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Abstract The theory of shapes, as proposed by David
Kendall, is concerned with sets of labeled points in the
Euclidean space Rd that define a shape regardless of trans-
lations, rotations and dilatations. We present here a method
that extends the theory of shapes, where, in this case, we use
the term generalized shape for structures of unlabeled points.
By using the distribution of distances between the points in a
set we are able to define the existence of generalized shapes
and to infer the computation of the correspondences and the
orthogonal transformation between two elements of the same
generalized shape equivalence class. This study is oriented to
solve the registration of large set of landmarks or point sets
derived from medical images but may be employed in other
fields such as computer vision or biological morphometry.

Keywords Generalized shapes · Point sets · Correspon-
dence · Registration · Procrustes analysis

1 Introduction

A variety of objects can be represented as point sets in R
d ,

where d is usually 2 or 3. One is often presented with the
problem of deciding whether two of these point sets, and/or
the corresponding underlying objects or manifolds, represent
the same geometric structure or not. In the case of correspon-
dence, we are interested in the transformation that relates one
form to another. A connected fundamental question is: what
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conditions must a set of points verify in order to faithfully
represent an object? Another question is: what kind of sim-
ilarity we want to achieve between the objects, i.e. rigid or
non rigid? The easiest hypothesis is when the correspon-
dences are known, there is a small amount of noise in the
point set representation and the transformation is rigid. The
closed form solution was given by Shonemann in [28].

Each set of points that we want to register is called shape
and the registration task is to find a way to align two or more
shapes. The Procrustes method of shape comparison arose
as a way of superimposing point sets with known correspon-
dence. Amodern and complete study of the Procrusteanmet-
ric and shapemanifolds was presented byKendall in [17] and
was further extended by the author in [18].

Themathematical aspects of the theory of shapes are most
of the times not practical in the implementation of algorithms
for object recognition and matching. Point-based methods to
register surfaces which brings relatively dense point sets into
correspondence have become popular with the introduction
of the iterative closest point (ICP) method [4].

This algorithm is designed to work with different rep-
resentations of surface data: point sets, line segment sets
(polylines), implicit surface, parametric curves, triangle sets,
implicit surfaces and parametric surfaces. For medical image
registration the most relevant representations are likely to be
point sets and triangle sets, as algorithms for delineating these
features from medical images are widely available.

The algorithm is able to register a data shape P with Np

points to a model shape X with Nx primitives. For each ele-
ment of P , the algorithm first identify the closest point on X
shape, then finds the least square rigid-body transformation
relating these pairs of point sets. The algorithm then redeter-
mines the closest point set and continues until finds the local
minimummatch between the two surfaces, as determined by
some tolerance threshold.
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The optimization can be accelerated by keeping track of
the solutions at each iteration. As the algorithm iterates to
the local minimum closest to the starting position, it may not
find the correct match. The solution proposed in [4] is to start
the algorithm multiple times, each with a different estimate
of the rotation alignment, and choose the minimum of the
minimum obtained.

In the context of the determination of correspondences
and transformation in successive steps several authors built
extensions or generalizations of this approach. While retain-
ing the basic iterative principle of ICP, Rangarajan et. al in
[27] formulated a variant of the Procrustes distance between
two discrete sets of points in which the correspondence maps
are unknown a priori. Their algorithm alternates between cal-
culating optimal rotations and determining correspondence
maps. For every fixed rotation R, it computes the associa-
tion matrix M between the two sets of points A = {Ai } and
B = {

B j
}
, minimizing the average of the square residuals∑

i, j Mi j
∥
∥RAi − B j

∥
∥, under the soft constraint that M is

indeed a measure of coupling, i.e the values of M elements
are between 0 and 1, each row sums to 1, and the 1 value of
an element Mi j means the perfect correspondence between
Ai and B j . As is the case of the original ICP, this algorithm
can also converge to a local rather than a global minimum,
and the correspondence maps can still be discontinuous and
distorting.

