
Higher-Order Symb Comput (2006) 19:415–463

DOI 10.1007/s10990-006-0481-5

Deriving escape analysis by abstract interpretation

Patricia M. Hill · Fausto Spoto

C© Springer Science + Business Media, LLC 2006

Abstract Escape analysis of object-oriented languages approximates the set of objects which

do not escape from a given context. If we take a method as context, the non-escaping objects

can be allocated on its activation stack; if we take a thread, Java synchronisation locks on such

objects are not needed. In this paper, we formalise a basic escape domain E as an abstract

interpretation of concrete states, which we then refine into an abstract domain ER which is

more concrete than E and, hence, leads to a more precise escape analysis than E . We provide

optimality results for both E and ER, in the form of Galois insertions from the concrete to the

abstract domains and of optimal abstract operations. The Galois insertion property is obtained

by restricting the abstract domains to those elements which do not contain garbage, by using

an abstract garbage collector. Our implementation of ER is hence an implementation of a

formally correct escape analyser, able to detect the stack allocatable creation points of Java

(bytecode) applications.

Keywords Abstract interpretation . Denotational semantics . Garbage collection

1 Introduction

Escape analysis identifies, at compile-time, some run-time data structures which do not escape
from a given context, in the sense that they are not reachable anymore from that context. It

has been studied for functional [5, 19, 36] as well as for object-oriented languages [1, 6, 7, 12,

21, 37–39, 41, 46, 49–51]. It allows one to stack allocate dynamically created data structures

which would normally be heap allocated. This is possible if these data structures do not escape
from the method which created them. Stack allocation reduces garbage collection overhead

P. M. Hill (�)

University of Leeds, United Kingdom

e-mail: hill@comp.leeds.ac.uk

F. Spoto

Università di Verona, Italy

e-mail: fausto.spoto@univr.it

Springer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217461522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

416 Higher-Order Symb Comput (2006) 19:415–463

at run-time w.r.t. heap allocation, since stack allocated data structures are automatically

deallocated when methods terminate. If, moreover, such data structures do not occur in a loop

and their size is statically determined, they can be preallocated on the activation stack, which

further improves the efficiency of the code. In the case of Java, which uses a mutual exclusion

lock for each object in order to synchronise accesses from different threads of execution,

escape analysis allows one also to remove unnecessary synchronisations, thereby making

run-time accesses faster. By removing the space for the mutual exclusion lock associated with

some of the objects, escape analysis can also help with space constraints. To this purpose,

the analysis must prove that an object is accessed by at most one thread. This is possible if

the object does not escape its creating thread.

Consider for instance our running example in Fig. 1. This program defines geometric

figures Square and Circle that can be rotated. The class Scan has two methods, scan
and rotate. The method scan calls rotate on each figure of a sequence n of figures

passed as a parameter, as well as on a new Square and a new Circle. Each new statement

is a creation point and has been decorated with a label, such as π1 or π2. We often abuse

notation and call the label a creation point itself. Hence, we can say that the creation points

π2 and π3 can be stack allocated since they create objects which are not reachable once the

method scan terminates. On the contrary, the creation point π4 cannot be allocated in the

activation stack of the method rotate, since the Angle it creates is actually stored inside

the field rotation of the Square object created at π2, which is still reachable when

rotate terminates. However, if we created Circles rather than Squares at π2, and if we

assumed that the scan method is passed a list of Circles as parameter, then the creation

point π4 could be stack allocated, since the virtual call f.rot(a) would always lead to the

method rot inside Circle, which does not store its parameter in any field. The creation

point π1 cannot be stack allocated since it creates objects that are stored in the rotation
field, and hence are still reachable when the method completes. Note that we assume here

that an object escapes from a method if it is still reachable when the method terminates.

Others [38, 41, 50] require that that object is actually used after the method terminates.

Our assumption is more conservative and hence leads to less precise analyses. However, it

lets us analyse libraries, whose calling contexts are not known at analysis time, so that it is

undetermined whether an object is actually used after a library method terminates or not.

1.1 Contributions of our work

This paper presents two escape analyses for Java programs. The goal of both analyses is to

detect objects that do not escape (i.e., are unreachable from outside) a certain scope. This

information can later be used to stack-allocate captured (i.e., non-escaping) objects.

Both analyses use the object allocation site model: all objects allocated at a given program

point (possibly in a loop) are modelled by the same creation point. The first analysis, based on

the abstract domain E , expresses the information we need for our stack allocation. Namely,

for each program point, it provides an over-approximation of the set of creation points that

escape because they are transitively reachable from a set of escapability roots (i.e., variables

including parameters, static fields, method result). The domain E does not keep track of other

information such as the creation points pointed to by each individual variable or field.

Although E is the property neede for stack allocation, a static analysis based on E is not

sufficiently precise as it does not relate the creation points with the variables and fields that

point to them. We therefore consider a refinement ER of E that preserves this information

and also includes E so that ER contains just the minimum information needed for stack

allocation.

Springer

Higher-Order Symb Comput (2006) 19:415–463 417

Fig. 1 Running example

Both analyses are developed in the abstract interpretation framework [14, 15], and we

present proofs that the associated transfer functions are optimal with respect to the abstractions

that are used by each analysis i.e., they make the best possible use of the abstract information

expressed by the abstract domains.

To increase the precision of the two analyses and to get a Galois insertion, rather than

a Galois connection, both analyses use local variable scoping and type information. Hence,

Springer

418 Higher-Order Symb Comput (2006) 19:415–463

the abstract domains contain no spurious element. We achieve this goal through abstract
garbage collectors which remove some elements from the abstract domains whenever they

reflect unreachable (and hence, for our analysis, irrelevant) portions of the run-time heap, as

also [12] does, although [12] does not relate this to the Galois insertion property. Namely, the

abstract domains are exactly the set of fixpoints of their respective abstract garbage collectors

and, hence, do not contain spurious elements.

The contribution of this paper is a clean construction of an escape analysis through abstract

interpretation thus obtaining formal and detailed proofs of correctness as well as optimality.

Optimality states that the abstract domains are related to the concrete domain by a Galois

insertion, rather than just a connection and in the use of optimal abstract operations. Precision

and efficiency of the analysis are not the main issues here, although we are pleased to see

that our implementation scales to relatively large applications and compares well with some

already existing and more precise escape analyses (Section 6).

1.2 The basic domain E

Our work starts by defining a basic abstract domain E for escape analysis. Its definition is

guided by the observation that a creation point π occurring in a method m can be stack

allocated if the objects it creates are not reachable at the end of m from a set of variables

E which includes m’s return value, the fields of the objects bound to its formal parameters

at call-time (including the implicit this parameter) and any exceptions thrown by m. Note

that we consider the fields of the objects bound to the formal parameters at call-time since

they are aliases of the actual arguments, and hence still reachable when the method returns.

For a language, such as Java, which allows static fields, E also includes the static fields.

Variables with integer type are not included in E since no object can be reached from an

integer. Moreover, local variables are also not included in E since local variables accessible

inside a method m will disappear once m terminates. The basic abstract domain E is hence

defined as the collection of all sets of creation points. Each method is decorated with an

element of E , which contains precisely the creation points of the objects reachable from the

variables in E at the end of the method.

Example 1. Consider for instance the method scan in Fig. 1. We assume that null is passed

to scan as a parameter, and that its this object has been created at an external creation

point π . We have E = ℘({π, π1, π2, π3, π4}) and E = {n} (the implicit parameter this has

type Scan and hence no fields, so that there is no need to consider it in E). Then scan is

decorated with ∅ since no object can be reached at the end of scan from the variables in

E = {n}. Consequently, the creation points π2 and π3 can be stack allocated since they do

not belong to ∅. Note that, if n had been modified inside the method scan then we would

have used E = {n′}, where n′ is a shadow copy of n which holds its initial value (we will see

this technique in Example 52).

We still have to specify how this decoration is computed for each method. We use abstract

interpretation to propagate an input set of creation points through the statements of each

method, until its end is reached. This is accomplished by defining a transfer function for

every statement of the program which, in terms of abstract interpretation, is called an abstract
operation (see Section 4 and Fig. 9). The element of E resulting at the end of each method is

then restricted to the appropriate set E for that method through an abstract operation called

restrict. By applying the theory of abstract interpretation, we know that this restriction is a

conservative approximation of the actual decoration we need at the end of each method.

Springer

Higher-Order Symb Comput (2006) 19:415–463 419

Fig. 2 The propagation of {π}
through the method scan of the

program in Fig. 1

Example 2. Consider again Example 1 and the method scan. In Fig. 2 we propagate the

set {π} through scan’s statements by following the translation of high-level statements into

the bytecodes as specified in Fig. 9. The restriction of the set {π, π1, π2, π3, π4} to E = {n}
is {π1, π2, π3, π4} (objects of class Scan created at π are incompatible with the type of n),

which is a very imprecise approximation of the desired result i.e., ∅.

The problem here is that although the abstract domain E expresses the kind of decoration

we need for stack allocation, E has very poor computational properties. In terms of abstract

interpretation, it induces very imprecise abstract operations and, just as in the case of the

basic domain G for groundness analysis of logic programs [32], it needs refining [22, 42].

Nevertheless, it must be observed that the abstract domain E already contains some non-

trivial information. For instance, since π is a creation point for objects of class Scan and π2

is a creation point for objects of class Square, then the first f.def() virtual call occurring

in the method scan can only lead to the method def inside Square. Hence we say that our
escape information contains information on the run-time late-binding mechanism, which can

be exploited to improve the precision of the analysis by refining the call-graph. This is what

actually happens in Example 2. Note also that the local scope may temporarily introduce new

variables so that at the end of the scope, any creation points that can only be reached from

these variables can be safely removed from the approximation. In Fig. 3, the approximation

computed at p2 is {π, πs, π1}, where π is the creation point of this, but the approximation

computed at p3 is {π}, which is smaller. For this reason, we say that our escape information
uses the static type information to improve the precision of the analysis. That is, the possible

Springer

420 Higher-Order Symb Comput (2006) 19:415–463

Fig. 3 A program fragment

where the set of variables in

scope grows and shrinks

approximations fromE in a given program point, are constrained by the (finite) set of variables

and their types that are in scope.

We formalise the fact that the approximation in E can shrink, by means of an abstract
garbage collector (Definition 25) i.e., a garbage collector that works over sets of creation

points instead of concrete objects. When a variable’s scope is closed, the abstract garbage

collector removes from the approximation of the next statement all creation points which

can only be reached from that variable. The name of abstract garbage collector is justified

by the fact that this conservatively maintains in the approximation the creation points of

the objects which might be reachable in the concrete state, thus modeling in the abstract

domain a behaviour similar to that of a concrete garbage collector. It must be noted, however,

that our abstract garbage collector only considers reachability from the variables in scope in

the current method, while a concrete garbage collector would consider reachability from all

variables in the current activation stack.

The abstract garbage collector is of no use in the propagation of π̄ shown in Fig. 2 since,

for instance, after the creation point π3, it is not possible to conclude that the object o created

at π2, and hence also those created at π1 and π4 and stored in o’s rotation field, are not

reachable anymore. This is because E does not distinguish between the objects reachable

from variables f and n. Before π3, the object o created at π2 can be reached from f only,

but π3 overwrites f so it cannot be reached anymore. Because E does not make a distinction

between objects reachable from f and n, it cannot infer this, because it considers that o could

be reachable from n. The only safe choice is to be conservative and assume that it cannot be

garbage collected.

1.3 The refinement ER

The abstract domain E represents the information we need for stack allocation, but it does

not include any other related information that may improve the precision of the abstract

operations, such as explicit information about the creation points of the objects bound to

a given variable or field. However, the ability to reason on a per variable basis is essential

for the precision of a static analysis of imperative languages, where assignment to a given

variable or field is the basic computational mechanism. So we refine E into a new abstract

domain ER which splits the sets of creation points in E into subsets, one for each variable

or field. We show that ER strictly contains E , justifying the name of refinement.
We perform a static analysis based on ER exactly as for E but using the abstract operations

for the domain ER given in Section 5 (see Fig. 10).

Example 3. Consider again the method scan in Fig. 1. We start the analysis from the element

[this �→ {π}] �[] of ER which expresses the fact that the variable this is initially bound

Springer

Higher-Order Symb Comput (2006) 19:415–463 421

Fig. 4 The propagation of [this �→ {π}] �[] through the method scan of the program in Fig. 1

to an object created at the external creation point π and all other variables and fields are

initially bound to null (if they have class type) or to an integer (otherwise). The operator

� is a pair-separator; its component [this �→ {π}] is the approximation for the variables

in scope and its component [] is the approximation for the fields. The information is then

propagated, as shown in Fig. 4. Then, just as for the domain E , at the end of the method the

result [this �→ {π}] �[] is restricted to E = {n} and we get [] �[], which leads to ∅ which

is a much more precise approximation than the set {π1, π2, π3, π4} obtained in Example 2

with E .

Note that at the end of the method (when f and n go out of scope), the approximation of

the fields next and rotation are reset to ∅. The justification for this is that, at this point, it is

no longer possible to reach the Square object created at π2 whose field rotation contained

objects created at π1 or π4, nor is it possible to reach the Circle object created at π3 whose

nextfield might have contained something created at π2. This is an example of the application

of our abstract garbage collector for ER (Definition 44).

The domain ER can hence be seen as the specification of a new escape analysis, which

includesE as its foundational kernel. Example 3 shows that the abstract domainER is actually

more precise than E . Our implementation of ER (Section 6) shows that it can actually be

used to obtain non-trivial escape analysis information for Java bytecode.

Springer

422 Higher-Order Symb Comput (2006) 19:415–463

1.4 Structure of the paper

After a brief summary of our notation and terminology in Section 2, we pass in Section 3

to recall the framework of [45] on which the analysis is based. Then, in Section 4, we

formalise our basic domain E and provide suitable abstract operations for its analysis. We

show that the analysis induced by E is very imprecise. Hence, in Section 5 we refine the

domain E into the more precise domain ER for escape analysis. In Section 6, we discuss

our prototype implementation and experimental results. Section 7 discusses related work.

Section 8 concludes the main part of the paper. Proofs not inlined in this paper are available

in [29].

Preliminary, partial versions of this paper appeared in [26] and [27]. The current paper

is a seamless fusion of these papers, with the proofs of the theoretical results and with a

description and evaluation of the implementation of the escape analysis over the domain ER.

2 Preliminaries

A total (partial) function f is denoted by �→ (→). The domain (range) of f is dom(f)

(rng(f)). We denote by [v1 �→ t1, . . . , vn �→ tn] the function f where dom(f) = {v1, . . . , vn}
and f (vi) = ti for i = 1, . . . , n. Its update is f [w1 �→ d1, . . . , wm �→ dm], where the domain

may be enlarged. By f |s (f |−s) we denote the restriction of f to s ⊆ dom(f) (to dom(f) \ s).

If f and g are functions, we denote by f g the composition of f and g, such that f g(x) =
f (g(x)). If f (x) = x then x is a fixpoint of f . The set of fixpoints of f is denoted by fp(f).

