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Abstract. Detecting information flows inside a program is useful to
check non-interference of program variables, an important aspect of soft-
ware security. Information flows have been computed in the past by using
abstract interpretation over an abstract domain IF which expresses sets
of flows. In this paper we reconstruct IF as the linear refinement C → C
of a basic domain C expressing constancy of program variables. This is
important since we also show that C → C, and hence IF, is closed w.r.t.
linear refinement, and is hence optimal and condensing. Then a compo-
sitional, input-independent static analysis over IF has the same precision
of a non-compositional, input-driven analysis. Moreover, we show that
C → C has a natural representation in terms of Boolean formulas, effi-
ciently implementable through binary decision diagrams.

1 Introduction

Language-based security is recognised as an important aspect of modern pro-
gramming languages design and implementation [11]. One of its aspects is non-
interference, which determines the pairs of program variables that do not affect
each other’s values during the execution of a program. From non-interference
it is then possible to study the confinement of confidential information injected
in the program through some input variables. Non-interference is often imple-
mented above an information-flow analysis, which tracks the flows of information
in a program [15,12,3,11,6].

Information flows in a program can be computed through abstract interpre-
tation [4] by using an abstract domain, that we call IF in this paper, which
models sets of flows [11,6]. Abstract interpretation consists in executing the pro-
gram over the description of the concrete data as provided by IF. Correctness
states that if a program features a flow, then it must be included in the de-
scription that the analysis computes. The domain IF has been implemented by
using Boolean formulas [6] to represent sets of flows. This leads to an efficient
analysis [7] which uses binary decision diagrams [2] to implement such formulas.
Moreover, that analysis is input-independent i.e., it is performed only once, with-
out any assumption on the input provided to the program. The input variables
containing confidential information are specified after the analysis is performed.
An input-driven analysis, instead, would require the input to be available before
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the analysis, so that it must be re-executed for each different input. Hence it is
not possible to analyse a library independently from the applications that use it.

In this paper we show that IF coincides with the linear refinement C → C of
an abstract domain C which expresses constancy of program variables i.e., the
set of variables that are definitely bound to a constant value in a given program
point. Linear refinement [10] is a formal technique which adds input/output
relational information to an abstract domain. In our case, the added relational
information over C corresponds to the flows of information between variables.

This result is important since

– it shows that an independently developed abstract domain such as IF can be
reconstructed through a methodological technique such as linear refinement;

– we later prove that C → C is closed w.r.t. linear refinement. This entails that
C → C (and hence IF) is an optimal and condensing abstract domain [9].
This means that IF is the minimal abstract domain which models information
flows and all relational information between them (optimality) and that it
can be used for a compositional, input-independent static analysis without
sacrifying precision w.r.t. a non-compositional, input-driven static analysis
(condensing). None of these properties was known before for IF;

– we finally show that the elements of C → C, and hence of IF, have a natural
representation in terms of Boolean formulas. This formally justifies the use
of Boolean formulas to implement IF [6].

The rest of this paper is organised as follows. Section 2 presents the preliminaries
and defines C. Section 3 formalises the abstract domain IF. Section 4 shows that
IF = C → C. Section 5 proves that C → C is closed w.r.t. linear refinement,
and is hence optimal and condensing. Section 6 provides a representation of the
elements of C → C in terms of Boolean formulas. Section 7 concludes.

2 Preliminaries

2.1 Functions and Ordered Sets

A total (partial) function f is denoted by �→ (→). The domain of f is dom(f)
We denote by [v1 �→t1, . . . , vn �→tn] the function f where dom(f) = {v1, . . . , vn}
and f(vi) = ti for i = 1, . . . , n. Its update is f [w1 �→ d1, . . . , wm �→ dm], where
the domain may be enlarged. By f |s (f |−s) we denote the restriction of f to
s ⊆ dom(f) (to dom(f) \ s). The composition f ◦ g of functions f and g is
such that (f ◦ g)(x) = g(f(x)). A poset is a set S with a reflexive, transitive
and antisymmetric relation ≤. An upper (respectively, lower) bound of S′ ⊆ S
is an element u ∈ S such that u′ ≤ u (respectively, u′ ≥ u) for every u′ ∈ S′.
A complete lattice is a poset where least upper bounds (�) and greatest lower
bounds (	) always exist. The top and bottom elements of a lattice are denoted
by 
 and ⊥, respectively.

2.2 Denotations

We model the state of an interpreter of a computer program at a given program
point as a function from the variables in scope to their values. We consider
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integers as values, but any other domain of values would do. Our state can be
seen as the activation frame on top of the activation stack of the interpreter.
Since in this paper we use a denotational semantics of programs [16], we do
not need to model to whole activation stack. Instead, we assume that procedure
calls are resolved by plugging the meaning or interpretation of a procedure in
the calling point. This is standard in denotational semantics, and has been used
for years in the semantics of logic programs [1].

Definition 1 (State). Let V be a finite set of variables (this will be assumed
in the rest of the paper). A state over V is a total function from V into integer
values. The set of states over V is ΣV , where V is usually omitted.

