
Infections as Abstract Symbolic Finite Automata:
Formal Model and Applications

Mila Dalla Preda∗, Isabella Mastroeni†

University of Verona, Italy
∗Email: mila.dallapreda@univr.it
†Email: isabella.mastroeni@univr.it

Abstract—In this paper, we propose a methodology, based on
machine learning, for building a symbolic finite state automata-
based model of infected systems, that expresses the interaction
between the malware and the environment by combining in the
same model the code and the semantics of a system and allowing
to tune both the system and the malware code observation.
Moreover, we show that this methodology may have several
applications in the context of malware detection.

Keywords: (Abstract) Symbolic finite state automata, Infection
model, malware detection

I. INTRODUCTION

In these last decades we have witnessed at the raise of
many different kinds of malware, targeting every day more,
also mobile devices. The large amounts of malware sample
are often mutations of known families, created either for
avoiding detection or for dealing with different platforms.
It is a common practice for malware to exploit both meta-
morphism and anti-emulation techniques to avoid respectively
static and dynamic detection. Metamorphism refers to the use
of obfuscation techniques to mislead automatic detection by
camouflaging the syntax of malicious code. Anti-emulation
techniques aim at detecting whether the malware is running
in a protected environment in order to foil dynamic detection
by hiding the malicious intent. This is only an example of
how modern malware are often difficult to analyze due to their
highly interactive nature that makes them exhibit the malicious
behavior only when properly stimulated (this is a common
practice in mobile malicious applications). Indeed, many
malware include triggers that ensure that certain functions
are invoked only when particular environmental or temporal
conditions are satisfied. Common examples are bot that wait
for inputs from their command and control servers, or logic
bombs, which execute their malicious payload only before
(or after) a certain event occurs. It is clear that this malware
feature is a problem for detection schemas based on dynamic
analysis, leading to false negatives (missed infections) due to
the incomplete test coverage. It is therefore very important to
study the interaction between the malware and the infected
system (which can be either a desktop computer or a mobile
device) in order to understand which are the events and
actions of the system that properly stimulate the malicious
behavior. On the other hand, it is also important to handle
metamorphism, namely to use a behavioral model of malware
that attempts to capture the essence of being malicious while

abstracting from syntactic code details that may vary among
different obfuscated variants of malware.

Hence, in order to defeat modern malware performing these
kind of auto preservation techniques, we need a behavioral
model that allows us to expresses the interaction between
the system and the malware, and also to tune the level of
precision of the syntax specification and of the code behav-
ior of malware. Following this observation, we propose the
use of abstract symbolic finite state automata [6] (SFA) for
modeling malware behaviors. SFAs, introduced in [12] and
further developed in [8], [7], provide the ideal formal setting
for modeling, within the same framework, the abstraction of
both the syntactic structure of programs and their intended
semantics. Indeed, SFA have been introduced as an extension
of traditional finite state automata for modeling languages with
a potential infinite alphabet. Transitions in SFA are modeled as
constraints interpreted in a given Boolean algebra, providing
the semantic interpretation of constraints, and therefore the
(potentially infinite) structural components of the language
recognized (see [8], [12]). The notion of abstract SFA has
been introduced in [6] where approximation is obtained by
abstract interpretation. Abstract interpretation can act either
at the syntactic (predicate), or at the topological (graph), or
at the semantic (denotation) level. As presented in [6] SFAs
model both the syntax and the semantics of systems. Indeed,
following the structure of their control flow graphs, programs
and systems can be represented as SFAs, where states are
program points between basic blocks, the predicates labeling
the transitions are the instructions of the basic blocks, and
the interpretation of these predicates is given by the (possibly
infinite) I/O semantics of each basic block. Hence, an SFA
represents the code syntax and structure, while the language
recognized by the SFA represents the semantics of the code
fragment.

In order to build the SFA specification of infection dealing
also with metamorphism, we assume to have access to a set
of systems infected with different variants of a given malware.
Then we follow an approach similar to machine learning for
building a general SFA model for infection. Following the
standard terminology of machine learning we call training set
the set of known infected systems (where we suppose to know
which actions are benign and which one are malicious). In
order to be as proactive as possible, we do not consider simple
infections, but families of variants of infections. This makes

the detection process resilient, at least to the metamorphic
variants analyzed in the training set. Moreover, we consider
different kind of systems infected with variants of the same
malware. In this way, we can observe many possible different
ways in which a malware can interact with the infected system,
namely in which the malicious behavior may be triggered.
Next, we merge these samples of infected systems in order to
construct a single SFA model of infection that expresses all the
interactions between the malware and the systems considered
in the training set. In machine learning, once a model is
extracted from the training set it needs to be generalized in
order to cover also cases that do not belong to the training set.
Hence, the idea is to generalize the SFA model of infection
by abstracting it wrt its syntax, approximating so far the
specification of infection in order to recognize also infections
not in the training set, but sharing the same syntactic properties
of the training set witnesses. We may want to approximate
either the benign actions, or the malicious actions, or both.
By approximating benign actions we abstract actions of the
infected system. In this way, we obtain a model of infection
parametric on the abstraction of benign behaviors aiming
at recognizing also infected systems that do not belong to
the training set. At the limit, we can decide to lose all the
information concerning benign actions by approximating these
actions with > (representing any possible program fragment).
In this case the model will highlight only where interactions
between the malware and the system occur. On the other
side, by generalizing malicious actions we approximate the
malicious behaviors seen in the training set. The abstraction
of the malicious behavior allows us to potentially recognize
also metamorphic code variants not witnessed in the training
set.

