quality of the result matters more.

Muse

MUSE uses a multi-level representation of the finite state machine to derive the set of

weights that are used in the encoding problem.

Its algorithm is as follows:

4.1. ALGORITHMS FOR OPTIMAL ENCODING 59

1. Encode symbolic inputs and outputs with one-hot codes.

2. Use MISII ([12]) to generate an optimized boolean network.

3. Compute a weight for each symbol pair (see below).

4. Use a greedy embedding algorithm trying to minimize the sum over all state pairs of the

weighted distance among the codes.

5. Encode the symbolic cover, and run MISII again.

The weight assignment algorithm examines each node function (in sum-of-product form)

to see if any of the following cases applies (Si denotes a state symbol, si denotes the corresponding

one-hot present state variable, other variables denote primary inputs):

1. s1ab+ s2ab+ : : :: if S1 and S2 are assigned adjacent codes, then the cubes can be simplified

to a single cube, and we obtain a saving in the encoded network cost.

2. s1ab+s2abc+ : : :: if S1 and S2 are assigned adjacent codes, then the cubes can be simplified

(even though they will remain distinct cubes, due to the appearance of c only in the second

one) and a common cube (the common state bits and ab) can be extracted. For example, ifS1 is encoded as c0c1c2 and S2 is encoded as c0c1c2, the expression above can be simplified

as c0c1abc+ c0c1c2ab.
3. s1abc+ s2abd+ : : :: same as above, but only a common cube (the common state bits and ab)

can be extracted.

For each occurrence of the above cases the weight of the state pair is increased by an

amount that is proportional to the estimated gain if the two states are assigned adjacent codes. For

example, if abc is extracted from f = abcd, g = abce, (cost 8 literals) then we obtain f = hd,g = he, h = abc (cost 7 literals), and the gain obtained extracting h is 1.

Each gain is also multiplied by the number of distinct paths from the node to a network

output. This heuristic gives a higher gain to common subexpressions that are used in many places

in the network, so that their extraction gives a high reduction in the network cost. If the codes

in the pair are assigned adjacent codes, then hopefully MISII will be able to extract again useful

subexpressions after the encoding.

60 CHAPTER 4. PREVIOUS AND RELATED WORK

The algorithm described above takes into account only present state symbols. Another

heuristic algorithm is used to estimate the "similarity" among the next state functions. This "next-

state oriented" algorithm adds to the weight of each pair of states the gain of common subexpressions

that can be extracted from the functions generating that pair of next states in the one-hot encoded

network. For example, if ni denotes a one-hot next state variable and Ni the corresponding state

symbol, n1 = abcd and n2 = abce have a common subexpression abc of gain 1 (see above), so the

weight of the (N1; N2) pair is incremented by 1 due to this subexpression.

The embedding algorithm, using the weights computed above, chooses the unencoded

state that has a maximum weight connection with the already encoded states and assigns to it a code

that has the minimum weighted distance from the already encoded states.

MUSE uses a cost function that is a closer representation of reality with respect to MUSTANG

and JEDI, but there is no guarantee that the optimizations performed on the one-hot encoded network

are the best ones for all possible encodings, and that MISII will choose to perform the same

optimizations when it is run on the encoded network.

Mis-mv

In order to have a satisfactory solution of the multi-level encoding problem we must have

a closer view of the real cost function, the number of literals in the encoded network. The weight

matrix is rather far from giving a complete picture of what happens to this cost function whenever

an encoding decision is made.

Following the pattern outlined in the previous sections for the two-level case, we should

perform a multi-level symbolic minimization, and derive constraints that, if satisfied, can guarantee

some degree of minimality of the encoded network.

MIS-MV, unlike the previous programs, performs a full multi-level multiple-valued mini-

mization of a network with a symbolic input. Its algorithms are an extension to the multiple-valued

case of those used by MISII (the interested reader is referred to [85] for a detailed explanation of

these algorithms).

Its overall strategy is as follows:

1. Read the symbolic cover. The symbolic output is encoded one-hot, the symbolic input is left

as a multiple-valued variable.

2. Perform multi-level optimization (simplification, common subexpression extraction, decom-

position) of the multiple-valued network.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 61

3. Encode the symbolic input so that the total number of literals in the encoded network is mini-

mal (simulated annealing is used for this purpose, while extensions of constrained embedding

algorithms from the two level case are being studied).

A set of theorems, proved in [73], guarantees that step 2 of the above algorithm is complete,

i.e. that all possible optimizations in all possible encodings can be performed in multiple-valued

mode provided that the appropriate cost function is available.

The last observation is a key to understand both strengths and limits of this approach: the

cost function that MIS-MV minimizes is only an approximate lower bound on the number of literals

that the encoded network will have (much in the same spirit as what happens in the two-level case

with symbolic minimization). This lower bound can be reached if and only if all the face constraints

from all the nodes in the multiple-valued network can be simultaneously satisfied in a minimum

length encoding, which is not possible in general (each node has a multiple-valued function, so

the constraints can be extracted as described in Section 4.1.2). This lower bound is approximate

because further optimizations on the encoded network can still reduce the number of literals.

In order to take this limitation into account, MIS-MV computes at each step the currently

optimal encoding, and uses it as an estimate of the cost of each multiple-valued node.

For example, if one denotes bySf1;2;3;4g a multiple-valued literal representing the boolean

function that is true when variable S has value 1, 2 , 3 or 4, the estimated cost of Sf1;2;3;4g with the

codes:e(Sf1g) = c1c2c3, e(Sf2g) = c1c2c3, e(Sf3g) = c1c2c3, e(Sf4g) = c1c2c3, e(Sf5g) = c1c2c3, e(Sf6g)
= c1c2c3

would be 1, since the minimum sum of products expression for c1c2c3 + c1c2c3 + c1c2c3 + c1c2c3

with the don’t cares (unused codes) c1c2c3 + c1c2c3 is c1.

Currently MIS-MV does not handle the output encoding problem. Its approach, though,

can be extended to handle a symbolic minimization procedure similar to what is explained in

section 4.1.2, and therefore to obtain a solution also to this problem.

Comparison of Different Methods

Programs such as MUSTANG, JEDI and PESTO rely only on the two-level representation

of the symbolic cover to extract a similarity measure between the context in which each pair of

symbols appear. This measure is used to drive a greedy embedding algorithm that tries to keep

similar symbols close in the encoded boolean space. This has clearly only a weak relation with

62 CHAPTER 4. PREVIOUS AND RELATED WORK

the final objective (minimum cost implementation of a boolean network), and it makes an exact

analysis of the algorithm performance on benchmark examples hard. Still it must be said that the

implementation of PESTO stands out as a very skillful one, to point that this program is currently the

best achiever especially on large examples.

Some improvement can be seen in MUSE, that uses a one-hot encoding for both input and

output symbols, and then performs a multi-level optimization. In this way at least some of the

actual potential optimizations can be evaluated, and their gain can be used to guide the embedding,

but there is no guarantee of optimality in this approach, and the output encoding problem is again

solved with a similarity measure.

Full multi-level multiple-valued optimization (MIS-MV) brings us closer to our final ob-

jective, because all potential optimizations can in principle be evaluated. The complexity of the

problem, though, limits this potentiality to an almost greedy search, as in MISII.

Still we do not have a complete solution to the encoding problem for multi-level imple-

mentation because:

1. We need to improve our estimate of the final cost to be used in multi-level multiple-valued

optimization.

2. The problem of optimal output encoding must be addressed directly.

The algorithms described in this section, though, can and have been successfully used,

and the path towards an optimal solution is at least clearer than before.

4.1.4 Experimental Results

We report some comparisons among available state assignment programs based on the

techniques discussed in the previous sections. For the experiments we used the MCNC ’89 set of

benchmark FSM’s.

The Two-level Case

We report one set of experiments that compare programs for two-level state assignments.

Table 4.1 summarizes the results obtained running the algorithms of NOVA [147], KISS [92]

and random state assignments. The results of NOVA were obtained running ESPRESSO [114] to obtain

the input constraints and the symbolic minimizer of NOVA built on top of ESPRESSO to obtain the

mixed input/output constraints, NOVA to satisfy the constraints on the codes of the states and of the

4.1. ALGORITHMS FOR OPTIMAL ENCODING 63

symbolic inputs (if any), and ESPRESSO again to obtain the final area of the encoded FSM. The best

result of the different options of NOVA was shown in the table. The results of KISS were obtained

running ESPRESSO to obtain the input constraints, KISS to satisfy the constraints on the codes of

the states and of the symbolic inputs (if any), and ESPRESSO again to obtain the final area of the

encoded FSM. The areas under random assignments are the best and the average of a statistical

average of a number of different (number of states of the FSM + number of symbolic inputs, if

any) random state assignments on each example. The final areas obtained by the best solution of

NOVA average 20% less than those obtained by KISS, and 30% less than the best of a number of

random state assignments. NOVA can use any number of encoding bits greater than or equal to

the minimum. The best results of NOVA on the benchmark of Table 4.1 have been obtained with

a minimum encoding length, but this is not always the case. KISS uses a code-length sufficient to

satisfy all input constraints. Since it satisfies the constraints by an heuristic algorithm it does not

always achieve the minimum necessary code-length.

Notice that the lower bound provided by symbolic minimization is often larger than the

best upper bound achieved by encoding the FSM’s, even though the available programs model only

partially the effects of output encoding. This means that output encoding is more important than

input encoding on the quality of final results.

Comparisons for some of the approaches mentioned above [124, 39] have not been carried

out for the lack of an available implementation.

The Multi-level Case

We report a set of experiments that correlate good two-level state assignment to the

corresponding multi-level logic implementation, comparing against an estimation-based multi-level

encoding algorithm.

Table 4.2 reports the number of literals after running through the standard boolean opti-

mization script in the multi-level logic synthesis system MISII [12] with encodings obtained by NOVA,

MUSTANG [36], JEDI [77] and random state assignments. In the case of NOVA only the best minimum

code-length two-level result was given to MISII . MUSTANG was run with -p, -n, -pt, -nt options and

minimum code-length. JEDI was run with all available options and minimum code-length [76]. In

all cases ESPRESSO was run before MISII. The final literal counts in a factored form of the logic

encoded by NOVA average 30% less than the literal counts of the best of a number of random state

assignments. The best (minimum code-length) two-level results of MUSTANG, and JEDI versus the

64 CHAPTER 4. PREVIOUS AND RELATED WORK

example random KISS NOVA

b-area a-area #bits #cubes area #bits #cubes area
bbara 616 649 5 26 650 4 24 528
bbsse 1089 1144 6 27 1053 4 29 957
bbtas 165 215 3 13 195 3 8 120
beecount 285 293 4 11 242 3 10 190
cse 1947 2087 6 45 1756 4 45 1485
dk14 720 809 9 24 550 6 25 500
dk15 357 376 6 17 391 5 17 289
dk16 1826 1994 12 55 2035 7 54 1188
dk17 320 368 6 19 361 5 17 272
dk27 143 143 4 9 117 4 7 91
dk512 374 418 7 18 414 5 17 289
donfile 1200 1360 12 24 984 5 28 560
ex1 3120 3317 7 42 2436 6 37 2035
ex2 798 912 6 31 744 5 27 567
ex3 342 387 6 18 432 4 17 306
ex5 324 358 5 15 315 4 14 252
ex6 810 850 5 24 792 3 25 675
iofsm 560 579 4 16 448 4 15 420
keyb 3069 3416 8 47 1880 5 48 1488
mark1 760 782 5 19 779 4 17 646
physrec 1677 1741 5 34 1564 4 33 1419
planet 4896 5249 6 89 4539 6 86 4386
s1 3441 3733 5 81 2997 5 63 2331
sand 4278 4933 6 95 4655 6 89 4361
scf 19650 21278 8 140 18760 7 137 17947
scud 2262 2533 6 71 2698 3 62 1798
shiftreg 132 132 3 6 72 3 4 48
styr 5031 5591 6 91 4186 5 94 4042
tbk 5040 6114 na na na 5 57 1710
train11 221 241 6 10 230 4 9 153

TOTAL 65453 72002 na 51053
% 100 110 na 77

Table 4.1: Comparison of FSM’s encoding for two-level implementation

4.1. ALGORITHMS FOR OPTIMAL ENCODING 65

best (minimum code-length) two-level results of NOVA are also reported. Notice that in the case of

MUSTANG and JEDI the run that achieved the minimum number of cubes is not necessarily the same

that achieved the minimum number of literals. In the case of NOVA only the best two-level result

was fed into MISII, so the data reported refer to the same minimized cover. Even though NOVA was

not designed as a multi-level state-assignment program, its performances compare successfully with

MUSTANG. Among the three programs, the best literal counts are often given by JEDI. These data

show that a state assignment that gives a good two-level implementation provides a good starting

point for a multi-level implementation, but it does not match the quality reached by algorithms

specialized for multi-level implementations. Early claims in [151, 152, 150] that two-level tools

were good enough also for multi-level implementations reflected mainly a temporary lack of good

tools for multi-level implementations.

We report two kinds of experiments to verify the validity of MIS-MV as input encoder:� Compare the relative importance of the various multi-valued optimization steps.� Compare MIS-MV with some existing state assignment programs, such as JEDI [77], MUSE [42],

MUSTANG [36] and NOVA [147]. Notice that we want to compare only the input encoding

algorithms of these programs and so we need to "shut off" all effects due to the encoding of

the output part, captured by purpose (these programs embody also heuristics for the output

encoding problem) or by chance. Therefore we replaced the codes returned by each program

in the present state only, while the next state was simply replaced by one-hot codes.

The experiments were conducted as follows:� A single simplified boolean script (using simplify only once) was used both for multi-valued

and binary valued optimization.� The script was run twice in all cases.� MIS-MV:

1. ESPRESSO was run on the unencoded machine.

2. All or part of the first script was run in MIS-MV’s multi-valued mode.

3. The inputs were encoded, using the simulated annealing algorithm.

4. The remaining part of the first script and the second script were run in binary-valued

mode.

66 CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI MUSTANG NOVA JEDI MUSTANG NOVA random
#cubes #cubes #cubes #lit #lit #lit #lit

bbara 24 25 24 57 64 61 84
bbsse 30 31 29 111 106 132 149
bbtas 9 10 8 21 25 21 31
beecount 12 12 10 39 45 40 59
cse 52 48 45 200 206 190 274
dk14x 29 32 26 106 117 98 164
dk15x 19 19 17 67 69 65 73
dk16x 64 71 52 225 259 246 402
donfile 33 49 28 76 160 88 193
ex1 48 55 44 250 280 215 313
ex2 35 36 27 122 119 96 162
ex3 19 19 17 66 71 76 83
keyb 52 58 48 140 167 200 256
mark1 17 19 17 66 76 86 116
physrec 39 37 33 132 159 150 178
planet 93 97 86 547 544 560 576
s1 57 69 63 152 183 265 444
sand 105 108 96 549 535 533 462
scf 147 148 137 812 791 839 890
scud 57 83 62 127 286 182 222
shiftreg 4 4 4 0 2 0 16
styr 100 112 94 508 546 511 591
tbk 57 136 57 278 547 289 625
train11 11 10 9 27 37 43 44

TOTAL 1113 1288 1033 4678 5394 4986 6407
% 107 124 100 93 108 100 130

Table 4.2: Experiments on FSM’s encoding for two and multi-level implementation

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 67� JEDI, MUSE, MUSTANG and NOVA:

1. Each program was run in input oriented mode ("-e i" for JEDI, "-e p" for MUSE, "-pc" for

MUSTANG and "-e ih" for NOVA) to generate the codes.

2. The symbolic input was encoded.

3. ESPRESSO was run again, using the invalid states as don’t cares.

4. The script was executed twice.

We performed seven experiments on each machine, four using JEDI, MUSE, MUSTANG and

NOVA, and three using MIS-MV. The experiments on MIS-MV differed in the point of the script where

the symbolic inputs were encoded (MIS-MV can carry on the multi-level optimizing operations on a

multiple-valued network or on the encoded binary-valued network):

1. At the beginning. At this point, both MIS-MV and NOVA extract the same face constraints

by multiple-valued minimization. The two programs get different results because of the

different face constraints satisfaction strategies. MIS-MV satisfies the face constraints with a

simulated annealing algorithm that minimizes the literal count of a two-level implementation.

The cost function is computed by calling ESPRESSO and counting the literals. NOVA satisfies

the input constraints with a heuristic deterministic algorithm that minimizes the number of

product-terms of a two-level implementation.

2. After simplify, to verify multiple-valued boolean resubstitution.

3. After algebraic optimization (gkx, gcx, : : :), to verify the full power of MIS-MV.

Table 4.3 contains the results, expressed as factored form literals.

4.2 Relation of State Assignment to Other Optimization Steps

In this section we mention very briefly some issues in the interaction of state assignment

(and encoding in general) to other steps of sequential synthesis.

4.2.1 State Assignment and State Minimization

State assignment interacts with the other traditional steps of sequential synthesis. Con-

sider FSM decomposition, i.e., the process of replacing an FSM by a network of interconnected

68 CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI MUSE MUSTANG NOVA best beginning simplify algebraic
MIS-MV optimization

bbara 96 99 96 106 84 84 84 85
bbsse 125 126 148 151 131 130 132 131
bbtas 34 36 37 32 31 35 31 31
beecount 56 60 65 70 56 62 56 58
cse 189 192 208 214 195 191 199 195
dk14 96 102 108 98 79 97 79 81
dk15 65 65 65 65 68 65 68 69
dk16 254 244 314 351 247 225 247 261
dk17 63 58 69 58 62 58 62 64
dk27 30 29 34 38 27 27 27 27
dk512 73 73 78 93 68 70 68 69
donfile 132 131 195 186 123 127 123 123
ex1 256 239 252 246 232 240 232 237
ex2 176 169 197 167 144 143 144 154
ex3 87 96 98 98 82 82 86 82
ex4 71 72 73 84 72 90 74 72
ex5 79 79 80 83 69 67 69 69
ex6 93 92 90 98 84 85 85 84
ex7 87 84 100 94 78 89 79 78
keyb 186 180 203 195 146 186 172 146
lion 16 16 14 16 16 16 16 16
lion9 55 55 61 43 38 40 38 38
mark1 94 92 89 105 92 90 94 92
mc 32 30 30 32 30 35 30 30
modulo12 58 72 77 71 71 71 71 71
opus 83 70 88 90 70 87 70 74
planet 453 511 538 551 466 512 466 473
s1 339 291 377 345 249 335 253 251
s1a 262 195 264 253 214 217 214 225
s8 50 52 47 48 48 52 48 48
sand 556 498 519 542 509 523 509 529
shiftreg 24 25 34 35 24 24 24 24
styr 427 418 460 501 438 442 438 473
tav 27 27 27 27 27 27 27 27

TOTAL 4724 4578 5135 5186 4370 4624 4415 4487

Table 4.3: Multi-level input encoding comparison

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 69

FSM’s, preserving the sequential behavior. One can see state assignment as producing an FSM

decomposition: there is a component FSM of two states (1 memory element) for each encoding bit,

and each component FSM depends on the the state of the other components. Connections between

state assignment and FSM decomposition have been considered in [34, 37, 6, 5].

4.2.2 State Assignment and State Minimization

A sequential behavior may be represented by many different STG’s, and different STG’s

of the same behavior may lead to different logical implementations. This makes elusive the goal of

obtaining the best implementation of a given sequential behavior. We demonstrate with an example

the problem.

Consider FSM’s M1 (left) and M2 (right):

0 s1 s2 1 0 s1 s2 1
1 s1 s3 0 1 s1 s2 0
- s2 s4 1 - s2 s4 1
- s3 s4 1 - s4 s1 0
- s4 s1 1

FSMM2 is a state minimized version of FSMM1. An encoding ofM2 is: s1 = 00; s2 = 01; s3 = 10

and a corresponding minimum encoded implementation of M2 is:

000 011
100 010
-01 101
-10 000

This implementation could not have been obtained by encoding M1, it was necessary instead to

obtain first a different STG representation of the same behavior by means of state minimization. So

one could think that by doing state minimization and then state assignment the best implementation

could be obtained. It is not always so, as it was recognized long ago by Hartmanis and Stearns,

who gave in [55] an example of an FSM whose best implementation has fewer product-terms than

the best implementation obtained after state minimization of the original machine. Therefore in

order to get a minimum implementation one should merge the steps of state minimization and state

assignment. We will see, when discussing generalized prime implicants, how the introduction of

symbolic Boolean relations allows doing the two steps at the same time, for CSFSM’s. Even this last

technique will not allow to explore all possible STG representations of a given sequential behavior,

but if the original STG is redundant it allows to choose a reduced STG in such a way to optimize

the state assignment step.

70 CHAPTER 4. PREVIOUS AND RELATED WORK

We will mention later that by using symbolic relations some cases of the interaction of state

minimization and state assignment can be modeled exactly, but with little hope of practical solutions.

Recently Calazans [17] proposed an heuristic algorithm to use information about compatible states

of ISFSM’s while doing state assignment.

4.2.3 State Assignment and Testability

Unate state assignments to guarantee testability by construction were proposed first

in [140]. The logic to compute the outputs and the encoding of the next state is said to be

unate in a given state variable, if the output and next state functions can be expressed as sums of

products where the given variable appears either uncomplemented or complemented, but not both.

In [111] a case was made for a variation of unate encoding called half-hot encoding that may allow

sometimes savings in the number of columns of the encoded PLA. Half-hot encodings have exactly

half the total number of state variables set to 1. The penalty on the number of necessary product

terms was not addressed. The issue of encoding for testable implementations of small area using(k; p) codes was addressed recently in [83]. (k; p) codes have length p with exactly k bits set to

1 and they result in unate realizations of the encoded FSM. Information on compatibility between

states was also used in the state assignment phase.

71

Chapter 5

Symbolic Minimization

5.1 Introduction

The optimization of logic functions performed on the Boolean representation depends

heavily on the encoding chosen to represent the symbolic variables.

The cost function that estimates the area optimality of an encoding depends on the target

implementation: two-level or multi-level or field-programmable gate arrays (FPGA’s). The cost of

a two-level implementation is the number of product-terms or the area of a programmable logic

array (PLA). A commonly used cost of a multi-level implementation is the number of literals of a

technology-independent representation of the logic. FPGA’s come in different architectures with

associated costs. Other optimization objectives may be related to power consumption, speed and

testability. It may even be the case that the objective is a correctness requirement, as is race-freeness

in state assignment of asynchronous circuits.

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment

of opcodes for a microprocessor.

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function, where the encoding of the inputs (or some inputs) is the same as the encoding of the

72 CHAPTER 5. SYMBOLIC MINIMIZATION

outputs (or some outputs). Encoding the states of a finite state machine (FSM) is a problem

in class D since the state variables appear both as input (present state) and output (next state)

variables. Another problem in class D is the encoding of the signals connecting two (or more)

combinational circuits.

Here we concentrate on problems in class D for optimal two-level implementations. In

particular we will refer mostly to the problem of encoding FSM’s, since there is no loss of generality

and they are of great practical interest.

We will build on the paradigm started by [92]. It involves optimizing the symbolic

representation (symbolic minimization), and then transforming the optimized symbolic description

into a compatible two-valued representation, by satisfying encoding constraints (bit-wise logic

relations) imposed on the binary codes that replace the symbols. This approach guarantees an

upper bound on the size of the encoded symbolic function provided all the encoding constraints

are satisfied. Encoding via symbolic minimization may be considered a three step process. The

first phase consists of multiple-valued optimization. The second step is to extract constraints on the

codes of the symbolic variables, which, if satisfied, guarantee the existence of a compatible Boolean

implementation. The third step is assigning to the symbols codes of minimum length that satisfy

these constraints, if the latter imply a set of non-contradictory bit-wise logic relations.

When the target implementation is two-level logic, the first step may consist of one or more

calls [92, 91] to a multiple-valued minimizer [114], after representing the symbolic variables with

positional cube notation [139, 114]. Then constraints are extracted and a constraints satisfaction

problem is set up.

Using the paradigm of symbolic minimization followed by constraints satisfaction, the

most common types of constraints that may be generated [92, 91, 39, 116] are four. The first

type, generated by the input variables, are face-embedding constraints. The three types generated

by the output variables are dominance, disjunctive and disjunctive-conjunctive constraints. Each

face-embedding constraint specifies that a set of symbols is to be assigned to one face of a binaryn-dimensional cube and no other symbol should be in that same face. Dominance constraints require

that the code of a symbol covers bit-wise the code of another symbol. Disjunctive constraints specify

that the code of a symbol must be expressed as the bit-wise disjunction (oring) of the codes of two

or more other symbols. Disjunctive-conjunctive constraints specify that the code of a symbol must

be expressed as the bit-wise disjunction (oring) of the bit-wise conjunction (anding) of the codes of

two or more other symbols.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 73

The presentation is organized as follows. In Section 5.2 we present the encoding problem

for optimal two-level implementations. In Section 5.3 the new symbolic minimization algorithm is

described, while procedures for symbolic reduction and symbolic oring are explained, respectively,

in Section 5.4 and in Section 5.5. Section 5.6 analyzes some ordering schemes. In Section 5.7

mention is made of the algorithms used for checking encodeability. An example is demonstrated

in Section 5.8, and experiments are reported in Section 5.9, with final conclusions drawn in Sec-

tion 5.10.

5.2 Encoding for Two-level Implementations

5.2.1 Multi-valued Minimization

Advances in the state assignment problem, reported in [93, 11, 92], made a key connection

to multiple-valued logic minimization, by representing the states of a FSM as the set of possible

values of a single multiple-valued variable. A multiple-valued minimizer, such as [114], can

be invoked on the symbolic representation of the FSM. This can be done by representing the

symbolic variables using the positional cube notation [139, 114]. The effect of multiple-valued

logic minimization is to group together the states that are mapped by some input into the same

next-state and assert the same output. To get a compatible boolean representation, one must assign

each of the groups of states obtained by MV minimization, (called face or input constraints) to

subcubes of a boolean k-cube, for a minimum k, in a way that each subcube contains all and only

all the codes of the states included in the face constraint. This problem is called face embedding

problem.

It is worth mentioning that the face constraints obtained through straightforward symbolic

minimization are sufficient, but not necessary to find a two-valued implementation matching the

upper bound of the multi-valued minimized cover. As it was already pointed out in [91], for each

implicant of a minimal (or minimum) multi-valued cover, one can compute an expanded implicant,

whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have

minimal (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced

implicant, one gets don’t cares in the input constraint, namely, in the bit positions where the

expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem

with don’t cares becomes one of finding a cube of minimum dimension k, where, for every face

constraint, one can assign the states asserted to vertices of a subcube that does not include any state

74 CHAPTER 5. SYMBOLIC MINIMIZATION

not asserted, whereas the don’t care states can be put inside or outside of that subcube. One can

build examples where the presence of don’t cares allows to satisfy the input constraints in a cube of

smaller dimension, than it would be possible otherwise.

5.2.2 Symbolic Minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be

solved by setting up a multiple-valued minimization problem followed by satisfaction of the induced

face constraints. However, the problem of state assignment of FMS’s is only partially solved by this

scheme, because the encoding of the symbolic output variables is not taken into account (e.g. the

next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets

of the symbolic output functions, and therefore disregards the sharing among the different output

functions taking often place when they are implemented by two-valued logic. We will see now

more powerful schemes to deal with both input and output encoding.

In [91, 147] a new scheme was proposed, called symbolic minimization. Symbolic

minimization was introduced to exploit bit-wise dominance relations between the binary codes

assigned to different values of a symbolic output variable. The fact is that the input cubes of the

onset of a dominating code can be used as don’t cares for covering the input cubes of the onset

of a dominated code. The core of the approach is a procedure to find useful dominance (called

also covering) constraints between the codes of output states. The translation of a cover obtained

by symbolic minimization into a compatible boolean representation defines simultaneously a face

embedding problem and an output dominance satisfaction problem. Notice that any output encoding

problem can be solved by symbolicminimization. Symbolic minimization was applied also in [115],

where a particular form of PLA partitioning is examined, by which the outputs are encoded to create

a reduced PLA that is cascaded with a decoder.

However, to mimic the full power of two-valued logic minimization, another fact must

be taken into account. When the code of a symbolic output is the bit-wise disjunction of the codes

of two or more other symbolic outputs, the on-set of the former can be minimized by using the

on-sets of the latter outputs, by "redistributing" the task of implementing some cubes. An extended

scheme of symbolic minimization can therefore be defined to find useful dominance and disjunctive

relations between the codes of the symbolic outputs. The translation of a cover obtained by extended

symbolic minimization into a compatible boolean representation induces a face embedding, output

dominance and output disjunction satisfaction problem.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 75

(1) 10 st1 st2 11 (1’) -0 st1,st2 st2 11

(2) 00 st2 st2 11 (2’) 0- st2,st3 st2 00

(3) 01 st2 st2 00 (3’) 10 st2,st3 st1 11

(4) 00 st3 st2 00 (4’) 00 st1 st1 - -

(5) 10 st2 st1 11 (5’) 01 st3 st0 00

(6) 10 st3 st1 11 (6’) 11 st1,st0 st1 10

(7) 00 st1 st1 - - (7’) 11 st0,st3 st3 01

(8) 01 st3 st0 00

(9) 11 st1 st1 10

(10) 11 st3 st3 01

(11) 11 st0 st0 11

Figure 5.1: Covers of FSM-2 before and after symbolic minimization

In Figure 5.1, we show the initial description of a FSM and an equivalent symbolic cover

returned by an extended symbolic minimization procedure.

The reduced cover is equivalent to the original one if we impose the following constraints

on the codes of the states.

Product terms (1’), (3’) and (4’) are consistent with the original product terms (5) and (7)

if we impose code(st1) > code(st2). In a similar way, product terms (2’) and (5’) are consistent

with the original product term (8) if we impose code(st0) > code(st2). The product terms (1’) and

(2’) yield also the face constraints face(st1; st2) and face(st2; st3), meaning that the codes of st1
and st2 (st2 and st3) span a face of a cube, to which the code of no other state can be assigned. The

previous face and dominance constraints together allow to represent the four original transitions (1),

(2), (3), (4) by two product terms (1’) and (2’).

Product term (3’) is equivalent to the original transitions (5) and (6) and yields the face

constraint face(st2; st3). This saving is due to a pure input encoding join effect.

Finally the product terms (6’), (7’) represent the original transitions (9), (10) and (11).

The next state of (11) is st0, that does not appear in (6’) and (7’). But, if we impose the disjunctive

constraint code(st0) = code(st1) _ code(st3), i.e., we force the code of st0 to be the bit-wiseor of the codes of st1 and st3, we can redistribute the transition (11) between the product terms

(6’) and (7’). The product terms (6’) and (7’) yield also the face constraints face(st1; st0) and

76 CHAPTER 5. SYMBOLIC MINIMIZATION

(1”) -0 0- 00 11

(2”) 0- -0 00 00

(3”) 10 -0 01 11

(4”) 00 01 01 - -

(5”) 01 10 11 00

(6”) 11 -1 01 10

(7”) 11 1- 10 01

Figure 5.2: Encoded cover of FSM-2face(st0; st3); together with the previous disjunctive constraint they allow the redistribution of

transition (11).

We point out that if we perform a simple MV minimization on the original description we

save only one product term, by the join effect taking place in transition (3’).

An encoding satisfying all constraints can be found and the minimum code length is two.

A solution is given by st0 = 11; st1 = 01; st2 = 00; st3 = 10. If we replace the states by the

codes in the minimized symbolic cover, we obtain an equivalent Boolean representation that can be

implemented with a PLA, as shown in Figure 5.2. Note that we replace the groups of states in the

present state field with the unique face assigned to them and that product term (2”) is not needed,

because it asserts only zero outputs. Therefore the final cover has only six product terms.

5.2.3 Completness of Encoding Constraints

An important question is whether the constraints described earlier are sufficient to explore

the space of all encodings. More precisely, the question is: find the class of encoding constraints

such that by exploring all of them one is guaranteed to produce a minimum encoded implementation.

Of course exploring all the encoding constraints of a given class may be impractical, but if the answer

to the previous question is affirmative, one has characterized a complete class that can lead in line-

of-principle to an optimal solution. This would make more attractive an heuristic that explores the

codes satisfying the constraints of such a class.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 77

Theorem 5.2.1 Face and disjunctive constraints are sufficient to obtain a minimum two-level im-

plementation of a state-minimized FSM if the minimum implementation has as many hardware states

as there are symbolic states.

Proof: Consider an FSM F . Let the codes that produce a minimum implementation of the

FSM be given, together with the best implementation C (here minimum or best refers to the

smallest cardinality of a two-level cover). Suppose that the product-terms of the minimum encoded

implementation C are all prime implicants. Consider each cube of C. Its present state part will

contain the codes of one or more states and it will translate into a face constraint. Its next state part

will correspond to the code of a symbolic state (using the hypothesis that there are as many hardware

states as symbolic states). Consider now each minterm of the original FSM F . It will be covered in

the input part (proper input and present state) by one or more cubes of C; this will translate into a

disjunctive constraint whose parent is the next state of the minterm and whose children are the next

states of the covering cubes of C.

The face constraints and disjunctive constraints so obtained are necessary for a set of

codes to produce such a minimum implementation, when they are replaced in the original cover and

then the cover is minimized. But are they sufficient ? There may be many sets of codes that satisfy

these constraints. Is any such set sufficient to obtain a minimum cover ? The answer if yes, if after

that the set of codes is replaced in the original FSM, an exact logic minimizer is used. Indeed, if

this set of codes satisfies the encoding constraints, by construction they make possible to represent

the minterms of the original FSM cover by the cubes of the minimum cover C. Therefore an exact

logic minimizer will produce either C or a different cover of the same cardinality as C 1.

Theorem 5.2.2 Face and disjunctive-conjunctive constraints are sufficient to obtain a minimum

two-level implementation of a state-minimized FSM.

Proof: If there are as many hardware states as there are symbolic states the previous result applies.

If the best implementation has more hardware states than symbolic states, one must introduce

disjunctive-conjunctive constraints. The reason is that it is not anymore always true that the next

state of a cube c 2 C corresponds to the code of a symbolic state. Suppose that the next state of

a cube c is not the code of a symbolic state. c cannot be a minterm in the input part, otherwise,

since we suppose that C contains only prime implicants, the next state of cmust be exactly the code

1The hypothesis that the FSM is state-minimized guarantees that the minimum implementation does not have fewer
hardware states than there are symbolic states.

78 CHAPTER 5. SYMBOLIC MINIMIZATION

of the state of the symbolic minterm in F to which c corresponds. So c must contain more than

one minterm in the input part, say w.l.o.g. that c contains exactly two minterms m1 and m2, each

corresponding to a symbolic minterm of the care set of F . If the symbolic minterms corresponding

in F to c1 and c2 assert next states s1 and s2, the next state of cmust be the intersection of the codes

of s1 and s2 (for sure the next state of c must be dominated by the intersection of the codes of s1

and s2, but we suppose that c is a prime implicant and that it contains exactly mintermsm1 andm2

of the care set, so we can say that the next state of c is exactly the intersection of the codes of s1

and s2).

Therefore for each symbolic minterm ms in F one defines a disjunctive-conjunctive

constraint enforcing that the code of the next state of ms is a disjunction of conjunctions, where

each disjunct is contributed by one of the cubes of C that contain the input part of the minterm

corresponding to ms, and for each such cube cms the conjuncts are the codes of the next states

asserted by all the care set minterms that cms contains. The rest of the reasoning goes as in the

previous theorem.

Disjunctive-conjunctive constraints were introduced for the first time in [39], as the

constraints induced by generalized prime implicants. Our derivation shows that they arise naturally

when one wants to find a complete class of encoding constraints. In our symbolic minimization

algorithm we used as the class of encoding constraints face constraints, dominance constraints and

disjunctive constraints. Dominance constraints are not necessary, but they have been considered

useful in developing an heuristic search strategy. We did not use disjunctive-conjunctive constraints

in the heuristic procedure presented here.

5.3 A New Symbolic Minimization Algorithm

5.3.1 Structure of the Algorithm

In this section a new more powerful paradigm of symbolic minimization is presented. An

intuitive explanation of symbolic minimization as proposed in [91] and enhanced in [147] has been

given in Section 5.2. To help in highlighting the differences of the two schemes, the one in [147] is

summarized in Figure 5.3.

The new scheme of symbolic minimization features the following novelties.� Symbolic oring. Disjunctive constraints are generated corresponding to the case of transi-

tions of the initial cover implicitly expressed by other transitions in the encoded two-level

5.3. A NEW SYMBOLIC MINIMIZATION ALGORITHM 79

1. Input data cover C with q symbolic outputs,

optional binary outputs,

empty acyclic graph G,

and empty cover FinalP

Output is the graph G and the minimal cover FinalP

2. Onk = on-set implicants of k-th output symbol

with the corresponding binary outputs unchanged

3. Repeat Steps 4 through 9 q times

4. i = select a symbol

5. Dci = [Onj ,
for all j for which there is no path from vertex i
to vertex j in G

6. Offi = [Onj ,
for all j for which there is a path from vertex i
to vertex j in G

7. MBi = minimize(Oni; Dci; Offi)
8. Mi = implicants of MBi

that are in the on-set of symbol i

9. G = G[f(j; i) such that Mi intersects OnjgP = P[MBi
10. FinalP = minimize(P)

Figure 5.3: Old Symbolic Minimization Scheme

80 CHAPTER 5. SYMBOLIC MINIMIZATION

representation, because of the oring effects in the output part.� Implementability. Product-terms are accepted in the symbolic cover, only when they yield

satisfiable encoding constraints.� Symbolic reduction. Symbolic minimization is iterated until an implementable cover is

produced. A symbolic reduction procedure guarantees that this always happens.

At last, codes satisfying the given encoding constraints are generated. The accuracy of

the synthesis procedure can be measured by the fact that the cardinality of the symbolic minimized

cover is very close to the cardinality of the original encoded FSM minimized by ESPRESSO [11].

This will be shown in the section of results.

We introduce the following abbreviations useful in the description of the algorithm:� IniCov = (Fc;Dc;Rc) is the initial cover of a 1-hot encoded FSM, where Fc, Dc and Rc
are, respectively, the on-set, dc-set and off-set of the 1-hot encoded FSM.� Ns is the set of next states of a FSM. Fcns , Dcns and Rcns are the set of product-terms

asserting ns, respectively, in Fc, Dc and Rc, 8ns 2 Ns.� Onns, Dcarens and Offns are, respectively, the on-set, dc-set and off-set of next state ns,8ns 2 Ns, Onns.� Onbo, Dcbo and Offbo are, respectively, the on-set, dc-set and off-set of the binary output

functions.� PartCov = (OnCov;DcCov; OffCov) is the cover of a fragment of a 1-hot encoded FSM,

where OnCov, DcCov and OffCov are, respectively, the on-set, dc-set and off-set of the

given fragment.� Consns is the set of input and output constraints yielded by symbolic minimization of Fcns,8ns 2 Ns. The sets Consns are cumulated in Cons.� ExpCovns andRedCovns are, respectively, a maximally expanded and a maximally reduced

minimized cover of Fcns, 8ns 2 Ns. The sets ExpCovns and RedCovns are cumulated,

respectively, in ExpCov and RedCov.

At the each step of the symbolic minimization loop a new next state ns is chosen by

the procedure SelectState, described in Section 5.6. The goal is to determine a small set of

5.3. A NEW SYMBOLIC MINIMIZATION ALGORITHM 81

multiple-valued product-terms that represent the transitions of Fcns. The procedure SymbOring,

described in Section 5.5, determinesOrns, the transitions of Fcns that can be realized by expanding

some product-terms in the current RedCov and choosing the expansions in the interval (RedCov,ExpCov). This expansion operation yields updated encoding constraints (here also disjunctive

constraints are generated) that must be imposed to derive an equivalent two-level implementation.

The rest of Fcns is minimized, putting in its off-set the on-sets of all states selected previously 2.

The minimization is done calling ESPRESSO, without the final make sparse step. This producesExpCovns, a maximally expanded minimized cover. Calling the ESPRESSO procedure mv reduce

onExpCovns producesRedCovns, a maximally reduced minimized cover. The reduced minimized

cover RedCovns yields new encoding constraints Consns.
If it turns out that the constraints in Consns are not compatible with the constraints

already in Cons, a SymbReduce procedure is invoked to redo the minimizations of Fcns and

produce covers that yield encoding constraints compatible with those currently accepted in Cons.
In Section 5.4, where symb reduce is described, it is shown that this always happens, i.e. this

symbolic reduction step always produces an implementable symbolic minimized cover of Fcns.
The compatible constraintsConsns are added toCons and the new accepted coversExpCovns andRedCovns are added, respectively, toExpCov andRedCov. Finally, codes satisfying the encoding

constraints in Cons are found and replaced in the reduced symbolic minimized cover RedCov.

The resulting encoded minimized cover EncRedCov is usually of the same cardinality as the cover

obtained by replacing the codes in the original symboliccover and then minimizing it with ESPRESSO.EncRedCov can be minimized again using ESPRESSO to produce a cover MinEncRedCov, that

rarely has fewer product-terms than EncRedCov. These statements will be supported by results

in the experimental section. To check the correctness of this complex procedure a verification is

made ofMinEncRedCov against EncIniCov. A non-equivalence of them signals an error in the

implementation.

The outlined procedure is shown in Figure 5.4. The routines with initial letter in the lower

case are directly available in ESPRESSO (not necessarily with the same name and syntactical usage),

while the routines with initial letter in the upper case are new and will be described in the following

sections.

Proposition 5.3.1 The algorithm of Figure 5.4 generates an implementable symbolic cover.

Proof: By construction a product term is added to the symbolic cover, only if it carries constraints

2This is not required: one should put only those states that ns covers.

82 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure symbolic(Fc, Dc, Rc) f
do f /* repeat until all next states are selected */

/* Sel is a set of currently selected states */ns = SelectState(Ns � Sel); Sel = Sel [ns
/* Orns are the transitions of Fcns expressed by oring */

(Orns, ExpCov, RedCov, Cons)
= SymbOring(IniCov,ExpCov,RedCov,Cons)

/* OnCov are the transitions to be covered */OnCov = Fcns � Orns
/* add the on-sets of states previously selected to the off-set */OffCov =

Si2Sel�ns Oni
/* add binary output off-set */OffCov = OffCov [Offbo
/* everything else (includingOrns) is in dc-set */DcCov = complement(OnCov,OffCov)

/* invoke espresso with no makesparse */ExpCovns = espresso(OnCov,DcCov,OffCov)RedCovns = mv reduce(ExpCovns,DcCov)Consns = Constraints(IniCov,ExpCovns,RedCovns)
if (ConstraintsCompatible(Cons,Consns) fails)

(ExpCovns,RedCovns,Consns) =

SymbReduce(IniCov,PartCov,ExpCovns,RedCovns,Cons,Consns)ExpCov = ExpCov [ExpCovnsRedCov = RedCov [RedCovnsCons = Cons [Consnsg while (at least one state in Ns� Sel)Codes = EncodeConstraints(Cons)EncRedCov = Encode(RedCov, Codes) /* encode symbolic min. cover */MinEncRedCov = minimize(EncRedCov)EncIniCov = Encode(IniCov, Codes) /* encode initial FSM */MinEncIniCov = minimize(EncIniCov)

if (verify(MinEncRedCov, EncIniCov) fails) ERRORg
Figure 5.4: New Symbolic Minimization Scheme

5.4. SYMBOLIC REDUCTION 83

on the codes that are compatible with the constraints of all the symbolic cubes cumulated up to

then. Therefore one guarantees that the symbolic cover is always implementable at any stage of its

construction.

5.3.2 Slice Minimization and Induced Face and Dominance Constraints

The procedure Constraints computes the face and dominance constraints induced by a

pair of minimized covers (RedCovns; ExpCovns) with respect to the original cover Fc. For each

product-term pexp 2 ExpCovns there is a companion product-term pred 2 RedCovns obtained

from pexp by applying to it the multiple-valued reduce routine of ESPRESSO. For each pair of

product-terms (pred; pexp) 2 (RedCovns; ExpCovns) one gets the implied face constraint by

considering the 1-hot representation of the input part. For each position k in the input part of the

1-hot representation of pred and pexp, opposite bits yield a don’t care in the face constraint and

equal bits yield the common care bit in the face constraint. Face constraints are generated for all

symbolic input variables, including proper symbolic inputs, if any.

Dominance constraints are computed by determining, for each product-term pred 2RedCov, the transitions of the original cover Fc that pred intersects in the input part. The next

states that these transitions assert must cover the next state of pred, for the functionality of the FSM

to be maintained. Notice that currently we compute only the dominance constraints implied by the

product-terms in RedCov. Computing them both for RedCov and ExpCov (as we do in the case

of input face constraints with the notion of don’t care input constraints), would allow to explore a

larger part of the solution space. This is not currently done, because it would make the constraint

satisfaction problem more complex.

Oring constraints are generated only in the SymbOring procedure described in Section 5.5.

In Figure 5.5 the pseudo-code of Constraints is shown.

5.4 Symbolic Reduction

The procedure SymbReduce is invoked to set up a series of new minimizations that produce

an implementable minimized cover of OnCov. This is required when a set of constraints Consns
incompatible with those in Cons are obtained at a certain iteration in the loop of symbolic. When

this happens, it means that we cannot minimize the currentOnCov (with the currentDcCov) in one

shot, because the minimization process would merge multiple-valued product-terms in such a way

84 CHAPTER 5. SYMBOLIC MINIMIZATION

/* face and dominance constraints induced by (RedCovns; ExpCovns) */

Constraints(IniCov,ExpCovns,RedCovns) f
foreach (pair of product-terms (pred; pexp) 2 (RedCovns; ExpCovns)) f

foreach (position k in the 1-hot representation) f
if (I(pred)[k] and I(pexp)[k] are opposite bits) face[k] = dc

else face[k] = I(pred)[k]g
foreach (transition t 2 Fc) f

/* don’t intersect if t and pred assert same next state */

if (t and pred assert different next states) f
if (distance(I(pred),I(t)) = 0) f
create covering constraint (nxst(t) > nxst(pred))ggggg

Figure 5.5: Derivation of face and dominance constraints

5.4. SYMBOLIC REDUCTION 85

that incompatible constraints are generated. Instead we can minimizeOnCov by blocks and control

the allowed companion dc-sets so that only compatible constraints are generated. It is evident that

in the worst-case, if only one transition of OnCov is minimized at a time, with an empty dc-set, we

always obtain implementable product-terms. This is equivalent to perform no minimization at all.

In SymbReduce, the transitions ofOnCov are partitioned into maximal sets of transitions that can be

minimized together. Maximal companion dc-sets are found for each previous on-set of transitions.

The routine SymbReduce is divided in two steps. In the first step, a maximal subset ofConsns is sought that is compatible with Cons. The rationale is that the companion product-terms

of ExpCovns and RedCovns are an acceptable cover for a subset of OnCov. This is done in a

greedy fashion. The constraints of Consns compatible with Cons are saved into AConsTmp. A

new constraint ofConsns is checked for compatibility withCons[AConsTmp. If it is compatible,

it is added to AConsTmp, otherwise the product-term companion to the constraint is deleted from

bothExpCovns andRedCovns. The transitions ofOnCov not covered by the resultingRedCovns
are the new cover that must be minimized in such a way that only implementable multiple-valued

product-terms are found. The transitions ofOnCov covered by the resultingRedCovns are instead

added to the dc-set.

In the second part, the currentOnCov (i.e. the part of the initialOnCov left uncovered by

the previous step) is minimized. The transitions ofOnCov that can be minimized together are saved

intoOnCovTmp. A new transition t ofOnCov is minimized together withOnCovTmp to return

both ExpCovTMp and RedCovTmp. The implied constraints are computed in AConsTmp. If

they are compatible with Cons, t is added to OnCovTmp. In this way one determines sets of

transitions that can be minimized together. The dc-set of each such set of transitions is enlarged in a

similar greedy fashion. The rationale is that one may obtain more expanded resulting product-terms

useful in later stages of the algorithm. Then ExpCovns, RedCovns and Consns are updated,

respectively, with the saved accepted sets ExpCovTmp, RedCovTmp and AConsTmp. This is

iterated until all transitions of OnCov are minimized.

The outlined procedure is shown in Figures 5.6 and 5.7. The routines with initial letter in

the lower case are directly available in ESPRESSO (not necessarily with the same name and syntactic

usage), while the routines with initial letter in the upper case are new.

86 CHAPTER 5. SYMBOLIC MINIMIZATION

/* PartCov is the triple (OnCov,DcCov,OffCov) */

procedure SymbReducePart1(IniCov,PartCov,ExpCovns,RedCovns,Cons,Consns) f
/* choose greedily a maximal subset of compatible constraints */

/* pt(c) is a product-term companion to constraint c */AConsTmp is empty

foreach (constraint c 2 Consns) f
if (ConstraintsCompatible(Cons,AConsTmp,c) succeeds) fAConsTmp = AconsTmp [cg else fExpCovns = ExpCovns � pt(c) /* pt(c) 2 ExpCovns */RedCovns = RedCovns � pt(c) /* pt(c) 2 RedCovns */ggConsns = Consns [AconsTmp

foreach (transition t in OnCov) f
/* if the product-terms in RedCovns cover t */

if (sharp(t, RedCovns) returns empty) fOnCov = OnCov � tDcCov = DcCov + tggg
Figure 5.6: Symbolic reduction - Part1

5.4. SYMBOLIC REDUCTION 87

procedure SymbReducePart2(IniCov,PartCov,ExpCovns,RedCovns,Cons,Consns) f
do f /* piece-wise minimizations of what left in OnCov */OnCovTmp = ;; DcCovTmp = ;

/* choose greedily a maximal on-set */

foreach (transition t in OnCov) fOffCovTmp = complement(OnCovTmp [t, DcCovTmp)

/* invoke espresso with no makesparse */ExpCovTmp = espresso(OnCovTmp [t,DcCovTmp,OffCovTmp)RedCovTmp = mv reduce(ExpCovTmp,DcCovTmp)AConsTmp = Constraints(IniCov, ExpCovTmp, RedCovTmp)

if (ConstraintsCompatible(Cons,AConsTmp) succeeds) fOnCovTmp = OnCovTmp [tOnCov = OnCov � tSaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmpSaveAConsTmp = AConsTmpgg
/* choose greedily a maximal dc-set of previous on-set */

foreach (transition t in DcCov) fOffCovTmp = complement(OnCovTmp, DcCovTmp [t)
/* invoke espresso with no makesparse */ExpCovTmp = espresso(OnCovTmp,DcCovTmp [t,OffCovTmp)RedCovTmp = mv reduce(ExpCovTmp,DcCovTmp)AConsTmp = Constraints(IniCov, ExpCovTmp, RedCovTmp)

if (ConstraintsCompatible(Cons,AConsTmp) succeeds) fDcCovTmp = DcCovTmp [tSaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmpSaveAConsTmp = AConsTmpggConsns = Consns [SaveAConsTmpExpCovns = ExpCovns [SaveExpCovTmp;RedCovns = RedCovns [SaveRedCovTmpg while (at least one transition in OnCov)g
Figure 5.7: Symbolic reduction - Part2

88 CHAPTER 5. SYMBOLIC MINIMIZATION

5.5 Symbolic Oring

In two-level logic minimization of multi-output functions the fact of sharing cubes among

single outputs reduces the cardinality of the cover. When minimizing symbolic logic to obtain

minimal encodable two-level implementations, one should detect the most profitable disjunctive

constraints so that - after encoding - sharing of cubes is maximized. In Section 5.3 an example

was given where oring in the output part accounts for most savings in the minimum cover. In the

symbolic minimization loop presented in Section 5.3, SymbOring is invoked to that purpose.

The goal of the procedure SymbOring is to determine a subset (if it exists) of the transitions

of Fcns that can be realized using the product-terms of the partial minimized symbolic cover(ExpCov;RedCov). If so, that subset is moved from the on-set to the dc-set of the cover to

minimize in the current step. The procedure is heuristic because it handles a transition of Fcns
at a time and it introduces some approximations with respect to an exact computation. For each

transition t of Fcns the following algorithm decides whether t can be realized using or modifying

product-terms in RedCov. Here we present the main features, leaving out minor design choices.

At a certain step of the procedure symbolic a pair of partial covers (ExpCov,RedCov)

is available. For each cube pexp 2 ExpCov there is a companion cube pred 2 RedCov (and

viceversa) such that pred is obtained by pexp by applying to it the multiple-valued reduce routine

of ESPRESSO. A cube pred 2 RedCov potentially useful to espress implicitly t must satisfy the

conditions that its input part (denoted I(pred)) has non-empty intersection with I(t) and the output

part of t (denotedO(t)) covers O(pred). All such cubes are collected in the cover Inter(t). It may

happen that I(pred) does not intersect I(t), but that I(pexp) intersects I(t), because in pred the bit

of the present state of t is lowered, while in pexp it is raised. If so, one may raise temptatively also

the bit in pred to obtain another potentially useful cube that is added to Inter(t). The product-termpred raised in the present state of t is denoted by raised(pred)t 3.

The set OrNstates(Inter(t)) of next states of cubes in Inter(t) is computed. DefineInter(t)S as the set of transitions of Inter(t) with next state included in set S. In order that a

disjunctive effect occurs it is necessary that, for at least two next states s1 and s2, I(t) is covered

both by the union of the input parts of all cubes in Inter(t)s1 and by the union of the input parts of

all cubes in Inter(t)s2. Here covering is meant to be restricted to the next state function assumed

3In the current implementation p is not added to Inter(t) if I(p) is covered by the input part of another cube already
in Inter(t). The rationale is that product-terms whith a more expanded input part are preferred, because they are more
likely to cover other transitions in the future. An exact algorithm should define the notion of don’t-care intersecting
product-terms, if one knows how to handle conditional dominance constraints.

5.5. SYMBOLIC ORING 89

as a single output. Suppose that OrNstates has at least two elements. We determine the statess of OrNstates such that the union of the input parts of the cubes in Inter(t)s covers I(t), and

discard the others. Moreover, in order that a disjunctive effect occurs it is necessary that, for all

binary output functions, I(t) is covered by the union of the input parts of all cubes in Inter(t). If

all previous tests are not satisfied, the attempt of expressing t by symbolic oring fails.

If the previous necessary conditions are satisfied, all subsets of elements in the setOrNstates are computed in Subset(OrNstates). Each such subset, denoted by or, is an or-

ing pattern potentially useful to espress implicitly the transition t. For each oring pattern or, the

procedure OringCover returnsOrCov(t), a subset of transitions of Inter(t)or[� (it means Inter(t)
restricted to next states in or or empty next state) that cover t, both in the next state output space

and in the binary output spaces. Notice that OringCover may fail to find a cover even if it exists,

because while the input space of the binary output functions can be covered by considering the

whole Inter(t), only a subset of it (Inter(t)or[�) is considered by OringCover. Notice also that

there may be many possible such covers, but only one is found. This may penalize the quality of

the final results, because the computed cover may yield uncompatible constraints, while there is

another cover that yields compatible constraints. We do not give the details of OringCover, that is

based on a greedy strategy.

If a cover OrCov(t) is found, one considers the modified partial minimized coverRedCovTmp, obtained from RedCov by raising the present state bits according to what done

in the generation of Inter(t). Then the constraints implied by the modified cover are derived and

checked for compatibility with the oring constraint or (since some product-terms of RedCov have

been raised in the present state, there are raised face constraints and by consequence dominance

constraints must be recomputed). If the answer is positive, the transition t is implementable by oring

and bothRedCov andCons are updated. Otherwise a new oring pattern from Subset(OrNstates)
is considered. When they have been all exhausted, a new transition of Fcns is taken into consider-

ation. 4.

The outlined procedure is shown in Figures 5.8. The routines with initial letter in the

lower case are directly available in ESPRESSO (not necessarily with the same name and syntactic

usage), while the routines with initial letter in the upper case are new.

4A better alternative would be to check for constraints compatibility while building OrCov(t): do not add a new
product-term to the subset ofOrCov(t) currently accepted, if together with it, it yields infeasible constraints .

90 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure SymbOring(IniCov,ExpCov,RedCov,Cons) f
foreach (transition t 2 Fcns) f

foreach (pair of product-terms (pred; pexp) 2 (RedCov;ExpCov)) f
if (I(pred) \ I(t) non-empty and O(t) � O(pred)) fInter(t) = Inter(t) [predg else f

if (I(pexp) \ I(t) non-empty and O(t) � O(pexp)) fInter(t) = Inter(t) [raised(pred)tggg
compute OrNstates(Inter(t))
if (at least two states in OrNstates) f

foreach (next state s 2 OrNstates)
if (
Sp2Inter(t)s I(p) 6� I(t)) OrNstates = OrNstates � s

foreach (binary output function)

if (
Sp2Inter(t) I(p) 6� I(t)) OrNstates emptyg

if (at least two states in OrNstates) f
generate Subset(OrNstates)
foreach (element or of Subset) fOrCov(t) = OringCover(Inter(t)or[�,t,ExpCov,RedCov)

if (OrCov(t) is not empty) fRedCovTmp = Raise(RedCov,Inter(t),t)ConsTmp = Constraints(IniCov,ExpCov,RedCovTmp)

if (ConstraintsCompatible(ConsTmp,or) succeeds) fOrns = Orns [tRedCov = RedCovTmpCons = ConsTmp [or
goto outer foreach loopgggggg

Figure 5.8: Symbolic oring

5.6. ORDERING OF SYMBOLIC MINIMIZATION 91

5.6 Ordering of Symbolic Minimization

In the procedure symbolic described in Section 5.3, at each cycle of the symbolic mini-

mization loop, states are partitioned in two sets: those selected in previous iterations (Sel) and those

still unselected (Ns� Sel). At the start of a new cycle, a new state ns is selected by the procedure

SelectState from Ns� Sel and the state partition is updated.

The transitions of the FSM are partitioned, accordingly, in the transitions asserting the

states in Sel and already minimized and the transitions asserting the states inNs� Sel and not yet

minimized. We observe the following facts:

1. When a new state ns is selected, the transitions asserting it cannot be used later to minimize

the transitions asserting states in Ns � Sel � ns. Therefore if one measures how much an

unselected state can help in minimizing the other unselected states by dominance (DomGain),

the state of minimum gain should be selected first.

2. When a new state ns is selected, the transitions asserting it cannot be espressed later using

the transitions asserting states in Ns � Sel � ns. Therefore if one measures how much

the minimization of an unselected state is helped by the other unselected states by oring

(OrGain), the state of minimum gain should be selected first.

Summarizing, the problem of the best selection of a new state can be reduced to one of

measuring the dominance and oring gains and then choosing the state that minimizes their sum

(TotGain = DomGain+ OrGain).

As an example, consider thatNs = st0; st1; st2; st3; st4; st5; st6. Suppose that currentlyst0, st5, st6 have been already selected and that a new state must be chosen among st1, st2, st3,st4, by computing their gain and choosing the minimum. We have devised two slightly different

schemes for computing the gain of a state. In the first scheme, the gain of a state, for instance st1,

can be computed by setting up a minimization as shown in Figure 5.9 (in the figure the covers are

shown for the next state functions asserted by the unselected states). After the minimization, the

difference in cardinality between the resulting and original covers gives one component of the gain,DomGain (associated to the dominance constraints: st1 > st2, st1 > st3, st1 > st4). The second

component of the gain, OrGain (associated to the disjunctive constraints: st1 = st2 _ st3 _ st4,st1 = st2 _ st3, st1 = st2 _ st4, st1 = st3 _ st4), is found by computing, for each transition

asserting st1, whether its input part is covered by the input parts of the transitions asserting at least

two other unselected states, for the related next state functions and all binary output functions.

92 CHAPTER 5. SYMBOLIC MINIMIZATION

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

OffCov:

on-set of st2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of st0 0011100

on-set of st5 0011100

on-set of st6 0011100

DcCov:

on-set of st1 0011100

Figure 5.9: First scheme to compute the gain

In the second scheme, the gain of a state can be computed by setting up a minimization as

shown in Figure 5.10 (referring again to st1 in the previous example). After the minimization, the

difference in cardinality between the resulting and original covers gives the overall gain TotGain,

inclusive of both the dominance and disjunctive components.

The pseudo-code in Figure 5.11 shows the first scheme to compute the gain. The sec-

ond one is simpler, since it does not include explicitly the covering check to measure the oring

contribution (that is implicitly taken into account by the minimization process) and it is not shown

here.

5.7 Satisfaction of Encoding Constraints

The described procedures require algorithms to check satisfiability of a set of face, dom-

inance and disjunctive constraints, and to find minimum codes that satisfy them. We used the

algorithms reported in [116], to which we refer for a complete description. They are based on

the notion of encoding dichotomies that are candidate encoding columns. The notion of encoding

dichotomy was pioneered in [143] and the connection with satisfaction of face constraints was

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 93

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

on-set of st1 0011100

OffCov:

on-set of st2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of st0 0011100

on-set of st5 0011100

on-set of st6 0011100

Figure 5.10: Second scheme to compute the gain

established in [154]. Other contributions on the subject can be found in [126, 20] and more recently

in [44, 45].

5.8 Symbolic Minimization by Example

In this section we clarify with an example the mechanics by which the oring effects plays

an important role in the minimization of symbolic logic. Then we demonstrate our algorithm for

symbolic minimization on a simple example.