The set V contains only the variables in scope in the program point under
analysis.

Example 1. An example of state σ ∈ Σ is such that σ(v) = 3 for each v ∈ V .

A denotational semantics associates a denotation to each piece of code i.e., a
function from input states to output states. Possible divergence is modelled by
using partial functions as denotations.

Definition 2 (Denotation). A denotation over V is a partial function δ :
ΣV → ΣV . The set of denotations is ∆V , where V is usually omitted. Let σ ∈
ΣV . If v ∈ V and δ(σ) is not defined, then we let δ(σ)(v) = undef .

A denotational semantics is a compositional (i.e., inductive) definition of the
denotations of each language construct. This definition is irrelevant here, since
expressivity and precision of a static analysis are domain-related issues [4]. Hence
we give complete freedom to the language designer, so that for instance we
impose no constraint on the denotations of Definition 2. The interested reader
can find in [16] an example of denotational semantics.

Example 2. The denotation for the assignment y := x+1 is δ1 such that δ1(σ) =
σ[y �→ σ(x) + 1] for all σ ∈ Σ. That is, the successor of the input value of x is
stored in the output value of y. The other variables are not modified.

Example 3. The denotation of the assignment x := 4 is δ2 such that δ2(σ) =
σ[x �→ 4] for all σ ∈ Σ. That is, the output value of x is constantly bound to 4.
The other variables are not modified.

Example 4. The denotation of if y = 0 then x := 4 else while true do skip
is δ4, compositionally defined as

δ4(σ) =

{
δ2(σ) if σ(y) = 0
δ3(σ) if σ(y) �= 0,

where δ2 is the denotation of x := 4 (Example 3) and δ3 is the denotation of
while true do skip, which is always undefined.
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Example 5. The denotation of x := 4; y := x+1 is the functional composition
δ2 ◦ δ1 (Examples 3 and 2). In general, ◦ is the semantical counterpart of the
sequential composition of commands.

Constancy is a property of denotations. Namely, a variable v is constant in
a denotation δ when δ always binds v to a given value.

Definition 3. Let δ ∈ ∆. The set of variables which are constant in δ is

const(δ) = {v ∈ V | for all σ1, σ2 ∈ Σ we have δ(σ1)(v) = δ(σ2)(v)}.

Example 6. The denotation δ1 of Example 2 copies x+1 into y. Hence const(δ1) =
∅. The denotation δ2 of Example 3 binds x to 4. Then const(δ2) = {x}.

Constancy is closed w.r.t. composition of denotations. Namely, for any δ, δ ∈ ∆
and v ∈ V , if v ∈ const(δ) then v ∈ const(δ ◦ δ).

2.3 Abstract Domains and Abstract Interpretation

Let C be a complete lattice playing the role of the concrete domain. For in-
stance, in this paper C will be the powerset ℘(∆) of the concrete denotations of
Subsection 2.2. Each element of C is an abstract property. For instance, the set
of concrete denotations which bind x to 4 is an element of ℘(∆) expressing the
property: “x holds 4 in the output of the denotation”. An abstract domain A is
a collection of abstract properties i.e., a subset of C.

Example 7 (The Abstract Domain C). Let us use ℘(∆V ) as concrete domain and
let v1 · · ·vn = {δ ∈ ∆V | vi ∈ const(δ) for 1 ≤ i ≤ n}. An abstract domain of
℘(∆V ) is

CV = {v1 · · ·vn | {v1, . . . , vn} ⊆ V }.

It expresses the properties of being constant for a set of variables in a denota-
tion. Its top element is ∅. We will usually omit V in CV . From Example 6 we
conclude that δ1 ∈ ∅ and δ2 ∈ x. However, δ2 �∈ xy since y is not constant in δ2
(Example 3).

Abstract interpretation theory [4] requires A to be meet-closed, which guarantees
the existence in A of a best approximation for each element of C. That is, A must
be a Moore family of C i.e., a complete meet-sublattice of C (for any Y ⊆ A
we have 	CY ∈ A). Note that A is not, in general, a complete sublattice of C ,
since the join �A might be different from �C .

Example 8. The set C of Example 7 is closed w.r.t. intersection i.e., the 	
operation on ℘(∆). Hence C deserves the name of abstract domain. Namely,
(v1 · · ·vn) ∩ (w1 · · ·wm) = x1 · · ·xp where {x1, . . . , xp} = {x | x ∈ {v1, . . . vn}
and x ∈ {w1, . . . , wm}}.

For any X ⊆ C , we denote by �X = {	C I | I ⊆ X} the Moore closure of X
i.e., the least Moore family of C containing X . Hence the operation � constructs
the smallest abstract domain which includes the set of properties X .
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Example 9. We write the set of denotations where x is constant as x = {δ ∈
∆ | x ∈ const(δ)}. The abstract domain of Example 7 can be constructed as
CV = �{x | x ∈ V }. We write the elements of C as v1 · · ·vn, standing for
∩{vi | 1 ≤ i ≤ n}. If vs ⊆ V then by vs we mean ∩{v | v ∈ vs}.