We believe that the abstract SFA model we propose have
interesting applications in the malware detection scenario. This
is an ongoing work, and therefore what we present here is
simply a road-map of how we can build an SFA specifications
of infection and of how the abstract SFA model could be used
in malware detection.

The contributions of the paper are the following:

• We propose a methodology, based on machine learn-
ing, for building an SFA model of infected systems,
that expresses the interaction between the malware and
the environment, therefore potentially showing malware
dormant behaviors. Moreover, this model allows us to
tune the abstraction of both the benign and the malicious
actions independently;

• We describe four possible applications of the proposed
infection model to malware detection. Let us denote with
Wη[TS (M)] the abstract SFA model of infection extracted
by machine learning on a training set TS (M), of systems
infected with variants of malware M, and where η specifies
a syntactic abstraction. Let W [S] be the SFA model of
system S that we want to test for infection:

a) Use Wη[TS (M)] as a monitor for checking whether
a particular execution contains infected behavior.

b) Wη[TS (M)] can be used as a signature for infection:
a system S is infected with a malware M if there
exists a behavior of Wη[TS (M)] that appears in
W [S].

c) Extract from Wη[TS (M)] a description of the mali-
cious behaviors (also the dormant ones), and check
whether the SFA W [S] exhibits these behaviors.

d) Use Wη[TS (M)] to drive the dynamic analysis of
paths that seem to contain a dormant malicious
behavior.

Structure of the paper: In Section II we briefly present
abstract interpretation and the SFA model together with its
syntactic abstraction. The section ends with the description of
how SFA can be used to model systems. Next, in Section III
we show how, from the SFA of an infected system in the
training set, we can derive a model of infection, and how
we can generalize it by abstracting either benign or malicious
actions. In Section IV we discuss how the generalized model
of infection can be used for malware detection.

II. PRELIMINARIES

Notation: Given two sets S and T , we denote with ℘(S) the
powerset of S, ℘re(S) the set of recursive enumerable (r.e.)
subsets of S, with S r T the set-difference between S and
T , with S ⊂ T strict inclusion and with S ⊆ T inclusion.
S∗ denotes the set of all finite sequences of elements in S.
A set L with ordering relation ≤ is a poset and it is denoted
as 〈L,≤〉. A poset 〈L,≤〉 is a lattice if ∀x.y ∈ L we have
that x∨ y and x∧ y belong to L. A lattice 〈L,≤〉 is complete
when for every X ⊆ L we have that

∨
X,
∧
X ∈ L. As usual

a complete lattice L, with ordering ≤, least upper bound (lub)
∨, greatest lower bound (glb) ∧, greatest element (top) >, and
least element (bottom) ⊥ is denoted by 〈L,≤,∨,∧,>,⊥〉.

Abstract Interpretation: Abstract domains can be formal-
ized as sets of fix-points of closure operators on a given
concrete domain which is a complete lattice C (cf. [5]). An
upper closure operator (or simply a closure) on a complete
lattice C is an operator ρ : C−→C which is monotone,
idempotent, and extensive (i.e., x ≤ ρ(x)). We denote with
uco(C) the set of all closure operators on the complete lattice
C, namely it is the set of all possible abstractions of C. If
C is a complete lattice, then uco(C) forms a complete lattice
[13] where the bottom is the identity closure id = λx.x and
the top is the abstraction λx.> unable to observe anything.

A. Symbolic Finite State Automata

Symbolic automata and finite state transducers have been
introduced to deal with specifications involving a poten-
tially infinite alphabet of symbols [8], [7], [12]. We fol-
low [8] in specifying symbolic automata in terms of effec-
tive Boolean algebra. Consider an effective Boolean algebra
A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉, with domain elements in
a r.e. set DA and predicates in a r.e. set ΨA closed under
boolean connectives ∧, ∨ and ¬. The semantic function
J·K : ΨA−→℘re(DA) is a partial recursive function such
that J⊥K = ∅, J>K = DA, and ∀ϕ, φ ∈ ΨA we have

that Jϕ ∨ φK = JϕK ∪ JφK, Jϕ ∧ φK = JϕK ∩ JφK, and
J¬ϕK = DA r JϕK. In the following, we abuse notation by
denoting with J·K also its additive lift to ℘(ΨA), i.e., for any
Φ ∈ ℘(ΨA): JΦK =

{
JϕK

∣∣ ϕ ∈ Φ
}

. For ϕ ∈ ΨA we write
IsSat(ϕ) when JϕK 6= ∅ and we say that ϕ is satisfiable. A
is decidable if IsSat is decidable.