5.8.1 The Oring Effect in Two-level Logic

In two-level logic minimization of multi-output functions the fact of sharing cubes among

single outputs reduces the cardinality of the cover. As an example, consider the following cover of

a logic function of four input and four output variables:

1000 0100
0100 0001
1100 0101
0001 1000
1001 1100

94 CHAPTER 5. SYMBOLIC MINIMIZATION

procedure SelectState(UnSel) f
foreach (state st 2 UnSel) fgain(st) = ComputeGain(st,UnSel)gsel = st 2 UnSel with minimum gain(st)g

procedure ComputeGain(IniCov,st,UnSel) f
/* measure potential gains by dominance */OnCov =

Si2(UnSel�st) FciOldCard = #(OnCov)
foreach (state j 2 UnSel� st)OffCovj =

Si2UnSel�j�st Oni [Si2Ns�UnSelOniOffCov = (Sj2UnSel�stOffCovj) [OffboDcCov = complement(OnCov,OffCov)

/* invoke espresso with no makesparse */OnCov = espresso(OnCov,,DcCov,OffCov)DomGain = OldCard� #(OnCov)
/* measure potential gains by oring */

foreach (transition t 2 Fcst) f
foreach (state i 2 UnSel� st) fOnCovi = product-terms of OnCov asserting next state i

if (I(t) � I(OnCovi) for next state and binary output functions) f
increment OrCount
if (OrCount > 1) f /* t can be expressed by oring */

increment OrGain
goto outer foreach loopggggTotGain = DomGain+ OrGaing

Figure 5.11: Ordering of symbolic minimization

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 95

0101 1001
1101 1101
0010 0010
1010 0110
0110 0011
1110 0111
0011 1010
1011 1110
0111 1011
1111 1111

and an equivalent minimum cover, as found by ESPRESSO:

---1 1000
1--- 0100
--1- 0010
-1-- 0001.

Consider the product term 1001 1100 that appears in the original cover. In the minimum

cover, when the input cube 1001 is true, the first two product terms of the minimum cover are

excited and the output part 1100 is asserted. Therefore the product term 1001 1100 is implemented

by means of the product terms � � �1 1000 and 1 � � � 0100. Notice that two product terms

must be in any cover to realize the following product terms of the original cover 1000 0100 and

0001 1000. Therefore a net saving of one product term (the one needed to realize 1001 1100) has

been achieved in the minimum cover. We say that the product term 1001 1100 has been realized by

oring or disjunctive effect (due to the semantics of the output part of a two-level implementation)

or that it has been redistributed through the two product terms � � �1 1000 and 1 � � � 0100.

The oring effect accounts for most savings in the minimum cover of this example.

5.8.2 A Worked-out Example of Symbolic Minimization

This subsection contains an example of symbolic minimization. The example is shiftreg

from the MCNC suite. The symbolic cover of shiftreg, using the syntax of ESPRESSO, is:

.mv 4 1 -8 -8 1

.type fr

.kiss
0 st0 st0 0
1 st0 st4 0
0 st1 st0 1
1 st1 st4 1

96 CHAPTER 5. SYMBOLIC MINIMIZATION

0 st2 st1 0
1 st2 st5 0
0 st3 st1 1
1 st3 st5 1
0 st4 st2 0
1 st4 st6 0
0 st5 st2 1
1 st5 st6 1
0 st6 st3 0
1 st6 st7 0
0 st7 st3 1
1 st7 st7 1

Suppose that the ordering routine returned st0; st4; st1; st2; st5; st3; st6; st7 as the order in which

the slices of next states must be minimized. Let each position in the 1-hot encoded notation

correspond respectively to the states st0; st4; st1; st2; st5; st3; st6; st7. For instance 10000000

represents st0, while 01000000 represents st4. Slices including all the transitions that have the

same next state are minimized in the given order. The result of each minimization is a set of

symbolic cubes which realize the slice. A dc-set as specified by the theory is provided in each

minimization. If terms of the dc-set having a different next state are used in a minimization, then

covering constraints are introduced, together with companion face constraints (face constraints not

related to output constraints can be introduced also, when transitions having the same next state

are merged). Before each minimization, the algorithm figures out whether some transitions of the

given slice can be realized by symbolic cubes already in the partial minimized symbolic cover,

when a satisfiable oring constraint is imposed. Only the remaining transitions are kept in the onset

of the slice under minimization. Whenever symbolic cubes that impose constraints on the codes

are added to the cover, their consistency with respect to the constraints cumulated up to then is

verified. As long as the consistency verification fails, different symbolic cubes are tried; eventually

an encodeable symbolic cover is constructed. At the end codes of minimum code-length that satisfy

the constraints are found and the codes are replaced in the symbolic cover and in the original FSM

(it is not necessary, but convenient to do both, because don’t cares can be used differently, producing

covers not of the same cardinality). A final step of two-valued minimization produces a minimal

encoded FSM.� Minimization of the slice of next state st0.

The onset is:

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 97

0 10000000 100000000
0 00100000 100000001

The dcset is:

1 11000000 100000000
- 01010010 100000000
1 00100000 111111111
- 00001101 111111111
- 11111111 011111110

The minimized expanded cover is:

- 11111111 111111110
- 00101101 111111111

The minimized reduced cover is:

- 11111111 100000000
- 00100000 000000001

The constraints code(st4) > code(st0), code(st1) > code(st0), code(st2) > code(st0),code(st5) > code(st0), code(st3) > code(st0), code(st6) > code(st0) and code(st7) >code(st0) are introduced. The companion face constraints are trivial.� Minimization of the slice of next state st4.

The onset is:

1 10000000 010000000
1 00100000 010000001

The dcset is:

- 01010010 010000000
0 00100000 000000001
- 00001101 111111111
- 11111111 101111110

The minimized expanded cover is:

- 00101101 101111111
1 11111111 111111110

98 CHAPTER 5. SYMBOLIC MINIMIZATION

The minimized reduced cover is:

- 00100000 000000001
1 11111111 010000000

The constraints code(st5) > code(st4), code(st6) > code(st4) and code(st7) > code(st4)
are introduced. The companion face constraints are trivial.� Minimization of the slice of next state st1.

The onset is:

0 00010000 001000000
0 00000100 001000001

The dcset is:

- 01000010 001000000
- 00100000 000000001
1 00010110 001000000
1 00000100 111111111
- 00001001 111111111
- 11111111 110111110

The minimized expanded cover is:

- 00101101 110111111
- 01011111 111111110

The minimized reduced cover is:

- 00000100 000000001
- 00010100 001000000

The constraints code(st5) > code(st1) and face(st2; st3) are introduced.� Minimization of the slice of next state st2.

The onset is:

onset
0 01000000 000100000
0 00001000 000100001

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 99

The dcset is:

1 01011110 000100000
- 00100100 000000001
1 00001100 111111111
- 00000010 000100000
- 00000001 111111111
- 11111111 111011110

The minimized expanded cover is:

- 00101101 111011111
- 01001011 111111110

The minimized reduced cover is:

- 00001000 000000001
- 01001000 000100000

The constraints code(st6) > code(st2) and face(st4; st5) are introduced.� Minimization of the slice of next state st5.

The transitions of this slice are realized by oring symbolic cubes previously added to the

cover, if one introduces the constraint code(st5) = code(st4)_ code(st1).� Minimization of the slice of next state st3.

One of the two transitions of this slice is realized by oring symbolic cubes previously added

to the cover, if one introduces the constraint code(st3) = code(st1) _ code(st2). Consider

the remaining transition.

The onset is:

0 00000001 000001001

The dcset is:

1 01000011 000001000
- 00101100 000000001
1 00001001 111111111
- 00000010 000001000
- 11111111 111110110

The minimized expanded cover is:

100 CHAPTER 5. SYMBOLIC MINIMIZATION

- 00000001 111111111

The minimized reduced cover is:

- 00000001 000001001

The constraint code(st7) > code(st3) is introduced.� Minimization of the slice of next state st6.

The transitions of this slice are realized by oring symbolic cubes previously added to the

cover, if one introduces the constraint code(st6) = code(st4)_ code(st2).� Minimization of the slice of next state st7.

One of the two transitions of this slice is realized by oring symbolic cubes previously added

to the cover, if one introduces the constraint code(st7) = code(st4)_code(st1)_code(st2).
Consider the remaining transition.

The onset is:

onset
1 00000010 000000010

The dcset is:

- 00101101 000000001
1 00000001 111111111
- 11111111 111111100

The minimized expanded cover is:

1 00000011 111111110

The minimized reduced cover is:

1 00000010 000000010

No other constraint is introduced.� Minimization of the slice of the proper binary outputs.

The onset is:

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 101

- 00101101 000000001
- 00100000 000000001
- 00000100 000000001
- 00001000 000000001

The dcset is:

- 11111111 111111110

The minimized expanded cover is:

- 00101101 111111111

The minimized reduced cover is:

- 00101101 000000001

The constraint face(st1; st5; st3; st7) is introduced.� The final symbolic cover is:

- 11111111 100000000
1 11111111 010000000
- 00010111 001000000
- 01001011 000100000
- 00000001 000001001
1 00000010 000000010
- 00101101 000000001

Codes of the states that satisfy the previous constraints are: code(st0) = 000, code(st4) =
010, code(st1) = 100, code(st2) = 001, code(st5) = 110, code(st3) = 101, code(st6) =
011, code(st7) = 111. The minimized encoded symbolic cover is:

---1 1000
1--- 0100
--1- 0010
-1-- 0001

The minimized encoded FSM is:

---1 1000
1--- 0100
--1- 0010
-1-- 0001

102 CHAPTER 5. SYMBOLIC MINIMIZATION

5.9 Experimental Results

The algorithms described have been implemented in a program, called ESP SA, that is

built on top of ESPRESSO. We report one set of experiments that compare the results of performing

state assignments of FSM’s with ESP SA and NOVA, a state-of-art tool. The FSM’s come from the

MCNC suite and other benchmarks. The experiments were run on a DEC 3100 work-station. Our

program ESP SA uses a library of routines described in [116] to check encodeability of constraints

and produce minimum-length codes that satisfy them. Table 5.1 shows the statistics of the FSM’s

used. The statistics include the number of states, proper inputs and proper outputs, together with

the number of symbolic produc-terms ("#cubes") of the original FSM description, the cardinality

of a minimized 1-hot encoded cover of the FSM ("#1-hot") and the number of bits for an encoding

of minimum length ("#bits").

In Table 5.2, data are reported for runs of ESP SA with three different ordering options

("ord1", "ord2", "ord2n"). For each run, "#scubes" indicates the number of cubes of the cover of

symboliccubes obtained by ESP SA, after encoding with the codes found by ESP SA and minimization

with ESPRESSO; "#cubes" indicates the number of cubes after encoding the original cover with the

codes found by ESP SA and minimization with ESPRESSO; "#bits" indicates the length of the codes

found by ESP SA.

In Table 5.3, some data related to the best of the three previous runs are reported. Under

"cover", "#incomp" gives the number of pairwise incompatibilities in the final step of computing

codes the satisfy the encoding constraints, and "size" gives the number of prime dichotomies.

Under "calls", "#esp" gives the number of calls to ESPRESSO and "#check" gives the number of

encodeability checks. Under "CPU times(sec.)", "order" gives the time in seconds for the ordering

routine, "symb" gives the time for symbolic minimization, not including the time spent by the

encodeability routines that is reported under "constr(enc)" ("enc" is the time spent for finding the

codes satisfying the constraints at the end), while "total" sums up all the contributions.

Table 5.4 compares the results of ESP SA with those of NOVA, a state-of-art state assignment

tool, providing the number of cubes of the minimized encoded FSM ("#cubes") and the code-length

("#bits"). Of the results by NOVA, it is reported the one the minimizes the final cover cardinality

(under the heading "NOVA(min.#cubes)") and the one that minimizes the final cover cardinality, if

the code-length is kept to the minimum one, i e. to the logarithm of the number of states (under the

heading "NOVA(min.#bits)").

5.9. EXPERIMENTAL RESULTS 103

example #states #inputs #outputs #cubes #1-hot #bits
bbara 10 4 2 60 34 4
bbsse 16 7 7 56 30 4
bbtas 6 2 2 24 16 3
beecount 7 3 4 28 12 3
cse 16 7 7 91 55 4
dk14 7 3 5 56 25 3
dk15 4 3 5 32 17 2
dk17 8 2 3 32 20 3
dk27 7 1 2 14 10 3
dk512 15 1 3 30 21 4
donfile 24 2 1 96 24 5
ex1 20 9 19 138 44 5
ex2 19 2 2 72 38 5
ex3 10 2 2 36 21 4
ex4 14 6 9 21 21 4
ex5 9 2 2 32 19 4
ex6 8 5 8 34 23 3
ex7 10 2 2 36 20 4
keyb 19 7 2 179 77 5
kirkman 16 12 6 370 61 4
lion9 9 2 1 25 10 4
maincont 16 11 4 40 27 4
mark1 15 5 16 22 19 4
master 15 23 31 86 79 4
modulo12 12 1 1 24 24 4
opus 10 5 6 22 19 4
ricks 13 10 23 51 33 4
s1 20 8 6 107 92 5
s1a 20 8 6 107 92 5
s8 5 4 1 20 14 3
saucier 20 9 9 32 30 5
scud 8 7 6 127 8 3
shiftreg 8 1 1 16 9 3
slave 10 16 29 75 46 4
train11 11 2 1 25 11 4

Table 5.1: Statistics of FSM’s

104 CHAPTER 5. SYMBOLIC MINIMIZATION

example ord1 ord2 ord2n
#scubes #cubes #bits #scubes #cubes #bits #scubes #cubes #bits

bbara 27 27 5 31 28 6 24 23 5
bbsse 31 31 6 26 26 7 24 24 8
bbtas 10 9 3 10 10 4 11 11 4
beecount 10 10 4 12 12 6 10 10 4
cse 58 55 7 42 42 5 42 42 5
dk14 26 27 4 27 27 4 26 26 4
dk15 17 17 4 17 17 4 17 17 4
dk17 19 17 5 19 17 5 19 19 6
dk27 7 7 5 9 8 5 7 7 5
dk512 19 18 7 18 16 9 15 15 8
donfile 26 25 12 25 25 13 26 25 12
ex1 37 36 9 42 40 9 42 40 9
ex2 34 35 10 36 32 12 30 31 9
ex3 20 18 6 21 18 7 17 17 6
ex4 14 14 5 15 15 5 14 14 5
ex5 17 16 9 18 18 6 14 13 4
ex6 25 25 4 26 25 4 26 25 4
ex7 20 20 8 20 18 4 15 15 5
keyb 75 65 9 45 46 6 47 47 5
kirkman 102 74 11 54 53 10 55 54 9
lion9 8 7 6 9 8 5 9 8 6
maincont 12 12 8 14 14 7 13 13 9
mark1 17 18 6 17 17 6 17 17 6
master 69 68 5 70 68 5 70 69 5
modulo12 22 22 11 20 20 10 22 22 11
opus 15 15 4 15 15 4 15 15 4
ricks 29 29 4 30 30 4 30 30 4
s1 62 59 6 49 44 7 49 44 7
s1a 62 61 11 61 61 13 60 60 9
s8 11 9 4 11 10 4 11 10 4
saucier 24 23 6 25 24 8 22 22 6
scud 70 63 7 68 65 8 68 65 8
shiftreg 4 4 3 4 4 3 4 4 3
slave 39 39 5 35 35 4 35 35 4
train11 10 9 5 13 12 6 10 9 5

Table 5.2: Results of ESP SA with different ordering heuristics

5.9. EXPERIMENTAL RESULTS 105

example cover calls CPU times (sec.)
#incomp size #esp #check order symb constr(enc) total

bbara 38 8 96 173 7.4 12.9 0.6(0.1) 20.8
bbsse 458 168 155 46 41.6 10.4 4.3(0.8) 56.4
bbtas 9 4 30 80 1.0 0.9 0.2(0.0) 2.1
beecount 104 15 66 55 2.5 1.7 0.3(0.0) 4.5
cse 1170 629 155 80 99.9 45.6 19.6(7.9) 145.1
dk14 316 186 38 29 7.1 2.3 1.9(0.5) 11.3
dk15 256 238 17 19 1.8 0.4 1.2(0.5) 3.4
dk17 30 14 47 24 5.1 1.4 0.7(0.0) 7.2
dk27 1 2 38 30 0.9 0.6 0.1(0.0) 1.7
dk512 1 2 138 140 11.1 32.7 2.8(0.0) 46.6
donfile 17929 2701 432 1254 98.9 2044.0 143.4(117.1) 2286.3
ex1 2282 815 410 542 794.8 759.0 39.0(10.8) 1592.7
ex2 3934 826 212 1161 37.3 1493.7 28.2(21.4) 1559.2
ex3 148 14 68 52 3.4 3.7 0.7(0.1) 7.8
ex4 1048 359 122 22 15.9 5.0 3.5(2.8) 24.4
ex5 285 27 57 46 3.1 2.7 0.4(0.1) 6.2
ex6 219 16 47 29 8.8 1.7 0.9(0.1) 11.4
ex7 352 34 68 43 6.5 3.4 0.8(0.2) 10.7
keyb 967 1094 212 71 129.9 76.7 32.3(27.6) 239.0
kirkman 716 84 155 1164 1385.8 1187.5 172.8(3.6) 2746.1
lion9 26 7 86 75 5.4 2.6 0.4(0.0) 8.4
maincont 363 55 194 196 34.5 48.6 2.5(0.5) 85.5
mark1 443 112 247 155 44.7 42.8 2.1(0.8) 89.5
master 281 300 327 315 271.0 240.5 18.6(3.0) 530.1
modulo12 45 10 93 2358 4.8 227.2 1.3(0.2) 233.3
opus 312 151 68 18 6.4 1.7 0.9(0.6) 9.0
ricks 353 408 107 60 53.4 19.3 7.7(3.9) 80.4
s1 969 288 233 92 253.1 126.9 10.9(4.8) 390.9
s1a 225 67 317 639 151.3 661.8 13.0(2.8) 826.1
s8 6 4 46 103 1.7 1.3 0.3(0.0) 3.4
saucier 1401 3340 256 124 45.0 99.1 157.2(156.2) 301.3
scud 70 11 457 1011 59.4 228.9 12.3(0.3) 300.5
shiftreg 3 3 47 54 1.3 1.0 0.1(0.0) 2.5
slave 229 132 68 41 39.1 8.2 3.8(0.5) 51.1
train11 156 23 105 86 9.5 5.2 0.4(0.1) 15.1

Table 5.3: Measured parameters of ESP SA

106 CHAPTER 5. SYMBOLIC MINIMIZATION

example ESP SA NOVA(min.#cubes) NOVA(min.#bits)
#cubes #bits #cubes #bits #cubes #bits

bbara 23 5 24 4 24 4
bbsse 24 8 27 5 29 4
bbtas 9 3 8 3 8 3
beecount 10 4 10 3 10 3
cse 42 5 44 5 45 4
dk14 26 4 22 4 25 3
dk15 17 4 16 3 17 2
dk17 17 5 17 4 17 3
dk27 7 5 7 3 7 3
dk512 15 8 17 4 17 4
donfile 25 12 24 14 28 5
ex1 36 9 37 6 44 5
ex2 31 9 26 6 27 5
ex3 17 6 17 4 17 4
ex4 14 5 14 4 14 4
ex5 13 4 14 4 14 4
ex6 25 4 23 4 25 3
ex7 15 5 15 4 15 4
keyb 46 6 47 6 48 5
kirkman 53 10 52 6 77 4
lion9 7 6 8 4 8 4
maincont 12 8 16 4 16 4
mark1 17 6 17 4 17 4
master 68 5 71 4 71 4
modulo12 20 10 11 4 11 4
opus 15 4 15 4 15 4
ricks 29 4 39 4 30 4
s1 44 7 63 5 63 5
s1a 60 9 65 5 65 5
s8 9 4 9 3 9 3
saucier 22 6 25 5 25 5
scud 63 7 60 5 62 3
shiftreg 4 3 4 3 4 3
slave 35 4 35 4 35 4
train11 9 5 9 4 9 4

Table 5.4: Comparison of FSM’s encodings for two-level implementation

5.10. CONCLUSIONS 107

5.10 Conclusions

We have presented a symbolic minimization procedure that advances theory and practice

with respect to the seminal contribution in [91]. The algorithm described here is capable of exploring

minimal symbolic covers by using face, dominance and disjunctive constraints to guarantee that

they can be mapped into encoded covers. The treatment of disjunctive constraints is a novelty

of this work. Conditions on the completness of sets of encoding constraints and a bridge to

disjunctive-conjunctive constraints (presented in [39]) are given.

A key feature of the algorithm is that it keeps as invariant the property that the minimal

symbolic cover under construction is encodeable, by means of efficient procedures that check

encodeability of the encoding constraints induced by a candidate cover. Therefore this synthesis

procedure has predictive power that precedent tools lacked, i.e. the cardinality of the cover obtained

by symbolic minimization and of the cover obtained by replacing the codes in the initial cover

and then minimizing with ESPRESSO are very close. Experiments show cases where our procedure

improves on the best results of state-of-art tools.

A direction of future investigation is to explore more at large the solution space of symbolic

covers by escaping from local minima using some iterated expansion and reduction scheme, as it

is done in ESPRESSO. Currently the algorithm builds a minimal symbolic cover, exploring basically

a neighborhood of the original FSM cover. Another issue requiring more investigation is how

to predict somehow the final code-length while building a minimal symbolic cover, to trade-off

product-terms vs. encoding length.

108 CHAPTER 5. SYMBOLIC MINIMIZATION

109

Chapter 6

Encoding Constraints

6.1 Introduction

The various techniques for exact and heuristic encoding based on multiple-valued or

symbolic minimization of two-level and multi-level logic, reported in [92, 91, 115, 39, 85, 18],

produce various types of encoding constraints. By encoding constraints we mean requirements on

the codes to be assigned to the symbols.

A first type are face-embedding constraints generated by the multiple-valued input vari-

ables (input constraints). These constraints specify that a set of symbols is to be assigned to one face

of a binary n-dimensional cube, without any other symbol sharing the same face. Given symbolsa; b; c; d; e, an input constraint involving symbols a; b and c is denoted by (a; b; c). An encoding

satisfying (a; b; c) is given by a = 111; b = 011; c = 001. Vertex 101 cannot be assigned to any

other symbol.

Two other types are dominance and disjunctive constraints generated by the multiple-

valued output variables (output constraints). A dominance constraint, denoted by >, e.g., a > b
requires that the code of a symbol bit-wise covers the code of another symbol. A disjunctive

constraint specifies that the code of a symbol (the parent symbol) is the bit-wise disjunction,

denoted by _, e.g., a = b_ c, of the codes of two or more other symbols (the children symbols).

The minimization procedure described in [39] produces disjunctive-conjunctive con-

straints. They require that the code of a symbol is the bit-wise disjunction (denoted by _)

of the conjunctions, denoted by ^), of the codes of two or more symbols. An example is:(a ^ b ^ c) _ (a ^ d ^ e) _ (a ^ f ^ g) = a. An in-depth discussion of disjunctive-conjunctive

constraints is postponed to the chapter on encodeability of generalized prime implicants.

110 CHAPTER 6. ENCODING CONSTRAINTS

An example containing input, dominance and disjunctive constraints is: (b; c), (c; d),(b; a), (a; d), b > c, a > c, a = b _ d. An encoding satisfying all constraints with minimum code

length of two is a = 11; b = 01; c = 00; d = 10.

In this chapter, we focus on the following problems. Given a set of encoding constraints:

P-1: Determine whether the constraints are satisfiable.

P-2: Determine the binary codes that use a minimum number of bits and satisfy all the constraints.

P-3: Using a fixed number of code bits, minimize a cost function of the constraints that are not

satisfiable.

Previous work on encoding constraint satisfaction has dealt mostly, but not exclusively,

with input constraints. Exact algorithms and efficient heuristics (restricted to input and dominance

constraints) for solving problems P-2 and P-3 are reported in [147]. An approximate solution to P-3

for input constraints based on a theory of intersecting cubes is described in [126, 43] and a solution

based on simulated annealing is reported in [81]. An exact solution to P-2 for input constraints

based on the notion of prime sections is described in [44, 45]. This approach seems very promising

because of the claim that prime sections are fewer than prime dichotomies, the latter being the

building blocks of encodings in the theory that we are going to use in this chapter. An approximate

solution to P-2 and P-3 for input constraints based on a greedy strategy to find an encoding bit by

bit and on an iterative method to improve the obtained solution is reported in [129]. The answer

to Problem P-1 is always affirmative for input constraints only. A solution to P-1 and a heuristic

algorithm to solve P-3 when both input and output dominance constraints occur are provided in [91],

extending an algorithm for input constraints described in [92]. A solution to P-1, when both input

and output constraints (including disjunctive constraints) are present, is described in [39], and

corrected in [38]. A solution to problem P-2 based on compatible graph coloring is provided for

input constraints in [154] and extended to output constraints in [20]. To date, to the best of our

knowledge, no efficient algorithms exist for solving all three problems when all types of constraints

occur. In most previous contributions, techniques to generate constraints and to satisfy them were

intermixed. Instead, we concentrate only on the problem of satisfying encoding constraints.

We propose a framework and efficient algorithms to solve P-1, P-2 and P-3 for input and

output encoding constraints. A polynomial time algorithm to answer P-1, and, exact and heuristic

algorithms to solve P-2 and P-3 are provided. We solve P-3 with different cost functions, such

as the number of constraints satisfied and the number of cubes or literals required in the encoded

6.2. STATEMENT AND COMPLEXITY OF THE ENCODING PROBLEMS 111

implementation. These algorithms also handle encoding don’t cares [91, 85] and can be easily

extended to other types of constraints. We also prove the NP-completeness of problems P-2 and

P-3. This result has not been shown previously, though it has been conjectured [91].

The approach used here is based on a formulation provided in [154], which in turn is

related to the state assignment technique employed by Tracey in 1966 [143]. We first demonstrate

the difficulty of finding codes that satisfy encoding constraints by proving it NP-complete in

Section 6.2. Section 6.3 provides some definitions. In Section 6.4 an abstraction of the problem

is presented. In Section 6.5 we describe a new algorithm to satisfy input constraints only. This is

extended to handle input and output constraints in Section 6.6. This includes a polynomial time

algorithm for checking the satisfiability of a set of encoding constraints. A heuristic algorithm

is sketched in Section 6.7. Extensions of the framework to handle various types of constraints

and cost functions are discussed in Section 6.8. Experimental results are provided in Section 6.9.

Section 6.10 concludes the chapter.

6.2 Statement and Complexity of the Encoding Problems

In this section we formally state Problem P-2 both as a decision and an optimization

problem and show that the decision (optimization) version with input constraints alone is NP-

complete (NP-hard). We will show later that Problem P-1 can be solved by a polynomial time

algorithm.

A few preliminary definitions are required. An n-dimensional hypercube (or n-cube) is a

graph of 2n vertices labeled uniquely by the integers from 0 and 2n� 1. An edge joins two vertices

whose binary representations of their integer labels differ by exactly one bit. The minimum k-cube

that contains a given subset of vertices of a n-cube (k � n) is the k-face (or smallest face) spanned

by the given vertices.

Decision version of P-2:

Instance: Set of input and output constraints defined on a set of symbols S, and a positive integerk.

Question: Is there a function f from S to the vertices of a k-cube such that:

1. symbols in the same input constraint are mapped to vertices spanning a face that does

not contain the image of any other symbol, and

112 CHAPTER 6. ENCODING CONSTRAINTS

2. the binary labels of the images of the symbols satisfy the output constraints?

Optimization version of P-2:

Instance: Set of input and output constraints defined on a set of symbols, S.

Objective: Find the minimum k-cube and a function f from S to the vertices of the k-cube such

that:

1. symbols in the same input constraint are mapped to vertices spanning a face that does

not contain the image of any other symbol, and

2. the binary labels of the images of the symbols satisfy the output constraints.

Answering the decision version for different dimensions repeatedly solves the optimiza-

tion problem (with a polynomial number of calls to the decision procedure) and, of course, solving

the optimization problem answers the decision version for all dimensions. Clearly, by assigning a

weight of 1 to each constraint, P-2 can be seen as a special case of P-3. Hence, P-3 is no easier than

P-2.

The decision version of P-2 with input constraints alone is defined as face hypercube

embedding. To prove that face hypercube embedding is NP-complete a few more preliminaries are

needed.

A given graph G = (V;E) is a subgraph of an n-cube if there is a function mapping

vertices ofG into vertices of the n-cube that preserves the adjacency relations. G can be embedded

in an n-cube if G is a subgraph of the n-cube. The problem of deciding whether a given graph

is embeddable into an arbitrary dimension hypercube has been shown to be NP-complete [71]. It

has also been proved that even the problem of deciding whether a graph can be embedded into a

fixed-size hypercube is NP-complete [31]. The proof in [31] actually shows that the problem of

determining whether a graph of 2k nodes can be embedded in a k-cube is NP-complete. This result

can be used to prove that face hypercube embedding is NP-complete.

Theorem 6.2.1 Face hypercube embedding is NP-complete.

Proof: Face hypercube embedding is in NP. Consider the set of positions P where all the codes in

a given constraint agree (this set must not be empty unless a constraint involves all symbols). The

codes of the symbols not in that constraint must differ in at least one position of P from the codes

of the symbols in that constraint. This can checked in time linear in the product of the number of

constraints, number of symbols and integer k.

6.3. DEFINITIONS 113

Suppose k is the dimension of the hypercube into which the face constraints composed of

symbols from set S must be embedded. Let us restrict face hypercube embedding to the instances

where the symbols involved in the face constraints are 2k and each face constraint involves only

two symbols. For these instances it is possible to define a graph G(V;E) induced by the face

constraints. The set of nodes V is in correspondence with the symbols in S and there is an edge

between two nodes when the two corresponding symbols are in the same face constraint. The set

of face constraints can be embedded into a k-cube if and only if the companion graph is a subgraph

of a k-cube. Notice that in this case the concept of face embedding reduces to the familiar notion

of graph adjacency. The problem of determining whether a graph of 2k nodes is a subgraph of ak-cube is NP-complete by reduction from 3-partition [31]. Therefore the problem of determining

whether for 2k symbols a set of face constraints each with exactly two symbols can be embedded

into a k-cube is NP-complete. But this is a restricted version of face hypercube embedding and

hence the latter is NP-complete.

6.3 Definitions

An encoding dichotomy (or, more simply, dichotomy) is a 2-block partition of a subset

of the symbols to be encoded. The symbols in the left block are associated with the bit 0 while those

in the right block are associated with the bit 1. If an dichotomy is used in generating an encoding,

then one code bit of the symbols in the left block is assigned 0 while the same code bit is assigned

1 for the symbols in the right block.

For example, (s0s1; s2s3) is a dichotomy in which s0 and s1 are associated with the bit 0

and s2 and s3 with the bit 1. This definition of dichotomy differs from the one in [143, 154], which

allows the left block of a dichotomy to assume either the encoding bit 0 or 1, and it is equivalent to

the definition of fixed dichotomy given in [20].

A dichotomy is complete if each symbol appears in either block. A completion of a

dichotomy (l; r) is a dichotomy (l0; r0) such that l0 � l, r0 � r, and each symbol appears exactly

once in either l0 or r0.
Two dichotomies d1 and d2 are compatible if the left block of d1 is disjoint from the right

block of d2 and the right block of d1 is disjoint from the left block of d2. Otherwise, d1 and d2 are

incompatible. Note again that this definition differs from the definition of compatibility described

in [143, 154]. The union of two compatible dichotomies, d1 and d2, is the dichotomy whose left

and right blocks are the union of the left and right blocks of d1 and d2 respectively. The union

114 CHAPTER 6. ENCODING CONSTRAINTS

operation is not defined for incompatible dichotomies. A dichotomy d1 covers a dichotomy d2 if

the left and right blocks of d2 are subsets respectively either of the left and right blocks, or of the

right and left blocks of d1. For example, (s0; s1s2) is covered by (s0s3; s1s2s4) and (s1s2s3; s0),
but not by (s0s1; s2). A prime dichotomy of a given set of dichotomies is one that is incompatible

with all dichotomies not covered by it.

A set of complete dichotomies generates an encoding as follows. Each complete di-

chotomy generates one column of the encoding, with symbols in the left (right) block assigned a 0

(1) in that column. For example, given the complete dichotomies (s0s1; s2s3) and (s0s3; s1s2), the

unique encoding derived is s0 = 00; s1 = 01; s2 = 11, and s3 = 10.

A dichotomy violates an output constraint if the encoding bit generated for the symbols

in the dichotomy does not satisfy the bit-wise requirement for the output constraint. A valid

dichotomy is one that does not violate any output constraint. For example, the dichotomy (s0; s1s2)
violates the constraint s0 > s1, since s0 is assigned bit 0 whereas s1 is assigned bit 1 by this

dichotomy. Hence, s0 does not cover s1 in this bit. The dichotomy (s0s1; s2) does not violate this

constraint.

6.4 Abstraction of the Problem

Satisfaction of encoding constraints may be abstracted as a binate covering problem

(BCP) [113].

Suppose that a set S = fs1; : : : ; sng is given. The cost of si is ci where ci � 0. By

associating a binary variable xi to si, which is 1 if si is selected and 0 otherwise, BCP can be defined

as finding S 0 � S that minimizes nXi=1

cixi; (6.1)

subject to the constraint A(x1; x2; : : : ; xn) = 1; (6.2)

where A is a Boolean function, sometimes called the constraint function. The constraint function

specifies a set of subsets of S that can be a solution. BCP is the problem of finding a solution of

minimum cost of the Boolean equation A(x1; x2; : : : ; xn) = 1.

If A is given in product-of-sums form, A can be written as an array of cubes (that form a

matrix with coefficients from the set f0; 1; 2g). Each variable ofA denotes a column, and each sum

6.4. ABSTRACTION OF THE PROBLEM 115

(or clause) denotes a row. The problem can be interpreted as one of finding a subset C of columns

of minimum cost, such that for every row ri, either

1. 9j such that aij = 1 and cj 2 C, or

2. 9j such that aij = 0 and cj 62 C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive

phase or by setting to 0 a variable appearing in it in the negative phase. In a unate covering problem,

the coefficients of A are restricted to the values 1 and 2 and only the first condition must hold.

Suppose that symbols a; b; c and three constraints (a; b); b > c; b = a _ c are given. An

encoding column is a column vector whose i-th component is a bit (i.e. a 0 or 1) assigned to thei-th symbol. All possible encodings can be represented as sets of encoding columns. The column

encodings for the example are: c1 = 001; c2 = 010; c3 = 011; c4 = 100; c5 = 101; c6 = 110,

where the order of symbols in a column is a; b; c1. Since each symbol in a column is either assigned

1 or 0, a column partitions the symbols into a 1-block and a 0-block. For example, c6 = 110 places a
and b in the 1-block and c in the 0-block. For each face constraint consider the encoding dichotomies

that have the symbols of the face constraint in one block, and have one of the remaining symbols in

the other block [154]. In the example, this is (ab; c) or (c; ab). This means that by covering either(ab; c) or (c; ab), the face constraint (a; b) is satisfied. Add the encoding dichotomies expressing

the uniqueness of the codes; these are (a; b) or (b; a), (a; c) or (c; a), (b; c) or (c; b). Build a table

whose columns are the encoding columns and whose rows are the encoding dichotomies. A column

covers a row representing an encoding dichotomy if the symbols of each block of the dichotomy

are in the same partition of the column. For example, c6 = 110 covers (c; a) since c is set to 0 anda is set to 1, but does not cover (a; b) because a and b are both set to 1. Likewise c6 = 110 covers(c; b). Put a 1 in entry (i; j) if column j covers row i. For each output constraint, add a row for each

encoding column that cannot be chosen if that output constraint must be satisfied and put a 0 in the

corresponding entry. In the example, b > c yields two rows, one has a 0 in column c1, the other

has a 0 in column c5. One could imagine more complex types of constraints that add rows carrying

two or more 0’s and no 1’s to denote that all the columns with a 0 in them cannot be simultaneously

selected. The binate table for the example is shown in Figure 6.1.

A minimum column cover of the given rows gives a minimum set of encoding columns

that satisfy all given constraints. This requires the solution of a binate covering problem. However,

the problem reduces to a unate covering problem when only face constraints are present [143].
1000 and 111 are excluded because they do not carry useful information.

116 CHAPTER 6. ENCODING CONSTRAINTS

c1 c2 c3 c4 c5 c6

a;b

a;c

c;b

ab;c

b>c

b>c

b=a+c

b=a+c

b=a+c

b=a+c

?

1 1 1 1

1 1 11

1 1

0

0

0

0

0

 0

0 0

c;ab

c;a

b;c

b;a

1 1 11

Figure 6.1: Satisfaction of encoding constraints using binate covering

Although BCP offers a unified framework for solving encoding constraints, the design of

efficient algorithms requires exploiting specific features of the problems at hand. In the sequel we

demonstrate this fact by developing exact and heuristic algorithms.

6.5 Input Constraint Satisfaction

We first present a new algorithm for satisfying input encoding constraints that, compared

to previous approaches [147, 154], significantly improves the efficiency of the input encoding

process.

The encoding constraint satisfaction problem is a three-step process. The first is the

generation of the dichotomies that represent the face embedding constraints [154]. Each face

embedding constraint generates several dichotomies, called initial dichotomies. The symbols that

are to be on a face are placed in one block of each dichotomy representing that constraint, while

the other block contains one of the symbols not on the face. Thus, for n symbols s1; s2; :::; sn and

a face embedding constraint that requires the l symbols s1; s2; ::; sl to be on one face, we generate

2 (n � l) dichotomies each with the symbols s1; s2; :::; sl in one block (either left or right) and

exactly one of the remaining n � l symbols in the other block. Notice that initial dichotomies are

generated in pairs, for instance, given the symbols s1; s2; s3; s4 and the face constraint (s1; s3), the

6.5. INPUT CONSTRAINT SATISFACTION 117

initial dichotomies (s1; s3; s2), (s2; s1; s3), and (s1; s3; s4), (s4; s1; s3) are generated. Sometimes

we say that dichotomy (s2; s1; s3) is the dual of dichotomy (s1; s3; s2) and viceversa.

These dichotomies exactly capture the face embedding constraints. We also require that

each symbol get a distinct code. This is represented by a dichotomy with one symbol in each block.

When there are n symbols and no encoding constraints, the number of uniqueness constraints isn2 � n; these would generate an exponential number (2n � 2) of prime dichotomies. We need to

add only those uniqueness constraints that are not covered by the dichotomies generated from the

face-embedding constraints, because any encoding that satisfies the covering dichotomy satisfies

also the covered dichotomy.

The second step of encoding is the generation of prime dichotomies from the dichotomies.

[143] describes an approach similar to the process of iterated consensus for prime generation in

two-level logic minimization [11]. However, the number of iterations required to generate all

the prime dichotomies may be formidable even for small problems. Using this approach, several

different compatible merges often yield the same prime dichotomy. This results in a substantial

waste of computation time [154]. In Section 6.5.1, we describe a method of generating all prime

dichotomies and demonstrate its effectiveness in determining an exact solution.

The final step of encoding is to obtain a cover of the initial dichotomies using a minimum

number of primes. This is a classical unate covering problem and efficient branch and bound

techniques, both for exact and heuristic solutions, are well known [113].

6.5.1 Efficient Generation of Prime Dichotomies

By definition, each prime dichotomy is a maximal compatible of the dichotomies since

it is not compatible with any dichotomy that it does not cover. As in [86], an incompatibility

between two dichotomies represented by the literals a and b, is written as (a + b). When the

product of the sum terms representing all the pairwise incompatibilities is written as an irredundant

sum-of-products expression, a maximal compatible is generated as the union of those dichotomies

whose literals are missing in any product term [86]. For example, assume that we wish to find

the maximal compatibles for five dichotomies, a; b; c; d; e. Assume that the incompatibilities are(a+ b)(a+ c)(b+ c)(c+d)(d+ e). Then the equivalent irredundant sum-of-products expression isabd+ acd+ ace+ bcd+ bce. The five primes are then formed by the unions of the missing literals:fc; eg; fb; eg; fb; dg; fa; eg; fa; dg.

The problem is how to efficiently derive the equivalent sum-of-products expression from

118 CHAPTER 6. ENCODING CONSTRAINTS

the product-of-sums expression representing the incompatibilities. In the past, this has been per-

formed using an approach based on Shannon decomposition [153]:f(x1; � � � ; xi; � � � ; xn) = xi � f(x1; � � � ; 1; � � � ; xn) + xi � f(x1; � � � ; 0; � � � ; xn)
Basically one splits on a variable at a time and generates recursively two subproblems. The

complexity of performing the recursive Shannon expansion is exponential since a binary tree is

constructed. We describe an algorithm that can generate all the primes, but only uses a linear

number of operations in the size of the output.

The product-of-sums expressions previously generated have two features:

1. Each clause has exactly two literals;

2. Literals appear only in the positive phase, i.e., the function is unate.

By exploiting these properties it is possible to simplify the algorithm based on Shannon expansion.

The algorithm is described in pseudo-code in Fig. 6.2. Given a product-of-sums expression, a

splitting variable, x, is chosen. Since all clauses have exactly two literals in the positive phase, the

product of all sum terms containing x, call it x expr, after simplification, consists of two terms, the

first is x alone and the second is the product of all the other variables in x expr. Therefore a recursive

call is needed only for the product of the sum-terms in the initial expression that do not contain

x, called reduced expr. The two product terms, x expr and cs(reduced expr), are multiplied and

single cube-containment is used to obtain the minimum sum-of-products expression. Again single

cube-containment can be used to find the minimum expression since the function is unate [11].

This algorithm replaces exponential (in the number of dichotomies) calls as required in

the worst-case by a Shannon expansion based approach by a linear number of them. Of course,

the runtime of the algorithm is still proportional to the final number of primes, which may be

exponential (in the number of dichotomies).

The example in Fig. 6.3 illustrates the complete input encoding process. A set of input

constraints is shown and the corresponding initial dichotomies are derived. The maximal compati-

bles are generated by a procedure cs that recurs on the splitting variable. Variable 0 is chosen as first

splitting variable. The procedure returns the minimal product ps of the following two expressions:

the first is the product of all sum terms containing 0 (in this case simplified into 0 and 234567) and

the second is the result of the recursive call of the procedure cs on the sum terms that do not contain

0. By minimal product it is meant that the two expressions, when available after a series of recursive

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 119

calls, are multiplied out and then single cube-containment is performed on them. Once the maximal

compatibles are found, the prime dichotomies are easily obtained and a standard unate covering

routine produces a minimum subset of primes that cover all given initial dichotomies. Notice that

to simplify the example we have forced the symbol s1 to be always in a right block. This reduces

the number of prime dichotomies but does not affect the solution to the input encoding problem2.

6.6 Input and Output Constraint Satisfaction

6.6.1 Output Encoding Constraints

A dominance constraint a > b, requires that the encoding for a bit-wise covers the

encoding for b. This means that any dichotomy chosen in the final cover cannot have a in the left

block while b is in the right block. Hence, any dichotomy that has this property may be deleted

from consideration.

A disjunctive constraint a = b _ c, implies that the encoding for symbol a must be the

same as the bit-wise or of the encodings of b and c. This means that any dichotomy in a feasible

solution must have at least one of b and c appear in the same block as a. Any dichotomy that does

not possess this property may be deleted. This property is easily extended to the case where the

disjunctive constraint involves more than two symbols or has nested conjunctive constraints.

A preliminary algorithm follows from the discussion above. In the first step, the di-

chotomies corresponding to the input constraints are generated. Next the prime dichotomies are

generated using the algorithm described in Section 6.5.1; those that violate any of the dominance

or disjunctive constraints are eliminated. Finally, the remaining dichotomies are used in selecting a

minimum cover of all the initial dichotomies representing the input constraints. If there is at least

one initial dichotomy that cannot be covered, then there is no solution.

This procedure may be used to answer two questions. The first is whether a feasible

encoding exists for a set of input and output constraints. The second is to find the minimum length

encoding satisfying the constraints, if it exists. An obvious drawback of this method is that many

prime dichotomies may be generated but later deleted since they violate output constraints. We

present an efficient algorithm that avoids the generation of useless prime dichotomies.

2In general, this symmetry cannot be exploited when there are both input and output constraints.

120 CHAPTER 6. ENCODING CONSTRAINTS

/* Given pairwise incompatibilities among a list of dichotomies

as a product-of-sums expression generate all prime dichotomies.

Each sum term has two literals and there are n variables,

each corresponding to a distinct initial dichotomy. */

/* Convert 2-CNF to sum-of-products expressionO(n) recursive calls */

procedure cs (expr) f
x = splitting variableC = all sum terms with variable x

reduced expr = expr without the sum-terms in C
x expr = sum-of-product expression of C
return (ps (x expr, cs(reduced expr)))g

/* Obtain the product of two expressions.

expr1 has 2 terms, where the first term is a single variable */

procedure ps (expr1, expr2) f
product expr = product of expr1 and expr2

result expr = single cube containment (product expr)

return (result expr)g
procedure prime dichotomy generate (expr) f

result = cs (expr)

foreach (term T in result)

missing = list of variables not in T
new prime dichotomy = union of dichotomies corresponding to missing

add new prime dichotomy to prime list

return (prime list)g
Figure 6.2: Efficient generation of prime dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 121Constraints (s0; s2; s4) (s0; s1; s4) (s1; s2; s3) (s1; s3; s4)Initial dichotomies 0 : (s0s2s4; s1) 1 : (s3; s0s2s4) 2 : (s3; s0s1s4) 3 : (s2; s0s1s4)
4 : (s0; s1s2s3) 5 : (s4; s1s2s3)
6 : (s0; s1s3s4) 7 : (s2; s1s3s4)Deriving maximal compatibles (prime dichotomies)cs((0+ 2)(0+ 3)(0+ 4)(0+ 5)(0+ 6)(0+ 7)(1+ 3)(1+ 4)(1+ 5)(1+ 6)(1+ 7)(2+ 4)(2+ 5)(2+ 6)(2+ 7)(3+

4)(3 + 5)(3 + 6)(4 + 7)(5 + 6)(5+ 7))ps((0 + 234567);cs((1 + 3)(1 + 4)(1 + 5)(1 + 6)(1 + 7)(2 + 4)(2 + 5)(2 + 6)(2 + 7)(3 + 4)(3 + 5)(3 + 6)(4 +
7)(5 + 6)(5 + 7)))ps((0+ 234567);ps((1+ 34567); cs((2+ 4)(2+ 5)(2+ 6)(2+ 7)(3+ 4)(3+ 5)(3+ 6)(4+ 7)(5+ 6)(5+ 7))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); cs((3 + 4)(3 + 5)(3+ 6)(4 + 7)(5 + 6)(5 + 7))))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); ps((4 + 7); cs((3 + 4)(3 + 5)(3 + 6)(5 + 6)(5+ 7))))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); ps((4 + 7); ps((3 + 456); cs((5 + 6)(5 + 7)))))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); ps((4 + 7); ps((3 + 456); (5 + 67))))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); ps((4 + 7); (35 + 367 + 456)))))ps((0 + 234567);ps((1 + 34567);ps((2 + 4567); (345 + 357 + 367 + 456))))ps((0 + 234567);ps((1 + 34567);(2345 + 2357+ 2456+ 2367 + 4567)))ps((0 + 234567);(12345+ 12357+ 12456+ 12367+ 14567+ 34567))(012345+ 012357+ 012456+ 012367+ 034567+ 014567+ 234567)Maximal compatible sets f6; 7g f4; 6g f4; 5g f3; 7gf2; 3g f1; 2g f0; 1gPrime dichotomies (s0s2; s1s3s4) (s0; s1s2s3s4) (s0s4; s1s2s3) (s2; s0s1s3s4)(s2s3; s0s1s4) (s3; s0s1s2s4) (s0s2s4; s1s3)Minimum cover (s0s2s4; s1s3) (s2s3; s0s1s4) (s0s4; s1s2s3) (s0s2; s1s3s4)

Figure 6.3: Input encoding example

122 CHAPTER 6. ENCODING CONSTRAINTS

6.6.2 Satisfiability of Input and Output Constraints

We motivate the constraint satisfaction procedure using the example in Fig. 6.4. Given the

encoding constraints, 26 initial dichotomies are obtained. Consider the initial dichotomies (s0; s1s5)
and (s1s5; s0) that are generated from the face embedding constraint (s1; s5). Since s0 > s1, the

dichotomy (s0; s1s5) is not allowed and is deleted from consideration. The dichotomy (s1s5; s0) is

valid and will be used in a feasible encoding. Consider the dichotomy (s1; s2s5). If this dichotomy

is to be expanded to a valid prime dichotomy, symbol s0 is forced to be in the right block, sinces0 > s2. Also, since s1 > s3, s3 must be in the left block and since s4 > s5, s4 is forced into the

right block. Thus, all valid dichotomies covering this initial encoding dichotomy must cover the

“raised” dichotomy (s1s3; s0s2s4s5). Similarly, we obtain the six raised dichotomies shown. On

generating the prime dichotomies from these raised dichotomies, we obtain five primes.

A dichotomy is raised by adding symbols into either its left or right block as implied

by the output constraints. For example, the dichotomy (s0; s1s2) may be raised to the dichotomy(s0s3; s1s2). A dichotomy is said to be maximally raised if no further symbols can be added into

either the left or right block by the output constraints. The procedure raise-dichotomy in Fig. 6.6

describes an algorithm that maximally raises a dichotomy with respect to a set of output constraints.

When the problem is to determine if a set of constraints is satisfiable, we do not have

to generate the prime dichotomies. Instead we use the set of maximally raised valid dichotomies,

which are far fewer in number than the prime dichotomies, and we merely check if all the initial

dichotomies are covered by the maximally raised and valid dichotomies.

An algorithm to check for the satisfiability of input and output constraints is shown in

Figs. 6.5, 6.6 and 6.7. The following example shows why the second call to remove invalid dichotomies

in Fig. 6.7 is needed. Consider the constraints (a; bc), d = b+ c and a > d. After raise dichotomy

the following dichotomy is generated (ad; bc) (by constraint a > d), but (ad; bc) is an invalid di-

chotomy because it conflicts with constraint d = b+c. So a new pass of remove invalid dichotomies

is required to delete it. Alternatively, we could suppress in Fig. 6.7 the first call to raise dichotomy,

and leave only the second one.

Since the raising of each dichotomy is performed in time linear in the number of symbols

times the number of initial dichotomies, the running time of the algorithm is polynomial in the

number of symbols and constraints.

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 123Face embedding constraints :(s1; s5) (s2; s5) (s4; s5)Dominance constraints :s0 > s1 s0 > s2 s0 > s3s0 > s5 s1 > s3 s2 > s3s4 > s5 s5 > s2 s5 > s3Disjunctive constraints :s0 = s1 _ s2Initial dichotomies :(s0; s1s5) (s1s5; s0) (s0; s2s5)(s2s5; s0) (s0; s4s5) (s4s5; s0)(s1; s2s5) (s2s5; s1) (s1; s4s5)(s4s5; s1) (s2; s1s5) (s1s5; s2)(s2; s4s5) (s4s5; s2) (s3; s1s5)(s1s5; s3) (s3; s2s5) (s2s5; s3)(s3; s4s5) (s4s5; s3) (s4; s1s5)(s1s5; s4) (s4; s2s5) (s2s5; s4)(s0; s3) (s3; s0)Maximally raised dichotomies :(s1s3; s0s2s4s5) (s2s3; s0s1s4s5) (s2s3s4s5; s0s1)(s0s1s2s3s5; s4) (s2s3s5; s0s1)(s2s3s5; s4)Uncovered initial dichotomies :(s0; s1s5)(s1s5; s0)
Figure 6.4: Example of feasibility check with input and output constraints

124 CHAPTER 6. ENCODING CONSTRAINTS

/* S is the set of symbols to be encoded */

procedure remove invalid dichotomies (D, constraints) f
foreach (dichotomy d 2 D)

/* to handle dominance constraints */

foreach (pair of symbols s;m 2 S)

if (s > m & s in left block & m in right block)

delete d
/* to handle disjunctive constraints */

foreach (disjunctive constraint)

if (parent in left block & at least one child in right block)

delete d
if (parent in right block & all children in left block)

delete d
/* to handle disjunctive-conjunctive constraints */

foreach (extended disjunctive-conjunctive constraint)

if (parent in right block & one child of each conjunction in left block)

delete dg
Figure 6.5: Removal of invalid dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 125

/* d is a valid dichotomy */

procedure raise dichotomy (d, constraints) f
do f

/* to handle dominance constraints */

foreach (symbol s 2 S)

if (s in left block & s > m)

insert m into left block of d
if (s in right block & m > s)

insert m into right block of d
/* to handle disjunctive constraints */

foreach (parent symbol s in a disjunctive constraint)

if (all children in left block)

insert s into left block

if (all children but one child c in left block & s in right block)

insert child c into right block

/* to handle disjunctive-conjunctive constraints */

foreach (parent s in a disjunctive-conjunctive constraint e)
if (one child of each conjunction in left block)

insert s into left block

if (one child of all but one conjunction in left block & s in right block)

insert all children of remaining conjunction into right blockg while (at least one insertion within loop)g
Figure 6.6: Maximal raising of dichotomies

126 CHAPTER 6. ENCODING CONSTRAINTS

procedure check feasible (constraints) fI = generate initial dichotomies (constraints)D = remove invalid dichotomies (I, constraints)

foreach (dichotomy d in D)

raise dichotomy (d, constraints)D = remove invalid dichotomies (D, constraints)

foreach (dichotomy i 2 I)

if i is not covered by some d 2 D
return (INFEASIBLE)

return (FEASIBLE)g
Figure 6.7: Feasibility check of input and output constraints

We now prove that the feasibility algorithm is correct.

Theorem 6.6.1 Given a set of input and output constraints, let I be the set of initial dichotomies

generated from the input constraints, including all uniqueness constraints that are not already

covered by an initial dichotomy. Let each valid dichotomy in I be maximally raised to obtain a set

of valid dichotomies D. A dichotomy that becomes invalid on raising is deleted from D. The input

and output constraints are satisfiable if and only if each i 2 I is covered by some d 2 D.

Proof: If Part Consider a valid maximally raised dichotomy d = (L1;R1), where L1 and R1

are disjoint subsets of the symbols to be encoded. Consider a symbol s 62 d. There are no output

constraints that either require any of the symbols in L1 to cover s, or s to cover any of the symbols

in R1. Otherwise d is not raised maximally. Add all symbols F = fs : s 62 dg, to the right block

of d. There may be output constraints among the symbols in F , but these are satisfied since all the

symbols in F are inserted into the right block. Repeat the same operation of adding uncommitted

symbols to the right block for all valid maximally raised dichotomies. Call the dichotomies so

obtained complete, because every symbol appears in either block of each of them. A valid encoding

exists by deriving the codes from any set of complete valid maximally raised dichotomies that cover

all initial dichotomies in I .

Only If Part Assume that some initial dichotomy i 2 I is not covered by any of the dichotomies

in D. It means that there is no d 2 D that contains block-wise i or the dual of i. At the start of

check feasible iwas put inD, unless removed by the first call of remove invalid dichotomies. Then

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 127

it was raised to d(i)and it must have been removed by the second call to remove invalid dichotomies,

otherwise d(i) 2 D would contain block-wise i. Suppose that there exists a dichotomy p whose

right and left blocks contain the right and left blocks of i. Then the conditions that caused invalidity

of i or caused raising and then invalidity of d(i) are satisfied also for p (it can be seen by case

analysis of the conditions of remove invalid dichotomies and raise dichotomy) and so either p is

invalid or it can be maximally raised to an invalid d(p). Therefore there can be no valid dichotomy

that contains block-wise i.
Similar reasoning holds for the dual dichotomy of i (blocks are reversed), i.e. from the

fact that the dual of i was initially put in D it is deduced that there can be no valid dichotomy that

contains the dual of i. Therefore there can be no valid dichotomy that covers i, i.e., no feasible

solution exists.

6.6.3 Exact Encoding of Input and Output Constraints

Once the feasibility check of a set of input and output constraints is passed, a problem is

to find codes of minimum length that satisfy the constraints. If the requirement that codes are of

minimumlength is dropped, then it is sufficient to take the valid maximally raised dichotomies, make

each of them complete by adding to the right block any state absent from the dichotomy and then

choose a minimal set of complete maximally raised dichotomies that cover all initial dichotomies.

By adding absent states to the right block no invalid dichotomy can be produced, since no removal

or raising rule becomes applicable to the complete maximally raised dichotomies so obtained.

We will now discuss the case when codes of minimum length are wanted. An encoding

column must be a complete and valid dichotomy. When there are input constraints only, the notions

of valid prime dichotomies and of valid complete dichotomies coincide. In general, there are two

ways of computing all valid complete dichotomies:

1. In generate initial dichotomies add all uniqueness constraints to I , as done in [116].

2. After the prime encoding dichotomies have been generated, make them complete, by adding

in all possible ways the missing symbols to the right and left blocks.

We will adopt here the first option because it is more practical in this algorithmic frame.

An algorithm for satisfying both input and output constraints is shown in Fig. 6.8. Fol-

lowing the generation of the initial dichotomies from the input and uniqueness constraints, those

that violate output constraints are deleted. The remaining dichotomies are raised maximally. Any

128 CHAPTER 6. ENCODING CONSTRAINTS

raised dichotomy that becomes invalid is deleted. If each of the initial dichotomies is covered by

at least one of the valid and maximally raised dichotomies, all prime dichotomies are generated

from the valid raised dichotomies and invalid dichotomies are removed again. Using an exact unate

covering algorithm, a minimum cover of the initial dichotomies by valid prime dichotomies yields

the exact solution.

The following example shows why the third call to remove invalid dichotomies in Fig. 6.8

is needed. Consider the symbols a; b; c; d, the uniqueness constraints (a; b), (b; a), (a; c), (c; a),(a; d), (d; a), (b; c), (c; b), (b; d), (d; b), (c; d), (d; c) and the disjunctive constraint b = c+ d. The

first call to remove invalid dichotomies removes (b; c) and (b; d). By raising, (c; b) becomes (c; bd)
and (d; b) becomes (d; bc). By merging (b; a) and (c; d) the invalid prime dichotomy (bc; ad) is

obtained.

An example is given in Fig. 6.9. Notice that, given the initial dichotomies (s2; s0s1),(s0s1; s2), (s3; s0s1), (s0s1; s3), (s0; s1), (s1; s0), (s2; s3) and (s3; s2), the following are removed

because they are invalid: (s0s1; s2) (it conflicts with s1 > s2), (s0s1; s3) (it conflicts with s0 =s1 _ s3) and (s0; s1) (it conflicts with s0 > s1). By raising the remaining valid dichotomies one

obtains the following raised dichotomies: (s1s2; s0s3) (from the initial dichotomy (s1; s0), sinces1 > s2 forces s2 into the left block and s0 = s1 _ s3 forces s3 into the right block) that subsumes

the valid dichotomy (s2; s3), (s3; s2s1) (from (s3; s2), since s1 > s2 forces s1 into the right block),(s2; s0s1) and (s3; s0s1) (the last two are initial dichotomies unmodified by the raising process).

Since each initial dichotomy is covered by some raised dichotomy, an encoding satisfying all

constraints exists by Theorem 6.6.1. The prime dichotomies are (s2s3; s0s1) (by merging (s2; s0s1)
and (s3; s0s1)), (s3; s0s1s2) (by merging (s3; s0s1) and (s3; s2s1)), (s1s2; s0s3) and (s2; s0s1).
Notice that the last dichotomy is not complete. i.e., s3 does not appear in either block. The

completions of (s2; s0s1) are (s2s3; s0s1) and (s2; s0s1s3). The first one had been already generated

by merging, the second one replaces (s2; s0s1). Even though in the proposed algorithm in Fig. 6.8

we do not use the step of completions, but we add instead all uniqueness constraints to I , in the

example we have preferred the former way for compactness of exposition.

Theorem 6.6.2 Given a set of input and output constraints, let I be the set of initial dichotomies

generated from the input constraints, including all uniqueness constraints. The algorithm shown in

Fig. 6.8 generates codes of minimum length for a set of input and output constraints, if a solution

exists.

Proof: The proof is based on Theorem 6.6.1. If a solution exists,a minimum solution can be obtained

6.7. BOUNDED LENGTH ENCODING 129

procedure exact encode (constraints) fI = generate initial dichotomies (constraints)D = remove invalid dichotomies (I, constraints)

foreach (dichotomy d 2 D)

raise dichotomy (d, constraints)D = remove invalid dichotomies (D, constraints)

foreach (dichotomy i 2 I)

if i is not covered by some d 2 D
return (INFEASIBLE)P = prime dichotomy generate (D)

valid primes = remove invalid dichotomies (P , constraints)

mincov = minimum cover (I, valid primes)

return (derive codes (mincov))g
Figure 6.8: Exact encoding constraint satisfaction

from the maximally raised and valid dichotomies by generating prime dichotomies, and then finding

a minimum covering of the initial dichotomies. Notice that we require that all uniqueness constraints

are in I to guarantee that no valid dichotomy is missed. It may be that a subset of the uniqueness

constraints is sufficient to the purpose, but we do not explore the issue more.

6.7 Bounded Length Encoding

The solution of problem P-3 (c.f. Section 10.1) requires a fixed-length encoding that

minimizes a cost function on the constraints. In practice, this problem is more relevant than

problem P-2 which requires that all constraints be satisfied using a minimum number of encoding

bits. The reason is the trade-off between the increased code-length and the area gain obtained

by satisfying all constraints. For example, optimal encoding for finite state machines (FSM’s)

implemented by two-level logic may be viewed as the process of generating a set of mixed input and

output constraints. Satisfying all the constraints may require an encoding whose length is greater

than the minimum code-length. This translates into extra columns of the PLA, and may result in

sub-optimal PLA area and performance. The same reasoning applies to multi-level logic, where

130 CHAPTER 6. ENCODING CONSTRAINTS

Face embedding constraints :(s0; s1)Dominance constraints :s0 > s1 s1 > s2Disjunctive constraints :s0 = s1 _ s3Initial dichotomies :(s2; s0s1) (s0s1; s2) (s3; s0s1)(s0s1; s3) (s0; s1) (s1; s0)(s2; s3) (s3; s2)Raised dichotomies :(s2; s0s1) (s3; s0s1) (s1s2; s0s3)(s3; s2s1)Prime dichotomies :(s2; s0s1) (s2s3; s0s1) (s3; s0s1s2)(s1s2; s0s3)Complete dichotomies :(s2; s0s1s3) (s2s3; s0s1) (s3; s0s1s2)(s1s2; s0s3)Minimum cover :(s2s3; s0s1) (s1s2; s0s3)Final encoding :s0 = 11; s1 = 10; s2 = 00; s3 = 01

Figure 6.9: Example of exact encoding with input and output constraints

6.7. BOUNDED LENGTH ENCODING 131

literal counts are used instead of cubes. Therefore, logic synthesis applications require an encoding

algorithm that:� considers different cost functions; and,� minimizes a chosen cost function for encodings of fixed length.