Memoli [23] provides theoretical exposition of a simi-
lar functional in the context of Gromov-Hausdorff distances
between shapes. Ghosh et. al [14] used a similar framework
with a smooth surface deformation mechanism together with
closest-point maps to determine both correspondence maps
and the transformations in an alternating iterative procedure.
Their algorithm requires user initialization which may influ-
ence the outcome; the way correspondences are assigned can
lead to a deformation mechanism that produces a distorting
and/or discontinuous map between the two surfaces.

Shapiro and Brady [30] match feature points on the basis
of consistent same-space distances by an eigen-analysis tech-
nique, following the inter-image distance-based matching
technique of Scott and Longuett-Higgins [29]. The solu-
tion presented in [29] has a very elegant implementation
founded on a well-conditioned eigen-vector solution which
involved no iteration, but does not handle large rotations
and may become unstable for some value of the parame-
ters. Conversely, Shapiro et al. in [30] introduce a modal
shape description to handle also the rotations and the insta-
bility, but their solution lacks of the formal proof and, in
our tests, does not always provide the results we would have
expected.

Boyer et al. [9] introduced the concept of continuous Pro-
crustes distance and proved that it provides a true metric for
two-dimensional surfaces derived fromanatomical structures
embedded in a three-dimensional space.

Jian and Vemuri in [16] reformulate the task of point
set registration as the problem of aligning two Gaussian
mixture models (GMM) such that a statistical discrepancy
measure between the two corresponding mixtures is mini-
mized. Another probabilistic approach that uses GMM and a
closed form solution to establish the correspondences using
the expectation maximization algorithm was given byMyro-
nenko and Song in [24].

It is worth to mention the paper of Belongie et al. [3]
that introduces the shape context concept used to measure
the similarity between shapes in two steps: (1) solving for
correspondences, (2) using the correspondences to estimate
an aligning transform.

An efficient spectral solution to correspondence problems
using pairwise constraints between candidate assignments
was presented by [21].

These are only a few of the works dealing with the trans-
formation - correspondence problem and, from the first to
the last citation, they are all facing the same ’egg-chicken’
dilemma: find the correspondences to get the transformation
or find the transformation to get the correspondences. The
best solutions are of course those where the transformation
allowed is non-rigid. In this case we may find perfect cor-
respondences using a mathematical transformation, but one
question arises: is it not true that if we allow for non-rigid cor-
respondence we may align any two given objects, such as an
apple and a pear or a mouse and an elephant? It is important
to consider the applications and the input-output of the algo-
rithms dealing with the correspondence-registration combi-
nation. The input of such algorithms may represent different
pose of the sameobject or views of an object subject to a set of
changes such as deformations. The data describing the input
can be images or geometric features such as points or triangle
meshes. The correspondence could be global in the case of an
imagedataset or local in the case of geometric featuresmatch-
ing. The output of such algorithms gives the transformation
that register the datasets on one hand and the correspondence
or themeasure ofmatch on the other hand. If the input is given
as a set of geometric features to be matched with another set
of features, for instance in the point-set registration, once
non-rigidity is allowed, there is an infinite number of ways
to map one set onto another. The smoothness constraint is
necessary because it discourages mapping that are too arbi-
trary.One of the simplest andmost usedmeasures is the space
integral of the square of the second order derivatives of the
mapping function. This leads to the thin-plate-spline (TPS)
function. Introduced by Bookstein in [6] for surface regis-
tration in medical imaging and morphometry, and formally
described byWahba in [31] these functions are currently used
by most non-rigid registration algorithms of point sets (see
also [3,13,16,24]). The TPS function is easy to compute and
implement and it has the advantage to decouple the transfor-
mation into an affine part and a non-linear deformable part.