Definition 1: A symbolic finite automaton (SFA) W is a
tuple 〈A, Q, q0, F,∆〉 where A is an effective Boolean algebra,
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states and ∆ ⊆ Q×ΨA ×Q is a finite set
of transitions.
A transition in W = 〈A, Q, q0, F,∆〉, labeled ϕ from state p
to state q, (p, ϕ, q) ∈ ∆, is also denoted p

ϕ−→q. ϕ is called
the guard of the transition. An a-move of an SFA W is a
transition p ϕ−→q such that a ∈ JϕK, also denoted p a−→q. The
language of a state q ∈ Q in W is defined as:

Lq(W) =

{
a1, . . . , an ∈ DA

∣∣∣∣ ∀1 ≤ i ≤ n. pi−1 ai−→pi
p0 = q, pn ∈ F

}
in this case, L (W) = Lq0(W). We assume complete SFA,
namely where all states hold an out-going a-move, for any
character a ∈ D. This can be simply achieved by adding a
shaft-state q⊥ ∈ Q such that q⊥

>−→q⊥ ∈ ∆ and for all states
q lacking an out-going a-move, for a ∈ D, then q ¬β−→q⊥ ∈ ∆
with β =

∨{
ϕ
∣∣ q ϕ−→p ∧ p ∈ Q

}
.

Given an SFA W = 〈A, Q, q0, F,∆〉 and ≡⊆ Q × Q, we
define the quotient SFA W/≡

def
= 〈A, Q′, q′0, F ′,∆′〉 as follows:

Q′ =
{

[q]≡
∣∣ q ∈ Q }

, ∆′ ⊆ Q′ × ΨA × Q′ is such that
∆′ =

{
([q]≡,Φ, [q

′]≡)
∣∣ (p,Φ, q′) ∈ ∆, p ∈ [q]≡

}
, q′0 =

[q0]≡, and F ′ =
{

[q]≡
∣∣ q ∈ F }

.
In [9] the authors extend some classical constructs, such as

language intersection and language containment, to SFA, while
in [8] the authors present an efficient minimization algorithm
for SFA.

We define the projection of a language L (W) ⊆ Σ∗

with respect to a subset X ⊆ Σ of the alphabet as follows:
Proj (L (W), X) = {π(s,X) | s ∈ L }, where given
s = s1s2 . . . sn the string projection function π is defined
as follows π(ε,X) = ε

π(s1s2 . . . sn, X) =

{
s1π(s2 . . . sn, X) if s1 ∈ X
π(s2 . . . sn, X) otherwise

B. Abstract Symbolic Finite Automata

Recently, it has been developed a general framework for
abstracting SFA [6]. In particular, an SFA can be abstracted
either by approximating the domain of predicates labeling
the edges, or by approximating the domain of denotations
expressing the meaning of predicates. In both cases we enlarge
the language recognized by the SFA. In [6] there is a rigorous
description of both syntactic and semantic abstraction of SFA
and of their strong relation. In this work, we are interested
mainly in the SFA syntactic abstraction and therefore formally
present only this SFA abstraction. The syntactic abstraction
of SFA is an abstract interpretation-based approximation of

the domain of predicates ℘re(ΨA) of the underlying effective
Boolean algebra A.

Definition 2: Let A be an effective Boolean Algebra and
let η ∈ uco(℘re(ΨA)) be an additive abstraction of predi-
cates. The syntactic abstraction of A w.r.t. η, denoted 〈η〉-
abstraction, is the effective Boolean algebra

Aη = 〈DA, η(℘re(ΨA)), J·K,⊥,>,∧,∨,¬〉

where J·K : η(℘re(ΨA))−→℘(DA) is defined as in SFA.
Consider an SFA W = 〈A, Q, q0, F,∆〉 and the 〈η〉-
abstraction of the effective Boolean algebra A, denoted as
Aη . We define the symbolic finite automaton correspond-
ing to W on the abstract effective Boolean algebra Aη as
Wη

def
= 〈Aη, Q, q0, F,∆η〉 where:

∆η
def
=
{

(q, η(ϕ), q′)
∣∣ (q, ϕ, q′) ∈ ∆

}
In the following we abuse terminology by calling 〈η〉-abstract
SFA, denoted Wη , the SFA whose underlying Boolean algebra
is an 〈η〉-abstraction of a Boolean algebra A. It is possible to
prove that, when abstracting the underling effective Boolean
algebra of an SFA, we over-approximate the recognized lan-
guage, namely L (W) ⊆ L (Wη) [6].