There are three cost functions that are useful in such applications:� the number of constraints satisfied;� the number of product-terms in a sum-of-product representation of the encoded constraints;

and,� the number of literals in a sum-of-product representation of the encoded constraints [85].

We illustrate the meaning and technique of computation of these cost functions with an

example. Consider the following input constraints: (e; f; c), (e; d; g), (a; b; d), (a; g; f; d). To

satisfy all the constraints, an encoding of 4 bits is required. A solution is a = 1010, b = 0010,c = 0011, d = 1110, e = 0111, f = 1011, g = 1100. Suppose instead that the code-length

is fixed at 3 bits. Irrespective of which 3-bit encoding is chosen, it must be the case that one or

more input constraints are not satisfied. This leads to the problem of estimating the “goodness”

of each 3-bit encoding. For each input constraint I , define a Boolean function FI whose on-set

contains the codes of the symbols in the constraint and whose off-set contains the codes of the

symbols not in the constraint. The unused codes are in the don’t care set. For instance, given

the previous encoding, the points in the on-set of F(e;f;c) are (0111; 1011; 0011), those in the

off-set are (1010; 0010; 1110; 1100) while the don’t care set contains the remaining unused nine

codes. If constraint I is satisfied, two-level minimization of FI yields a single product-term. If a

constraint is not satisfied, there will be at least two product-terms in the minimized result. Thus, the

number of product-terms after two-level minimization is a measure of the satisfaction of the input

constraints. For constraints arising from encoding problems of two-level logic, this is an appropriate

cost function. An algorithm based on this cost function may require a number of two-level logic

minimizations. This may be approximated by a single logic minimization of a multi-output Boolean

function, where each constraint is represented by a distinct output of the multiple-output function.

The number of literals of a two-level implementation of the constraints can be computed in the same

way; literals are counted instead of product-terms.

132 CHAPTER 6. ENCODING CONSTRAINTS

a
000

f
100

c
110

b
010

g

101

011
d

111

e

{1−0 , 0−1}
 (e , f , c)

(e , d , g)

(a , b , d)

(a , g , f , d)

{−−1}

{111 , 0−0}

{111 , −0−}

Figure 6.10: Example of cost function evaluation

In Figure 6.10, a 3-bit encoding for the previous set of constraints is shown, together with

the product-terms needed to implement the encoded constraints. The given 3-bit encoding violates

3 face constraints. They are (e; f; c), (a; b; d), (a; g; f; d). 7 cubes and 14 literals are required to

represent the encoded constraints.

6.7.1 Heuristic Algorithm for Input Constraints

Consider the input constraint satisfaction problem where an encoding of length c bits is

desired, while minimizing the number of violated constraints. This is an exact version of problem

P-3. We require a selection of prime dichotomies that must have two properties. First, the primes

must ensure that each symbol gets a unique code, that is, all the uniqueness constraints must be

covered by the selected primes. Second, the fewest face constraints must be violated. The only

apparent way this can be done is to enumerate all 2n � 2 prime dichotomies (using n symbols) and

then solve an exact weighted unate covering problem. This approach is clearly infeasible on all but

trivial instances of P-3.

Heuristic algorithms can be easily developed within the encoding framework presented in

this chapter. In this subsection we describe a heuristic algorithm based on the concept of dichotomies

to solve P-3 approximately.

6.7. BOUNDED LENGTH ENCODING 133

As indicated above, the first phase of an exact solution to problem P-3 involves the

enumeration of all 2n�2 prime dichotomies that exist for n symbols. This step is termed candidate

dichotomy generation (or candidate generation in short). The second phase is to determine a

selection of a fixed number of these encoding dichotomies that minimize the desired cost function.

This is termed selection. While candidate generation is clearly exponential in the input size, the

selection phase requires examination of a polynomial (in the code-length c) number of sets of

candidate encoding dichotomies. A heuristic algorithm that avoids this enumeration of dichotomies

while retaining the structure of the exact approach is detailed now.

Let S = s1; s2; :::; sn be a set of symbols and let D be a set of encoding dichotomies

using these symbols. Consider some subset of symbols, P = sp1; sp2; :::; spk. The restricted

dichotomies of D with respect to P are the elements of the set DP of dichotomies obtained by

removing all symbols not in P from each dichotomy d 2 D.

The algorithm has three main phases: splitting of a set of symbols, merging of restricted

dichotomies and selection of the c best restricted dichotomies for a subset of symbols. The splitting

phase is used to divide the given encoding problem into two smaller problems, each to be encoded

using one less bit. Assuming that each sub-problem is solved optimally, the solution for the original

encoding problem is generated by the steps of merging and selection.

Let a code of length c be desired for n symbols, s1; :::; sn. Consider a partition of the

symbols into two groups s1; :::; sk and sk+1:::sn. Let D1 be the c� 1 best dichotomies restricted

to s1; :::; sk. Similarly, let D2 be the c � 1 best dichotomies restricted to sk+1; :::; sn. Then, the

candidate dichotomies for s1; :::; sn is the setD = f(s1:::sk; sk+1:::sn)g [(D1 �D2) [(D2 �D1):
The best selection of c dichotomies from D is used to obtain a desired encoding. By repeatedly

applying this technique until each partition contains a single symbol, a bounded-length encoding is

achieved following the merging and selection steps.

Splitting of symbols: We are interested in obtaining two sub-problems, each using one

less code bit than the given problem does. In splitting the symbols into disjoint partitions, the fewest

constraints should be violated. This is achieved by using a modification of the Kernighan-Lin [68]

algorithm for partitioning3.

3This step can also be performed by using the notion of incompatibility between dichotomies. The prime dichotomy
that covers the maximum number of dichotomies is desired. Given the pairwise incompatibilities between dichotomies,
this can be obtained by choosing the minimum cover of the pairwise incompatibilities (cf. Section 6.5.1). We do not

134 CHAPTER 6. ENCODING CONSTRAINTS

Each partition P can be considered as yielding a dichotomy, dP . For example, the

partition of n symbols into two blocks of symbols fs1; :::; skg and fsk+1; :::; sng gives dP =(s1:::sk; sk+1:::sn). The choice of partition P is determined by a cost function evaluation on the

dichotomy dP . For example, if the number of violated face constraints is to be minimized, thenP is chosen such that the fewest face constraints are violated by dP . If the number of literals (or

cubes) is being minimized, then P is chosen such that the maximum number of restricted initial

dichotomies are covered by dP . This corresponds to minimizing the number of uncovered initial

dichotomies. Thus, for the partitioning algorithm [68], the nodes are the symbols being partitioned

and the nets are either face constraints or initial dichotomies.

The procedure is performed recursively on each resulting partition. Each partition again

yields candidate dichotomies restricted to the subset of symbols that appear in it. When only two

symbols remain, a single dichotomy that corresponds to the uniqueness constraint between them is

generated.

Consider the example shown in Fig. 6.3, where an encoding of length 3 is required to

minimize the number of literals in sum-of-product form. In the first step, at least four initial

dichotomies must be violated by any partition. Assume that the symbols are partitioned intoP1 = fs0; s1; s2; s4g and P2 = fs3g, which violates 6 of the initial dichotomies (numbered 0, 3, 4,

5, 6, 7). Further partition of the symbols in P1 yields P11 = fs0; s4g and P12 = fs1; s2g, which

violates four of the initial dichotomies (numbered 0, 3, 6, 7 in the example).

Merging of restricted dichotomies: Here the restricted dichotomies generated from each

of the sub-partitions, say P1 and P2, are merged to obtain a set of dichotomies that ensures unique

codes for all the symbols in the merged partition, P = P1 [P2. Since the sets of symbols in P1 andP2 are disjoint, each dichotomy in P is a union of one dichotomy each from P1 and P2. Thus, m
dichotomies for P1 and n dichotomies for P2 yield mn candidate dichotomies for P .

Consider partitions P1 = fs0; s1; s2; s4g and P2 = fs3g which are to be merged for the

example of Fig. 6.3. Assume that the encoding dichotomies chosen (by recursive application of this

algorithm) for P1 are D1 = f(s0s4; s1s2); (s0s2; s1s4)g. The only choice for P2 is D2 = f(s3;)g.

The merged dichotomies to be considered are D = f(s0s1s2s4; s3); (s0s3s4; s1s2); (s0s4; s1s2s3);(s0s2s3; s1s4); (s0s2; s1s3s4)g. The best encoding of length 3 is chosen from this set by the next

step.

Selection of best restricted dichotomies: The objective of this final step is to choose a

employ this technique since the number of incompatibilities is often enormous. Additionally, the prime dichotomy is
required to have a bounded number of symbols in each block, which further complicates the approach.

6.8. OTHER APPLICATIONS 135

minimal number of candidate dichotomies that violate the minimumnumber of encoding constraints,

yet covers all the uniqueness constraints. It is important to note that when the best selection of

dichotomies restricted to a subset of symbols is sought, a global view of constraints (and cost

function) must be employed. For example, consider the subset of symbols P = fp1; :::pkg with

candidate dichotomies Dp. A cover of size cDp is desired. The constraints of the entire problem

are first restricted to the symbols p1; :::pk. The cost function evaluation technique mentioned in the

previous section is applied to each selection of cDp dichotomies from Dp. The set that minimizes

the given cost function is chosen as the best selection of restricted dichotomies.

Continuing with the example of Fig. 6.3, following the merging step described above, the

3 best dichotomies selected are (s0s1s2s4; s3); (s0s2; s1s3s4) and (s0s4; s1s2s3). This is done by

evaluating all selections of size 3 from the setD that cover all uniqueness constraints and minimize

the literal count. In the general case the number of evaluations can be restricted to some fixed

number to reduce the search space.

This heuristic algorithm has shown promising results and has been successfully applied

to other encoding constraint satisfaction problems [97, 7].

6.8 Other Applications

In this section we illustrate that the formulation presented in Section 6.6 provides a

uniform framework for the satisfaction of various other encoding problems.

6.8.1 Input Encoding Don’t Cares

The notion of an encoding don’t care was first described in [91], and an example of

how encoding don’t cares are generated in the two-level case is given in [145]. A face constraint

containing symbols a, b and e and with symbols c and d as encoding don’t cares is denoted(a; b; [c; d]; e). This constraint specifies that a; b; e must be assigned to one face of a binary n-

dimensional cube, with c and d free to be included or excluded from this face, and no other symbol

sharing this face. Encoding don’t cares have been shown to be essential for determining good factors

in deriving a multi-level implementation of a given multi-valued description [85].

A simple example shows that suboptimal solutions of P-2 are computed when input en-

coding don’t cares are disregarded. Given the symbolsS = fa; b; c; d; e; fgand the face constraints(a; b), (a; c), (a; d), (a; b; [c; d]; e), a minimum length encoding uses 3 primes, e.g. (a; b; e; d; f),

136 CHAPTER 6. ENCODING CONSTRAINTS(a; c; d; b; e; f), (a; b; d; c; e; f). If the encoding don’t cares are forced to be in the face constraint,

i.e. (a; b; [c; d]; e) is replaced by (a; b; c; d; e) then a minimum length encoding uses 4 primes,

e.g. (a; b; c; d; e; f), (a; b; c; d; e; f), (a; c; d; b; e; f), (a; b; d; c; e; f). In the case that the encoding

don’t cares are forced not to be in the face constraint, i.e. (a; b; [c; d]; e) is replaced by (a; b; e)
a minimum length encoding uses 4 primes, e.g. (a; b; e; c; d; f), (a; b; c; d; e; f), (a; d; b; c; e; f),(a; c; d; b; e; f).

The framework described in Section 6.6 naturally handles encoding don’t cares. Consider

the face constraint (s0s1s3[s5]), which implies that s5 may or may not be chosen to be on the same

face as s0; s1 and s3. Converting this constraint to initial dichotomies is simply a matter of not

generating the dichotomies (s0s1s3; s5) and (s5; s0s1s3). The absence of these dichotomies enabless5 to be either inside or outside the face that includes s0; s1 and s3. In the presence of encoding

don’t cares, a prime dichotomy may be a bi-partition of a subset of the symbols. In contrast,

when encoding don’t cares are not used, each prime dichotomy is a bi-partition of the entire set

of symbols. For instance, if we consider the set of face constraints of the previous example (a; b),(a; c), (a; d), (a; b; [c; d]; e), the prime dichotomies generated by the extended definition of compat-

ibility are: (a; b; e; f), (a; b; e; d; f), (a; b; e; c; f), (a; b; c; d; e; f); (a; c; b; d; e; f), (a; d; b; c; e; f),(a; b; c; d; e; f), (a; c; d; b; e; f); (a; b; d; c; e; f), (a; b; c; d; e; f). A minimum cover of 3 primes can

be extracted out of them, as shown before.

The algorithms described for the feasibility check and exact encoding, shown in Fig-

ures 9.1, 9.2 and ?? respectively, extend naturally to encoding don’t cares. Note that the satisfia-

bility check algorithm described in [39] cannot be easily extended to handle encoding don’t cares

without a significant penalty in run-time. The encoding algorithm presented in [147] also cannot be

extended to handle don’t cares.

6.8.2 Distance-2 Constraints

In [135, 134, 35] a condition for easy and full sequential testability requires an encoding

such that the codes assigned to a selected pair of states, say a and b, must be at least distance-2 apart.

This condition may be easily satisfied by selecting at least two prime dichotomies in the minimum

cover, each having a and b in different blocks. Suppose that, of all the prime dichotomies, the pairsfp1; p2g and fp3; p4g have a and b in different blocks. At least one of the two pairs must be chosen

in a final cover. This is enforced by augmenting the binate covering formulation with the clauses(p1 + b1)(p2 + b1)(p3 + b2)(p4 + b2)(b1 + b2);

6.8. OTHER APPLICATIONS 137

where b1 and b2 are two new columns of the covering table.

6.8.3 Asynchronous State Assignment

The state assignment algorithm proposed by Tracey [143] may also be applied in per-

forming state assignment for asynchronous state machines [74]. The basic idea is that whenever

a pair of state transitions occur under the same input (so that the input values cannot be used to

distinguish among them), at least one state signal must remain constant during both transitions and

have a different value for each transition. This set of constant signals allows the circuit to distinguish

among different transitions thus avoiding critical races. Tracey was the first to propose the concept

of dichotomy as corresponding informally to the idea of a column (bit) in the binary encoding of the

internal states. It distinguishes one set of states from another by a single bit in the corresponding

encodings. The implementation in [74] successfully uses our exact input encoding algorithm (cf.

Section 6.5).

6.8.4 Logic Decomposition

In [97] it is investigated the problem of decomposing a function so that the resulting

sub-functions have a small number of cubes or literals. The decomposition problem is formulated

as an encoding problem. In general, an input-output encoding formulation has to be employed

to solve the problem. However, it is shown that for programmable gate array architectures which

use look-up tables, the input encoding formulation suffices, provided one uses minimum-length

codes. The unused codes are used as don’t cares for simplifying the sub-functions. An average

improvement of over 20% is achieved when encoding is used while performing the decomposition.

The encoding is performed using the heuristic algorithm described in Section 6.7.1.

6.8.5 Logic Partitioning

In [7] the problem of encoding the communication between two logic blocks is studied.

Two separate blocks of logic can communicate unidirectionally through a channel that consists of a

number of communication lines. The encoding of the symbols communicated across the channel has

two requirements: first, the encoding width is fixed (usually to the minimum possible width), and

second, the encoding must minimize the amount of logic in the sending and receiving blocks while

balancing the size of the blocks. By definition, the input encoding constraints and output encoding

constraints are each taken from different blocks of logic. Consequently, balancing the size of the

138 CHAPTER 6. ENCODING CONSTRAINTS

blocks translates into balancing the amount of constraint satisfaction in the two sets of constraints.

Since the existing constraint satisfaction algorithms do not perform constraint satisfaction balancing,

only the encoding constraints generated from the receiving block are considered. The heuristic input

encoding algorithm described in Section 6.7.1 is used among others.

6.8.6 Limitations of Dichotomy-based Techniques

This section has illustrated how new classes of encoding constraints, together with face

and output constraints, can be accommodated in the dichotomy-based frame. It is legitimate to

ask what kind of constraints cannot be naturally solved using dichotomies. Such an example of

unwieldy encoding constraints are chain constraints [1] used to derive area-optimal finite state

machine implementations that use counter-based PLA structures. State assignment in [1] consists

of a step of deriving face and chain constraints and a step of satisfying them. A chain constraint

requires that increasing binary numbers be assigned to the codes of the ordered sequence of states.

The first element in the chain can be given any code. For instance, a chain constraint involving

the ordered sequence a; b; c; d; e; f; g; h; i is denoted by (a� b � c� d � e � f � g � h � i) and

is satisfied by the encoding a = 0010, b = 0011, c = 0100, d = 0101, e = 0110, f = 0111,g = 1000, h = 1001, i = 1010. For every pair of adjacent states in the chain the code of the right

state is equal to the code of the left state increased by one in binary arithmetic. As an example of

encoding problem with face and chain constraints, consider the face constraints (b; c), (a; b), and

the chain (d� b� c� a). A satisfying assignment is: a = 00; b = 10; c = 11; d = 01.

Even though it is possible, for a given code length, to add to the covering expression the

clauses that impose the chain conditions, a straightforward solution seems to require a computa-

tionally expensive enumeration.

6.9 Results

Table 1 gives the results of using the exact encoding algorithm on a set of examples using

both input and output encoding constraints. These constraints are generated using an extension of

the procedure described in [91] that also generates good disjunctive constraints. The procedure

has been described in Chapter 5. The procedure for generating encoding constraints ensures that

the constraints are satisfiable by calling the algorithm in Figure 9.3. The number of valid prime

encoding-dichotomies is shown in the third column. As seen from the table, all the examples with

6.9. RESULTS 139

Name # States # Primes # Bits Time
(secs)

bbsse 16 1449 7 20
cse 16 201 7 3
dk16 27 24316 12 1050
dk512 15 35 9 1
donfile 24 673 12 17
ex1 20 2023 9 45
keyb 19 189 9 4
kirkman 16 54 11 8
master 15 972 5 4
planet 48 > 50000 * *
s1 20 469 7 10
s1a 20 50 7 3
sand 32 2481 11 88
scf 121 > 50000 * *
styr 30 > 50000 * *
tbk 32 13 12 41
viterbi 68 > 50000 * *
vmecont 32 > 50000 * *

* indicates results not available

Larger examples were not experimented with

Table 1: Exact input and output encoding

140 CHAPTER 6. ENCODING CONSTRAINTS

Name States # Constraints Constraints Cubes
NOVA ENC NOVA ENC

bbsse 16 5 3 3 12 8
cse 16 12 8 8 24 18
dk16 27 33 25 20 43 48
dk512 15 10 8 9 12 11
donfile 24 24 8 11 48 39
ex1 20 11 8 8 19 19
kirkman 16 25 9 9 58 58
planet 48 12 12 12 12 12
s1 20 14 14 14 14 14
s1a 20 14 14 14 14 14
sand 31 7 6 6 8 8
styr 30 18 14 14 29 26
scf 121 14 11 * 21 *
tbk 32 98 44 39 284 237
viterbi 68 6 6 6 6 6
vmecont 32 40 24 25 81 67

Constraints: Number of constraints to be satisfied

Constraints: Number of satisfied constraints

Cubes: Number of cubes in a two-level implementation of the constraints

NOVA: Encoding using NOVA [147], minimum code length

ENC: Heuristic encoding, minimum code length

* : Out of memory

Table 2 : Two-level heuristic minimum code length input encoding

less than 50000 primes completed in very little CPU time on a DEC 3100 workstation. In the

case of planet there are only nine dominance constraints and no disjunctive constraints, which lead

to almost no decrease in the number of primes generated from the face constraints (exponential

in the worst case). In the case of vmecont there are only eight different face constraints (six of

them have only two states), which lead to a huge number of primes being generated from the large

number of un-implied uniqueness constraints. Thousands of satisfiability checks on input and output

encoding constraints can be performed routinely in a matter of seconds, showing the efficiency of

our algorithm. The previous approach suggested for prime generation in [154] does not complete

on any of the examples.

6.9. RESULTS 141

Table 2 compares an implementation of the heuristic algorithm described in Section 6.7.1

with the best bounded-length input encoding algorithm implemented in NOVA [147] (option -e

ih). NOVA is a state assignment program for two-level implementations, that features a variety

of constraint satisfaction algorithms. The input constraints are generated by calling the two-level

multiple-valued logic minimizer ESPRESSO [114]. The number of satisfied face constraints and the

number of cubes in a two-level implementation of the constraints using the minimum possible length

for encoding are compared in the table. While both algorithms perform comparably with regard

to the number of constraints satisfied, our approach has a significant advantage with respect to the

number of cubes needed to implement the input constraints in two-level form. This cost function

is very important because it measures the advantage of satisfying a subset of input constraints in

a fixed code-length more precisely. Our algorithm in almost all cases needs fewer cubes than the

algorithm in NOVA. On the benchmark set it requires on average 13% fewer cubes and in some cases

the gain is more than 20%. The number of cubes listed in Table 2 under the column NOVA, is not

the same as the number of cubes of the final FSM implementation obtained by NOVA [147]. NOVA

performs additional encoding tasks to approximate the input-output encoding problem that arises

in FSM’s. Instead, we compare only the quality of the input encoding algorithms. For instance,

we report 284 cubes for tbk using NOVA and 237 cubes for our algorithm. This means that if tbk

were to be encoded with 5 bits using only input constraint information, the encoding algorithm in

NOVA would require 284 and our algorithm 237 cubes to implement the input constraints. In reality

with the option -e ih NOVA achieves 147 cubes, because it does not limit itself to input constraints

satisfaction (and with the option -e ioh it achieves 57 cubes, using a better model of the input-output

encoding problem). A heuristic algorithm that considers partial satisfaction of a set of input and

output constraints remains to be developed. In the example of sand only 8 cubes are reported

for both algorithms, because these are the cubes needed to implement the cubes generating input

constraints. However, there are many more cubes in the FSM that do not generate input constraints,

and are not reflected in the table.

Table 3 compares our approach to simulated annealing for multi-level examples. Input

constraints with don’t cares are generated by the multiple valued multi-level synthesis program MIS-

MV [85] with the number of factored form literals in the encoded implementation as cost function

(in practice, the number of literals in a sum-of-product representation of the encoded constraints

is used as an approximation to this cost function). Because of the presence of encoding don’t

cares and the cost function of literals, simulated annealing was the only other known algorithm for

solving this problem. We use two sets of experiments to compare the effectiveness of our heuristic

142 CHAPTER 6. ENCODING CONSTRAINTS

bounded-length algorithm versus the version of simulated annealing algorithm implemented in

MIS-MV. Minimum-length encoding is always used. MIS-MV is run using a script that invokes the

constraints satisfaction routine six times; five times to perform a cost evaluation that drives the multi-

valued multi-level optimization steps and one final time to produce the actual codes that replace the

symbolic inputs [85]. Simulated annealing is called the first five times with 1 pairwise code swap

per temperature point, while the last call performed 10 pairwise code swaps per temperature point.

Simulated annealing does not complete on the larger examples with 10 pairwise swaps per step.

These examples are marked with a y in the table, and only 4 swaps were allowed per temperature

step for these examples. When using our heuristic algorithm, the full-fledged encoder is called all

six times. See [85] for a detailed explanation of the scripts.

As can be seen from Table 3, our algorithm on average performs a little better than

simulated annealing in terms of literal count. This is significant especially in the large examples,

where it reduces the literals counts up to 10% further than simulated annealing. When our algorithm

does worse, it is within 5% of the simulated annealing result. However, a significant parameter

here is the amount of time taken. Simulated annealing consumes at least an order of magnitude

of time (two orders or more for larger sized examples) more than our algorithm when a better

quality solution is desired, i.e. using 10 swaps per step. On attempting to reduce the runtime to be

comparable to our approach, a noticeable loss of optimization quality compared to our approach may

be observed in the table. Further improvements to the heuristic encoding algorithm are possible.

6.10 Conclusions

This chapter has presented a comprehensive solution to the problem of satisfying encoding

constraints. We have shown that the problem of determining a minimum length encoding to satisfy

both input and output constraints is NP-complete. Based on an earlier method for satisfying

input constraints [154], we have provided an efficient formulation of an algorithm that determines

the minimum length encoding that satisfies both input and output constraints. It is shown how

this algorithm can be used to determine the feasibility of a set of input and output constraints

in polynomial time in the size of the input. While all previous exact formulations have failed

to provide efficient algorithms, an algorithm that efficiently solves the input and output encoding

constraints exactly has been described. A heuristic procedure for solving input encoding constraints

with bounded code-length in both two-level and multi-level implementations is also demonstrated.

In the multi-level case, only a very time-consuming algorithm based on simulated annealing was

6.10. CONCLUSIONS 143

Name States Literals Time
SA ENC SA ENC

bbsse 16 162 164 3017 175
cse 16 229 236 3969 234
dk16 27 336 380 27823 1523
dk512 15 82 85 2090 138
donfile 24 154 172 16265 935
kirkman 16 201 229 2621 322
master 15 392 398 2069 423
s1 20 280 304 16297 833
s1a 20 240 254 4878 241ysand 31 763 737 1926 2332yscf 121 * * * *ystyr 30 581 608 3128 1359yplanet 48 648 639 10298 14983ytbk 32 560 498 3774 4090yviterbi 68 327 322 860 1013yvmecont 32 378 364 2074 2883

SA: Simulated annealing (5 calls with 1 move per step and 1 call with 10 moves per step)

ENC: Heuristic encoding in minimum code length (6 calls)

Time SA : Time for SA; includes run time for minimization script [85]

Time ENC : Time for ENC; includes run time for minimization script [85]y: SA does not complete in 10 hours with 10 moves per step; SA limited to 4 steps per move

*: Does not complete in 10 hours

Table 3 : Multi-level heuristic minimum code length input encoding

144 CHAPTER 6. ENCODING CONSTRAINTS

known before. This framework has also been used for solving a variety of encoding constraint

satisfaction problems generated by other applications.

145

Chapter 7

Generalized Prime Implicants

7.1 Introduction

A method for exploring globally the solution space of optimal two-level encodings was

proposed by Devadas and Newton in [39]. Their key contribution was the definition of Generalized

Prime Implicants (GPI’s), as a counterpart of prime implicants in two-level minimization.

Unfortunately, the number of GPI’s is so large even for small FSM’s, that in practice it is

out of question to compute them and a fortiori to solve the induced covering problem for non-trivial

examples.

Recently, enumeration and manipulation of very large sets have been successfully per-

formed by representing their characteristic functions with Binary Decision Diagrams (BDD’s). In

many cases of practical interest these sets have a regular structure that translates into small-sized

BDD’s, even when an explicit representation would be impossible to compute. Here, loosely, we

consider a representation as explicit if it requires space lineraly proportional to the size of the

represented set.

In particular, researchers at Bull and UCB [25, 79, 53] investigated implicit computations

of prime implicants of a two-valued or multi-valued function. In some examples all primes could be

computed implicitly, even when explicit techniques implemented in ESPRESSO [11] failed to do so.

Moreover, implicit algorithms have been designed to reduce the unate table of the Quine-McCluskey

procedure to its cyclic core [29, 53], and to solve the binate covering problem associated with exact

state minimization [66].

In the present work we capitalize on these algorithmic technologies to propose a complete

procedure to generate and select GPI’s based on implicit computations. This approach combines

146 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

techniques for implicit enumeration of primes and implicit solution of covering tables together

with a new formulation of the problem of selecting an encodeable cover of GPI’s. The proposed

algorithms have been implemented using state assignment of FSM’s as a test case. The experiments

exhibit a set of medium FSM’s where large GPI problems could be solved for the first time, showing

that these techniques open a new direction in the minimization of symbolic logic. Since the problem

of symbolic minimization is harder than two-valued logic minimization, more practical work is

required to improve the efficiency of the implementation and to tie it with good heuristics to explore

the solution space of encoding problems. The present contribution shows how to extract a minimal

encodeable cover from a large set of GPI’s, allowing - in line of principle - the exploration of

all minimal encodeable covers. This advances the state-of-art of symbolic minimization, which

up to now has been done with various heuristic tools [92, 147, 42, 77], often very well-tuned for

their domain of application, but lacking a rigorous connection beween an exact theory and the

approximations made. For instance it is noticeable that these tools, with the exception of ESP SA,

cannot predict the cardinality of the covers that they produce, while the size of a minimized encoded

cover of GPI’s matches the size of the cover obtained after encoding (with the same codes) and

minimizing the original cover.

The presentation is organized on a number of chapters as follows. In Section 7.2 we

introduce some basic definitions. In Section 7.3 we introduce GPI’s. In Section 7.4 we show

how generation of GPI’s of a symbolic cover can be reduced to finding the prime implicants of a

companion multi-valued function. The relations of GPI’s to primes of encoded covers is analyzed

in Section 7.5. The problem of selecting a minimum set of encodeable GPI’s by reduction to unate

covering is described in Section 8.1, and by reduction to binate covering is described in Section 8.2.

The issue of non-determinism and GPI’s is discussed in Section 8.3. A theory of encodeability of

GPI’s based on the new notions of raising graphs and updating sets is presented in Section 9.1. The

passage to implicit algorithms is done in Sections 11.1 and 11.2. In Section 11.3 we present an

implicit solution of the GPI selection problem, while Section 11.4 demonstrates on an example the

implicit algorithm. The correctness of the results is verified with the method shown in Section 11.5.

Implementation issues are discussed in Section 11.6. In Section 11.7 experimental results are given,

while conclusions are drawn in Section 11.8.

7.2. BASIC DEFINITIONS 147

7.2 Basic Definitions

7.2.1 Finite State Machines

A Finite-State Machine (FSM) is represented by its State Transition Graph (STG) or

equivalently, by its State Transition Table (STT). A STG is denoted by a sextuplefI;O;S; IS; �; �g,

where I and O are the sets of inputs and outputs, S is the set of states and IS is the set of initial

states. � (next state function) is a mapping from I � S to S that given an input and a present state

defines a next state. � (output function) is a mapping from I � S to O that given an input and a

present state defines an output. An STG where one next-state and one output for every possible

transition from every state are defined corresponds to a completely specified finite state machine

(CSFSM). An STT is a tabular representation of the FSM. Each row of the table corresponds to a

single edge in the STG. Conventionally, the leftmost columns in the table correspond to the primary

inputs and the rightmost columns to the primary outputs. The column following the primary inputs

is the present-state column and the column following that is the next-state column.

An incompletely specified finite state machine (ISFSM) is one where either � or � or

both are a relation of a restricted kind, i.e. there is at least one pair (i; s) on which either �(i; s)
or �(i; s) (or both) is equal to the set of all possible values, written usually in cube notation. For

instance, suppose that O = B3, then i1 s1 s2 � �� denotes a transition under input i1 from s1

to s2 which outputs any of the possible 8 minterms in B3; i1 s1 ANY 01� denotes a transition

under input i1 from s1 to any state in S which outputs either 010 or 011 (instead of ANY one can

write � or �). Lastly, i1 s1 ANY � �� denotes a transition under input i1 from s1 to any state

in S which outputs any minterm in B3; for economy of representation, one usually omits these

transitions (sometimes called missing or unspecified transitions) from an FSM description. When

doing state assignment, if there are more hardware states than symbolic states1, ANY of a missing

transition can be implemented by any possible hardware state. To every STG containing unspecified

next-states one can construct an equivalent STG where all unspecified next states are replaced by a

trap state T , as in [98]. The transitions from T under any input go to T itself and their outputs are

unspecified. The new STG describes exactly the same behaviours as the old one.

1Suppose that 3 symbolic states are encoded with 2 bits, then there are 4 hardware states.

148 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.2.2 Multi-valued Functions

We review the definitions used for multi-valued (also known as symbolic) input binary-

valued functions. For a more complete treatment the reader is referred to [114].

Definition 7.2.1 Let pi; i = 1; : : : ; n be positive integers. Define Pi = f0; : : : ; pi � 1g for i =
1; : : : ; n, and B = f0; 1; �g. A multiple-valued input, binary-valued output function, f , is a

mapping f : P1 � P2 � � � � � Pn ! B
The function f has n multiple-valued inputs. Each input variable i assumes one of the pi

values in Pi. The value � 2 B is used when the function value is unspecified (i.e., it is allowed to

be either 0 or 1).

Ann-input,m-output switching function can be represented by a multiple-valued function

of n + 1 variables where pi = 2 for i = 1; : : : ; n, and pn+1 = m. The minimization problem for

multiple-output functions is equivalent to the minimization of a multiple-valued function of this

form [119].

Definition 7.2.2 Let Xi be a variable taking a value from the set Pi, and let Si be a subset of Pi.XSii represents the Boolean functionXSii = 8<: 0 if Xi 62 Si
1 if Xi 2 SiXSii is called a literal of variable Xi. If Si � ;, then the value of the literal is always 0, and the

literal is called empty. If Si � Pi, then the value of the literal is always 1, and the literal is called

full.

Two-valued (or binary) functions are a special case of multi-valued functions wherePi = f0; 1g for i = 1; : : : ; n. In the case of a two-valued single-output function, some notational

simplification is then possible. A cube may be written as a vector on a set of variables with each

position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as�, don’t-care), signifying the true form, negated form or both of the variable corresponding to that

position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the

number of 2 entries. A cube with k entries or bits which take the value 2 is called a k-cube. A

minterm thus is a 0-cube.

7.2. BASIC DEFINITIONS 149

A product term (or cube) is a Boolean product (AND) of literals. A minterm or 0-cube

is a product-term in which the sets of values of all literals are singletons. If a product term evaluates

to 1 for a given minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product

term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-products is said to

contain the minterm. If a literal in a product-term is empty, the product term contains no minterms,

and is called the null product (written ;). The on-set of a function is the set of minterms for which

the function value is 1. Likewise, the off-set is the set of minterms for which the function value is

0, and the DC-set is the set of minterms for which the function value is unspecified.

In the definitions which follow, S = XS1
1 XS2

2 � � �XSnn and T = XT1
1 XT2

2 � � �XTnn repre-

sent product terms.

The product term S contains the product term T (T � S) if Ti � Si for i = 1 : : :n. The

complement of the literal XSii (writtenXSii) is the literalXPi�Sii . The complement of the product

term S (S) is the sum-of-products
Sni=1 XSii .

The intersection of product terms S and T (S \ T) is the product termXS1\T1
1 XS2\T2

2 � � �XSn\Tnn :
If Si \ Ti = ; for some i, then S \ T = ; and S and T are said to be disjoint. The intersection of

covers F and G is the union of f \ g for all f 2 F and g 2 G. The distance between S and T
(distance(S; T)) is jfijSi \ Ti = ;gj.

The consensus of S and T (consensus(S; T)) is the sum-of-productsn[i=1

XS1\T1
1 � � �XSi[Tii � � �XSn\Tnn :

If distance(S; T) � 2 then consensus(S; T) = ;. If distance(S; T) = 1 and Si \ Ti = ;, thenconsensus(S; T) is the single product termXS1\T1
1 � � �XSi[Tii � � �XSn\Tnn . If distance(S; T) = 0

then consensus(S; T) is a cover of n terms. If the consensus of S and T is nonempty, it is the set of

maximal product terms (ordered by containment) which are contained in S [T and which contain

minterms of both S and T . The consensus of two covers F and G is the union of consensus(f; g)
for all f 2 F and g 2 G.

The cofactor (or cube restriction) of S with respect to T (ST) is empty if S and T are

disjoint. Otherwise, the cofactor is the product termXS1[T1
1 � � �XS2[T2

2 � � �XSn[Tnn :

150 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

The cofactor of a cover F with respect to a product term S is the union of fS for all f 2 F .

An implicant of a function is a product term which does not contain any minterm in the

off-set of the function. A prime implicant of a function is an implicant which is not contained

by any other implicant of the function. An essential prime implicant is a prime implicant which

contains a minterm which is not covered by any other prime implicant.

The product term S can be represented in positional cube notation as a binary vector in

the following form: c0
1c1

1:::cp1�1
1 � c0

2c1
2:::cp2�1

2 � c0nc1n:::cpn�1n
where cji = 0 if j 62 Si, and cij = 1 if j 2 Si. In other words, a symbolic variable that can

take values from a set of cardinality n is represented in positional cube notation by an n-bit vector

to denote a literal of that variable such that each position in the vector corresponds to a specific

element of the set. A 1 in a position in the vector signifies the presence of an element in the literal

while a 0 signifies the absence. This method of representation is commonly known as one-hot. By

complementing the n-bit vector that represents the one-hot encoding of a symbolic variable, one

gets a representation called complemented one-hot.

7.3 Generalized Prime Implicants

7.3.1 Definition of Generalized Prime Implicants

Multi-valued inputs and binary-valued outputs functions can be represented by multiple-

valued functions where the set of binary outputs is treated as another multi-valued input variable.

Positional cube notation allows also to represent any function with multi-valued input and multi-

valued output variables. This is commonly done in programs like ESPRESSO-MV, when a function

with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded and then minimized. But the

minimization problem for functions with multi-valued input and multi-valued output variables is

not known to be equivalent to the minimization of a multiple-valued function of this form. After

1-hot encoding the onsets of the minterms (values) of a symbolic output are minimized separately.

To handle the minimization problem of functions with multi-valued input and multi-valued output

variables the concept of generalized prime implicants has been introduced [39].

Consider a discrete (alias symbolic) function whose domain and range are finite sets. The

previous theory of multi-valued minimization does not take into account the effect of encoding the

symbolic output variables to get a minimum two-level encoded function. More precisely it does

7.3. GENERALIZED PRIME IMPLICANTS 151

not model the fact that after encoding the onsets of the symbolic outputs are not anymore disjoint.

To overcome this limitation a concept of generalized prime implicants has been introduced in [39].

Even though the concept can be defined for functions with many symbolic inputs and many symbolic

outputs, for simplicity we will restrict most of the discussion to the case of a function with binary

inputs, one symbolic input variable, one symbolic output variable and binary outputs. This handles

symbolic descriptions of FSM’s. In what follows we will often not make a distinction between a

function f and a cover that represents f .

Consider an FSM M given by a symbolic cover f : I � Σ ! Σ �O. Given an integer n
and an encoding function e : Σ ! Bn, let e(f) be the encoded cover of f , i.e. the cover obtained

from f after replacement of the states with their codes, according to e. Consider a prime implicants = i p n o of the function represented by the encoded cover e(f). Associate to the encoded

present state field p the set of states Sp � Σ, whose codes are contained in p. Associate to the

encoded next state field n the set of states Sn � Σ, whose intersection of the codes is n 2. Both

operations are well-defined. Then one can associate to s the following symbolic product-termS = iXSpp XSnn o.

Given f : I � Σ ! Σ � O, consider a symbolic product-term S = iXSpp XSnn o. S
is a multi-valued input binary-valued output product-term, except that it has a multi-valued output

variable Xn whose multi-valued literal does not need to be a singleton. This latter feature makes it

"generalized". A question arises: what is the meaning of a such a generalized product-term ? Such

a generalized product-term is a template for corresponding encoded product-terms, as the following

definitions clarify.

Definition 7.3.1 Given a set of symbols S � Σ and an encoding function e : S ! Bn, lete(s) = e(s)1e(s)2 � � �e(s)n for s 2 S. Then
U e(S) is the product-term XS1

1 XS2
2 � � �XSnn whereSi = f0; 1g iff 9s; s̃ 2 S s.t. e(s)i = 1 and e(s̃)i = 0; Si = f0g iff 8s 2 S e(s)i = 0; Si = f1g

iff 8s 2 S e(s)i = 1.U
defines the minimum Boolean subspace of Bn spanned by the codes of the states of S.

Definition 7.3.2 Given a set of symbols S � Σ and an encoding function e : S ! Bn, lete(s) = e(s)1e(s)2 � � �e(s)n for s 2 S. Then
T e(S) is the product-term XS1

1 XS2
2 � � �XSnn whereSi = f0g iff 9s 2 S s.t. e(s)i = 0; Si = f1g iff 8s 2 S e(s)i = 1.

2Consider the next states in f of the transitions with minterms in i Sp, the intersection of their codes must be equal ton if s is a prime implicant (an exception is the case of transitions with ANY next state and specified proper outputs), and
must be � n if s is an implicant that is not a prime.

152 CHAPTER 7. GENERALIZED PRIME IMPLICANTST
defines the vertex of Bn obtained by bit-wise intersection of the codes of the states of S.

Definition 7.3.3 Given a product-term S = iXSpp XSnn o of a symbolic function f : I � Σ !
Σ � O, and an encoding function e : S ! Bn, the encoded product-term e(S) is given by:e(S) = iUe(Sp)Te(Sn)o.

Example 7.3.1 Consider the symbolic product-term 1 � 0 st1; st3; st4 st2; st3 1001 and the

encoding e(st0) = 011, e(st1) = 000, e(st2) = 111, e(st3) = 100, e(st4) = 010, e(st5) = 101.U e(Sp = fst1; st3; st4g) is��0,
T e(Sn = fst2; st3g) is 100, e(1�0 st1; st3; st4 st2; st3 1001)

is 1� 0 ��0 100 1001.

Definition 7.3.4 A generalized implicant (GI) S of a symbolic function f : I � Σ ! Σ � O is a

product-term of the form S = iXSpp XSnn o such that there are an integer n and an encoding

function e : Σ ! Bn so that e(S) is an implicant of e(f).
Definition 7.3.5 A generalized prime implicant (GPI) S of a symbolic function f : I �Σ ! Σ�O
is a generalized implicant such that there are an integer n and an encoding function e : Σ ! Bn so

that e(S) is a prime implicant of e(f).
It is true that for each prime implicant of an encoded FSM there is a GPI.

Theorem 7.3.1 For each prime implicant of the Boolean function represented by an encoded cover

there is at least one GPI.

Proof: Given a prime of a Boolean function represented by an encoded cover, consider the present

state subcube and find all states whose codes are contained in it, discarding those that do not

correspond to a state in the symbolic cover. This gives Sp. Find in the original symbolic cover the

next states of the states in Sp under the proper inputs of the prime. This gives Sn (the intersection

of the codes of the states in Sn dominates the next state subcube of the prime). The proper input

and output subcubes of the GPI are the same as those of the prime.

A similar theorem holds replacing prime implicant with implicant. The given definition does not

tell us how to compute the GPI’s. GPI’s can be obtained by a symbolic equivalent of the consensus

operation. Actually this is how they were first introduced in [39], as we will see in the next section.

Definition 7.3.6 A GI g1 covers another GI g2 iff the proper input and output of g1 contain,

respectively, the proper input and output of g2, the present state literal of g1 is a superset of the

present state literal of g2 and the next state literal of g1 is a subset of the next state literal of g2.

7.3. GENERALIZED PRIME IMPLICANTS 153

7.3.2 Generalized Prime Implicants by Consensus Operation

In old textbooks [94] it was common to represent a multiple-output function by a cover

of the function consisting of a set of cubes in the common input space, with an output tag attached

to each cube to specify the functions to whose onset the cube belongs. We call it functional

view. Instead in the more modern relational view the outputs are treated as one more multi-valued

variable [118, 114]. For instance a minterm in the relational view is a product-term in the input

and output variables where each literal is a singleton; in the functional view it is a product-term in

the input variables where each literal is a singleton, with an attached tag that specifies one or more

output functions. Therefore a minterm in the functional view may correspond to more than one

minterm in the relational view.

Generalized Implicants (GI’s) extend the definition of multiple-output implicants to the

case that some output variables are symbolic. In analogy to an output tag, the notion of symbolic

tag has been introduced in [39]. A GI can be written as a cube with associated tags for the multiple-

valued and binary-valued output functions. The tag of a cube for a multiple-valued output variable

gives the output symbol to whose onset the cube belongs. We let the tag of a symbolic output

variable contain more that one symbol, under the convention that - after encoding - the symbolic

tag will be replaced by a cube that is the bit-wise intersection of the codes of the symbols in the tag.

Prime implicants are maximal implicants of a Boolean function. Implicants of multiple-

output functions (multiple-output implicants) can cover 0-cubes in more than one output function. A

multi-output prime implicant is a maximal implicant for a set of output functions. Prime implicants

can be computed by the consensus method [107, 94]. Maximality of a multiple-output prime means

that its input part cannot be expanded without intersecting the offset of at least one function in the

output tag, nor any new function can be added to the output tag without the input part intersecting

the offset of this added function. The consensus operation of two product-terms p1 and p2 is the

largest product-term p such that p does not imply (i.e. is not contained in) either p1 or p2, but p
implies p1 + p2. Iterative consensus consists of successive addition of derived consensus terms to

a sum-of-product espression and removal of terms which are included in other terms. The iteration

of this procedure yields the set of all prime implicants.

Boolean Consensus. Generation of all prime implicants in the Boolean domain by iterated

consensus is the merging of k-cubes to form (k+1)-cubes until no new cubes are generated. (k+1)-
cubes remove from the list of candidate primes those k-cubes that are covered by a (k + 1)-cube.

When two k-cubes are merged, the output part of the (k + 1)-cube cannot dominate the output

154 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

parts of the k-cubes from which it was derived, since it is the conjunction of the output parts of

the k-cubes. A (k + 1)-cube removes a k-cube only if the input part of the (k + 1)-cube covers

the input part of the k-cube and the output part of the k-cube is the same as the output part of the(k + 1)-cube.

Consensus can be extended to GI’s by defining the symbolic tag of a consensus cube as

the union of the symbolic tags of the merged cubes. From now we will indicate by CONS the

consensus operator. By the context it will be clear if it is Boolean consensus or symbolic consensus.

Example 7.3.2 CONS(11 st1 st0 01; 11 st2 st2 11) = 11 st1; st2 st0; st2 01

Since these two minterms (or, 0-cubes) are distance-1 from each other in the input part, they can

be merged together to form a 1-cube, with the binary output part of the 1-cube being the bitwise

conjunction of the binary output parts of the individual 0-cubes. The symbolic output parts are

merged too, and the output part of the 1-cube is the union of the output parts of the 0-cubes. Ifs0 gets the code 101 and s1 gets the code 011, then the output part of the encoded 1-cube is 001,

saying that the cube 11 st1; st2 belongs to the onset of the third (and fifth) output function.

GPI’s are maximal implicants obtained after repeated applications of symbolic consensus. Consider

the rule to generate GPI’s of FSM’s. We suppose that the proper inputs and outputs are binary, even

though it would be easy to handle multiple-valued proper inputs and outputs.

Symbolic Consensus. (k + 1)-cubes are generated by merging k-cubes until no new

primes can be generated. A (k + 1)-cube formed from two k-cubes has a next state tag that is the

union of the two k-cubes’ next state tags and an output tag that is the intersection of the outputs in

the k-cubes’ output tags. The binary inputs of the k+ 1-cube are obtained with the usual consensus

rule for binary cubes. The present-state part of the k+ 1-cube is the union of the present state parts

of the k-cubes. A (k+ 1)-cube cancels a k-cube only if their multiple-valued present state parts are

identical or if the multiple-valued present state part of the (k + 1)-cube contains all the symbolic

states. 3 The binary input part of the k + 1-cube must cover the binary input part of the k-cube. In

addition, the next state and output tags have to be identical. A cube with a next state tag containing

all the symbolic states and with a null output tag can be discarded.

3The rule has no Boolean domain counterpart and it is due to the fact that when replacing symbols with boolean vectors,
the present state part yields an input constraint whose satisfiability depends on the encoding. Each of these GPI’s is a
multiple-output prime in the Boolean domain associated to an encoding where the input constraint is satisfied. Keeping
all GPI’s that differ only in the present state part, all multiple-output primes for all possible encodings are generated.

7.3. GENERALIZED PRIME IMPLICANTS 155

Proposition 7.3.1 A GPI corresponding to a prime implicant of an encoded cover can always be

obtained by symbolic consensus.

Proof: Given a prime implicant of an encoded cover, consider the corresponding GPI (found as in

the proof of theorem 7.3.1) and the minterms of the original symbolic cover that are contained in it.

By performing symbolic consensus on the cover of the contained minterms one obtains exactly the

corresponding GPI.

Viceversa, consider a product term obtained by symbolicconsensus, then there is always an encoding

such that the encoded GPI is a prime implicant of the encoded symbolic cover. For instance consider

1-hot encoding padded by a final 1, i.e., a 1 is added at the end of all codes.

7.3.3 Encodeability of Generalized Prime Implicants

Given a set of GPI’s the goal is to realize the original symbolic cover. There are two

issues here:

1. There may not exist a single encoding function that works for all GPI’s of the cover and

translates them into primes of the encoded initial cover.

2. The encoded cover of GPI’s may not realize (yet) the encoded initial cover.

The first issue is one of encodeability, i.e., of finding codes that map a symbolic cover into a

corresponding two-valued cover. The second issue is one of covering, i.e., of realizing all the

behavior of the initial symbolic cover. We will now define carefully the conditions to satisfy both

types of requirements. They will be phrased in terms of encoding constraints, expressing both

encodeability and covering.

Suppose that a set of GPI’s, P , is given. Consider a mintermm (in the primary input and

present state space), of the original symbolic cover (a 0-cube is determined by a minterm in the

proper input space and a present state) and say that it asserts the next state sm. In an encoded covermwill assert the code assigned to sm, denoted by e(sm). Suppose that GPI’s pm1 ; : : : ; pmM of those

in P cover m. Minterm m asserts in P the intersection of next states in the tags of pm1 ; : : : ; pmM .

In order that the cover of GPI’s P be equivalent to the original FSM, each minterm must assert inP the same output as in the original FSM. Therefore the following next-state encoding constraint

(or minterm encoding constraint or consistency equation) must be satisfied for every mintermm: e(sm) = mM[i=m1

\j e(si;j) (7.1)

156 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

where si;js are the next states in the tag of the GPI pmi and e(s) is the code assigned to state s. T
corresponds to bitwise conjunction and

S
corresponds to bitwise disjunction. The state sm is called

the parent and the states si;j are called the children of the next-state constraint.

If no GPI in P covers m, then the constraint for m reduces to:e(sm) = ; (7.2)

Clearly this constraint (empty next-state constraint) is unsatisfiable, if some GPI that covers m is

not added to P .

For example, if two GPI’s, one with next state tag (s1; s2; s3) and another with next state

tag (s1; s4) are the ones in P covering minterm 10 s1 s1 11, the constraint for the minterm

10 s1 s1 11 would be e(s1) = e(s1)\ e(s2)\ e(s3) S e(s1)\ e(s4).
Moreover, in order that the cover of GPI’s P be equivalent to the original FSM, each

minterm must assert in P the same proper outputs as in the original FSM. Say that each GPI pi has

a corresponding output tag oi and that the output tag of minterm m is om. Suppose as before that

GPI’s pm1; : : : ; pmM of those in P cover m. The following proper output covering constraint

must be satisfied for every mintermm: om = mM[i=m1

oi (7.3)

If minterms are defined as a product of multi-valued singleton literals as in Section 8.1, proper

output covering constraints are satisfied iff a set of GPI’s that covers every row is selected, i.e. by

reduction to an ordinary unate covering problem.

Each GPI yields also an input encoding constraint (or face embedding constraint), i.e.,

the set of states in the multi-valued literal of the present state variable. An input encoding constraint

is satisfiable if there is an encoding such that the codes of the states form a face (in the Boolean

encoding space) that does not include the codes of the states absent from it. An input encoding

constraint is satisfied in a given encoding if the codes of the states in it form a face (in the Boolean

encoding space) that does not include the codes of the states absent from it. If it contains all states or

only one state, the input constraint is trivial, since it does not impose any limitation on the encoding

of the states.

Finally uniqueness encoding constraints impose that different codes states are assigned

to different states (e.g., e(si) 6= e(sj), for i 6= j). Unless otherwise stated, we suppose that they

must always be satisfied. They can be modelled in the same way as input constraints, and when not

necessary we will not distinguish between the two types of constraints.

7.3. GENERALIZED PRIME IMPLICANTS 157

Sometimes constraints of various types are called collectively encoding constraints. It

will be clear from the context which types of constraints are meant.

A set of of GPI’s or of encoding constraints induced by them is said to be encodeable or

feasible or satisfiable if there is an assignment of states to codes (Boolean vectors) such that each

constraint is satisfied, according to the definition of satisfaction of its specific type of constraint.

Such an assignment is called an encoding.

The selection of a minimum set of GPI’s that satisfies both the (next state and input)

encoding constraints and the (proper output) covering constraints can be modelled as a table

covering problem (either a constrained unate covering or binate covering problem). This reduction

will be fully developed in Section 8.1.

The tag of a GPI may contain from one to all the states. If one generates only GPI’s

whose tag has a cardinality less than a given bound, one has an approximate algorithm for the

state assignment problem. By setting the bound to 1, a disjoint minimization problem is defined,

equivalent to approximating state assignment as an input encoding problem as in [92]. By setting

the bound to less than the number of states, one can trade-off quality of the solution vs. running

time.

7.3.4 Sufficiency of GPI’s

The problem of obtaining the minimum two-level representation of a function can be

reduced to one of finding the minimum number of prime-implicants covering all the minterms. The

same holds true for symbolic functions by means of GPI’s, with the caveat that the chosen GPI’s must

be encodeable. Thus, if one selects a minimum set of encodeable GPI’s that cover all the minterms,

this is a minimum solution of the state assignment problem for two-level implementations. It is

a solution because of encodeability, i.e., enforcing the consistency equations makes sure that each

minterm asserts the same output both in the original and in the GPI cover (and so in the encoded

cover). It is also a minimum solution, as the following theorem shows.

Theorem 7.3.2 A minimum cardinality symbolic cover of an FSM can be made up exclusively of

GPI’s.

Proof: We suppose that no cube of the cover has a next state tag containing all the symbolic states

and a null output tag, otherwise it can be dropped and the cover would not be minimal. Assume

that we have a minimum cardinality solution with a cube c1 that is not a GPI. Let the tag of c1 be

the T . We know that a GPI p1 exists such that

158 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

1. the binary input part of p1 covers the binary input part of c1;

2. p1 and c1 have same present state part;

3. p1 and c1 have same next state and binary outputs tags.

Replacing c1 with p1 will not change the cardinality of the cover. The only question is whether the

set of GPI’s so obtained is encodeable. We show now that it is the case. The generalized implicants

(GI’s) of the given cover are encodeable by hypothesis. The constraints of the GPI’s of the new

cover are the same as those of the given GI’s, except for the minterms in p1 � c1. For each minterm

in p1 � c1 we add new disjuncts to its consistency equation. Each disjunct is a conjunction of

symbols each of which is a next state originally asserted by the minterm, because when generating

GPI’s (e.g. p1) we take the union of the next states tags of the merged GI’s. One of the merged

GI’s must cover the minterm and a GI covers a minterm only if it includes in its next state tag

the next state that the minterm asserts. Since each added disjunct contains the next state asserted

by the minterm, whatever encoding satisfies the old consistency equation, it satisfies also the new

consistency equation. Notice that the input constraints of the GPI’s of the new cover coincide with

those of the given GI’s, because the GPI cancellation rule requires the same present state part to

delete a GI 4. Therefore any encoding that satisfies the given GI’s satisfies also the GPI’s of the

new cover and therefore encodeability is preserved.

7.4 Reduction of GPI’s Computation to MV Primes Computation

The next question is how to compute efficiently GPI’s. In [39] it is shown how to reduce

the computation of GPI’s to the computation of the primes of a multiple-valued function obtained

by transformation of the given FSM. We will generalize the transformation to the case of ISFSM’s

and prove the correctness of the reduction.

This reduction is of great interest because it allows to exploit existing efficient algorithms

for prime generation [114, 53]. We will describe briefly in Section 11.2 efficient algorithms for

generation of large sets of primes and report on their application to this problem.

4GPI cancellation when the present state part of the cancelling cube is full preserves encodeability because it actually
relaxes input constraints.

7.4. REDUCTION OF GPI’S COMPUTATION TO MV PRIMES COMPUTATION 159

-0 st0 st0 01 -0 100 100 01 -0 100 011 10 01 100 000 11
11 st0 st0 00 11 100 100 00 11 100 011 11 0- 010 000 01
01 st0 st1 -- 01 100 010 00 01 100 101 00 -1 010 000 01
0- st1 st1 1- 0- 010 010 10 0- 010 101 00 01 001 111 11
11 st1 st0 0- 11 010 100 00 11 010 011 10
10 st1 st2 10 10 010 001 10 10 010 110 01
1- st2 st2 11 1- 001 001 11 1- 001 110 00
00 st2 st1 10 00 001 010 10 00 001 101 01
01 st2 ANY --

Figure 7.1: Covers of FSM leoncino

7.4.1 An Example

Fig. 7.1 shows on left a symbolic cover of an example of ISFSM, leoncino, that will

be used throughout the exposition of GPI minimization. It is an ISFSM because there are some

don’t cares in the proper output part and one unspecified next state, denoted by ANY . In the

tabular format, it is customary to omit transitions which have the next state and all proper outputs

unspecified. The input variables of this symbolic function are the proper inputs and the present

state; the output variables are the next state and the proper outputs.

An FSM can be interpreted as a multiple-valued function by representing both the present

state and the next state with 1-hot encoding. For instance, use ESPRESSO with the keywords:

.mv 5 2 -3 -3 2, .type fr, .kiss. The meaning is that the given FSM is a function with 5 multiple-

valued variables, two of which are binary, two 3-valued and one 2-valued. Type fr specifies that a

cube is in the offset of an output variable where a 0 appears 5.

The one-hot encoded representation of the onset, offset and dcset of leoncino are the

second, third and fourth cover from left, respectively, of Fig. 7.1. The cover of the onset and offset

are read directly from the input (since type fr is specified). By complementing the union of the

covers of the onset and offset, a cover of the dcset is obtained 6:

5As a matter of fact, ESPRESSO treats n binary output variables as one n-valued input variable; moreover, a s-valued
next state variable and an n-valued proper output variable are replaced by one s+ n-valued variable. In the example, the
function has 4 multiple-valued variables, two of which are binary, one 3-valued and one 5-valued.

6Complementation is performed only with respect to the proper inputs and present state universe.

160 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.4.2 Definition of the Transformation

We will exhibit a multi-valued function whose primes are the GPI’s of the FSM leoncino,

modulo a post-processing step.

To do that define a function, called companion function of the symbolic function, with 4

multiple-valued variables, two of which are binary, one 3-valued and one 8-valued. We represent the

companion function by a companion cover of the symbolic cover, constructed as follows. Transform

the cover of the onset of the original function by transforming each cube into a companion cube in

the following way:

1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Transform the cover of the dcset of the original function by transforming each cube into a companion

cube in the following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

The transformed cover of the onset of the symbolic function is:

-0 100 01101101
11 100 01101100
01 100 10101100
0- 010 10110110
11 010 01110100
10 010 11010110
1- 001 11011011
00 001 10111010

The transformed cover of the dcset of the symbolic function is:

01 100 00001111
0- 010 00010101
-1 010 00010101
01 001 11111011

Finally, the companion function is the function represented by the companion cover
obtained by joining the transformed covers of the onset and dcset of the symbolic function:

7.4. REDUCTION OF GPI’S COMPUTATION TO MV PRIMES COMPUTATION 161

.mv 4 2 3 8
-0 100 01101101
11 100 01101100
01 100 10101100
0- 010 10110110
11 010 01110100
10 010 11010110
1- 001 11011011
00 001 10111010
01 100 00001111
0- 010 00010101
-1 010 00010101
01 001 11111011

In the next section we will show that the primes of this function are in 1-1 correspondence

with the GPI’s of the original FSM, modulo an easy post-processing step that deletes some primes.

The primes of the companion MV function are shown in Fig. 7.2.

Some primes can be removed because they do not correspond to GPI’s. Primes of one of

the two following types are removed:

1. Primes that are covered by another prime, with full present state part and with the same next

state and output tags. It is always better to select the covering prime since it induces no face

constraint and covers the same minterms in the next state and output spaces.

2. Primes with full next state tag and null output tag. Since the next state tag is full, after

encoding, it would be replaced by the intersection of all the codes, that is the all zero code,

for any encoding. Therefore such a prime would not contribute to cover any minterm in next

state spaces, nor in the output spaces (null output tag).

Fig. 8.3 shows the set of 26 GPI’s obtained after post-processing.

7.4.3 Correctness of the Transformation

Theorem 7.4.1 The computation of GPI’s can be reduced to the computation of the primes of the

companion multivalued function (MV primes) followed by a post-processing step that cancels 1) any

MV prime contained by an MV prime with coinciding next state and output tags and whose present

state part contains all the symbolic states and 2) any MV prime with a next state tag containing all

the symbolic states and with a null output tag.

162 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

.mv 4 2 3 8

.p 39
0- 010 10110111
01 001 11111011
1- 001 11011011
-1 001 11011011
01 100 10101111
01 110 10100111
01 101 10101011
01 011 10110011
01 111 10100011
-0 100 01101101
0- 001 10111010
-- 001 10011010
0- 011 10110010
0- 100 00101101
11 010 01110101
-1 010 00110101
0- 110 00100101
10 010 11010110
-0 010 10010110
10 011 11010010
-0 011 10010010
1- 100 01101100
-- 100 00101100
10 101 01001001
11 011 01010001
-1 011 00010001
1- 010 01010100
-- 010 00010100
11 110 01100100
-1 110 00100100
1- 110 01000100
-- 110 00000100
0- 101 00101000
1- 101 01001000
-- 101 00001000
1- 011 01010000
-- 011 00010000
0- 111 00100000
1- 111 01000000

Figure 7.2: GPI’s of FSM leoncino before post-processing

7.4. REDUCTION OF GPI’S COMPUTATION TO MV PRIMES COMPUTATION 163

Proof: In the course of the proof we will refer to a symbolic cover (symbolic product-term) and

an MV cover (MV product-term) as companion of each other if they are obtained by means of the

previous transformation.