Once an abstract domain is defined, abstract interpretation theory provides
the abstract semantics induced by each given concrete semantics. Hence, from
a theoretical point of view, the abstract domain is an exhaustive definition of
an abstract semantics for a programming language, which can then be imple-
mented and used for static analysis. For this reason, and for space concerns, we
concentrate in this paper on abstract domains only, without any consideration
on the induced abstract semantics.

2.4 Linear Refinement

The definition of an appropriate abstract domain for a static analysis is not
in general easy. Although a basic abstract domain A can be immediately con-
structed (�) from the abstract properties one wants to model, there is no guar-
antee that the induced abstract semantics is precise enough to be useful. The
intuition and experience of the abstract domain designer helps in determing
what A is missing in order to improve its precision. In alternative, there are
more methodological techniques which refine A to get a more precise domain.

Reduced product [5] allows one to refine two abstract domains A1 and A2 into
an abstract domain A1 	 A2 = �(A1 ∪ A2) which expresses the conjunction of
properties of A1 and A2.

Linear refinement [10] is another domain refinement operator. It allows one
to enrich an abstract domain with information relative to the propagation of the
abstract properties before and after the application of a concrete operator �. It
requires the concrete domain C to be a quantale w.r.t. � i.e.,

1. C must be a complete lattice;
2. � : C × C → C must be (in general partial and) associative;
3. for any a ∈ C and {bi}i∈I ⊆ C with I ⊆ N we must have a � (�i∈Ibi) =

�i∈I{a � bi} and (�i∈Ibi) � a = �i∈I{bi � a}.

For instance, the complete lattice ℘(∆), ordered by set-inclusion, is a quantale
w.r.t. the composition operator ◦, extended to sets of denotations as d1 ◦ d2 =
{δ1 ◦ δ2 | δ1 ∈ d1 and δ2 ∈ d2}.

Let a, b ∈ C . The abstract property a →� b which transforms every element
of a into an element of b is

a →� b =
⊔
C

{c ∈ C | if a � c is defined then a � c ≤C b}.

Given a ∈ C , I ⊆ N and {bi}i∈I ⊆ C , we have a →� (	i∈Ibi) = 	i∈I(a →� bi).

Definition 4 (Linear Refinement). The (forward) linear refinement of an
abstract domain A1 ⊆ C w.r.t. another abstract domain A2 ⊆ C is the abstract
domain A1 →� A2 = �{a →� b | a ∈ A1 and b ∈ A2}. That is, it collects all
possible arrows between elements of A1 and elements of A2.
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The following results hold [10]

1. →� is argument-wise monotonic;
2. A1 →� (A2 →� A3) = (A1 →� A2) →� A3, so parentheses are not relevant;
3. A1 →� A2 →� A3 = (A1 	 A2) →� A3, where 	 is the reduced product.

We now instantiate →� over the quantale 〈℘(∆), ◦〉. The intuition under the
choice of ◦ for � is that the denotational semantics of an imperative program is
defined by composing smaller denotations to form larger denotations [16]. Hence
we must refine the composition operation if we want to improve the precision of
the abstractions of ℘(∆).

We first provide an explicit definition for →◦.

Proposition 1. Let d1, d2 ⊆ ∆. Then d1 →◦ d2 = {δ ∈ ∆ | for every δ ∈
d1 we have δ ◦ δ ∈ d2}.

Proof.

d1 →◦ d2 =
⋃

{d ∈ ℘(∆) | if d1 ◦ d is defined then d1 ◦ d ⊆ d2}

=
⋃

{d ∈ ℘(∆) | d1 ◦ d ⊆ d2}

=
⋃

{d ∈ ℘(∆) | {δ ◦ δ | δ ∈ d1 and δ ∈ d} ⊆ d2}

= {δ ∈ ∆ | {δ ◦ δ | δ ∈ d1} ⊆ d2}
= {δ ∈ ∆ | for every δ ∈ d1 we have δ ◦ δ ∈ d2}.

The intuition behind d1 →◦ d2 is that it is the set of denotations that when
composed with a denotation in d1 become a denotation in d2.

Example 10. Consider the abstract domain C of Example 7 and its two elements
x and y. The denotation δ1 of Example 2 belongs to x →◦ y since δ1 stores the
input value of x plus 1 in the output value of y, so that if x is constant in δ1’s
input then y is constant in δ1’s output.

From now on, we will omit ◦ in →◦.

3 A Classical Domain for Information Flow Analysis

We present here a traditional abstract domain for information flow analysis. It
expresses which termination-sensitive flows [3] are allowed in a denotation.

Definition 5 (Information-Flow). Let δ ∈ ∆ and x, y ∈ V . We say that δ
features an information flow from x to y [11] if there exist σ1, σ2 ∈ Σ such that

1. σ1|V \x = σ2|V \x (σ1 and σ2 agree on x);
2. δ(σ1)(y) �= δ(σ2)(y) (the input value of x affects the output value of y).