C. Systems as SFA

According to [6], in this section we specify the approximate
semantics of a system as the language recognized by an
SFA. We consider systems in imperative computational model
and assume to have access their correct control flow graph
(CFG). The CFG of a system is a graph whose nodes are
sequences of non-branching instructions. More formally, let
I be the instruction set containing both branching and non-
branching instructions. We denote by I ⊆ I the set of non-
branching instructions and by C the set of boolean expressions
over system states, namely the set of guards in branching
instructions. Let c range over C and b range over I∗. The
CFG of a system S is a graph GS = (NS, ES) where the
set NS ⊆ I∗ of nodes specifies the basic blocks of S, namely
the maximal sequences of sequential instructions of S, while
the set of edges ES ⊆ NS × C × NS denotes the guarded
transitions of S. In particular, a labeled edge (b,c,b′) ∈ ES
means that the execution of S flows from b to b′ when the
execution of b leads to a program state that satisfies condition
c. When a basic block b has no outgoing edges in ES we say
that it is final, denoted b ∈ Final [GS]. We denote by in[b]
and out [b] respectively the entry and exit point of the basic
block b, and with PP[GS] the block delimiters of GS, namely
the set of all the entry and exit points of the basic blocks of
GS. Formally:

PP[GS]
def
=
{
in[b]

∣∣ b ∈ NS }
∪
{
out [b]

∣∣ b ∈ NS }
Let Σ, ranged over by s, be the set of possible system states.
Let exec : I∗−→℘re(Σ× Σ) be the function that defines the
semantics of basic blocks, namely the pairs of input/output
states that model the execution of the sequences of instructions
in a block. When (s, s′) ∈ exec(b) it means that the execution
of the sequence of instructions b transforms state s into state

s′. Let us denote by s |= c the fact that the boolean condition
c is satisfied by state s ∈ Σ.

We define the set of executions of the CFG of a system S as
the set of all the sequences of basic blocks and guards that can
be encountered along a path of GS = (NS, ES). Formally:

Exe[GS]
def
=

{
b0c1b1c2 . . .ckbk

∣∣∣∣∀0 ≤ i < k :
(bi,ci+1,bi+1) ∈ ES

}
(1)

The execution trace semantics of a system S, denoted JSK,
is therefore the set of all finite executions [10] starting from
the entry point of the starting basic block b0 in the CFG GS
of S. Let InitS ⊆ Σ be the set of possible initial states of
system S. Formally, for each s0 ∈ InitS:

JSK(s0)
def
= {(s0, s1)(s1, s1)(s1, s2) . . . (sk, sk)(sk, sk+1) |

b0c1b1 . . .ckbk ∈ Exe[GS],

∀0 < i ≤ k : si |= ci, (si−1, si) ∈ exec(bi−1)}

JSK def
=
⋃{

JSK(s0)
∣∣ s0 ∈ InitS

}
In order to define the SFA that corresponds to the CFG
semantics of a given system we need to define an effective
Boolean algebra that it is suitable for the representation of
system execution. For this reason we define the following
effective Boolean algebra where predicates are either basic
blocks of instructions or guards of branching instructions,
representing the syntactic structure of the system, and the
denotations are pairs of input/output states:

P
def
= 〈Σ× Σ, I∗ ∪ C, {| · |},⊥,>,∧,∨,¬〉

where the semantic function {| · |} : I∗ ∪ C−→℘re(Σ× Σ) is
defined as follows for ϕ ∈ I∗ ∪ C:

{|ϕ|} def
=

{ {
(s, s′)

∣∣ (s, s′) ∈ exec(b)
}

if ϕ = b ∈ I∗{
(s, s)

∣∣ s |= c
}

if ϕ = c ∈ C

we denote by {|·|} also its point-wise extension to ℘re(I∗∪C).
Definition 3: Let S be a system with CFG GS. The SFA

associated with S is

W [S]
def
= 〈P,PP[GS], in[b0], {out [b] | b ∈ Final [GS]},∆S〉

where b0 is the starting basic block of GS and ∆S is defined
as:

∆S
def
=
{

(in[b],b, out [b])
∣∣ b ∈ NS }

∪{
(out [b],c, in[b′])

∣∣ (b,c,b′) ∈ ES
}

It has been proved in [6] that the language L (W [S]) ∈
℘re((Σ × Σ)∗) recognized by the SFA W [S] approximates
the concrete system semantics JSK in a language of sequences
of infinitely many possible input/output relations associated
with each basic block, namely if S is a system then for any
s0 ∈ InitS: JSK(s0) ∈ L (W [S]).

Observe that the language recognized by W [S] is given by
the strings consisting in the input/output pairs associated to the
semantics of the instructions along the paths of the CFG of
S. Let us restrict the language to the effective computations,

namely to those strings where the output state of a denotation
is equal to the input of the next one. Formally, we define
L̂(W [S]) as follows:

L̂(W [S])
def
={

〈sin0 , sout0 〉 . . . 〈sink , soutk 〉
∣∣ ∀i ∈ [0, k − 1], souti = sini+1

}
Then, the following relation between the semantics of S and
the set of effective computations recognized by W [S] holds.