A pair of elements is written a � b. A definition of a pair S such as S = a � b, with a and

b meta-variables, silently defines the pair selectors s.a and s.b for s ∈ S. The cardinality of a

set S is denoted by #S. The disjoint union of two sets S, T is denoted by S + T . To simplify

expressions, particulary when the set is used as a subscript, we sometimes write a singleton

set {x} as x . If S is a set and ≤ is a partial relation over S, we say that S is a partial ordering if

it is reflexive (s ≤ s for every s ∈ S), transitive (s1 ≤ s2 and s2 ≤ s3 entail s1 ≤ s2 for every

s1, s2, s3 ∈ S) and anti-symmetric (s1 ≤ s2 and s2 ≤ s1 entail s1 = s2 for every s1, s2 ∈ S). If

S is a set and ≤ a partial ordering on S, then the pair S � ≤ is a poset.
A complete lattice is a poset C � ≤ where least upper bounds (lub) and greatest lower

bounds (glb) always exist. Let C � ≤ and A � 	 be posets and f : C �→ A. We say that f is

monotonic if c1 ≤ c2 entails f (c1) 	 f (c2). It is (co-)additive if it preserves lub’s (glb’s).

Let f : A �→ A. The map f is reductive (respectively, extensive) if f (a) 	 a (respectively,

a 	 f (a)) for any a ∈ A. It is idempotent if f (f (a)) = f (a) for any a ∈ A. It is a lower
closure operator (lco) if it is monotonic, reductive and idempotent.

We recall now the basics of abstract interpretation [14, 15]. Let C � ≤ and A � 	 be two

posets (the concrete and the abstract domain). A Galois connection is a pair of monotonic

maps α : C �→ A and γ : A �→ C such that γα is extensive and αγ is reductive. It is a

Galois insertion when αγ is the identity map i.e., when the abstract domain does not contain

useless elements. If C and A are complete lattices and α is strict and additive, then α is

the abstraction map of a Galois connection. If, moreover, α is onto or γ is one-to-one, then

α is the abstraction map of a Galois insertion. In a Galois connection, γ can be defined

in terms of α as γ (a) = ∪{c | α(c) 	 a}, where ∪ is the least upper bound operation over

the concrete domain C . Hence, it is enough to provide α to define a Galois connection. An

abstract operator f̂ : An �→ A is correct w.r.t. f : Cn → C if α f γ 	 f̂ . For each operator f ,

there exists an optimal (most precise) correct abstract operator f̂ defined as f̂ = α f γ . This

means that f̂ does the best it can with the information expressed by the abstract domain.

Springer

Higher-Order Symb Comput (2006) 19:415–463 423

The composition of correct operators is correct. The composition of optimal operators is not

necessarily optimal. The semantics of a program is the fixpoint of a map f : C �→ C, where

C is the computational domain. Its collecting version [14, 15] works over properties of C
i.e., over ℘(C) and is the fixpoint of the powerset extension of f . If f is defined through

suboperations, their powerset extensions and ∪ (which merges the semantics of the branches

of a conditional) induce the extension of f .

3 The framework of analysis

The framework presented here is for a simple typed object-oriented language where the

concrete states and operations are based on [45]. It allows us to derive a compositional,

denotational semantics, which can be seen as an analyser, from a specification of a domain of

abstract states and operations which work over them (hence called state transformers). Then

problems such as scoping, recursion and name clash can be ignored, since these are already

solved by the semantics. Moreover, this framework relates the precision of the analysis to that

of its abstract domain so that traditional techniques for comparing the precision of abstract

domains can be applied [13–15].

The definition of a denotational semantics, in the style of [52], by using the state trans-

formers of this section can be found in [45]. Here we only want to make clear some points:

– We allow expressions to have side-effects, such as method call expressions, which is not

the case in [52]. As a consequence, the evaluation of an expression from an initial state

yields both a final state and the value of the expression. We use a special variable res of

the final state to hold this value;

– The evaluation from an initial state σ1 of a binary operation such as e1 + e2, where e1 and

e2 are expressions, first evaluates e1 from σ1, yielding an intermediate state σ2, and then

evaluates e2 from σ2, yielding a state σ3. The value v1 of res in σ2 is that of e1, and the value

v2 of res in σ3 is that of e2. We then modify σ3 by storing in res the sum v1 + v2. This yields

the final state. Note that the single variable res is enough for this purpose. The complexity

of this mechanism w.r.t. a more standard approach [52] is, again, a consequence of the

use of expressions with side-effects;

– Our denotational semantics deals with method calls through interpretations: an interpre-

tation is the input/output behaviour of a method, and is used as its denotation whenever

that method is called. As a nice consequence, our states contain only a single frame, rather

than an activation stack of frames. This is standard in denotational semantics and has been

used for years in logic programming [8].

– The computation of the semantics of a program starts from a bottom interpretation which

maps every input state to an undefined final state and then updates this interpretation with

the denotations of the methods body. This process is iterated until a fixpoint is reached as

is done for logic programs [8]. The same technique can be applied to compute the abstract

semantics of a program, but the computation is performed over the abstract domain. It is

also possible to generate constraints which relate the abstract approximations at different

program points, and then solve such constraints with a fixpoint engine. The latter is the

technique that we use in Section 6.

3.1 Programs and creation points

We recall here the semantical framework of [45].

Springer

424 Higher-Order Symb Comput (2006) 19:415–463

Definition 4 (Type Environment). Each program in the language has a finite set of identifiers
Id such that out, this ∈ Id and a finite set of classes K ordered by a subclass relation ≤ such

that K � ≤ is a poset. Let Type = {int} � K and ≤ be extended to Type by defining int ≤ int.
Let Vars ⊆ Id be a set of variables such that {out, this} ⊆ Vars. A type environment for a

program is any element of the set

TypEnv = {τ : Vars → Type | if this ∈ dom(τ) then τ (this) ∈ K }.

In the following, τ will implicitly stand for a type environment.

A class contains local variables (fields) and functions (methods). A method has a set

of input/output variables called parameters, including out, which holds the result of the

method, and this, which is the object over which the method has been called (the receiver
of the call). Methods returning void are represented as methods returning an int of constant

value 0, implicitly ignored by the caller of the method.

Example 5. Consider the example program given in Fig. 1. Here Id includes, in addition to

the identifiers out and this, user-defined identifiers such as rotation, def, x, y, rot. The

set of classes is

K = {Angle, Figure, Square, Circle, Scan}
where the ordering ≤ is defined so that Square ≤ Figure and Circle ≤ Figure. Variables

for this program include x, y, f, n and this. Variable out is used to hold the return value

of the methods, so that the return e statement can be seen as syntactic sugar for out = e
(with no following statements). At points w0 and w1, the type environments are

τw0
= [out �→ int, this �→ Circle]

τw1
= [f �→ Figure, n �→ Figure, out �→ int, this �→ Scan].

Fields is a set of maps which bind each class to the type environment of its fields. The

variable this cannot be a field. Methods is a set of maps which bind each class to a map from

identifiers to methods. Pars is a set of maps which bind each method to the type environment

of its parameters (its signature).

Definition 6 (Field, Method, Parameter). Let M be a finite set of methods. We define

Fields = {F : K �→ TypEnv | this �∈ dom(F(κ)) for every κ ∈ K}
Methods = K �→ (Id → M)

Pars = {P : M �→ TypEnv | {out, this} ⊆ dom(P(ν)) for ν ∈ M}.
The static information of a program is used by the static analyser.

Definition 7 (Static Information). The static information of a program consists of a poset

K � ≤, a set of methods M and maps F ∈ Fields, M ∈ Methods and P ∈ Pars.

Fields in different classes but with the same name can be disambiguated by using their

fully qualified name such as in the Java Virtual Machine [33]. For instance, we write Circle.x

for the field x of the class Circle.

Springer

Higher-Order Symb Comput (2006) 19:415–463 425

Fig. 5 The static information of the program in Fig. 1

Example 8. The static information of the program in Fig. 1 is shown in Fig. 5. Note that the

result of the method Angle.acute in Fig. 1 becomes the type of out in P(Angle.acute) in

Fig. 5.

The only points in the program where new objects can be created are the new statements.

We require that each of these statements is identified by a unique label called its creation
point.

Definition 9 (Creation Point). Let � be a finite set of labels called creation points. A map

k : � �→ K relates every creation point π ∈ � with the class k(π) of the objects it creates.

Example 10. Consider again the program in Fig. 1. In that program {π, π1, π2, π3, π4} is the

set of creation points, where we assume that π decorates an external creation point for Scan

(not shown in the figure). Then

k = [π �→ Scan, π1 �→ Angle, π2 �→ Square, π3 �→ Circle, π4 �→ Angle].

Springer

426 Higher-Order Symb Comput (2006) 19:415–463

3.2 Concrete states

To represent the concrete state of a computation at a particular program point we need to

refer to the concrete values that may be assigned to the variables. Apart from the integers and

null, these values need to include locations which are the addresses of the memory cells used

at that point. Then the concrete state of the computation consists of a map that assigns type

consistent values to variables (frame) and a map from locations to objects (memory) where

an object is characterised by its creation point and the frame of its fields. Hence the notion of

object that we use here is more concrete than that in [45], which relates a class rather than a

creation point to each object. A memory can be updated by assigning new (type consistent)

values to the variables in its frames.

Definition 11 (Location, Frame, Object, Memory). Let Loc be an infinite set of locations and

Value = Z + Loc + {null}. We define frames, objects and memories as

Frameτ =
⎧⎨⎩φ ∈ dom(τ) �→ Value

∣∣∣∣∣∣
for every v ∈ dom(τ)

τ (v) = int ⇒ φ(v) ∈ Z
τ (v) ∈ K ⇒ φ(v) ∈ {null} ∪ Loc

⎫⎬⎭
Obj = {π � φ | π ∈ �, φ ∈ FrameF(k(π))}

Memory = {μ ∈ Loc → Obj | dom(μ) is finite}.

Let μ1, μ2 ∈ Memory and L ⊆ dom(μ1). We say that μ2 is an L-update of μ1, written

μ1 =L μ2, if L ⊆ dom(μ2) and for every l ∈ L we have μ1(l).π = μ2(l).π .

The initial value for a variable of a given type is used when we add a variable in scope. It is

defined as �(int) = 0, �(κ) = null for κ ∈ K. This function is extended to type environments

(Definition 4) as �(τ)(v) = �(τ (v)) for every v ∈ dom(τ).

Example 12. Consider again the program in Fig. 1 and its static information in Fig. 5. The

type environment τw1
, a frame φ1, memories μ1, μ2, μ3, objects o1, o2, o3, o4 and a state σ1

for this program at program point w1 with locations l, l ′, l ′′ ∈ Loc are given in Fig. 6. Let

also

φ2 = [f �→ 2, n �→ l ′, out �→ −2, this �→ l].

Then Frameτw1
contains φ1 but not φ2 because f is bound to 2 in φ2 (while it has class Figure

in τw1
).

The object o1 created at π has class k(π) = Scan since F(Scan) = []. Objects created at

π2 have class Square so that these could be o2 and o3. Similarly, since k(π3) = Circle, an

object created at π3 is o4. With these objects, Memory contains the maps μ1, μ2, μ3. With

these definitions of μ1, μ2 and μ3, the memory μ2 is neither an l-update nor an l ′-update of

μ1 since μ1(l).π = π whereas μ2(l).π = π2 and also μ1(l ′).π = π2 whereas μ2(l ′).π = π .

However, as μ3(l).π = π2 and μ3(l ′).π = π2, we have μ1 =l ′ μ3 and μ2 =l μ3. Also, letting

μ4 = [l �→ o1, l ′ �→ o3, l ′′ �→ o4], then we have μ1 ={l,l ′,l ′′} μ4.

Type correctness and conservative garbage collection guarantee that there are no dangling

pointers and that variables may only be bound to locations which contain objects allowed by

Springer

Higher-Order Symb Comput (2006) 19:415–463 427

Fig. 6 The creation point map k and, for program point w1, the type environment, a frame, objects and

memories for the program in Fig. 1

the type environment. This is a sensible constraint for the memory allocated by strongly-typed

languages such as Java [3].

Definition 13 (Weak Correctness). Let φ ∈ Frameτ and μ ∈ Memory. We say that φ is

weakly τ -correct w.r.t. μ if for every v ∈ dom(φ) such that φ(v) ∈ Loc we have φ(v) ∈ dom(μ)

and k((μφ(v)).π) ≤ τ (v).

We strengthen the correctness notion of Definition 13 by requiring that it also holds for the

fields of the objects in memory.

Definition 14 (τ -Correctness). Let φ ∈ Frameτ and μ ∈ Memory. We say that φ is τ -correct
w.r.t. μ and write φ � μ : τ , if

Springer

428 Higher-Order Symb Comput (2006) 19:415–463

1. φ is weakly τ -correct w.r.t. μ and,

2. for every o ∈ rng(μ), o.φ is weakly F(k(o.π))-correct w.r.t. μ.

Example 15. Let τw1
, φ1, μ1, μ2 and μ3 be as in Fig. 6.

– φ1 � μ1 : τw1
. Condition 1 of Definition 14 holds because

{v ∈ dom(φ1) | φ1(v) ∈ Loc} = {this, f},
{φ1(this), φ1(f)} = {l, l ′} ⊆ dom(μ1),

k(μ1(l).π) = k(o1.π) = k(π) = Scan = τw1
(this),

k(μ1(l ′).π) = k(o2.π) = k(π2) = Square ≤ Figure = τw1
(f).

Condition 2 of Definition 14 holds because

rng(μ1) = {o1, o2, o4},
rng(o1.φ) = rng(o4.φ) ∩ Loc = ∅,

rng(o2.φ) ∩ Loc = {l ′} ⊆ dom(μ1),

k(μ1(l ′).π) = k(o2.π) = Square ≤ Figure = F(o2.π)(next).

– φ1 � μ2 : τw1
does not hold, since condition 1 of Definition 14 does not hold. Namely,

τw1
(this) = Scan, k((μ2φ1(this)).π) = k(o2.π) = k(π2) = Square and Square �≤

Scan.

– φ1 � μ3 : τw1
does not hold, since condition 2 of Definition 14 does not hold.

Namely, o3 ∈ rng(μ3) and o3.φ is not F(k(o3.π))-correct w.r.t. μ3, since we have that

o3.φ(rotation) = l, Square �≤ Angle but k(μ3(l).π) = k(o2.π) = k(π2) = Square and

moreover F(k(o3.π))(rotation) = F(Square)(rotation) = Angle.

Definition 16 defines the state of the computation as a pair consisting of a frame and

a memory. The variable this in the domain of the frame must be bound to an object. In

particular, it cannot be null. This condition could be relaxed in Definition 16. This would

lead to simplifications in the following sections (such as in Definition 25). However, our

condition is consistent with the specification of the Java programming language [3]. Note,

however, that there is no such hypothesis about the local variable number 0 of the Java Virtual

Machine, which stores the this object [33].

Definition 16 (State). If τ is a type environment associated with a program point, the set of

possible states of a computation at that point is any subset of

τ =
{
φ � μ

∣∣∣∣φ ∈ Frameτ , μ ∈ Memory, φ � μ : τ,

if this ∈ dom(τ) then φ(this) �= null

}
.

Example 17. Let τw1
, φ1, μ1, μ2 and μ3 be as in Fig. 6. Then, in Example 15, we have shown

that φ1 � μ1 : τw1
holds and that φ1 � μ2 : τw1

and φ1 � μ3 : τw1
do not hold. Thus, at program

point w1, we have φ1 � μ1 ∈
τw1
, φ1 � μ2 �∈
τw1

and φ1 � μ3 �∈
τw1
.

The frame of an object o in memory is itself a state for the instance variables of o.

Proposition 18. Let φ � μ ∈
τ and o ∈ rng(μ). Then (o.φ) � μ ∈
F(k(o.π)).