Definition 5 entails that σ1(x) �= σ2(x). Moreover, if exactly one between δ(σ1)
and δ(σ2) is defined, then by Definition 2 the condition δ(σ1)(y) �= δ(σ2)(y)
holds. This is why Definition 5 formalises termination-sensitive information flows.
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Example 11. The denotation δ1 of Example 2 is such that δ1(σ) = σ[y �→ σ(x)+
1] for every σ ∈ Σ. Let σ1 and σ2 be such that σ1(v) = 0 for every v ∈ V ,
σ2(x) = 1 and σ2(v) = 0 for every v ∈ V \ x. We have σ1|V \x = σ2|V \x and
δ1(σ1)(y) = 1 �= 2 = δ1(σ2)(y). Then δ1 features a flow from x to y. Moreover,
δ1(σ1)(x) = 0 and δ1(σ2)(x) = 1. Then δ1 features a flow from x to x. These
are both explicit flows [11] i.e., generated by copying input values into output
values in a denotation. They are the only flows featured by δ1. For instance,
δ1 does not feature any flow from y to y, since for every σ1, σ2 ∈ Σ such that
σ1|V \y = σ2|V \y we have δ1(σ1)(y) = σ1(x) + 1 = σ2(x) + 1 = δ1(σ2)(y).

Example 12. The denotation δ4 of Example 4 features a flow from y to x. Namely,
take σ1 and σ2 such that σ1(v) = 0 for every v ∈ V , σ2(v) = 0 for every v ∈ V \y
and σ2(y) = 1. We have σ1|V \y = σ2|V \y, δ4(σ1)(x) = 4 �= undef = δ4(σ2)(x).
Since we consider termination-sensitive flows, the denotation δ4 actually features
a flow from y to any variable v ∈ V , since the initial value of y determines
the termination of the conditional statement in Example 4. These flows are
called implicit [11] since they arise from the conditional execution of program
statements on the basis of the initial value of some variables.

The abstract domain for information flow analysis is the powerset of the set of
flows. Each abstract element expresses which flows a denotation can feature.

Definition 6 (Abstract Domain IF). Let xi, yi ∈ V for i = 1, . . . n. We define

x1�y1, . . . , xn�yn =
{

δ ∈ ∆V

∣∣∣∣ if δ features a flow from x to y then
there exists i such that x ≡ xi and y ≡ yi

}
.

The abstract domain for information flow analysis is

IFV = {x1�y1, . . . , xn�yn | n ≥ 0 and xi, yi ∈ V for every i = 1, . . . , n}

where V is usually omitted. It is ordered by inverse set-inclusion.

Each element of IF is a set of denotations. In order to justify the name of abstract
domain for IF, we must prove that the set of its elements is closed by intersection.

Proposition 2. The set IF is a Moore family of ℘(∆).

Proof. Let f i = xi
1�yi

1, . . . , x
i
ni�yi

ni ∈ IF with I ⊆ N and i ∈ I. We prove that
X = {x�y | x�y ∈ f i for all i ∈ N} (which belongs to IF) is their intersection.
We have δ ∈ ∩i∈If

i if and only if δ ∈ f i for each i ∈ I, if and only if whenever δ
features a flow from x to y then x�y ∈ f i for each i ∈ I, if and only if whenever
δ features a flow from x to y then x�y ⊆ X , if and only if δ ∈ X .

Figure 1 shows the abstract domain IF{x,y}. The top of the domain allows deno-
tations to feature any flow, and hence coincides with ∆.

Example 13. Assume V = {x, y}. The denotation δ1 of Example 2 belongs to
x�x, x�y since it only features flows from x to y and from x to x (Example 11).
It also belongs to the upper bound x�x, x�y, y�y. However, δ1 does not belong
to x�x since δ1 features a flow from x to y (Example 11), not allowed in x�x.
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4 The Linear Refinement C → C

Example 7 defines a basic domain for constancy C which models the set of
variables which are constant in the output of a denotation. Here, we linearly
refine C into C → C, which is a new abstract domain for constancy propagation.
Then we show that IF and C → C coincide.

The following result shows that C → C includes C.

Proposition 3. We have C ⊆ C → C. If #V ≥ 2, the inclusion is strict.

Proof. Since ∅ ∈ C and ∅ = ℘(∆), then for every v ∈ V we have ∅ → v ∈ C →
C. If we show that ∅ → v = v, we conclude that C ⊆ C → C. Let δ ∈ ∅ → v
and ι be the identity denotation, such that ι(σ) = σ for every σ ∈ Σ. We have
ι ∈ ∅ = ℘(∆), so that ι ◦ δ = δ ∈ v. Conversely, let δ ∈ v. Constancy is closed
by composition, so δ ◦ δ ∈ v for every δ ∈ ℘(∆) = ∅. Hence δ ∈ ∅ → v.