One must prove that for every GPI there is a prime of the function (modulo a post-

processing step) and viceversa. In the sequel, unless otherwise stated, we will call MV primes

those left after the post-processing step applied to the set of primes of the MV function. In [39]

the rules for consensus and cancellation originally defined for binary cubes (e.g., in [94]) were

extended to symbolic cubes. We call them GPI consensus and GPI cancellation. GPI’s are defined

as the fixed point of the computation that takes an initial symbolic cover and iteratively applies

to it GPI consensus and cancellation. Primes of the companion MV function can be computed in

different ways. They can be found as the fixed point of the computation that takes an initial MV

cover and iteratively applies to it MV consensus and cancellation. We suppose that both fixed-point

computations proceed as follows:

Start with the initial cover. For each pair of cubes in the cover, repeat until the cover does not

change:

1. compute their consensus;

2. apply cancellation to the consensus cubes;

3. add the consensus cubes to the cover, unless their are cancelled by a cube already in the cover;

4. cancel any other cube covered by a consensus cube.

We show that at each step (and at fortiori at the end) of both fixed-point computations, performed

respectively on the symbolic and MV cover, two companion covers are maintained.

We are now going to describe carefully and contrast consensus and cancellation in both

domains.

GPI consensus. GPI consensus forms a k + 1-cube from two k-cubes that either have

1. same binary-valued parts and different present state part; or

2. unidistant binary-valued parts and same present state part.

Merging two k-cubes forms a k+1-cube that has a next state tag that is the union of the two k-cubes’

next state tags and an output tag that is the intersection of the outputs in the k-cubes’ output tags.

The binary inputs of the k+1-cube are obtained with the usual consensus rule for binary cubes. The

164 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

present-state part of the k + 1-cube is the union of the present state parts of the k-cubes. Example

of GPI consensus in case 1:CONS(00 st0 st0 01; 00 st2 st1 10) = 00 st0; st2 st0; st1 00

Example of GPI consensus in case 2:CONS(10 st2 st2 11; 00 st2 st1 10) = �0 st2 st2; st1 10

MV consensus. Consider two MV cubesS = X1
S1X2

S2 :::XnSn andT = X1
T1X2

T2 :::XnTn.

The intersection of S and T is the product-termn[
1

X1
S1\T1X2

S2\T2:::XnSn\Tn
which is the largest product term contained in both S and T . If Si \ Ti = � for some i, thenS \ T = � and S and T are said to be disjoint. The distance between S and T equals the number

of empty literals in their intersection. The consensus of S and T is the sum-of-productsn[
1

X1
S1\T1:::XiSi[Ti:::XnSn\Tn:

If the distance of S and T is � 2 then their consensus is empty. If the distance of S and T is 1 andSi \ Ti = �, then their consensus is the single product-termX1
S1\T1:::XiSi[Ti:::XnSn\Tn :

If the distance of S and T is 0, then their consensus is a cover of n terms. Summarizing, MV

consensus forms one cube from two MV cubes that have distance 1, and k + 2 cubes - if k is the

number of binary inputs - from two two MV cubes that have distance 0. Example of MV consensus

of unidistant cubes:CONS(00 100 01101101; 00 001 10111010) = 00 101 00101000

Example of MV consensus of 0-distant cubes:CONS(00 110 00100101; 00 101 00101000) =
00 100 00100000; 00 100 00100000; 00 111 00100000; 00 100 00101101

Notice that the transformation rule for cubes in the onset ensures that the next state in the output

field has a complemented 1-hot encoding so that MV intersection of encoded next states has the

7.4. REDUCTION OF GPI’S COMPUTATION TO MV PRIMES COMPUTATION 165

same effect as GPI union of next state tags. For the same reason, the transformation rule for cubes

in the dcset does not complement the 1-hot encoding of the next state in the output field. The

following facts account for the asymmetry. There are two types of cubes in the dcset. The first type

is generated by transitions with next state ANY, e.g.,: 01 st2 ANY �� (01 001 11111011). The

fact that the next state is encoded by 111 means that the cube carries no information about the next

state. When this cube is merged with other cubes at distance � 1, it does not add any information

to the next state, same as when taking consensus of the companion GPI’s. The second type is

generated by transitions with a specified next state and some unspecified proper outputs. These

transitions generate a pair of cubes, one in the dcset and one in the onset, as follows: 0� st1 st1 1�,

corresponding to 0� 010 00010101 in the dcset and 0� 010 10110110 in the onset.

When the onset and the dcset are joined, these two cubes are merged into one cube that

corresponds to the original transition where all unspecified proper outputs have been set to 1, in

agreement with the fact that the GPI’s computed starting from onset f and dcset d coincide with the

GPI’s computed starting from onset f + d and empty dcset (as it is true in general for the primes

of a boolean function).The example shows the cube resulting from merging and the corresponding

transition: 0� 010 10110111 (0 � st1 st1 11).

GPI cancellation. A k + 1 cube cancels a k-cube if one of the following is true:

1. The binary input part of the k + 1-cube covers the binary input part of the k-cube.

2. They have the same present state part, and the next state and output tags are identical.

3. The present state part of the k+ 1-cube contains all the symbolic states and the next state and

output tags are identical.

The last case is part of the post-processing step in the MV domain. In addition, a cube with a next

state tag containing all the symbolic states and with a null output tag is cancelled. This case too is

part of the post-processing step in the MV domain, except when a MV prime has also a full present

state part (then the present state field in the output part is all 0’s).

MV cancellation. An MV cube contains another MV cube if the parts of the former

contain the corresponding parts of the latter. An MV cube cancels another MV cube if it contains it.

Notice that the present state field in the output part has been introduced to avoid MV cancellation

when there is strict containment between present state parts, as shown here where the upper MV

cube 10 011 11010010 (10 st1; st2 st2 10) does not cancel the lower one 10 010 11010110

(10 st1 st2 10), consistently with the GPI cancellation rule.

166 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

GPI consensus to MV consensus. Suppose that GPI consensus applies to two symbolic

cubes. Does MV consensus apply to their companion MV cubes ? If so, does GPI consensus result

in a symbolic cube whose MV companion is equal to the MV cube obtained by MV consensus ?

a Suppose that the two symbolic cubes have the same binary-valued parts and different present

state part. The companion MV cubes may have distance 1 or distance 0.

a1 If the companion MV cubes have distance 1, GPI consensus works as MV consensus. Example

of GPI consensus and companion MV cubes:CONS(00 st0 st0 01; 00 st2 st1 10) = 00 st0; st2 st0; st1 00CONS(00 100 01101101; 00 001 10111010) = 00 101 00101000

a2 If the companion MV cubes have distance 0, GPI consensus generates 1 consensus cube, while

MV consensus generates k + 2 consensus cubes, if k is the number of proper binary inputs.

But k + 1 consensus cubes are cancelled and the only one left is the companion cube of the

symbolic consensus cube. Example of GPI consensus and companion MV cubes:CONS(00 st0; st1 st0; st1 01; 00 st0; st2 st0; st1 00) = 00 st0; st1; st2 st0; st1 00CONS(00 110 00100101; 00 101 00101000) =
00 100 00100000; 00 100 00100000; 00 111 00100000; 00 100 00101101

The first two terms are absorbed by the two original MV cubes, the third one is the companion

MV cube of the result of GPI consensus. The fourth term is cancelled by another MV cube

companion of a symbolic cube created by GPI consensus. In this example it is cancelled by

0� 100 00101101, an MV prime whose companion symbolic cube is 0� st0 st0; st1 01.

b Suppose that the two symbolic cubes have unidistant binary-valued parts and same present state

part. In this case the companion MV cubes have distance 1 and GPI consensus works as MV

consensus.

MV consensus to GPI consensus. Suppose that MV consensus applies to two MV cubes.

Does GPI consensus apply to their companion symbolic cubes ? If so, does MV consensus result in

a MV cube whose symbolic companion is equal to the symbolic cube obtained by GPI consensus ?

1 Suppose that the two MV cubes have distance 1.

7.4. REDUCTION OF GPI’S COMPUTATION TO MV PRIMES COMPUTATION 167

1a If they differ in a binary input, MV consensus works as GPI consensus

1b If they differ in the present state part, MV consensus works as GPI consensus.

1c If they differ in the output part, GPI consensus does not apply, while MV consensus does. But

the MV consensus cube is cancelled by an already existing cube, so the net effect is the same

in both cases

2 Suppose that the two MV cubes have distance 0. Apparently GPI consensus and MV consensus

behave differently, but the same reasoning as in case a2 of the analysis of GPI consensus to

MV consensus shows that the net effect is the same.

GPI cancellation to MV cancellation. Suppose that GPI cancellation applies between

two symbolic cubes. Does MV cancellation apply to their companion MV cubes ? Yes. GPI

cancellation applies only when two symbolic cubes have the same present state part and the next

state and output tags are identical. Obviously a containment relation is satisfied by binary-valued

inputs. The companion MV cubes satisfy the same containment relation and MV cancellation

applies too.

MV cancellation to GPI cancellation Suppose that MV cancellation applies between

two MV cubes. Does GPI cancellation apply to their companion symbolic cubes ? There are

cases when MV cancellation applies, but GPI cancellation does not. But they happen only when

cancelling the last cube generated by MV consensus between cubes with distance 0. This MV cube

has no symbolic companion and therefore the net effect is the same, as argued in case a2 of the

analysis of GPI consensus to MV consensus. Example of GPI consensus and companion MV cubes:CONS(10 st0; st1 st0; st2 00; 10 st0; st2 st0; st2 01) = 10 st0; st1; st1 st0; st2 00CONS(10 110 01000100; 10 101 01001001) =
10 100 01000000; 10 100 01000000; 10 111 01000000; 10 100 01001101

In this example the fourth term is cancelled by the MV cube �0 100 01101101. The companion

symbolic cubes are respectively 10 st0; st1; st2 st0; st2 01 and �0 st0 st0 01. Notice that the

symbolic cube companion of the cancelling cube does not cancel the symbolic cube companion of

the cancelled cube. But this cancellation in the GPI domain is not required because the companion

symbolic cube of the cancelled MV cube is not generated by GPI consensus.

168 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.4.4 Definition of a Max-Min Family of Transformations

The transformation in Section 7.4.2 produces a function whose primes correspond to the

GPI’s, after a pruning step is applied to them. It is of practical interest to define functions whose

primes correspond to a subset of the GPI’s, in order to generate a part of the GPI’s, when the whole

set cannot be built or manipulated.

We are going now to define a family of such transformations. We remind that the onset

of the companion function defined in Section 7.4.2 is obtained from the onset of the symbolic FSM

by transforming each cube in the following way:

1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

The dcset of this new function is obtained from the previous dcset by transforming each cube in the

following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Notice the key step of inserting the complemented 1-hot encoding of the present state between the

next state and the proper outputs. This step avoids cancellation of cubes whose present state literal is

included properly in another cubes’ present state literal, since the former cube might be necessary for

encodeability reasons. But suppose that, instead than inserting the complemented 1-hot encoding

of the present state, we insert any literal that is contained in it. The effect is that some unwanted

cube cancellation can take place, and therefore that we will get a proper subset of the GPI’s. In the

extreme limit we can replace the complemented 1-hot encoding of the present state with an empty

cube and this will make possible the most of cancellation, producing the smallest subset of GPI’s

definable in this way. We call maximal transformation the one presented in Section 7.4.2 and

minimal transformation the one with an empty subcube. The Max-Min family of transformations

includes any transformation that for any cube in the original cover inserts between the next state and

the proper outputs any literal included between the complemented 1-hot encoding of the present

state and the empty literal. This proves the next statement.

Proposition 7.4.1 Each transformation in the Max-Min family generates a subset of GPI’s.

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 169

7.5 Relation between GPI’s and Primes of Encoded FSM’s

In this section we demonstrate by examples the relation between GPI’s and primes of

encoded FSM’s.

7.5.1 Minimum Cover of Encoded FSM and Minimum Cover of Encoded GPI’s

We analyze the following two experiments:

1. Given a satisfying encoding,replace the codes in the FSM and minimize it (without makesparse,

to obtain a minimum cover of primes).

2. Given a corresponding set of GPI’s, replace the codes in the GPI’s and minimize the resulting

cover.

The two covers are the same, up to exceptions explained by the theory.

Encode the FSM leoncino with the following codes: e(st0) = 00; e(st1) = 10; e(st2) =
11. The encoded FSM is 7:

-0 00 00 01
11 00 00 00
01 00 10 --
0- 10 10 1-
11 10 00 0-
10 10 11 10
1- 11 11 11
00 11 10 10
01 11 -- --
-- 01 -- --

A minimum cover of primes of the encoded FSM is:

-01- 1010
01-- 1011
-00- 0001
101- 1110
1--1 1111

2. The GPI’s in the minimum encodeable solution are:

7One can omit the last two cubes and specify :typefr, which tells to ESPRESSO to put the unspecified input minterms
in the dcset of all outputs.

170 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

3 1- st2 st2 11
5 01 st0,st1,st2 st1 11
6 -0 st0 st0 01
16 10 st1,st2 st2 10
17 -0 st1,st2 st1,st2 10
11 11 st1 st0 01
18 1- st0 st0 00

The encoded GPI’s in the minimum encodeable solution are:

3 1- 11 11 11
5 01 -- 10 11
6 -0 00 00 01
16 10 1- 11 10
17 -0 1- 10 10
11 11 10 00 01
18 1- 00 00 00

Add cube � � 01 � � � � (dcare conditions on 01, that is the code of st3, a state
introduced as an artifact of encoding):

1- 11 11 11
01 -- 10 11
-0 00 00 01
10 1- 11 10
-0 1- 10 10
11 10 00 01
1- 00 00 00
-- 01 -- --

A minimum cover of primes of the encoded GPI’s is:

1--1 1111
01-- 1011
101- 1110
-11- 0001
-00- 0001
-01- 1010

This coincides with the previous minimum cover of primes of the encoded FSM, except

for the cube �11 � 0001, explained by all zeroes effect (see discussion in subsection 8.1 before).

The previous transformations are summarized by Figure 7.3.

7.5.2 Primes of Encoded FSM vs. Primes of Encoded GPI’s

GPI’s can be seen as templates of the primes of every encoded FSM. The following two

experiments clarify the statement:

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 171

original cover
of FSM

encoded cover
of FSM

min cover of primes
of encoded FSM

min selection
of GPIs

encoded
set of GPIs

optimum
encoding minimize

cover

GPI generation
and selection optimum

encoding

minimize cover,
using dc set

Figure 7.3: The circle of encodings

1. If one takes the primes of an encoded FSM and extracts the underlying GPI’s, one gets a

subset of the GPI’s.

2. If one takes all the GPI’s, encodes them with a given encoding and then raises them to

primality in the encoding space (by removing the encoded GPI’s that are not primes and

expanding them with the appropriate dcset), one gets the primes of the encoded FSM (with

the same encoding).

We illustrate the previous statements with examples. The previous transformations are summarized

by Figure 7.4.

1. From primes of the encoded FSM to GPI’s.
The primes of the previous encoded FSM are:

1--1 1111
-1-1 1111
--01 1111
01-- 1011
---1 1010
0-10 1011
101- 1110
0-1- 1010
-01- 1010
-11- 0001
0-0- 0001
-00- 0001

172 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

the set of
all GPIs

a set
of GPIs

encodeminimize
using dc set encoded set

of GPIs

primes of
encoded FSM

extract
underlying GPIs

Figure 7.4: The circle of primes

0--0 0001

The companion MV cubes are:

1- st2,st3 st2 11
-1 st2,st3 st2 11
-- st3 st2 11
01 st0,st1,st2,st3 st1 11
-- st2,st3 st1 10
0- st1 st1 11
10 st1,st2 st2 10
0- st1,st2 st1 10
-0 st1,st2 st1 10
-1 st1,st2 st0 01
0- st0,st3 st0 01
-0 st0,st3 st0 01
0- st0,st1 st0 01

The corresponding GPI’s are 8:

3 1- st2 st2 11
4 -1 st2 st2 11
5 01 st0,st1,st2 st1 11
8 -- st2 st1,st2 10
1 0- st1 st1 11
16 10 st1,st2 st2 10
9 0- st1,st2 st1 10
17 -0 st1,st2 st1,st2 10

8There is no GPI for �� st3 st2 11 since it belongs to the don’t care set of st3.

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 173

22 -1 st1,st2 st0,st1,st2 01
10 0- st0 st0,st1 01
6 -0 st0 st0 01
13 0- st0,st1 st0,st1 01

2. From encoded GPI’s to primes of the encoded FSM.
The encoded GPI’s are:

1 0- 10 10 11
2 01 11 -- 11
3 1- 11 11 11
4 -1 11 11 11
5 01 -- 10 11
6 -0 00 00 01
7 0- 11 10 10
8 -- 11 10 10
9 0- 1- 10 10
10 0- 00 00 01
11 11 10 00 01
12 -1 10 00 01
13 0- -0 00 01
14 10 10 11 10
15 -0 10 10 10
16 10 1- 11 10
17 -0 1- 10 10
18 1- 00 00 00
19 -- 00 00 00
21 11 1- 00 01
22 -1 1- 00 01
23 11 -0 00 00
24 -1 -0 00 00
25 0- -- 00 00
26 1- -- 00 00

Notice that there may be GPI’s that cannot be encoded. For instance, the encoding of the

MV literal st0; st2 of 20 : 10 st0; st2 st0; st2 01 would be ��, that includes also st1.

Notice that to establish a 1-1 correspondance with the primes of the encoded FSM, it is
necessary to find the primes of the encoded GPI’s, because some encoded GPI’s subsume some
other encoded GPI’s, e.g. 9,

9GPI 14 and GPI 16 were kept, because it could be that no selection of GPI’s that satisfies the input constraint st1; st2
is the smallest one, so that the smallest selection of encodeable GPI’s would not include GPI 16, but might include GPI
14.

174 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

14 10 st1 st2 10
16 10 st1,st2 st2 10
14 10 10 11 10
16 10 1- 11 10

Notice also that, before computing the primes, one must add to the encoded GPI’s the
following cube � � 01 � � � �, that specifies as don’t care for all output functions the input
minterms with present state 01, introduced as an artifact of the encoding. In general, one computes
the primes of the cover that includes the encoded GPI’s and all the global don’t care minterms
related to encoded present states not corresponding to symbolic present states of the original FSM.
The primes of the encoded GPI’s coincide with the primes of the encoded FSM and are:

1--1 1111
-1-1 1111
--01 1111
01-- 1011
---1 1010
0-10 1011
101- 1110
0-1- 1010
-01- 1010
-11- 0001
0-0- 0001
-00- 0001
0--0 0001

Now let us work out the example choosing a 1-hot encoding: e(st0) = 100, e(st1) = 010,e(st2) = 001.

1. From primes of the encoded FSM to GPI’s.
The primes of the encoded FSM and the corresponding GPI’s are:

--11- 11111 dcset
--1-1 11111 dcset
---11 11111 dcset
01--1 11111 01 st2 - 11 gpi 2
--000 11111 dcset
0100- 11111 01 st2 - 11 gpi 2
1---1 00111 1- st2 st2 11 gpi 3
-1--1 00111 -1 st2 st2 11 gpi 4
01--- 01011 01 st0,st1,st2 st1 11 gpi 5
0--1- 01011 0- st1 st1 11 gpi 1
1-00- 00111 1- st2 st2 11 gpi 3
-100- 00111 -1 st2 st2 11 gpi 4

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 175

0-0-0 01011 0- st1 st1 11 gpi 1
-01-- 10001 -0 st0 st0 01 gpi 6
0-0-- 01010 0- st1,st2 st1 10 gpi 9
0---1 01010 0- st2 st1 10 gpi 7
----1 00010 -- st2 st1,st2 10 gpi 8
11-1- 10001 11 st1 st0 01 gpi 11
-0-00 10001 -0 st0 st0 01 gpi 6
0-1-- 00001 0- st0 st0,st1 01 gpi 10
-10-- 00001 -1 st1,st2 st0,st1,st2 01 gpi 22
-1-1- 00001 -1 st1 st0,st1 01 gpi 12
0---0 00001 0- st0,st1 st0,st1 01 gpi 13
100-- 00110 10 st1,st2 st2 10 gpi 16
10-1- 00110 10 st1 st2 10 gpi 14
-00-- 00010 -0 st1,st2 st1,st2 10 gpi 17
-0-1- 00010 -0 st1 st1,st2 10 gpi 15
--00- 00010 -- st2 st1,st2 10 gpi 8
1-1-- 10000 1- st0 st0 00 gpi 18
110-0 10001 11 st1 st0 01 gpi 11
10-0- 00001 10 st0,st2 st0,st2 01 gpi 20
11--0 10000 11 st0,st1 st0 00 gpi 23
1--00 10000 1- st0 st0 00 gpi 18

2. From encoded GPI’s to primes of the encoded FSM.
The encoded GPI’s are:

1 0- 010 010 11
2 01 001 --- 11
3 1- 001 001 11
4 -1 001 001 11
5 01 --- 010 11
6 -0 100 100 01
7 0- 001 010 10
8 -- 001 000 10
9 0- 0-- 010 10
10 0- 100 000 01
11 11 010 100 01
12 -1 010 000 01
13 0- --0 000 01
14 10 010 001 10
15 -0 010 000 10
16 10 0-- 001 10
17 -0 0-- 000 10
18 1- 100 100 00
19 -- 100 000 00

176 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

20 10 -0- 000 01
21 11 0-- 000 01
22 -1 0-- 000 01
23 11 --0 100 00
24 -1 --0 000 00
25 0- --- 000 00
26 1- --- 000 00

The following global dcare minterms are added:

--000 --- --
---11 --- --
--11- --- --
--1-1 --- --

The primes of the encoded GPI’s are:

--11- 11111
--1-1 11111
---11 11111
01--1 11111
--000 11111
0100- 11111
1---1 00111
-1--1 00111
01--- 01011
0--1- 01011
1-00- 00111
-100- 00111
0-0-0 01011
-01-- 10001
0-0-- 01010
0---1 01010
----1 00010
11-1- 10001
-0-00 10001
0-1-- 00001
-10-- 00001
-1-1- 00001
0---0 00001
100-- 00110
10-1- 00110
-00-- 00010
-0-1- 00010
--00- 00010
1-1-- 10000

7.5. RELATION BETWEEN GPI’S AND PRIMES OF ENCODED FSM’S 177

110-0 10001
10-0- 00001
11--0 10000
1--00 10000

They coincide with the primes of the encoded FSM.

Summarizing, we point out that each GPI corresponds to various primes in different

encoded FSM’s, for instance, the GPI 3 1� st2 st2 11 corresponds to the following primes:

1. 1��1 1111 in FSM encoded by 00; 10; 11

2. 1��0 1011 in FSM encoded by 01; 11; 10

3. 1��� 1 00111 in FSM encoded by 100; 010; 001

4. 1� 0 0� 00111 in FSM encoded by 100; 010; 001

In the last case it is noticeable that the same GPI corresponds to two different primes in the same

encoded FSM (only one of them is needed for covering purposes, they differ in minterms of the

don’t care set of every output function). The number of GPI’s is not only much smaller than the

total number of primes over all encoded FSM’s, but it may be even smaller than the number of

primes of one encoded FSM, as the case of 1-hot encoding shows 10.

7.5.3 An Analysis Procedure

Given a symbolic FSM and an encoding (from which one derives the corresponding

minimized encoded FSM), it may be of interest to study the encoding from the point-of-view of

GPI analysis. For instance, if an encoding produces a very small cover, the analysis will reveal how

the symbolic cover was mapped into such a compact representation. The previous discussion on

the relation between GPI’s and primes of a minimized encoded FSM can be put to use in devising

a procedure that analyzes an encoding. Here we sketch the main steps. More specific information

could be extracted to drive an intelligent heuristic search of a small encodeable cover of GPI’s.

1. Encode and minimize the FSM, making sure that a cover of primes is returned 11.

2. Compute the set of GPI’s.

10Notice that GPI’s are the MV primes of the companion MV function, after post-processing.
11For instance, with ESPRESSO disable the step of makesparse.

178 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

3. Match the primes of the encoded minimized cover with the corresponding GPI’s. To do this,

given a prime, consider the present state subcube and find all the states included in it, then

take away all hardware states that do not correspond to a state in the symbolic cover. As a

result we have the proper input subcube and the set of present states. It is a fact that there is

a unique GPI that has the same input subcube and the same set of states in the present state

literal. It is the (only) one which corresponds to the given prime.

4. Derive the consistency equations of the given set of GPI’s (for each minterm of the symbolic

FSM, and for each GPI that covers it in the input part, add one term to the consistency equation

of that minterm).

5. Derive the face constraints and check that they are satisfied.

As an example, consider the following encoded and minimized realization of the FSM
leoncino:

-01- 1010
01-- 1011
-00- 0001
101- 1110
1--1 1111

The corresponding GPI’s are:

17 -0 st1,st2 st1,st2 10
5 01 st0,st1,st2 st1 11
6 -0 st0 st0 01
16 10 st1,st2 st2 10
3 1- st2 st2 11

1. GPI 17 covers minterms 12,13,14,16;

2. GPI 5 covers minterms 1,2,3,4;

3. GPI 6 covers minterms 6,9,10;

4. GPI 16 covers minterms 7,8,20,21;

5. GPI 3 covers minterms 14,15,16,17,18,19;

6. minterms 5 and 11 are not implemented because st0 has zero code.

179

Chapter 8

Minimization of GPI’s

8.1 Reduction of GPI Minimization to Unate Covering

Given all the GPI’s, one must select a minimum encodeable subset of them that covers

each minterm of the original FSM in the next state variables and in the proper output variables

asserted by the minterm.

An approach reduces the problem to unate covering with encodeability and it has been

proposed in [39]. A reduction to binate covering, where encodeability is translated into binate

clauses, has been outlined in [133, 132]. Here we introduce the two approaches and discuss their

respective merits. We start with reduction of GPI minimization to unate covering.

In [39] it is summarily proposed a modification of unate covering to solve the problem

of selecting a minimum encodeable set of GPI’s. Here we present a more complete version of it,

clarifying issues arising in the case of state assignment. We will illustrate the discussion with the

example leoncino shown in Fig. 7.1.

Minterms of the example. Minterms are product-terms where each literal is the char-

acteristic function of a singleton. The minterms generated by the symbolic cubes of the previous

cover are shown in Fig. 8.1. A � means an empty next state tag. Given the semantics of ANY ,

no minterm is contributed by transition 01 st2 ANY ��. It follows that no related encodeability

constraint will be generated, ensuring that ANY of a missing transition is implemented by any

possible hardware state. This is more than having all symbolic next states as possible, instead all

hardware next states are possible (this is a point never mentioned in the literature). If we have mul-

tiple next states (non-deterministic FSM’s), the minterm equations will have more choices. Notice

that a minterm like 11 st0 st0 00 does not need to be implemented (i.e., it is not in the onset of the

180 CHAPTER 8. MINIMIZATION OF GPI’S

-0 st0 st0 01: 1 00 st0 - 01 00 100 00001
2 00 st0 st0 00 00 100 10000
3 10 st0 - 01 10 100 00001
4 10 st0 st0 00 10 100 10000

11 st0 st0 00: 5 11 st0 st0 00 11 100 10000
01 st0 st1 --: 6 01 st0 st1 00 01 100 01000
0- st1 st1 1-: 7 00 st1 - 10 00 010 00010

8 00 st1 st1 00 00 010 01000
9 01 st1 - 10 01 010 00010
10 01 st1 st1 00 01 010 01000

11 st1 st0 0-: 11 11 st1 st0 00 11 010 10000
10 st1 st2 10: 12 10 st1 - 10 10 010 00010

13 10 st1 st2 00 10 010 00100
1- st2 st2 11: 14 10 st2 - 10 10 001 00010

15 10 st2 - 01 10 001 00001
16 10 st2 st2 00 10 001 00100
17 11 st2 - 10 11 001 00010
18 11 st2 - 01 11 001 00001
19 11 st2 st2 00 11 001 00100

00 st2 st1 10: 20 00 st2 - 10 00 001 00010
21 00 st2 st1 00 00 001 01000

01 st2 ANY --:

Figure 8.1: Minterms of FSM leoncino

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 181

1 00 100 11101101 00 st0 - 01 00 100 00001
2 00 100 01101100 00 st0 st0 00 00 100 10000
3 10 100 11101101 10 st0 - 01 10 100 00001
4 10 100 01101100 10 st0 st0 00 10 100 10000
5 11 100 01101100 11 st0 st0 00 11 100 10000
6 01 100 10101100 01 st0 st1 00 01 100 01000
7 00 010 11110110 00 st1 - 10 00 010 00010
8 00 010 10110100 00 st1 st1 00 00 010 01000
9 01 010 11110110 01 st1 - 10 01 010 00010
10 01 010 10110100 01 st1 st1 00 01 010 01000
11 11 010 01110100 11 st1 st0 00 11 010 10000
12 10 010 11110110 10 st1 - 10 10 010 00010
13 10 010 11010100 10 st1 st2 00 10 010 00100
14 10 001 11111010 10 st2 - 10 10 001 00010
15 10 001 11111001 10 st2 - 01 10 001 00001
16 10 001 11011000 10 st2 st2 00 10 001 00100
17 11 001 11111010 11 st2 - 10 11 001 00010
18 11 001 11111001 11 st2 - 01 11 001 00001
19 11 001 11011000 11 st2 st2 00 11 001 00100
20 00 001 11111010 00 st2 - 10 00 001 00010
21 00 001 10111000 00 st2 st1 00 00 001 01000

Figure 8.2: Extended representation of the minterms of FSM leoncino

next state variable) if st0 is assigned the all zeroes code.

We defined a companion MV function whose primes (modulo a post-processing step) are

the GPI’s of the original symbolic function. The product terms of the companion MV function that

correspond to the minterms of the original symbolic function are shown in Fig. 8.2 1. The cover on

the right shows the minterms represented with 1-hot encoding (and with the augmenting state set

in the output part removed). We call the representation on the left extended representation and the

one on the right reduced representation.

GPI’s of the example. The GPI’s of leoncino are shown in Fig. 8.3. The cover on the

right shows the GPI’s represented with 1-hot encoding (and with the augmenting state set in the

output part removed). We call the representation on the left extended representation and the one on

the right reduced representation.

The covering tables of the example. Now we can compute the covering table whose

1These cubes are not minterms of the companion function because the output variable has been augmented with one
more state set and the states in the output variable are represented with complemented 1-hot encoding.

182 CHAPTER 8. MINIMIZATION OF GPI’S

1 0- 010 10110111 0- st1 st1 11 0- 010 01011
2 01 001 11111011 01 st2 - 11 01 001 00011
3 1- 001 11011011 1- st2 st2 11 1- 001 00111
4 -1 001 11011011 -1 st2 st2 11 -1 001 00111
5 01 111 10100011 01 st0,st1,st2 st1 11 01 111 01011
6 -0 100 01101101 -0 st0 st0 01 -0 100 10001
7 0- 001 10111010 0- st2 st1 10 0- 001 01010
8 -- 001 10011010 -- st2 st1,st2 10 -- 001 01110
9 0- 011 10110010 0- st1,st2 st1 10 0- 011 01010
10 0- 100 00101101 0- st0 st0,st1 01 0- 100 11001
11 11 010 01110101 11 st1 st0 01 11 010 10001
12 -1 010 00110101 -1 st1 st0,st1 01 -1 010 11001
13 0- 110 00100101 0- st0,st1 st0,st1 01 0- 110 11001
14 10 010 11010110 10 st1 st2 10 10 010 00110
15 -0 010 10010110 -0 st1 st1,st2 10 -0 010 01110
16 10 011 11010010 10 st1,st2 st2 10 10 011 00110
17 -0 011 10010010 -0 st1,st2 st1,st2 10 -0 011 01110
18 1- 100 01101100 1- st0 st0 00 1- 100 10000
19 -- 100 00101100 -- st0 st0,st1 00 -- 100 11000
20 10 101 01001001 10 st0,st2 st0,st2 01 10 101 10101
21 11 011 01010001 11 st1,st2 st0,st2 01 11 011 10101
22 -1 011 00010001 -1 st1,st2 st0,st1,st2 01 -1 011 11101
23 11 110 01100100 11 st0,st1 st0 00 11 110 10000
24 -1 110 00100100 -1 st0,st1 st0,st1 00 -1 110 11000
25 0- 111 00100000 0- st0,st1,st2 st0,st1 00 0- 111 11000
26 1- 111 01000000 1- st0,st1,st2 st0,st2 00 1- 111 10100

Figure 8.3: GPI’s of FSM leoncino

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 183

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 x x x
2 x x x x x
3 x x
4 x x x x x
5 x x x x x
6 x x x x x x
7 x x x x
8 x x x x x x
9 x x x
10 x x x x x x x x
11 x x x x x x x
12 x x x x
13 x x x x x
14 x x x x
15 x x
16 x x x x x x
17 x x x
18 x x x x
19 x x x x x x
20 x x x x
21 x x x x x

Figure 8.4: Covering table of FSM leoncino

columns are GPI’s and whose rows are minterms. One can use either the extended or the reduced

representation for the GPI’s and minterms. The extended representation has the advantage that

column dominance, that requires same present state literal and next state tag (or next state tag of the

dominating column as a subset of the next state tag of the dominated column), can be done simply

by checking containment of the representations: a GPI (column) covers a minterm (row) iff the GPI

contains the minterm. Notice that by construction the tag of a GPI may contain a superset of the

next states in the tag of a covered minterm, but not a subset. When it contains a proper superset, the

encodeability check tells whether the next state of the minterm can be produced by a column (or set

of columns). The resulting table is shown in Fig. 8.4. The second column does not any intersect

any row because it corresponds to a GPI that covers only points in the don’t care set of the original

function (from the unspecified transition 01 st2 � 11).

We call next-state minterms the minterms that assert a next state and output minterms the

184 CHAPTER 8. MINIMIZATION OF GPI’S

minterms that assert a proper output. The next-state minterms insure that the correct next state is

produced for a given input. The output minterms insure that the correct proper outputs are produced

for a given input. The two types of minterms differ in the definition of when they are covered.

Output minterms are covered as long as a GPI that contains them is selected. A row corresponding

to a next-state minterm may require more than one column to be covered (i.e. to satisfy its encoding

constraint) because each column may contribute only part of the next state (given that a GPI asserts

as next state the conjunction of the codes of the states in its tag). Indeed if the tag of a column c is

a proper superset of the tag of an intersected row r, then c might not be sufficient to cover r.

Each next-state minterm yields a constraint (or consistency equation) where the code of

the next state is set equal to the disjunction of the conjunctions of the codes of the next states in the

tags of the selected GPI’s that cover the minterm. These output constraints have a special feature:

the next state on the left side appears in all the conjunctions on the right side. This fact will be

exploited to establish properties of the covering algorithm and to simplify the algorithm to check the

satisfiability of constraints. Moreover, each GPI contributes an input constraint (the present states

in its input part), albeit sometimes a trivial one.

The previous table cannot be used as an input to a covering routine because of the

noted difference between next-state and output minterms. For instance, one cannot perform row-

dominance between two rows of different kinds; e.g., in the previous table one cannot say that

row 2 is eliminated by row 1, because row 2 is a next-state minterm and, even if row 1 (an output

minterm) is covered, row 2 may still be unsatisfied after selecting one column that covers row 1

(in other words, the encoding constraint of row 2 may be unsatisfiable, given the current selection

of columns). We will see that row dominance cannot be performed also between two rows each of

which corresponds to a next state minterm. A way to handle the problem is to split the table into

two tables: the (proper) output table and the next-state table. They have the same columns, the

rows of the former are the output minterms and the rows of the latter are the next-state minterms.

It is possible to apply column dominance to the combined tables, if we restrict the ordinary

definition of column dominance. The ordinary definition is that a column dominates another one

if the former covers at least as many rows as the latter. Restricted column dominance holds iff

ordinary column dominance holds, the two columns have the same present state and the next state

tag of the dominating column is a subset (proper or not) of the next state tag of the dominated

column. The reason is that such a dominating column covers at least as many output and next state

minterms as the dominated column and contributes to the consistency equation of each covered next

state minterm a term that bitwise dominates or is equal to the one contributed by the dominated

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 185

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 x x x
3 x x
7 x x x x
9 x x x
12 x x x x
14 x x x x
15 x x
17 x x x
18 x x x x
20 x x x x

Figure 8.5: Output covering table of FSM leoncino

column. For instance, if the tag of the dominating column is fst1; st2g and the tag of the dominated

column is fst1; st2; st3g, then e(st1):e(st2) � e(st1):e(st2):e(st3), whatever encoding e(:) is

given to st1; st2; st3 2. Notice that restricted column dominance arises because of the next state

table. Column dominance must be applied to the combined tables to guarantee the optimality of the

solution.

In the cancellation rule of the consensus procedure to compute GPI’s there is a condition

that the next state tag of the cancelling GI must be equal to the next state tag of the cancelled GI. This

is more restrictive than the condition for restricted column dominance requiring that the next state

tag of the dominating column must be a subset (proper or not) of the next state tag of the dominated

column. An interesting question is when it happens that a column covers at least as many rows of

another column and its next state tag is a proper subset of the next state tag of the other column.

The output table is shown in Fig. 8.5. This table defines an ordinary unate covering

problem. Here row dominance can be performed without conditions. Restricted column dominance

can be applied to the combined tables. As a lower bound one can use the maximal independent

set. This bound is looser than in standard unate covering because even if a solution can be found of

cardinality equal to the lower bound, it may not satisfy the next state constraints.

The next-state table is shown in Fig. 8.6. This table defines a constrained unate covering

problem. This table is covered iff some columns are selected that satisfy the encoding constraints

(next state constraints, input constraints and uniqueness constraints). The next state constraints are

2In [39] the "same present state" condition is overlooked.

186 CHAPTER 8. MINIMIZATION OF GPI’S

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

2 x x x x x
4 x x x x x
5 x x x x x
6 x x x x x x
8 x x x x x x
10 x x x x x x x x
11 x x x x x x x
13 x x x x x
16 x x x x x x
19 x x x x x x
21 x x x x x

Figure 8.6: Next-state covering table of FSM leoncino

a consistency equation for each row; to satisfy a consistency equation it is necessary that a column

intersecting the related row is selected (covering problem), but in general it is not sufficient because

of the interaction with the input and uniqueness constraints (constrained covering problem). Given

the structure of the encoding constraints, they can always be satisfied by adding more columns to a

given selection that solves the ordinary covering problem. 3. Every input and uniqueness constraint

yields a set of initial encoding dichotomies [116]. For each initial encoding dichotomy there is a

companion one, where the same blocks of states appear moved from left to right and viceversa.

Only one of two companion encoding-dichotomies must be satisfied. Next state constraints can be

viewed as deleting encoding dichotomies. A removed encoding dichotomy is said to be unsatisfied,

otherwise it is satisfied. We will show that by selecting enough columns that cover rows responsible

of cancelling an encoding dichotomy, the latter can be satisfied. The goal is to choose the minimum

number of columns such that the encoding constraints are satisfied (a necessary condition is that the

next state table is covered). Row dominance is meaningless in the next-state table. Consider the

example: r1 r2c1 x xc2 x
Even though column c1 covers rows r1 and r2, we may have to choose also column c2 to avoid

3Only input and uniqueness constraints were generated in the output table, so satisfiability of encoding constraints is
always guaranteed there.

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 187

that the next state constraint of row r1 removes an encoding dichotomy. Therefore removing rowr1 as row dominated by row r2 would not guarantee a correct solution of the original problem. A

new lower bound will be later defined, based on a maximal independent set of violated encoding

dichotomies (similar to the notion of disjoint violations in [39]).
A solution of the example. Let us select a set of encodeable GPI’s that cover the output

and next state tables. The output table can be covered by choosing columns 3,5,6,17. In the
next-state table two rows (m5 and m11) are not covered by columns 3,5,6,17; we choose column
18 to cover row 5 and column 11 to cover row 11. At this point the next state constraints are:

m2: 00 100 00 st0 st0 = st0
m4: 10 100 10 st0 st0 = st0
m5: 11 100 11 st0 st0 = st0
m6: 01 100 01 st0 st1 = st1
m8: 00 010 00 st1 st1 = st1.st2
m10: 01 010 01 st1 st1 = st1
m11: 11 010 11 st1 st0 = st0
m13: 10 010 10 st1 st2 = st1.st2
m16: 10 001 10 st2 st2 = st2 + st1.st2 (= st2)
m19: 11 001 11 st2 st2 = st2
m21: 00 001 00 st2 st1 = st1.st2

Onlym8,m13 andm21 have non-trivial next state constraints. The only non-trivial input

constraint is (st1; st2), from column 17.

We now check if the previous constraints are satisfiable. The initial encoding dichotomies

are: (st1st2; st0), (st0; st1st2), (st1; st2), (st2; st1). Next state constraint st1 = st1:st2 (from

both m8 and m21) eliminates (st2; st1); the reason is that this encoding dichotomy corresponds

to an encoding bit where st2 is assigned 0 and st1 is assigned 1, but the disjunctive constraintsm8 and m21 force st1 to be assigned 0, if st2 is assigned 0. For the same reason, next state

constraint st2 = st1:st2 (from m13) eliminates (st1; st2). Since both (st1; st2) and (st2; st1)
are eliminated (st1 cannot be distinguished from st2) by m8, m13 and m21, a column that covers

at least one of m8, m13, m21 is selected: e.g., we choose column 16 that covers row m13 (but

does not cover m8 and m21). The previous constraints remain the same, except for the following

update: m13 : 10 010 10 st1 st2 = st2 + st1:st2 (= st2): Notice that a new column could

introduce a new input constraint, but column 16 does not. If we check again satisfiability, we notice

that (st1; st2) is not anymore removed by m13 and so we have an encodeable selection of GPI’s

that solves our original problem. An encoding that satisfies all constraints with a minimum code

length is: enc(st0) = 00; enc(st1) = 10; enc(st2) = 11.
The GPI’s in the final solution, together with the corresponding encoded GPI’s, are:

188 CHAPTER 8. MINIMIZATION OF GPI’S

3 1- st2 st2 11
1- 11 11 11

5 01 st0,st1,st2 st1 11
01 -- 10 11

6 -0 st0 st0 01
-0 00 00 01

16 10 st1,st2 st2 10
10 1- 11 10

17 -0 st1,st2 st1,st2 10
-0 1- 10 10

11 11 st1 st0 01
11 10 00 01

18 1- st0 st0 00
1- 00 00 00

By assigning to st0 the all zeroes code GPI 18 is not needed. It should be the case that

also GPI 11 is not needed, because it covers only minterm 11 st1 in 11 st1 st0 00, but it is not so.

The reason being that GPI 11 is chosen to cover next state st0 in minterm 11 st1; it happens that

GPI 11 when raised to primality expands also to the onset of a proper output, so that, when encoding

GPI 11 with 00 for st0, it is not recognized that GPI 11 is useless. This motivates a later discussion

on the necessity of repeating the minimization procedure to model the all zeroes code effect.

The all zeroes code issue. If a next state is encoded with all zeroes then the minterms

with that next-state do not need to be covered by a GPI; in terms of the original FSM, one does not

implement the product-terms with a next-state encoded with all zeroes and proper outputs all zeroes.

This fact is not modelled by GPI’s. For instance, the following minterms of the original FSM do

not need to be implemented if st0 is assigned the code 00: 11 st0 st0 00 and 11 st1 st0 0�.

Knowing beforehand that those two minterms do not need to be realized may change the

best solution. The only known way to cope with this problem is to repeat the previous procedure

up to N + 1 times, if N is the number of next states; once as before 4, and then once for each

next state, dropping from the original cover all the minterms producing a given next-state (called

reserved state) and all zeroes as proper outputs. If all minterms belong to the onset of at least one

binary-valued output, then there is no advantage in using an all-zero code and so only one covering

must be made. If an all-zero code is already reserved, when at the end codes of minimum length

that satisfy the encoding constraints of the optimal solution must be determined, one must take

into account that the all-zero code cannot be used anymore. Suppose that the only set of codes of

minimum length that satisfy the encoding constraints require a state to have the all-zero code. Then

4We do not know whether the best solution has at all a code with all zeroes.

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 189

we can add an encoding bit, setting it to 1 for all the codes but the reserved state that gets a 0. The

encoding constraints will be satisfied by these new codes, with a penalty of one more encoding bit.

Notice that even if we reach the conclusion that one of the states in a given optimal selection ofk GPI’s requires the all-zero code, there may be another selection of k GPI’s where this does not

happen. To find this other selection we should replace the current satisfiability check with a routine

that tells whether the encoding constraints are satisfiable without using the all-zero code; in the

worst-case, this can be achieved by exploring all codes that satisfy those constraints. But we are

allowed to assign to the reserved state the all-zero code (not needed by the remaining states) without

adding an encoding bit, if the reserved state was taken into account in the input and uniqueness

constraints. In this way we are guaranteed to optimize also the secondary cost function (number of

encoding bits). In practice this would be too expensive to compute, so we will only minimize the

primary cost function (number of product-terms), adding one more encoding bit, when it is needed

to handle the issue of the all-zero reserved code.

Summing up towards an exact algorithm. The problem is to select a minimum set

of GPI’s that cover the output table and satisfy the encoding constraints of the next state table.

One can explore the space of solutions by solving the output table first and then computing its

minimum extension to a solution of the next state table. This procedure is well-defined because of

the following result:

Proposition 8.1.1 Any solution of the output table can be extended to a global solution.

Proof: Take the original FSM, replace each cube (asserting a next state) by a GPI that contains it and

has the same present state literal and next state. This GPI exists because the rule for cancelling GI’s

requires the same present state literal and next state and, moreover, such a GPI is never cancelled by

column domination because its next state tag cannot be a subset of another tag. This gives an upper

bound on the number of GPI’s necessary to cover the next-state table. These GPI’s are compatible

with the input constraints of any selected set of GPI’s that covers the output table. The reason is that

the suggested way of covering the next-state table yields only trivial output constraints (of the forma = a + a:b + a:c+ :::) and whatever input constraints there are, they can always be satisfied

(in the worst-case by 1-hot encoding).

The minimum of all such solutions solves exactly the original problem. In other words,

for a given solution of the output table, we find the minimum set of GPI’s which extends it to a

solution of the next state table. This is the current best solution. One then goes back to the unate

covering problem and finds a second solution to it, that in turn will be extended optimally to satisfy

190 CHAPTER 8. MINIMIZATION OF GPI’S

the next state table, and so on, until an optimal solution to the global problem is found. When

back to the unate covering problem we use as best current solution the best global one, not the best

solution of the unate problem. Therefore if there is a solution of the output table, worse than the

previous best solution of the output table, but such that it can be extended to a better global solution,

it can be found. This guarantees that a global optimum is reached. At the end, when a minimum

solution of the original problem has been found, codes of minimum length that satisfy the encoding

constraints of the optimal solution must be determined.

In the output table we must solve an ordinary unate covering problem, for which well-

known algorithms exist [114]. In the next state table we must solve a constrained covering problem:

choose a minimum number of columns such that all encoding constraints are satisfied. An exact

algorithm can be designed using a branch-and-bound scheme as for table covering. It is also helpful

to maintain the same model of the problem as a table with a set of columns (GPI’s) and rows

(minterms). At each step a new column is chosen that extends the current partial solution to one that

satisfies more the related encoding constraints. A key operation of the algorithm is to check whether

a set of selected GPI’s satisfies the related encoding constraints. If so, we have a complete solution,

otherwise a new GPI must be selected and the feasibility check applied again. New criteria must

be defined for selection of a branching column and for computing a lower bound. This constraint

satisfaction problem can also be solved by a variant strategy in two steps: ordinary unate covering

of the next state table, and then selection of more GPI’s to satisfy the encoding constraints. In this

variant the strategy of exploring the solution space is modified to favour choosing first GPI’s that

cover at least once every minterm of the next state table.

8.1.1 Exact Selection of an Encodeable Cover of GPI’s

Figure 8.7 shows an exact algorithm to find a minimum selection of GPI’s that is a cover

of the original FSM and that is encodeable. The procedure is patterned on the branch-and-bound

algorithm used to find an exact solution to unate covering [66].

Theorem 8.1.1 The algorithm of Figure 8.7 finds a minimum cardinality selection of GPI’s that is

a cover of the original FSM and that is encodeable.

Proof: The goal is to select columns of P to cover the output minterms and satisfy the encoding

constraints induced by the next state minterms. The latter goal requires that for each next state

minterm one or more GPI’s are chosen so that the encoding constraints are satisfied. For this purpose

at first columns are chosen until the next state minterms are satisfied, as certified by encodeable,

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 191

then a call to mincov (a unate solver) selects a set of additional GPI’s to complete the covering

of the output minterms (if needed). This is done for each new solution to the next state minterms

problem, i.e. each partial solution is extended optimally to a complete solution. The algorithm

has the same control structure as the branch-and-bound procedure designed to solve exactly unate

covering. Differences are:

1. In the table reduction step column dominance is restricted and row dominance is disallowed.

Both restricted column dominance and detection of essentials are performed on the complete

set of minterms to guarantee correctness.

2. The procedures to check encodeability (encodeable 5), and to compute a lower bound

(lbound) and a branching column (select column) are specific to the problem. Designs of

these procedures will be presented after that encodeability of GPI’s will have been discussed

in depth.

3. After invokingmincov the current solution is bounded away, if the cost of the new complete

solution is worse than the current upper bound.

The algorithm explores in the worst-case all solutions. At the beginning it reduces

correctly the global matrix. It handles first the next state minterms and whenever it has found a

new partial solution that satisfies all the encoding constraints, it extends it optimally to a complete

solution. The bounding mechanism is the same as in the case of unate covering. It relies on a global

upper bound, while a lower bound is computed only by considering the next state minterms. This

weakens the lower bound, but guarantees correctness. Also the branching column is computed only

by considering the next state minterms. The procedure mincov is invoked on the output minterms

table, after output minterms covered as a side-effect by the current partial solution are removed.

The best solution in this table is found using a unate table solver. The current complete solution is

compared against the upper bound 6.

Notice that when dealing with next state minterms there is no notion of a covered minterm, but we

speak instead of satisfied dichotomies, as it will be seen in detail later. Therefore next state rows

are not deleted until all encoding constraints are satisfied.

5It replaces the simpler check that all rows of the matrix have been covered.
6When solving exactly unate covering, if the new lower bound is less than the upper bound and the table is empty, it

means that a better solution has been found. Here, if encodeable succeeds, we must compare again the complete solution
with the upper bound, because in the previous comparison the new lower bound was not yet (in general) a complete
solution, since the output minterms had not been covered yet (in general).

192 CHAPTER 8. MINIMIZATION OF GPI’S

procedureexact gpi selection(P;Mn;Mo;G; lbound; ubound) f
/* restricted column dominance, empty columns and essentials */P dom = restricted dominated columns(P;Mn [Mo)P = P � P domGe = essential(P;Mn [Mo)
if ((cost(Ge) + cost(G))� ubound) return(;)
elseG = G [Ge
/* find lower bound from here to final solution by independent set */indep = lbound(P;Mn)
/* make sure the lower bound is monotonically increasing */lbound new =MAX(card(G) + card(indep); lbound)
/* bounding based on no better solution possible */

if (lbound new � ubound) best = ;
/* check for new best solution */

else if (encodeable(G;Mn)) f /* new ’best’ solution at current level */Mo =Mo �Mo:Gbesto = mincov(P;Mo;G; lbound new;ubound)
if ((cost(besto) + cost(G)) � ubound) best = ;
else best = G [bestog else f /* no more reductions: split and recur */pick = select column(P;Mn)
/* branching column in the covering set */best1 = exact gpi selection(P � pick;Mn;Mo;G [pick; lbound new;ubound)
/* update the upper bound if a better solution is found */

if (best1 6= ; and ubound > card(best1)) ubound = card(best1)
/* no branching if heuristic covering */

if (best1 6= ; and heuristic covering) return(best1)
/* no branching if lower bound matched */

if (best1 6= ; and card(best1) == lbound new) return(best1)
/* branching column not in the covering set */best2 = exact gpi selection(P � pick;Mn;Mo;G; lbound new; ubound)best = solution choose best(best1; best2)g

return(best)g
Figure 8.7: Exact selection of GPI’s

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 193

8.1.2 Approximate Selection of an Encodeable Cover of GPI’s

The bottleneck of the proposed exact selection algorithm is likely to be the very large

number of branchings to guarantee exactness of the solution. Since the number of branchings is

a (complex) function of the number of GPI’s, one could try to restrict branching by generating or

keeping only a subset of the GPI’s. For instance a simple-minded heuristic would be to generate

only the GPI’s that have in the next state tag a number of states not larger than the logarithm of

the number of states of the FSM. Another shortcut in the exact algorithm would be to stop at the

first solution. In general an exact solution should make its quality more noticed in the case of next

state intensive problems, i.e., state assignment problems whose final result depends strongly on the

realization of the next states logic.

A different family of heuristics, presented in this section, starts with the complete set of

GPI’s, but selects a solution greedily, instead of bulding the full (branch-and-bound) computation

tree. A fine tuning is required to trade-off efficiency vs. running time vs. ease of implementation.

Fig. 8.8 shows an approximate algorithm to find a selection of GPI’s that is a cover of the

original FSM and that is encodeable. The algorithm is approximate because it finds only one partial

solution (that covers all minterms of the FSM) by invoking unate encoding and then extends it to

a complete solution by selecting greedily new GPI’s needed to make the first selection encodeable.

Since output and next state minterms together are fed to a standard unate table solver, "prohibited"

table reductions may be carried on. In the step to extend the solution, minterms and GPI’s that

have been incorrectly discarded may be taken back in the solution, if needed. In opposition to the

exact algorithm presented previously, this algorithm covers first optimally the output minterms and

then extends greedily the partial solution to handle also the next state minterms. One could say

that it is geared more towards output intensive problems. The exact and heuristic algorithms take

the opposite view about covering next state minterms first vs. covering output minterms first. The

following considerations discuss the issue.

1. In order to cover the output minterms first in the exact algorithm, one should modify a standard

unate solver to restrict the table reduction operations. This was considered undesirable from

an implementative point of view.

2. In the heuristic algorithm we did not take care of the next state minterms first, based on the

expectation that it would have been less efficient than taking care of the output minterms first.

The expectation is justified by the fact that we have an high quality unate table solver, not

194 CHAPTER 8. MINIMIZATION OF GPI’S

procedure approx gpi selection(P;Mn;Mo) fG(i0; p0; n0) = unate encoding(P;Mn +Mo)G0(i0; p0; n0) = P (i0; p0; n0) �G(i0; p0; n0)unsat FID(x; y) = 1

while (unsat FID(x; y) 6= ;) fGPI selected(i0; p0; n0) = select column(G0;Mn)G(i0; p0; n0) = G(i0; p0; n0) + GPI selected(i0 ; p0; n0)G0(i0; p0; n0) = G0(i0; p0; n0) �GPI selected(i0; p0; n0)unsat FID(x; y) = encodeable(G;Mn)g
return(G)g

Figure 8.8: Approximate selection of GPI’s

likely to be matched in efficiency by a selector of encodeable GPI’s. Experiments will assess

the validity of this choice.

The simplified description of the algorithm highlights that it does a greedy search, by showing that

after a call to unate encoding, one GPI at a time is chosen until the problem is solved. There is no

backtacking to improve the solution (and no usage of a lower bound).

8.2 Reduction of GPI Minimization to Binate Covering

The encodeability check for a set of GPI’s, given a bound on the number of encoding bits,

was already formulated in [39] as a Boolean satisfiability problem.

The idea has been advanced further in [133, 132], to cast the whole problem of selecting

a minimum encodeable cover of GPI’s, for a fixed code-length, as a binate covering problem. An

implementation has been described in [19]. A binate covering problem asks for the minimum

solution of a formula written as a POS. Each literal in the POS can be chosen in the positive or

negative phase in the solution and the cost of a solution is the sum of the cost of literals chosen

in the positive phase, in the hypothesis that each literal has associated a cost (usually the cost is

1). In our case, the literals are the GPI’s and the bits of the codes of the states; the cost of a

GPI is 1 and the cost of a bit is 0. Choosing a literal of a GPI in positive phase corresponds to

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 195

selecting that GPI in the cover. Choosing a literal of a bit in positive or negative phase corresponds

to setting it to 1 or to 0 in the encoding. In a sense, this reduction to binate covering lumps a

genuine table covering problem (selecting a cover of GPI’s) with a satisfiability problem (finding

codes that satisfy constraints). Apparently this is appealing because everything is solved in a unique

algorithmic frame, but the disadvantage is that a good algorithm for table covering may not be a

good algorithm for satisfiability.

We will illustrate the reduction to binate covering using the same example leoncino.

Suppose that we encode the states st0, st1 and st2 with 2 bits. The encoding bits are e01, e02, e11,e12, e21, e22, where eij is the j-th bit of the code of state i. We denote e(sti) the code of state sti.
We are going to build a binate table whose columns are the GPI’s (denoted by gi for i = 1; : : : ; 26)

and the encoding bits (eij , i = 0; 1; 2, j = 1; 2). In our example there are 32 columns. The rows

are clauses which state the conditions under which GPI’s can be chosen to cover the minterms and

an encoding compatible with them exists. There are clauses that express that next-state and output

minterms are covered; other clauses represent input constraints induced by GPI’s; finally, other

clauses insure that a unique encoding is determined. We will now survey in detail each type of

clauses.

The GPI’s selected in the final cover must assert the same next state and proper outputs

asserted by each minterm in the FSM. So we have clauses for both conditions.

For each next-state minterm, for all GPI’s that cover it, we impose that the code of the

next-state of the minterm is equal to the the disjunction of the conjunction of the next-states in the

tags of the selected GPI’s. Basically we read the next-state table and write-down an equation for

each row. The big difference is that each row of the unate next-state table gives rise to many rows

in the binate table, as the example shows.e(st0) = e(st0)(g6 + g10e(st1) + g13e(st1) + g19e(st1) + g24e(st1))e(st0) = e(st0)(g6 + g18 + g19e(st1) + g20e(st2) + g26e(st2))e(st0) = e(st0)(g18 + g19e(st1) + g23 + g24e(st1) + g26e(st2))e(st1) = e(st1)(g5 + g10e(st0) + g13e(st0) + g19e(st0) + g24e(st0) + g25e(st0))e(st1) = e(st1)(g1 + g9 + g13e(st0) + g15e(st2) + g17e(st2) + g25e(st0))e(st1) = e(st1)(g1 + g5 + g9 + g12e(st0) + g13e(st0) + g22e(st0)e(st2) + g24e(st0) + g25e(st0))e(st0) = e(st0)(g11 + g12e(st1) + g21e(st2) + g22e(st1)e(st2) + g23 + g24e(st1) + g26e(st2)e(st2) = e(st2)(g14 + g15e(st1) + g16 + g17e(st1) + g26e(st0)

196 CHAPTER 8. MINIMIZATION OF GPI’Se(st2) = e(st2)(g3 + g8e(st1) + g16 + g17e(st1) + g20e(st0) + g26e(st0)e(st2) = e(st2)(g3 + g4 + g8e(st1) + g21e(st0) + g22e(st0)e(st1) + g26e(st0)e(st1) = e(st1)(g7 + g8e(st2) + g9 + g17e(st2)
Consider the first of the previous equations. It is equivalent to two equations in SOP:e01 = e01(g6 + g10e11 + g13e11 + g19e11 + g24e11)e02 = e02(g6 + g10e12 + g13e12 + g19e12 + g24e12)
or, equivalently: e01 + g6 + g10e11 + g13e11 + g19e11 + g24e11e02 + g6 + g10e12 + g13e12 + g19e12 + g24e12

They can be rewritten in POS as:(e01 + g6 + g10 + g13 + g19 + g24)(e01 + g6 + e11)(e02 + g6 + g10 + g13 + g19 + g24)(e02 + g6 + e12)
Notice that a possible solution of these clauses is e01 = e02 = 0, and in that case no GPI is needed

to cover mintermm2. This solves the problem of the all zeroes code that requires instead a clumsy

repetition of minimizations in the unate reduction in subsection 8.1. The problem of efficient

conversion from SOP to POS requires that one avoids generating duplicated and subsumed clauses.

The point is illustrated by the following examples. Consider the SOP a+ bc+def . It can rewritten

as the following POS:(a+ b+ d)(a+ b+ e)(a+ b+ f)(a+ c+ d)(a+ c+ e)(a+ c+ f):
Consider the SOP a + bc + dc, where some literals occur in more than one disjunct (literal c). It

can be rewritten as: (a+ b+ d)(a+ b+ c)(a+ c+ d)(a+ c+ c):
Taking away duplicated and subsumed clauses one gets:(a+ b+ d)(a+ c):

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 197

It is reported in [19] that a distributive method, which recursively generates clauses and immediately

eliminates those duplicated and subsumed, reduces very effectively the number of clauses. The

clauses of a reported example went down from 631; 000 to 184. No description of the algorithm is

provided in the report. The only existing documentation is the code itself, that I have not yet read.

Summarizing, each next-state minterm equation yields some clauses to be added to the

binate table. For instance, the next-state equation of minterm m2 yields four clauses. In the

worst-case, if there are m minterms, the length of the code is k, each minterm involves g GPI’s

and each GPI has n next-states in its tag, we have O(m:k:ng) clauses. But in practice this number

can be reduced to O(m:k:n) if an efficient SOP to POS conversion is in place, given that the same

next-states occur in many GPI’s (this is elimination of dominated rows, in the binate covering

formulation).

For each output minterm, one GPI that covers it must be selected. Basically each row of

the output table translates into one row of the binate table. In our example, the first four clauses of

this type are: (g6 + g10 + g13)(g6 + g20)(g1 + g9 + g15 + g17)(g1 + g5 + g9)
Some clauses must enforce that the input constraint associated to each selected GPI is

satisfied. This can be translated into the logical condition that, if a GPI is selected, each state not

in the face must be assigned an opposite phase with respect to the states in the face in at least one

encoding column. Input constraints with only one state or with all the states are trivial and no

clauses are generated for them. In our example, face constraint (st1; st2) is associated to GPI’s

9,16,17,21,22, (st0; st1) to GPI’s 13,23,24 and (st0; st2) to GPI 20. For instance, the logical

condition to satisfy st1; st2, if GPI 9 is selected, is:g9 + e01e11e21 + e01e11e21 + e02e12e22 + e02e12e22:
A conversion from SOP to POS must be made. But in this case it happens rarely that simplifications

can be made, differently from next-state covering clauses (the only simplification that occurs here is

of clauses with a literal and its negation). The experimental fact is that these clauses are a bottleneck

of the binate covering approach. For instance, [19] reports the following data: from 256; 000 clauses

198 CHAPTER 8. MINIMIZATION OF GPI’S

for an FSM of 4 states and a code of length 2, to 11; 764; 900 clauses for an FSM of 8 states and

a code of length 3. In the worst-case, if the states are s, the length of the code is k, and there aref states in a face constraints, the number of clauses introduced by a GPI with a non trivial face

constraint isO((s� f):(f + 1)2�k) clauses.