123



220 J Math Imaging Vis (2015) 52:218–233

In situations where there is no shearing and scaling we can
constrain the affine transformation to a rigid one. Usually,
all the non-rigid algorithms first find a common reference
system of the two datasets, then proceed with the deforma-
tion of one dataset in order to fit the second dataset. Our
main concern is that, once we introduce a non-rigid defor-
mation, even if the initial alignment is not satisfactory, the
algorithm will yield a very good alignment because of the
freedom of the deformation. By keeping trace of the rigid
alignment, as in the TPS case, we may assert the goodness
of the alignment and the usefulness of the registration. For
instance, Chui and Rangarajan in [13], implemented the reg-
istration with a deterministic annealing scheme to optimize
the correspondence matrix by updating the transformation
parameters. The algorithm is clearly attempting to solve the
matching problem using a coarse to fine approach. Global
structures such as the center of mass and principal axis are
first matched, followed by the non-rigid matching of local
structures. This means that the rigid alignment will be given
by the alignment of the geometric moments of the two data
sets considered. This solution has a number of drawbacks
such as the sensibility to outliers, noise, occlusions but also
to the deformation which is our main concern.

Lipman and Funkhouser in [22] used a different approach
for the computation of correspondences of approximately
and/or partially isometric surfaces. They employed the
Mobius transformation and random sampling to vote for the
best correspondences for each triplets of points extracted
from each of the two datasets to be registered. In their
approach, the datasets given as 3Dmeshes,which are genus-0
surfaces, were conformally mapped to a sphere.

All of these approaches work well on synthetic models
but our preoccupation is how useful are they in practical
applications. For instance, in medical image applications,
where there are multiple acquisitions of the same anatomical
area, if we use different sensors (e.g. computed tomography
CT and ultrasound US) and we want to register some seg-
mented surfaces from these datasets, how can an algorithm
distinguish between noise and deformation, or how can a
deformable algorithm take into account the outliers? Since
the deformation is modeled by a mathematical model, such
as TPS, we need to be sure of the correct rigid alignment,
which is, in most of the cases, not guaranteed. There is also
a concern about the computational cost of these algorithm
and the numerous parameters that must be solved/known in
advance.

In the following, we propose a simplification of the
hypothesis of the problem in order to have a solution that is
completely controllable by the theoretical development. The
simplified hypothesis is when we want to register two sets
of points represented in different coordinate systems without
knowing the homologies; the theoretical part consider the
ideal case when no noise is present, while in the practical

implementation we study how robust is this assumption in
the presence of noise.

2 Overview of Approach

The departing point of our generalized shape method is the
thework ofKendall [17]who introduces the theory of shapes.
The theory of shapes is concerned about of k labelled points
x1, . . . , xk or k −ad in an Euclidean spaceRd , where k ≥ 2.
Normally, the centroid of the k points will serve as origin, and
the scale will be such that the sum of the squared distance of
the points from that origin will be equal to unity. Informally,
the shape is ’what is left when the differences which can be
attributed to translations, rotations and dilatations have been
quotiented out’.

By ignoring the translation, scaling and rotation, the shape
space denoted by the symbol Σk

d has the dimension:

dk
d = d(k − 1) − 1

2
d(d − 1) − 1. (1)

This is because the constraints on the total number of
degrees of freedom (DOF) are reduced accordingly by the
DOF of the translations d, rotations 1

2d(d − 1) and scaling.
Eq. (1) holds provided that k ≥ d + 1.

The author introduced a norm and a metric topology on
the shape space deriving the shape-manifolds. The distance
between two k − ad on the shape manifold Σk

d is called the
procrustes distance.

Starting from the description of the shape by using a set of
points, a natural extension of this theory, that we introduce
in this paper, is to quotient out also the effect of the labeling
of the points. In this work we keep the significance of the
scaling. Accordingly, in our approach the definition of the
shape or generalized shape becomes: ’a generalized shape
is what is left when the differences which can be attributed
to translations, rotations and permutations have been quo-
tiented out’.

In this paper we study the implications of such an assump-
tion, we build the theoretical basis and we give some prac-
tical results. The invariance of a point set under the action
of rotations, translations and permutations will be studied in
accordance with the set of distances between each possible
pair of points in the set.

The applications we are interested on are in the med-
ical field, especially in the operating room navigation sce-
nario, where closed form solutions of registration algorithms
are required to have a clinical validation. Most of the solu-
tions currently employed in this field are based on iterative
schemes that alternates correspondence and registration steps
or algorithms that use an optimization approach, as shown by
Yaniv and Cleary [33]. The solution we propose overcomes
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the limitations of thesemethods since it solves the correspon-
dence problem before the registration took place and infers
the global registration from the correspondences found.