Springer

Higher-Order Symb Comput (2006) 19:415–463 429

Proof: Since φ � μ ∈
τ , from Definition 16 we have φ � μ : τ . From Definition 14 we know

that o.φ is weakly F(k(o.π))-correct w.r.t. μ so that (o.φ) � μ : F(k(o.π)). Since this �∈
dom(F(k(o.π))) (Definition 6) we conclude that (o.φ) � μ ∈
F(k(o.π)).

�

3.3 The operations over the concrete states

Figures 7 and 8 show the signatures and the definitions, respectively, of a set of operations

over the concrete states for a type environment τ . The variable res holds intermediate results,

as we said at the beginning of this section. We briefly introduce these operations.

Fig. 7 The signature of the operations over the states

Springer

430 Higher-Order Symb Comput (2006) 19:415–463

– The nop operation does nothing.

– A get operation loads into res a constant, the value of another variable or the value of the

field of an object. In the last case (get field), that object is assumed to be stored in res before
the get operation. Then (μφ′(res)) is the object whose field f must be read, (μφ′(res)).φ

are its fields and (μφ′(res)).φ(f) is the value of the field named f .

– A put operation stores in v the value of res or of a field of an object pointed to by res. Note

that, in the second case, put field is a binary operation since the evaluation of e1. f = e2 from

an initial state σ1 works by first evaluating e1 from σ1, yielding an intermediate state σ2, and

then evaluating e2 from σ2, yielding a state σ3. The final state is then put field(σ2)(σ3) [45],

where the variable res of σ2 holds the value of e1 and the variable res of σ3 holds the

value of e2. The object whose field is modified must still exist in the memory of σ3. This

is expressed by the update relation (Definition 11). As there is no result, res is removed.

Providing two states i.e., two frames and two heaps for put field and, more generally, for

binary operations, may look like an overkill and it might be expected that a single state

and a single frame would be enough. However, our decision to have two states has been

dictated by the intended use of this semantics i.e., abstract interpretation. By only using

operations over states, we have exactly one concrete domain, which can be abstracted into

just one abstract domain. Hybrid operations, working on states and frames, would only

complicate the abstraction.

– For every binary operation such as = and + over values, there is an operation on states.

Note that (in the case of =) Booleans are implemented by means of integers (every non-

negative integer means true). We have already explained why we use two states for binary

operations.

– The operation is null checks that res points to null.
– The operation call is used before, and the operation return is used after, a call to a method

ν. While callν creates a new state in which ν can execute, the operation returnν restores

the state σ which was current before the call to ν, and stores in res the result of the call.

As said in (the beginning of) Section 3, the denotation of the method is taken from an

interpretation, in a denotational fashion [8]. Hence the execution from an initial state σ1

of a method call denoted, in the current interpretation, by d :
 →
, yields the final

state return(σ1)(d(call(σ1))). Note that return is a binary operation whose first argument is

the state of the caller at call-time and whose second argument is the state of the callee

at return-time. Its definition in Fig. 8 restores the state of the caller but stores in res the

return value of the callee. By using a binary operation we can define our semantics in

terms of states rather than in terms of activation stacks. This is a useful simplification

when passing to abstraction, since states must be abstracted rather than stacks. Note that

the update relation (Definition 11) requires that the variables of the caller have not been

changed during the execution of the method (although the fields of the objects bound to

those variables may be changed).

– The operation expand (restrict) adds (removes) variables.

– The operation newπ creates a new object o of creation point π . A pointer to o is put in res.

Its fields are initialised to default values.

– The operation lookupm,ν checks if, by calling the method identified by m of the object o
pointed to by res, the method ν is run. This depends on the class k(o.π) of o = μφ(res).

– The operation is true (is false) checks if res contains true (false).

Example 19. Consider again the example in Fig. 1. Let τ = τw1
, φ1, μ1 and σ1 = φ1 � μ1 be

as in Fig. 6 so that, as indicated in Example 17, state σ1 could be the current state at program

Springer

Higher-Order Symb Comput (2006) 19:415–463 431

Fig. 8 The operations over concrete states

point w1. The computation continues as follows [45].

σ2 = get varfτ (σ1) read f.

Let o1, o2, o3, o4 be as in Fig. 6. Then σ2 = φ1 [res �→ φ1(f)] � μ1 = φ1

[
res �→ l ′

]
� μ1 =

[f �→ l ′, n �→ null, out �→ 2, res �→ l ′, this �→ l] � μ1. The lookup operations determine

which is the target of the first virtual call f.def() in Fig. 1. As a result only one of the

Springer

432 Higher-Order Symb Comput (2006) 19:415–463

following blocks of code is run depending on which lookup check is defined.

σ ′
3 = lookupdef,Figure.def

τ [res�→Figure] (σ2) select Figure.def

σ ′
4 = callFigure.def

τ [res�→P(Figure.def)(this)](σ
′
3) initialise the Figure

σ ′
5 = the final state of Figure.def from σ ′

4

σ ′
6 = returnFigure.def

τ [res�→P(Figure.def)(this)](σ
′
3)(σ ′

5) return to the caller

σ ′′
3 = lookupdef,Square.def

τ [res�→Figure] (σ2) select Square.def

σ ′′
4 = callSquare.def

τ [res�→P(Square.def)(this)](σ
′′
3) initialise the Square

σ ′′
5 = the final state of Square.def from σ ′′

4

σ ′′
6 = returnSquare.def

τ [res�→P(Square.def)(this)](σ
′′
3)(σ ′′

5) return to the caller

σ ′′′
3 = lookupdef,Circle.def

τ [res�→Figure] (σ2) select Circle.def

σ ′′′
4 = callCircle.def

τ [res�→P(Circle.def)(this)](σ
′′′
3) initialise the Circle

σ ′′′
5 = the final state of Circle.def from σ ′′′

4

σ ′′′
6 = returnCircle.def

τ [res�→P(Circle.def)(this)](σ
′′′
3)(σ ′′′

5) return to the caller.

The statesσ ′
5,σ ′′

5 andσ ′′′
5 are computed from the current intepretation for the methods. For each

lookup operation, we have (σ2.φ)(res) = l ′ �= null and (σ2.μ)(l ′) = o2; then the method of o2

identified by def is called. Now o2.π =π2 and k(π2)=Square. Moreover M(Square)(def) =
Square.def (Fig. 5). So the only defined lookup operation is that for Square.def. This means

that Square.def is called and σ ′′
3 = σ2, while σ ′

3 and σ ′′′
3 are undefined.

We obtain σ ′′
4 = [this �→ l ′] � μ1. Note that the object o2 is now the this object of this

instantiation of the method Square.def. To compute σ ′′
5 , we should execute the operations

which implement Square.def, starting from the state σ ′′
4 . For simplicity, we report only the

final state of this execution which is

σ ′′
5 = [out �→ 0] � [l �→ o1, l ′ �→ o5, l ′′ �→ o4]︸ ︷︷ ︸

μ5

,

where

o5 = π2 �

[
next �→ l ′, side �→ 1, Square.x �→ 0,

Square.y �→ 0, rotation �→ o6

]
,

o6 = π1 �[degree �→ 0].

The return operation returns the control to the caller method. This means that the frame will

be that of the caller, but the return value of the callee is copied into the res variable of the

caller. Namely,

σ ′′
6 =

[
f �→ l ′, n �→ null,
out �→ 2, res �→ 0, this �→ l

]
� μ5.

3.4 The collecting semantics

The operations of Fig. 8 can be used to define the transition function from states to states,

or denotation, of a piece of code c, as shown in Example 19. By use of call and return,

Springer

Higher-Order Symb Comput (2006) 19:415–463 433

there is a denotation for each method called in c; thus, by adding call and return, we can

plug the method’s denotation in the calling points inside c (as shown in Section 3.3 and

in Example 19). A function I binding each method m in a program P to its denotation

I (m) is called an interpretation of P . Given an interpretation I , we are hence able to de-

fine the denotation TP (I)(m) of the body of a method m, so that we are able to transform I
into a new interpretation TP (I). This leads to the definition of the denotational semantics
of P as the minimal (i.e., less defined) interpretation which is a fixpoint of TP . This way

of defining the concrete semantics in a denotational way through interpretations, is useful

for a subsequent abstraction [15]. The technique, which has been extensively used in the

logic programming tradition [8], has been adapted in [45] for object-oriented imperative

programs by adding the mechanism for dynamic dispatch through the lookup operation in

Fig. 8. Note that the fixpoint of TP is not finitely computable in general, but it does exist as

a consequence of Tarski’s theorem and it is the limit of the ascending chain of interpreta-

tions I0, TP (I0), TP (TP (I0)), . . . , where, for every method m, the denotation I0(m) is always

undefined [47].

The concrete semantics described above denotes each method with a map on states i.e., a

function from
 to
. However, abstract interpretation is interested in properties of states; so

that each property of interest, is identified with the set of all the states satisfying that property.

This leads to the definition of a collecting semantics [14, 15] i.e., a concrete semantics

working over the powerset ℘(
). The operations of this collecting semantics are the powerset

extension of the operations in Fig. 8. For instance, get intiτ is extended into

get intiτ (S) = {get intiτ (σ) | σ ∈ S}

for every S ∈ ℘(
τ). Note that dealing with powersets means that the semantics becomes

non-deterministic. For instance, in Example 19 more than one target of the f.def() virtual

call could be selected at the same time and more than one of the blocks of code could be

executed. Hence we need a ∪ operation over sets of states which merges different threads of

execution at the end of a virtual call (or, for similar motivations, at the end of a conditional).

The notion of denotation now becomes a map over ℘(
τ). Interpretations and the transformer

on interpretations are defined exactly as above. We will assume the result, proved in [45], that

every abstraction of ℘(
τ), ∪ and of the powerset extension of the operations in Fig. 8 induces

an abstraction of the concrete collecting semantics. This is an application to object-oriented

imperative programs of the fixpoint transfer Proposition 27 in [15]. Two such abstractions

will be described in Sections 4 and 5.

4 The basic domain E

We define here a basic abstract domain E as a property of the concrete states of Definition 16.

Its definition is guided by our goal to overapproximate, for every program point p, the set of

creation points of objects reachable at p from some variable or field in scope. Thus an element

of the abstract domain E which decorates a program point p is simply a set of creation points

of objects that may be reached at p. The choice of an overapproximation follows from the

typical use of the information provided by an escape analysis. For instance, an object can be

stack allocated if it does not escape the method which creates it i.e., if it does not belong to

a superset of the objects reachable at its end. Moreover, our goal is to stack allocate specific

Springer

434 Higher-Order Symb Comput (2006) 19:415–463

creation points. Hence, we are not interested in the identity of the objects but in their creation

points.

Although, at the end of this section, we will see that E induces rather imprecise abstract

operations, its definition is important since E comprises exactly the information needed to

implement our escape analysis. Even though its abstract operations lose precision, we still

need E as a basis for comparison and as a minimum requirement for new, improved domains

for escape analysis. Namely, in Section 5 we will define a more precise abstract domainER for

escape analysis, and we will prove (Proposition 56) that it strictly contains E . This situation is

similar to that of the abstract domain G for groundness analysis of logic programs [43] which,

although imprecise, expresses the property looked for by the analysis, and is the basis of all

the other abstract domains for groundness analysis, derived as refinements of G [42]. The

definition of more precise abstract domains as refinements of simpler ones is actually standard

methodology in abstract interpretation nowadays [22]. Another example is strictness analysis

of functional programs, where a first simple domain is subsequently enriched to express more

precise information [31]. A similar idea has also been applied to model-checking, through

a sequence of refinements of a simple abstract domain [17]. A refinement, in this context,

is just an operation that transforms a simpler domain into a richer one i.e., one containing

more abstract elements. There are many standard refinements operations. One of this is

reduced product, which allows one to compose two abstract domains in order to express the

composition of the properties expressed by the two domains, and disjunctive completion,

which enriches an abstract domain with the ability to express disjunctive information about

the properties expressed by the domain [34]. Another example is the linear refinement of a

domain w.r.t. another, which expresses the dependencies of the abstract properties expressed

by the two domains [23]. In Section 5 we use a refinement which is significant for imperative

programs, where assignments to program variables are the pervasive operation. Hence, a

variable-based approximation often yields improved precision w.r.t. a global approximation

of the state, such as expressed by E . This same refinement is used, for instance, when passing

from rapid type analysis to a variable-based class analysis of object-oriented imperative

programs in [45].

We show an example now that clarifies the idea of reachability for objects at a program

point.

Example 20. Consider the program in Fig. 1 and the type environment τw1
for program

point w1 given in Fig. 6. We show that no objects created at π4 will be reachable at pro-

gram point w1. The type environment at w1, which is τw1
, shows that we cannot reach any

object from out, since out can only contain integers. The variable this has class Scan

which has no fields. Since in π4 we create objects of class Angle, they cannot be reached

from this. The variables f and n have class Figure whose only field has type Figure it-

self. Reasoning as for this, we could falsely conclude that no object created at π4 can be

reached from f or n. This conclusion is false since, as Square ≤ Figure, the call rotate(f)

could result in a call in the class Square to the method f.rot(a) which stores a, created

at π4, in the field rotation; and rotation is still accessible to other methods such as

f.draw().

The reasoning in Example 20 leads to the notion of reachability in Definition 21

where we use the actual fields of the objects instead of those of the declared class of the

variables.

Springer

Higher-Order Symb Comput (2006) 19:415–463 435

Definition 21 (Reachability). Let σ = φ � μ ∈
τ and S ⊆
τ . The set of the objects reach-
able in σ is Oτ (σ) = ∪{Oi

τ (σ) | i ≥ 0} where

O0
τ (S) = ∅

Oi+1
τ (S) =

⋃ {
{o} ∪ Oi

F(k(o.π))(o.φ � μ)

∣∣∣∣φ � μ ∈ S, v ∈ dom(τ)

φ(v) ∈ Loc, o = μφ(v)

}
.

The maps Oi
τ are extended to ℘(
τ) as Oi

τ (S) = ∪{Oi
τ (σ) | σ ∈ S}.

Proposition 18 provides a guarantee that Definition 21 is well-defined. Observe that variables

and fields of type int do not contribute to Oτ . We can now define the abstraction map for E .

It selects the creation points of the reachable objects.

Definition 22 (Abstraction Map for E). Let S ⊆
τ . The abstraction map for E is

αE
τ (S) = {o.π | σ ∈ S and o ∈ Oτ (σ)} ⊆ �.

Example 23. Let φ1, μ1, σ1 = φ1 � μ1, o1 and o2 be as defined in Fig. 6. Then {v ∈
dom(τw1

) | φ1(v) ∈ Loc} = {f, this}, μ1φ1(this) = o1 and μ1φ1(f) = o2 so that we have

O1
τ (σ1) = {o1, o2}. However o1.π = π and o2.π = π2 so that, by using the static informa-

tion in Fig. 5, we have F(k(o1.π)) = ∅ and dom(F(k(o2.π))) = {next, rotation, side,
Square.x, Square.y}. From Fig. 6 we conclude that {μ1(o2.φ(f)) | f ∈ dom(F(k(o2.π))),

o2.φ(f) ∈ Loc} = {o2} and therefore

O1
F(k(o2.π))(o2.φ � μ1) =

{
μ(o2.φ(f))

∣∣∣∣ f ∈ dom(F(k(o2.π)))

o2.φ(f) ∈ Loc

}
= {o2}

so that O2
τ (σ1) = {o1, o2} ∪ {o2} = {o1, o2} = O1

τ (σ1). Thus we have a fixpoint and Oτ (σ1) =
{o1, o2}. Note that o4 �∈ Oτ (σ1) i.e., it is garbage.