Some clauses insure that no pair of states are assigned the same code. In our case they aree(st0) 6= e(st1), e(st0) 6= e(st1) and e(st1) 6= e(st2). The condition e(st0) 6= e(st1), i.e., that

the codes of the two states differ in at least one bit, is expressed by the following SOP:e01e11 + e01e11 + e02e12 + e02e12:
A conversion from SOP to POS is required. In the worst-case, if the states are s and the length of

the code is k, the number of clauses to insure distinct codes isO(22k:Cs
2). Other clauses insure that

a state is not assigned more than one code. In our example, they are:(e01 � e01)(e02 � e02)(e11 � e11)(e12 � e12)(e21 � e21)(e22 � e22)
In the worst-case, if the states are s and the length of the code is k, the number of clauses to insure

unique codes is O(k:s). All together these clauses make sure that an encoding is produced.

Once the binate table has been completed, one can use any binate solver to find a solution.

In practice the size of the table is too large for available tools. Since both the number of columns

(roughly, the number of GPI’s) and of rows (even larger than the number of columns) become quickly

very large, even approaches that solve binate covering by means of a shortest path computation of

the clauses represented by BDD’s as in [82, 62] have been unable to solve non-trivial instances.

Indeed the methods in [82, 62] may succeed in handling huge numbers of clauses, but they are still

limited by the numbers of columns, which are the support variables of the required BDD’s.

8.3 GPI’s and Non-Determinism

8.3.1 Symbolic Don’t Cares and Beyond

In [39] mention is made of symbolic don’t cares. In the state assignment context, they

arise when more than one next state is allowed for a transition (don’t care transitions). We introduced

already such a situation when the next state is ANY , i.e. any of all the states, but a more general

case is when the next state can be any of a subset of states. GPI’s can be generated also for this

more general case. Suppose that we have a don’t care transition i1 s1 s0=s2 o1 where the next-state

8.3. GPI’S AND NON-DETERMINISM 199s0=s2 means that s0 and s2 are both acceptable next states. We can replace the don’t care transition

by two care transitions i1 s1 s0 o1 and i1 s1 s2 o1, and then apply the algorithm for generating GPI’s

as in Subsection 7.3.1. One more rule is required to handle k-cubes with identical proper inputs and

present states: a k-cube cancels another k-cube, if they have identical input parts and the tag of the

first is a subset of the tag of the second. The reason is that the cancelling cube covers the same input

subspace in more next-state spaces. The encodeability condition is modified, by replacing a single

next state by a disjunction of next states in the consistency equation of each don’t care minterm. The

next states in the disjunction are those that appear in the original don’t care transition that covers the

given don’t care minterm. Moreover, if a GPI corresponding to some next states being asserted by

a symbolic don’t care minterm is selected, other GPI’s corresponding to different next states being

asserted by the same don’t care minterm cannot be selected in the cover 7.

Don’t care transitions arise naturally in FSM’s, as a way to represent different STG’s

that describe the same sequential function. A given STG is only one representation of a sequential

function (a collection of input-output traces). An STG can be restructured in different ways and

still represent the same sequential function. It is not known apriori which of these representations

is the starting point leading to the most compact representation after state assignment. A state

assignment procedure optimal for a sequential function (and not only for a given representation

of the function) should capture all equivalent STG’s and find out which one is the best to encode.

No such a procedure is currently known in the general case. Currently it is common to do state

minimization first and then to perform state assignment, since an STG with minimum number of

states is usually a good starting point for state assignment. But it is a suboptimal procedure, as

pointed out first in [55].

Given a CSFSM, state minimization returns a unique reduced FSM (up to state renaming).

State minimization of CSFSM’s merges all equivalent states into one state. Since it is not known

apriori the amount of merging that produces the best starting point for state assignment, one can pass

to the state assignment step the mergeability information, instead of the reduced FSM. The state

assignment routine is given the task to decide the merging, while assigning the codes to the states.

In this way, a family of equivalent STGs, complete under state merging and state re-direction, is

explored during state assignment. Such a combined state minimization and encoding procedure has

been proposed in [78], in the following form:

7Anticipating a future discussion, we say that the selection of encodeable GPI’s reduces to binate covering and
encodeability when there are don’t care transitions. When don’t care transitions are not present, one can reduce the
selection of encodeable GPI’s to unate covering and encodeability.

200 CHAPTER 8. MINIMIZATION OF GPI’S

1. Identify equivalent states and implied state pairs.

2. Modify the FSM representation by letting the next-state of any transition be any one of the

equivalent states.

3. In the state assignment step, allow equivalent states to have the same code (i.e., equivalent

states need not have different codes) and assign the same code to all implied state pairs of

equivalent states encoded with the same code.

This way of coupling state minimization and state assignment gives rise to don’t care transitions,

because some transitions have more than a possible next state.

Given an ISFSM, a state minimization procedure returns an ISFSM with a minimum

number of states. Another way of looking to it is that state minimization of ISFSM’s takes a family

of CSFSM’s and returns a subfamily of CSFSM’s, all characterized by having the minimum number

of states. We do not know of an exact procedure that explores at the same time state minimization

and state assignment of ISFSM’s. In [133], the problem of mapping the implied classes into

compatibles in the reduced FSM (problem of unique mapped representation) has been modelled

with don’t cares transitions in the reduced FSM.

The introduction of don’t care transitions is a special case of symbolic relations, pioneered

in [82, 78]. Symbolic relations tie together the notion of GPI (that accounts for symbolic in the

name) with the notion of relation. It is clear that with don’t care transitions we have a relation, and

not anymore a function, because the output response is a number of choices and not just one. They

are symbolic relations because the output response is symbolic, so GPI’s are required. To solve

the symbolic relation problem, the notion of GPI’s is extended to the one of generalized candidate

primes (GCPI’s), 8 similar to the notion of a candidate prime in a boolean relation. An appropriate

covering problem is then set up, whereby a minimum subset of GCPI’s is selected to implement the

symbolic relation. We refer the reader to the references for a detailed presentation of the theory.

It suffices to say here that covering with GCPI’s involves a binate table covering step, while for

covering with GPI’s (constrained) unate table covering suffices.

In this thesis we only consider symbolic don’t cares arising with a next stateANY . They

can be handled in the frame of GPI’s, without a need to extend the theory to GCPI’s. Before leaving

the topic of symbolic don’t cares, we report an example from [133] of unique mapped representation

modelled using GCPI’s. Consider the ISFSM given in the table.

8A generalized candidate prime of a symbolic relation R is a cube (cj�) � D � Σ such that there exists an input
encoding � : D ! Br and an output encoding : Σ ! Bn for which (�(c)j (�)) is a prime of a mapping f �f�; g R.

8.3. GPI’S AND NON-DETERMINISM 201

0 1
1 1,0 2,0
2 – 4,1
3 1,– 2,0
4 1,1 5,0
5 3,0 3,1

A solution with minimum number of states can be formed with the compatibles:a = f1; 3g; b= f2; 5g; c= f3; 4g
When constructing the reduced FSM there is a choice for the next state of b under input 0 9. So,

we get:

0 1a a,0 b,0b (a; c),0 c,1c a,1 b,0
The STT of the reduced FSM is:

0 a a 0
1 a b 0
0 b (a; c) 0
1 b c 1
0 c a 1
1 c b 0

The primes of this symbolic relation are listed in Figure 8.9. Let the encoding of a be la1la2.

Similarly for b and c. We now proceed to derive the covering constraints.

x = 0 a (l̄a1 + c1 + c7lb1 + c8 + c9lc1 + c10 + c19lb1 + c20 + c21lc1)(l̄a2 + c1 + c7lb2 + c8 + c9lc2 + c10 + c19lb2 + c20 + c21lc2)
x = 1 a (l̄b1 + c2 + c7la1 + c11lc1 + c12 + c19la1 + c22lc1)(l̄b2 + c2 + c7la2 + c11lc2 + c12 + c19la2 + c22lc2)
x = 0 b (l̄a1 + c3 + c8 + c9lc1 + c13lc1 + c15 + c16lc1 + c20 + c21lc1)c̄14(l̄a2 + c3 + c8 + c9lc2 + c13lc2 + c15 + c16lc1 + c20 + c21lc2)c̄14+(l̄c1 + c9la1 + c13la1 + c14 + c16la1 + c21la1)c̄3c̄8c̄15c̄20(l̄c2 + c9la2 + c13la2 + c14 + c16la2 + c21la2)c̄3c̄8c̄15c̄20

9The solution a = f1g; b = f2; 5g; c = f3; 4g has no mapping options.

202 CHAPTER 8. MINIMIZATION OF GPI’S

c1: 0 a a 0c2: 1 a b 0c3: 0 b a 0c4: 1 b c 1c5: 0 c a 1c6: 1 c b 0c7: – a a \ b 0c8: 0 a [b a 0c9: 0 a [b a \ c 0c10: 0 a [c a 0c11: 1 a [b b \ c 0c12: 1 a [c b 0c13: – b a \ c 0c14: – b c 0c15: 0 b[c a 0c16: 0 b[c a \ c 0c17: 1 b[c b \ c 0c18: – c a \ b 0c19: – a [c a \ b 0c20: 0 a [b [c a 0c21: 0 a [b [c a \ c 0c22: 1 a [b [c b \ c 0

Figure 8.9: Primes of the symbolic relation.

8.3. GPI’S AND NON-DETERMINISM 203

x = 1 b c4

x = 0 c c5

x = 1 c (l̄b1 + c6 + c12 + c17lc1 + c18la1 + c19la1 + c22lc1)(l̄b2 + c6 + c12 + c17lc2 + c18la2 + c19la2 + c22lc2)
Let us turn now our attention to the face embedding constraints. The non-trivial face embedding

constraints, the related sets of primes, and the corresponding constraints are:a [b: c8; c9; c11 c̄8c̄9c̄11 + (la1 � lc1)(lb1 � lc1) + (la2 � lc2)(lb2 � lc2)a [c: c10; c12; c19 c̄10c̄12c̄19 + (la1 � lb1)(lc1 � lb1) + (la2 � lb2)(lc2 � lb2)b[c: c15; c16; c17 c̄15c̄16c̄17 + (lb1 � la1)(lc1 � la1) + (lb2 � la2)(lc2 � la2)
Finally, the disjointness constraints are given by:((la1 � lb1) + (la2 � lb2))((la1 � lc1) + (la2 � lc2))((lb1 � lc1) + (lb2 � lc2))
The optimum encoding is given by the minimum cost assignment satisfying the product of all the

constraints derived so far. Putting these constraints in POS form results in a huge number of clauses,

in spite of the simplicity of the example.

8.3.2 GPI’s for Decomposition

Another application of GPI’s is for the decomposition of FSM’s into interconnected

submachines. A formulation of FSM decomposition targeting two-level logic as symbolic-output

partitioning has been proposed in [6]. The algorithm proposed requires the generation of GPI’s of

submachines and the solution of a constrained covering problem. We refer the interested reader to

the original paper. Here the novel aspects of this application of GPI’s are outlined.

204 CHAPTER 8. MINIMIZATION OF GPI’S

Suppose that the problem is to decompose a given FSM, M , into two interconnected

FSM’s, M1 and M2, with the objective to minimize the total number of product terms in the

minimized symbolic representations of the submachines. Let the number of product terms in

the prototype machine, M , after one-hot coding and two-level logic minimization be P . Let the

number of product terms in the submachines M1 and M2 after one-hot coding and two-level logic

minimization beP1 and P2, respectively. An optimal decomposition minimizesP1 + P2. An upper

bound to P1 + P2 is P , corresponding to the case when no good decomposition can be found and

so the original FSM is not decomposed.

One decides a-priori a decomposition topology and a number of submachines. Outputs

can be partitioned between the various submachines. Decomposition topologies vary from a general

one where each submachine knows the state of every other submachine to a parallel one, where

no submachine knows the state of any other submachine. Of course a given decomposition does

not need to exist. A way to find decompositions is to come up with one partition of the original

states for each submachine. These partitions must satisfy some properties to induce a functionally

correct decomposition. The properties depend on the chosen topology. In the case of a general

decomposition it is sufficient the minimum requirement that the product of the partitions be the

zero-partition; for a parallel decomposition every partition must be closed. Instead of partitions one

could look for set systems [56] (states may be in more than one block) and explore a larger solution

space, but it is not done in the referred project.

Suppose that one looks for a general decomposition into two submachines (it always

exists). Conceptually each state in the original FSM is split into the concatenation of two companion

states. Two copies of the original FSM are made, where each copy is defined on one of the two sets

of companion states. Since each copy reads the state of the other, it follows that each copy sees the

global present state as in the original FSM. The outputs can be distributed between the two copies.

For instance, all outputs can be given to one of the two copies.

The symbolic covers of the two submachines are then minimized. A multi-valued min-

imization of the 1-hot encoded covers would not yield any more information, than a multi-valued

minimization of the 1-hot encoded original FSM. Instead the goal here is to find a pair of valid

partitions (whose product is the zero-partition) such that the minimized multi-valued covers of

the two submachines, where merged states are identified, are minimum. 10. Now enter the GPI’s.

10Multi-valued minimization of a 1-hot encoded cover is a concise way of saying that multi-valued minimization of a
symbolic cover returns a minimized multi-valued cover, that can be realized with an equivalent two-valued cover by 1-hot
encoding the minimized multi-valued cover; alternatively, one can say that 1-hot encoding of a symbolic cover followed
by two-valued minimization is equivalent to multi-valued minimization of a symbolic cover followed by 1-hot encoding

8.3. GPI’S AND NON-DETERMINISM 205

Suppose that we compute the set of GPI’s of each submachine (this is more than computing the set

of PI’s of each submachine). We know that each GPI carries a next state tag whose interpretation

is that the encoded GPI produces as next state the intersection of the codes of the states in the

tag. Since we are computing a bound when the encoding is one-hot, the bitwise intersection of the

codes of two states is null unless they have the same code. Therefore the tag of each GPI forces to

merge the states in it into one. So we can use the next state tags of the GPI’s to explore all possible

partitions. The selection of two minimum sets of GPI’s which induce valid partitions and such that

the mergings forced by their tags do not conflict with the input constraints induced by their present

state literals gives two submachines whose 1-hot encoded implementations have a total minimum

cardinality. Different topologies induce different requirements on the selections of GPI’s that yield

correct decompositions. Notice that there may be codes shorter than 1-hot and still satisfying the

input constraints and merging conditions, but here we are not interested in encoding the states, but

in decomposing the original FSM by means of a preprocessing step. 11.

The two selected sets of GPI’s define the symbolic covers of the two submachines. Each

state in the present state literal of a GPI in a submachine denotes the pair of companion states of

both submachines: one is the present state of the current submachine and the other state is an input

from the other submachine. Each state of a submachine is replaced by the representative of the

equivalence class to which it belongs. The two symbolic covers must now be encoded. Since each

submachine reads as input the state of the other submachine, the state assignment routine should

take into account such an interaction between the two submachines. This is an instance of state

assignment of a network of FSM’s, for which no good algorithm is known up to now. It is not

mentioned in [6] how the problem of encoding mutually interacting FSM’s has been solved in the

reported experiments. It is only stated that a state-of-art state assignment tool for single FSM’s

(nova) has been somehow used.

The following example shows the main steps of a decomposition. The original FSM is:

0 s1 s2 1
1 s1 s3 1
0 s2 s3 0
1 s2 s4 0
0 s3 s3 0

of the minimized symbolic cover.
11If GPI’s of each submachineare used without this restriction on a chosen encoding, then the GPI’s of each submachine

would carry the same information as the GPI’s of the original FSM. GPI’s are independent of an encoding (GPI’s are used
to find an optimal encoded cover), but here they are used with a presupposed encoding, so that here GPI minimization is
equivalent to multi-valued minimization and simultaneous exploration of the partitions.

206 CHAPTER 8. MINIMIZATION OF GPI’S

1 s3 s4 0
0 s4 s2 1
1 s4 s1 1

The two copies are:

0 sa1 sb1 sa2
1 sa1 sb1 sa3
0 sa2 sb2 sa3

(1) 1 sa2 sb2 sa4
0 sa3 sb3 sa3
1 sa3 sb3 sa4
0 sa4 sb4 sa2
1 sa4 sb4 sa1

0 sa1 sb1 sb2 1
1 sa1 sb1 sb3 1

(2) 0 sa2 sb2 sb3 0
1 sa2 sb2 sb4 0
0 sa3 sb3 sb3 0
1 sa3 sb3 sb4 0
0 sa4 sb4 sb2 1
1 sa4 sb4 sb1 1

They have the following minimum covers of GPI’s:

- 1000 (sa1 sa2 sa3)
(3) 0 1111 (sa1 sa2 sa3)

- 0001 (sa1 sa2 sa3)
1 0110 (sa4)

0 1000 (sb2) 1
(4) 1 1000 (sb3 sb4) 1

- 0110 (sb3 sb4) 0
0 0001 (sb2) 1
1 0001 (sb1) 1

Replace the present state literals in (3),(4) with a concatenation of the codes of the submachines.

The covers are:

- sa1 sb1 (sa1,sa2,sa3)
0 sa1 sb1 (sa1,sa2,sa3)

(3’) 0 sa2 sb2 (sa1,sa2,sa3)
0 sa3 sb3 (sa1,sa2,sa3)
0 sa4 sb4 (sa1,sa2,sa3)

8.3. GPI’S AND NON-DETERMINISM 207

- sa4 sb4 (sa1,sa2,sa3)
1 sa2 sb2 (sa4)
1 sa3 sb3 (sa4)

0 sa1 sb1 (sb2) 1
(4’) 1 sa1 sb1 (sb3,sb4) 1

- sa2 sb2 (sb3,sb4) 0
- sa3 sb3 (sb3,sb4) 0
0 sa4 sb4 (sb2) 1
1 sa4 sb4 (sb1) 1

Replace each state by a representative of its equivalence class (sa1; sa2; sa3 are one class represented

by sa1; sb3; sb4 are one class represented by sb3). The final symbolic covers are:

- sa1 sb1 sa1
(3’’) 0 sa1 sb2 sa1

0 sa1 sb3 sa1
- sa4 sb3 sa1
1 sa1 sb2 sa4
1 sa1 sb3 sa4

0 sa1 sb1 sb2 1
(4’’) 1 sa1 sb1 sb3 1

- sa1 sb2 sb3 0
- sa1 sb3 sb3 0
0 sa4 sb3 sb2 1
1 sa4 sb3 sb1 1

An optimal state assignment of both submachines should take into account their interactions.

For instance, when encoding submachine (3”) the symbolic input sb appears as state variable in

submachine (4”).

In summary, decomposition does not carry out the complete encoding of the states, it

merely ‘preprocesses’ them so that the subsequent state encoding applied on the preprocessed set of

states will be guaranteed to realize the decomposition with the desired topology. The decomposition

problem is simpler than the classical state assignment problem since a one-hot coding has already

been assumed, and the only degree of freedom is in giving the same code to the states. It is interesting

to mention that state encoding can be viewed as the problem of finding an optimal decomposition of

the prototype machine into as many submachines as there are state bits in the final state encoding.

The number of submachines (number of bits), topology of interconnections and distribution of the

proper outputs are all unknowns that an optimal state assignment decides , thereby producing an

optimal decomposition.

208 CHAPTER 8. MINIMIZATION OF GPI’S

Redecomposition of interconnected FSM’s via GPI’s is briefly touched upon in [5]. The

claim is that one can generate the GPI’s of the submachines and after some operations deduce from

them GPI’s of the overall FSM. These operations are described very briefly and are not clear, but the

point made is that one can explore the GPI’s of the overall FSM, without a need to flatten the FSM

network into a lumped FSM to compute them. This corresponds to a re-encoding/re-partitioning of

the initial implementation.

209

Chapter 9

Encodeability of GPI’s

9.1 A Theory of Encodeability of GPI’s

We present a theory of encodeability of GPI’s based on the notion of raising graphs and

updating sets. It is at the core of new algorithms for the computation of a branching column and of

a lower bound to be used in a branch-and-bound scheme to find a minimum encodeable cover of

GPI’s.

9.1.1 Efficient Encodeability Check of GPI’s

A set of selected GPI’s and the original cover of the FSM yield a set of constraints: the

input constraints of the GPI’s, the uniqueness constraints and the next state constraints. Then one

must find if the selected GPI’s are encodeable, i.e., if there is an assignment of codes to states such

that all associated encoding constraints are satisfied. If so, codes of minimum length that satisfy

the constraints must be found in order to convert the cover of encodeable GPI’s into a two-valued

cover that implements the original FSM. Theory and algorithms to check satisfiability of encoding

constraints have been proposed in [116], to which we refer for details. Here we review necessary

definitions and theorems. Moreover, we present novel results on encodeability of GPI’s that will

be the basis for a new feasibility check algorithm very suitable for a BDD-based representation.

We suppose that a set of GPI’s and an FSM cover (therefore a set of states and a set of next state

constraints) are given.

An encoding dichotomy (or, more simply, dichotomy) i = (l; r) is a 2-block partition of

a subset of the states to be encoded. The states in the left block are associated with the bit 0 while

210 CHAPTER 9. ENCODEABILITY OF GPI’S

those in the right block are associated with the bit 1. If a dichotomy is used in generating codes,

then a code bit of the states in the left block is assigned 0 while the same code bit is assigned 1 for

the states in the right block. For example, (ab; cd) is an dichotomy in which a and b are associated

with the bit 0 and c and d with the bit 1.

A face constraint yields pairs of initial dichotomies (ID). For instance, given the statesa; b; c; d; e and the face constraint (abc), the initial dichotomies are (abc; d), (d; abc), (abc; e),(e; abc). Since dichotomies have a fixed 0 or 1 assignment, for each of them there is a dual

one where the blocks are switched. So there is natural equivalence relation Ĩ on the initial di-

chotomies I (duality equivalence). Two initial dichotomies are in the same class iff they are dual

of each other (the dual of the dual of dichotomy i is i). In the example there are two classesf(abc; d); (d; abc)g; f(abc; e); (e; abc)g. A class ĩ = fiL; iRg of the duality equivalence relation is

called a free initial dichotomy (FID). A FID can be represented by either initial dichotomy that is

in the class. Uniqueness constraints too generate initial dichotomies.

A dichotomy i0 = (l0; r0) orderly or block-wise covers another dichotomy i = (l; r),
noted as i0 � i, iff l0 � l and r0 � r. Notice that this definition differs from the one given in [116],

where it is said that a dichotomy i1 covers a dichotomy i2 if the left and right blocks of i2 are subsets

respectively either of the left and right blocks, or of the right and left blocks of i1. We reserve instead

this unordered definition of covering to the case of a dichotomy covering a free initial dichotomy.

A dichotomy i0 = (l0; r0) unorderly covers a FID i = (l; r), noted as i0 � i, iff l0 � l and r0 � r
or l0 � r and r0 � l. We will often drop the qualification and simply say "covers", when it will be

clear from the context which one is meant.

A dichotomy is complete if each state appears in either block. A completion of a

dichotomy i = (l; r) is a dichotomy c(i) = (c(l); c(r) such that c(l) � l, c(r) � r, c(l)\ c(r) = ;,c(l)[c(r) = U(l; r), where U is the universe set.

A dichotomy violates a next-state encoding constraint if the encoding bit generated for

the states in the dichotomy does not satisfy the bit-wise requirements of the next-state encoding

constraint. A valid dichotomy is one that does not violate any next-state encoding constraint. The

notion of valid and complete dichotomy coincides with the notion of prime dichotomy proposed

in [116], but here we will not use the latter term since we do not rely on iterated union to generate

valid and complete dichotomies.

A dichotomy is raised by adding states into either its left or right block as implied by the

next-state encoding constraints. A dichotomy is said to be maximally raised if no further states

can be added into either the left or right block by the next-state encoding constraints.

9.1. A THEORY OF ENCODEABILITY OF GPI’S 211

procedure check feasible (constraints) fI = generate initial dichotomies (constraints)D = copy(I)

foreach (dichotomy d in D)

raise dichotomy (d, constraints)D = remove invalid dichotomies (D, constraints)Ĩ = duality equivalence (I)

foreach (free dichotomy ĩ = fiL; iRg 2 Ĩ)

if (ĩ is not covered by d(iL) 2 D or by d(iR) 2 D)

return (INFEASIBLE)

return (FEASIBLE)g
Figure 9.1: Encodeability check

The procedure check feasible (modified from [116]) generates initial dichotomies from

face constraints and uniqueness constraints, raises and deletes them using the next state constraints

(procedures raise dichotomy and remove invalid dichotomies) and finally reports the unsatisfied

initial dichotomies.

Given an initial dichotomy i = (l; r) and a next state constraint e, the procedure

raise dichotomy defines two raising rules:

1. If one child of each conjunction of e is in the left block of i, then insert the parent s of e into

the left block of i (left raising rule).

2. If one child of all but one conjunction of e is in the left block of i and the parent s of e is in

the right block of i, then insert all children of the remaining conjunction of e into the right

block of i (right raising rule).

For a given e and i at most one of the two rules is applicable, because the conditions for applicability

are contradictory. To model the semantics of an empty next-state constraint (e.g., a = ;), it is

stipulated that in remove invalid dichotomies any dichotomy d with the parent of the constraint in

the right block is removed. In raise dichotomy an empty next-state constraint does not force any

raising.

Given an initial dichotomy i = (l; r), we denote by d(i) = (d(l); d(r)) the maximally

212 CHAPTER 9. ENCODEABILITY OF GPI’S

procedure remove invalid dichotomies (D, constraints) f
foreach (dichotomy d 2 D)

foreach (next-state constraint e)
if (parent in right block of d &

one child of each conjunction in left block of d)

delete dg
Figure 9.2: Detection of invalid dichotomies

procedure raise dichotomy (d, constraints) f
do f

foreach (parent s in a next-state constraint e)
if (one child of each conjunction in left block of d)

insert s into left block of d
if (one child of all but one conjunction in left block of d &s in right block of d)

insert all children of remaining conjunction into right block of dg while (at least one insertion within loop)g
Figure 9.3: Raising of dichotomies

9.1. A THEORY OF ENCODEABILITY OF GPI’S 213

raised dichotomy that raise dichotomy generates. This definition is well-posed, because if a di-

chotomy i is given as an input to raise dichotomy, a unique d(i) is returned, according to the order

of application of the next-state constraints and rules.

An initial dichotomy is satisfied if there is a valid maximally raised dichotomy that

covers it. A free initial dichotomy is satisfied if at least one of the two initial dichotomies in it

is satisfied 1. We will show that any maximally raised dichotomy that covers an ID i is invalid ifd(i) is invalid. Therefore, a free initial dichotomy is unsatisfied if raise dichotomy obtains invalid

maximally raised dichotomies from both of its two initial dichotomies. One says also that a free

initial dichotomy ĩ = fiL; iRg (or an initial dichotomy i) is violated by the next state constraints that

are responsible for the deletion of d(iL) and d(iR) (of d(i)). Summarizing, next state constraints

remove raised dichotomies and so they violate initial dichotomies, and therefore some face or

uniqueness constraints cannot be satisfied.

We now prove that it is sufficient to check whether d(i) is invalid to determine if 9i0 such

that i is covered by d(i0). This proves that check infeasible detects correctly infeasibility.

Theorem 9.1.1 Given an initial dichotomy i and the corresponding maximally raised dichotomyd(i). If d(i) is invalid, i cannot be covered by another maximally raised dichotomy d(i0), unlessd(i0) is invalid too.

Proof: We prove first that if 9i0 = (l0; r0); i0 6= i, such that (l; r) � d(i0) = (d(l0); d(r0)), i.e. (l; r)
is covered by a maximally raised dichotomy d(i0), then d(i) = (d(l); d(r))� d(i0) = (d(l0); d(r0)).
Suppose that some raising steps are needed to maximally raise (l; r) to (d(l); d(r)); we prove

the statement by induction on the number k of raising steps. Denote the dichotomy (l; r), after

the application of the first k raising steps, as (lk; rk). The statement is true for k = 0, since if(l; r) = (d(l); d(r)), i.e. i is already maximally raised, then (d(l); d(r))� (d(l0); d(r0)). Suppose

that it is true for k, i.e. (lk; rk) � (d(l0); d(r0)), we want to show that it holds for k + 1, i.e that(lk+1; rk+1) � (d(l0); d(r0)). Either the left raising rule or the right raising rule is applied to go from(lk; rk) to (lk+1; rk+1). If the left raising rule for next-state constraint e with parent p is applied,

then (lk+1; rk+1) = (lk [fpg; rk). Since lk � d(l0), e is applicable also to (d(l0); d(r0)) and so it

inserts p in the left block d(l0). But, since (d(l0); d(r0)) is maximally raised, p is already in d(l0),
and so (lk+1; rk+1) � (d(l0); d(r0)). If the right raising rule for next state constraint e with parentp and uncommitted conjunct b1 : : : bm is applied, then (lk+1; rk+1) = (lk; rk [fb1 : : : bmg). Sincelk � d(l0), and rk � d(r0), e is also applicable to (d(l0); d(r0)), unless one child of b1 : : : bm is

1Note that "satisfied" is here an overloaded word.

214 CHAPTER 9. ENCODEABILITY OF GPI’S

in d(l0), making (d(l0); d(r0)) invalid, because p is in d(r0). But, since (d(l0); d(r0)) is maximally

raised, b1 : : : bm is already in d(r0) and so (lk+1; rk+1) � (d(l0); d(r0)).
Finally we prove that if (d(l); d(r)) is invalid, then (d(l0); d(r0)) is invalid too. Suppose

that (d(l); d(r)) is removed by e, then the parent of emust be in d(r) and one child of each conjunct

must be in d(l). Since we proved previously that (d(l); d(r)) � (d(l0); d(r0)), then the parent

of e must be also in d(r0) and one child of each conjunct must be in d(l0), i.e. e removes alsod(i0) = (d(l0); d(r0)).
We will now look into the properties of the raising process, proving that not only in case

of infeasibility all maximally raised dichotomies are invalid (as stated by Theorem 9.1.1), but also

that in case of feasibility the same valid maximally raised encoding dichotomy is obtained, so that

raise dichotomy is sufficient to find all valid maximally raised dichotomies.

Theorem 9.1.2 For any order of application of the next state constraints and of the raising rules

to a given dichotomy, either the same valid maximally raised dichotomy is produced or no valid

maximally raised dichotomy is produced.

Proof: We show that if we start with i we get a maximally raised dichotomy that is unique if it is

valid, i.e. the same maximally raised dichotomy is obtained independently of the order in which the

next state constraints are used (the choice of the left or right rule is fixed once a next state constraint

has been chosen). This shows that the procedure raise dichotomy computes all valid maximally

raised dichotomies. Since Theorem 9.1.1 shows that if d(i) is invalid, any other maximally raised

dichotomy that covers i is invalid, the theorem is proved.

Suppose that, given i, the next state constraints e1; e2; : : : ; el are applicable. We will show

that for any choice of e, after applying e to i, we get a raised dichotomy to which the remaininge’s are still applicable with exactly the same rule, if the raised dichotomy is still valid 2. Since the

application of a next state constraint with a rule produces the same effect on the two sides of an

dichotomy, if the conditions of applicability of a next-state constraint become true after applying

a certain sequence of raising actions, these conditions will become true soon or later in any other

sequence of raising actions. Therefore any order of raising ends up with the same valid maximally

raised dichotomy.

Suppose that ek and ej are both applicable to i = (l; r) and that ek is applied first,

producing iek . We show that ej is applicable to iek with the same rule as it was to i, unless an

2It may happen that, after applying an applicable next state constraint, as a consequence some other applicable next
state constraint does not need to be applied anymore.

9.1. A THEORY OF ENCODEABILITY OF GPI’S 215

invalid dichotomy is obtained. If ej was applicable to i with the left rule, i.e. one child of each

conjunction of ej was in l, then ej is still applicable to iek with the left rule. If ej was applicable toi with the right rule, i.e. one child of all but one conjunction c of ej was in l and the parent of ej
was in r, then ej is still applicable to iek with the right rule, unless a previous raising has inserted

in l one child of c previously unassigned; but in the last case ej is applicable to iek with the left rule

and so it forces its parent into l, but its parent must have been already in r for ej to be applicable

with the right rule to i and so an invalid dichotomy is obtained.

9.1.2 Encoding of a Set of Encodeable GPI’s

Once a set of GPI’s is known to be encodeable, one must find codes of minimum length

that satisfy the encoding constraints. If the requirement that codes are of minimumlength is dropped,

then it is sufficient to take the valid maximally raised dichotomies, make each of them complete

by adding to the right block any state absent from the dichotomy and then choose a minimal set

of complete maximally raised dichotomies that cover all free initial dichotomies [116]. Note that

by adding absent states to the right block no invalid dichotomy can be produced, since no existing

encoding constraints become applicable to the complete maximally raised dichotomies so obtained.

We will now discuss the case where codes of minimum length are wanted. An encoding

column of a valid encoding corresponds to a complete and valid dichotomy. The next theorem

proves that set of valid complete dichotomies is exactly the set of valid completions of the set of

valid maximally raised dichotomies.

Theorem 9.1.3 The set of valid complete dichotomies is the set of valid completions of valid

maximally raised dichotomies.

Proof: A free initial dichotomy generates two initial dichotomies. A dichotomy covers a free initial

dichotomy iff it contains either initial dichotomy. From an initial dichotomy either one obtains a

unique valid maximally raised dichotomy or no valid maximally raised dichotomy. We suppose that

the given set of GPI’s is encodeable, so for a given free initial dichotomy (x; y) at least one of the two

initial dichotomies (l; r) yields a valid maximally raised dichotomy (d(l); d(r)). A valid complete

dichotomy that covers a given free initial dichotomy (x; y) by block-wise containig (l; r) must

contain the valid maximally raised dichotomy (d(l); d(r)), because adding symbols left and right

to (l; r) does not invalidate any raising on (l; r) if a valid maximally raised dichotomy (d(l); d(r))
is obtained by maximally raising (l; r) (a raising by left rule is still applicable to supersets of l and

216 CHAPTER 9. ENCODEABILITY OF GPI’S

procedure exact encode (constraints) fI = generate initial dichotomies (constraints)D = copy(I)

foreach (dichotomy d in D)

raise dichotomy (d, constraints)D = remove invalid dichotomies (D, constraints)Ĩ = duality equivalence (I)

foreach (free dichotomy ĩ = fiL; iRg 2 Ĩ)

if (ĩ is not covered by d(iL) 2 D or by d(iR) 2 D)

return (INFEASIBLE)C = complete dichotomy generate (D)

valid complete = remove invalid dichotomies (C, constraints)

mincov = minimum cover (I, valid complete)

return (derive codes (mincov))g
Figure 9.4: Exact encoding of constraintsr; a raising by right rule is still applicable if a valid maximally raised dichotomy is obtained) and a

valid complete dichotomy is a fortiori maximally raised.

By considering all possible completions of (d(l); d(r))one gets all complete dichotomies

that contain block-wise (l; r). By keeping only the valid completions one gets the set of valid and

complete dichotomies that contain block-wise (l; r).
The selection of a minimum set of valid complete dichotomies that cover the original free

initial dichotomies can then be cast again as a table covering problem. Attention must paid to the

fact that a valid complete dichotomy covers a free initial dichotomy by covering any of its two initial

dichotomies. In other words, each row of the covering table corresponds to a free initial dichotomy

that has a 1 in a column corresponding to a valid complete that covers either initial dichotomy

in that free initial dichotomy. Procedure exact encode shows the full sequence of steps to check

encodeability and, if the latter holds, to encode the set of GPI’s with codes of minimum length.

9.1. A THEORY OF ENCODEABILITY OF GPI’S 217

9.1.3 Updating Sets and Raising Graphs

In this section we address the issue of adding more GPI’s to a set of GPI’s that is not

encodeable. We know by Proposition 8.1.1 that there is an addition of GPI’s that makes the current

set encodeable, but the problem is which GPI’s to add. Our strategy is to use the information

gathered in checking encodeability to drive the choice of useful GPI’s to add to the current cover.

New notions of updating sets and raising graphs will be introduced to that purpose.

If no valid maximally raised dichotomy is produced, then, according to the order of

raising, different invalid maximally raised dichotomies can be produced, as the following example

shows. Consider the initial dichotomy (bc; d) and the next state constraints a = ab + ac andd = da+ dc. Let L and R denote respectively the left and right raising rule.

Two different sequences of raising actions are:(bc; d) a=ab+ac(L)�! (abc; d)(abc; d) d=da+dc(L)�! (abcd; d) invalid(abcd; d) a=ab+ac�! (abcd; d)(abcd; d) d=da+dc�! (abcd; d)(bc; d) d=da+dc(R)�! (bc; da)(bc; da) a=ab+ac(L)�! (abc; da) invalid(abc; da) d=da+dc(L)�! (abcd; da) invalid(abcd; da) a=ab+ac�! (abcd; da)(abcd; da) d=da+dc�! (abcd; da)
At the first step both a = ab+ ac with L or d = da+ dc withR can be applied. If a = ab+ ac
with L is applied first, then d = da+ dc with R cannot be applied anymore because its condition

has been falsified. Instead d = da + dc with L can be applied, but it must result in an invalid

dichotomy because the parent of d = da+ dc was already in the right block and now is inserted

in the left block. Applying first d = da + dc with R has the advantage that both a = ab + ac
and d = da + dc are recognized as responsible for removing (bc; d), allowing more freedom to

update the minterm constraints. For instance, update a = ab + ac into a = ab+ ac+ ad, then(bc; d) is raised to (bc; ad) and it is not anymore invalid. Alternatively, update d = da + dc tod = da + dc + d, then (bc; d) is raised to (abc; d) and it is not anymore invalid. If we would

consider only d = da+ dc as responsible of deleting (bc; d) we would miss that also by updatinga = ab+ ac the cancellation does not take place anymore.

218 CHAPTER 9. ENCODEABILITY OF GPI’S

When a free initial dichotomy is violated (and therefore a face constraint cannot be

satisfied), by Proposition 8.1.1 there is always a set of GPI’s whose addition to the current selection

makes the new set of GPI’s encodeable. An optimization problem is to add the smallest number of

GPI’s that achieves the goal. The following result guarantees that, after adding a GPI, an existing

set of free initial dichotomies is not less satisfied.

Proposition 9.1.1 If a set of free initial dichotomies ID is satisfied by the next-state constraints of

a set of GPI’sG, then ID is satisfied by the next-state constraints induced by a set of GPI’sG0 � G.

Proof: The consistency equations of minterms covered by the newly added GPI are updated. By

the rule of removal, given a dichotomy and a consistency equation, if the left state of the equation

is in the right block of the dichotomy and one state in each conjunct of the equation is in the left

block then the dichotomy is deleted. When the equation is updated, one more conjunct is added

to it and so the condition of the previous rule may fail to be true. Also it may be the case that a

removal is a consequence of some previous raising. By adding a conjunct to a consistency equation

it may happen that the conditions in the raising rules may not be anymore true, making impossible

the raising and consequent removal.

Notice that the addition of a GPI may introduce more initial dichotomies (because of new face

constraints), temporily making harder the overall encodeability problem.

We would like to add the smallest number of GPI’s so that the resulting encoding con-

straints are satisfied. In the worst-case, a branch-and-bound search technique may have to explore

all solutions, but a good choice of a new GPI at the branching step will bound more quickly the

search. To this effect we annotate each unsatisfied free dichotomy with the next-state constraints

that violated it. The following facts are important:

1. Next-state constraints of the form a = a+::: are always trivially satisfied and once a constraint

becomes such it does not need to be anymore considered (trivial next state constraint).

2. Next-state constraints with the same consistency equation,but associated to different minterms

are different next state constraints. The reason is that, if they delete an initial dichotomy, all

of them must be properly updated to avoid any violation of that initial dichotomy and this

may require the addition of different GPI’s.

3. Next-state constraints with different consistency equations may remove the same dichotomy,

for different encoding violations. The procedure remove invalid dichotomies can be made to

enumerate them all.

9.1. A THEORY OF ENCODEABILITY OF GPI’S 219

In order to choose an "effective" branching column, we need to annotate each unsatisfied

initial dichotomy with the next-state constraints violating it. The annotation must capture exactly

all sets of next-state constraints causing unsatisfiability. We highlight first some issues by means of

the following examples.

1. A maximally raised dichotomy may be removed as a consequence of a previous raising

action. Both the raising next-state constraint and deleting next-state constraint are therefore

responsible of the cancellation. Selecting a GPI that updates either of them could make

the cancellation go away. Consider the dichotomy (ab; c) and the next state constraintsd = da+ db, f = fa+ fd, c = ca+ cf :(ab; c) d=da+db(L)�! (abd; c)(abd; c) f=fa+fd(L)�! (abdf ; c)(abdf ; c) c=ca+cf(L)�! (abcdf ; c) invalid(abcdf ; c) d=da+db�! (abcdf ; c)(abcdf ; c) f=fa+fd�! (abcdf ; c)
Updating any of d = da+ db, f = fa + fd, c = ca+ cf can make the cancellation go

away. For instance, update d = da+ db to d = da+ db+ dc:(ab; c) d=da+db+dc(L)�! (ab; c)(ab; c) f=fa+fd�! (ab; c)(ab; c) c=ca+cf(R)�! (ab; cf)(ab; cf) d=da+db+dc�! (ab; cf)(ab; cf) f=fa+fd(R)�! (ab; cdf)(ab; cdf) c=ca+cf�! (ab; cdf)(ab; cdf) d=da+db+dc�! (ab; cdf)
Update f = fa+ fd to f = fa+ fd+ fc:(ab; c) d=da+db(L)�! (abd; c)(abd; c) f=fa+fd+fc�! (abd; c)(abd; c) c=ca+cf(R)�! (abd; cf)(abd; cf) d=da+db�! (abd; cf)(abd; cf) f=fa+fd+fc�! (abd; cf)(abd; cf) c=ca+cf�! (abd; cf)
Update c = ca+ cf to c = ca+ cf + c:(ab; c) d=da+db(L)�! (abd; c)

220 CHAPTER 9. ENCODEABILITY OF GPI’S(abd; c) f=fa+fd(L)�! (abdf ; c)(abdf ; c) c=ca+cf+c�! (abdf ; c)(abdf ; c) d=da+db�! (abdf ; c)(abdf ; c) f=fa+fd�! (abdf ; c)
2. The proposed annotation is not order-independent, because invalid maximally raised di-

chotomies and next state constraints which remove them are order-dependent. Consider the

dichotomy (abe; c) and the next state constraints d = da + db, c = cd + ce, in the given

order:(abe; c) d=da+db(L)�! (abde; c)(abde; c) c=cd+ce(L)�! (abcde; c) invalid(abcde; c) d=da+db�! (abcde; c)
Update c = cd+ ce to c = cd+ ce+ c:(abe; c) d=da+db(L)�! (abde; c)(abde; c) c=cd+ce+c�! (abde; c)
Let us now exchange the order of the two next state constraints:(abe; c) c=cd+ce(R)�! (abe; cd)(abe; cd) d=da+db(L)�! (abde; cd) invalid(abde; cd) c=cd+ce(L)�! (abcde; cd) invalid(abcde; cd) d=da+db�! (abcde; cd)
Update c = cd+ ce to c = cd+ ce+ c:(abe; c) c=cd+ce+c�! (abe; c)(abe; c) d=da+db(L)�! (abde; c)(abde; c) c=cd+ce+c�! (abde; c)
Update d = da+ db to d = da+ db+ dc:(abe; c) c=cd+ce(R)�! (abe; cd)(abe; cd) d=da+db+dc�! (abe; cd)

In all previous examples, it was always sufficient to update a single next state constraint

to make satisfiable the given initial dichotomy. It is not always so, as the following example shows.

1. Consider the dichotomy (ab; c) and the next state constraints d = da+ db, f = fa + fd,c = ca+ cf , c = ca+ cd. Update d = da+ db to d = da+ db+ dc:(ab; c) d=da+db+dc�! (ab; c)

9.1. A THEORY OF ENCODEABILITY OF GPI’S 221(ab; c) f=fa+fd�! (ab; c)(ab; c) c=ca+cf(R)�! (ab; cf)(ab; cf) c=ca+cd(R)�! (ab; cdf)(ab; cdf) d=da+db+dc�! (ab; cdf)(ab; cdf) f=fa+fd�! (ab; cdf)(ab; cdf) c=ca+cf�! (ab; cdf)
Update f = fa+ fd to f = fa+ fd+ fc:(ab; c) d=da+db(L)�! (abd; c)(abd; c) f=fa+fd+fc�! (abd; c)(abd; c) c=ca+cf(R)�! (abd; cf)(abd; cf) c=ca+cd(L)�! (abcd; cf) invalid(abcd; cf) d=da+db�! (abcd; cf)(abcd; cf) f=fa+fd+fc�! (abcd; cf)(abcd; cf) c=ca+cf�! (abcd; cf)
Update c = ca+ cf to c = ca+ cf + c:(ab; c) d=da+db(L)�! (abd; c)(abd; c) f=fa+fd(L)�! (abdf ; c)(abdf ; c) c=ca+cf+c�! (abdf ; c)(abdf ; c) c=ca+cd(L)�! (abcdf ; c) invalid(abcdf ; c) d=da+db�! (abcdf ; c)(abcdf ; c) f=fa+fd�! (abcdf ; c)(abcdf ; c) c=ca+cf+c�! (abcdf ; c)
The conclusion is that to make the cancellation go away one must update either d = da+db
or (f = fa + fd and c = ca+ cd) or (c = ca+ cf and c = ca+ cd), i.e. the minimal

sets of next state constraints that must be updated have cardinality � 1.

The last examples motivate the following definitions. A next state constraint is updated

when a disjunct that has the parent among its conjuncts is added to it. When the added disjunct

contains only the parent, the updated next-state constraint is trivial. A trivial next-state constraint

can always be reduced in the form parent = parent. So a next-state constraint can be made trivial

by adding a disjunct that is a singleton coinciding with the parent.

Given an initial dichotomy i and a set of next-state constraints C, a set of updating

next-state constraints or updating set U � C is a set of next-state constraints such that, if they

222 CHAPTER 9. ENCODEABILITY OF GPI’S

are replaced by trivial next-state constraints U 0, then i is not anymore violated by (C � U) [U 0.
If i is not violated by any c 2 C, then U = ;. If i is not satisfied by C, a trivial updating set is C
itself. A minimal updating set is an updating set that does not contain properly a set of updating

next-state constraints.

The support of the set of all minimal updating sets is the union of all minimal updating

sets. The support can be used in the computation of a correct lower bound. As an example, suppose

that the set of all minimal updating sets isffd = da+ dbg; ff = fa+ fd; c = ca+ cdg; fc = ca+ cf; c = ca+ cdgg; (9.1)

then its support is fd = da+ db; f = fa+ fd; c = ca+ cdg: (9.2)

We need algorithms to find:

1. an updating set;

2. a minimal updating set;

3. all minimal updating sets;

4. the support of all minimal updating sets.

We present next an elegant characterization of updating sets in terms of the raising graph,

that is a graph describing all possible raisings that can be acted upon an initial dichotomy. This

characterization is the basis of algorithms discussed in Section 11.3.

We state first some facts about applicability of next-state constraints to dichotomies.

Given an initial dichotomy, a next-state constraint is applicable to it iff the conditions of either

raising rule are satisfied by the dichotomy and the application of the next-state constraint adds at

least one state to either block. If the former condition is true and the latter is false the constraint

is vacuously applicable. Since the conditions for the two raising rules are mutually exclusive, at

most one of them is applicable. Therefore we can say that a next-state constraint is left applicable

or right applicable to a dichotomy. If a next-state constraint is applicable to a dichotomy it stays

applicable to it until it is applied or until it becomes vacuously applicable (because another raising

action produces the same effect), with at most a change of type of rule. Precisely, a left applicable

next-state constraint stays left applicable or becomes vacuously applicable. A right applicable

next-state constraint either stays right applicable or becomes vacuously applicable or becomes left

9.1. A THEORY OF ENCODEABILITY OF GPI’S 223

applicable, because a left raising adds to the left a state of a conjunct that before had no state to the

left. In the latter case, invalidity is reached. Given a dichotomy i and a set of next-state constraintsC, the latter can be partitioned into a set Ca of the ones applicable, a set Cna of the ones not

applicable or vacuously applicable and a set Cu of the ones already applied (used). The three sets

are a partition of C.

Given an initial dichotomy and a set of next-state constraints, suppose that the ones inCa are applied in parallel to an initial dichotomy so that raised dichotomies are obtained. For each

raised dichotomy, move the applied next-state constraint (which now become vacuously applicable)

from Ca to Cu and check if any next-state constraint in Cna is now applicable, in which case it

must migrate from Cna to Ca. At each step the sets Ca; Cna; Cu are a partition of C. By this

process one builds a raising graph whose nodes are dichotomies, and whose directed edges are

next-state constraints that raise the predecessor dichotomy to the successor dichotomies. After a

new node (raised dichotomy) is added, one checks whether it is invalid; if so, one does not raise

that node anymore. When no node can be raised, the process is terminated. The resulting graph is

the collection of all possible ways to apply the next-state constraints in C to the initial dichotomy i.
Theorem 9.1.4 The set of outgoing edges of any node (that is not a sink) of the raising graph of a

violated initial dichotomy is an updating set.

Proof: By Theorem 9.1.2, either all sinks of the graph are the same valid maximally raised dichotomy

or they are invalid raised dichotomies (not necessarily the same). In the latter case, consider the

outgoing edges En of a node n that is not a sink. If each of the next-state constraints associated toEn is updated, say to a trivial next state constraint, the node n becomes a valid maximally raised

dichotomy; it is maximally raised because Ca has been emptied, and it is valid because it has been

valid up to now and no raising has been performed. But consider now the raising graph that would

be obtained by starting all over the process, without using the next-state constraints in En. Since

along a path a valid maximally raised dichotomy is reached, then all sinks must be the same valid

maximally raised dichotomy, again by Theorem 9.1.2. In other words, the outgoing edges of n
yield an updating set. Therefore any path in the original raising graph from the source to an invalid

sink must include at least one of these edges, so that by updating the related next-state constraints

an invalid raised dichotomy is not reached.

Corollary 9.1.1 A minimal set of outgoing edges, i.e., not properly contained in any other set of

outgoing edges, is a minimal updating set. All minimal sets of outgoing edges are all minimal

224 CHAPTER 9. ENCODEABILITY OF GPI’S

updating sets. The union of all minimal sets of outgoing edges gives the support of all minimal

updating sets.

9.1.4 Choice of a Branching Column

Given a set of selected GPI’s and of unsatisfied free initial dichotomies, we add one more

GPI to minimize the violations that make unsatisfied those free initial dichotomies.

An example will help in clarifying the notion. Let ĩ1 = fi1L; i1Rg and ĩ2 = fi2L ; i2Rg be

unsatisfied free initial dichotomies. Suppose that for each of them we know the minimal updating

sets. For instance, suppose that the disjunction of minimal updating sets of i1L is ci + cj + cs, ofi1R is ci+ cp, of i2L is cjcq + ci and of i2R is cp+ cr, where the c’s are next state constraints. From

the updating next-state constraints we know the minterms that must be updated. The step from

next-state constraints to minterms is clarified by the following statements:

1. the same next-state constraint may be associated to more than one minterm;

2. to update a next-state constraint a new conjunct must be or-ed to it;

3. to or a new conjunct a new GPI must be chosen that provides it by its next state tag;

4. a GPI contributes a conjunct only to the minterms that it covers, i.e. a GPI updates a next-state

constraint only for the minterms that it covers;

5. if the same next state constraint comes with more than one minterm it may be necessary to

update it differently for each minterm, i.e. a different GPI may be have to be selected to

update that next-state constraint for each minterm to which it is associated.

For instance, suppose that ci is associated to mintermmi, cj to mintermsmj and mk, cs to ms andmt, cp to mp, cq to mq and cr to mr (indexes of constraints and minterms vary in different sets).

Then the set of all minterms to be updated of i1L ismi +mjmk +msmt, of i1R ismi+mp, of i2L
is mjmkmq +mi and of i2R is mp +mr. We can summarize the updating conditions of ĩ1 as:(mi +mjmk +msmt) + (mi +mp) (9.3)

and of ĩ2 as: (mjmkmq +mi) + (mp +mr): (9.4)

For ĩ1 to be satisfied it is necessary to find a GPI such that

9.1. A THEORY OF ENCODEABILITY OF GPI’S 225

1. its proper input and present state part covers the proper input and present state part ofmi and

no state in its tag is in the left block of i1L (otherwise, one does not invalidate the if condition

of raise dichotomy and remove invalid dichotomies); or,

2. its proper input and present state part covers the proper input and present state part of mj andmk and no state in its tag is in the left block of i1L ; or,

3. its proper input and present state part covers the proper input and present state part ofms andmt and no state in its tag is in the left block of i1L; or,

4. its proper input and present state part covers the proper input and present state part ofmi and

no state in its tag is in the left block of i1R .

5. its proper input and present state part covers the proper input and present state part ofmp and

no state in its tag is in the left block of i1R .

There may be no single GPI that achieves the goal, but a set of them may be needed. So we want to

select the GPI that improves the overall satisfiability of unsatisfied initial dichotomies, even if it does

not succeed in making satisfiable any single of them. Transform in POS the updating conditions ofĩ1:(mi+mj +ms+mp)(mi+mj +mt+mp)(mi+mk +ms+mp)(mi+mk+mt+mp) (9.5)

and do the same for those of ĩ2 3. In this way, the updating conditions of ĩ1 and ĩ2 can be expressed

by a set of updating clauses.

In general, consider a set of clauses of the form ĩ(mi + : : :+mp), for each unsatisfied

free initial dichotomy ĩ, and each updating clause (mi + : : :+mp) obtained for ĩ. These clauses

can be seen as the rows of a unate covering table, whose columns are the candidate GPI’s to

extend the current solution. There is an element in the table at the intersection of GPI gk and rowĩ(mi + : : :+mp) iff

1. the proper input and present state part of gk covers the proper input and present state part ofmi and no state in the tag of gk is in the left block of iL; or,

2. : : :; or,

3Boolean identities allow simplification of the clauses, so that subsumed literals and clauses can be cancelled. For
instance the first clause simplifies from mi +mj +ms+mi +mp to mi +mj +ms+mp. Apparently this alters the
choice of the branching column.

226 CHAPTER 9. ENCODEABILITY OF GPI’S

3. the proper input and present state part of gk covers the proper input and present state part ofmp and no state in the tag of gk is in the left block of iR.

Such a table (called the full satisfiability table) requires a knowledge of all the updating sets and it

would be difficult to manipulate with implicit techniques, because each clause refers to a variable

number of conditions. The difficulty is not with having many clauses for the same ĩ, but with having

many literals per clause. Each clause is a row of the table, but we do not know an appropriate

labelling scheme for a row with a variable number of literals.

A cruder estimate is made by restriction to one minimal updating set for each initial

dichotomy. In that case, each updating clause will have exactly two literals and an implicit labelling

scheme for rows and columns can be devised. For instance, considermjmk for i1L and mp for i1R ,

that give the POS mjmk +mp = (mj +mp)(mk +mp): (9.6)

There is an element in the table at the intersection of GPI gk and row ĩ1(mj +mp) iff

1. the proper input and present state part of gk covers the proper input and present state part ofmj and no state in the tag of gk is in the left block of i1L; or,

2. the proper input and present state part of gk covers the proper input and present state part ofmp and no state in the tag of gk is in the left block of i1R .

Such a table is called partial satisfiability table.

This restriction affects only the quality of branching column selection, not the exactness

of a final solution, that is guaranteed by the completness of the search technique. The GPI that has

more entries in the table is considered to be the most desirable to choose as next branching column.

This proposed algorithm requires to build a matrix and to find the column in it with maximum

number of ones.

9.1.5 Computation of a Lower Bound

In ordinary unate covering, the cardinality of a maximum set of pairwise disjoint rows

(i.e. no 1’s in the same column) is a lower bound on the cardinality of the solution to the covering

problem, because a different element must be selected for each of the independent rows in order

to cover them. Since finding a maximum independent set is an NP-complete problem, in practice

an heuristic is used that provides a weaker lower bound. A row is found that is disjoint from a

9.1. A THEORY OF ENCODEABILITY OF GPI’S 227

maximum number of rows (i.e. a row of minimum length). All rows having elements in common

with it are then deleted. This process is iterated until a set of pairwise disjoint rows (independent

set) is found.

Consider again the example used to describe the branching column selection, where the

unsatisfied free initial dichotomies ĩ1 and ĩ2 had respectively the updating conditions:(mi +mjmk +msmt) + (mi +mp) (9.7)

and: (mjmkmq +mi) + (mp +mr): (9.8)

Suppose that we build the full satisfiability table, as described above. The cardinality of a maximum

set of pairwise disjoint rows is a lower bound on the cardinality of the solution to the constrained

covering problem, because a different element must be selected for each of the independent rows in

order to satisfy them. This captures the notion of a maximum set of pairwise disjoint violations of

free initial dichotomies.

We already observed that building the full satisfiability table may be difficult and not prone

to a simple implicit manipulation scheme. Unfortunately here we cannot use the partial satisfiability

table either, because it does not yield a correct lower bound, since we would be choosing an arbitrary

updating set for each initial dichotomy and we cannot claim that this is the best that can be done.

A way out of this difficulty is to build the support satisfiability table. Replace the and

operators with or operators in the previous updating conditions to get "relaxed" updating conditions:(mi +mj +mk +ms +mt) + (mi +mp) (9.9)

and: (mj +mk +mq +mi) + (mp +mr): (9.10)

If the original updating conditions are satisfied, the relaxed ones are too. Again, these clauses can

be seen as the rows of a unate covering table. There is an element in the table at the intersection of

GPI gk and row ĩ1, which is associated to (mi +mj +mk +ms +mt) + (mi +mp), iff:

1. the proper input and present state part of gk covers the proper input and present state part of

any of fmi; : : : ; mtg and no state in the tag of gk is in the left block of i1L; or,

2. the proper input and present state part of gk covers the proper input and present state part of

any of fmi; mpg and no state in the tag of gk is in the left block of i1R.

228 CHAPTER 9. ENCODEABILITY OF GPI’S

Such a table is called support satisfiability table.

A maximal set of parwise disjoint rows of this table still provides a correct lower bound,

albeit a lower one than the full satisfiability table does. One can manipulate this table with implicit

techiques, as shown precisely in Section 11.3; the set of rows are the ĩ’s. To compute the entries of

the table one can use a relation on dichotomies and minterms, such that for instance ĩ1mi is in the

relation iff mi is a literal in the clause associated to ĩ1. This works because there is a unique clause

associated to each ĩ.
This table can be used also for branching column selection, but it would degrade the

quality of the choice even more than the partial satisfiability table.

A weaker lower bound can be computed considering only the next state constraints of the

type a = ;. Since for each of them a GPI must be chosen to cover the related minterm, one can use

a covering table with entries to 1 iff a GPI contains a minterm, as in ordinary unate covering.

229

Chapter 10

Binate Covering

10.1 Introduction

It is not feasible to generate GPI’s and to set up a related unate or binate covering table by

explicit techniques on non-trivial examples [19]. By means of techniques as in [79, 53, 30], GPI’s

can be generated using BDD-based (alias implicit) representations. The next step is to select an

encodeable cover of GPI’s using implicit representations. This motivates the development of new

algorithms to solve covering problems based on the representation and manipulation of covering

tables represented with BDD’s. Since covering problems are ubiquitous in logic synthesis and

combinatorial optimization, in this chapter we will develop a general theory of implicit solutions

of binate covering problems. It is a development of large applicability, as shown by its successful

application to an host of problems in state minimization [63]. In the next chapter we will see how

this formulation is employed in the GPI minimization problem.

At the core of the exact solution of various logic synthesis problems lies often a so-called

covering step that requires the choice of a set of elements of minimum cost that cover a set of

ground items, under certain conditions. Prominent among these problems are the covering steps in

the Quine-McCluskey procedure for minimizing logic functions, selection of a minimum number

of encoding columns that satisfy a set of encoding constraints, selection of a set of encodeable

generalized prime implicants, state minimization of finite state machines, technology mapping and

Boolean relations. Let us review first how covering problems are defined formally.

Suppose that a set S = fs1; : : : ; sng is given. The cost of selecting si is ci where ci � 0.

By associating a binary variable xi to si, which is 1 if si is selected and 0 otherwise, the binate

230 CHAPTER 10. BINATE COVERING

covering problem (BCP) can be defined as finding S 0 � S that minimizesnXi=1

cixi;
subject to the constraint A(x1; x2; : : : ; xn) = 1;
where A is a Boolean function, sometimes called the constraint function. The constraint function

specifies a set of subsets of S that can be a solution. No structural hypothesis is made onA. Binate

refers to the fact that A is in general a binate function (a function is binate if it has at least a binate

variable). BCP is the problem of finding an onset minterm of A that minimizes the cost function

(i.e., a solution of minimum cost of the Boolean equation A(x1; x2; : : : ; xn) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the

problem SAT, the prototypicalNP -complete problem [46]. In this case it also possible to write A
as an array of cubes (that form a matrix with coefficients from the set f0; 1; 2g). Each variable of A
is a column and each sum (or clause) is a row and the problem can be interpreted as one of finding

a subset C of columns of minimum cost, such that for every row ri, either

1. 9j such that aij = 1 and cj 2 C, or

2. 9j such that aij = 0 and cj 62 C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive

phase or by setting to 0 a variable appearing in it in the negative phase. In a unate covering problem,

the coefficients ofA are restricted to the values 1 and 2 and only the first condition must hold. In this

chapter, we shall consider the minimum binate covering problem where A is given in product-of-

sums form. In this case, the term covering is fully justified because one can say that the assignment

of a variable to 0 or 1 covers some rows that are satisfied by that choice. The product-of-sumsA is

called covering matrix or covering table.