Thorem 1: L̂(W [S]) = JSK.

III. LEARNING INFECTIONS

Consider an integration function I : Systems×Systems →
Systems such that I(M,S) denotes system S infected with
malware M, namely the function I models the infection
procedure. For instance, the function I may trivially be the
appending of a malware to an executable file. The training set
we consider is a collection of infected systems, and for each
infected system we assume to know which instructions are of
the malware and which are of the original/benign system. We
consider the training set for malware M as given by:

TS (M) = {I(M1,S1) . . . I(Mk,Sk)}

where Mi are metamorphic variants of M and Si are benign
programs. In the following, when I(Mi,Si) ∈ TS (M) we
may write Si ∈ TS (M) and Mi ∈ TS (M). Given TS (M) we
construct the SFA of each infected system:

W [I(M1,S1)] . . .W [I(Mk,Sk)]

Then we compute the SFA that embeds all the infections seen
in the training set:

W [TS (M)]
def
=]

{
W [I(Mi,S1)]

∣∣ I(Mi,Si) ∈ TS (M)
}

where] is the minimization [8] of the union of the SFA in
the considered set. Thus, the language of real computations
recognized by WTS(M) corresponds to the computations of all
the infected systems seen in the training set.

Proposition 1: Given a training set TS (M) we have that:

L̂(W [TS (M)]) =
⋃{

JI(Mi,Si)K
∣∣ I(Mi,Si) ∈ TS (M)

}
PROOF. By definition of L̂ we have that L̂(WTS(M)) =⋃{

L̂(W [I(Mi,Si)])
∣∣ I(Mi,Si) ∈ TS (M)

}
, therefore the

thesis follows from Theorem 1. 2

Generalization

The idea of the generalization process consists in starting
from an SFA W [TS (M)] and abstracting either the benign
or the malicious actions of the resulting system. In order to
be able to abstract independently the benign and malicious
actions we need to augment the domain of predicates with a
flag expressing whether the considered action is malicious or
not. From now on, we consider the following Boolean algebra
for representing programs:

P+ def
= 〈Σ× Σ, {•, ◦} × (I∗ ∪ C), {| · |},⊥,>,∧,∨,¬〉

where a predicate is now a pair, where for example the
predicate (◦,b) denotes a benign sequence of instructions,
while a predicate (•,b) a malicious sequence of instructions.
Let us define the following abstractions:

• η• ∈ uco(℘({•}×(I∗∪C))) that specifies how malicious
actions are abstracted

• η◦ ∈ uco(℘({◦} × (I∗ ∪ C))) that specifies how benign
actions are abstracted

The abstraction η ∈ uco(℘({•, ◦} × (I∗ ∪ C))) of flagged
predicates can then be specified as the combination of the
malicious and benign abstraction: η = η•× η◦. We denote by
Wη[TS (M)] the SFA W [TS (M)] abstracted by the syntactic
abstraction η. Observe that, by definition of SFA syntactic
abstraction, we have that L (W [TS (M)]) ⊆ L (Wη[TS (M)]),
which means that the abstract model we build recognizes at
least all the behaviors in the training set. In particular, the
behaviors recognized by the abstract SFA L (Wη[TS (M)]) are
precisely those expressing the generalization operated by the
abstraction.

Note that, the abstraction η is defined in such a way that we
can separately tune the abstraction of benign and of malicious
actions. For example, an abstraction η = id × η◦ denotes an
abstraction of predicates that generalizes/abstracts only benign
actions, while an abstraction η = η• × id represents the
generalization/abstraction of only malicious actions.

For example, if we want to lose all the information con-
cerning benign actions, then we can use the abstraction
η = id × λx. > abstracting all the benign behaviors to
>, denoting the possibility of executing any possible benign
computation. This leads to a behavioral model of infection
where M is precisely represented in the computation model,
while we lose any information regarding the benign actions
seen in the training set. The SFA obtained so far specifies
only when some (possibly any) interaction with the benign
system need to occur. It is worth noting that this kind of
abstraction could be used for highlighting the kind of infection
used by the malware M. For example, simple prepending or
appending viruses will have an abstract SFA where the >
abstract predicates are all, respectively, at the beginning or at
the end of the SFA. We can imagine that the SFA of system
infected with logic bombs, or malware with dormant behaviors
will have a branch that exhibits non-> predicates only in one
branch. The idea is that, by abstracting the benign actions on
> the topology of the SFA could reveal something regarding
the kind of infection.

On the other hand, if we are interested in detecting the pos-
sible variants of malware that can infect a system considered
in the training set, we can use an abstraction η = η• × id ,
where abstraction η• models the information that we want
to lose on the malicious variants seen in the training set,
in order to become able to recognize other metamorphic
variants of the same malware. Standard research on behavioral
malware detection has focused on the definition of these kind
of abstractions of malicious actions. Interestingly, the proposed
approach would allow us to combine the specification of a

metamorphic malware behavior with the interactions with the
surrounding system in the same model of infection.