As o1.π = π and o2.π = π2, we have αE
τw1

(σ1) = {π, π2}. This corresponds with the

approximation we used in Example 2 to decorate program point w1.

4.1 The domain E in the presence of type information

Definition 22 seems to suggest that rng(αE
τ) = ℘(�) i.e., that every set of creation points is a

legal approximation in each given program point. However, this is not true if type information

is taken into account.

Example 24. Consider the program point w0 in Fig. 1 and its type environment τw0
= [out �→

int, this �→ Circle]. Then αE
τw0

(σ) �= {π4} for every σ = φ � μ ∈
τ . This is because

αE
τw0

(σ) =
⋃ {

{o.π}
⋃

αE
F(k(o.π))((o.φ) � μ)

∣∣∣ v ∈ {this}, φ(v) ∈ Loc
o = μφ(v)

}
.

By Definition 13 we know that if φ(v) ∈ Loc then k(o.π) = Circle. Hence o.π = π3. We

conclude that either φ(v) = null and αE
τw0

(σ) = ∅, or φ(v) ∈ Loc and π3 ∈ αE
τw0

(σ). In both

cases it is not possible that αE
τw0

(σ) = {π4}.
Springer

436 Higher-Order Symb Comput (2006) 19:415–463

Example 24 shows that static type information provides escape information by indicating

which subsets of creation points are not the abstraction of any concrete states. We should

therefore characterise which are the good or meaningful elements of ℘(�). This is important

because it reduces the size of the abstract domain and removes useless creation points during

the analysis through the use of an abstract garbage collector δτ (Definition 25).

Let e ∈ ℘(�). Then δτ (e) is defined as the largest subset of e which contains only those

creation points deemed useful by the type environment τ . This set is computed first by

collecting the creation points that create objects compatible with the types in τ . For each

of these points, this check is reiterated for each of the fields of the object it creates until a

fixpoint is reached. Note that if there are no possible creation points for this, all creation

points are useless.

Definition 25 (Abstract Garbage Collector δ). Let e ⊆ �. We define δτ (e) = ∪{δi
τ (e) | i ≥

0} with

δ0
τ (e) = ∅

δi+1
τ (e) =

⎧⎪⎪⎨⎪⎪⎩
∅ if this ∈ dom(τ) and no π ∈ e is s.t. k(π) ≤ τ (this)⋃{ {π} ⋃

δi
F(π)(e)

∣∣ κ ∈ rng(τ)
⋂

K, π ∈ e, k(π) ≤ κ
}

otherwise.

It follows from Definition 25 that δi
τ ⊆ δi+1

τ and hence δτ = δ#�
τ . Note that in Definition 25

we consider all subclasses of κ (Example 20).

Example 26. Let us look at the program in Fig. 1.

Consider first the program point w0 and the type environment τw0
= [out �→ int, this �→

Circle] at program point w0. Let e={π, π1, π3, π4}. Then, it can be seen in Fig. 5 that

rng(F(Circle)) ∩ K = {Figure}. Note that κ(π3) = Circle = τw0
(this). Thus, for every

i ∈ N, we have

δ1
F(Circle)(e) = ∪{ {π} ∪ δ0

F(k(π))(e)
∣∣ π ∈ e, k(π) ≤ Figure

} = {π3}
δi+1

F(Circle)(e) = ∪{ {π} ∪ δi
F(k(π))(e)

∣∣ π ∈ e, k(π) ≤ Figure
}

= {π3} ∪ δi
F(Circle)(e) ,

which is enough to prove, by induction, that δi
F(Circle)(e) = {π3} for every i ≥ 1. Then we

have

δi+2
τw0

(e) = ∪{ {π} ∪ δi+1
F(k(π))(e)

∣∣ κ ∈ rng(τ) ∩ K, π ∈ e, k(π) ≤ κ
}

= ∪{ {π} ∪ δi+1
F(k(π))(e)

∣∣ π ∈ e, k(π) ≤ Circle
}

= {π3} ∪ δi+1
F(Circle)(e) = {π3}.

Consider now the program point w1 and the type environment τw1
at program point w1

as given in Fig. 6. Let e = {π, π1, π3, π4}. Suppose that i > 0. As rng(F(Scan)) = ∅, we

have δi
F(Scan)(e) = ∅; in the previous paragraph we have shown that δi

F(Circle)(e) = {π3};
Springer

Higher-Order Symb Comput (2006) 19:415–463 437

similarly, it can be seen that δi
F(Square)(e) = {π1, π3, π4}. We therefore can conclude that, for

all i > 0,

δτw1
(e) = δi+1

τw1
(e)

= ∪{{π} ∪ δi
F(k(π))(e)

∣∣ κ ∈ {Figure, Scan}, π ∈ e, k(π) ≤ κ
}

= {π, π3} ∪ δi+1
F(Square)(e) ∪ δi

F(Circle)(e) ∪ δi
F(Scan)(e)

= {π, π3} ∪ {π1, π3, π4} ∪ {π3} ∪ ∅

= {π, π1, π3, π4}.

Then all the creation points in e are useful in w1 (compare this with Example 20).

Proposition 27 states that the abstract garbage collector δτ is a lower closure operator so

that it possesses the properties of monotonicity, reductivity and idempotence that would be

expected in a garbage collector.

Proposition 27. Let i ∈ N. The abstract garbage collectors δi
τ and δτ are lco’s.

The following result proves that δτ can be used to define rng(αE
τ). Namely, the useful elements

of ℘(�) are those that do not contain any garbage. The proof of Proposition 28 relies on the

explicit construction, for every e ⊆ �, of a set of concrete states X such that ατ (X) = δτ (e),

which is a fixpoint of δτ by a well-known property of lco’s.

Proposition 28. Let δ(τ) be an abstract garbage collector. We have that fp(δτ) = rng(αE
τ)

and ∅ ∈ fp(δτ). Moreover, if this ∈ dom(τ), then for every X ⊆
τ we have αE
τ (X) = ∅ if

and only if X = ∅.

Proposition 28 lets us assume that αE
τ : ℘(
τ) �→ fp(δτ). Moreover, it justifies the follow-

ing definition of our domain E for escape analysis. Proposition 28 can be used to compute

the possible approximations from E at a given program point. However, it does not specify

which of these is best. This is the goal of an escape analysis (Section 4.2).

Definition 29 (Abstract Domain E). Our basic domain for escape analysis is Eτ = fp(δτ),

ordered by set inclusion.

Example 30. Let τw0
and τw1

be as given in Fig. 6. Then

Eτw0
= {∅} ∪ {e ∈ ℘(�) | π3 ∈ e and ({π1, π4} ∩ e �= ∅ entails π2 ∈ e)}

Eτw1
= {∅} ∪ {e ∈ ℘(�) | π ∈ e and ({π1, π4} ∩ e �= ∅ entails π2 ∈ e)}.

The constraints say that there must be a creation point for the this variable and that to reach

an Angle (created at π1 or at π4) from the variables in dom(τw0
) or dom(τw1

), we must be able

to reach a Square (created at π2).

By Definition 22, we know that αE
τ is strict and additive and, by Proposition 28, onto Eτ .

Thus, by a general result of abstract interpretation [14, 15] (Section 2), we have the following

proposition.

Springer

438 Higher-Order Symb Comput (2006) 19:415–463

Proposition 31. The map αE
τ (Definition 22) is the abstraction map of a Galois insertion

from ℘(
τ) to Eτ .

Note that if, in Definition 29, we had defined Eτ as ℘(�), the map αE
τ would induce just

a Galois connection instead of a Galois insertion, as a consequence of Proposition 28.

The domain E induces optimal abstract operations which can be used for an actual escape

analysis. We discuss this in the next subsection.

4.2 Static analysis over E

Figure 9 defines the abstract counterparts of the concrete operations in Fig. 8. Proposition 32

states that they are correct and optimal, in the sense of abstract interpretation (Section 2).

Optimality is proved by showing that each operation in Fig. 9 coincides with the optimal

operationαE ◦ op ◦ γ E , where op is the corresponding concrete operation in Fig. 8, as required

by the abstract interpretation framework. Note that the map γ E is induced by αE (Section 2).

Proposition 32. The operations in Fig. 9 are the optimal counterparts induced by αE of the
operations in Fig. 8 and of ∪. They are implicitly strict on ∅, except for return, which is strict
in its first argument only, and for ∪.

Many operations in Fig. 9 coincide with the identity map. This is a sign of the computational

imprecision conveyed by the domain E . Other operations call the δ garbage collector quite

often to remove creation points of objects which might become unreachable since some

variable has disappeared from the scope. For instance, as the concrete put var operation

removes variable v from the scope (Fig. 8), its abstract counterpart in Fig. 9 calls the garbage

collector. The same happens for restrict which, however, removes a set of variables from the

Fig. 9 The optimal abstract operations over E

Springer

Higher-Order Symb Comput (2006) 19:415–463 439

scope. There are also some operations (is null, put field, lookup) that use res as a temporary

variable and one operation (get field) that changes the type of res. Hence these abstract

operations also need to call the garbage collector. Note that the definitions of the get field,

put field and lookup operations also consider, separately, the unusual situation when we read

a field, respectively, write a field or call a method and the receiver is always null. In this case,

the concrete computation always stops so that the best approximation of the (empty) set of

subsequent states is ∅. The garbage collector is also called by call since it creates a scope

for the callee where only some of the variables of the caller (namely, the parameters of the

callee) are addressable. The new operation adds its creation point to the approximation, since

its concrete counterpart creates an object and binds it to the temporary variable res. The ∪
operation computes the union of the creation points reachable from at least one of the two

branches of a conditional. The return operation states that all fields of the objects bound to the

variables in scope before the call might have been modified by the call. This is reflected by

the use of δF(k(π))(�) in return, which plays the role of a worst-case assumption on the content

of the fields. After Example 33 we discuss how to cope with the possible imprecision of this

definition. The lookup operation computes first the set e′ of the creation points of objects that

may be receivers of the virtual call. If this set is not empty, the variable res (which holds the

receiver of the call) is required to be bound to an object created at some creation point in

e′. This further constrains the creation points reachable from res and this is why we call the

garbage collector δF(k(π)) for each π ∈ e′.
The definitions of return and lookup are quite complex; this is a consequence of our quest

for optimal abstract operations. It is possible to replace their definitions in Fig. 9 by the less

precise but simpler definitions:

returnν
τ (e1)(e2) = δτ (�) ∪ e2 lookupm,ν

τ (e) = e.

Note though that, in practice, the results with the simpler definitions will often be the same.

Example 33. Let us mimic, in E , the concrete computation of Example 19. Let the type

environment τ = τw1
and the concrete states σ1 and σ2 be as given in Fig. 6. We start by

constructing elements e1 and e2 of E corresponding to σ1 and σ2. The abstract state e1 is

obtained by abstracting σ1 (see Example 23):

e1 = αE
τ ({σ1}) = αE

τ (σ1) = {π, π2}
e2 = get varfτ (e1) = {π, π2}.

There are three abstract lookup operations corresponding to the concrete ones and hence we

construct for i = 3, . . . , 6, elements e′
i , e′′

i , e′′′
i of E corresponding to the concrete states σ ′

i ,

σ ′′
i , σ ′′′

i , respectively.

e′
3 = lookupdef,Figure.def

τ [res�→Figure] (e2) = ∅

since {π ∈ e2 | k(π) ≤ Figure and M(π)(def) = Figure.def} = ∅

e′′
3 = lookupdef,Square.def

τ [res�→Figure] (e2)

= δτ (e2) ∪
(⋃ { {π} ∪ δF(k(π))(e2)

∣∣ π ∈ e′′}) = {π, π2} ∪ {π2}

= {π, π2} ,

Springer

440 Higher-Order Symb Comput (2006) 19:415–463

since e′′ =
{
π ∈ e2

∣∣∣∣ k(π) ≤ Figure

M(π)(def) = Square.def

}
= {π2}

e′′′
3 = lookupdef,Circle.def

τ [res �→Figure] (e2) = ∅

since e′′′ =
{
π ∈ e2

∣∣∣∣ k(π) ≤ Figure

M(π)(def) = Circle.def

}
= ∅.

The lookup operations for Figure and Circle return ∅ so that, as the abstract operations over

E are strict on ∅ (Proposition 32), e′
4 = e′

5 = e′
6 = e′′′

4 = e′′′
5 = e′′′

6 = ∅. This is because the

analysis is able to guess the target of the virtual call f.def(), since the only objects reachable

there are a Square (created in π2) and a Scan which, however, is not compatible with the

declared type of the receiver of the call. Hence we only have to consider the case when a

Square is selected:

e′′
4 = callSquare.def

τ [res�→Square](e
′′
3) = δ[res�→Square](e

′′
3) = {π2}.

Since P(Square.def)|out = [out �→ int] and E[out �→int] = {∅}, we do not need to execute

the method Square.def to conclude that

e′′
5 = ∅.

Hence

e′′
6 = returnSquare.def

τ [res�→Square](e
′′
3)(e′′

5)

= ∪{{π} ∪ δF(k(π))(�) | π ∈ {π, π2}} = {π, π1, π2, π3, π4}.
Since the abstract semantics is non-deterministic, we merge the results of every thread of

execution through the ∪ operation. Hence the abstract state after the execution of the call

f.def() in Fig. 1 is

e6 = e′
6 ∪ e′′

6 ∪ e′′′
6 = ∅ ∪ {π, π1, π2, π3, π4} ∪ ∅ = {π, π1, π2, π3, π4}.

In Example 33, the imprecision of the analysis induced by E is largely due to the abstract

operation return used to compute e′′
6 . The creation points π1 and π4 for Angles need to be

added because in the execution of the methods Square.def any field of the object bound to

this could be modified. For instance, an Angle could be bound to the field rotation of the

object bound to this. This is what actually happens for π1 in the method Square.def (Fig. 1),

while the introduction of the creation point π4 is an imprecise (but correct) assumption. This

is a consequence of the definition of E as the set of sets of reachable creation points. At the

end of a method, we only have rather weak information about the set e of creation points

of the objects reachable from out. For instance, if out has type int, such as in Example 33,

we can only have e = ∅. When we return to the caller, the actual parameters return into

scope. The definition of return in Fig. 8 shows that these parameters are unchanged (because

of the condition μ1 =L μ2, where L = rng(φ1)|−res ∩ Loc, on the concrete operation). This

is reflected by the condition π ∈ e1 in the abstract return operation in Fig. 9. However,

we do not know anything about their fields. Without such information, only a pessimistic

assumption can be made, which is expressed by the use of � in the abstract return operation.

This problem can be solved by including a shadow copy of the actual parameters among the

variables in scope inside a method. An example of the use of this technique will be given

Springer

Higher-Order Symb Comput (2006) 19:415–463 441

later (see Example 52). By using this technique, we can actually improve the precision of the

computation in Example 33. As reported in Example 2, we get the more precise approximation

{π, π1, π2} after the first call to f.def().

There is, however, another problem related with the domain E . It is exemplified below.

Example 34. Let the approximation provided by E before the statement f = new Circle()

in Fig. 1 be {π, π1, π2, π4} (Example 2). We can compute the approximation after that

statement by executing two abstract operations. Since the object created in π3 gets stored

inside the variable f, we would expect the creation point π2 of the old value of f to disappear.

But this does not happen:

newπ3

τ ({π, π1, π2, π4}) = {π, π1, π2, π3, π4}
put varfτ [res�→Circle]({π, π1, π2, π3, π4}) = {π, π1, π2, π3, π4}.