The idea of using a global descriptor, invariant to the iso-
metric transformation was already introduced in the work of
Osada et al. [25], but the authors used the distribution of dis-
tances for object classification. In our work, we extend the
use of this invariant descriptor under the action of isometries
associated with the Euclidean metric and we define a class
of equivalent shapes based on this descriptor, in order to
recover the correspondences and the registration transforma-
tion between two shapes belonging to the same generalized
shape class. We therefore study the condition of existence
of such an equivalent class and the algorithmic modalities to
obtain the isometric transformation and the point to point cor-
respondences between two point sets belonging to the same
generalized shape.

The following sections describe our approach. Sects. 3
and 4 presents some known concepts and preliminary results
that introduce our method. The core of our approach is given
in Sect. 5, where a method to infer the computation of the
isometric transformation between two generalized shapes is
described, and Sect. 6, where a method to compute the cor-
respondences between two sets of points that represent the
same generalized shape is introduced.

Based on this findings, an experimental evaluation for a
dataset of pulmonary landmark point derived from 4D CT
image data is presented in Sect. 7.

3 Theoretical Foundations

Let us fix a coordinate system in Rd .

Definition 1 If we denote by O(d) the group of the d × d
orthogonal matrices, and by Sk the group of all permutations
of {1, . . . , k}, a set of k points X = {x1, . . . , xk} ,⊂ R

d

is equivalent to Y = {y1, . . . , yk} ⊂ R
d , in the sense of

generalized shape, if and only if there exists R ∈ O(d), a
vector t ∈ R

d and a permutation π ∈ Sk such that:

Rxi + t = yπ(i)∀i = 1, . . . , k. (2)

Notice that the introduced notion is an equivalence rela-
tion.

Definition 2 We write [X ] the equivalence class of X and
we call it generalized shape.

For any two vectors x = (x1, . . . , xd) and y =
(y1, . . . , yd) in R

d we denote by 〈x, y〉 = ∑d
i=1 xi yi their

scalar product and by ‖x − y‖ = 〈x − y, x − y〉1/2 the
Euclidean distance between them. The Euclidean distance
defines a metric space called the Euclidean space.

Definition 3 For any set X = {x1, . . . , xk} of vectors inRd ,
the center ofmass is given by the vector x̄ = 1

k (x1+. . .+xk).
The set X̄ = {x1 − x̄, . . . , xk − x̄} is called the centered
coordinates.

In the following we shall use the notation X to represent
a set of k points x1, . . . , xk ∈ R

d describing a generalized
shape and, in the same time, a d × k matrix with columns
x1, . . . , xk.

If we sum over i and divide by k equation (2) we have:
R 1

k

∑k
i=1 xi + t = 1

k

∑k
i=1 yi, therefore we can express t as

ȳ − Rx̄ so we can rewrite equation (2) as R X̄ = Ȳπ , where
Ȳπ = {

yπ(1) − ȳ, . . . , yπ(k) − ȳ
}
.

This formula shows that the only important transforma-
tions in the generalized shape definition are the orthogonal
transformation, or the rotation, R and the permutation π .

Definition 4 Given X = {x1, . . . , xk} ⊂ R
d and Y =

{y1, . . . , yk} ⊂ R
d , we define the distance between them

as:

dp(X, Y ) := min
π∈Sk

∥
∥d(xi, xj) − d(yπ(i), yπ(j)

∥
∥

p , (3)

that is the minimum of the L p norm over all the permutations
of elements in Y . This distance ranges from d1 to d∞:

d1(X, Y ) := min
π∈Sk

∑

1≤i, j≤k

∣
∣d(xi, xj) − d(yπ(i), yπ(j))

∣
∣ (4)

d∞(X, Y ) := min
π∈Sk

max
1≤i, j≤k

∣
∣d(xi, xj) − d(yπ(i), yπ(j)

∣
∣ (5)

Observe that, since Sk is finite, it makes sense to define (3)
as a minimum rather than as an infimum.