IV. APPLICATIONS TO MALWARE DETECTION: IDEAS AND
FUTURE DIRECTIONS

In this section, we discuss some possible applications of
the proposed model of infection Wη[TS (M)] in the context
of malware detection. These possible applications are briefly
described deserving future work.

A. Dynamic Detection

The infection model Wη[TS (M)] could be used to guide a
monitor algorithm that checks if a particular execution matches
an infected behavior expressed by Wη[TS (M)]. Thus, given an
input that generates an execution trace w the monitor algorithm
dynamically checks if:

w ∈ L̂(Wη[TS (M)])

Consider the following notation: if w = (s0 s1 s2 . . . sn) ∈ Σ∗

then hd(w) = s0 ∈ Σ while tl(w) = s1 s2 . . . sn ∈ Σ∗, and
∆q def

=
{

(q, ϕ, p)
∣∣ (q, ϕ, p) ∈ ∆

}
. In Fig. 1 we present the

dynamic detection algorithm monitoring whether an execution
trace shows malicious, or at least suspicious, behaviors. The
idea of the algorithm consists in receiving in input a trace
of execution states. For each state in this sequence we check
which paths can be followed. We follow an edge whenever
we are in a system state belonging to the semantics of, at
least one, predicate labeling the edge. Moreover, if the satisfied
predicate is concrete (i.e., is the only possibility) then we erase
the edge from the set of the further feasible paths, otherwise
(when the the label is an abstract predicate consisting in a
set of predicates) we keep the edge as feasible while keeping
trace of the reached automaton states.
Let us show this idea on an example. Consider the SFA in
Fig. 2 with final state q6. Let us suppose that ϕ1 = 0 ≤ x < 5,
ϕ2 = 5 ≤ x < 10 and ϕ3 = 10 ≤ x < 15. The set of
predicates are abstractions: η = id × η◦ where η◦(ϕ1) =
η◦(ϕ2) = {ϕ1, ϕ2, ϕ3}, η◦(ϕ3) = {ϕ2, ϕ3}. The idea is that,
if an execution trace reaches the final state it means that it
contains a sequence of malicious actions (the non-abstracted
predicates) which may correspond to a suspicious execution,
and then it is stopped with an alarm. In the picture, we use
the algorithm for verifying whether wa and/or wb (sequences
of values for x) reach q6 in the depicted SFA. In particular,
starting from the frontier (of reachable states) denoted by
dashed closed lines, we end in the ones denoted with plain
closed lines. We can observe that in the case (a) the trace
allows to reach the final state q6, hence we stop the monitor
raising an alarm, meaning that a potential malicious behavior
is recognized in our system. In the case (b) the last frontiers
contains only the state q3 which is not final, hence we have
not recognized any malicious complete behavior.

B. Wη[TS (M)] as signature of infection

By definition, Wη[TS (M)] is the generalized model of
infection of a malware M extracted from the training set

DDetection(W,w)
input: W = (A, Q, q0, F,∆), η ∈ uco(℘re(ΨA))

A = (DA,ΨA, {| · |},⊥,>,∨,∧,¬), w ∈ Ψ∗
A

1: Fr = ∆q0
η ; FrT = Fr; R = {q0}; output=wait;

2: while w 6= null ∧ output==wait do
3: {while FrT 6= null ∧ output==wait do
4: {select and remove (q,Φ, p) from FrT
5: Fr = Fr r {(q,Φ, p)};
6: R = Rr {q};
7: if (∃ϕ ∈ Φ. hd(w) ∈ JϕK) then
8: {Fr = Fr ∪∆p

η; R = R ∪ {p};
9: if (|Φ| > 1) then
10: {Fr = Fr ∪ {(p,Φ, p)}; }}
11: if (R ∩ F 6= ∅) then {output=alarm; }
12: if (w == null) then {output=ok; }
13: FrT = Fr; w = tl(w); }}
14: return output;

Fig. 1. Dynamic detection algorithm

Fig. 2. Example of dynamic detection.