This time, the imprecision is a consequence of the fact that n ∈ dom(τ), τ (n) = Figure and

k(π2) = Square ≤ Figure. Since the abstract domain E does not allow one to know the

creation points of the objects bound to a given variable, but only provides global information

on the creation points of the objects bound to variables and fields as a whole, we do not know

whether π2 is the creation point of an object bound to f (and in such a case it disappears)

or to n instead (and in such a case it must not disappear). Hence a correct put var operation

cannot make π2 disappear. We solve this problem in Section 5 by introducing this missing

information into a new, more precise, abstract domain ER.

5 The refined domain ER

We define here a refinement ER of the domain E of Section 4, in the sense that ER is a

concretisation of E (Proposition 56). The idea underlying the definition of ER is that the

precision of E can be improved if we can speak about the creation points of the objects bound

to a given variable or field (see the problem highlighted in Example 34). The construction of

ER is very similar to that of E .

5.1 The domain

Definition 11 defines concrete values. The domain ER we are going to define approximates

every concrete value with an abstract value. An abstract value is either ∗, which approximates

the integers, or a set e ⊆ �, which approximates null and all locations containing an object

created in some creation point in e. An abstract frame maps variables to abstract values

consistent with their type.

Definition 35 (Abstract Values and Frames). Let the abstract values be ValueER = {∗} ∪
℘(�). We define

FrameERτ =

⎧⎪⎪⎨⎪⎪⎩φ ∈ dom(τ) �→ ValueER

∣∣∣∣∣∣∣∣
for every v ∈ dom(τ)

if τ (v) = int then φ(v) = ∗
if τ (v) ∈ K and π ∈ φ(v)

then k(π) ≤ τ (v)

⎫⎪⎪⎬⎪⎪⎭ .

The set FrameERτ is ordered by pointwise set-inclusion.

Springer

442 Higher-Order Symb Comput (2006) 19:415–463

Example 36. Let τw1
be as defined in Fig. 6. Then we have

[f �→ {π2}, n �→ {π2, π3}, out �→ ∗, this �→ {π}] ∈ FrameERτw1

[f �→ {π, π2}, n �→ {π2, π3}, out �→ ∗, this �→ {π}] �∈ FrameERτw1
,

since k(π) = Scan, τw1
(f) = Figure and Scan �≤ Figure.

The map ε extracts the creation points of the objects bound to the variables.

Definition 37 (Extraction Map). The map ετ : ℘(
τ) �→ FrameERτ is such that, for every

S ⊆
τ and v ∈ dom(τ),

ετ (S)(v) =
{∗ if τ (v) = int

{(μφ(v)).π | φ � μ ∈ S and φ(v) ∈ Loc} if τ (v) ∈ K.

Example 38. Consider the state σ1 in Fig. 6. Then

ετw1
(σ1) = [f �→ {π2}, n �→ ∅, out �→ ∗, this �→ {π}].

Since it is assumed that all the fields are uniquely identified by their fully qualified name,

the type environment τ̃ of all the fields introduced by the program is well-defined.

Definition 39 (Type Environment of All Fields).We define the type environment of all fields
as τ̃ = ∪{F(κ) | κ ∈ K}. Let τ ∈ TypEnv be such that dom(τ) ⊆ dom(̃τ) and φ ∈ Frameτ .

Its extension φ̃ ∈ Frameτ̃ is such that, for every v ∈ dom(̃τ),

φ̃(v) =
{
φ(v) if v ∈ dom(τ)

�(̃τ (v)) otherwise (Definition 11).

Example 40. Consider the map F in Fig. 5 for the program in Fig. 1. Then

τ̃ =
⎡⎣ Circle.x �→ int, Circle.y �→ int, degree �→ int
next �→ Figure, radius �→ int, rotation �→ Angle

side �→ int, Square.x �→ int, Square.y �→ int

⎤⎦ .

Let φ = [Circle.x �→ 12, Circle.y �→ 5, next �→ l, radius �→ 5] ∈ F(Circle), with l ∈
Loc. We have

φ̃ =
⎡⎣ Circle.x �→ 12, Circle.y �→ 5, degree �→ 0

next �→ l, radius �→ 5, rotation �→ null, side �→ 0

Square.x �→ 0, Square.y �→ 0

⎤⎦ .

An abstract memory is an abstract frame for τ̃ . The abstraction map computes the abstract

memory by extracting the creation points of the fields of the reachable objects of the concrete

memory (Definition 21).

Springer

Higher-Order Symb Comput (2006) 19:415–463 443

Definition 41 (Abstract Map for ER). Let the set of abstract memories be MemoryER =
FrameERτ̃ . We define the map

αER
τ : ℘(
τ) �→ {⊥} ∪ (

FrameERτ × MemoryER
)

such that, for S ⊆
τ ,

αER
τ (S) =

{
⊥ if S = ∅
ετ (S) � ετ̃ ({õ.φ � σ.μ | σ ∈ S and o ∈ Oτ (σ)}) otherwise.

Example 42. Consider the state σ1 in Fig. 6. Let τ = τw1
be as given in Fig. 6. In Example 23

we have shown that Oτ (σ1) = {o1, o2} and in Example 38 we have computed the value of

ετ (σ1). We have

õ1.φ =
⎡⎣ Circle.x �→ 0, Circle.y �→ 0, degree �→ 0

next �→ null, radius �→ 0, rotation �→ null
side �→ 0, Square.x �→ 0, Square.y �→ 0

⎤⎦ ,

õ2.φ =
⎡⎣ Circle.x �→ 0, Circle.y �→ 0, degree �→ 0

next �→ l ′, radius �→ 0, rotation �→ null
side �→ 4, Square.x �→ 3, Square.y �→ −5

⎤⎦
Then (fields not represented are implicitly bound to ∗)

αER
τ (σ1) = αER

τ (φ1 � μ1)

= ετ (σ1) � ετ̃ ({õ1.φ � μ1, õ2.φ � μ1})
= ετ (σ1) � ετ̃ ({õ2.φ � μ1})
= ετ (σ1) �[next �→ {μ1(l ′).π}, rotation �→ ∅, . . .]

= [f �→ {π2}, n �→ ∅, out �→ ∗, this �→ {π}]
�[next �→ {π2}, rotation �→ ∅, . . .].

Compare Examples 42 and 23. You can see that ER distributes over the variables and fields

the same creation points observed by E .

As a notational simplification, we often assume that each field not reported in the approx-

imation of the memory is implicitly bound to ∅, if it has class type, and bound to ∗, if it has

int type.

Just as for αE
τ (Example 24), the following example shows that the map αER

τ is not

necessarily onto.

Example 43. Let τ = [c �→ Circle]. A Circle has no field called rotation. Then

there is no state σ ∈
τ such that its abstraction is αER
τ (σ) = [c �→ {π3}] � [next �→

∅, rotation �→ {π1}, . . .], since only a Circle created at π3 is reachable from the vari-

ables.

Hence, we define a map ξ which forces to ∅ the fields of type class of the objects which have

no reachable creation points. Just as for the garbage collector δ for E , the map ξ can be seen

Springer

444 Higher-Order Symb Comput (2006) 19:415–463

as an abstract garbage collector for ER. This ξ uses an auxiliary map ρ to compute the set

of creation points r reachable from the variables in scope. The approximations of the fields

of the objects created at r are not garbage collected by ξ . The approximations of the other

fields are garbage collected instead.

Definition 44 (Abstract Garbage Collector ξ). We define ρτ : FrameERτ × MemoryER �→
℘(�) and ξτ : {⊥} ∪ (FrameERτ × MemoryER) �→ {⊥} ∪ (FrameERτ × MemoryER) as

ρτ (s) = ∪{ρi
τ (s) | i ≥ 0}, where

ρ0
τ (φ � μ) = ∅

ρi+1
τ (φ � μ) =

⋃ {
{π} ∪ ρi

F(k(π))(μ|dom(F(k(π))) � μ)
∣∣ v ∈ dom(τ)

π ∈ φ(v)

}
and

ξτ (⊥) = ⊥

ξτ (φ � μ) =
{⊥ if this ∈ dom(τ) and φ(this) = ∅
φ �

(∪{μ|dom(F(k(π))) | π ∈ ρτ (φ � μ)}) otherwise.

Example 45. Let s = [c �→ {π3}] � [next �→ ∅, rotation �→ {π1}, . . .]. We have ρτ (s) =
{π3} and hence

ξτ (s) = [c �→ {π3}] � [next �→ ∅, rotation �→ ∅, . . .]

i.e., the abstract garbage collector ξ has recognised π1 as garbage (compare with Example 43).

The following property is expected to hold for a garbage collector. Compare Propositions 27

and 46.

Proposition 46. The abstract garbage collector ξτ is an lco.

The garbage collector ξτ can be used to define rng(αER
τ). Namely, the useful elements of

FrameERτ × MemoryER are exactly those that do not contain any garbage. Compare Propo-

sitions 28 and 47.

Proposition 47. Let ξτ be the abstract garbage collector of Definition 44. Then fp(ξτ) =
rng(αER

τ).

Proposition 47 allows us to assume that αER
τ : ℘(
τ) �→ fp(ξτ) and justifies the following

definition.

Definition 48 (Abstract Domain ER). We define ERτ = fp(ξτ), ordered by pointwise set-

inclusion (with the assumption that ∗ ⊆ ∗ and ⊥ ⊆ s for every s ∈ ERτ).

By Definitions 37 and 41 we know that the map αER
τ is strict and additive. By Proposition 47

we know that it is onto. Thus we have the following result corresponding to Proposition 31

for the domain E .

Springer

Higher-Order Symb Comput (2006) 19:415–463 445

Proposition 49. The map αER
τ is the abstraction map of a Galois insertion from ℘(
τ) to

ERτ .

5.2 Static analysis over ER

In order to use the domain ER for an escape analysis, we need to provide the abstract

counterparts over ER of the concrete operations in Fig. 8. Since ER approximates every

variable and field with an abstract value, those abstract operations are similar to those of

the Palsberg and Schwartzbach’s domain for class analysis in [35] as formulated in [45].

However, ER observes the fields of just the reachable objects (Definition 41), while Palsberg

and Schwartzbach’s domain observes the fields of all objects in memory.

Figure 10 reports the abstract counterparts on ER of the concrete operations in Fig. 8.

These operations are implicitly strict on ⊥ except for ∪. In this case, we define ⊥ ∪ (φ � μ) =
(φ � μ) ∪ ⊥ = φ � μ. Their optimality is proved by showing that each operation in Fig. 10

coincides with the optimal operation αER ◦ op ◦ γ ER, where op is the corresponding concrete

operation in Fig. 8, as required by the abstract interpretation framework. Note that the map

γ ER is induced by αER (Section 2).

Proposition 50. The operations in Fig. 10 are the optimal counterparts induced by αER of
the operations in Fig. 8 and of ∪.

Let us consider each of the abstract operations. The operation nop leaves the state unchanged.

The same happens for the operations working with integer values only, such as is true, is false,

= and +, since the domain ER ignores variables with integer values. The concrete operation

get int loads an integer into res. Hence, its abstract counterpart loads ∗ into res, since ∗ is the

approximation for integer values (Definition 35). The concrete operation get null loads null
into res and hence its abstract counterpart approximates res with ∅. The operation get varv

copies the creation points of v into those of res. The ∪ operation merges the creation points of

the objects bound to each given variable or field in one of the two branches of a conditional.

The concrete is null operation checks if res contains null or not, and loads 1 or −1 in res
accordingly. Hence its abstract counterpart loads ∗ into res. Since the old value of res may no

longer be reachable, we apply the abstract garbage collector ξ . The newπ operation binds res
to an object created at π . The put varv operation copies the value of res into v, and removes

res. Since the old value of v may be lost, we apply the abstract garbage collector ξ . The

restrict operation removes some variables from the scope and, hence, calls ξ . The expandv

operation adds the variable v in scope. Its initial value is approximated with ∗, if it is 0,

and with ∅, if it is null. The get field f operation returns ⊥ if it is always applied to states

where the receiver res is null. This is because ⊥ is the best approximation of the empty set of

final states. If, instead, the receiver is not necessarily null, the creation points of the field f
are copied from the approximation μ(f) into the approximation of res. Since this operation

changes the value of res, possibly making some object unreachable, it needs to call ξ . For the

put field f operation, we first check if the receiver is always null, in which case the abstract

operation returns ⊥. Then we consider the case in which the evaluation of what is going to

be put inside the field makes the receiver unreachable. This (pathological) case happens in a

situation such as a.g.f = m(a) where the method call m(a) sets to null the field g of the object

bound to a. Since we assume that the left-hand side is evaluated before the right-hand side,

the receiver is not necessarily null, but the field updates might not be observable if a.g.f

is only reachable from a. In the third and final case for put field we consider the standard

Springer

446 Higher-Order Symb Comput (2006) 19:415–463

Fig. 10 The abstract operations over ER

situation when we write into a reachable field of a non-null receiver. The creation points of

the right-hand side are added to those already approximating the objects stored in f . The

call operation restricts the scope to the parameters passed to a method and hence ξ is used.

The return operation copies into res the return value of the method which is held in out. The

local variables of the caller are put back into scope, but the approximation of their fields is

provided through a worst-case assumption μ� since they may be modified by the call. This

loss of precision can be overcome by means of shadow copies of the variables, just as for E
(see Example 52). The lookupm operation first computes the subset e of the approximation of

the receiver of the call only containing the creation points whose class leads to a call to the

Springer

Higher-Order Symb Comput (2006) 19:415–463 447

method m. If e = ∅, a call to m is impossible and the result of the operation is ⊥. Otherwise,

e becomes the approximation of the receiver res, so that some creation points can disappear

and we need to call ξ .

Example 51. As in Example 33 for E , let us mimic, in ER, the concrete computation of

Example 19. We start from the abstraction (Definition 41) of σ1, given in Example 42.

Variables and fields not shown are implicitly bound to ∅ if they have class type and to ∗ if

they have type int.

s1 = αER
τ (σ1) =

[
f �→ {π2}, n �→ ∅
this �→ {π}

]
�

[
next �→ {π2}
rotation �→ ∅

]
s2 = get varfτ (s1) =

[
f �→ {π2}, n �→ ∅
res �→ {π2}, this �→ {π}

]
�

[
next �→ {π2}
rotation �→ ∅

]
.

There are three abstract lookup operations corresponding to the concrete ones and hence we

construct for i = 3, . . . , 6, elements s ′
i , s ′′

i , s ′′′
i of ER corresponding to the concrete states

σ ′
i , σ ′′

i , σ ′′′
i , respectively.

s ′
3 = lookupdef,Figure.def

τ [res�→Figure] (s2) = ⊥
since e′ = {π ∈ {π2} | M(π)(def) = Figure.def} = ∅,

s ′′
3 = lookupdef,Square.def

τ [res�→Figure] (s2) = ξτ (s2) = s2

since e′′ = {π ∈ {π2} | M(π)(def) = Square.def} = {π2},
s ′′′

3 = lookupdef,Circle.def
τ [res�→Figure] (s2) = ⊥

since e′′′ = {π ∈ {π2} | M(π)(def) = Circle.def} = ∅.

The lookup operations for Figure and Circle return ⊥ so that, as the abstract operations over

ER are strict on ⊥ (Proposition 50), s ′
4 = s ′

5 = s ′
6 = s ′′′

4 = s ′′′
5 = s ′′′

6 = ⊥. This is because the

analysis is able to guess the target of the virtual call f.def(), since the only creation point for

the receiver f is π2, which creates Squares. Hence we only have to consider the case when

a Square is selected:

s ′′
4 = callSquare.def

τ [res�→Square](s
′′
3)

= ξ[res�→Square]

(
[this �→ {π2}] �

[
next �→ {π2}
rotation �→ ∅

])
= [this �→ {π2}] �[next �→ {π2}, rotation �→ ∅].