To prove the strict inclusion, let x, y ∈ V , x �≡ y. Let ι be the identity
denotation. Since no variable is constant in ι, we have ι ∈ ∅ and ι �∈ c for
all c ∈ C \ {∅}. We have ι ∈ x → x. This is because for all δ ∈ x we have
δ ◦ ι = δ ∈ x. To prove that C ⊂ C → C is then enough to show that x → x �= ∅.
Consider δ such that δ(σ) = σ[x �→ σ(y)]. We have δ ∈ ∅ since no variable is
constant in δ. But δ �∈ x → x, since if we take δ ∈ x such that δ(σ) = σ[x �→ 0]
we have δ ◦ δ = δ �∈ x (no variable is constant in δ).

The following lemma states that if a denotation does not feature any flow
from a set of variables V \S into a given variable y, then y’s value in the output
of the denotation depends only on the input values of the variables in S.

Lemma 1. Let σ1, σ2 ∈ Σ, y ∈ V , S ⊆ V and δ ∈ ∆ which does not feature
any flow v�y with v ∈ V \ S. Then σ1|S = σ2|S entails δ(σ1)(y) = δ(σ2)(y).

Proof. Let V \ S = {v1, . . . , vn}. Define σ0
1 = σ1, σ0

2 = σ2 and σi
1 = σi−1

1 [vi �→
max(σ1(vi), σ2(vi)], σi

2 = σi−1
2 [vi �→ max(σ1(vi), σ2(vi)] for 1 ≤ i ≤ n. Note

that whether σi
1 = σi−1

1 or they differ at vi ∈ V \ S only. The same holds for
σi

2 and σi−1
2 . Since δ does not feature any flow vi�y, in both cases we have

δ(σi
1) = δ(σi−1

1 ) and δ(σi
2) = δ(σi−1

2 ). Moreover, σn
1 = σn

2 . Hence δ(σ1) =
δ(σ0

1) = δ(σ1
1) = · · · = δ(σn

1 ) = δ(σn
2 ) = · · · = δ(σ1

2) = δ(σ0
2) = δ(σ2).

We can now state that IF coincides with C → C. We first prove that IF ⊆
C → C, by implementing each element of IF through an element of C → C.

Lemma 2. Let f = x1�y1, . . . , xn�yn ∈ IF. We have

f = ∩{S(y) → y | y ∈ V and S(y) = {xi | xi�y ∈ f}}.

Proof. Let δ ∈ x1�y1, . . . , xn�yn. We prove that δ ∈ S(y) → y for each y ∈ V .
Let δ ∈ S(y) and σ1, σ2 ∈ Σ. We have δ(σ1)|S(y) = δ(σ2)|S(y). Moreover, δ does
not feature any flow v�y with v �∈ S(y). By Lemma 1 we have (δ ◦ δ)(σ1)(y) =
δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y) i.e., δ ◦ δ ∈ y.

Conversely, assume that δ ∈ S(y) → y for every y ∈ V . We show that if δ
features a flow v�w then v ≡ xi and w ≡ yi for some 1 ≤ i ≤ n.
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Fig. 1. The abstract domain IF{x,y}

w ∈ {y1, . . . , yn}. Let by contradiction w �∈ {y1, . . . , yn}. There exist σ1, σ2 ∈ Σ
such that σ1|V \v = σ2|V \v and δ(σ1)(w) �= δ(σ2)(w). Since S(w) = ∅, we
have δ ∈ ∅ → w = w. Then δ(σ1)(w) = δ(σ2)(w), a contradiction.

v ∈ {xi | xi�w ∈ f}. Let by contradiction v �∈ {xi | xi�w ∈ f} i.e., v �∈ S(w).
There exist σ1, σ2 ∈ Σ such that σ1|V \v = σ2|V \v and δ(σ1)(w) �= δ(σ2)(w).
Let δ be such that δ(σ) = σ1[v �→ σ(v)]. We have δ(σ1) = σ1, δ(σ2) = σ2.
Moreover, we have δ ∈ S(w) since v �∈ S(w). We conclude that δ ◦ δ ∈ w.
But (δ ◦ δ)(σ1)(w) = δ(δ(σ1))(w) = δ(σ1)(w) �= δ(σ2)(w) = δ(δ(σ2))(w) =
(δ ◦ δ)(σ2)(w), which is a contradiction.

Example 14. Consider the abstract element y�y over V = {x, y}. We have
S(x) = ∅ and S(y) = {y}. Then x�y = (∅ → x) ∩ (y → y) = x ∩ (y → y).

We prove now that C → C ⊆ IF. We first show that each single arrow in
C → C belongs to IF (Lemma 3) and then lift this result to arbitrary elements
of C → C (Proposition 4).

Lemma 3. Let x1, . . . , xn, y ∈ V . We have

x1 · · ·xn → y = {v�w | v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ {x1, . . . , xn}}.