TS (M). This abstract model of infection can be used as a
signature for the analysis of systems that are infected by M.
More formally, we say that a system S is infected with M if

L̂(Wη[TS (M)]) ∩ L̂(W [S]) 6= ∅ (2)

namely if there exists a behavior of the abstract infection
model that appears also in S.
Note that, the semantics of predicates are r.e. sets, hence to
decide whether a sequence belongs to the language of an SFA
is a semi-decidable problem, in other words the language of
an SFA is a r.e. set. This means that also the decision problem
(2) is semi-decidable: we use the algorithm for semi-deciding
whether a r.e. set is empty and each time we find a sequence in
the language, in parallel, we test if the sequence belongs also
to the other language. It is worth noting that it is well known
that the to decide whether the intersection of regular languages
is the emptyset is decidable. We believe that it is possible to
provide an algorithm for deciding problem (2) by adapting the
decision algorithm for regular languages to the SFA language
of predicates, being the set of predicates finite when dealing
with CFG of systems. Indeed, finite state automata can be
easily transformed into an SFA by considering as semantics
precisely the predicate.
The idea of representing malicious behavior as languages
recognized by automata is not new, see for example [1], [3],
[4]. To the best of our knowledge, existing works modeling
malicious behaviors by means of automata typically use a spe-

cific abstract language attempting to generalize and to capture
metamorphic variants. Such abstract languages express either
syntactic properties of the code (e.g., use of symbolic names
to handle renaming) or execution properties extracted through
static analysis. The main advantage in using the abstract SFA
model instead of standard automata comes from the fact that
when using SFA to model systems (see Section II-C) we have
an unique model that incorporates both the syntax and the
semantics of code thus allowing us to model both how the
code is written and what it computes. Indeed, as presented in
[6], abstract SFAs allow us to approximate both the syntax
and the semantics of the predicates. Moreover, by abstracting
the benign actions we may be able to identify infections of
systems not considered in the training set, while by abstracting
the malicious actions we may be able to recognize possible
metamorphic variants of M not considered in the training set.

C. Extract metamorphic malware signature

Another possible exploitation of the proposed model is
based on the idea of projecting the language recognized by
Wη[TS (M)] only on the malicious actions. In this way, we are
extracting a malware model which may potentially include also
behaviors whose execution depends on some external action
(usually performed by the infected system).
Let L ◦η (TS (M)) be the language of strings obtained by
projecting L̂(Wη[TS (M)]) on malicious actions, namely
L ◦η (TS (M)) = Proj (L̂(Wη[TS (M)]), {◦} × I∗ ∪ C). In this
context, a detector could test if a system S is infected with M
by checking if there exists a malicious string in L ◦η (TS (M))
that is a sub-string (potentially not sequential) of a string of the
language recognized by the SFA W [S] modeling the system.
The idea of considering potentially not sequential sub-string
comes from the fact that between two malicious actions the
infected system could perform any possible benign action.

Definition 4: [Not sequential sub-string] Let Σ be an alpha-
bet. Let u, v ∈ Σ∗ such that |u| ≤ |v|. u is a not sequential
sub-string of v if there exists {ui}i∈[0,n], {vi}i∈[0,m] ∈ ℘(Σ∗)
such that u = u0u1 . . . un, v = v0v1 . . . vm, m ≥ m, and
∀i ∈ [0, n] ∃j ∈ [0,m]. ui = vj ∧ j ≥ i.
Then we denote by NSSstring(L (W [S])) the set of all the not
sequential sub-strings of words in the language of L (W [S]).
Thus, the infection test is:

L ◦η (TS (M)) ∩NSSstrings(L (W [S])) 6= ∅ (3)

Note that, the language L ◦η (TS (M)) expresses only the gen-
eralization of the malicious behavior according to η. Such a
generalization of the malicious behavior allows the detector
to recognize possible metamorphic variants of the malware M
sharing the same abstraction of M but not considered in the
training set TS (M).
As before, we can observe that the decision problem (3) is
semi-decidable, but again we believe that it is possible to
transform this decision problem in a decision problem on
regular languages where again this problem become decidable.
In particular, for finite state automata, given an automa-
ton A whose language is denoted by L(A), the language

NSSstrings(L(A)) is still regular. The intuition is that we
can transform the problem of deciding whether w is a not
sequential sub-string of w′ ∈ L(A) building the automaton
(with ε transitions, denoting moves possible without reading
symbols) recognizing all not sequential sub-strings of L(A).

Definition 5: [NSSstring automaton] Let A =
〈q0, Q, F, δ,Σ〉 be the finite state automaton with set of
state Q, initial state q0 ∈ Q, final states F ⊆ Q, alphabet Σ
and transition relation δ : Q × Σ −→ Q. The corresponding
NSSstring non deterministic automaton with ε-transitions is
NSSs(A) = 〈q0, Q, F, δ′,Σ〉 where δ′ : Q×Σ∪{ε} −→ ℘(Q)
is defined as δ′ = δ ∪

{
(q, ε) 7→ q′

∣∣ ∃a ∈ Σ. δ(q, a) = q′
}

.
We observed in the previous section that a finite state au-
tomaton can be easily transformed into an SFA, moreover if
the finite state automaton contains ε-transitions then the SFA
corresponding edges are labeled with >, meaning that any
system state can be considered to follow that edge. Hence
again, as before, in order to make decidable the decision
problem (3) we should have to transform it as a decision
problem on the language of predicates.