Since P(Square.def)|out = [out �→ int] and ER[out �→int] = {⊥, [out �→ ∗] �[next �→
∅, rotation �→ ∅]}, we can just observe that the method Square.def does not diverge

to conclude that

s ′′
5 = [out �→ ∗] �[next �→ ∅, rotation �→ ∅].

Springer

448 Higher-Order Symb Comput (2006) 19:415–463

Hence, by letting μ� denote the top element of MemoryER so that

μ� = [next �→ {π2, π3}, rotation �→ {π1, π4}] ,

we have

s ′′
6 = returnSquare.def

τ [res�→Square](s
′′
3)(s ′′

5)

= returnSquare.def
τ [res�→Square](s2)(s ′′

5)

= ξ[
f �→Figure, n �→Figure,
out �→int, this �→Scan

]([f �→ {π2}, n �→ ∅, this �→ {π}] � μ�)

∪ ([res �→ ∗] �[next �→ ∅, rotation �→ ∅])

= [f �→ {π2}, n �→ ∅, this �→ {π}] � μ�.

Since the abstract semantics is non-deterministic, we merge the results of every thread of

execution through the ∪ operation. Hence the abstract state after the execution of the call

f.def() in Fig. 1 is

s6 = s ′
6 ∪ s ′′

6 ∪ s ′′′
6 = ⊥ ∪ s ′′

6 ∪ ⊥ = s ′′
6 .

The abstract state s ′′
6 shows that the imprecision problem ofE , related to the return operation,

is still present in ER. By comparing s2 with s ′′
6 , it can be seen that the return operation makes

a very pessimistic assumption about the possible creation points for the next and rotation

fields. In particular, from s ′′
6 it seems that creation points π3 and π4 are reachable (they belong

to μ�), which is not the case in the concrete state (compare this with σ ′′
6 in Example 19). As

for the domain E , this problem can be solved by including, in the state of the callee, shadow
copies of the parameters of the caller. This is implemented through a preprocessing of the

bodies of the methods which prepend statements of the form v′:=v for each parameter v,

where v′ is the shadow copy of v. Since shadow copies are fresh new variables, not already

occurring in the method’s body, their value is never changed. In this way, at the end of the

method we know which creation points are reachable from the fields of the objects bound to

such parameters.

Example 52. Let us reexecute the abstract computation of Example 51, but including shadow

copies of the parameters in the abstract states. We denote by p′ the shadow copy of the

parameter p. We assume that the method scan was called with an actual parameter null for

the formal parameter n. The abstract state s1 contains now two shadow copies

s1 =
[
f �→ {π2}, n �→ ∅, n′ �→ ∅
this �→ {π}, this′ �→ {π}

]
�

[
next �→ {π2}
rotation �→ ∅

]
.

The same change applies to the abstract states s2 and s ′′
3 in Example 51. The abstract state s ′′

4

uses a new shadow copy for the actual parameter of the method Square.def i.e.,

s ′′
4 = [this �→ {π2}, this′ �→ {π2}] �[next �→ {π2}, rotation �→ ∅].

Springer

Higher-Order Symb Comput (2006) 19:415–463 449

The static analysis of the method Square.def easily concludes that no object has been created.

Hence now we have

s ′′
5 = [out �→ ∗, this′ �→ {π2}] �[next �→ {π2}, rotation �→ {π1}].

Note that the abstract memory is not empty now (compare with Example 51). This is because

the shadow variable this′ prevents the abstract garbage collector from deleting the creation

point π2 from next and the creation point π1 from rotation. Moreover, we know what is

reachable at the end of the execution of the Square.def method from its parameters (through

their shadow copies). Therefore we do not need to apply any pessimistic assumption at return
time, and we can define the abstract return operation in such a way that it just transfers the

result of the method call into the res variable:

returnν
τ (φ1 � μ1)(φ2 � μ2) = ξτ [res�→P(ν)(out)](φ1[res �→ φ2(out)] � μ2)

so that we have

s ′′
6 =

[
f �→ {π2}, n �→ ∅, n′ �→ ∅
this �→ {π}, this′ �→ {π}

]
�

[
next �→ {π2}
rotation �→ {π1}

]
.

Note that creation points π3 and π4 are no longer reachable (compare with Example 51).

As previously noted in Section 1.2, shadow copies of the parameters are also useful for

dealing with methods that modify their formal parameters.

There was another problem with E , related to the fact that E does not distinguish between

different variables (see end of Section 4). It is not surprising that ER solves that problem, as

shown below.

Example 53. Let the approximation provided byERbefore the statementf = new Circle()

in Fig. 1 be

s = [f �→ {π2}, this �→ {π}] �[next �→ {π2}, rotation �→ {π1, π4}]

(Example 3). We can compute the approximation after that statement by executing two

abstract operations. Since the object created at π3 gets stored inside the variable f, we expect

the creation point π2 of the old value of f to disappear from the approximation of f, which

is what actually happens:

s ′ = newπ3

τ (s)

=
[
f �→ {π2}, res �→ {π3},
this �→ {π}

]
�

[
next �→ {π2},
rotation �→ {π1, π4}

]
,

put varfτ [res�→Circle](s
′)

= ξτ

(
[f �→ {π3}, this �→ {π}] �

[
next �→ {π2}
rotation �→ {π1, π4}

])
= [f �→ {π3}, this �→ {π}] �

[
next �→ {π2}
rotation �→ {π1, π4}

]
.

Springer

450 Higher-Order Symb Comput (2006) 19:415–463

Note that the creation points for rotation do not disappear, since from the Circle bound to

f it might be possible to reach a Square through its next field, and a Square has a rotation

field.

5.3 ER is a refinement of E

We have called ER a refinement of E . In order to give this word a formal justification, we

show here that ER actually includes the elements of E . Namely, we show how every element

e ∈ E can be embedded into an element θ (e) of ER, such that e and θ (e) have the same

concretisation i.e., they represent the same property of concrete states. The idea, formalised

in Definition 54, is that every variable or field must be bound in ER to all those creation

points in e compatible with its type.

Definition 54 (Embedding of E into ER). Let s ⊆ �. We define ϑτ (s) ∈ FrameERτ such that,

for every v ∈ dom(τ),

ϑτ (s)(v) =
{∗ if τ (v) = int
{π ∈ s | k(π) ≤ τ (v)} if τ (v) ∈ K.

The embedding θτ (e) ∈ ERτ of e ∈ Eτ is θτ (e) = ξτ (ϑτ (e) � ϑτ̃ (e)).

Example 55. Let τw1
be as given in Fig. 6 and e = {π, π1, π2, π3} ∈ Eτw1

(Example 30). Then

θτw1
(e) =

[
f �→ {π2, π3}, n �→ {π2, π3}
out �→ ∗, this �→ {π}

]
�

[
next �→ {π2, π3}
rotation �→ {π1}

]
where the missing fields are implicitly bound to ∗ since they have int type.

Proposition 56 states that the embedding of Definition 54 is correct. The proof proceeds

by showing that θτ (e) is an element of ERτ and approximates exactly the same concrete

states as e, that is, for every element of E there is an element of ER which represents exactly

the same set of concrete states.

Proposition 56. Let γ E
τ and γ ER

τ be the concretisation maps induced by the abstraction maps
of Definitions 22 and 41, respectively. Then γ E

τ (Eτ) ⊆ γ ER
τ (ERτ).

The following example shows that the inclusion relation in Proposition 56 must be strict.

Example 57. Let τw1
be as given in Fig. 6. By Example 30 we know that ∅ ∈ Eτw1

and that

every e ∈ Eτw1
\ {∅} must contain π . Moreover, we know that {π1} �∈ Eτw1

and {π4} �∈ Eτw1
.

Hence

#Eτw1
≤ 1 + (#℘({π1, π2, π3, π4}) − 2) < 24.

For what concerns ERτw1
, note that for every e1, e2 ∈ ℘({π2, π3}) the element

[f �→ e1, n �→ e2, out �→ ∗, this �→ {π}] �[next �→ ∅, rotation �→ ∅, . . .]

Springer

Higher-Order Symb Comput (2006) 19:415–463 451

is a fixpoint of ξτ and hence an element of ERτw1
(Definition 48). Hence

#ERτw1
≥ (#℘({π2, π3}))2 = 24 > #Eτw1

.

6 Implementation

In this section, we present our practical evaluation of the abstract domain ER. In Section 6.1,

we describe the implementation of ER used to do the experiments and, in Section 6.2, we

present the experimental results.

6.1 Analysing Java bytecode

We implemented the abstract domain ER inside JULIA [44]. This is a generic static analyser

written in Java that is designed for analysing full Java bytecode. Generic means that JULIA does

not embed any abstract domain but, instead, can be instantiated for a specific static analysis

once an appropriate abstract domain and the attached abstract operations are provided. For

instance, JULIA can perform rapid type analysis (a kind of class analysis [4]) or instead

escape analysis through ER by simply swapping these abstract domains.

In order to target the escape analysis of real Java bytecode programs, the implementation

had to address a number of problems due to features of the Java bytecode itself. We describe

the main problems and how we addressed them. These problems were:

1. the Java Virtual Machine frame contains both local variables and an operand stack and the

number of elements in the operand stack can change within the same method, although

its size at a given program point is fixed and statically known;

2. a very large number of library classes are likely to be called and, hence, would need to be

analysed;

3. Java bytecode is unstructured i.e., lacking any explicit scope structure and code is weaved

through an extensive use of explicit goto jumps;

4. since the Java bytecode makes extensive use of exceptions, the control flow for exceptions

must also be considered.

5. Java bytecode has static fields, which are like global variables of traditional imperative

languages, and are always in scope, so that the objects bound to static fields cannot be

garbage-collected.

We solved Problem (1) by rewording our notion of frame (Definition 35) into a set of

local variables and a stack of variables. The number of stack variables (elements) in a given

program point is statically determined since .class files must be verifiable [33]. Since Java

bytecode holds intermediate results in the operand stack, the latter plays the role of our res
variable.

We dealt with Problem (2) by analysing some library classes only, and making worst-
case assumptions [16] about the behaviour of calls to methods of other classes. This means

that we assume that such calls can potentially do everything, such as storing the param-

eters into (instance or class) fields or returning objects created in every creation point π

(with the restriction, however, that π creates objects of class compatible with the return

type of the method). It is easy to see how an extensive use of this policy quickly leads to

imprecision. The situation is made worse in Java (bytecode) because of constructor chain-

ing, stating that every call to a constructor eventually leads to a constructor in the library
class java.lang.Object [3]. To cope with these problems, we allowed the analyser to

Springer

452 Higher-Order Symb Comput (2006) 19:415–463

access at least the code of java.lang.Object. We also allowed the analyser access to

yet more library classes, leading to more precise but also more costly analyses. For many

native methods, whose Java bytecode is not available, we have provided hand-made bytecode

stubs which agree with the declared abstract behaviour of the methods.

Problem (3) was solved by building a graph of blocks of codes, each bound to all its

possible successors in the control-flow. We use class hierarchy analysis to deal with virtual

calls whose target is not explicitly embedded in the code [18]. Java bytecode subroutines

(i.e., the jsr/ret mechanism) are handled by linking each block ending with a jsr to the

block starting with its target. The block ending with ret is then conservatively linked with

all blocks starting with an instruction immediately following a jsr bytecode in the same
method of ret. The restriction to the same method is correct because of a constraint imposed

on valid Java bytecode by the verification algorithm [33]. The resulting graph is the same as

that of dominators that are defined in [2] for much simpler languages. The graph is then used

for a fixpoint computation by following the structure of its strongly connected components.

We solved Problem (4) by using the technique pioneered in [30]. It consists in denoting

a piece of code c through a map from the input state to the normal output state and an

exceptional output state, representing the state of the Java virtual machine if an exception

has been thrown inside c. Composition of commands uses the normal output state [45], but

composition with exception handlers uses the exceptional final state.

We dealt with Problem (5) by modifying the abstract garbage collector of Definition 44 so

that it does not garbage collect the creation points reachable from static fields. Technically,

this amounts to adding to the map ρτ of Definition 44 the creation points bound to the

approximation of the static fields of the classes of the program.

The abstract domain ER is implemented inside JULIA as a Java class extending an abstract

(in the sense of Java [3]) class standing for a generic abstract domain. This class contains

methods that compute the denotation of every single Java bytecode (i.e., denotations similar

to those given in Fig. 10 for our simplified bytecode).

The choice of representation for a denotation affects the speed of the analysis. The rep-

resentation we chose was a set-constraint [20] between its input and output variables. For

instance, the denotation for the newπ operation in Fig. 10 is implemented as a constraint

{π} ⊆ S over the unknown S. It states that the creation point π must belong to the set S of

the creation points for res in the output of the operations (i.e., for the top of the operand stack

when considering the real Java bytecode). We use ⊆ instead of = since there might be many

possible ways of reaching the program point that follows newπ . We use default reasoning

to state that the other variables are unchanged. This is a generalisation of the technique we

introduced in [28]. As another example, the denotation for the get varv operation in Fig. 10 is

implemented as a constraint S1 ⊆ S2 over the unknowns S1 and S2. It states that the set S2 of

creation points for res in the output must contain the set S1 of creation points for v in the input.

We solve the set-constraints constructed from a program by propagation of creation points.

Namely, a constraint such as {π} ⊆ S propagates π into S. A constraint such as S1 ⊆ S2

propagates the creation points inside S1 into S2. Propagation starts with empty approxima-

tions for the unknowns and continues until there is no further growth in these approximations.

We have implemented this propagation by exploiting a preliminary topological sort of the

unknowns of the constraints. Namely, a constraint S1 ⊆ S2 induces a pre-order (a reflex-

ive and transitive relation) S1 ≤ S2. A topological sort w.r.t. this pre-order builds a tree of

strongly-connected components of unknowns. A strongly-connected component represents

a set of mutually dependent unknowns. We propagate the creation points by following the

topological ordering backwards, so that we can consider one strongly-connected component

at a time. This technique significantly speeds up the propagation.

Springer

Higher-Order Symb Comput (2006) 19:415–463 453

There were two alternative choices we might have taken for the representation. The sim-

plest would have been an extensional definition, in the form of an exhaustive input/output

tabling; but that would have been far too slow. Alternatively, we could have used binary

decision diagrams [9] to represent the denotations; this traditional approach can represent

the denotations in a compact and efficient way. This technique is certainly possible, but it

requires more technical work since we have to code maps over sets of creation points through

Boolean functions. Moreover, since bytecodes usually apply local modifications to the state

(for instance, the put varv bytecode in Fig. 10 leaves all variables other than v untouched),

they would be coded into binary decision diagrams which mainly assert that the output vari-

ables are a copy of their input counterparts. In terms of Boolean functions, this means that

such functions would contain a lot of if and only if constraints, which significantly increases

the size of the diagram. By using set-constraints, we solve this problem through default

reasoning.

The use of set-constraints is appealing since we can easily use the same unknown to repre-

sent two or more distinct approximations. For instance, different unknowns might represent

the approximation of a field at different program points, or rather the same unknown might

represent all those approximations. The second choice leads to a less precise analysis but

also to fewer unknowns and constraints than the first choice. Thus, the second choice should

lead to faster analyses. In the first case we say that the approximation of the fields is flow-
sensitive, while in the second case we say that it is flow-insensitive. The same idea can be

used for the approximations of local variables or even operand stack elements. In Section 6.2

we evaluate the practical consequences of merging different approximations into the same

unknown.