Proof. Let δ ∈ x1 · · ·xn → y. Assume that δ features a flow v�w. If w �≡ y then
v�w ∈ {v�w | v ∈ V and w ∈ V \y}. Assume then w ≡ y. We must prove that
v ∈ {x1, . . . , xn}. Let by contradiction v �∈ {x1, . . . , xn}. There are σ1, σ2 ∈ Σ
such that σ1|V \v = σ2|V \v and δ(σ1)(y) �= δ(σ2)(y). Let δ(σ) = σ1[v �→ σ(v)].
We have δ(σ1) = σ1 and δ(σ2) = σ2. Moreover, since v �∈ {x1, . . . , xn}, we have
δ ∈ x1 · · ·xn. Then δ ◦ δ ∈ y. But (δ ◦ δ)(σ1)(y) = δ(δ(σ1))(y) = δ(σ1)(y) �=
δ(σ2)(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y), which is a contradiction.

Conversely, let δ feature flows in {v�w | v ∈ V and w ∈ V \ y}∪{v�y | v ∈
{x1, . . . , xn}} only. Let δ ∈ x1 · · ·xn. We must prove that δ◦δ ∈ y. Given σ1, σ2 ∈
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Σ, we have δ(σ1)|{x1,...,xn} = δ(σ2)|{x1,...,xn} since δ ∈ x1 · · ·xn. Moreover, δ
does not feature any flow from any v ∈ V \ {x1, . . . , xn} to y. By Lemma 1 we
have (δ ◦ δ)(σ1)(y) = δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y). Since σ1 and σ2
are arbitrary, we conclude that δ ◦ δ ∈ y.

Example 15. Consider the abstract element x∩(y → y) and assume V = {x, y}.
By Lemma 3 we have x = ∅ → x = {v�w | v ∈ V and w ∈ V \ x} ∪ {v�x |
v ∈ ∅} = {x�y, y�y} ∪ ∅ = {x�y, y�y}. By the same lemma, y → y =
{v�w | v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ {y}} = {x�x, y�x} ∪ {y�y} =
{x�x, y�x, y�y}. The intersection of x and y → y is then {y�y}. Compare
this result with Example 14.

Corollary 1. Let vs1, vs2 ⊆ V and y ∈ V . We have (vs1 → y) ∩ (vs2 → y) =
(vs1 ∩ vs2) → y.

Proof. By Lemma 3 we have (vs1 → y) ∩ (vs2 → y) = ({v�w | v ∈ V and w ∈
V \ y}∪{v�y | v ∈ vs1})∩ ({v�w | v ∈ V and w ∈ V \ y}∪{v�y | v ∈ vs2}) =
{v�w | v ∈ V and w ∈ V \ y} ∪ ({v�y | v ∈ vs1} ∩ {v�y | v ∈ vs2}) = {v�w |
v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ vs1 ∩ vs2} = (vs1 ∩ vs2) → y.

We can now prove that the traditional domain for information flow analysis
is the linear refinement of the basic domain for constancy.

Proposition 4. We have IF = C → C.

Proof. By Lemma 2 we conclude that IF ⊆ C → C. Conversely every element of
C → C is the intersection of arrows of the form vs → vs′. We can assume that
vs ′ is a single variable, since vs → (vs1 ∩vs2) = (vs → vs1)∩ (vs → vs2) (Sub-
section 2.4). By Lemma 3 and since IF is closed by intersection (Proposition 2)
we conclude that C → C ⊆ IF.

As a consequence, the abstract domain in Figure 1 can be rewritten in terms
of elements of C → C. The result is in Figure 2. You can pass from Figure 1 to
Figure 2 by using Lemma 2 (as in Example 14) and from Figure 2 to Figure 1 by
using Lemma 3 (as in Example 15). Note that in Figure 2 there is one variable at
most on the left of arrows. This is because, if V = {x, y}, then xy → x = xy →
y = ℘(∆), so that these arrows are tautologies (if everything is constant in the
input, the output must be constant). This is false for larger V . For instance, in
C{x,y,z} → C{x,y,z} the arrow xy → x is not a tautology.

5 IF Is Optimal and Condensing

We have just seen that C → C = IF. We show now that, if we linearly refine
C → C, we end up with C → C itself. Hence C → C already contains all possible
dependencies between constancy of variables. This entails [9] that IF is optimal
and condensing i.e., a compositional, input-independent static analysis over IF,
such as that implemented in [7], has the same precision as a non-compositional,
input-driven analysis. These results were unknown for IF up to now.

The following result states that an arrow between an element of C → C and
an element of C is equal to an element of C → C.
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Fig. 2. The abstract domain C{x,y} → C{x,y}

Lemma 4. Let V = {v1, . . . , vn} and vs i ⊆ V for 1 ≤ i ≤ n. Then

((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y = (∩{vi | vs i = ∅}) → y.

Proof. Let δ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y. Let vs = {vi | vsi = ∅}
and δ ∈ vs. We must prove that δ◦δ ∈ y. Assume by contradiction that δ◦δ �∈ y.
Then there are σ1, σ2 ∈ Σ such that (δ ◦ δ)(σ1)(y) �= (δ ◦ δ)(σ2)(y).