D. Exploring Dormant Behaviors

When using dynamic analysis for testing a system S for
infection the main problem is the code coverage. Namely,
dynamic analysis tests a particular execution of the system for
infection and if the considered execution does not exhibit the
malicious behavior we cannot be sure that another execution
would not exhibit it. This is particularly true for modern mal-
ware that often exhibit malicious behaviors only when properly
stimulated. For example, there are malware that use anti-
emulation or anti-analysis techniques, namely that interrogate
the environment in order to understand whether it is running
in a virtual machine and, in this case, modify their behavior
to make analysis harder. There are malware that perform the
malicious intent only when certain conditions are met. Other
typical examples are the bots that wait to be triggered by
precise sequences of messages sent from the botnet controller.
Thus, it is a common practice, in modern malware, to have
dormant behaviors. We call triggering predicates those control
points that have only one branch that exhibit a malicious
behavior. To overcome this problem researchers have proposed
techniques, as for example [2], [11], for exploring multiple
execution paths during dynamic analysis in order to catch such
dormant behaviors. These techniques often relay on the use of
symbolic execution in order to find inputs that would lead
to an execution that explores different paths. In order to focus
on the execution of dormant behaviors these techniques should
force the execution of both branches controlled by triggering
predicates. This is done by marking all the system predicates
that control conditional branches depending on external con-
ditions, namely branching that may depend on malicious tests.
For example, in [2], [11] all the predicates that depend on the
answer received by system calls (as for example, current time
of the operating system, battery consumption, content of a
file, check for Internet connectivity) are marked and inputs
are generated in order to execute both branches controlled

by such predicates. The idea is to capture in this way the
points of the system where control flow decisions may hide
dormant behaviors. Of course this method, used for identifying
triggering predicates, suffers from both false positives and
false negatives. We believe that the abstract SFA model of
infection Wη[TS (M)] could be use to mark as triggering
predicates those control points that have the characteristic that
one branch exhibit a malicious behavior while the other does
not. Indeed, this graphical property of control points identifies
where the execution performs some kind of check and then
decide whether to perform the malicious actions or not. Thus,
it looks like a reasonable approximation of what we called
triggering predicates. The idea would be to re-implement
existing techniques, such as the ones in [2], [11], by using the
SFA structure and labeling for identifying these control points
where we force dynamic analysis to considers both branches.
It would then be interesting to compare the dormant behaviors
discovered in this way with the ones discovered in [2], [11].

Acknowledgments: This work is partly supported by the
MIUR FIRB project FACE (Formal Avenue for Chasing
malwarE) RBFR13AJFT.

REFERENCES

[1] P. Beaucamps, I. Gnaedig, and J.-Y. Marion. Behavior abstraction
in malware analysis. In Runtime Verification - First International
Conference, RV10, volume 6418 of LNCS, pages 168–182, London, UK,
2010. Springer-Verlag.

[2] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. X. Song, and
H. Yin. Automatically identifying trigger-based behavior in malware.
In Botnet Detection: Countering the Largest Security Threat, volume 36
of Advances in Information Security, pages 65–88. Springer, 2008.

[3] M. Christodorescu and S. Jha. Static analysis of executables to detect
malicious patterns. In 12th USENIX Security Symposium, pages 169–
186, 2003.

[4] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant.
Semantics-aware malware detection. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P’05), pages 32–46, Oakland,
CA, USA, 2005.

[5] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proc. of Conf. Record of the 6th ACM Symp. on
Principles of Programming Languages (POPL ’79), pages 269–282,
New York, 1979. ACM Press.

[6] M. Dalla Preda, R. Giacobazzi, A. Lakhotia, and I. Mastroeni. Abstract
symbolic automata: Mixed syntactic/semantic similarity analysis of
executables. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 329–341. ACM.

[7] L. D’Antoni and M. Veanes. Equivalence of extended symbolic finite
transducers. In N. Sharygina and H. Veith, editors, CAV, volume 8044
of Lecture Notes in Computer Science, pages 624–639. Springer, 2013.

[8] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In
S. Jagannathan and P. Sewell, editors, POPL, pages 541–554. ACM,
2014.

[9] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for
string analysis. In R. Jhala and D. A. Schmidt, editors, VMCAI, volume
6538 of LNCS, pages 248–262. Springer, 2011.

[10] I. Mastroeni and R. Giacobazzi. An abstract interpretation-based model
for safety semantics. Int. J. Comput. Math., 88(4):665–694, 2011.

[11] A. Moser, C. Krügel, and E. Kirda. Exploring multiple execution paths
for malware analysis. In 2007 IEEE Symposium on Security and Privacy
(S&P 2007), 20-23 May 2007, Oakland, California, USA, pages 231–
245. IEEE Computer Society, 2007.

[12] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner.
Symbolic finite state transducers: algorithms and applications. In J. Field
and M. Hicks, editors, POPL, pages 137–150. ACM, 2012.

[13] M. Ward. The Closure Operators of a Lattice. Annals of Mathematics,
43(2):191–196, 1942.