The use of set-constraints for the representation has, however, also a few negative con-

sequences. To keep the implementation simple and fast, our set-constraints are built from

equality, union and intersection only. But these operations do not allow us to represent tests

on the input variables (such as in put field, see Fig. 10). Hence conservative approximations

must be made. For instance, the third case of the definition of put field is always used. This

is correct since it is a conservative approximation of all three cases. Moreover, it does not

introduce a significant precision loss since the first alternative of the definition of put field
deals with the pathological case when a given put field is always applied to a null receiver; and

the second alternative deals with the case when a given put field is always applied to a receiver

which is made unreachable by the evaluation of the value which must be put inside the field.

Both the first two alternatives correspond to legal but quite unusual ways of using put field
and are almost never applicable. For efficiency reasons, the ξ garbage collector is only used

at the end of a method. This is a correct approximation since ξ is an lco (Proposition 46)

although forgetting some of its applications can lose precision. Also for efficiency reasons,

we have used memoisation to cache repeated calls to the abstract garbage collector.

We have described how we map the input abstract state to the output (and exceptional)

abstract state. However, the information needed for stack allocation is related to some internal

points of the program. For instance, in the program in Fig. 1, we would like to know if

the creation point π4 inside rotate could be stack allocated. For this, we need to know

the set of the creation points of objects that are reachable at the end of rotate from

each return value, from the (possible) objects thrown as an exception, or from the fields

of the objects bound to its parameter (i.e., the set E of Section 1.2). Therefore, we need

information related to some internal program points. This can be obtained by placing a

watchpoint at every exit point of a method such as rotate. Note that, with the analyser

JULIA, we can do this automatically and obtain the set of creation points that can be stack

allocated.

Springer

454 Higher-Order Symb Comput (2006) 19:415–463

6.2 Experimental evaluation

We report our experiments with the escape analysis through ER of some Java applications:

Figures is the program in Fig. 1 fed with a list of Circles; LimVect is a small Java

program used in [6]; Dhrystone version 2.1 is a testbench for numerical computations

(most of the arrays it creates can be stack allocated); ImageVwr is an image visualisation

applet; Morph is an image morphing program; JLex version 1.2.6 is the Java version of the

well-known lex lexical analysers generator; JavaCup version 0.10 j and Javacc version

3.2 are compilers’ compilers; Julia version 0.39 is our JULIA analyser itself; Jess version

6.1p7 is a rule engine and scripting language for developing rule-based expert systems.

All these benchmarks are free software except Jess which is copyrighted. Some of these

programs were analysed in [6]; these are LimVect, Dhrystone, JLex, an older version

of Javacc and an older version of Jess. Note that the newer versions of Javacc and

Jess considered here are bigger than those used in [6].

Our experiments have been performed on a Pentium 2.1 Ghz machine with 1024 megabytes

of RAM, running Linux 2.6 and Sun Java Development Kit version 1.5.0 with HotSpot just-

in-time compiler.

For each experiment, we report how many Java classes, methods and bytecodes are anal-

ysed, as well as the time taken by the analysis (in seconds) to build and solve the set of

constraints generated for our escape analysis. We first show the static precision of the anal-

yses (Section 6.2.1). Namely, we report the number of creation points which can be stack

allocated. We study how the precision of the analyses is affected by flow sensitivity and by

the ability to approximate precisely each field. Later (Section 6.2.2), we report the dynamic
precision of the analyses i.e., the number of creation operations which are stack allocated

at run-time and their relative ratio w.r.t. those which are heap allocated. We also provide

information on the amount of memory which is stack allocated rather than heap allocated at

run-time. Finally (Section 6.2.3) we briefly discuss the cost of the analyses.

6.2.1 Static tests

We start from the fastest but also less precise way of using our escape analysis. Namely,

the analyses are completely flow insensitive and field insensitive, in the sense that the fields

are approximated into one variable and, except for java.lang.Object, library classes

are not included. As we said in Section 6.1, calls to methods of other library classes are

approximated through a worst-case assumption. In particular, this assumption states that the

parameters passed to the call escape, since they might be stored into a static field, and hence

be accessible after the call has returned. Because of constructor chaining, all object creations

result in a call to the constructor of java.lang.Object. This is why the inclusion of

that class is a minimum requirement to the precision of the analysis. Otherwise, every newly

created object would escape as soon as it is initialised. The results are shown in Fig. 11,

where for each benchmark we report the number of classes, methods and bytecodes analysed

and the time of the analysis (in seconds).

Figure 11 also reports the number of set-constraints generated for the analysis. These

constraints are organised into a graph. Each variable in the constraints is a node in the graph;

nodes are connected if they are related by some constraint. The linearity column reports

the average size of a strongly-connected component. Linearity is equal to 1.000 for fully

non-recursive programs without cycles. Higher values of linearity represent programs which

use recursion and cycles extensively. For a given number of constraints, their solution is

computed more efficiently if linearity is low.

Springer

Higher-Order Symb Comput (2006) 19:415–463 455

Fig. 11 Flow insensitive escape analyses with ER. Fields are merged. Only java.lang.Object is in-

cluded in the analysis. SA is the number of creation points which are stack allocated; TT is the time per one

thousand bytecodes; NC is the number of constraints generated; LIN is the linearity of the set of constraints

Fig. 12 Flow sensitive (on the operand stack only) escape analyses with ER. Fields are merged. Only

java.lang.Object is included in the analysis

Although the analyses in Fig. 11 are relatively fast, it can be seen that almost no creation

points are found to be stack allocatable. The analyses can be made more precise if flow

sensitivity is used, at least for the operand stack. Results using this level of flow sensitivity

are shown in Fig. 12. They are more precise than those in Fig. 11, but the analyses are

also more expensive. If we also analyse some library classes, the precision of the analyses

improves further. Namely, we decided to add part of the java.lang and java.util
standard Java packages. Such classes are chosen in such a way to include typical candidates

for stack allocation and to form an upward closed set, so that constructor chaining for those

classes never goes out of the set of analysed classes. The results with these additions are

shown in Fig. 13. We only count the creation points inside the classes of the application, so

that numbers are comparable with those in Figs. 11 and 12. In comparison with Fig. 12, we

manage to stack allocate many more creation points, but with a further increase in the cost

of the analyses.

The final experiments used the full power of the ER abstract domain by providing a

(flow insensitive) specific approximation for each field. The results are shown in Fig. 14. The

precision is just slightly better than in Fig. 13, and the analyses require less time. They are

Springer

456 Higher-Order Symb Comput (2006) 19:415–463

Fig. 13 Flow sensitive (on the operand stack only) escape analyses with the abstract domain ER. Fields

are merged. The standard library classes java.lang.{Object, CharSequence, String*, Ab-
stractStringBuilder, Integer, Number, Character} and java.util.{AbstractList,

AbstractCollection, Vector, HashMap, Hashtable, AbstractMap} are included in the analy-

sis. For Julia, we also included the bcel libraries for bytecode manipulation

Fig. 14 Flow sensitive (on the operand stack only) escape analyses with the abstract domain ER. A specific

approximation is used for each field. The same library classes as in Fig. 13 are included in the analysis. For

Julia, we also included the bcel libraries for bytecode manipulation

sometimes even faster than those in Fig. 12. This reduction in time might seem surprising.

However, this is a consequence of the fact that a field-specific approximation slightly increases

the number of constraints, but reduces linearity and the average size of creation point sets;

hence, less time is needed to solve the constraints (compare the linearity columns in Figs. 13

and 14). A similar behaviour has been experienced in [37]. More generally, it has been

witnessed in different contexts that increasing the precision of a static analysis may yield

faster computations, since an imprecise analysis yields spurious execution paths which slow

down the analysis itself.

Beyond these experiments, we also tried to include more library classes in the analysis

(such as all java.lang and java.util packages), but the results were very similar to

those in Fig. 14, confirming the claim in [6] that most of the stack allocatable objects are arrays,

java.lang.StringBuffers and a few objects of the collection classes (vectors and

sets). We also tried to use flow sensitivity for the local variables and the field approximations

but this did not improve the results. This behaviour can be explained, for local variables,

Springer

Higher-Order Symb Comput (2006) 19:415–463 457

by observing that typical Java compilers do not try to recycle local variables if they can be

used for different tasks in different parts of a method. Hence one approximation per method

is enough. Note that both conclusions agree with the results provided in [12] where flow

sensitivity looks useless for stack allocation and a bounded field approximation reduces the

precision of stack allocation in at most one case in ten. The analysis in [12] works for Java

instead of Java bytecode, so flow sensitivity for the operand stack is meaningless in their

case.

The precision of the analyses seems similar to that of the experiments reported in [6]. The

results reported in Fig. 14 for the first five benchmarks are actually optimal, in the sense that

no other creation point can ever be stack allocated. For the other five benchmarks, the exact

comparison is hard since the older versions of the benchmarks, as analysed in [6], are not

available anymore. See, however, Section 7 for a theoretical comparison.

The overall conclusion we draw from our experiments is that flow sensitivity is important,

but only for the stack variables. The inclusion of library classes is also essential for the

precision although, in practice, only very few classes are needed. The ability to approximate

each field individually does not contribute significantly to the precision of the analyses, but

improves their efficiency.

6.2.2 Dynamic tests

The static measurements in Section 6.2.1 have been useful to compare the relative precision

and cost of different implementations of our escape analysis. However, another piece of

information, important for an escape analysis, is the number of creation operations that are

actually avoided at run-time because their creation point has been stack allocated. As well as

the size of the objects which are stack allocated w.r.t. the size of the objects which are heap

allocated. We computed these measurements for the analyses reported in Fig. 14 only, which

are the most precise escape analyses which we managed to implement with ER. Some results

are shown in Fig. 15. For each benchmark, we report the number of objects and the amount

of memory allocated in the stack or in the heap. In Section 7, these results are compared

with results reported for other escape analysers. Here we just note that the poor result for

the escape analysis of Julia is a consequence of the fact that Julia mainly computes a

large set of constraints which escape from their creating methods to flow into the methods

that solve them. We note that escape analysis is of little use for this type of program.

6.2.3 Cost of the analysis

Figure 14 shows that one minute is more than enough to analyse each of the benchmarks,

some of them featuring more than 2000 methods. The JULIA analyser is under development,

so that analysis times can only improve. In theory, as a consequence of using sets of creation

points as variable approximations (Section 6.1), their computation as a fixpoint of a system

of set constraints might require an exponential number of iterations. Thus, an important

observation from the same Fig. 14 is that there is no exponential blow-up of the analysis

time with the size of the benchmarks (see the time per 1000 bytecodes column TT); hence,

it appears from these results that the worst-case scenario, leading to an exponential blow-up,

is not frequent in practice. Moreover, from Fig. 14 it seems that the cost of the analysis is not

only related to the size of the benchmark, but also to its linearity. See for instance the case

of JLex and JavaCup in Fig. 14, which have comparable size (i.e., number of bytecodes)

but quite different linearity.

Springer

458 Higher-Order Symb Comput (2006) 19:415–463

Fig. 15 The dynamic statistics

for our benchmarks. Memory is

expressed in bytes. Dhrystone
performs its numerical

benchmark 100000 times; JLex
is applied to sample.tex.

JavaCup is applied to the

grammar tiger.cup (included

in the distribution of JULIA) with

the -dump states option on.

Julia is applied to the escape

analysis of Dhrystone
performed as in Fig. 14. Javacc
is applied to the grammar

Java1.1.jj. Jess is applied

to the solution of fullmab.clp

7 Discussion

The first escape analysis [36] was designed for functional languages where lists are the

representative data structure. Hence the analysis was meant to stack allocate portions of lists

which do not escape from the function which creates them. That analysis was later made

more efficient in [19] and finally extended to some imperative constructs and applied to very

large programs [5].

More recently, escape analysis has been studied for object-oriented languages. In this

context, there are actually different formalisations of the meaning of escaping. While we

assume that an object o escapes from its creating method if it is still reachable after this

method terminates, others (such as [38, 41, 50]) further require that o is actually used after

the method terminates. This results in less conservative and hence potentially more precise

analyses than ours. Note, however, that our notion of escaping allows us to analyse libraries

whose calling contexts are not known at the time of the analysis.

The first work which can be related to escape analysis seems to us to be [39] where a

lifetime analysis propagates the sources of data structures. This same idea has been used in [1]

where the traditional reaching definition analysis is extended to object-oriented programs.

Note that, to improve efficiency, [1] made the escape analysis demand-driven.

Many escape analyses use however some graph-based representation of the memory of the

system, typically derived from previous work on points-to analysis. Escaping objects are then

identified by applying some form of reachability on this graph. Examples are [12, 41, 49–51].

Points-to information lets such analyses select the target of virtual calls on the basis of the

class of the objects pointed to by the receiver of the virtual call. Although these works abstract

the memory graph into a graph while we abstract the state into E or ER, we think that the

information expressed by E or ER can be derived by abstracting such graphs. Hence our

analyses should be less precise but more efficient than [12, 41, 49–51]. Namely, we miss

Springer

Higher-Order Symb Comput (2006) 19:415–463 459

the sharing information contained in a graph-based representation of the memory of the

system. Note that, to improve efficiency, some escape analyses such as [49] have been made

incremental.

A large group of escape analyses use constraints (typically, set-constraints) for expressing

escape analyses. These include [7, 21, 37, 38, 46], although [46] assumes that points-to

information is available at the time of the analysis. The escape analysis in [6] is unique

in that it uses integer contexts to specify the part of a data structure which can escape.

However, integer contexts are an approximation of the full typing information used in our

abstract domain ER as well as in most of the previously cited escape analyses. This possible

imprecision has been observed also by [12] where it is said (without formal proof) that their

analysis is inherently more precise than that defined in [6]. The simplicity of Blanchet’s

escape analysis is however appealing, and the experimental times he reports in [6] currently

score as the fastest of all the cited analyses that provide timings.

The way we deal with exceptions (Section 6.1) is largely inspired by [30]. It is also similar

to the technique in [10], although their optimised factorisation is not currently implemented

inside our JULIA analyser. Once implemented, we expect it to improve the overall efficiency

of the analyses shown in Fig. 14.

Some escape analyses have been formally proved correct. Namely, [51] has been proved

correct in [40], and [12] in [11]. Neither proof is based on abstract interpretation, and no

optimality result is proved. The proof in [6] is closer to ours, since it is based on abstract

interpretation. However, a Galois connection is proved to exist between the concrete and the

abstract domain, rather than a Galois insertion. Moreover, no optimality result for the abstract

operations is provided.

To the best of our knowledge, our notion of abstract garbage collector (Definitions 25

and 44) and its use for deriving Galois insertions rather than connections (Propositions 31

and 49) is new. A similar idea has been used in [12], which removes from the connection

graphs (their abstraction) that part that consists only of captured nodes (unreachable from

parameters, result and static variables). However, this was not related to the Galois insertion

property. Static types of variables are used in [25] to improve the precision of a points-to

analysis by removing spurious points-to sets which are not allowed by the static typing of

the variables. This idea is somehow similar to our garbage-collectors, but no connection is

shown to the Galois insertion property.

It is quite hard to compare the available escape analyses w.r.t. precision. From a theoretical

point of view, their definitions are sometimes so different that a formal comparison inside

the same framework is impossible. However, below we make some informal comparisons

and discuss some of the issues that affect the precision.

– Escape analyses using graph-based representations of the heap should be the most precise

overall since they express points-to and sharing information [12, 41, 49–51].