We can assume without any loss of generality that δ(σ)(v) = σ(v) for every
σ ∈ Σ and v ∈ V \ vs , since otherwise we can take δ

′
such that δ

′
(σ) = σ[v �→

δ(σ)(v) | v ∈ vs ], σ′
1 = δ(σ1), σ′

2 = δ(σ2) and still have δ
′ ∈ vs, (δ

′ ◦ δ)(σ′
1)(y) =

δ(δ
′
(δ(σ1)))(y) = δ(δ(σ1))(y) �= δ(δ(σ2))(y) = δ(δ

′
(δ(σ2)))(y) = (δ

′ ◦ δ)(σ′
2)(y).

Let k1, k2 be two distinct concrete values. Define δ′ such that, for all σ ∈ Σ,

δ′(σ)(vi) =

⎧⎪⎨
⎪⎩

σ1(vi) if vs i �= ∅ and for all w ∈ vsi we have σ(w) = k1

σ2(vi) if vs i �= ∅ and for some w ∈ vs i we have σ(w) �= k1

k1 otherwise.

Define the states ς1, ς2 such that ς1(w) = k1 and ς2(w) = k2 for every w ∈ V .
By construction, we have δ′ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)). Moreover,

we have δ′(ς1)(v) = σ1(v) and δ′(ς2)(v) = σ2(v) for every v ∈ V \ vs . Since
we assume that δ leaves the variables in S \ vs unaffected, we conclude that
δ′ ◦ δ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)). Moreover, for i = 1, 2 we have

(δ′ ◦ δ)(ςi)(v) = (δ(δ′(ςi)))(v) =

{
δ(σi)(v) if v ∈ vs
δ′(ςi)(v) = σi(v) = δ(σi)(v) if v �∈ vs .

Then ((δ′ ◦ δ) ◦ δ)(ς1)(y) = (δ((δ′ ◦ δ)(ς1)))(y) = (δ(δ(σ1)))(y) �= (δ(δ(σ2)))(y) =
(δ((δ′◦δ)(ς2)))(y) = ((δ′◦δ)◦δ)(ς1)(y). But by definition of δ, we have (δ′◦δ)◦δ ∈
y, which is a contradiction.

Conversely, let δ ∈ (∩{vi | vsi = ∅}) → y. Let δ ∈ ((vs1 → v1)∩. . .∩(vsn →
vn)). We must prove that δ ◦ δ ∈ y. For each i such that vsi = ∅ we have
δ ∈ ∅ → vi = vi. We conclude that δ ∈ ∩{vi | vsi = ∅} and then δ ◦ δ ∈ y.
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Corollary 2. We have C → C → C = C → C.

Proof. By monotonicity (Subsection 2.4) and Proposition 3 we have C → C →
C = C → (C → C) ⊇ C → C. Conversely, each element of C → C → C = (C →
C) → C is the intersection of arrows a1 → vs with a1 ∈ C → C and vs ∈ C. We
can assume that vs = y with y ∈ V since a1 → (vs1∩vs2) = (a1 → vs1)∩(a1 →
vs2). The set a1 is the intersection of arrows vs1 → vs′1 ∩ . . . ∩ vsn → vs′n
with vs i, vs ′i ⊆ V for 1 ≤ i ≤ n. We can assume that each vs ′i is a singleton
variable vi for the same reason used above for vs. Moreover, we can assume
that v1, . . . , vn are all distinct (and hence n is finite) since if otherwise vi ≡ vj

with i �= j, then by Corollary 1 we can substitute (vsi → vi) ∩ (vsj → vj) with
(vsi ∩ vsj) → vi. Moreover, we can assume that {v1, . . . , vn} = V since if there
is v ∈ V \ {v1, . . . , vn} then we can add the tautological arrow ∩{w | w ∈ V } →
v = ∆. In conclusion, every element e of (C → C) → C is the intersection of
arrows of the form ((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y with v ∈ V , vsi ⊆ V
and vi ∈ V for each 1 ≤ i ≤ n. By Lemma 4, e is equal to the intersection of
arrows (∩{vi | vsi = ∅}) → y i.e., to the intersection of elements of C → C.
Since C → C is closed by intersection, we have the thesis.

It is easy now to prove that C → C is closed w.r.t. linear refinement, and is hence
optimal and condensing [9].

Proposition 5. We have (C → C) → (C → C) = C → C.

Proof. We have (C → C) → (C → C) = ((C → C) 	C) → C (Subsection 2.4) and
since C ⊆ C → C (Proposition 3) we conclude that (C → C)	C = C → C [5] and
hence (C → C) → (C → C) = (C → C) → C. The thesis follows by Corollary 2.

6 A Logical Representation for IF

We have seen in Section 4 that IF coincides with C → C. We show here that
Boolean formulas can be used to represent elements of C → C.

Since the elements of C → C express dependencies between the constancy of
variables in the input and the constancy of variables in the output, we need to
distinguish such variables. Hence we write v̌ for the variable v in the input of a
denotation, and v̂ for the same variable in the output of a denotation [6].