We use this definition when the correspondences between
the points are not known and the computation of the regis-
tration transformation is not required (Sect. 6).

The Hausdorff distance is another measure of distance
useful when the correspondences are not known. Unlike the
previous distance measure, this distance may be employed
only when the registration transformation is known.

Definition 5 The Hausdorff distance is given by:

dH(X, Y ) := max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }, (6)

This distance measures the worst-case deviation between
the two point sets, while the L p normmeasures only average
deviation. The Hausdorff distance will be employed in our
experimental evaluation (see Sect. 7).

Definition 6 We say that two shapes X and Y , embedded
in the Euclidean space Rd , are isometric when there exists
a bijective mapping Φ : X → Y such that d(xi, xj) =
d(Φ(xi),Φ(xj) for all xi , x j ∈ X . Such Φ is an isometry
between X and Y .
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In the Euclidean space the isometry group, which are the
self-isometries with the function composition operator, is
the Euclidean group of rotations, translation and reflections.
Since in this work we focus on the extrinsic geometry, we
shall use interchangeably the terms isometry and Euclidean
transformation. Some of the possible extensions of our work,
as suggested in Section 8, could handle also the intrinsic
geometry and therefore inelastic deformations.

Furthermore, for practical reasons, we use a natural relax-
ation of isometry or the almost isometry: a function Φ ′ :
X → Y is said an almost isometry if there exists some
ε ≥ 0 such that

∣
∣d(�′(xi),�′(xj) − d(xi, xj)

∣
∣ ≤ ε, for all

xi , x j ∈ X .
We are interested on whether this isometry exists and how

to find it. As the generalized shapes are given as an equiv-
alence class modulo rotations, translation and permutations,
the isometry, in case exists, is given by the composition of
the three functions. Since it is clear that rotations and trans-
lations are always isometries, we are wandering in which
case the permutation still lead to isometry. To do this, we
shall work directly with the distance distributions between
pairwise points in each set.

Definition 7 Given a set of points x1, . . . , xk ∈ R
d , we call

distance distributionmatrix the k ×k matrix whose entries
are given by the pairwise distances DX

i, j = ∥
∥xi − xj

∥
∥

A reduced form of the distance distribution matrix is the
distance distribution vector.

Definition 8 Given a set of points x1, . . . , xk ∈ R
d , we call

distance distribution vector the R(k
2) vector whose entries

are given by the pairwise distances:

V X = (V1,2, . . . , V1,k, V2,1, . . . , Vk−1,k) (7)

where V X
i, j = ∥

∥xi − xj
∥
∥ with 1 ≤ i < j ≤ k

Definition 9
{

V1,2, . . . , V1,k, V2,1, . . . , Vk−1,k
}

is called
distance distribution set.

Note that the distance distributions are invariant under rigid
motions. The permutation of k indices will yield a permu-
tation of the distance distributions. The next sections will
analyze when the distance distributions suffice to character-
ize the orbit of a generalized shape and how we can recover
the rigid transformation and the correspondences between
two generalized shapes.

The main question is if the distance distribution matrix
characterizes in a unique way the generalized shapes.

In the case of labeled points (i.e. in the sense of Kendall’s
shapes) the answer is yes and it is illustrated by the next
theorem. A simple proof of this theorem, using the singular
value decomposition, can be found in [1].

Theorem 1 If X = {x1, . . . , xk} and Y = {y1, . . . , yk} are
sets of points in R

d and
∥
∥xi − xj

∥
∥ = ∥

∥yi − yj
∥
∥ , ∀1 ≤ i, j ≤

k, then there exist a rigid transformation given by R ∈ O(d)

and t ∈ R
d such that Rxi + t = yi for all i .

So, in the case of labeled points, i.e. when the corre-
spondences are known, the distance distribution matrix is an
invariant that completely characterize the equivalence class
of a shape. We are interested if the same holds in the case of
generalized shapes.