– Precision is also significantly affected by the call-graph construction algorithm used for

the analysis which is largely independent from the analysis itself [24, 48]. As ER couples

each variable with the set of its creation points, class information can be recovered and

the call-graph constructed. This is also typical of those analyses that compute some form

of points-to information.

– Another issue related to precision is the level of flow and context sensitivity of the analysis.

Our experiments (Section 6.2) have shown that flow sensitivity is important for the operand

stack only. This agrees with the experiments reported in [12], since the operand stack is a

feature of Java bytecode not present in Java (the target language of [12]). Context sensitivity

i.e., the ability to name a given creation point in method m with different names, depending

Springer

460 Higher-Order Symb Comput (2006) 19:415–463

on the call site of m, is advocated as an important feature of escape analyses [6, 49, 51].

This idea is taken further in [50], where method bodies are cloned for each different calling

context in order to improve the precision of the analysis. Our analysis decorates each given

program point with a unique name, and hence misses this extra axis of precision. Note,

however, that method cloning can safely be applied before many escape analyses, including

ours.

– The optimality of the abstract operations or algorithm used for the analysis also affects

its precision, since optimality entails that the analysis uses the abstract information in

the most precise possible way. To the best of our knowledge, we are the first to prove an

optimality result for the abstract operations of an escape analysis, which is a significant

step forward although we are aware that the composition of optimal operations to build an

abstract semantics is not necessarily optimal.

– A final source of precision comes from the preliminary inlining of small methods before

the actual analysis is applied. Inlining can only enlarge the possibilities for stack allocation,

although care must be taken to avoid any exponential code explosion. As far as we can

see, only [6] applies method inlining before the escape analysis. This technique is largely

independent from the subsequent escape analysis, so it could be applied with other escape

analyses, including our own.

– Some specially designed analyses should perform better on some specific applications.

For instance, the analysis in [38] is probably the most precise one w.r.t. synchronisation

elimination. This is because it allows one to remove unnecessary synchronisation (locking)

on objects which do escape from their creating thread provided that, at run-time, they are

locked by at most one thread. As another example the analysis in [41] is expected to perform

better on multithreaded applications, since it models precisely inter-thread interactions.

All other escape analyses (including ours) conservatively assume instead that everything

stored inside a thread object (and the thread object itself) escapes.

From an experimental point of view, a comparison of different escape analyses is possible

although hard and sometimes contradictory. This difficulty is due to the fact that some

analyses have been evaluated w.r.t. stack allocation, others w.r.t. synchonization elimination,

and others w.r.t. both. Moreover, sometimes only compile-time (static) statistics are provided

(such as [49]), sometimes only run-time (dynamic) statistics (such as [6]), sometimes both

(such as [12] and ourselves). Still, some statistics include the library classes (such as [6, 7,

38]), others only report numbers for the user classes (such as [12], which analyses library

code during the analysis but does not transform it for stack allocation, exactly as we do in

Section 6.2). Furthermore, there is no standard set of benchmarks evaluated across all different

escape analyses. If some benchmark is shared by different analyses, their version number is

not necessarily the same. For what concerns the dynamic statistics, the input provided to the

benchmark is important. Hence we provided this information in Fig. 15, trying to make it

as similar to that in [6] as possible. However, others do not specify this information (such

as [12]). Finally, analysis times are not always disclosed, making a fair comparison harder.

Let us anyway compare the benchmarks that we share with [6], [12] and [37]. From Fig. 15,

we see that we perform equally on Dhrystonew.r.t. [6] (which, however, does not specify

the parameter passed to Dhrystone, which completely modifies the run-time behaviour of

Dhrystone). For JLex, we stack allocate 47.77% of the memory while [6] stack allocates

26%; we stack allocate 8.92% of the run-time objects, while [37] stack allocates 31.6%; we

found 23% of the allocation sites to be stack allocatable (Fig. 14) while [37] found 27%.

For JavaCup, we stack allocate 48.76% of the memory, while [12] stack allocates 17%.

We stack allocate 39% of the allocation sites, while [37] stack allocates 30%. For Jess, we

Springer

Higher-Order Symb Comput (2006) 19:415–463 461

only stack allocate 4.90% of the memory, while [6] manages to stack allocate 27% and [37]

17.9%. This case may be a consequence of a preliminary lack of methods inlining, since the

Jess program actually contains a large set of very small methods. For Javacc, we stack

allocate 40.72% of the memory, while [6] stack allocates 43%; we stack allocate 43.72% of

the run-time objects, while [37] stack allocates 45.8%; this is contradictory with the fact that

we found 62% of the allocation sites to be stack allocatable (Fig. 14) while [37] found only

29%.

8 Conclusion

We have presented a formal development of an escape analysis by abstract interpretation,

providing optimality results in the form of a Galois insertion from the concrete to the abstract

domain and of the definition of optimal abstract operations. This escape analysis has been

implemented and applied to full Java (bytecode). This results in an escape analyser which is

probably less precise than others already developed, but still performs well in practice from

the points of view of its cost and precision (Sections 6.2 and 7).

A first, basic escape domain E is defined as a property of concrete states (Definition 29).

This domain is simple but non-trivial since

– The set of the creation points of the objects reachable from the current state can both grow

(new) and shrink (δ); i.e., static type information contains escape information (Examples 24

and 33);

– That set is useful, sometimes, to restrict the possible targets of a virtual call i.e., escape
information contains class information (Example 33).

However, the escape analysis induced by our domain E is not precise enough from a compu-

tational point of view, since it induces rather imprecise abstract operations. We have therefore

defined a refinement ER of E , on the basis of the information that E lacks, in order to attain

better precision. The relation between ER and E is similar to that between Palsberg and

Schwartzbach’s class analysis [35, 45] and rapid type analysis [4] although, while all objects

stored in memory are considered in [4, 35, 45], only those actually reachable from the vari-

ables in scope are considered by the domains E and ER (Definitions 22 and 41). The ability

to describe only the reachable objects, through the use of an abstract garbage collector (δ in

Fig. 9 and ξ in Fig. 10), improves the precision of the analysis, since it becomes focused on

only those objects that can actually affect the concrete execution of the program.

It is interesting to consider if this notion of reachability and the use of an abstract garbage

collector can be applied to other static analyses of the run-time heap as well. Namely, class,

shape, sharing and cyclicity analyses might benefit from them.

Acknowledgments This work has been funded by the Italian MURST grant Abstract Interpretation, Type
Systems and Control-Flow Analysis and by the British EPSRC grant GR/R53401.

References

1. Agrawal, G.: Simultaneous demand-driven data-flow and call graph analysis. In: Proc. of the International

Conference on Software Maintenance (ICSM’99), pp. 453–462. IEEE Computer Society, Oxford, UK

(1999).

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles Techniques and Tools. Addison Wesley Pub-

lishing Company (1986).

Springer

462 Higher-Order Symb Comput (2006) 19:415–463

3. Arnold, K., Gosling, J., Holmes, D.: The JavaTM Programming Language. 3rd edn, Addison-Wesley

(2000).

4. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In: Proc. of OOPSLA’96,

vol. 31(10) of ACM SIGPLAN Notices, pp. 324–341. ACM Press, New York (1996).

5. Blanchet, B.: Escape analysis: correctness proof, implementation and experimental results. In: 25th ACM

SIGPLAN-SIGACT Symposium of Principles of Programming Languages (POPL’98), pp. 25–37. ACM

Press, San Diego, CA, USA, (1998).

6. Blanchet, B.: Escape analysis for java: theory and practice. ACM TOPLAS, 25(6), 713–775 (2003).

7. Bogda, J., Hölzle, U.: Removing unnecessary synchronization in java. In: Proc. of OOPSLA’99, vol.

34(10) of SIGPLAN Notices, pp. 35–46. Denver, Colorado, USA (1999).

8. Bossi, A., Gabbrielli, M., Levi, G., Martelli, M.: The s-semantics approach: theory and applications. J.

Logic. Program. 19/20:149–197, 1994.

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans Comput. 35(8),

677–691 (1986).

10. Choi, J.-D., Grove, D., Hind, M., Sarkar, V.: Efficient and precise modeling of exceptions for the analysis

of java programs. In: Proc. of the SIGPLAN/SIGSOFT Workshop on Program Analysis For Software

Tools and Engineering (PASTE’99), pp. 21–31. Toulouse, France (1999).

11. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack allocation and synchronization

optimizations for java using escape analysis. Technical Report RC22340, IBM (2002).

12. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack allocation and synchronization

optimizations for java using escape analysiss. ACM TOPLAS. 25(6), 876–910 (2003).

13. Cortesi, A., Filé, G., Winsborough, W.: The quotient of an abstract interpretation. Theoret. Comput. Sci.,

202(1–2), 163–192 (1998).

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In: Proc. of POPL’77, pp. 238–252 (1977).

15. Cousot, P., Cousot, R.: Abstract interpretation and applications to logic programs. J Logic Program, 13(2

& 3):103–179 (1992).

16. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.), Proceedings of Compiler

Construction, vol. 2304 of Lecture Notes in Computer Science, pp. 159–178. Springer-Verlag, Grenoble,

France (2002).

17. Dams, D.R.: Abstract interpretation and partition refinement for model checking. PhD thesis, Eindhoven

University of Technology, The Netherlands (1996).

18. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using static class hierarchy

analysis. In: Olthoff, W.G. (ed.), Proc. of ECOOP’95, vol. 952 of LNCS, pp. 77–101. Springer-Verlag,

Århus, Denmark, (1995).

19. Deutsch, A.: On the complexity of escape analysis. In: 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’97), pp. 358–371. ACM Press, Paris, France (1997).

20. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic programming. ACM Trans Program

Lang Sys. 22(5), 861–931 (2000).

21. Gay, D., Steensgaard, B.: Fast escape analysis and stack allocation for object-based programs. In: Watt,

D.A. (ed.), Compiler Construction, 9th International Conference (CC’00), vol. 1781 of Lecture Notes in
Computer Science, pp. 82–93. Springer-Verlag, Berlin (2000).

22. Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Proc. of the 24th International

Colloquium on Automata, Languages and Programming (ICALP’97), vol. 1256 of LNCS, pp. 771–781.

Springer-Verlag (1997).

23. Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM Trans Program Lang

Sys. 20(5), 1067–1109 (1998).

24. Grove, D., Chambers, C.: A framework for call graph construction algorithms. ACM TOPLAS. 23(6),

685–746 (2001).

25. Lhoták, H., Hendren, L.: Scaling java points-to analysis using spark. In: Hedin, G. (ed.), Proc. of Compiler

Construction, vol. 2622 of Lecture Notes in Computer Science, pp. 153–169. Springer-Verlag, Warsaw,

Poland (2003).

26. Hill, P.M., Spoto, F.: A foundation of escape analysis. In: Kirchner, H., Ringeissen, C. (ed.), Proc. of

AMAST’02, vol. 2422 of LNCS, pp. 380–395. Springer-Verlag, St. Gilles les Bains, La Réunion island,

France (2002).

27. Hill, P.M., Spoto, F.: A refinement of the escape property. In: Cortesi, A. (ed.), Proc. of the VMCAI’02

workshop on Verification, Model-Checking and Abstract Interpretation, vol. 2294 of Lecture Notes in
Computer Science, pp. 154–166. Springer-Verlag, Venice, Italy (2002).

28. Hill, P.M., Spoto, F.: Logic programs as compact denotations. Comput. Lang. Sys. Struct. 29(3), 45–73

(2003).

Springer

Higher-Order Symb Comput (2006) 19:415–463 463

29. Hill, P.M., Spoto, F.: Deriving escape analysis by abstract interpretation: proofs of results. The Computing

Research Repository (CoRR): arXiv:archive.cs/PL/0607101 (2006).

30. Jacobs, B., Poll, E.: Coalgebras and monads in the semantics of Java. Theoret. Comput. Sci. 291(3),

329–349 (2003).

31. Jensen, T.: Disjunctive program analysis for algebraic data types. ACM Trans. Program. Lang. Syst. 19(5),

752–804 (1997).

32. Jones, N.D., Søndergaard, H.: A semantics-based framework for the abstract interpretation of prolog. In:

Abramsky, S., Hankin, C. (eds.), Abstract Interpretation of Declarative Languages, pp. 123–142. Ellis

Horwood Ltd (1987).

33. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification. 2nd edn, Addison-Wesley. (1999).

34. Cousot. P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of the Sixth Annual

ACM Symposium on Principles of Programming Languages (POPL’79), pp. 269–282. ACM, San Antonio,

Texas (1979).

35. Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Proc. of OOPSLA’91, volume 26(11)

of ACM SIGPLAN Notices, pp. 146–161. ACM Press (1991).

36. Park, Y.G., Goldberg, B.: Escape analysis on lists. In: ACM SIGPLAN’92 Conference on Programming

Language Design and Implementation (PLDI’92), vol. 27(7) of SIGPLAN Notices, pp. 116–127. San

Francisco, California, USA (1992).

37. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for java using annotated constraints. In: Proc.

of ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications

(OOPSLA’01), volume 36(11), of ACM SIGPLAN, pp. 43–55. Tampa, Florida, USA (2001).

38. Ruf, E.: Effective synchronization removal for java. In: ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’00), vol. 35(5) of SIGPLAN Notices, pp. 208–218. Vancouver,

British Columbia, Canada (2000).

39. Ruggieri, C., Murtagh, T.P.: Lifetime analysis of dynamically allocated objects. In: 15th ACM Symposium

on Principles of Programming Languages (POPL’88), pp. 285–293. San Diego, California, USA (1988).

40. Salcianu, A.: Pointer analysis and its application to java programs. PhD thesis, MIT (2001).

41. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs. In: Proc. of ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’01), volume 36(7) of

SIGPLAN Notices, pp. 12–23, Snowbird, Utah, USA (2001)

42. Scozzari, F.: Logical optimality of groundness analysis. Theoret. Compu. Sci., 277(1–2), 149–184 (2002).

43. Søndergaard, H.: An application of abstract interpretation of logic programs: occur check reduction. In:

Robinet, B., Wilhelm, R. (eds.), Proc. of the European Symposium on Programming (ESOP), vol. 213 of

Lecture Notes in Computer Science, pp. 327–338. Springer, Saarbrücken, Federal Republic of Germany

(1986).

44. Spoto, F.: The JULIA generic static analyser. Available at the addresshttp://www.sci.univr.it/∼
spoto/julia (2004).

45. Spoto, F., Jensen, T.: Class analyses as abstract interpretations of trace semantics. ACM Trans. Program.

Lang. Sys. (TOPLAS), 25(5), 578–630 (2003).

46. Streckenbach, M., Snelting, G.: Points-to for Java: A General Framework and an Empirical Comparison.

Technical report, Universität Passau, Germany (2000).

47. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–309 (1955).

48. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algorithms. In: Proc. of OOP-

SLA’00, vol. 35(10) of SIGPLAN Notices, pp. 281–293. ACM, Minneapolis, Minnesota, USA (2000).

49. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: Proc. of ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI’01), volume 36(5), SIGPLAN
Notices, pp. 35–46. Snowbird, Utah, USA (2001).

50. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary decision dia-

grams. In: Pugh, W., Chambers, C. (eds.), Proc. of ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI’04), pp. 131–144. ACM, Washington, DC, USA (2004).

51. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java programs. In: 1999 ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA’99), volume 34(1), SIGPLAN Notices, pp. 187–206. Denver, Colorado, USA (1999).

52. Winskel, G.: The Formal Semantics of Programming Languages. The MIT Press (1993).

Springer