As an example of binate covering formulation of a well-known logic synthesis problem,

consider the problem of finding the minimum number of prime compatibles that are a minimum

closed cover of a given FSM. A binate covering problem can be set up, where each column of the

table is a prime compatible and each row is one of the covering or closure clauses of the problem [50].

There are as many covering clauses as states of the original machine and each of them requires that

a state is covered by selecting any of the prime compatibles in which it is contained. There are as

many closure clauses as prime compatibles and each of them states that if a given prime compatible

10.1. INTRODUCTION 231

is selected, then for each implied class in its corresponding class set, one of the prime compatibles

containing it must be chosen too. In the matrix representation, table entry (i; j) is 1 or 0 according

to the phase of the literal corresponding to prime compatible j in clause i; if such a literal is absent,

the entry is 2.

A special case of binate covering problem is a unate covering problem, where no literal

in the negative phase is present. Exact two-level minimization [87, 113] can be cast as a unate

covering problem. The columns are the prime implicants, the rows are the minterms and there is a

1 entry in the matrix when a prime contains a minterm.

Various techniques have been proposed to solve binate covering problems. A class of

them [14, 72] are branch-and-bound techniques that build explicitly the table of the constraints

expressed as product-of-sum expressions and explore in the worst-case all possible solutions, but

avoid the generation of some of the suboptimal solutions by a clever use of reduction steps and

bounding of search space for solutions. We will refer to these methods as explicit.

A second approach [82] formulates the problem with Binary Decision Diagrams (BDD’s)

and reduces finding a minimum cost assignment to a shortest path computation. In that case the

number of variables of the BDD is the number of columns of the binate table.

Recently, a mixed technique has been proposed in [61]. It is a branch-and-bound algo-

rithm, where the clauses are represented as a conjunction of BDD’s. The usage of BDD’s leads to

an effective method to compute a lower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for

the latter solve also the former. In the other direction, exact state minimization, a problem naturally

formulated as a binate covering problem, can be reduced to a unate covering problem, after the

generation of irredundant prime closed sets [117]. But there is a catch here: the cost function is not

any more additive, so that the reduction techniques so convenient to solve covering problems, are

not any more applicable as they are.

In this chapter, we are interested in exact solutions of binate covering. Existing explicit

methods do quite well on small and medium-sized examples, but fail to complete on larger ones.

The reason is that either they cannot build the binate table because the number of rows and columns

is too large, or that the branch-and-bound procedure would take too long to complete. For the

approach of building a BDD of the constraint function and computing the shortest path fails, it fails

when the number of variables (i.e., columns) is too large because it is likely that a BDD with many

thousands of variables will blow up.

The crux of the matter, when explicit techniques fail, is that we are representing and

232 CHAPTER 10. BINATE COVERING

manipulating sets that are too large to be exhaustively listed and operated upon. Fortunately we

know of an alternative way to represent and manipulate sets: it is by defining the set over an

appropriate Boolean space (i.e., encoding the elements of the set), associating to it a Boolean

characteristic function and then representing this function by a binary decision diagram (BDD).

Since now on, by BDD of a set we will denote the BDD of the characteristic function of the set

over an appropriate Boolean space. A BDD [16, 10] is a canonical directed acyclic graph data

structure that represents logic functions. The items that a BDD can represent are determined by

the number of paths of the BDD, while the size of the BDD is determined by the number of

nodes of the DAG. There is no monotonic relation between the size of a BDD and the number

of elements that it represents. It is an experimental fact that often very large sets, that cannot be

represented explicitly, have a compact BDD representation. Set operations are easily turned into

Boolean operations on the corresponding BDD’s. So we can manipulate sets by a series of BDD

operations (Boolean connectives and quantifications) with a complexity depending on the sizes of

the manipulated BDD’s and not on the cardinality of the sets that are represented. The hope here is

that complex set manipulations have as counterparts Boolean propositions that can be represented

with compact BDD’s. Of course, this is not always the case and it may happen that an intermediate

BDD computation, in a sequence of operations leading to a set, blows up. The name of the game is

a careful analysis of how propositional sentences can be transformed into logically equivalent ones,

that can be computed more easily with BDD manipulations. Special care must be exercised with

quantifications, that bring more danger of BDD blowups. All of this goes often under the name of

implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at

Bull [23] and UC Berkeley [142] produced powerful techniques for implicit enumeration of subsets

of states of a Finite State Machine (FSM). Later work at Bull [25, 79] has shown how implicants,

primes and essential primes of a two-valued or multi-valued function can also be computed implicitly.

Reported experiments show a suite of examples where all primes could be computed, whereas

explicit techniques implemented in ESPRESSO [11] failed to do so. Finally, the fixed-point dominance

computation in the covering step of the Quine-McCluskey procedure has been made implicit in

current work [29, 53]. The experiments reported show that the cyclic core of all logic functions

of the ESPRESSO benchmark can be successfully computed. For some of them ESPRESSO failed the

task.

This chapter describes an implicit formulation of the binate covering problem and presents

an implementation. The implicit binate solver has been tested for the selection of an encodable set of

10.2. RELATION TO 0-1 INTEGER LINEAR PROGRAMMING 233

GPI’s, as reported in Chapter 11, and for state minimization of ISFSM’s and pseudo NDFSM’s [63].

The reported experiments show that implicit techniques have pushed the frontier of instances where

binate covering problems can be solved exactly, resulting in better optimizations in key steps of

sequential logic synthesis.

In the following sections, we will review the known algorithms to solve covering problems

and then we will describe a new branch-and-bound algorithm based on implicit computations. The

remainder of the chapter is organized as follows. We have defined the minimum cost binate

covering problem in this section. In Section 10.2, we will compare this problem with 0-1 integer

linear programming. The branch-and-bound scheme will be introduced in Section 10.3 which has be

used in explicit binate covering algorithms summarized in Section 10.4. In Section 10.5, we survey

the classical reduction rules used in explicit algorithms. Our implicit binate covering algorithm is

then introduced in Section 10.6 and its program input, an implicit table representation, is described

in Section 10.7. Section 10.8 illustrates how reduction techniques can be implicitized. Other kinds

of implicit table manipulations are introduced in Section 10.9.

10.2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integer linear programming (ILP) and binate

covering problem (BCP). For every instance of ILP, there is an instance of BCP with the same

feasible set (i.e., satisfying solutions) and therefore with the same optimum solutions and vice

versa. As an example, the integer inequality constraint

3x1 � 2x2 + 4x3 � 2;
with 0 � x1; x2; x3 � 1 corresponds to the Boolean equality constraintx1x2 + x3 = 1;
that can be written in product-of-sums form as:(x1 + x3)(x2 + x3) = 1:
Given a problem instance, it is not clear a-priori which formulation is better. It is an interesting

question to characterize the class of problems that can be better formulated and solved with one

technique or the other.

234 CHAPTER 10. BINATE COVERINGLI to BDD(I) f
let I be

Pnj=1 wj � xj � T
if (max(I) < T) return 0

if (min(I) � T) return 1i = ChooseSplittingVar(I)I1 = (Pj 6=i wj � xj � T � wi)I0 = (Pj 6=i wj � xj � T)f1 = LI to BDD(I1)f0 = LI to BDD(I0)
return f = xi � f 1 + xi � f 0g

Figure 10.1: Transformation from linear inequality to Boolean expression.

As an example of reduction from ILP to BCP, a procedure (taken from [61]) that derives

the Boolean expression corresponding to
Pnj=1 wj :xj � T is shown in Figure 10.1.

The idea of the recursion relies on the observation that:

1. f = 0 if and only if max(I) =Pwi>0 wi < T ;

2. f = 1 if and only if min(I) =Pwi<0 wi � T ;

When neither case occurs, the two subproblems I1 and I0, obtained by setting the splitting variablexi to 1 and 0 respectively, are solved recursively.

10.3 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by

successive partitioning of the solution space. The branch refers to this partitioning process; the

bound refers to lower bounds that are used to construct a proof of optimality without exhaustive

search. A set of solutions can be represented by a node in a search tree of solutions, and it is

partitioned in mutually exclusive sets. Each subset in the partition is represented by a child of the

10.4. A BRANCH-AND-BOUND ALGORITHM FOR MINIMUM COST BINATE COVERING235

original node. In this way, a computation tree is built. An algorithm that computes a lower bound

on the cost of any solution in a given subset allows to stop further searches from a given node, if

the best cost found so far is smaller than the cost of the best solution that can be obtained from the

node (lower bound computed at the node). In this case the node is killed and therefore none of its

children needs to be searched; otherwise it is alive.

If we can show at any point that the best descendant of a node y is at least as good as the

best descendant of node x, then we say that y dominates x, and y can kill x.

Figure 10.2 shows the classical algorithm [105]. An activeset holds the live nodes at

any point. A variable U is an upper bound on the optimal cost (cost of the best complete solution

obtained at any given time). The branching process needs not produce only two children of a given

node, but any finite number.

We will see in the next section that BCP can be solved by the following recursive equationBCP (Mf) = BestSolution(BCP (Mfxi)[fxig; BCP (Mfxi))
where Mf is the binate table that corresponds to a function in product-of-sum form f , andBCP (Mfxi) (respectively, BCP (Mfxi)) is the subproblem expressed by the function fxi (re-

spectively, fxi). BCP (Mf) returns an onset minterm of f that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems,

but powerful dominance and bounding techniques as well as good branching heuristics help in

keeping the combinatorial explosion under control.

10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Cover-

ing

We will survey in this section a branch-and-bound solution of minimum cost binate

covering. This technique has been described in [51, 50, 13, 14], and implemented in successful

computer programs [112, 108, 130]. The branch-and-bound solution of minimum binate covering

is based on a recursive procedure. A run of the algorithm can be described by its computation tree.

The root of the computation tree is the input of the problem, an edge represents a call to sm mincov,

an internal node is a reduced input. A leaf is reached when a complete solution is found or the

search is bounded away. From the root to any internal node there is a unique path, that is the current

path for that node. In the sequel, we will describe in detail the binary recursion procedure. The

presentation will refer to the pseudo-code sm mincov, shown at the end of this subsection.

236 CHAPTER 10. BINATE COVERING

branch and bound() factiveset = original problemU =1currentbest = anything

while (activeset is not empty) f
choose a branching node k 2 activeset
remove node k from activeset
generate the children of node k: child i = 1; : : : ; nk

and the corresponding lower bounds zi
for i = 1 to nk f

if (zi � U) kill child i
else if (child i is a complete solution) fU = zicurrentbest = child i

else add child i to activesetgggg
Figure 10.2: Structure of branch-and-bound.

10.4. A BRANCH-AND-BOUND ALGORITHM FOR MINIMUM COST BINATE COVERING237

10.4.1 The Binary Recursion Procedure

The inputs to the algorithm are:� a covering matrix M ;� a current-path partial solution select (initially empty);� a row of non-negative integers weight, whose i-th element is the cost or weight of the i-th
column of M ;� a lower bound lbound (initially set to 0), which is a monotonic increasing quantity along each

path of the computation tree equal to the cost of the partial solution on the current path;� an upper bound ubound (initially set to the sum of weights of all columns in M), which

is the cost of the best overall complete solution previously obtained (a globally monotonic

decreasing quantity);

The output is the best column cover for inputM extended from the partial solution select

along the current path, called best current solution, if this solution costs less than ubound. An empty

solution is returned if a solution cannot be found which beats ubound or an infeasibility is detected.

By infeasibility, it is meant the case when no satisfying assignment of the product of clauses exists.

Even though the initial problem in a typical logic synthesis application has usually at least a solution,

some subproblems in the branch and bound tree may be infeasible. When sm mincov is called with

an empty partial solution select and initial lbound and ubound, it returns a best global solution.

The algorithm calls first a procedure sm reduce that applies to M essential column

detection and dominance reductions. The type of domination operations and the way in which they

are applied are the subject of Section 10.5. Another more complex reduction criterion (Gimpel’s

rule) can also be applied (see Subsection 10.5.12). These reduction operations delete fromM some

rows, columns and entries. What is left after reduction is called a cyclic core. The final goal is to

get an empty cyclic core. The value of the lower bound is updated using a maximal independent set

computation (see Subsection 10.4.3). If no bounding is possible and the reductions do not suffice

to solve completely the problem, a partition of the reduced problem into disjoint subproblems is

attempted (see Subsection 10.4.2) and each of them is solved recursively. When everything fails,

binary recursion is performed by choosing a branch column (see Subsection 10.4.4). Solutions to

the subproblems obtained by including the chosen column in the covering set or by excluding it

238 CHAPTER 10. BINATE COVERING

from the covering set are computed recursively and the best solution is kept (the second recursion

is skipped if the solution to the first one matches the updated lower bound).

The procedure sm mincov returns when:� The cost of a partial solution, found by adding essential columns to select, is more than

ubound or infeasibility is detected when applying the domination rules (line 1). An empty

solution is returned.� The best current solution is found by applying Gimpel’s reduction technique (line 2). Since

gimpel reduce calls recursively sm mincov, an empty solution could be returned too.� The updated lower bound, determined by adding to lbound the cost of the essential primes

and of the maximal independent set, is not less than ubound (line 5). An empty solution is

returned.� There is no cyclic core and we are not in the previous case. The best current solution is found

by updating select with the new essential and unacceptable columns (line 6).� The best current solution is found by partitioning the problem (line 7). The procedure

sm mincov is called recursively on two smaller covering matrices determined by sm block partition

(line 8 and 10). An empty solution can be returned by either recursive call. If the first call to

sm mincov returns an empty solution, the second one is not invoked (line 9). If neither call

returns empty, each contributes its returned value to the current solution.� A branching column is chosen and sm mincov is called recursively with the branch column

in the covering set (line 12). If the recursive call of sm mincov returns a non-empty solution

that matches the current lower bound (lbound new), that solution is returned as the current

solution (line 14). If the cost of the current solution is less than ubound, ubound is updated,

i.e., the current solution is also the best global solution (line 13).� As in the previous case, but sm mincov is called recursively with the branch column not in

the covering set (line 15). The best among the solution found in the previous case and the

one computed here is the current solution.

Notice the following facts about the procedure sm mincov:� The parameter lbound is updated once (line 4). The reason is that after the computation of the

essential columns (line 1) and of the independent set (line 3), the cost of the previous partial

10.4. A BRANCH-AND-BOUND ALGORITHM FOR MINIMUM COST BINATE COVERING239sm mincov(M; select; weight; lbound; ubound) f
/* Apply row dominance, column dominance, and select essentials */ (1)

if (!sm reduce(M; select; weight; ubound)) return empty solution
/* See if Gimpel’s reduction technique applies */ (2)

if (gimpel reduce(M; select; weight; lbound; ubound;&best)) return best
/* Find lower bound from here to final solution by independent set */ (3)indep = sm maximal independent set(M;weight)
/* Make sure the lower bound is monotonically increasing */ (4)lbound new = max(cost(select) + cost(indep); lbound)
/* Bounding based on no better solution possible */ (5)

if (lbound new � ubound) best = empty solution
else if (M is empty) f /* New best solution at current level */ (6)best = solution dup(select)g else if (sm block partition(M;&M1;&M2) gives non-trivial bi-partitions) f (7)best1 = sm mincov(M1; select1; weight; 0; ubound� cost(select)) (8)

/* Add best solution to the selected set */ (9)

if (best1 = empty solution) best = empty solution
else f (10)select = select [best1best = sm mincov(M2; select; weight; lbound new; ubound)gg else f /* Branch on cyclic core and recur */ (11)branch = select column(M;weight; indep)select1 = solution dup(select) [branch
let Mbranch be the reduced table assuming branch column is not in solution (12)best1 = sm mincov(Mbranch; select; weight; lbound new; ubound)
/* Update the upper bound if we found a better solution */ (13)

if (best1 6= empty solution) and (ubound > cost(best1)) ubound = cost(best1)
/* Do not branch if lower bound matched */ (14)

if (best1 6= empty solution) and (cost(best1) = lbound new) return best1
let Mbranch be the reduced table assuming branch column not in solution (15)best2 = sm mincov(Mbranch; select; weight; lbound new; ubound)best = best solution(best1; best2)g

return bestg
Figure 10.3: Detailed branch-and-bound algorithm.

240 CHAPTER 10. BINATE COVERING

solution summed to the cost of the essential columns and of the independent set is potentially

a sharper lower bound on any complete solution obtained from this node of the recursion

tree. The updated value lbound new is used in the rest of the routine. The lower bound is a

monotonically increasing quantity along each path of the computation tree.� The parameter ubound is updated once (line 13). At that point a new complete solution has

just been returned by the recursive call to sm mincov (line 12) and an updated value of ubound

must be recomputed for the following recursive call of sm mincov (line 15). The reason is

that when a new complete solution is obtained, the current ubound is not any more valid and

therefore it must be updated before it is used again. To be updated, ubound is compared

against the cost of the newly found solution, and the minimum of the two is the new ubound.

The upper bound is a monotonically decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign-

ment to the problem.

10.4.2 N -way Partitioning

If the covering matrix M can be partitioned into two disjoint blocks M1 and M2, the

covering problem can be reduced to two independent covering subproblems, and the minimum

covering for M is the union of the minimum coverings for M1 and M2. Such bi-partition can be

found by putting in M1 a row and all columns that have an element in common with the row (i.e.,

the columns intersecting the row) and recursively all rows and columns intersecting any row or

column in M1. The remaining rows and columns (i.e., not intersecting any row or column in M1)

are put in M2. This algorithm can be generalized to find partitions made by N blocks, as shown in

Figure 10.4.

Theorem 10.4.1 If a covering matrixM can be partitioned inton disjoint blocksM1;M2; : : : ;Mn,

the union of the minimum covers of M1;M2; : : : ;Mn is the minimum cover of M .

Bi-partitioning is implemented in [108, 130] as follows. When checking for a partition of

the problem (line 7), the routine sm mincov is called recursively on two independents subproblems

(lines 8 and 10), if they exist. When solving the smaller of the two subproblems (line 8), the initial

solution is empty, the initial lower bound is set to 0, the initial upper bound is set to the difference

between the current ubound and the cost of the current partial solution. When solving the larger

10.4. A BRANCH-AND-BOUND ALGORITHM FOR MINIMUM COST BINATE COVERING241n way partition(M) f
while (there is a row ri not in any partition) f

put ri in a new partitionMk
while (there is a row rj connected to any row in partitionMk) f

put row rj in partitionMkggg
Figure 10.4: N -way partitioning.

of the two subproblems (line 10), the initial solution is the current solution (to which the solution

of the smaller subproblem is added, if it is not empty), the initial lower bound is set to the current

lower bound lbound new, the initial upper bound is set to the current ubound.

Theorem 10.4.2 The upper bound set in the smaller subproblem is correct.

Proof: Let select be the partial solution along the current path. It holds that (cost of the final

solution along the current path) � (cost of solvingM1 + cost(select) + 1). If (cost of solvingM1)� (ubound�cost(select)), then (cost of the final solution along the current path)� (ubound+1),
i.e., (cost of the final solution along the current path) > ubound. This is ruled out by setting the

upper bound when solving M1 to (ubound� cost(select)), since sm mincov returns a non-empty

solution only if it can beat the given upper bound.

10.4.3 Maximal Independent Set

The cardinality of a maximum set of pairwise disjoint rows of M (i.e., no 1’s in the same

column) is a lower bound on the cardinality of the solution to the covering problem, because a

different element must be selected for each of the independent rows in order to cover them. If the

size of current solution plus the size of the independent set is greater or equal to the best solution

seen so far, the search along this branch can be terminated because no solution better than the current

one can possibly be found. It is also true that the size of the independent set at the first level of the

242 CHAPTER 10. BINATE COVERING

recursion is a lower bound for the final minimum cover, so that the search can be terminated if a

solution is found of size equal to this lower bound. Since finding a maximum independent set is an

NP-complete problem, in practice an heuristic is used that provides a weaker lower bound. Notice

that even the lower bound provided by solving exactly maximum independent set is not sharp.

In [112, 108, 130], the adjacency matrixB of a graph whose nodes correspond to rows in

the cover matrix M is created. In the binate case, only rows are taken into consideration which do

not contain any 0 element. An edge is placed between two nodes if the two rows have an element in

common. While B is non-empty, a row Ri of B is found that is disjoint from a maximum number

of rows (i.e., the row of minimum length in B). The column of minimum weight intersecting Ri
is also found. The weight is cumulated in the independent set cost. All rows having elements in

common withRi are then deleted fromB. At the end of thewhile-iteration a set of pairwise disjoint

rows (independent set) and their minimum covering cost is found. Notice that one could think to

the problem in a dual way as finding a maximal clique in a graph with the same rows as before, and

edges between two nodes representing two disjoint rows.

10.4.4 Selection of a Branching Column

The selection of a good branching column is essential for the efficiency of the branch and

bound algorithm. Since the time taken by the selection is a significant part of the total, a trade-off

must be made between quality and efficiency.

In [112, 108, 130], the selection of the branching variable is restricted to columns inter-

secting the rows of the independent set, because a unique column must eventually be selected from

each row of the maximal independent set. Among those rows, the selection strategy favors columns

with large number of 1’s and intersecting many short rows. Short rows are considered difficult rows

and choosing them first favors the creation of essential columns. More precisely, the column of

highest merit is chosen. The merit of a given column is computed as the product of the inverse of

the weight of the column multiplied by the sum of the contributions of all rows intersected in a 1 by

the column. The inverse of the contribution of a row is equal to the number of all non-2 elements

(each can contribute in covering the row) minus 1. The inverse is well-defined, because at this stage

each row has at least two-elements (it is not essential).

10.5. REDUCTION TECHNIQUES 243

10.5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies

a required constraint (Section 10.5.7). A dual statement holds for unacceptable columns

(Section 10.5.8). Also related is the case of unnecessary columns (Section 10.5.9).

2. Elimination of a column: a column Ci can be eliminated, if its elimination does not preclude

obtaining a minimal cover, i.e., if there exists in M another column Cj that satisfies at least

all the constraints satisfied by Ci (Section 10.5.5).

3. Elimination of a row: a row Ri can be eliminated if there exists in M another row Rj that

expresses the same or a stronger constraint (Section 10.5.1).

Even though more complex criteria of dominance have been investigated (for instance,

Section 10.5.12), the previous ones are basic in any table covering solver. Reduction rules have

previously been stated for the binate covering case [50, 51, 14, 13], and also for the unate covering

case [87, 113, 13]. Here we will present the known reduction rules directly for binate covering

and indicate how they simplify for unate covering, when applicable. For each of them, we will

first define the reduction rule, and then a theorem showing how that rule is applied. Proofs for

the correctness of these reduction rules have been given in [50, 51, 14, 13], and they will not be

repeated here, except for a few less common ones. We will provide a survey comparing different

related reduction rules used in the literature.

The effect of reductions depends on the order of their application. Reductions are usually

attempted in a given order, until nothing changes any more (i.e., the covering matrix has been

reduced to a cyclic core). Figure 10.5 shows how reductions are applied in [112, 108, 130]1.

10.5.1 Row Dominance

Definition 10.5.1 A row Ri dominates another row Rj if Rj has all the 1’s and 0’s of Ri; i.e., for

each column Ck of M , one of the following occurs:� Mi;k = 1 and Mj;k = 1,� Mi;k = 0 and Mj;k = 0,

1The reductions �-dominance and row consensus are only in [108] and the reduction by implication is only in [130].

244 CHAPTER 10. BINATE COVERINGsm reduce(A; solution; weight; ubound) f
do f

apply �-dominance or �-dominance

find essential columns

find unacceptable columns

if (a column is both essential and unacceptable)

return empty solution
for each essential column f

delete each row intersecting the column in a 1

if (a row of length 1 intersects the column in a 0)

return empty solution
delete column

add column to solution
if (cost of solution � ubound)

return empty solutiong
for each unacceptable column f

delete each row intersecting the column in a 0

if (a row of length 1 intersects the column in a 1)

return empty solution
delete columng

apply row consensus

apply row dominanceg while (reductions are applicable)

return solutiong
Figure 10.5: Flow of reduction rules.

10.5. REDUCTION TECHNIQUES 245� Mi;k = 2.

Theorem 10.5.1 If a rowRj is dominated by another rowRi,Rj can be eliminated without affecting

the solutions to the covering problem.

This definition of row dominance is� similar to column dominance (Rule 3) in [50], except that the labels of dominator row, Ri,
and dominated row, Rj , are reversed (i.e., reverse definition of dominance),� similar to column dominance (Rule 3) in [51], except that the labels of dominator row, Ri,
and dominated row, Rj , are reversed (i.e., reverse definition of dominance),� equivalent to row dominance (Definition 10) in [14],� identical to row dominance (Definition 2.11) in [13].

Row Dominance for a Unate Table

Definition 10.5.2 A rowRi dominates another rowRj if for all columnsCk,Mi;k = 1)Mj;k = 1.

10.5.2 Row Consensus

Theorem 10.5.2 If Ri dominates Rj, except for a (unique) column Ck where Ri and Rj have

different values, element Mj;k can be eliminated from the matrixM (i.e., the entry in positionMj;k
becomes a 2) without affecting the solutions of the covering problem.

Proof: Suppose that entryMj;k is 1 and entryMi;k is 0. The argument is the same if entryMj;k is 0

and entry Mi;k is 1. If entryMj;k is removed, the problem arises that we are not able to satisfy rowRj by setting xk to 1. A problem arises if a minimum-cost solution requires xk set to 1, because we

could miss the fact that setting xk to 1 satisfies also row Rj . Instead we could obtain an higher-cost

solution, by selecting another column in order to satisfy row Rj �Mj;k. We now show that this

is not the case. If a minimum-cost solution requires xk set to 1, we must still satisfy row Ri that

cannot be satisfied by xk set to 1. Whatever choice will be made to satisfy Ri, it will satisfy alsoRj �Mj;k (since Rj �Mj;k has all 1’s and 0’s of Ri) and therefore no more cost will be incurred

to satisfy row Rj �Mj;k. The previous argument fails ifRj �Mj;k is empty and there are cases in

which an higher-cost solution would be found. One could claim that if Rj �Mj;k is empty, thenRj has only entry Mj;k and therefore xk is an essential, that is taken care by the essential column

246 CHAPTER 10. BINATE COVERING

detection. In reality it may happen that by applying row consensus many times to the same row Rj
(using different rows Ri) at a certain point Rj is emptied. In that case the last application of row

consensus is potentially faulty and should not be done.

Row consensus is applied in [108]. This criterion generalizes the one given in [59].

10.5.3 Column �-Dominance

Definition 10.5.3 A column Cj �-dominates another column Ck if� cj � ck,� Cj has all the 1’s of Ck,� Ck has all the 0’s of Cj;
i.e., cj � ck, and for each row Ri of M, none of the following can occur:� Mi;j = 2 and Mi;k = 1,� Mi;j = 0 and Mi;k = 1,� Mi;j = 0 and Mi;k = 2.

Alternatively, cj � ck, and for each row Ri of M , one of the following occurs:� Mi;j = 1,� Mi;j = 2 and Mi;k 6= 1,� Mi;j = 0 and Mi;k = 0.

Note that these last 3 cases are exactly the complement of the cases excluded above.

Theorem 10.5.3 Let M be satisfiable. If a column Ck is �-dominated by another column Cj, there

is at least one minimum cost solution with column Ck eliminated (xk = 0), together with all the

rows in which it has 0’s.

This definition of column �-dominance is� an extension to row �-dominance (Rule 1) in [50], because the latter doesn’t include the caseMi;j = 0 and Mi;k = 0,

10.5. REDUCTION TECHNIQUES 247� equivalent to first half of Rule 4 in [51]: (a) Cj has all the 1’s of Ck and (b1) Ck has all the

0’s of Cj ,� identical to column dominance (Definition 11, Theorem 3) in [14],� identical to column dominance (Definition 2.12, Theorem 2.4.1) in [13].

Column Dominance for a Unate Table

Definition 10.5.4 A column Ci dominates another column Cj if for all rows Rk, Mk;j = 1)Mk;i = 1.

10.5.4 Column �-Dominance

Definition 10.5.5 A column Ci �-dominates another column Cj if� ci � cj ,� Ci has all the 1’s of Cj,� for every row Rp in which Ci has a 0, either Cj has a 0 or there exists a row Rq in which Cj
has a 0 and Ci does not have a 0, such that disregarding entries in columns Ci and Cj , Rq
dominatesRp.

Theorem 10.5.4 Let M be satisfiable. If Ci �-dominates Cj , there is at least one minimum cost

solution with column Cj eliminated (xj = 0), together with all the rows in which it has 0’s.

Proof: We must show that given a solution, one can find another solution, of cost lesser or equal,

with column Cj eliminated (xj = 0). There are two cases for the original solution: either xi = 1

and xj = 1 or xi = 0 and xj = 1 (if xj = 0, we are done). The new solution has xi = 1 andxj = 0 and coincides for the rest with the given solution. The case when xi = 1 and xj = 1 is easy,

because column Ci has all 1’s of column Ci and therefore Cj is useless.

Consider now the case when xi = 0 and xj = 1. The clauses with a 0 in column Ci
are satisfied by not choosing Ci and the clauses with a 1 in column Cj are satisfied by choosingCj . Each clause with a 0 in column Cj (and without a 0 in column Ci) is satisfied by a proper

assignment of a column different from Ci and Cj , say Ck. Notice that the hypothesis that columnCi does not have a 0 in the clause is essential here, otherwise this clause would be satisfied already

by not choosing Ci, without resorting to a column Ck. Now consider the assignment with column

248 CHAPTER 10. BINATE COVERINGCi and without columnCj (xi = 1 and xj = 0) and the same remaining assignments as the previous

one. It costs no more than the previous one. We show that it is a solution. In order to do that we

must make sure that the 0’s covered by Ci and the 1’s covered by Cj by setting xi = 0 and xj = 1,

are still covered in the new assignment where xi = 1 and xj = 0. The clauses with a 1 in Cj are

satisfied by Ci, because Ci has all 1’s of Cj . Each clause, say Rp, with a 0 in columnCi is satisfied

too, because there is a corresponding clause, sayRq, with a 0 in columnCj , and we already noticed

that there exists another column,Ck, that satisfiesRq. But by hypothesisRq dominatesRp, i.e., Rp
has all the 1’s and 0’s of Rq, hence column Ck satisfies also clause Rp (if entry Mq;k = 1(0), then

entry Mp;k = 1(0) also and xk = 1 (xk = 0) satisfies both clauses).

This definition of column �-dominance is� strictly stronger than column �-dominance given in 10.5.3,� more general than row �-dominance (Rule 5) in [50], because the latter assumes that the

covering table contains only rows with no or one 0,� equivalent to second half of Rule 4 in [51]: (a) Ci has all the 1’s of Cj and (b2) for every rowRp in which Ci has a 0, there exists a row Rq in which Cj has a 0, such that disregarding

entries in row Ci and Cj , Rp dominates Rq (with reverse definition of row dominance),

noticing that by mistake the condition that Ci does not have a 0 in row Rq was omitted,� not mentioned in [14] and [13].

10.5.5 Column Dominance

Definition 10.5.6 A column Ci dominates another column Cj if either Ci �-dominates Cj or Ci�-dominates Cj .
Theorem 10.5.5 Let M be satisfiable. If Ci dominates Cj , there is at least one minimum cost

solution with column Cj eliminated (xj = 0), together with all the rows in which it has 0’s.

10.5.6 Column Mutual Dominance

Definition 10.5.7 Two columns Ci and Cj mutually dominate each other if� Ci has a 0 in every row where Cj has a 1,� Cj has a 0 in every row where Ci has a 1.

10.5. REDUCTION TECHNIQUES 249

Theorem 10.5.6 Let M be satisfiable. If Ci and Cj mutually dominate each other, there is at least

one minimum cost solution with columns Ci and Cj eliminated (xi = xj = 0), together with all the

rows in which they have 0’s.

This definition of column mutual dominance is� identical to rule for mutually reducible variables in [128],� not mentioned in other papers.

10.5.7 Essential Column

Definition 10.5.8 A column Cj is an essential column if there exists a rowRi having a 1 in columnCj and 2’s everywhere else.

Theorem 10.5.7 If Cj is an essential column, it must be selected (xj = 1) in every solutions.

Column Cj must then be deleted together with all the rows in which it has 1’s.

This definition of essential column is� identical to essential row (Rule 2) in [50],� identical to Rule 1 in [51],� included in Definition 9 in [14]: the rowRi in the above definition corresponds to a singleton-1

essential row in [14],� included in Definition 2.10 in [13]: the row Ri in the above definition corresponds to a

singleton-1 essential row in [13].

Essential Column for a Unate Table

Definition 10.5.9 A column is an essential column if it contains the 1 of a singleton row.

10.5.8 Unacceptable Column

Definition 10.5.10 A column Cj is an unacceptable column if there exists a row Ri having a 0 in

column Cj and 2’s everywhere else.

This reduction rule is a dual of the essential column rule.

250 CHAPTER 10. BINATE COVERING

Theorem 10.5.8 If Cj is an unacceptable column, it must be eliminated (xj = 0) in every solution,

together with all the rows in which it has 0’s.

This definition of unacceptable column is� identical to that of nonselectionable row in [50],� identical to Rule 2 in [51],� included in Definition 9 in [14]: the rowRi in the above definition corresponds to a singleton-0

essential row in [14],� included in Definition 2.10 in [13]: the row Ri in the above definition corresponds to a

singleton-0 essential row in [13].

10.5.9 Unnecessary Column

Definition 10.5.11 A column of only 0’s and 2’s is an unnecessary column.

Notice that there is no symmetric rule for columns of 1’s and 2’s. The reason is that selecting a

column to be in the solution has a cost, while eliminating it has no cost.

Theorem 10.5.9 If Cj is an unnecessary column, it may be eliminated (xj = 0), together with all

the rows in which it has 0’s.

This definition of unnecessary column is� identical to Rule 4 in [50],� identical to Rule 5 in [51],� not mentioned in [14] and [13].

10.5.10 Trial Rule

Theorem 10.5.10 If there exists in a covering table M a row Ri having a 0 in column Cj , a 1 in

column Ck and 2’s in the rest, then apply the following test:� eliminateCk together with the rows in which it has 0’s,

10.5. REDUCTION TECHNIQUES 251� eliminate Cj , which is now an unacceptable column, together with the rows in which it has

0’s,� continue as long as possible to eliminate the columns which becomes unacceptable columns.

If at least one row of M has only 2’s at the end of this test, then column Ck must be selected

(xk = 1)2. Therefore, Ck can be deleted together with all the columns in which it has 1’s.

This reduction rule is� identical to Rule 6 in [50],� not mentioned in other papers.

10.5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In

particular, an intermediate covering matrix M may found to be unsatisfiable by the following

theorem. When an infeasible subproblem is found, that branch of the binary recursion is pruned.

Theorem 10.5.11 A covering problem M is infeasible if there exists a column Cj which is both

essential and unacceptable (implying xj = 1 and xj = 0).

This definition of infeasibility is� not mentioned in [50] and [51],� briefly mentioned in [14],� identical to the unfeasible problem in [13].

10.5.12 Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gim-

pel [48]. Gimpel proposed a reduction step which simplifies the covering matrix when it has a

special form. This simplification is possible without further branching, and hence is useful at

each step of the branch and bound algorithm. In practice, Gimpel’s reduction step is applied after

reducing the covering matrix to the cyclic core.

2It is possible that a row is left with only 2’s by a sequence of reduction steps.

252 CHAPTER 10. BINATE COVERING

Gimpel’s reduction can be described in terms of the product-of-sums represented by a

covering table. The product-of-sums is examined to see if any clause has only two literals of the

same cost. For example, assume the expression has the form:p = R(c1 + c2)(c1 + S1) : : :(c1 + Sn)(c2 + T1) : : :(c2 + Tm)
where c1 and c2 are single variables with a cost C, Si; i = 1 : : :n and Tj ; j = 1 : : :m are sums of

variables not containing c1 or c2, and R is a product of sums of variables not containing c1 or c2.

Because the covering table is assumed minimal, if there is a clause (c1 + c2), then m � 1, n � 1,

and none of Si or Tj is identically zero.

Note that with the expression written in this form, each parenthesized expression corre-

sponds directly to a single row in the covering table. By algebraic manipulations, the expression

can be re-written as: p = R(c1c2 + c1T + c2S)
where S = Qni=1 Si, and T = Qmi=1 Ti.

A second covering problem is derived from the original covering problem with the fol-

lowing form: p1 = R(c2 + S + T)= R nYi=1

mYj=1

(c2 + Si + Tj)
The main theorem of Gimpel is:

Theorem 10.5.12 Let M1 be a minimum cover for p1. A cover for p can be derived from M1

according to the rule: if S is covered by M1 then add c2 to M1 to derive a cover of p; otherwise,

add c1 to M1 to derive a cover of p. The resulting cover is a minimum cover for p.

A proof can be found in [113], where a more extended discussion is presented.

Gimpel’s reduction step was originally stated for covering problems where each column

had cost 1. Robinson and House [60] showed that the reduction remains valid even for weighted

covering problems if the cost of the column c1 equals the cost of the column c2, as it has been

presented here. Gimpel’s rule has been first proposed in [48] and then implemented in [112]. In

[108, 130] Gimpel’s rule has been extended to handle the binate case. This extension has been

described in [131].

10.6. IMPLICIT BINATE COVERING 253

10.6 Implicit Binate Covering

mincov(R;C;U) f(R;C) = Reduce(R;C; U)

if (Terminal Case(R;C))

if (cost(R;C)� U) return no solution

else U = cost(R;C); return solutionL = Lower Bound(R;C)

if (L � U) return no solutionci = Choose Column(R;C)S1 = mincov(Rci ; Cci; U)S0 = mincov(Rci ; Cci; U)

return Best Solution(S1 [fcig; S0)g
Figure 10.6: Implicit branch-and-bound algorithm.

The classical branch-and-bound algorithm [50, 51] for minimum-cost binate covering has

been described in previous sections, and implemented by means of efficient computer programs

(ESPRESSO and STAMINA). These state-of-the-art binate table solvers represent binate tables effi-

ciently using sparse matrix packages. But the fact that each non-empty table entry still has to be

explicitly represented put a bound on the size of the tables that can be handled by these binate

solvers. For example, we would not expect these binate solvers to handle examples requiring over

106 columns (up to 21500 columns), reported in state minimization of FSM’s [63]. To keep with

our stated objective, the binate table has to be represented implicitly. We do not represent (even

implicitly) the elements of the table, but we make use only of a set of row labels and a set of column

labels, each represented implicitly as a BDD. They are chosen so that the existence and value of any

table entry can be readily inferred by examining its corresponding row and column labels. In the

sequel, we shall assume that every row has a unit cost.

A binate covering problem instance can be characterized by a 6-tuple (r; c; R;C;0;1),
defined as follows:

254 CHAPTER 10. BINATE COVERING� the group of variables for labeling the rows: r� the group of variables for labeling the columns: c� the set of row labels: R(r)� the set of column labels: C(r)� the 0-entries relation at the intersection of row r and column c: 0(r; c)� the 1-entries relation at the intersection of row r and column c: 1(r; c)
In other words, the user of our implicit binate solver would first choose an encoding for

the rows and columns. Given a binate table, the user will then supply a set of row labels as a BDDR(r) and a set of column labels as a BDD C(c), and also the two inference rules in the form of

BDD relations, 0(r; c) and 1(r; c), capturing the 0-entries and 1-entries.

The classical branch-and-bound solution of minimum cost binate covering is based on the

recursive procedure as shown in Figure 10.3. In our implicit formulation, we keep the branch-and-

bound scheme summarized in Figure 10.6, but we replace the traditional description of the table as

a (sparse) matrix with an implicit representation, using BDD’s for the characteristic functions of the

rows and columns of the table. Moreover, we have implicit versions of the manipulations on the

binate table required to implement the branch-and-bound scheme. In the following sections we are

going to describe the following:� implicit representation of the covering table,� implicit reduction,� implicit branching column selection,� implicit computation of the lower bound, and� implicit table partitioning.

At each call of the binate cover routine mincov, the binate table undergoes a reduction

step Reduce and, if termination conditions are not met, a branching column is selected and mincov

is called recursively twice, once assuming the selected column ci in the solution set (on the tableRci ; Cci) and once out of the solution set (on the table Rci ; Cci). Some suboptimal solutions are

bounded away by computing a lower bound L on the current partial solution and comparing it

10.7. IMPLICIT TABLE GENERATION 255

against an upper bound U (best solution obtained so far). A good lower bound is based on the

computation of a maximal independent set.

10.7 Implicit Table Generation

Here we define three ways of specifying the binate covering table in decreasing order of

generality. A table is defined implicitly by generating BDD-based representations of the rows and

columns and by giving relations specifying the 1 and 0 entries, given the rows and columns. By

imposing restrictions on the way in which rows and columns are labeled and entries are defined,

one gets representations with varying degrees of generality. Historically the third (less general)

way was implemented first to solve exact state minimization of ISFSM’s [65]. It is applicable to

other problems whose covering table can be represented in the same way, e.g., the exact formulation

of technology mapping for area minimization [113]. The difference between the first and second

formulation is only in some computation simplification in the latter one, for tables that have at most

one 0 per row. There is a trade-off between generality of the representation and efficiency of the

computations: "hard-wiring" the rules that define a table may speed up table manipulations, to the

price of more limited applicability.

In Chapter 11 we will see how the covering tables occurring in GPI minimization are

generated. In [63] it is shown how covering tables occurring in state minimization of FSM’s are

constructed. In the next section, we will describe how a binate covering table can be manipulated

implicitly so as to solve the minimum cost binate covering problem.

1. General binate covering table� the group of variables for labeling the rows: r� the group of variables for labeling the columns: c� the set of row labels: R(r)� the set of column labels: C(c)� the 0-entries relation at the intersection of row r and column c: 0(r; c)� the 1-entries relation at the intersection of row r and column c: 1(r; c)
2. Binate covering table assuming each row has at most one 0:� the group of variables for labeling the rows: r

256 CHAPTER 10. BINATE COVERING� the group of variables for labeling the columns: c� the set of row labels: R(r)� the set of column labels: C(c)� the 0-entries relation at the intersection of row r and column c: 0(r; c)� the 1-entries relation at the intersection of row r and column c: 1(r; c)
3. Specialized binate covering table for exact state minimization and similar problems:� the group of variables for labeling the rows (each label is a pair): (c; d)� the group of variables for labeling the columns: p� the set of row labels: R(c; d)� the set of column labels: C(p)� the 0-entries relation at the intersection of row (c; d) and column p: 0((c; d); p) = (p =c)� the 1-entries relation at the intersection of row (c; d) and column p: 1((c; d); p) = (p �d)

In the sequel, each implicit table operation will be expressed by three BDD formulas,

each representing a realization for a different implicit binate solver. Each equation will be labeled

1, 2, or 3, depending on which of the above set of assumptions are made.

10.8 Implicit Reduction Techniques

Reduction rules aim to the following:

1. Selection of a column. A column must be selected if it is the only column that satisfies a

given row. A dual statement holds for columns that must not be part of the solution in order

to satisfy a given row.

2. Elimination of a column. A column ci can be eliminated if its elimination does not preclude

obtaining a minimum cover, i.e., if there is another column cj that satisfies at least all the

rows satisfied by ci.
3. Elimination of a row. A row ri can be eliminated if there exists another row rj that expresses

the same or a stronger constraint.

10.8. IMPLICIT REDUCTION TECHNIQUES 257

The order of the reductions affects the final result. Reductions are usually attempted

in a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a

cyclic core). The reductions and order implemented in our reduction algorithm are summarized in

Figure 10.7.

Reduce(R;C; U) f
repeat f

Collapse Columns(C)

Column Dominance(R;C)Sol = Sol [Essential Columns(R;C)

if (jSolj � U) return no solution

Unacceptable Columns(R;C)

Unnecessary Columns(R;C)

if (C does not cover R) return no solution

Collapse Rows(R)

Row Dominance(R;C)g until (both R and C unchanged)

return (R;C)g
Figure 10.7: Implicit reduction loop.

In the reduction, there are two cases when no solution is generated:

1. The added cardinality of the set of essential columns, and of the partial solution computed so

far, Sol, is larger or equal than the upper bound U . In this case, a better solution is known

than the one that can be found from now on and so the current computation branch can be

bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows,

it may happen that the rest of the rows cannot be covered by the remaining columns. In this

case, the current partial solution cannot be extended to any full solution.

258 CHAPTER 10. BINATE COVERING

We are going to describe how the reduction operations are performed implicitly using

BDD’s on the three table representations described in the previous section.

10.8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows)

that coincide element by element. We need to identify such duplicated columns (rows) and collapse

them into a single column (row). This avoids the problem of columns (rows) dominating each other

when performing implicitly column (row) dominance. The following computations can be seen as

finding the equivalence relation of duplicated columns (rows) and selecting one representative for

each equivalence class.

Definition 10.8.1 Two columns are duplicates, if on every row, their corresponding table entries

are identical.

Theorem 10.8.1 Duplicated columns can be computed as:dup col(c0; c) 1 = 8r fR(r)) [(0(r; c0), 0(r; c)) � (1(r; c0), 1(r; c))]gdup col(c0; c) 2 = 8r fR(r)) [:0(r; c0) � :0(r; c) � (1(r; c0), 1(r; c))]gdup col(p0; p) 3 = 6 9d R(p0; d)� 6 9d R(p; d) � 8d f[9c R(c; d)]) [(p0 � d), (p � d)]g
Proof: As discussed at the end of Section 10.7, the first equation computes the duplicated columns

relation for the most general binate table, and the second equation for the binate table with the

assumption that there is at most one 0 in each row, and the third equation is for the specialized binate

table for state minimization, assuming the columns are prime compatibles p, and the rows are pairs(c; d).
For the column labels c0 and c to be in the relation dup col, the first equation requires the

following conditions to be met for every row label r 2 R: (1) the entry (r; c) is a 0 if and only

if the entry (r; c0) is a 0, (i.e., 0(r; c0) , 0(r; c)), and (2) the entry (r; c) is a 1 if and only if the

entry (r; c0) is a 1, (i.e., 1(r; c0) , 1(r; c)). Assuming each row has at most one 0 for the second

equation, condition 2 requires that the row labeled r cannot intersect either column at a 0, (i.e.,:0(r; c0) � :0(r; c)).
Theorem 10.8.2 Duplicated columns can be collapsed by:C(c) 1;2 = C(c)� 6 9c0 [C(c0) � (c0 � c) � dup col(c0; c)]C(p) 3 = C(p)� 6 9p0 [C(p0) � (p0 � p) � dup col(p0; p)]

10.8. IMPLICIT REDUCTION TECHNIQUES 259

Proof: This computation picks a representative column label out of a set of column labels corre-

sponding to duplicated columns. A column label c is deleted from C if and only if there is another

column label c0 which has a smaller binary value than c (denoted by c0 � c) and both label the same

duplicated column. Here we exploit the fact that any positional-set c can be interpreted as a binary

number. Therefore, a unique representative from a set can be selected by picking the one with the

smallest binary value. 3

10.8.2 Duplicated Rows

Definition 10.8.2 Two rows are duplicates if, on every column, their corresponding table entries

are identical.

Detection of duplicated rows, selection of a representative row, and table updating are

performed by the following equations as in the case of duplicated columns.

Theorem 10.8.3 Duplicated rows can be computed as:dup row(r0; r) 1;2 = 8c fC(c)) [(0(r0; c), 0(r; c)) � (1(r0; c), 1(r; c))]gdup row(c0; d0; c; d) 3 = (c0 = c)� 6 9p [C(p) � ((p � d0) 6, (p � d))]
Proof: Similar to the proof for Theorem 10.8.1. For the row labels r0 and r to be in the relationdup row, the first equation requires the following conditions to be met for every column labelc 2 C: (1) the entry (r; c) is a 0 if and only if the entry (r0; c) is a 0, (i.e., 0(r0; c), 0(r; c)), and

(2) the entry (r; c) is a 1 if and only if the entry (r0; c) is a 1, (i.e., 1(r0; c), 1(r; c)).
Theorem 10.8.4 Duplicated rows can be collapsed by:R(r) 1;2 = R(r)� 6 9r0 [R(r0) � (r0 � r) � dup row(r0; r)]R(c; d) 3 = R(c; d)� 6 9c0; d0 [R(c0; d0) � (d0 � d) � dup row(c0; d0; c; d)]
Proof: The proof is similar to that for Theorem 10.8.2, except we are delete all duplicating rows

here except the representative ones.

From now on, sometimes we will blur the distinction between a column (row) label and

the column (row) itself, but the context should say clearly which one it is meant.

3Alternatively, one could have used the cprojectBDD operator introduced in [80] to pick a representative column out
of each set of duplicated columns.

260 CHAPTER 10. BINATE COVERING

10.8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others.

Classically, there are two notions of column dominance: �-dominance and �-dominance.

Definition 10.8.3 A column c0 �-dominates another column c if c0 has all the 1’s of c, and c has

all the 0’s of c0.
Theorem 10.8.5 The �-dominance relation can be computed as:� dom(c0; c) 1 = 6 9r fR(r) � [1(r; c) � :1(r; c0)] + [0(r; c0) � :0(r; c)]g� dom(c0; c) 2 = 6 9r fR(r) � [1(r; c) � :1(r; c0) + 0(r; c0)]g� dom(p0; p) 3 = 6 9c; d [R(c; d) � (p � d) � (p0 6� d)]� 6 9d R(p0; d)
Proof: For column c0 to �-dominate c, the first equation ensures that there doesn’t exists a rowr 2 R such that either (1) the table entry (r; c) is a 1 but the table entry (r; c0) is not, or (2) the table

entry (r; c0) is a 0 but the table entry (r; c) is not. Assuming each row has at most one 0, condition

2 can be simplified to the second equation that table entry (r; c0) is a 0.

Definition 10.8.4 A column c0 �-dominates another column c if (1) c0 has all the 1’s of c, and (2)

for every row r0 in which c0 contains a 0, there exists another row r in which c has a 0 such that

disregarding entries in column c0, r0 has all the 1’s of r.

Theorem 10.8.6 The �-dominance relation can be computed by:� dom(c0; c) 1;2 = 6 9r0 fR(r0) � [1(r0; c) � :1(r0; c0)+ 0(r0; c0)� 6 9r [R(r) � 0(r; c)� 6 9c00 [C(c00) � (c00 6= c0) � 1(r; c00) � :1(r0; c00)]]]g� dom(p0; p) 3 = 6 9d0 f9c0 (R(c0; d0)) � (p � d0) � (p0 6� d0)g� 6 9d0 fR(p0; d0)� 6 9d [R(p; d)� 6 9q [C(q) � (q 6= p0) � (q � d) � (q 6� d0)]]gg
Proof: According to the definition, the table should not contain a row r0 2 R if either of the following

two cases is true at that row: (1) table entry at column c is a 1 while entry at column c0 is not a 1 (i.e.,

1(r0; c) � :1(r0; c0)), or (2) c0 has a 0 in row r0 (i.e., 0(r0; c0)) but there does not exist a row r 2 R
such that its column c is a 0 and disregarding entries in column c0, row r0 has all the 1’s of row r.

Rephrasing the last part of the condition 2, the expression 6 9c00 [C(c00)�(c00 6= c0)�1(r; c00)�:1(r0; c00)]
requires that there is no column c00 2 C apart from column c0 such that c00 has a 1 in row r, but not

in row r0.

10.8. IMPLICIT REDUCTION TECHNIQUES 261

The conditions for �-dominance are a strict subset of those for �-dominance, but �-

dominance is easier to compute implicitly. Either of them can be used as the column dominance

relation col dom.

Theorem 10.8.7 The set of dominated columns in a table (R;C) can be computed as:D(c) 1;2 = C(c) � 9c0 [C(c0) � (c0 6= c) � col dom(c0; c)]D(p) 3 = C(p) � 9p0 [C(p0) � (p0 6= p) � col dom(p0; p)]
Proof: A column c 2 C is dominated if there is another c0 2 C different from c (i.e., c0 6= c) which

column dominates c (i.e., col dom(c0; c)).
Theorem 10.8.8 The following computations delete a set of columnsD(c) from a table (R;C) and

all rows intersecting these columns in a 0.C(c) 1;2 = C(c) � :D(c)R(r) 1;2 = R(r)� 6 9c [D(c) � 0(r; c)]C(p) 3 = C(p) � :D(p)R(c; d) 3 = R(c; d) � :D(c)
Proof: The first computation removes columns in D(c) from the set of columns C(c). The

expression 9c [D(c) � 0(r; c)] defines all rows r intersecting the columns in D in a 0. They are

deleted from the set of rows R.

10.8.4 Row Dominance

Definition 10.8.5 A row r0 dominates another row r if r has all the 1’s and 0’s of r0.
Theorem 10.8.9 The row dominance relation can be computed by:row dom(r0; r) 1;2 = 6 9c fC(c) � [1(r0; c) � :1(r; c) + 0(r0; c) � :0(r; c)]grow dom(c0; d0; c; d) 3 = 6 9p [C(p) � (p � d0) � (p 6� d)] � [unate row(c0) + (c0 = c)]
Proof: For r0 to dominate r, the equation requires that there is no column c 2 C such that either (1)

the table entry (r0; c) is a 1 but the entry (r; c) is not, or (2) the entry (r0; c) is a 0 but the entry (r; c)
is not.

262 CHAPTER 10. BINATE COVERING

Theorem 10.8.10 Given a table (R(r); C(c)), the set of unate row labels r can be computed asunate row(r) 1;2 =6 9c [C(c) � 0(r; c)]:
Given a table (R(c; d); C(p)), the set of unate row labels c can be computed asunate row(c) 3 =6 9p [C(p) � (p = c)] =6 9c C(c):

Theorem 10.8.11 The set of rows not dominated by other rows can be computed as:R(r) 1;2 = R(r)� 6 9r0 [R(r0) � (r0 6= r) � row dom(r0; r)]R(c; d) 3 = R(c; d)� 6 9c0; d0 fR(c0; d0) � [(c0; d0) 6= (c; d)] � row dom(c0; d0; c; d)]g
Proof: The equation expresses that any row r 2 R, dominated by another different row r0 2 R, is

deleted from the set of rows R(r) in the table.

10.8.5 Essential Columns

Definition 10.8.6 A column c is an essential column if there is a row having a 1 in column c and

2 everywhere else.

Theorem 10.8.12 The set of essential columns can be computed by:ess col(c) 1 = C(c) � 9r fR(r) � 1(r; c)� 6 9c0[C(c0) � (c0 6= c) � (0(r; c0) + 1(r; c0))]gess col(c) 2 = C(c) � 9r fR(r) � 1(r; c) � unate row(r)� 6 9c0 [C(c0) � (c0 6= c) � 1(r; c0)]gess col(p) 3 = C(p) � 9c; d fR(c; d) � (p � d) � unate row(c)� 6 9p0 [C(p0) � (p0 6= p) � (p0 � d)]g
Proof: For a column c 2 C to be essential, there must exist a row r 2 R which (1) contains a 1 in

column c (i.e., 1(r; c)), and (2) there is not another different column intersecting the row in a 1 or 0

(i.e., 6 9c0 [C(c0) � (c0 6= c) � (0(r; c0) + 1(r; c0))]).
Assuming that a row can have at most one 0, a column c 2 C is essential if and only if

there is a row r 2 R which (1) contains a 1 in column c (i.e., 1(r; c)), and (2) does not contain any

0 (i.e., unate row(r)), and (3) there is not another different column intersecting the row in a 1 (i.e.,6 9c0 [C(c0) � (c0 6= c) � 1(r; c0)]).
Theorem 10.8.13 Essential columns must be in the solution. Each essential column must then be

deleted from the table together with all rows where it has 1’s.

10.8. IMPLICIT REDUCTION TECHNIQUES 263

The following computations add essential columns to the solution, delete them from the

set of columns and delete all rows in which they have 1’s:solution(c) 1;2 = solution(c) + ess col(c)C(c) 1;2 = C(c) � :ess col(c)R(r) 1;2 = R(r)� 6 9c [ess col(c) � 1(r; c)]solution(p) 3 = solution(p) + ess col(p)C(p) 3 = C(p) � :ess col(p)R(c; d) 3 = R(c; d) � :ess col(c)
Proof: The first two equations move the essential columns from the column set to the solution set.

The third equation deletes from the set of rowsR all rows intersecting an essential column c in a 1.

10.8.6 Unacceptable Columns

Definition 10.8.7 A column c is an unacceptable column if there is a row having a 0 in column c
and 2 everywhere else.

Theorem 10.8.14 The set of unacceptable columns can be computed by:unacceptable col(c) 1 = C(c) � 9r fR(r) � 0(r; c)� 6 9c0 [C(c0) � (c0 6= c) � 0(r; c0)]g� 6 9c0 [C(c0) � 1(r; c0)]gunacceptable col(c) 2 = C(c) � 9r fR(r) � 0(r; c)� 6 9c0 [C(c0) � 1(r; c0)]gunacceptable col(p) 3 = C(p) � 9d fR(p; d)� 6 9p0 [C(p0) � (p0 � d)]g
Proof: For column c 2 C to be unacceptable, there must be a row r 2 R such that (1) it intersects

the column c at a 0, and (2) there does not exists another column c0 different from c which intersects

that row r at a 0 (i.e., 6 9c0 [C(c0) � (c0 6= c) � 0(r; c0)]), and (3) no column c0 intersects that row r in

a 1 (i.e., 6 9c0 [C(c0) � 1(r; c0)]). Condition 2 is not needed if we assume that each row contains at

most one 0.

264 CHAPTER 10. BINATE COVERING

10.8.7 Unnecessary Columns

Definition 10.8.8 A column is an unnecessary column if it does not have any 1 in it.

Theorem 10.8.15 The set of unnecessary columns can be computed as:unnecessary col(c) 1;2 = C(c)� 6 9r [R(r) � 1(r; c)]unnecessary col(p) 3 = C(p)� 6 9c; d [R(c; d) � (p � d)]
Proof: A column c 2 C is unnecessary if no row r 2 R intersects it in a 1.

Theorem 10.8.16 Unacceptable and unnecessary columns should be eliminated from the table,

together with all the rows in which such columns have 0’s.

The table (R;C) is updated according to Theorem 10.8.8 by settingD(c) 1;2 = unacceptable col(c) + unnecessary col(c)D(p) 3 = unacceptable col(p) + unnecessary col(p)
Proof: Obvious.

10.9 Other Implicit Covering Table Manipulations

To have a fully implicit binate covering algorithm as described in Section 10.6, we must

also compute implicitly a branching column and a lower bound. These computations as well as

table partitioning involve solving a common subproblem of finding columns in a table which have

the maximum number of 1’s.

10.9.1 Selection of Columns with Maximum Number of 1’s

Given a binary relation F (r; c) as a BDD, the abstracted problem is to find a subset of c’s
each of which relates to the maximum number of r’s in F (r; c). An inefficient method is to cofactorF with respect to c taking each possible values ci, count the number of onset minterms of eachF (r; c)jc=ci, and pick the ci’s with the maximum count. Instead our algorithm, Lmax, traverses

each node of F exactly once as shown by the pseudo-code in Figure 10.8.Lmax takes a relation F (r; c) and the variables set r as arguments and returns the set G
of c’s which are related to the maximum number of r’s in F , together with the maximum count.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 265

Lmax(F; r) fv = bdd top var(F)
if (v 2 r)

return (1; bdd count onset(F))
else f /* v is a c variable */(T; count T) = Lmax(bdd then(F); r)(E; count E) = Lmax(bdd else(F); r)count = max(count T; count E)

if (count T = count E)G = ITE(v; T; E)
else if (count = count T)G =ITE(v; T; 0)
else if (count = count E)G = ITE(v; 0; E)
return (G; count)gg

Figure 10.8: Pseudo-code for Lmax.

266 CHAPTER 10. BINATE COVERING

Variables in c are required to be ordered before variables in r. Starting from the root of BDD F , the

algorithm traverses down the graph by recursively calling Lmax on its then and else subgraphs.

This recursion stops when the top variable v of F is within the variable set r. In this case, the BDD

rooted at v corresponds to a cofactor F (r; c)jc=ci for some ci. The minterms in its onset are counted

and returned as count, which is the number of r’s that are related to ci.
During the upward traversal of F , we construct a new BDD G in a bottom up fashion,

representing the set of c’s with maximum count. The two recursive calls of Lmax return the setsT (c) and E(c) with maximum counts count T and count E for the then and the else subgraphs.

The larger of the two counts is returned. If the two counts are the same, the columns in T and E
are merged by ITE(v; T;E) and returned. If count T is larger, only T is retained as the updated

columns of maximum count. And symmetrically for the other case. To guarantee that each node

of BDD F (r; c) is traversed once, the results of Lmax and bdd count onset are memoized in

computed tables. Note that Lmax returns a set of c’s of maximum count. If we need only one c,
some heuristic can be used to break the ties.

To understand how Lmax works consider the explicit binate table:

00 01 10 11
00 1 2 1 1
01 2 1 1 2
10 2 1 2 1
11 2 1 2 1

with four rows and four columns. The columns that maximize the number of 1’s are the second and

the fourth. If the rows and columns are encoded by 2 boolean variables each, using the encodings

given on top of each column and to the left of each row, the 1 entries of the table are represented

implicitly by the relation F (c; r) 4 whose minterms are:f0000; 1000; 1100; 0101; 1001; 0110; 1110; 0111; 1111g:
The BDD representing F is shown in Figure 10.9. The result of invoking Lmax on F (r; c) is a BDD

representing the relation G(c) whose minterms are: f01; 11g, corresponding to the encodings of

the second and fourth column.