Definition 7 (Denotational Formulas). The denotational formulas over V
are the Boolean (propositional) formulas over the variables {v̌ | v ∈ V } ∪ {v̂ |
v ∈ V }, modulo logical equivalence.

Definition 8. Let vs ⊆ V . We define v̌s = {v̌ | v ∈ vs} and v̂s = {v̂ | v ∈ vs}.
Let vs ⊆ {v̌ | v ∈ V } ∪ {v̂ | v ∈ V }. We define ∧vs = ∧{v | v ∈ vs}.

We specify now the meaning or concretisation of a denotational formula φ. It is
the set of denotations whose behaviour w.r.t. constancy is consistent with the
propositional models of φ.
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Definition 9. The concretisation of a denotational formula φ is

γ(φ) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ}.

Lemma 5. Let φ1, φ2 be denotational formulas. Then γ(φ1∧φ2) = γ(φ1)∩γ(φ2).

Proof.

γ(φ1 ∧ φ2) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= (φ1 ∧ φ2)}

=
{

δ ∈ ∆

∣∣∣∣ for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ1

and ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ2

}
= {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ1}

∩ {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ2}
= γ(φ1) ∩ γ(φ2).

Lemma 6. Let x ∈ V . We have γ(x̂) = x.

Proof.

γ(x̂) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= x̂}
= {δ ∈ ∆ | for all δ ∈ ∆ we have x ∈ const(δ ◦ δ)}
= {δ ∈ ∆ | x ∈ const(δ)} = x,

since if x ∈ const(δ ◦ δ) then x ∈ const(δ) since we can choose δ = ι, the identity
denotation. Conversely, if x ∈ const(δ) then x ∈ const(δ ◦ δ).

Lemma 7. Let {x1, . . . , xn} ⊆ V , y ∈ V X̌ = ∧1≤i≤nx̌i and X̂ = ∧1≤i≤nx̂i.
Then γ(X̌ ⇒ ŷ) = γ(X̂) → γ(ŷ).

Proof.

γ(X̌ ⇒ ŷ) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= X ⇒ y}

=

⎧⎨
⎩δ ∈ ∆

∣∣∣∣∣∣
for all δ ∈ ∆

(xi ∈ const(δ) for all i such that 1 ≤ i ≤ n) entails
y ∈ const(δ ◦ δ)

⎫⎬
⎭

=

⎧⎨
⎩δ ∈ ∆

∣∣∣∣∣∣
for all δ ∈ ∆

(δ ∈ γ(x̂i) for all i such that 1 ≤ i ≤ n) entails
δ ◦ δ ∈ γ(ŷ)

⎫⎬
⎭

= {δ ∈ ∆ | for all δ ∈ γ(X̂) we have δ ◦ δ ∈ γ(ŷ)} = γ(X̂) → γ(ŷ).

Proposition 6. The domain IF = C → C is isomorphic to the set of denota-
tional formulas of the form ∧v̌s ⇒ ∧ŵs with vs ,ws ⊆ V .

Proof. By Lemmas 5, 6 and 7, since vs → (w1 ∩ · · · ∩ wm) = (vs → w1) ∩ · · · ∩
(vs → wm) and ∧v̌s ⇒ (w1 ∧ · · · ∧ wm) = (∧v̌s ⇒ w1) ∧ · · · ∧ (∧v̌s ⇒ wm).

Figure 3 shows the Boolean representation of IF{x,y} = C{x,y} → C{x,y}.
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Fig. 3. The representation of IF{x,y} = C{x,y} → C{x,y} through denotational formulas

7 Conclusion

We have used linear refinement to reconstruct an existing domain for information
flow analysis, to prove it optimal and condensing, and to provide an efficient
representation in terms of Boolean formulas. The size of the abstract domain
IFV = CV → CV grows exponentially with V , but V only contains the variables in
scope in the program point under analysis. Its actual application to the analysis
of relatively large programs has been experimentally validated in [7].

Our work has similarities with the reconstruction through linear refinement
of abstract domains for groundness analysis of logic programs [13]. In particular,
constancy is the imperative counterpart of groundness in logic programming.
There, however, two iterations of linear refinement (only one here) are needed to
reach an abstract domain which is closed w.r.t. further refinements. There might
also be relations with strictness analysis of functional programs, which has also
been proved to enjoy some optimality property [14]. There, optimality means
that precision cannot be improved as long as constant symbols are abstracted
away. It is enlightening to observe that the same abstraction is used in groundness
analysis of logic programs, where all functor symbols are abstracted away. In
information flow analysis, values are abstracted away, and only their constancy
is observed. These similarities might not be casual.

We are confident that our work can be generalised to declassified forms of
non-interference, such as abstract non-interference [8]. One should consider a de-
classified form of constancy as the basic domain to refine. Declassified constancy
means that a variable, in the output of a denotation, is always bound to a given
abstract value, as specified by the declassification criterion.
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