10.9.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an efficient branch-and-bound

covering algorithm. A good choice reduces the number of recursive calls, by helping to discover
4r and c are swapped in F so that minterms are listed in the order of the BDD variables.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 267

0

E

T E

TE

T E

f

T E

0

T E

0

E

T

1

1 0

1 1

1

T

TE

ET

r1 r1

c1

c2 c2

r1 r1

r2 r2

11,10,00 00 11,01,10

10 11 00 01

01,00

1 1 0

T

c2

E

1 0

T

c2

E

1 0

T

c2

E

Figure 10.9: BDD of F (r; c) to illustrate the routine Lmax

268 CHAPTER 10. BINATE COVERING

more quickly a good solution. We adopt a simplified selection criterion: select a column with

a maximum number of 1’s. By defining F 0(r; c) = R(r) � C(c) � 1(r; c) which evaluates true if

and only table entry (r; c) is a 1, our column selection problem reduces to one of finding the c
related to the maximum number of r’s in the relation F 0(r; c), and so it can be found implicitly by

calling Lmax(F 0; r). A more refined strategy is to restrict our selection of a branching column to

columns intersecting rows of a maximal independent set, because a unique column must eventually

be selected from each independent row. A maximal independent set can be computed as follows.

10.9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually a lower bound is obtained by computing a maximum independent set of the unate

rows. A maximum independent set of rows is a (maximum) set of rows, no two of which intersect

the same column at a 1. Maximum independent set is an NP-hard problem and an approximate

one (only maximal) can be computed by a greedy algorithm. The strategy is to select short unate

rows from the table, so we construct a relation F 00(c; r) = R(r) � unate row(r) � C(c) � 1(r; c).
Variables in r are ordered before those in c. The rows with the minimum number of 1’s in F 00 can be

computed by Lmin(F 00; c), by replacing in Lmax the expression max(count T; count E) withmin(count T; count E). Once a shortest row, shortest(r), is selected, all rows having 1-elements

in common with shortest(r) are discarded from F 00(c; r) by:F 00(c; r) = F 00(c; r): 6 9c0 f9r0 [shortest(r0) � F 00(c0; r0)] � F 00(c0; r)g
Another shortest row can then be extracted from the remaining tableF 00 and so on, untilF 00 becomes

empty. The maximum independent set consists of all shortest(r) so selected.

10.9.4 Implicit Covering Table Partitioning

If a covering table can be partitioned into n disjoint blocks, the minimum covering for

the original table is the union of the minimum coverings for the n sub-blocks. Let us define the

nonempty-entry relation 01(r; c) = 0(r; c)+ 1(r; c). The implicit algorithm in Figure 10.10 takes

a table description in terms of its set of rows R(r), its set of columns C(c) and the nonempty-entry

relation 01(r; c), partitions it into n disjoint sub-blocks, and return them as n pairs of (Ri; Ci),
each corresponding to the rows and columns for the i-th sub-block.n-way partitioning can be accomplished by successive extraction of disjoint blocks from

the table. When the following iteration reaches a fixed point, (Rk; Ck) corresponds to a disjoint

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 269n way partition(R(r); C(c);01(r; c)) fn = 0

while (R not empty) fk = 0R0(r) = Lmax(R(r) �C(c) � 01(r; c))
repeat fk = k + 1Ck(c) = C(c) � 9r fRk�1(r) � 01(r; c)gRk(r) = R(r) � 9c fCk(c) � 01(r; c)gg until (Rk = Rk�1)Rn = RkCn = CkR = R� RkC = C � Ckn = n+ 1g

return f(Ri; Ci) : 0 � i � n � 1gg
Figure 10.10: Implicit n-way partitioning of a covering table.

sub-block in (R;C). R0(r) = Lmax(R(r) � C(c) � 01(r; c) ; c)Ck(c) = C(c) � 9r fRk�1(r) � 01(r; c)gRk(r) = R(r) � 9c fCk(c) � 01(r; c)g
This sub-block is extracted from the table (R;C) and the above iteration is applied again to the

remaining table, until the table becomes empty. [65] provides a more detailed explanation.

Given a covering table, a single rowR0(r), which has the maximum number of nonempty

entries, is first picked using Lmax(). The set of columns C1(c) intersecting this row at 0 or 1

270 CHAPTER 10. BINATE COVERING

entries is given by C(c) � 9r [R0(r) � 01(r; c)] (we want c 2 C such that there is a row r 2 R0

which intersects c at a 0 or 1). Next we find the set of rows R1 intersecting the columns in C1 via

nonempty entries, by a similar computation R(r) � 9c [C1(c) � 01(r; c)]. Then we can extract all

the rows R2(r) which intersects C1(c), and so on. This pair of computations is iteratively applied

within the repeat loop in Figure 10.10 until no new connected row or column can be found (i.e.,Rk = Rk�1). Effectively, starting from a row, we have extracted a disjoint block (R1; C1) from

the table, which will later be returned. The remaining table after bi-partition simply contains the

rows R�R1 and the columns C � C1. If the remaining table is not empty, we will extract another

partition (R2; C2) by passing through the outer while loop a second time. If the original table

contains n disjoint blocks, the algorithm is guaranteed to return exactly the n sub-blocks by passing

through the outer while loop n times.

10.10 Implicit Two-level Logic Minimization

The implicit computations presented to manipulate a binate table are valid a fortiori

when the table is unate. In the latter case, however, more specialized algorithms can be designed

to exploit fully the features of the simpler problem. Historically speaking, an implicitization of

covering problems has been carried on first for the case of unate tables generated in the minimization

of two-level logic functions.

Given a boolean function f , consider the problem of finding a minimum two-level cover.

A classical exact algorithm by Quine and McCluskey reduces it to a unate covering problem where

the rows of the table are minterms and the columns of the table are primes of the function. There

is a 1 at the intersection of a row and column, if the prime associated to the column contains the

minterm associated to the row. An efficient implementation of unate covering is provided in the

program ESPRESSO. In that implementation an improvement has been introduced, because there is

only one row for each set of minterms that are covered by the same set of primes. In other words,

the table is constructed in such a way that there are no equal rows in it.

The set of all primes and minterms may be exponential in the number of input variables.

Manipulating a table with an exponential number of rows and columns may add another exponential

blow-up. To overcome these problems, researchers at Bull [29, 30] and UCB [53] have represented

the set of primes and the unate table with logic functions implemented with ROBDD’s. The key

steps have been:

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 271

1. Define a boolean space where all those sets could be represented.

2. Transform the computation of the primes, unate table and the table reduction operations into

operations on boolean functions defined on the boolean space of the problem.

An whole suite of papers has been produced by the French group [25, 79, 27, 26, 24, 28, 29, 30, 22].

Here we will outline only the key steps of this approach.

We remind that a literal is a propositional variable xk or its negation xk . Pn is the set of

products that can be built from the set of variables fx1; : : : ; xng. The subset relation � is a partial

order on the set Pn. P is maximal iff there do not exist two products p and p0 of P such that p � p0.
A product p is an implicant of a boolean function f iff p � fx 2 f0; 1gn j f(x) 6= 0g. A product p
is a prime implicant of f iff it is a maximal element of the set of implicants of f with respect to �.

Any subset P of Pn can be partitioned in the following way:P = P1k [(fxkg � Pxk) [(fxkg � Pxk)
where P1k is the set of products of P where neither the variable xk nor xk occurs; Pxk (respectivelyPxk) is the set of products of P where xk (xk) occurs, after dropping xk (xk).

A boolean space to represent all products can be obtained by a number of variables double

with respect to the number of input variables of f . It is the metaproduct representation in the

literature by researchers at Bull and the extended space in the literature by researchers at UCB. The

basic idea is to encode the presence of xk or xk or both (i.e. neither literal appears explicitly in the

product) with two bits.

The computation of primes reduces to finding the maximal products over all implicants

of f . The following recursive computation finds all prime implicants:Prime(f) = Prime(fxk ^ fxk)[fxkg � (Prime(fxk) n Prime(fxk ^ fxk))[fxkg � (Prime(fxk) n Prime(fxk ^ fxk))
It is easy to transpose this computation to the case of the extended space or metaproducts represen-

tation.

The table covering problem can now be described by the triple< Q; P;�>, whereQ is the

set of minterms of f , P is the set of primes of f and � describes the table building relation. Notice

that this is already a progress with respect to the traditional approach because we do not represent

272 CHAPTER 10. BINATE COVERING

directly the table, but we have instead an operator (�) to infer the table entries. This is a special

case of the encoding scheme of binate tables for exact state minimization, previously reported.

Strictly speaking, this reformulation is not tied to the fact of using an implicit representation. It

could be used also with an explicit representation. When coupled with a BDD-based representation

it lends itself to very efficient algorithms, because the final size of the representation is not linearly

proportional to the number of primes computed.

A unate table is reduced by applying row and column dominance and detecting essential

primes. Row dominance is stated as follows.

Definition 10.10.1 A rowRj dominates another rowRi if for all columnsCk,Mj;k = 1)Mi;k =
1.

In the case of < Q; P;�>, this translates into:q �Q q0 , (8p 2 P (q0 � p)) (q � p))
Moreover, if there are rows that intersect exactly the same set of columns, i.e. they are equivalent,

one should compute this equivalence relation and then replace each equivalence class with one

representative (called sometimes projection operation [78]). Row dominance should then be applied

to these representatives only.

Instead of using such a projection and then applying the definition of dominance relation,

one can define a row transposing function that maps the rows on objects whose manipulation can

be done more efficiently. The maximal elements of the transposed objects are the dominating rows.

The basic idea is that each row of a covering table corresponds to a cube, called signature

cube, that is the intersection of the primes covering the minterm associated to the row. This was

noticed first in [99]. A rigorous theory and an efficient algorithm were developed at UCB [89]. The

steps of the algorithm follow. Compute the signature cube of the each cube of an arbitrary initial

cover and make irredundant the resulting cover. Using the fact that for each cube of an arbitrary

irredundant cover of signature cubes, there is some essential signature cube contained by it, obtain

the irredundant cover of essential signature cubes (called minimum canonical cover). For each cube

of the minimum canonical cover, generate the set of primes containing it (the essential signature

set). Solve the resulting unate covering problem as usual. The resulting unate covering problem is

exactly what one could get by applying row domination to the minterms/primes table.

One can define a row transposing function �Q(Q) based on the idea of signature cubes.

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 273

Definition 10.10.2 �Q : Q �! Pn is defined as:�Q(q) = \fp2P jq�pgp
In other words, each element of �Q(Q) is obtained by an element q ofQ, by intersecting all elements

of P that cover q.

The following theorem relates row dominance to the row transposing function.

Theorem 10.10.1 The function �Q is such thatq �Q q0 , �Q(q) � �Q(q0):
Given a set covering problem (Q;P;�), the functionmax��Q(Q) computes the maximal elements

of the set �Q(Q), i.e., the dominating rows.

Since the range �Q is Pn, the computation of �Q can be easily transposed to the case of

the extended space or metaproducts representation. The most obvious implementation would use

quantified boolean formulas, but in practice they tend to produce huge intermediate ROBDD’s. A

quantifier free recursive computation of max��Q(Q) has given better experimental results.

We present now a pseudo-code description of MaxTauQ(Q;P; k), the recursive proce-

dure used to computemax��Q(Q). We define first two auxiliary functions Supset and Subset:Supset(P;Q) = fp 2 P j 9q 2 Qp � qgSubset(P;Q) = fp 2 P j 9q 2 Qp � qg
Theorem 10.10.2 MaxTauQ(Q;P; 1) computes max��Q(Q).
Proof: The terminal cases are easy. Consider a variable xk . One can divide the set P in three

subsets: Pxk , the products of P in which xk occurs, Pxk , the products of P in which xk occurs

and P1k , the products of P in which neither xk nor xk occurs. Similarly, one can divide the set Q
in three subsets: Qxk , the products of Q in which xk occurs, Qxk , the products of Q in which xk
occurs and Q1k , the products of Q in which neither xk nor xk occurs.

The products of Qxk can be contained by products of Pxk or by products of P1k . The

products of Qxk can be contained by products of Pxk or by products of of P1k . The products ofQ1k can be contained only by products of P1k . K0 has the products of Qxk contained by products

274 CHAPTER 10. BINATE COVERINGMaxTauQ(Q;P; k) f
if Q = ; or Q = ; f
if P = f1g return f1gK0 = Subset(Qxk ; Pxk)K1 = Subset(Qxk ; Pxk)K0 = Q1k [(Qxk nK0) [(Qxk nK1)R =MaxTauQ(K;P1k ; k+ 1)R0 =MaxTauQ(K0; P1k [Pxk); k+ 1)R1 =MaxTauQ(K1; P1k [Pxk); k+ 1)
return R[fxkg � Subset(R0; R))[fxkg � Subset(R1; R))[g

Figure 10.11: Recursive computation of max��Q(Q)
of Pxk . K1 has the products of Qxk contained by products of Pxk . K has the products of Q1k ,

the products of Qxk that are not contained by products of Pxk and the products of Qxk that are not

contained by products of Pxk .

Also the set MaxTauQ(Q;P; 1) can be divided in three subsets: the set of products in

which xk occurs, the set of products in which xk occurs and the set of products of P in which

neither xk nor xk occurs. The last set is given by R, that is MaxTauQ(K;P1k; k + 1). Indeed inR the second argument is P1k , the set of products of P where neither xk nor xk occurs. The first

argument isK that includes the products ofQ where xk nor xk occurs and so can be contained only

by products of P1k , and the products of Q where either xk or xk occurs but they are not covered

by Pxk or Pxk and so they can be covered only by P1k . The second set is obtained from R0, that

is MaxTauQ(K0; P1k [Pxk ; k + 1), by the following modification. In the first argument of R0

there are the products of Q where xk occurs, which are contained by the products of P in the

second argument. A product in R0 must be multiplied by fxkg because for sure each q 2 K0 is

contained by a product of Pxk , and by definition of �Q(q) one must intersect all the products that

contain q. But before multiplying by fxkg we must subtract from R0 the products contained in R
(Subset(R0; R)), because if a product r0 of R0 is contained by a product r of R (or is equal to) it

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 275

means that there are q 2 K and q0 2 K0 such that �Q(q) � �Q(q0) (because r contains r0 and r0 is

multiplied by fxkg) and we want to keep only �Q(q) because we are computingmax��Q. Instead

if a product of R is contained by a product ofR0, the fact that the product ofR0 must be multiplied

by fxkg makes the two products not comparable. Therefore fxkg � (R0 n Subset(R0; R)) is the

set of products of MaxTauQ(Q;P; 1) in which xk occurs. Replacing verbatim fxkg with xk , the

same reasoning applies for the addition coming from R1, from which the first set is obtained.

After the setQ0 = max��Q(Q) has been computed, the problem< Q; P;�> transforms

to < Q0; P; R0 >, where q0R0p iff q0 = �Q(q) and q � p. R0 ��, since q � p iff �Q(q) � p.

Therefore the new covering problem is < Q0; P;�>.

A similar development holds for column dominance.

Definition 10.10.3 A column Ci dominates another column Cj if for all rows Rk, Mk;j = 1)Mk;i = 1.

In the case of < Q; P;�>, this translates into:p �P p0 , (8q 2 Q(q � p)) (q � p0))
Moreover, if there are columns that intersect exactly the same set of rows, i.e. they are equivalent,

one should compute this equivalence relation and then replace each equivalence class with one repre-

sentative (projection operation). Column dominance should then be applied to these representatives

only.

Instead of using such a projection and then applying the definition of dominance relation,

one can define a column transposing function that maps the columns on objects whose manipulation

can be done more efficiently. The maximal elements of the transposed objects are the dominating

columns.

Consider the following column transposing function �P (p):
Definition 10.10.4 �P (p) = C([fq2Qjq�pgq);
where C(E) = min�fp 2 Pn j p � Eg.C(E) is the unique smallest product that contains the set E. Here min is an intersection operator,

so �P (p) =min�fp 2 Pn j p � Eg;

276 CHAPTER 10. BINATE COVERINGMaxTauP (Q;P; k) f
if Q = ; or Q = ; f
if Q = pn return PK = Supset(P1k ; Q1k)[Supset(P1k ; Qxk) \ Supset(P1k ; Qxk)K0 = Supset(P1k [Pxk ; Qxk) nK K1 = Subset(P1k [Pxk ; Qxk) nKR =MaxTauP (Q1k [Qxk [Qxk ; K; k+ 1)R0 =MaxTauP (Qxk); K0; k+ 1)R1 =MaxTauQ(Qxk); K1; k+ 1)
return R[fxkg � Subset(R0; R))[fxkg � Subset(R1; R))[g

Figure 10.12: Recursive computation of max��P (P)
or, �P (p) =\fp 2 Pn j p � [fq2Qjq�pg qg:

The following theorem relates column dominance to the column transposing function.

Theorem 10.10.3 The function �P is such thatp �P p0 , �P (p) � �P (p0):
Given a set covering problem (Q;P;�), the functionmax��P (P) computes the maximal elements

of the set �P (P), i.e. the dominating columns.

Since the range �P is Pn, the computation of �P can be easily transposed to the case of

the extended space or metaproducts representation. The most obvious implementation would use

quantified boolean formulas, but in practice they tend to produce huge intermediate ROBDD’s. A

quantifier free recursive computation of max��P (P) has given better experimental results.

We present now a pseudo-code description of MaxTauP (Q;P; k), the recursive proce-

dure used to computemax��Q(Q).
Theorem 10.10.4 MaxTauP (Q;P; 1) computes max��P (P).

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 277

Proof: The terminal cases are easy. Consider a variable xk . The set K is the set of products ofP1k that contain a product of Q1k , or that contain a product of Qxk and a product of Qxk . So K
is the set of products p of P such that �P (p) does not contain the literal xk nor xk. Therefore the

set R is the set of products of max��P (P) that do not contain the literal xk nor xk . The set K0

(respectively K1) is the set of of products p of P that only contain products of Q where the literalxk (respectively xk) occurs. Since in the definition of �P (p) one takes an intersection of products

(primes that contain the products contained by p), the set R0 is the set of products of �P (P) that

contain the literal xk, and that are maximal with respect to �P (P)xk . Since we want only the

maximal products with respect to �P (P), from R0 one subtracts the products that are contained by

a product of R.

After the set P 0 = max��P (P) has been computed, the problem< Q; P;�> transforms

to < Q; P 0; R0 >, where qR0p0 iff p0 = �P (p) and q � p. R0 ��, since q � p iff q � �P (p).
Therefore the new covering problem is < Q; P 0;�>.

One more table reduction operation is the detection of essential columns.

Definition 10.10.5 A column is an essential column if it contains the 1 of a singleton row.

Theorem 10.10.5 The set of essential products is E = P \max��Q(Q).
After the set E = P \ max��Q(Q) has been computed, the problem < Q; P;�>

transforms to < Q nE; P nE;�>.

Successive application of row dominance, essential detection and column dominance

computes the cyclic core of the unate covering problem. A branch-and-bound procedure, where

table reduction is invoked on subtables splitted along a branching column, leads to a final solution,

that is a minimum number of primes needed to cover all the minterms. Notice that in the papers

by the researchers at Bull no implicitization is reported of the choice of a branching column and

of a lower bound computation. Implicit formulations of such operations were instead reported first

in [66].

In [30] it is stated that the usage of Zero-Suppressed BDD’s by Minato [95] instead

of ROBDD’s [16] resulted in more efficient implicit representations of the computations of the

problem.

278 CHAPTER 10. BINATE COVERING

279

Chapter 11

Implicit Minimization of GPI’s

11.1 Implicit Representations and Manipulations

Algorithms for sequential synthesis have been developed primarily for State Transition

Graphs (STG’s). STG’s have been usually represented in two-level form where state transitions

are stored explicitly, one by one. Alternatively, STG’s can be represented implicitly with Binary

Decision Diagrams (BDD’s) [16, 10]. BDD’s represent Boolean functions (e.g. characteristic

functions of sets and relations) and have been amply reported in the literature [16, 10], to which we

refer.

11.1.1 Implicit FSM Representation

A Finite State Machine (FSM) can be represented by a 5-tuple (I; O; S; T ;O). I and O
are the sets of input patterns and output patterns. S is the set of states. T � I � S � S is the

transition relation that relates a next state to an input and a present state. O � I � S � O is the

output relation that relates an output to an input and a present state. An FSM, where each (input,

state) pair is related to exactly one next state and one output, is a completely specified FSM. An

incompletely specified FSM is one where either the next state or the output is not specified for at

least one (input, state) pair.

If a next state is unspecified, no transitions on the (input, state) pair need to be considered

for the purpose of state minimization, so they are omitted from T . On the other hand, we represent

all unspecified output patterns in O corresponding to an (input, state) pair. The transition and

280 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

output relations are given by:T (i; p; n) = 1 iff n is the specified next state of state p on input iO(i; p; o) = 1 iff o is a (possibly unspecified) output of state p on i
where i and o are Boolean vectors of signals while p and n are represented by positional-sets defined

below.

11.1.2 Positional-set Representation

To perform sequential optimization, one needs to represent and manipulate efficiently sets

of states, or state sets, (such as compatibles) and sets of sets of states (such as sets of compatibles).

Our goal is to represent any set of sets of states implicitly as a single BDD, and manipulate such

state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots

with a single shared BDD.

Suppose a FSM has n states, there are 2n possible distinct subsets of states. In order to

represent collections of them, each subset of states is represented in positional-set form, using a set

of n Boolean variables, x = x1x2 : : :xn. The presence of a state sk in the set is denoted by the fact

that variable xk takes the value 1 in the positional-set, whereas xk takes the value 0 if state sk is not

a member of the set. One Boolean variable is needed for each state because the state can either be

present or absent in the set. For example, if n = 6, the set with a single state s4 is represented by

000100 while the set of states s2s3s5 is represented by 011010.

A set of sets of states is represented as a setS of positional-sets by a characteristic function�S : Bn ! B as: �S(x) = 1 iff the set of states represented by the positional-set x is in the set S.

A BDD representing �S(x) will contain minterms, each corresponding to a state set in S.

11.1.3 Operations on Positional-sets

With our definitions of relations and positional-set notation for representing set of states,

useful operators on sets and sets of sets can be derived. We have proposed in [65] a unified notational

framework for set manipulation, extending the work by Lin et al. in [79]. Here we define some

basic operators.

Proposition 11.1.1 Set equality, mirroring, containment, and strict-containment between two

positional-sets x and y can be computed by: (x = y) � Qnk=1(xk , yk); compl(x; y) �Qnk=1(xk , :yk); (x � y) � Qnk=1(yk) xk); (x � y) � (x � y) � (x 6= y).

11.1. IMPLICIT REPRESENTATIONS AND MANIPULATIONS 281

Proposition 11.1.2 Given two sets of positional-sets, complementation, union, intersection, and

sharp can be performed on them as logical operations (:;+; �; �:)on their characteristic functions.

Proposition 11.1.3 The Maximal of a set F of sets is the set containing sets in F not strictly

contained by any other set in F , and is given by:Maximalx(�F) = �F (x)� 6 9y [�F (y) � (y � x)]:
The term 9y [�F (y) � (y � x)] is true iff there is a positional-set y in �F such that y � x. In such

a case, x cannot be in the maximal set by definition, and are taken away from �F (x). One defines

symmetrically the Minimal of a set.

Proposition 11.1.4 The operation Set Minimalb(F (a; b)) keeps in the relation F (a; b) only the

pairs (a; b) such that there is no a0 related to exactly a proper subset of the b’s with which a is in

relation and it is computed by:Set Minimalb(F (a; b)) = F (a; b)� 6 9cf9dF (c; d)�8d [F (c; d)) F (a; d)]�9d [:F (c; d)�F (a; d)]g:
Each a is connected to a set of b’s. By varying a, we have all sets of b’s and we keep the minimal

ones of them. We keep in the minimality relation only the pairs (a; b) where a is connected to a

minimal set of b’s. The fact that the minimality is computed over the b’s is indicated by the subscriptb of Set Minimal. It is necessary to add the term 9d F (c; d) in order to constrain the c’s in the

following implication.

Example 11.1.1 Given the relation F (a; b) with elements (001; 011; 100; 101; 211; 201; 210), the

relation Set Minimal b(F (a; b))has elements (001; 011; 101; 111), the relation Minimal b(F (a; b))
has elements (001; 100; 201; 210).

An often used family of operators is Tuple that computes for a given k the k-out-of-n
positional-sets. For instance Tuplejxj(x) gives the universe set on the support x, Tuple0(x) gives

the empty set on the support x.

Finally we need the operators of the family Lmin and Lmax, first proposed in [66], to

which we refer for detailed explanations. Besides those already described in [66], we introduce a

new operator Multi Lmin, that is a variant of Lmin. Given a binary relation F (r; c) as a BDD,Lmin(F (r; c); r) computes FLm(c), the set of c’s which relate to the minimum number of r’s inF (r; c). An inefficient method is to cofactor F with respect to c taking each possible values ci,

282 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

count the number of onset minterms of each F (r; c)jc=ci, and pick the ci’s with the minimum count.

Instead the algorithm Lmin is implemented as a primitive BDD operator that traverses each node

of F exactly once. Variables in c are required to be ordered above (before) variables in r.

As a variant of the Lmin operator, the Multi Lmin(R(l; r; i; p; x; y); (i; p)) operator

computes a relationRMLm(l; r; x; y)such that, for each (x; y), (l; r) relates to the minimum number

of (i; p) inR(l; r; i; p; x; y), i.e., for a given (x; y), it findsLmin(Rjx;y(l; r; i; p; x; y); (i; p)). Again

the computation is performed with a BDD primitive that traverses once each node of R. Variables(x; y) are required to be ordered above (before) (l; r) which in turn must be above (i; p).
11.1.4 Relations for Implicit Encodeability of GPI’s

In the next sections we will present in detail a set of implicit computations that generate

the GPI’s and select a minimal subset of encodeable GPI’s that cover the original FSM. Here we

introduce the basic relations used in the implicit algorithms. Others will be presented in the coming

sections.� i = input vector� p = positional set of present states� n = positional set of next states (tag)� m = positional set of next states (tag)� o = output vector (tag)� cover f(i; p; n;m; o) = onset of the original FSM

where the combination (i; p) denotes a cube in the input/present-state part of the STT, n
represents the next state tag of the cube, and o is the output vector.cover fd(i; p; n;m; o) = union of onset and dcset of the original FSMcover r(i; p; n;m; o) = offset of the original FSM� M(i; p; n; o) = minterms of a STT

where the combination (i; p) denotes a minterm in the input/present-state part of the STT, n
represents the next state tag of the minterm, and o is the output vector.M(i; p; n) = 9o M(i; p; n; o)M(i; p) = 9n; o M(i; p; n; o)

11.2. IMPLICIT GENERATION OF GPI’S AND MINTERMS 283� Mn(i; p; n; o) = next-state minterms of a STT

where the field o is null� Mo(i; p; n; o) = output minterms of a STT

where the field n is null� GMI(i; p; n;m; o) = minterms of a STT

where the combination (i; p) denotes a minterm in the input/present-state part of the STT, n
represents the complemented next state tag of the minterm, m represents the complemented

present state part, and o is the output vector.� GPI(i0; p0; n0; m0; o0) = the set of the GPI’s

where the combination (i0; p0) denotes a cube (GPI) in the input/present-state part of the STT,n0 represents the complemented next state tag of the GPI, m0 represents the complemented

present state part, and o0 is the output tag.� P (i0; p0; n0; o0) = the set of the GPI’s

where the combination (i0; p0) denotes a cube (GPI) in the input/present-state part of the STT,n0 represents the next state tag of the GPI, and o0 is the output tag.� G(i0; p0; n0; o0) = a selection of GPI’s

where the combination (i0; p0) denotes a cube (GPI) in the input/present-state part of the STT,n0 represents the next state tag of the GPI, and o0 is the output tag.G(i0; p0; n0) = 9o0 G(i0; p0; n0; o0)G0(i0; p0; n0) = the set of GPI’s which have not been selected yet� D(l; r) = a set of encoding dichotomies

Each dichotomy (l1; l2; : : : ; li; r1; r2; : : : ; rj) is represented by a pair of positional sets (l; r).
11.2 Implicit Generation of GPI’s and Minterms

11.2.1 Implicit Generation of GPI’s

The step of computing the set of GPI’s can be reduced to computing the prime implicants

of a boolean function associated to the given FSM [39]. A very fruitful recent research effort [53, 30]

succeeded in finding efficiently by implicit computations the prime implicants of a boolean function.

284 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

We refer to [53, 30] for a complete treatment of the topic and we report here a few facts required in

our application.

If a multiple-valued function is represented in positional notation [114], cubes of the

onset (or dcset or offset) of the function can be mapped into vertices of a suitable Boolean space

(extended Boolean space), which has as many variables as the length of a positional vector. So sets

of minterms, implicants and primes of a multiple-valued boolean function are subsets of vertices in

the extended Boolean space. Key properties of this extended space representation are that primality

of an implicant corresponds to maximality when the order is given by set inclusion and that set

operations can be performed as boolean operations on the characteristic functions of the sets. Here

we review only some core facts and show the sequence of computations to compute the prime

implicants of a multi-valued function.

Consider a cube S = XS1
1 �X2S2 : : :�XSnn . Each Si is a subset of 0; 1; : : : ; Pi, wherePi is the set of possible values of the i-th variable Xi.

Definition 11.2.1 A cube S = XS1
1 �X2S2 : : :�XSnn is represented by the vertex

Qi;jxij , wherexij = 0 if j 62 Si and xij = 1 if j 2 Si, in the boolean space BPjPij. This representation is called

extended space representation .

Example 11.2.1 The cube Xf0;2g� Xf0;1g, where P1 = f0; 1; 2g and P2 = f0; 1g is represented

by the vertex x11x12x21x22x23, i.e., (1; 0; 1; 1; 1) in B5.

In this way, each cube is mapped into a unique vertex of the extended Boolean space,

except for the empty cube (i.e., the cube which has at least a part completely empty). The empty

cube is mapped into a set of points in the extended Boolean space, the so-called null points.

Definition 11.2.2 The null set or set of null points is the representation in the extended space of

the null cube of the original function space.

Proposition 11.2.1 The set of null points is given by null(x) =PiQjxij
Definition 11.2.3 The vertex set is the representation in the extended space of all the vertices of

the original function space.

The vertex set can be computed by the following proposition.

Proposition 11.2.2 The vertex set is given by vertex(x) = QiPjxijQk 6=j xik.

Figure 11.1 shows how to compute implicitly the prime implicants of a multi-valued

function.

11.2. IMPLICIT GENERATION OF GPI’S AND MINTERMS 285

procedure implicit pi generation(cover fd) f
/* minterms of (onset + dcset) */vertex fd(i0p0m0n0o0) = 9ipmno[cover fd(ipmno)vertex(i0p0m0n0o0)(ipmno � i0p0m0n0o0)]
/* minterms of offset */vertex r(i0p0m0n0o0) = vertex(i0p0m0n0o0) � vertex fd(i0p0m0n0o0)
/* implicants of (onset + dcset) and null cubes */impl null(i0p0m0n0o0) = U (i0p0m0n0o0) � 9ipmno vertex r(ipmno)(i0p0m0n0o0 � ipmno)
/* prime implicants */cprime(i0p0m0n0o0) = maximal(impl null(i0p0m0n0o0))
/* remove remaining null cubes (e.g., 00 11 111 11111111) */prime(i0p0m0n0o0) = cprime(i0p0m0n0o0) � null cube(i0p0m0n0o0)g

Figure 11.1: Implicit computation of prime implicants

11.2.2 Reduced Representation of GPI’s and Minterms

GPI’s are found in a (extended) representation GPI(i0; p0; n0; m0; o0), that can be easily

converted to a (reduced) representation P (i0; p0; n0; o0). The meaning of the different fields ofGPI and P has been given in Section 11.1.4. The extended representation has the advantage that

column dominance, which requires the same present state literal, can be done simply by checking

containment of the representations. A GPI (column) covers a minterm (row) iff the GPI contains

the minterm. The reduced representation has the advantage that a smaller number of variables is

required. This advantage is not trivial when many sets of variables are required.

To get the reduced representation one must transform back from the (i; p; n;m; o) space

into the original (i; p; n; o) space, while enforcing that the transformation conventions are satisfied.

The reduced representation of the primes is given by:P (i0; p0; n0; o0) = (m̃! n0)9n0(9m0GPI(i0; p0; n0; m0; o0) � compl(n0; m̃))
The equation drops them0 field ofGPI and converts then0 field from complemented 1-hot encoding

to 1-hot encoding.

The reduced representation of the minterms is given by:red cover f(i0; p0; n0; o0) = (m̃! n0)9n0(9m0cover f(i0; p0; n0; m0; o0) � compl(n0; m̃))

286 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’SM(i; p; n; o) = 9m(vertex(i; p; n;m; o)Tuple0(m))9i0p0n0o0[red cover f(i0; p0; n0; o0)(ipno � i0p0n0o0)]red cover f is the reduced representation of the onset of the original FSM. It is obtained by

dropping the m field of cover f and converting the n field from complemented 1-hot encoding

to 1-hot encoding. The equation for M selects the minterms of vertex with an empty m field

and then keeps only those that are in the reduced representation of the onset of the original FSM.

Output minterm is a minterm where n = Tuple0(n) and next-state minterm is a minterm whereo = Tuple0(o).
11.2.3 Pruning of Primes

Some primes can be removed because they do not correspond to GPI’s. One removes

primes of one of the two following types:

1. Primes that are covered by another prime, with full present state part and with the same next

state and output tags.

2. Primes with full next state tag and null output tag.

The first operation is implemented by:P (i0; p0; n0; o0) = P (i0; p0; n0; o0)� 9i; p(P (i; p; n0; o0)(i � i0)Tuplejpj(p)(ip 6= i0p0))
Notice that the clause ip 6= i0p0 avoids the self-cancellation of primes with a full present state part.

The second operation is implemented by:P (i0; p0; n0; o0) = P (i0; p0; n0; o0)� Tuplejn0j(n0)Tuple0(o0)
11.3 Implicit Selection of GPI’s

Once the GPI’s, or a subset of them, have been computed one must select a subset of them

that is encodeable and covers the original FSM.

11.3.1 Implicit Selection of a Cover of GPI’s

Once GPI’s and minterms are obtained, one sets up a covering problem. The rows of the

table are the minterms and the columns are the GPI’s. If the next state tag of a GPI is a superset of

11.3. IMPLICIT SELECTION OF GPI’S 287

the next state tag of a minterm and the GPI asserts all the outputs that the minterms asserts then there

is a 1 at the intersection of the given GPI and minterm. The table is unate, i.e., either an entry is 1 or

it is empty. We will use an implicit table solver to select a subset of GPI’s that cover the minterms.

Implicit algorithms to solve binate covering problems were presented in [66]. We implemented two

implicit binate solvers: a specialized one with a fixed table definition rule and a general one, where

one specifies by means of functions how entries are evaluated. Notice that for this application only

a unate solver is required, but we do not have a specialized unate solver, which could capitalize on

the restricted type of input. Here we could use either binate solver program and the specialized one

might be faster. But in Section 11.3.3 it will be necessary to use the general implicit binate solver.

So the latter will be used in both cases. In our application there is a 1 at the intersection of a given

minterm and GPI iff the next state tag of the GPI is a superset of the next state tag of the minterm

and the GPI asserts all the outputs that the minterm does. The implicit general binate solver requires

the sets of columns and rows and a rule to compute a table entry. In this case they are:

1. Columns are C(q) = P (q).
2. Rows are R(d) = Ru(d) =M(d).
3. The table entry at the intersection of the column labelled by q 2 C and of the row labelled byd 2 R is 1 iff q � d.

4. The table entry at the intersection of the column labelled by q 2 C and of the row labelled byd 2 R is never 0.

If the minterms and GPI’s are in the reduced representation it is sufficient to set d = i; p; n; o andq = i0; p0; n0; o0 to guarantee that there is a 1 at row c; d and column q iff q � d, since there is a 1 iffi0; p0; n0; o0 � i; p; n; o 1.

1If, instead, the minterms and GPI’s are in the extended representation, setting d = i; p; n;m; o and q =i0; p0; n0;m0; o0 there is a 1 at row c; d and column q iff i0 � i; p0 � p; n0 � n;m0 � m;o0 � o. The latter rule
is different from the rule i0 � i; p0 � p; n0 � n;m0 � m;o0 � o hardwired in the specialized binate solver. Therefore
with an extended representation one cannot use the specialized binate solver. It is also the case that the larger number of
variables of the extended representation will slow down the binate solver. An advantage of an extended representation
is that if one would implement column dominance as a maximal operation on columns, restricted column dominance (or
better, a strenghtened version of it) would correspond to a maximal operation on columns in extended representation.
But our binate solvers implement a more general definition of column dominance, that does not reduce to a maximal
operation.

288 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

11.3.2 Implicit Computations for Encodeability

Given a set of minterms M corresponding to a FSM (STT) and a selection of GPI’s G,

one must check if the uniqueness constraints, the face embedding constraints and the encoding

constraints induced by the GPI’s are satisfiable. If not, one selects one more GPI from the set of

unselected GPI’s G0, with the objective to minimize the number of unsatisfied face constraints.

Figure 11.2 shows computations to check for constraint satisfaction, to select one more

GPI to improve satisfiability and to compute a lower bound on the number of GPI’s to be added to

make the problem feasible. They differ significantly from those proposed in [116] because the fact of

using a BDD-base representation has motivated a different formulation of the encodeability check.

The encodeability problem is such that the number of encoding constraints is proportional to the

number of minterms. The characteristic functions of sets of dichotomies and of encoding constraints

are represented implicitly using BDD’s. Furthermore, implicit operations can be applied to multiple

objects simultaneously. As a result, enumerative processes such as the raising of dichotomies can

performed efficiently with the proposed representation.

Each of the following major steps is described in a separate subsection:� Computation of encoding constraints.� Computation of free initial dichotomies from face embedding constraints.� Computation of free initial dichotomies from uniqueness constraints.� Duplication of free initial dichotomies into pairs of fixed initial dichotomies.� Iterative raising of initial dichotomies, until they become maximally raised or invalid.

If a problem is infeasible, one disregards the free initial dichotomies and raised di-

chotomies that have been satisfied and carries on, instead, the following steps on the unsatisfied

dichotomies:� Computation of the set of minimal updating sets of encoding constraints.� Selection of a branching column (i.e., a GPI in G0).� Computation of a lower bound.

The routine implicit encodeability returns (unsat FID;GPI selected; lower bound)
to the calling routine. If the given constraints are satisfiable, implicit encodeability will return

11.3. IMPLICIT SELECTION OF GPI’S 289unsat FID = GPI selected = ;. Otherwise, the calling routine receives a non-empty set of un-

satisfied free initial dichotomiesunsat FID; moreover, it can set the lower bound to lower bound,

and then perform branching with the column in GPI selected.

Encoding Constraints

Each encoding constraint, represented by a set of quadruples (i; p; n; n0), is associated to

a minterm denoted by (i; p).2 The left hand-side of the encoding constraint is a single state n (called

the parent) and the right hand-side is a disjunction of conjuncts, so that the right hand-side can be

represented by a set of positional sets n0 (each element of n0 is called a child of the conjunct). In

other words, if an n0 is related to i; p; n in such a quadruple, n0 represents one of the conjuncts on

the right hand-side of the encoding constraint.

Given a minterm in the input part, (i; p), the parent n is uniquely determined byM(i; p; n).
By definition, each conjunctn0 corresponds to a next state tag of a GPI containing that input minterm.

Thus the set of encoding constraints can be computed as:encoding constraints(i; p; n; n0) =M(i; p; n) � 9i0; p0 [G(i0; p0; n0) � (i � i0) � (p � p0)]:
These constraints can be further simplified as illustrated by the following example:a = a + abc. First, we know that the set fag is contained in the set fabcg and thus the latter

conjunct is redundant in the right hand-side. Such redundancies can be removed by theMinimaln0
operator [66]. The constraint is then simplified to a = a which is trivially satisfiable. Then the

trivial constraints can be taken away by the term (n 6= n0):constraints(i; p; n; n0) =Minimaln0(encoding constraints(i; p; n; n0)) � (n 6= n0):
Free Initial Dichotomies from Face Embedding Constraints

Face embedding constraints are state sets of present state literals in the selected GPI’s,

and can be derived by the following expression: 9i0; n0 [G(i0; p0; n0)]. To generate the free initial

dichotomy originated from a face embedding constraint, we choose (arbitrarily) the left block, x,

of the free initial dichotomy to represent the present state literal of a GPI, and the right block, y, to

represent a single state (i.e., Tuple1(y) is true) not present in the literal (i.e., (y 6� x)). Thus the set

of free initial dichotomies originated from face embedding constraints can be computed by:FIDface(x; y) = 9p0 f9i0; n0 [G(i0; p0; n0)] � (x = p0)g � Tuple1(y) � (y 6� x)
2The relation between encoding constraints and input minterms is, in general, a one-to-many function.

290 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

procedure implicit encodeability(G;G0 ;M) fencoding constraints(i; p; n; n0) = M(i; p; n) � 9i0; p0 [G(i0; p0; n0) � (i � i0) � (p � p0)]constraints(i; p; n; n0) = Minimaln0(encoding constraints(i; p; n; n0)) � (n 6= n0)FIDface(x; y) = 9i0; n0 [G(i0 ; x; n0)] � Tuple1(y) � (y 6� x)� Tuple1(x) � Tuple1(y)FIDunique(x; y) = Tuple1(x) � Tuple1(y) � (x � y)� 6 9x0; y0 fFIDface(x0; y0) � [(x 2 x0) � (y 2 y0) + (x 2 y0) � (y 2 x0)]gFID(x; y) = FIDface(x; y) + FIDunique(x; y)ID(l; r; x; y) = FID(x; y) � [(l = x) � (r = y) + (l = y) � (r = x)]left rule(l0; r0; l; r; i; p) = (r = r0) � 9n f9n0 constraints(i; p; n; n0)(n [l0 = l) � (n \ l0 = ;)� 8n0 [constraints(i; p; n; n0)) (n0 \ l0 6= ;)]gright rule(l0; r0; l; r; i; p) = (l = l0) � 9n0 f(n0 [r0 = r) � (n0 \ r0 6= n0) � 9n [(n � r0) � constraints(i; p; n; n0)�(n0 \ l = ;) � 8n00 [((n00 6= n0) � constraints(i; p; n; n00))) (n00 \ l 6= ;)]]grules(l0 ; r0 ; l; r; i; p) = left rule(l0 ; r0 ; l; r; i; p) + right rule(l0; r0; l; r; i; p)invalid(l; r) = (l\ r 6= ;)maximally raised(l0 ; r0) =6 9l; r; i; p rules(l0; r0; i; p; l; r)
/* traverse raising graphs */Dvalid(l; r; x; y) = raising graphs(ID(l; r; x; y); rules(l0 ; r0; l; r; i; p); invalid(l; r; x; y))
/* prune satisfied raising graphs */unsat FID(x; y) = FID(x; y)� 6 9l; r [Dvalid(l; r; x; y) �maximally raised(l; r)]Dvalid(l; r; x; y) = Dvalid(l; r; x; y) � unsat FID(x; y)
/* compute set of min updating sets */updating sets(l; r; i; p; x; y) = 9l0; r0 [Dvalid(l; r; x; y) � rules(l; r; l0; r0; i; p)]min updating sets(l; r; i; p; x; y) = Set Minimali;p(updating sets(l; r; i; p; x; y))
/* select branch column */min outdeg node(l; r; x; y) = Multi Lmin(min updating sets(l; r; i; p; x; y); (i; p); (x; y))min outdeg edges(l; r; i; p; x; y) = min outdeg node(l; r; x; y) �min updating sets(l; r; i; p; x; y)T1(i; p; x; y; i0; p0; n0) = 9l; r [min outdeg edges(l; r; i; p; x; y) � (n0 \ l = ;)] �G0(i0; p0; n0) � (i0 � i) � (p0 � p)GPI selected(i0 ; p0; n0) = Lmax(T1; (i; p; x; y))
/* compute lower bound */T2(x; y; i0; p0; n0) = 9i; p f9l; r [min updating sets(l; r; i; p; x; y) � (n0 \ l = ;)] �G0(i0; p0; n0) � (i0 � i) � (p0 � p)glower bound = Max Indep Set(T2; (x; y); (i0; p0; n0))
return (unsat FID;GPI selected; lower bound)g

Figure 11.2: Implicit encodeability computations

11.3. IMPLICIT SELECTION OF GPI’S 291= 9i0; n0 [G(i0; x; n0)] � Tuple1(y) � (y 6� x):
Free Initial Dichotomies from Uniqueness Constraints

Uniqueness constraints generate initial dichotomies with a singleton state in the x and y
blocks (i.e., Tuple1(x) �Tuple1(y) is true). We need to generate an initial dichotomy (x; y) if statesx and y are not already distinguished by any free initial dichotomy resulting from face embedding

constraints. This condition is expressed by: 6 9x0; y0 fFIDface(x0; y0) � [(x 2 x0) � (y 2 y0) + (x 2y0) � (y 2 x0)]g.

The previous relation generates the set of fixed initial dichotomies related to uniqueness

constraints. However for subsequent computations, we need also the set of free initial dichotomies.

So we must pick one dichotomy out of each complementary pair of fixed initial dichotomies, and this

can be done systematically by the clause (x � y). Here we exploit the fact that any positional-set

can be represented as a binary number, and we only pick an initial dichotomy (x; y) to be a free

initial dichotomy if the binary representation of x is greater than that of y. In summary, the set of

free initial dichotomies originated from uniqueness constraints can be computed by:FIDunique(x; y) = Tuple1(x) � Tuple1(y) � (x � y)� 6 9x0; y0 fFIDface(x0; y0) � [(x 2 x0) � (y 2 y0) + (x 2 y0) � (y 2 x0)]g:
Now we combine these two sets to form the set of free initial dichotomies as follows:FID(x; y) = FIDface(x; y) + FIDunique(x; y):
Initial Dichotomies

Each free initial dichotomy (x; y) in FID corresponds to two fixed dichotomies (x; y),(y; x) 2 ID. They can be computed as follows:ID(l; r) = 9x; y fFID(x; y) � [(l = x) � (r = y) + (l = y) � (r = x)]g= FID(l; r) + FID(r; l):
In the algorithm shown in Figure 11.2, each dichotomy (l; r) is actually annotated by the

free initial dichotomy (x; y) from which it is originally derived or raised. A raising graph is a rooted

connected graph. The (x; y) label is useful to distinguish dichotomies in different raising graphs.

In other words, the same dichotomy (i.e., same left and right blocks) can be reached starting from

292 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

different free initial dichotomies, but the reached dichotomies are treated as different. As a result,

raising graphs will not overlap. To obtain the annotated ID(l; r; x; y), the existential quantification

over x and y is omitted from the ID computation in Figure 11.2.

Raising Graphs and Implicit Tools for their Traversal

The problem of branch column selection and lower bound computation requires the

exploration of different raising actions. The process of raising can be modeled by a forest of

raising graphs. Each raising graph has a free initial dichotomy as its root. Its intermediate nodes

are non-maximally raised valid dichotomies, while its leaves are either all invalid dichotomies

or all maximally raised valid dichotomies. The properties of the leaves have been proved in

Section 9.1.1 and will be exploited by our algorithm. The outgoing edges from a dichotomy are

labeled by encoding constraints which are applicable to that dichotomy. The edges point to their

corresponding raised dichotomies.

The advantage of casting the problem to one of graph traversal is that efficient implicit

graph traversal techniques can be employed. As a result, we can perform all the following compu-

tations in a single implicit iterative step:

1. manipulate all separate raising graphs simultaneously,

2. for each raising graph, operate on all leaf-dichotomies in it simultaneously,

3. for each raising graph and each leaf-dichotomy in it, test applicability of all encoding con-

straints and obtain all raised dichotomies simultaneously.

As mentioned before, each node of a raising graph is labeled by a dichotomy (possibly an

invalid or a maximally raised valid one). Each edge is labeled by an applicable encoding constraint.

Thus each edge can be expressed by a 6-tuple (l0; r0; i; p; l; r)which is labeled by the input minterm(i; p), originates from the dichotomy (l0; r0) and is raised (or pointed) to the dichotomy (l; r).
Pictorially, we have (l0; r0) (i;p)�! (l; r).3 The set of possible raising edges is represented by the setrules(l0; r0; i; p; l; r), which represents the rules that raise dichotomies. The set rules consists of

the sets left rule and right rule:rules(l0; r0; l; r; i; p) = left rule(l0; r0; l; r; i; p)+ right rule(l0; r0; l; r; i; p):
3Note that a single encoding constraint can be associated to more than one input minterm. Such a case is correctly

modelled by multiple edges between nodes (l0; r0) and (l; r).

11.3. IMPLICIT SELECTION OF GPI’S 293

A left rule does not modify the right block, but adds a state n originally absent from the

left block l0, (n\ l0 = ;), to form a new left block l, (n[l0 = l). Thus the raising rules here cannot

be applied vacuously (because each rule must add at least one state to one block). In addition, the

raising conditions as described in Section 9.1.1 require that at least one child of each conjunct is in

the left block: 8n0 [constraints(i; p; n; n0)) (n0 \ l0 6= ;)]:
The left rule is computed by:left rule(l0; r0; l; r; i; p) = (r = r0) � 9n f(n[l0 = l) � (n \ l0 = ;)� 8n0 [constraints(i; p; n; n0)) (n0 \ l0 6= ;)]:
The right rule is similarly computed by:right rule(l0; r0; l; r; i; p) = (l = l0) � 9n0 f(n0 [r0 = r) � (n0 \ r0 6= n0)�9n [(n � r0) � constraints(i; p; n; n0) � (n0 \ l = ;)� 8n00 [((n00 6= n0) � constraints(i; p; n; n00))) (n00 \ l 6= ;)]]g:
The above computations are not specific to a particular set of dichotomies and thus they can be

computed once and for all before the iterative loop.

To test for termination, one checks if a dichotomy is invalid or not. As compared with the

explicit algorithm in [116], raising is stopped once an invalid dichotomy is detected by a simpler

way of testing invalidity. A dichotomy (l; r) defined to be invalid if an element is common to both

its left and right blocks (l \ r 6= ;):invalid(l; r) = (l \ r 6= ;):
A valid dichotomy has been maximally raised if no encoding constraint in rules can be

applied to it. The maximality of a dichotomy (l0; r0) is tested as follows:maximally raised(l0; r0) =6 9l; r; i; p rules(l0; r0; i; p; l; r):
Raising by Implicit Graph Traversal

The raising graphs are traversed in an iterative manner. The goal is to collect the reached

dichotomies into two sets: Dvalid representing the set of valid (partially or maximally) raised

dichotomies and Dinvalid denoting the set of invalid dichotomies. A free initial dichotomy is

294 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

unsatisfied if the raising subgraphs4 rooted at both of its fixed initial dichotomies have all their

leaves in Dinvalid. In this case, one wants the GPI that, once added, improves more satisfiability.

On the other hand, if any leaf of a raising subgraph is valid and maximally raised, one concludes

by Theorem 9.1.2 that the free initial dichotomy is satisfiable. In this case, the whole raising graph

should be ignored during the computation of a branching column and lower bound.

We start with the set of fixed initial dichotomies (D0 = ID). At the k-th iteration, a

current set of dichotomiesDk(l0; r0) is raised with respect to all applicable rules to give a new set

of raised dichotomiesDk+1(l; r). The current set of dichotomies is transformed as follows:Dk+1(l; r; x; y) = 9l0; r0; i; p [Dk(l0; r0; x; y) � rules(l0; r0; l; r; i; p)]:
Invalid dichotomies obtained above are then detected and added to the set Dinvalid, and they are

removed from the set Dk+1. This remaining set Dk+1 is added to the set of valid dichotomiesDvalid. These updatings are performed by the following computations:Dinvalid(l; r; x; y) = Dinvalid(l; r; x; y)+Dk+1(l; r; x; y) � invalid(l; r)Dk+1(l; r; x; y) = Dk+1(l; r; x; y) � :invalid(l; r)Dvalid(l; r; x; y) = Dvalid(l; r; x; y)+Dk+1(l; r; x; y):
The value of k is incremented, and the next iteration is applied again if Dk 6= ;. Note that if all

dichotomies inDk(l0; r0) have been maximally raised, no rules will be applicable to any (l0; r0) in it,

and therefore Dk+1(l; r) becomes empty after the k-th iteration. Also if all dichotomiesDk+1(l; r)
become invalid, the above computations will leaveDk+1 empty. The iteration will terminate in both

cases. A procedure to compute the raising graphs is shown in Fig. 11.3.

Pruning Satisfied Free Initial Dichotomies and their Raising Graphs

As discussed in Section 9.1.1, a free initial dichotomy is satisfied iff it can be maximally

raised to a valid dichotomy. In other words, a free initial dichotomy (x; y) is unsatisfied if it cannot

be raised to a dichotomy (l; r) that is both valid (i.e., Dvalid(l; r; x; y)) and maximally-raised (i.e.,maximally raised(l; r)). The set of unsatisfied free initial dichotomies can be computed by:unsat FID(x; y) =6 9l; r [Dvalid(l; r; x; y) �maximally raised(l; r)]:
4The root of a raising graph is a free initial dichotomy in FID(x;y), and has two children which are fixed initial

dichotomies in ID(l; r; x; y). In the sequel, the term raising subgraphs will be used to refer to the subgraphs rooted at
those fixed initial dichotomies.

11.3. IMPLICIT SELECTION OF GPI’S 295

procedure raising graphs(ID; rules; invalid) fk = 0; Dk(l; r; x; y) = Dvalid(l; r; x; y) = ID(l; r; x; y); Dinvalid(l; r; x; y) = ;
do fDk+1(l; r; x; y) = 9l0; r0; i; p [Dk(l0; r0; x; y) � rules(l0; r0; l; r; i; p)]Dinvalid(l; r; x; y) = Dinvalid(l; r; x; y) +Dk+1(l; r; x; y) � invalid(l; r)Dk+1(l; r; x; y) = Dk+1(l; r; x; y) � :invalid(l; r)Dvalid(l; r; x; y) = Dvalid(l; r; x; y) +Dk+1(l; r; x; y)k = k + 1g until (Dk(l; r; x; y) = ;)
return (D valid)g

Figure 11.3: Implicit encodeability computations

Once a free initial dichotomy is satisfied, it will remain satisfied even if we add more

GPI’s to our selection. As a result, there is no reason to traverse the raising graph rooted at each

satisfied free initial dichotomy again. To ignore these satisfied raising graphs when computing

updating sets in the next section, the dichotomies annotated with (x; y) 62 unsat FID are taken

away from the set Dvalid:Dvalid(l; r; x; y) = Dvalid(l; r; x; y) � unsat FID(x; y):
Computing the Set of Minimal Updating Sets

If a free initial dichotomy is removed, we find and update a set of encoding constraints

responsible of removing the dichotomy. Such a set of encoding constraints is called an updating

set, and it is associated with a particular free initial dichotomy (x; y) (and the raising graph rooted

there). As mentioned in Section 9.1.3, each updating set corresponds to a dichotomy node (l; r) in the

raising graph, and the updating encoding constraints correspond to the labels of the outgoing edges

of that node. We represent the set of updating sets by the relation updating sets(l; r; i; p; x; y): an

encoding constraint denoted by input minterm (i; p) is in an updating set associated with dichotomy(l; r) within the raising graph rooted at (x; y) iff the 6-tuple (l; r; i; p; x; y) is in the updating sets
relation. The (l; r) label is kept because it will be used later. The set of all updating sets can be

obtained implicitly as shown below, by considering all annotated valid dichotomies and identifying

296 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

all applicable encoding constraints (via rules) from each of these valid dichotomies:updating sets(l; r; i; p; x; y) = 9l0; r0 [Dvalid(l; r; x; y) � rules(l; r; l0; r0; i; p)]:
In the subsequent computations,only a subset of minimalupdating sets, calledmin updating sets,
matters. An updating set is in min updating sets if no encoding constraint can be removed from

it, while the set still remains an updating set. The set of all minimal updating sets can be computed

by identifying nodes (l; r)whose sets of outgoing edge labels (i; p) are not subsets of other updating

sets: min updating sets(l; r; i; p; x; y) = Set Minimali;p(updating sets(l; r; i; p; x; y)):
Branching Column Selection

As the existing selection of GPI’s does not satisfy all free initial dichotomies (ifunsat FID6= ;), at least one more GPI must be selected. The objective of GPI (branching column) selection

is to maximally improve the overall satisfiability of the unsatisfied free initial dichotomies. The

addition of a GPI will update a number of encoding constraints, and therefore will improve (or at

least not worsen) the satisfiability of unsat FID. To select such a GPI optimally, we must use the

set of all updating sets of encoding constraints (updating set) to construct a full satisfiability table.

Here heuristically, we build a simplified partial satisfiability table 5 instead.

For each unsatisfied free initial dichotomy (x; y), we find an updating set with the mini-

mum number of encoding constraints, i.e., a minimum cardinality updating set. Because any GPI

selection that updates these constraints may satisfy the given free initial dichotomy, one hopes that

by updating constraints in a minimum cardinality updating set, a small number of GPI’s will suffice

to find an encodeable cover. A minimum cardinality updating set corresponds to the minimum

out-degree node in the raising graph.

The minimum out-degree node (l; r; x; y) in the raising graph rooted at (x; y) can be

extracted by the Multi Lmin operator on the set of minimal updating sets:min outdeg node(l; r; x; y) =Multi Lmin(min updating sets(l; r; i; p; x; y); (i; p); (x; y)):
The edges (i; p) associated with each minimum cardinality updating set are obtained by:min outdeg edges(l; r; i; p; x; y) = min outdeg node(l; r; x; y)�min updating sets(l; r; i; p; x; y):

5With respect to the partial satisfiability table presented in Section 9.1.4, this table is simplified, because each updating
clause has exactly one literal, and not two.

11.3. IMPLICIT SELECTION OF GPI’S 297

The columns of the simplified partial satisfiability table, T1, are labeled by the unselected

GPI’s G0(i0; p0; n0). The rows of table T1 are divided into sections corresponding to different un-

satisfied free initial dichotomies. Thus a part of the row label is (x; y) to distinguish the sections.

Within a section, a row is also labeled by (i; p) corresponding to an encoding constraint in the min-

imum cardinality updating set (i.e., (i; p) 2 min outdeg edges). A table entry (i; p; x; y; i0; p0; n0)
is a 1-entry iff the input part of the GPI covers the input minterm of the encoding constraint (i.e.,(i0 � i) � (p0 � p)) and no child of the conjunct n0 is in the left block, (n0 \ l = ;). The implicit

table is obtained by the following computation:T1(i; p; x; y; i0; p0; n0) = 9l; r [min outdeg edges(l; r; i; p; x; y) � (n0 \ l = ;)]�G0(i0; p0; n0) � (i0 � i) � (p0 � p):
To select a GPI to improve the overall satisfiability of unsat FID, we select a column in table T1

that contains the maximum number of 1’s. The Lmax operator is used to pick such a column as

follows: GPI selected(i0; p0; n0) = Lmax(T1; (i; p; x; y)):
Lower Bound Computation

For reasons described in Section 9.1.5, we cannot use the simplified partial satisfiability

table T1 for lower bound computation. Instead, we construct the support satisfiability table, T2.

We still start with the set of minimal updating sets. The rows are now labeled only by (x; y) 2unsat FID. Each row represents an or clause of the encoding constraints in allmin updating sets
associated with (x; y). The 1-entries in table T2 are obtained as those in T1, except that here all

edges in the support are used instead of only those inmin outdeg edges, and the whole right-hand

expression is existentially quantified by i; p because each clause represents an or of all encoding

constraints in the support. Table T2 is computed as follows:T2(x; y; i0; p0; n0) = 9i; p f9l; r [min updating sets(l; r; i; p; x; y) � (n0 \ l = ;)]�G0(i0; p0; n0) � (i0 � i) � (p0 � p)g:
A lower bound on the number of additional GPI’s to make the problem satisfiable

can be found by computing the maximal independent set of rows in table T2, by means of theMax Indep Set operator [66] as follows:lower bound =Max Indep Set(T2; (x; y); (i0; p0; n0)):

298 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

procedure codes implicit gpi selection(Dvalid;maximally raised; F ID) f
/* find valid maximally raised dichotomies */Dstart(l; r) = 9x; yDvalid(l; r; x; y) �maximally raised(l; r)
/* complete valid maximally raised dichotomies */Dcomplete(l; r) = 9l0; r0fDstart(l0; r0)(l � l0)(r � r0)(l � r = ;) 6 9x[Tuple1(x)(l 6� x)(r 6� x)]g
/* remove invalid dichotomies */Dvalid(l; r) = Dcomplete(l; r)� 9l0r0ip[rules(l; r; l0; r0; i; p) � invalid(l0; r0)]
/* select a minimum set of valid complete dichotomies that cover the FID’s */Dcolumns(l; r) = unate encoding(Dvalid; F ID)g

Figure 11.4: Computation of codes satisfying a selection of GPI’s

11.3.3 Implicit Encoding of an Encodeable Set of GPI’s

In this section we describe the generation of codes that satisfy an encodeable set of GPI’s.

The cost function is the number of encoding bits. The problem is to generate valid complete

dichotomies and then set up and solve a unate covering problem.

Figure 11.4 shows an exact implicit algorithm to find codes of minimum length that

satisfy a given set of encoding constraints (in this case already known to be encodeable), based on

the notion of completion of a dichotomy. The algorithm computes the completion Dcomplete(l; r)
of the set Dstart(l; r) of valid maximally raised dichotomies. Then it removes from Dcomplete(l; r)
the invalid dichotomies, i.e., the dichotomies that could be raised again. Since the dichotomies

in Dcomplete(l; r) are complete, if raising is still possible, it must introduce some invalidity. By

Theorem 9.1.3 this procedure finds a minimum set of encoding columns.

The last step solves a table covering problem. The rows of the table are the free initial

dichotomies and the columns are the valid complete dichotomies. If a valid complete dichotomy

covers one of the two initial encoding dichotomies associated to a free initial dichotomy (itself and

the one with the two blocks exchanged) 6, then there is a 1 at the intersection of the valid complete

dichotomy and the free initial dichotomy. The table is unate, i.e. either an entry is 1 or it is empty.

The implicit general binate solver previously mentioned is used here.

The general binate solver requires the sets of columns and rows and a rule to compute a

6In other words, the left and right blocks of the free initial dichotomy are subsets respectively either of the left and
right blocks, or of the right and left blocks of the valid complete dichotomy.

11.4. A WORKED EXAMPLE 299

table entry. In this case they are:

1. Columns are C(q) = Dvalid(l; r), where q = l; r.

2. Rows are R(d) = Ru(d) = FID(x; y), where d = x; y.

3. The table entry at the intersection of the column labelled by (l; r) 2 C and of the row labelled

by (x; y) 2 R is 1 iff l � x; r � y or l � y; r � x.

4. The table entry at the intersection of the column labelled by (l; r) 2 C and of the row labelled

by (x; y) 2 R is never 0.

As a result a set of valid complete dichotomiesDcolumns(l; r) is selected. The columns inDcolumns
are a minimum cover of all the rows.

11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI’s

Fig. 11.5 shows a detailed description of an approximate implicit algorithm to find a

selection of GPI’s that is a cover of the original FSM and that is encodeable. A simplified view

of the algorithm was already shown in Fig. 8.8 and related issues commented. The computations

introduced in Section 11.3.2 are used to check encodeability and select a branching column. One

minor efficiency improvement is the addition of a set acc sat FID(x; y) to accumulate the free

initial dichotomies (x; y) already shown to be satisfied, because by Theorem 9.1.1, they will stay

satisfied when adding more GPI’s to the solution. Notice also that a FID (x; y) already verified

could be generated again by a newly selected GPI. So when we recompute the FID’s generated by

the augmented set of GPI’s, we check that none of them has been found satisfiable already. To

update the set acc sat FID(x; y), at each iteration one adds to it sat FID(x; y), the set of the

FID’s (x; y) found satisfied in the current iteration. There are various efficiency issues regarding

partially duplicated computations in the while loop. We consider them an implementative detail,

not to be discussed here. An implementation of this implicit approximate algorithm will be reported

next.

11.4 A Worked Example

We show the main steps of the algorithm presented in 11.3.4 on the FSM leoncino. The

first call to the implicit binate solver returns the following cover of GPI’s 7:
7The numbers within () identify them in the lists of GPI’s and covering tables given in Section 8.1.

300 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

procedure approx implicit gpi selection(P;M) fG(i0; p0; n0; o0) = unate encoding(P;M);G0(i0; p0; n0 ; o0) = P (i0; p0; n0; o0)�G(i0; p0; n0; o0); unsat FID(x; y) = 1; acc sat FID(x; y) = ;
while (unsat FID(x; y) 6= ;) fFIDface(x; y) = 9i0; n0 [G(i0 ; x; n0)] � Tuple1(y) � (y 6� x)� Tuple1(x) � Tuple1(y)FIDunique(x; y) = Tuple1(x) � Tuple1(y) � (x � y)� 6 9x0; y0 fFIDface(x0; y0) � [(x � x0) � (y � y0) + (x � y0) � (y � x0)]gFID(x; y) = FIDface(x; y) + FIDunique(x; y); FID(x; y) = FID(x; y)� acc sat FID(x; y)ID(l; r; x; y) = FID(x; y) � [(l = x) � (r = y) + (l = y) � (r = x)]encoding constraints(i; p; n; n0) = Mn(i; p; n) � 9i0; p0 [G(i0; p0; n0) � (i � i0) � (p � p0)]constraints(i; p; n; n0) = Minimaln0(encoding constraints(i; p; n; n0)) � (n 6= n0)left rule(l0; r0; l; r; i; p) = (r = r0) � 9n f9n0 constraints(i; p; n; n0)(n [l0 = l) � (n \ l0 = ;)� 8n0 [constraints(i; p; n; n0)) (n0 \ l0 6= ;)]gright rule(l0; r0; l; r; i; p) = (l = l0) � 9n0 f(n0 [r0 = r) � (n0 \ r0 6= n0) � 9n [(n � r0) � constraints(i; p; n; n0)�(n0 \ l = ;) � 8n00 [((n00 6= n0) � constraints(i; p; n; n00))) (n00 \ l 6= ;)]]grules(l0 ; r0 ; l; r; i; p) = left rule(l0 ; r0 ; l; r; i; p) + right rule(l0; r0; l; r; i; p)invalid(l; r) = (l\ r 6= ;); maximally raised(l0; r0) =6 9l; r; i; p rules(l0; r0; i; p; l; r)

/* traverse raising graphs */Dvalid(l; r; x; y) = raising graphs(ID(l; r; x; y); rules(l0 ; r0; l; r; i; p); invalid(l; r; x; y))
/* prune satisfied raising graphs */unsat FID(x; y) = FID(x; y)� 6 9l; r [Dvalid(l; r; x; y) �maximally raised(l; r)]sat FID(x; y) = FID(x; y)� unsat FID(x; y); acc sat FID(x; y) = acc sat FID(x; y) + sat FID(x; y)Dunsat valid(l; r; x; y) = Dvalid(l; r; x; y) � unsat FID(x; y)
/* compute set of min updating sets and select branching column */updating sets(l; r; i; p; x; y) = 9l0; r0 [Dunsat valid(l; r; x; y) � rules(l; r; l0; r0; i; p)]min updating sets(l; r; i; p; x; y) = Set Minimali;p(updating sets(l; r; i; p; x; y))min outdeg node(l; r; x; y) = Multi Lmin(min updating sets(l; r; i; p; x; y); (i; p); (x; y))min outdeg edges(l; r; i; p; x; y) = min outdeg node(l; r; x; y) �min updating sets(l; r; i; p; x; y)T1(i; p; x; y; i0; p0; n0) = 9l; r [min outdeg edges(l; r; i; p; x; y) � (n0 \ l = ;)] �G0(i0; p0; n0) � (i0 � i) � (p0 � p)GPI selected(i0 ; p0; n0) = Lmax(T1; (i; p; x; y))G(i0; p0; n0) = G(i0 ; p0; n0) +GPI selected(i0 ; p0; n0); G0(i0; p0; n0) = G0(i0; p0; n0)� GPI selected(i0 ; p0; n0)g

return(P (i0; p0n0; o0) �G(i0; p0; n0))g
Figure 11.5: Approximate implicit selection of GPI’s - Detailed view

11.4. A WORKED EXAMPLE 301

1� 00100111 (3), 0111101011 (5), �111011000 (24), �010010001 (6), �001101110 (17).
The next-state constraints are:m2 st0 = st0m4 st0 = st0m5 st0 = st0:st1m6 st1 = st1 + st0:st1m8 st1 = st1:st2m10 st1 = st1 + st0:st1m11 st0 = st0:st1m13 st2 = st1:st2m16 st2 = st2 + st1:st2m19 st2 = st2m21 st1 = st1:st2
Trivial next-state constraints are m5; m8; m11; m13; m21.

The non-trivial face constraints are (st0; st1) and (st1; st2). The free initial dichotomies

are (st0; st1; st2) and (st1; st2; st0). The initial dichotomies are (st0; st1; st2), (st2; st0; st1),(st1; st2; st0) and (st0; st1; st2).
There are two raising graphs, one rooted at (st0; st1; st2) and the other rooted at(st1; st2; st0). The edges of the raising graph rooted at (st0; st1; st2) are:(st0; st1; st2) �! (st0; st1; st2),(st0; st1; st2) �! (st2; st0; st1),(st0; st1; st2) m13�! (st2; st0; st1; st2),(st2; st0; st1) m8�! (st1; st2; st0; st1),(st2; st0; st1) m21�! (st1; st2; st0; st1).

All maximally raised dichotomies (sinks of the graph), i.e., the nodes (st2; st0; st1; st2) and(st1; st2; st0; st1), are invalid, so the FID (st0; st1; st2) is violated.

The edges of the raising graph rooted at (st1; st2; st0) are:(st1; st2; st0) �! (st1; st2; st0),(st1; st2; st0) �! (st0; st1; st2),(st1; st2; st0) m5�! (st0; st1; st2; st0),(st1; st2; st0) m11�! (st0; st1; st2; st0).
While sink (st0; st1; st2; st0) is invalid, sink (st0; st1; st2) is valid, so the FID (st1; st2; st0) is

not violated. In this example, all raising actions happen to be due to the left rule.

302 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

Since the FID (st0; st1; st2) is violated, the given selection of GPI’s is not encode-

able. A new GPI is added to it, returned by Lmax: 1001100110 (16). The non-trivial next-

state constraints are the same as before, except the one corresponding to m13 that is updated tom13 st2 = st1:st2 + st2 becoming a trivial next-state constraint. If we repeat the pro-

cess of building the raising graphs, we obtain the same graphs as before except that the edge(st0; st1; st2) m13�! (st2; st0; st1; st2) will be missing, because m13 cannot force anymore raisings.

Therefore also the FID (st0; st1; st2) is not anymore violated, because it has a valid sink, i.e.,(st0; st1; st2). So an encodeable cover of 6 GPI’s has been obtained.

11.5 Verification of Correctness

After obtaining an encodeable cover of GPI’s and codes that satisfy the constraints, one

replaces the codes in the GPI cover and minimizes it to get a minimized encoded GPI cover,Fmin gpi. It is useful also to replace the codes in the original FSM cover and then to minimize it,

getting Fmin fsm. Since the don’t care set can be used differently, the two minimized covers may

differ and the smallest one is picked.

It is also important to verify that the minimized encoded GPI cover, Fmin gpi, is still a

cover of the onset of the original FSM. This can be achieved by checking that Fmin gpi is contained

in the union of the onset and dcset of the encoded (not minimized!) FSM cover and that the onset

of the encoded (not minimized!) FSM cover is contained in the union of Fmin gpi and the dcset of

the encoded FSM cover. If this check is routinely successful one is confident that the algorithm has

been implemented correctly. This check is always performed at the end of our program.

Figure 11.6 shows the operations to encode and verify the correctness. F;D andR denote

respectively onset, dcset and offset.

We demonstrate the procedure on the example previously utilized to explain the algorithm.

The set of selected GPI’s, G, is:

1- 001 001 11
10 011 001 10
01 111 010 11
-1 110 110 00
-0 100 100 01
-0 011 011 10

The codes are: enc(st0) = 00, enc(st1) = 10, enc(st2) = 11. By encoding the GPI cover, one

obtains the covers Fgpi and Rgpi:

11.5. VERIFICATION OF CORRECTNESS 303

procedure code and verify(G;Dcolumns; FSM) f
/* encode the GPI cover */Fgpi = encode gpi(G;Dcolumns; FSM)
/* minimize encoded GPI cover */Dgpi = ;(cover)Rgpi = complement(Fgpi)Fmin gpi = espresso(Fgpi ; Dgpi; Rgpi)
/* encode the FSM cover */(Ffsm; Rfsm) = encode fsm(Dcolumns ; FSM)Dfsm = complement(Ffsm [Rfsm)
/* verify correctness */

if (Fmin gpi � Ffsm [Dfsm and Ffsm � Fmin gpi [Dfsm) f
/* minimize encoded FSM cover */Fmin fsm = espresso(Ffsm ; Dfsm; Rfsm)
return(Fmin gpi; Fmin fsm)g else return("error")g

Figure 11.6: Computation of minimized encoded covers and correctness check

304 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

1-11 1111 -00- 1110
101- 1110 0--- 0100
01-- 1011 11-0 1111
-1-0 0000 1-0- 1100
-000 0001 -001 1111
-01- 1010 001- 0001

-010 0001
110- 1111

The minimized encoded GPI cover, Fmin gpi, is:

-000 0001
101- 0100
01-- 1011
-01- 1010
1-11 1111

By encoding the FSM cover, one obtains the covers Ffsm, Rfsm and Dfsm:

-000 0001 -000 1110 --01 1111
0100 1000 1100 1111 01-1 1111
0-10 1010 0100 0100 010- 0011
1010 1110 0-10 0100 0-10 0001
1-11 1111 1110 1110 -110 0001
0011 1010 1010 0001

0011 0101

The minimized encoded FSM cover, Fmin fsm, is:

101- 0100
-00- 0001
01-- 1010
-01- 1010
1--1 1111

11.6 Implementation Issues

11.6.1 Order of BDD Variables

The ordering of the BDD variables is one of the most excruciating problems encountered
while implementing BDD-based computations. Four arrays of variables are needed: A0; A1; A2; A3,
where in turn each array is composed of five subarrays of variables: I; P;N;M;O. I is an array
of input variables, P;N , and M are each an array of state variables and O is an array of output
variables. Consider an example with 1 input, 1 output and 3 states; A0 will consist of:

11.6. IMPLEMENTATION ISSUES 305

i p1 p2 p3 n1 n2 n3 m1 m2 m3 o
I P N M O

In the computation of prime compatibles only arraysA0 andA1 are used. In the solution of

the first covering table all four of them are used. It is imperative that the variables inA0; A1; A2; A3

be interleaved, in order to have linear-sized BDD representations of various key intermediate

computations both when computing the primes and solving the first covering table.
We show a compatible order for two arrays of variables A0 and A1. Unprimed variables

are those in A0 and primed (0) are those in A1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i i’ p1 p1’ p2 p2’ p3 p3’ n1 n1’ n2 n2’ n3 n3’ m1 m1’ m2 m2’ m3 m3’
20 21
o o’

Notice that within each array of the type A there is freedom of ordering the variables inI; P;N;M;O. We refer to this ordering as single interleaving. When primes are computed, we

keep enabled the dynamic reordering routine available in the CMU BDD package.
But it is also necessary that the variables in the arrays P;N and M are interleaved, in

order to have linear-sized BDD representations of various key intermediate computations in the
encodeability step and when solving the second covering table. We show an order compatible with
both requirements for two arrays of variables A0 and A1. Unprimed variables are those in A0 and
primed (0) are those in A1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i i’ p1 p1’ n1 n1’ m1 m1’ p2 p2’ n2 n2’ m2 m2’ p3 p3’ n3 n3’ m3 m3’
20 21
o o’

This order insures both:

1. interleaving between the variables in A0 and A1; and

2. interleaving between the variables in P;N;M within array A0 and within array A1.

Notice that within each array of the type P or N or M there is freedom of ordering the variables.

There is also freedom in ordering I and O with respect to P;N;M . We refer to this ordering as

double interleaving. Double interleaving is required only for the encodeability computations and

the second covering table. We have implemented two variants of double interleaving. In both cases

one starts with single interleaving, then in the first variant one switches to double interleaving before

invoking the table solver (on the first covering table), while in the second variant one switches to

306 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

double interleaving after invoking the table solver (on the first covering table). Again dynamic

reordering is allowed during the computation of primes. The second variant is to be preferred

because it constrains less the ordering when solving the first covering table, and the experiments

confirm it. The ordering with only single interleaving, instead, is not recommended because it is

often unable to pass successfully through the second covering table solver.

Dynamic reordering has not been applied yet to the computations in the encodeability

step. It will be interesting to find out whether some hard computations in this part can be sped-up

by reordering. One must pay attention to the fact that the computations that use the line count

primitive BDD operator must be carried on with dynamic reordering disabled.

11.6.2 Computation of Set Minimal

In the encodeability step it is necessary to compute the following relation:Set Minimalb(F (a; b)) = F (a; b)� 6 9cf9dF (c; d)�8d [F (c; d)) F (a; d)]�9d [:F (c; d)�F (a; d)]g:
It turns out that this is a difficult operation with BDD’s even when implemented with the

BDD and-smooth operator by rewriting it as:Set Minimalb(F (a; b)) = F (a; b)� 6 9cf9dF (c; d)� 6 9d [F (c; d)�:F (a; d)]�9d [:F (c; d)�F (a; d)]g:
A solution is to approximate the computation using the following logical validities:[9d F (c; d)) 8d F (a; d)]) 8d [F (c; d)) F (a; d)];

and [9d :F (c; d) � 8d F (a; d)]) 9d [:F (c; d) � F (a; d)]:
If we replace in the computation of Set Minimalb(F (a; b)) the right-hand sides with

the left-hand sides of the previous logic validities we obtain a superset of Set Minimalb(F (a; b)),
which is a conservative approximation.

11.6.3 The Filtering Heuristic

After a cover of GPI’s is returned from the first table covering step, more GPI’s are added

one at a time to make it encodeable. An alternative is to add to the cover a set of GPI’s guaranteed to

make it encodeable, find codes that satisfy all of them and then let the final minimization step choose

a minimal cover of encoded GPI’s. The set of GPI’s that we add contains, out of all unselected GPI’s,

11.7. EXPERIMENTS 307

those with full or singleton present state literal or with a present state literal already occurring in a

GPI of the cover. Also the generalized implicants of the original cover are added, to guarantee that

at least one encodeable cover can be found. A motivation of this choice is to avoid the introduction

of GPI’s that add new initial dichotomies, making encodeability temporarily harder to satisfy.

This heuristic is a preliminary attempt in an interesting direction to improve on the present

strategy of adding greedily one more GPI at a time. When this heuristic is active we stop at the

first solution of the second covering table. The reason is that since the encodeability problem is

less constrained one gets more primes dichotomies and therefore the second covering table is not

relatively simple as it is often otherwise. In particular it is an experimental fact that these tables

generate a lot of branching activities not adequately controlled by the bounding mechanism, so

that suboptimal regions of the solution space are explored in depth before being recognized as

suboptimal.

11.7 Experiments

We have implemented a program ISA, an acronym for implicit state assignment, that

computes the set of GPI’s or a subset of them and then implements the procedure for approximate

implicit selection of an encodeable cover of GPI’s described in Section 11.3.4. The program

capitalizes on different existing software technologies. It is built on top of ESPRESSO, to exploit the

logic optimization capabilities of the latter in the two-level domain. Two-level logic optimization

capabilities are needed at the beginning to do pre-processing (reading a symbolic FSM cover,

building its onset, don’t care set and offset, computing a cover of the companion function), and at

the end to do post-processing (replacing the codes in the encodeable set of GPI’s and in the original

FSM cover and minimizing them - with an appropriate don’t care set - to measure the quality of the

final result). The program ISA computes the primes of the companion function (from which GPI’s

are obtained after a reduction process) using routines kindly provided by G.M.Swamy from her

two-level logic minimizer [53]. Then ISA selects a cover of GPI’s calling the implicit table solver

described in [66]. As a next step, we have implemented the computations shown in Figure 11.5 to

obtain a minimal encodeable cover of GPI’s.

The core computations are based on the representation of the characteristic functions of

relations by means of BDD’s. The program can use both the UCB and the CMU BDD packages

through the BDD interface developed at UCB. All reported experiments have been done linking the

CMU package.

308 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

11.7.1 Analysis of the Experiments

We report here a set of experiments to demonstrate the status of the current implementation,

which is still in a development phase. GPI’s can model an host of encoding problems targetting

two-level implementations. Here we have used FSM’s as a test case, because they exhibit the most

general formulation of encodeability and so they test fully the theory. Other applications can be

handled by simple modifications. All run times are reported in CPU seconds on a DEC DS5900/260

with 440 Mb of memory, unless otherwise stated.

The objective of the current implementation has not been to compete with existing state

assignment programs like NOVA [147] that have been heavily optimized, but to show that implicit

techniques are mature enough to generate and select encodeable sets of GPI’s. While up to now

it has not been practical to manipulate sets of GPI’s because they are very large even for small

symbolic covers, our contribution shows that large sets of GPI’s for non-trivial examples can be

manipulated with implicit techniques. Improvements to the implicit algorithms can extend the

frontier of the problems that can be handled.

An open issue left for future investigations is how to use effectively this capability in order

to do state assignment or other types of encoding. An exact algorithm that explores all possible

subsets of GPI’s to find a minimum encodeable one is hardly practical, so one must introduce

heuristic restrictions in the search of the solution space. We have used the simplest possible strategy

of adding one more GPI at a time (chosen to maximize a cost function measuring the lack of

encodeability of the current cover), and then of stopping at this first solution. In order to produce

an high-quality result (measured by the size of the minimized encoded cover) this greedy strategy

must be replaced by one with a limited amount of backtracking to explore increasingly smaller sets

of encodeable covers of GPI’s. Here it would help the implicit lower bound criterion presented in

Section 11.3.2, currently not used in ISA.

Tables 11.1 and 11.2 report the results of generating GPI’s for FSM’s of the MCNC

benchmark and other examples. We have included FSM’s with up to around 30 states, that is the

size that can be currently handled. We report the number of primes of the companion function

and the number of GPI’s. Comparisons of run times to generate the primes of the companion

function *only* are made with ESPRESSO [11]. Both programs were timed out at 7200 seconds of

CPU time. Notice that we report also the number of variables of the companion function (given

by 2 � i + 3 � p + o, where i; p; o are respectively the number of inputs, states and outputs of the

FSM), because it is a more indicative measure (than the number of states) of the the complexity of

11.7. EXPERIMENTS 309

the computation to generate the GPI’s.

Tables 11.3 and 11.4 report the results of running ISA to select a minimal encodeable cover

of GPI’s. For these experiments ISA has been run with option �m, that computes a subset of the

GPI’s, by applying the minimal transformation, instead of the maximal transformation that gives all

GPI’s (see Section 7.4.4 for a definition of minimal and maximal transformations). The reason is

that smaller tables are generated, to the price of a solution of lesser quality. The tables provide the

following information:� Under the column "table size" we provide the dimensions of the original table and of its cyclic

core, i.e., the dimensions of the table obtained when the first cycle of reductions converges.� "mincov calls" is the number of recursive calls of the implicit table solver.� The column "table sol." is the cardinality of the cover of GPI’s returned by the table solver.� The column "final sol." is the cardinality of the final encodeable cover of GPI’s.� CPU time gives the time for the first call to the table solver under the column "table red.".

Under the column "total" there is the total time of ISA on the example, inclusive of the time

to compute the primes, get a cover of GPI’s by calling the implicit table solver, find an

encodeable cover of GPI’s and get the codes by another call to the implicit table solver. Since

the latter call is usually on a small table, it is lumped with the rest.

Out of the examples in Table 11.3, ISA fails to complete the first table reduction of slave

because of timeout at 18000 seconds, during collapse columns. Ouf of the examples in Table 11.4,

ISA fails to complete some of them, again due to timeout or no more memory in the collapse

column step of the first table reduction. The runs of ex2, maincont, saucier did not complete

because of timeouts during the selection of new GPI’s: the time-consuming operations there are

i set minimum (which can be successfully approximated as seen in Section 11.6.2) and changes of

BDD variables support necessary for the multi lmin computation. Causes of failure are described

more precisely in the tables. The results reported for cse, dk512, keyb were obtained with option -q

(heuristic of Section 11.6.3), and those for ex2, maincont, pkheader with option -k (approximation

to Set Minimal in Section 11.6.2). FSM’s cse, dk512, keyb, ex2, maincont, pkheader, mark1 were

run on a DEC 7000 Model 610 AXP with 1Gb of memory.

Tables 11.5 and 11.6 report the cover size of the encoded and minimized covers produced

by ISA and compare them with the best results of NOVA. The tables provide the following information:

310 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

vars. CPU time (sec)
FSM states compan.fn. primes GPI’s ISA ESPRESSO

bbara 10 40 14760 13518 9 532
bbtas 6 24 252 230 0 0

beecount 7 31 1834 959 4 1
chanstb 4 44 619 571 8 0

cpab 5 49 3509 2841 44 17
dk14 7 32 2850 1228 3 2
dk15 4 23 231 143 0 0
dk17 8 31 2021 1575 2 2
dk27 7 25 377 296 0 0
dol2 5 20 194 170 0 0
es 4 18 101 80 0 0

ex3 10 36 8686 8125 7 181
ex5 9 33 4232 3741 3 20
ex6 8 42 5720 3495 12 26
ex7 10 36 8538 7931 6 147

fstate 8 45 5949 5231 14 23
leoncino 3 15 39 26 0 0

lion 4 17 79 51 0 0
lion9 9 32 2122 1136 3 7
mc 4 23 94 77 0 0

ofsync 4 28 185 155 1 0
opus 10 46 16735 15934 23 329

s8 5 24 326 316 0 0
scud 8 44 43602 30259 74 2026

shiftreg 8 27 764 527 0 0
slave 10 91 273027 228463 147 7135
tav 4 24 81 81 0 0
test 2 10 5 5 0 0

virmach 4 44 257 216 11 0

Table 11.1: GPI’s of small examples from the MCNC benchmark and others.

11.7. EXPERIMENTS 311

CPU time (sec)
FSM states transf. primes GPI’s ISA ESPRESSO

bbsse 16 53 1493485 1399079 136 1286
cf 13 69 2206595 2134887 178 -
cse 16 69 2335927 1832229 109 -

dk512 15 50 98238 91947 11 -
ex1 20 97 149755546 146394042 336 -
ex2 19 63 4640888 4597063 151 -
ex4 14 63 120835 120721 29 -
keyb 19 73 28592198 27327259 212 -

kirkman 16 78 2106843 2106783 252 -
maincont 16 74 1484786 1418800 37 -

mark1 15 71 733697 728799 89 -
master 15 122 269304493 264757774 5630 -

modulo12 12 39 12282 11961 4 5246
pkheader 16 85 229946 229726 823 -

ricks 13 82 120576 119488 80 -
s1 20 82 - - -(a) -
s1a 20 82 693626434 616527717 3902 -

saucier 20 87 111895231 111852040 126 -
tma 20 80 12324742 12118857 3711 -

train11 11 38 6444 4856 11 207
donfile 24 77 150994935 64959680 2348 -
dk16 27 88 1207950375 1179949953 3775 -
pma 24 96 1267371428 1248519820 2671 -
rpss 22 115 1229747382 1226813350 536 -
tr4 22 105 2770731006 2769352444 138 -(a) out of memory

all runs timed out 7200 seconds

Table 11.2: GPI’s of medium examples from the MCNC benchmark and others.

312 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S� The column "FSM cover" gives the cardinality of the original FSM cover.� The column "1-hot cover" gives the cardinality of the FSM cover, after 1-hot encoding and

minimization.� Under "results of ISA", the column "min.gpi" gives the cardinality of the encoded and mini-

mized cover of GPI’s, while the column "min.FSM" gives the cardinality of the encoded and

minimized initial cover. In both cases the codes used are those returned by the second call to

the table solver, which satisfy the encoding constraints. The column "bits" returns the length

of the codes, that is the cardinality of the solution of the second call to the table solver. When

two numbers in the same column are given the second one is the result with the filtering

heuristic, option -q.� Under "results of NOVA", the column "best." gives the cardinality of the smallest cover found

by NOVA, using the options -e ig -r, -e ih -r, -e ioh -r. The length of the codes is in the column

"bits".

It is a fact that NOVA does consistently better both as cardinality of the cover and length of the codes.

It must be pointed out that the results of NOVA are the best out of many runs with different encoding

options (the option -r effectively tries all possible complementations of the codes). In terms of

cover cardinality ISA gets often close to the best of NOVA. The encoding length required by ISA is

instead hard to justify. It is a weakness that should be investigated, if one wants to do high-quality

state assignment using GPI’s. We reiterate that the current version of ISA is addressing the problem

of manipulating GPI’s with implicit techniques. The next step is to search efficiently encodeable

cover of GPI’s for specific applications.

11.7.2 Evaluation of the Experiments

We have presented a complete algorithm to compute implicitly minimal covers of GPI’s.

After the seminal contribution in [39], this is the first in-depth algorithmic study that probes the

feasibility of generating and selecting sets of GPI’s. Since even small symbolic covers generate

large sets of GPI’s, implicit techniques have been used to generate GPI’s, solve table covering

problems and verify encodeability. The implicit procedure to check encodeability is a novelty of

this work, together with the technique to select GPI’s based on minimal updating sets.

A fair conclusion is that GPI’s push to the limit even the most efficient BDD-based

computations. For instance the generation of prime implicants induced by GPI’s is usually harder

11.8. CONCLUSIONS 313

than the generation of primes for the logic functions of the ESPRESSO benchmark. Also the covering

problems faced to select covers of GPI’s and of prime encoding dichotomies, even though they

are unate, are often tougher than those encountered in the ESPRESSO benchmark and in the state

minimization of FSM’s [66], a reason being the larger variable support of the BDD representations

of columns and rows. To be able to solve the examples of the previous tables, the package described

in [66] had to be further optimized and inadequacies still remain to be addressed. The implicit

check of feasibility has not been a bottleneck in experiments tried so far. Instead the selection of

new GPI’s based on minimal updating sets failed sometimes due to explosive intermediate BDD

operations; they have been partly solved by replacing the computation of Set Minimal with a

conservative approximation, but for others there is not yet a satisfactory solution. It is an open

problem how to drive the selection of GPI’s with a more global view, in order to obtain encodeable

covers of cardinality less or equal to the best encoded covers obtained by various tools [147]. This

was not an objective of this work, even though the experience gained here will be very useful to

attack the issue.

The demonstrated techniques exhibit a window of small-medium examples where it is

possible to compute minimal symbolic covers using GPI’s. Further computational optimizations

and improvements to the quality of the search will make it competitive with the best existing tools.

11.8 Conclusions

We have presented a complete procedure to generate and select GPI’s [39] based on

implicit computations. This approach combines techniques for implicit enumeration of primes and

implicit solution of covering tables together with a new formulation of the problem of selecting an

encodeable cover of GPI’s. The proposed algorithms have been implemented using state assignment

of FSM’s as a test case. The experiments exhibit a set of medium FSM’s where large GPI problems

could be solved for the first time, showing that these techniques open a new direction in the

minimization of symbolic logic. Since the problem of symbolic minimization is harder than

two-valued logic minimization, more practical work is required to improve the efficiency of the

implementation and to tie it with good heuristics to explore the solution space of encoding problems.

The present contribution shows how to extract a minimal encodeable cover from a large set of GPI’s,

allowing - in line of principle - the exploration of all minimal encodeable covers. This advances

the state-of-art of symbolic minimization, which up to now has been done with various heuristic

tools [92, 147, 42, 77], often very well-tuned for their domain of application, but lacking a rigorous

314 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

connection beween an exact theory and the approximations made. For instance it is noticeable

that these tools (with the exception of ESP SA) cannot predict the cardinality of the covers that

they produce, while the size of a minimized encoded cover of GPI’s matches the size of the cover

obtained after encoding (with the same codes) and minimizing the original cover.

11.8. CONCLUSIONS 315

table size (row x col) mincov table final CPU time (seconds)
FSM before red. after red. calls sol. sol. table red. total

bbara 187 x 4124 98 x 35 9 8 33 329 872
bbtas 28 x 107 9 x 6 3 4 17 3 32
beecount 153 x 176 0 x 0 1 6 12 44 82
chanstb 169216 x 525 0 x 0 1 11 36 1218 1407
cpab 208896 x 1892 683 x 73 4 8 48 7774 11279
dk14 157 x 199 0 x 0 1 17 31 129 311
dk15 88 x 68 0 x 0 1 14 17 9 13
dk17 64 x 164 0 x 0 1 9 19 46 435
dk27 20 x 71 0 x 0 1 4 9 5 23
dol2 20 x 113 19 x 25 2 2 15 8 47
es 23 x 45 0 x 0 1 5 11 1 2
ex3 42 x 495 0 x 0 1 5 21 563 4026
ex5 50 x 301 0 x 0 1 3 19 139 508
ex6 908 x 423 0 x 0 1 22 24 645 672
ex7 48 x 583 0 x 0 1 4 20 106 1101
fstate 5360 x 1605 11 x 11 2 8 21 12770 13402
leoncino 21 x 22 0 x 0 1 5 6 0 1
lion 25 x 29 0 x 0 1 4 10 0 4
lion9 42 x 175 0 x 0 1 2 11 10 55
mc 96 x 71 0 x 0 1 7 11 5 10
ofsync 300 x 97 48 x 24 18 12 33 69 107
opus 914 x 2830 0 x 0 1 14 23 704 958
s8 40 x 206 0 x 0 1 1 13 8 27
scud 2966 x 2533 0 x 0 1 57 95 15633 16885
shiftreg 24 x 89 8 x 6 5 3 8 6 21
slave 2207744 x 16845 -(a) - - - timeout -
tav 100 x 81 4 x 4 5 10 11 10 11
test 8 x 5 0 x 0 1 3 3 0 0
virmach 4992 x 144 0 x 0 1 16 17 778 793(a) timeout 18000 in collapse columns

Table 11.3: Selection of a minimal encodeable GPI cover

316 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

table size (row x col) mincov table final CPU time (seconds)
FSM before red. after red. calls sol. sol. table red. total

bbsse 3480 x 34727 -(a) - - - timeout -
cf 30208 x 102781 -(b) - - - - -
cse 2588 x 21798 0 x 0 1 23 232 6534 14484
dk512 43 x 1777 0 x 0 1 6 52 4150 6108
ex2 86 x 38410 0 x 0 1 3 -(c3) 830 timeout
ex4 1072 x 26759 0 x 0 1 10 20 803 1762
keyb 2666 x 361240 0 x 0 1 8 373 1706 3398
kirkman 100252 x 1081088 -(a) - - - timeout -
maincont 67586 x 245784 0 x 0 1 4 -(c4) 115 timeout
mark1 1936 x 50258 5 x 5 3 7 20 1313 5194
modulo12 24 x 9039 24 x 36 17 2 24 50 416
pkheader 140288 x 29099 0 x 0 1 19 36 5850 10299
ricks 31232 x 16561 14 x 14 18 27 39 3301 5378
s1 15336 x 586240 -(b) - - - - -
s1a 5120 x 586240 -(b) - - - - -
saucier 18496 x 7106239 0 x 0 1 15 (d) 6802 timeout
tma 2028 x 287558 -(b) - - - - -
train11 43 x 583 0 x 0 1 2 13 177 711(a) timeout 18000 in collapse columns(b) out-of-memory in collapse columns(c3) timed out 18000 in adding 3rd GPI(c4) timed out 18000 in adding 1st GPI(d) timed out 18000 in i set minimum

Table 11.4: Selection of a minimal encodeable GPI cover

11.8. CONCLUSIONS 317

FSM 1-hot results of ISA results of NOVA

FSM cover cover min.gpi min.FSM bits best bits

bbara 60 34 29 27/29 7/5 24 4
bbtas 24 16 13 11/10 6/3 8 3
beecount 28 12 12 10/15 5/4 10 3
chanstb 52 49 26 26/26 2/2 26 2
cpab 76 49 43 43 5 32 3
dk14 56 25 28 25/26 7/5 24 5
dk15 32 17 16 16/18 4/4 16 4
dk17 32 20 18 18/20 8/6 17 3
dk27 14 10 9 9/4 6/9 7 3
dol2 20 13 13 13/10 5/3 9 3
es 12 10 11 8/9 4/3 6 2
ex3 36 21 21 19/22 8/6 17 4
ex5 32 19 18 16/23 9/6 14 4
ex6 34 23 24 24/24 8/6 23 5
ex7 36 20 19 16/24 9/6 15 4
fstate 30 22 21 21 6 16 3
leoncino 8 6 5 5/6 2/2 5 2
lion 11 8 8 8/8 3/3 6 2
lion9 25 10 10 8/10 8/4 8 4
mc 6 10 11 10/10 4/2 8 2
ofsync 41 31 31 32/25 4/4 22 2
opus 22 19 22 16/19 8/7 15 4
s8 22 14 12 12/10 4/3 9 3
scud 127 86 90 78 11 60 5
shiftreg 16 9 6 6/6 5/4 4 3
slave 75 46 - - - 35 4
tav 49 12 11 11/11 3/3 11 2
test 4 3 2 2/2 1/2 2 1
virmach 18 16 16 16/16 3/3 14 2

Table 11.5: Final solutions and comparison with NOVA

318 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI’S

FSM 1-hot results of ISA results of NOVA

FSM cover cover min.gpi min.FSM bits best bits

cse 91 55 -/78 -/55 -/9 45 4
dk512 30 21 -/28 -/23 -/5 18 4
ex4 21 21 18/26 18/21 12/5 14 4
keyb 170 77 -/86 -/72 -/10 47 6
mark1 22 19 19/27 16/20 13/8 17 4
modulo12 24 24 20/17 20/15 11/5 11 4
pkheader 1804 26 32/33 24/26 13/7 24 5
ricks 51 33 39/46 32/32 10/6 30 4
train11 25 11 13/22 12/15 10/5 9 4

Table 11.6: Final solutions and comparison with NOVA

319

Chapter 12

Conclusions

This thesis investigated algorithms to encode symbolic input and output variables of

sequential behaviors represented by STG’s or STT’s, when the cost function is minimum two-level

area. Various techniques developed here were applied or are applicable also to encoding problems

with different cost functions and objectives.

Technical contributions have been presented in the area of heuristic symbolic minimization

(Chapters 5), satisfaction of encoding constraints (Chapter 6), minimization of GPI’s (Chapters 7, 8,

9 and 11) and implicit binate covering (Chapter 10).

In Chapter 5 we have presented a symbolic minimization procedure capable of exploring

minimal symbolic covers by using face, dominance and disjunctive constraints. The treatment of

disjunctive constraints is a novelty of this work. Conditions on the completness of sets of encoding

constraints and a bridge to disjunctive-conjunctive constraints (presented in [39]) have been given.

An invariant of the algorithm is that the minimal symbolic cover under construction is

always guaranteed to be encodeable. Encodeability is checked efficiently using the procedures

described in Chapter 6. Therefore, this synthesis procedure has predictive power that precedent

tools lacked, i.e. the cardinality of the cover obtained by symbolic minimization and of the cover

obtained by replacing the codes in the initial cover and then minimizing with ESPRESSO are very

close. Experiments show that the encoded covers produced by our procedure are usually smaller or

equal than those of the best option of state-of-art tools like NOVA [147].

An improvement to the procedure would be to introduce some iterated expansion and

reduction scheme, as in ESPRESSO [11], to escape from local minima. Currently the algorithm builds

a minimal symbolic cover, exploring a neighborhood of the original FSM cover, with variations of

one single expansion and reduction for each slice of the FSM. A weak point of the current algorithm

320 CHAPTER 12. CONCLUSIONS

is that the final code-length is often too long. Currently the algorithm is unable to trade-off final

code-length vs. cardinality of the encoded cover.

In Chapter 6 we have presented a comprehensive solution to the problem of satisfying

encoding constraints. We have shown that the problem of determining a minimum length encoding

to satisfy face constraints is NP-complete. Based on an earlier method for satisfying face con-

straints [154], we have provided an efficient algorithm that determines the minimum length encod-

ing that satisfies both input (face) and output (dominance, disjunctive and disjunctive-conjunctive)

constraints. It is shown how this algorithm can be used to determine the feasibility of a set of input

and output constraints in polynomial time in the size of the input.

A heuristic procedure for solving input encoding constraints with bounded code-length in

both two-level and multi-level implementations is also demonstrated. In the multi-level case, only a

very time-consuming algorithm based on simulated annealing was known before. This framework

has also been used for solving a variety of encoding constraints generated by other applications.

In Chapter 11 we have presented a complete procedure to generate and select GPI’s [39]

based on implicit computations. This approach combines techniques for implicit enumeration of

primes and implicit solution of covering tables together with a new formulation of the problem

of selecting an encodeable cover of GPI’s. A novel theory of encodeability of GPI’s has been

developed in Chapter 9.

The proposed algorithms have been implemented using state assignment of FSM’s as a test

case. The experiments exhibit a set of medium FSM’s where hard GPI minimization problems could

be solved for the first time, showing that these techniques open a new direction in the minimization of

symbolic logic. Since symbolic minimization has an eumerative complexity higher than two-valued

logic minimization, more practical work is required to improve the efficiency of the implementation

and to tie it with good heuristics to explore the solution space of encoding problems.

The present contribution shows how to extract a minimal encodeable cover from a large

set of GPI’s, allowing - in line of principle - the exploration of all minimal encodeable covers. This

advances the state-of-art of symbolic minimization, otherwise restricted to the use of heuristic tools.

that do not guarantee a complete exploration of the solution space. It is true, though, that competing

algorithms [92, 147, 146] are often well-tuned for their domain of application, while our prototype

of GPI minimization is not yet mature for field applications.

In Chapter 10 we have presented an implicit procedure to solve binate covering problems.

It is based on the idea of representing the columns and the rows of a table by labelling functions such

that the existence of a 1 or 0 entry at the intersection of a given row and column can be computed

321

by applying a simple computation on the labels (both the labels and the table entry computation

depend from the problem). All sets are represented and manipulated based on BDD’s. New BDD

operations to manipulate sets and sets of sets were designed, including a primitive operation that,

given a binary relationR(a; b), finds the a’s (b’s) that occur the most or the least with b’s (a’s). This

operation was needed to find implicitly a branching column and compute a maximum independent

set to lower bound the computation.

This procedure has been applied both to finding a cover of GPI’s and to selecting a

minimum-state behavior of a nondeterministic FSM. It has potential applications to many problems

of logic synthesis and combinatorial optimization. Very large covering tables that could not be gen-

erated or solved with traditional techniques were handled by this implicit algorithm, as experiments

in Chapter 11 show.

322

Bibliography

[1] R. Amann and U. Baitinger. Optimal state chains and state codes in finite state machines.

IEEE Transactions on Computer-Aided Design, February 1989.

[2] D. Armstrong. On the efficient assignment of internal codes to sequential machines. IRE

Transactions on Electronic Computers, pages 611–622, October 1962.

[3] D. Armstrong. A programmed algorithm for assigning internal codes to sequential machines.

IRE Transactions on Electronic Computers, pages 466–472, August 1962.

[4] P. Ashar. Synthesis of sequential circuits for VLSI design. PhD thesis, University of California,

Berkeley, 1992.

[5] P. Ashar, S. Devadas, and A. R. Newton. A unified approach to the decomposition and

re-decomposition of sequential machines. In The Proceedings of the Design Automation

Conference, pages 601–606, June 1990.

[6] P. Ashar, S. Devadas, and A. R. Newton. Optimum and heuristic algorithms for an approach

to finite state machine decomposition. IEEE Transactions on Computer-Aided Design, pages

296–310, March 1991.

[7] M. Beardslee and A. Sangiovanni-Vincentelli. An algorithm for improving partitions of

pin-limited multi-chip systems. In The Proceedings of the International Conference on

Computer-Aided Design, November 1993.

[8] D. Bostick, G. Hachtel, R. Jacoby, M. Lightner, P. Moceyunas, C. Morrison, and D. Raven-

scroft. The Boulder optimal logic design system. In The Proceedings of the International

Conference on Computer-Aided Design, November 1987.

[9] D. Bovet and P. Crescenzi. Introduction to the theory of complexity. Prentice Hall, 1994.

BIBLIOGRAPHY 323

[10] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The

Proceedings of the Design Automation Conference, pages 40–45, June 1990.

[11] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization

Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[12] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level

logic optimization system. IEEE Transactions on Computer-Aided Design, November 1987.

[13] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthe-

sis. Unpublished book, 1992.

[14] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of

the International Conference on Computer-Aided Design, pages 316–319, November 1989.

[15] F. M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

[16] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions

on Computers, pages C–35(8):667–691, 1986.

[17] N. Calazans. Boolean constrained encoding: a new formulation and a case study. In The

Proceedings of the International Conference on Computer-Aided Design, November 1994.

[18] K-T. Cheng and V.D. Agrawal. State assignment for initializable synthesis. In The Proceed-

ings of the International Conference on Computer-Aided Design, November 1989.

[19] S.M. Chiu. Exact state assignment via binate covering. EE290ls Project, May 1990.

[20] M. Ciesielski, J-J. Shen, and M. Davio. A unified approach to input-output encoding for FSM

state assignment. The Proceedings of the Design Automation Conference, pages 176–181,

June 1991.

[21] M. Ciesielski and S. Yang. PLADE: a two stage PLA decomposition. IEEE Transactions on

Computer-Aided Design, pages 943–954, August 1992.

[22] O. Coudert. Two-level logic minimization: an overview. Integration, 17-2:97–140, October

1994.

[23] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional

Boolean vectors. IFIP Conference, November 1989.

324 BIBLIOGRAPHY

[24] O. Coudert, H.Fraisse, and J.C. Madre. Towards a symbolic logic minimization algorithm.

In The Proceedings of the VLSI Design 1993 Conference, pages 329–334, January 1993.

[25] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential

prime implicants of Boolean functions. In The Proceedings of the Design Automation

Conference, pages 36–39, June 1992.

[26] O. Coudert and J.C. Madre. A new implicit graph based prime and essential prime compu-

tation technique. In Proceedings of the International Symposium on Information Sciences,

pages 124–131, July 1992.

[27] O. Coudert and J.C. Madre. A new method to compute prime and essential prime implicants

of boolean functions. In Advanced Research in VLSI and Parallel Systems, pages 113–128.

The MIT Press, T. Knight and J. Savage Editors, March 1992.

[28] O. Coudert and J.C. Madre. A new viewpoint on two-level logic minimization. Bull Research

Report N. 92026, November 1992.

[29] O. Coudert, J.C. Madre, and H.Fraisse. A new viewpoint on two-level logic minimization.

In The Proceedings of the Design Automation Conference, pages 625–630, June 1993.

[30] O. Coudert, J.C. Madre, H.Fraisse, and H. Touati. Implicit prime cover computation: an

overview. In The Proceedings of the SASIMI Conference, pages 413–422, 1993.

[31] G. Cybenko, D. Krumme, and K. Venkataraman. Fixed hypercube embedding. Information

Processing Letters, April 1987.

[32] M. Davio, J.-P. Deschamps, and A. Thayse. Discrete and Switching Functions. Georgi

Publishing Co. and McGraw-Hill International Book Company, 1978.

[33] W. Davis. An approach to the assignment of input codes. IEEE Transactions on Electronic

Computers, August 1967.

[34] S. Devadas. General decomposition of sequential machines: Relationships to state assign-

ment. In The Proceedings of the Design Automation Conference, pages 314–320, June

1989.

BIBLIOGRAPHY 325

[35] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli. Synthesis and optimization

procedures for fully and easily testable sequential machines. In The Proceedings of the

International Conference on Computer-Aided Design, November 1987.

[36] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli. Mustang: state assignment

of finite state machines targeting multi-level logic implementations. IEEE Transactions on

Computer-Aided Design, December 1988.

[37] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite state

machines. In IEEE Transactions on CAD, pages 1206–1217, November 1989.

[38] S. Devadas and R. Newton. Corrections to "Exact algorithms for output encoding, state

assignment and four-level Boolean minimization". IEEE Transactions on Computer-Aided

Design, 10(11):1469–1469, November 1991.

[39] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-

level Boolean minimization. IEEE Transactions on Computer-Aided Design, pages 13–27,

January 1991.

[40] S. Devadas, A. Wang, R. Newton, and A. Sangiovanni-Vincentelli. Boolean decomposition

in multilevel logic optimization. IEEE Journal of solid-state circuits, April 1989.

[41] T. Dolotta and E. McCluskey. The coding of internal states of sequential machines. IEEE

Transactions on Electronic Computers, October 1964.

[42] X. Du, G.D.Hachtel, B. Lin, and A.R.Newton. MUSE:a MUltilevel Symbolic Encoding

algorithm for state assignment. IEEE Transactions on Computer-Aided Design, pages CAD–

10(1):28–38, January 1991.

[43] C. Duff. Codage d’automates et theorie des cubes intersectants. Thèse, Institut National

Polytechnique de Grenoble, March 1991.

[44] E.I.Goldberg. Matrix formulation of constrained encoding problems in optimal PLA synthe-

sis. Preprint No. 19, Institute of Engineering Cybernetics, Academy of Sciences of Belarus,

1993.

[45] E.I.Goldberg. Face embedding by componentwise construction of intersecting cubes.

Preprint No. 1, Institute of Engineering Cybernetics, Academy of Sciences of Belarus, 1995.

326 BIBLIOGRAPHY

[46] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. W. H. Freeman and Company, 1979.

[47] J. Gimpel. A method of producing a boolean function having an arbitrarily prescribed prime

implicant table. IRE Transactions on Electronic Computers, EC-14:485–488, June 1965.

[48] J. Gimpel. A reduction technique for prime implicant tables. IRE Transactions on Electronic

Computers, EC-14:535–541, August 1965.

[49] G.N.Raney. Sequential functions. Journal of the Association of Computing Machinery, pages

177–180, 1958.

[50] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in

incompletely specified sequential networks. IRE Transactions on Electronic Computers,

EC-14(3):350–359, June 1965.

[51] A. Grasselli and F. Luccio. Some covering problems in switching theory. In Networks and

Switching Theory, pages 536–557. Academic Press, New York, 1968.

[52] D. Gregory, K. Bartlett, A. DeGeus, and G. Hachtel. SOCRATES: A system for automat-

ically synthesizing and optimizing combinational logic. In The Proceedings of the Design

Automation Conference, 1986.

[53] G.Swamy, R.Brayton, and P.McGeer. A fully implicit Quine-McCluskey procedure using

BDD’s. Tech. Report No. UCB/ERL M92/127, 1992.

[54] J. Hartmanis. On the state assignment problem for sequential machines - 1. IRE Transactions

on Electronic Computers, June 1961.

[55] J. Hartmanis and R. E. Stearns. Some dangers in the state reduction of sequential machines.

In Information and Control, volume 5, pages 252–260, September 1962.

[56] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-

Hall, Englewood Cliffs, N. J., 1966.

[57] B. Holmer. What are the ingredients for a good state assignment program ? Tech. Report

No. CSE-95-002, EECS Department, Northwestern University, April 1995.

[58] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley Publishing Company, 1979.

BIBLIOGRAPHY 327

[59] R. W. House and D.W. Stevens. A new rule for reducing cc tables. IEEE Transactions on

Computers, C-19:1108–1111, November 1970.

[60] S. Robinson III and R. House. Gimpel’s reduction technique extended to the covering problem

with costs. IRE Transactions on Electronic Computers, EC-16:509–514, August 1967.

[61] S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary decision

diagrams. In Proceedings of ISKIT-92, Inter. symp. on logic synthesis and microproc. arch.,

Iizuka, Japan, pages 177–184, July 1992.

[62] S.-W. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its

application to the minimization of boolean relations. In The Proceedings of the International

Conference on Computer-Aided Design, November 1992.

[63] T. Kam. State minimization of finite state machines using implicit techniques. Ph.D. Thesis,

University of California, Berkeley, 1995.

[64] T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report No. UCB/ERL

M90/125, December 1990.

[65] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for

exact state minimization. Tech. Report No. UCB/ERL M93/79, November 1993.

[66] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for

exact state minimization. In The Proceedings of the Design Automation Conference, pages

684–690, June 1994.

[67] R. Karp. Some techniques for state assignment for synchronous sequential machines. IEEE

Transactions on Electronic Computers, October 1964.

[68] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System

Technical Journal, February 1970.

[69] K. Keutzer and D. Richards. Computational complexity of logic optimization. Unpublished

manuscript, March 1994.

[70] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York,

New York, second edition, 1978.

328 BIBLIOGRAPHY

[71] D. Krumme, K. Venkataraman, and G. Cybenko. Hypercube embedding is NP-complete. In

Proceedings of SIAM Hypercube Conference, September 1985.

[72] L. Lavagno. Heuristic and exact methods for binate covering. EE290ls Report, May 1989.

[73] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization

of multi-level logic with multiple valued inputs. In The Proceedings of the International

Conference on Computer-Aided Design, November 1990.

[74] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state

assignment problem for signal transition graphs. The Proceedings of the Design Automation

Conference, pages 568–572, June 1992.

[75] D. Lewin. Computer-Aided Design of Digital Systems. Russak-Arnold, 1977.

[76] B. Lin. Experiments with jedi. Private communication, October 1989.

[77] B. Lin. Synthesis of multiple level logic from symbolic high-level description languages.

Proceedings of the IFIP International Conference on VLSI, pages 187–196, August 1989.

[78] B. Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERL

M91/105, November 1991.

[79] B. Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions.

In The Proceedings of the Design Automation Conference, pages 40–44, June 1992.

[80] B. Lin and A.R. Newton. Implicit manipulation of equivalence classes using binary decision

diagrams. In The Proceedings of the International Conference on Computer Design, pages

81–85, September 1991.

[81] B. Lin and R. Newton. A generalized approach to the constrained cubical embedding problem.

In The Proceedings of the International Conference on Computer Design, 1989.

[82] B. Lin and F. Somenzi. Minimization of symbolic relations. In The Proceedings of the

International Conference on Computer-Aided Design, November 1990.

[83] C. Y. Liu. A system for for synthesis of area-efficient testable FSM’s. Ph.D. Thesis, University

of Wisconsin, 1994.

BIBLIOGRAPHY 329

[84] S. Malik. Combinational logic optimization techniques in sequential logic synthesis. Tech.

Report No. UCB/ERL M90/115, November 1990.

[85] S. Malik, L. Lavagno, R. Brayton, and A. Sangiovanni-Vincentelli. Symbolic minimization of

multilevel logic and the input encoding problem. In IEEE Transactions on Computer-Aided

Design, volume vol.11, (no.7), pages 825–43, July 1992.

[86] M. Marcus. Derivation of maximal compatibles using Boolean algebra. IBM Journal of

Research and Development, November 1964.

[87] E. McCluskey. Minimization of Boolean functions. Bell Laboratories Technical Journal,

November 1956.

[88] E.J. McCluskey and S.H. Unger. A note on the number of internal variable assignments for

sequential switching circuits. IRE Transactions on Electronic Computers, pages 439–440,

December 1959.

[89] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincenetelli. Espresso-signature:

a new exact minimizer for logic functions. IEEE Transactions on VLSI Systems, pages

432–440, December 1993.

[90] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 3, pages 85–86. Addison

Wesley, 1980.

[91] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented

by two-level logic macros. IEEE Transactions on Computer-Aided Design, October 1986.

[92] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for

finite state machines. IEEE Transactions on Computer-Aided Design, July 1985.

[93] G. De Micheli, T. Villa, and A. Sangiovanni-Vincentelli. Computer-aided synthesis of

PLA-based finite state machines. In The Proceedings of the International Conference on

Computer-Aided Design, September 1983.

[94] R. E. Miller. Switching theory. Volume I: combinational circuits. J. Wiley and & Co., N.Y.,

1965.

[95] S. Minato. Zero-suppressed BDD’s for set manipulation in combinatorial problems. In The

Proceedings of the Design Automation Conference, pages 272–277, June 1993.

330 BIBLIOGRAPHY

[96] E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. McCarthy,

editors, Automata Studies. Princeton University Press, 1956.

[97] R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli. Using encoding in functional de-

composition. Submitted for publication, 1993.

[98] R. Narasimhan. Minimizing incompletely specified sequential switching functions. IRE

Transactions on Electronic Computers, EC-10:531–532, September 1961.

[99] L. Nguyen, M. Perkowski, and N. Goldstein. Palmini - fast boolean minimizer for personal

computers. In The Proceedings of the Design Automation Conference, pages 615–621, July

1987.

[100] A. Nichols and A. Bernstein. State assignments in combinational networks. IEEE Transac-

tions on Electronic Computers, June 1965.

[101] P.S. Noe. Remarks on the SHR-optimal state assignment procedure. IEEE Transactions on

Computers, pages 873–875, September 1973.

[102] P.S. Noe and V.T. Rhyne. A modification to the SHR-optimal state assignment procedure.

IEEE Transactions on Computers, pages 327–329, March 1974.

[103] P.S. Noe and V.T. Rhyne. Optimum state assignment for the D flip-flop. IEEE Transactions

on Computers, pages 306–311, March 1976.

[104] C. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[105] C. H. Papadimitriou, J.D. Ullman, and K. Steiglitz. Combinatorial Optimization: Algorithms

and Complexity. Prentice Hall, 1982.

[106] R. Parchman. The number of state assignments for sequential machines. IEEE Transactions

on Computers, pages 613–614, June 1972.

[107] W. Quine. A way to simplify truth functions. Amer. Math. Monthly, 62:627–631, November

1955.

[108] J.-K. Rho and F. Somenzi. Stamina. Computer Program, 1991.

[109] V.T. Rhyne and P.S. Noe. On equivalence of state assignments. IEEE Transactions on

Computers, pages 55–57, January 1968.

BIBLIOGRAPHY 331

[110] V.T. Rhyne and P.S. Noe. On the number of distinct state assignments for a sequential

machine. IEEE Transactions on Computers, pages 73–75, January 1977.

[111] D. Rosenkrantz. Half-hot state assignments for finite state machines. IEEE Transactions on

Computer-Aided Design, May 1990.

[112] R. Rudell. Espresso. Computer Program, 1987.

[113] R. Rudell. Logic synthesis for VLSI design. Tech. Report No. UCB/ERL M89/49, April

1989.

[114] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimiza-

tion. IEEE Transactions on Computer-Aided Design, CAD-6:727–750, September 1987.

[115] A. Saldanha and R. Katz. PLA optimization using output encoding. In The Proceedings of

the International Conference on Computer-Aided Design, November 1988.

[116] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Satisfaction of input and

output encoding constraints. IEEE Transactions on Computer-Aided Design, 13:589–602,

May 1994.

[117] S.C. De Sarkar, A.K. Basu, and A.K. Choudhury. Simplification of incompletely specified

flow tables with the help of prime closed sets. IEEE Transactions on Computers, pages

953–956, October 1969.

[118] T. Sasao. An application of multiple-valued logic to a design of Programmable Logic Arrays.

In The Proceedings of the International Symposium on Multiple-Valued Logic, 1978.

[119] T. Sasao. Multiple-valued decomposition of generalized Boolean functions and the com-

plexity of Programmable Logic Arrays. IEEE Transactions on Computers, C-30:635–643,

September 1981.

[120] T. Sasao. Input variable assignment and output phase optimization of PLA’s. In IEEE

Transactions on Computers, October 1984.

[121] T. Sasao. Multiple-valued logic and optimization of programmable logic arrays. Computer,

pages 71–80, April 1988.

[122] T. Sasao. Application of multiple-valued logic to a serial decomposition of PLA’s. In The

Proceedings of the International Symposium on Multiple-Valued Logic, June 1989.

332 BIBLIOGRAPHY

[123] T. Sasao. On the optimal design of multiple-valued PLA’s. IEEE Transactions on Computers,

C-38, n.4:582–592, April 1989.

[124] G. Saucier, M. Crastes de Paulet, and P. Sicard. Asyl: a rule-based system for controller

synthesis. IEEE Transactions on Computer-Aided Design, November 1987.

[125] G. Saucier, C. Duff, and F. Poirot. A new embedding method for state assignment. The

Proceedings of the International Workshop on Logic Synthesis, May 1989.

[126] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based

on an intersecting cube theory. In The Proceedings of the Design Automation Conference,

1989.

[127] R. B. Segal. BDSYN: Logic description translator; BDSIM: Switch level simulator. Master’s

Thesis M87/33, Electronics Research Lab., University of California, Berkeley, May 1987.

[128] M. Servit and J. Zamazal. Exact approaches to binate covering problem. Manuscript in

preparation, October 1992.

[129] C.-J. Shi and J. Brzozowski. An efficient algorithm for constrained encoding and its ap-

plications. IEEE Transactions on Computer-Aided Design, pages 1813–1826, December

1993.

[130] F. Somenzi. Cookie. Computer Program, 1989.

[131] F. Somenzi. Gimpel’s reduction technique extended to the binate covering problem. Unpub-

lished manuscript, 1989.

[132] F. Somenzi. Binate covering formulation of exact two-level encoding. Unpublished

manuscript, March 1990.

[133] F. Somenzi. An example of symbolic relations applied to state encoding. Unpublished

manuscript, May 1990.

[134] P. Srimani. MOS networks and fault-tolerant sequential machines. Computers and Electrical

Engineering, 8(4), 1981.

[135] P. Srimani and B. Sinha. Fail-safe realisation of sequential machines with a new two-level

MOS module. Computers and Electrical Engineering, 7, 1980.

BIBLIOGRAPHY 333

[136] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu-

lation. Proc. Int. Conf. CAD (ICCAD-90), pages 92–95, November 1990.

[137] R. Stearns and J. Hartmanis. On the state assignment problem for sequential machines - 2.

IRE Transactions on Electronic Computers, December 1961.

[138] J. Storey, H. Harrison, and E. Reinhard. Optimum state assignment for synchronous sequential

machines. IEEE Transactions on Computers, pages 1365–1373, December 1972.

[139] Y. Su and P. Cheung. Computer minimization of multi-valued switching functions. IEEE

Transactions on Computers, September 1972.

[140] Y. Tohma, Y. Ohyama, and R. Sakai. Realization of fail-safe sequential machines by using ak-out-of-n code. IEEE Transactions on Computers, November 1971.

[141] H.C. Torng. An algorithm for finding secondary assignments of synchronous sequential

circuits. IEEE Transactions on Computers, pages 461–469, May 1968.

[142] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state

enumeration of finite state machines using BDD’s. The Proceedings of the International

Conference on Computer-Aided Design, pages 130–133, November 1990.

[143] J. Tracey. Internal state assignment for asynchronous sequential machines. IRE Transactions

on Electronic Computers, August 1966.

[144] D. Varma and E.A. Trachtenberg. Design automation tools for efficient implementation of

logic functions by decomposition. IEEE Transactions on Computer-Aided Design, 8-8:901–

916, August 1989.

[145] T. Villa, L. Lavagno, and A. Sangiovanni-Vincentelli. Advances in encoding for logic

synthesis. In Digital Logic Analysis and Design, G. Zobrist ed. Ablex, Norwood, 1995.

[146] T. Villa, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli. Symbolic two-level

minimization. Submitted for publication, 1995.

[147] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level

logic implementations. In IEEE Transactions on Computer-Aided Design, pages 905–924,

September 1990.

334 BIBLIOGRAPHY

[148] Y. Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic fsm’s. In

European Conference on Design Automation, pages 184–191, 1994.

[149] P. Weiner and E.J. Smith. On the number of state assignments for synchronous sequential

machines. IEEE Transactions on Computers, pages 220–221, April 1967.

[150] W. Wolf. Recoding-derived bounds for input encoding. Submitted for publication, January

1990.

[151] W. Wolf, K. Keutzer, and J. Akella. A kernel-finding state assignment algorithm for multi-

level logic. In The Proceedings of the Design Automation Conference, June 1988.

[152] W. Wolf, K. Keutzer, and J. Akella. Addendum to "A kernel-finding state assignment

algorithm for multi-level logic". In IEEE Transactions on Computer-Aided Design, August

1989.

[153] C-C. Yang. On the equivalence of two algorithms for finding all maximal compatibles. IEEE

Transactions on Computers, pages 977–979, October 1975.

[154] S. Yang and M. Ciesielski. Optimum and suboptimum algorithms for input encoding and its

relationship to logic minimization. IEEE Transactions on Computer-Aided Design, January

1991.