The following examples will show that the answer is no,
i.e. even if the distribution of distances is the same, there are
configurations that are not relatedby an isometric transforma-
tion. Before giving these examples we note that the distance
distribution of a point-set X = {x1, . . . , xk} may be given

also as a monotone increasing sequence
(

d1, d2, . . . , d(k
2)

)
,

where
{

d1, d2, . . . , d(k
2)

}
= {∥∥xi − xj

∥
∥}

with 1 ≤ i < j ≤
k. This sequence is the same as the distance distribution vec-
tor up to a permutation and it will be used when we derive
the correspondences of points as we shall later see (sect. 6).

The first example is taken from [5], where homomet-
ric sets are defined as finite sets of integers with the
same sets of differences: consider two sets of points X =
{0, 1, 4, 10, 12, 17} and Y = {0, 1, 8, 11, 13, 17} inR. Their
distance distribution sequence is given by the ordered vector
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17), but it is obvi-
ous that the point set does not represent the same shape even
if we consider the possibility of reflection.

We insert here a more general example inRd , d ≥ 2 taken
from [20] and shown in Fig. 1. Given a triangle ABC , let a be
the midpoint of BC and b be the midpoint of AC . Let K be
the line through a perpendicular to the line Aa. Let L be the
line through b perpendicular to the line Bb. If D is the inter-
section of L and K , E is the point of L such that dist (E, b) =
dist (D, b) , and F is the point of K such that dist (F, a) =
dist (D, a) then the shapes {A, B, C, D}, {A, B, C, E}, and
{A, B, C, F} have the same distribution distance matrix up
to a permutation but they are not isometric. In fact, it is easy
to see from the fact that the triangles B DE and ADF are
isosceles and D AEC and DB FC are parallelograms that
D A = F A = EC , DB = FC = E B and DC = F B =
E A, therefore the 6 distances that form the distance distribu-
tion vector of each of the shapes are identical up to a permu-
tation. The point sets given by {A, B, C, D}, {A, B, C, E},
and {A, B, C, F}donot represent the samegeneralized shape
and we will formally prove this in the sect. 4.

There are ways to create different shapes with the same
distribution of distances, as we have seen in the previous
examples, therefore we want to know which distance distri-
butions define in a unique way a shape. In the next section
we see that most distribution of distances define uniquely a
generalized shape.
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Fig. 1 The point sets {A, B, C, D}, {A, B, C, E}, and {A, B, C, F}
have the same distribution of distances

4 Distance Distribution and Generalized Shapes:
Existence

We introduce in this section the notion of labeling of a point
set in the context of the generalized shape theory. Most of
the results here may be found in [7] and [8]. The scope of this
part is to show which point sets with the same distribution
of distances are the same modulo rotations, translations and
permutations. More precisely we are interested in the rela-
tion between the permutation of the distances as elements
of the symmetric group S(k

2)
and the permutations between

the point sets. Even if the results presented in this section
are well known, we have considered appropriate to include
these results here, since they are closely connected with the
existence of the generalized shape as an equivalence class of
shapes.

Denote by C the set of
(k
2

)
distinct pairs.

C = {(i, j)|i 
= j, i, j = 1, . . . k}. Thismeans that∀(i, j)
and (i ′, j ′) ∈ C distinct, the sets {i, j} and {

i ′, j ′
}
are also

distinct.
Two point sets X = {x1, ..., xk} and Y = {y1, ..., yk}

have the same distance distribution vector if there exists a
permutation θ ∈ S(k

2)
such that: V X

(i, j) = V Y
θ(i, j), ∀(i, j) ∈ C ,

where V X
(i, j) = ∥

∥xi − xj
∥
∥ and V Y

(i ′, j ′) = ∥
∥yi − yj

∥
∥ are the

components of the distance distribution vector and θ(i, j) =
(i ′, j ′).

Definition 10 θ is a labeling of the points if there exists a
permutation π ∈ Sk of the indices such that:

θ(i, j) = (π(i), π( j)),∀(i, j) ∈ C. (8)

The previous definition links the correspondences between
pairs of each sets given by two indices (i, j) ∈ C for X ,
θ(i, j) ∈ C for Y and point correspondences between X and
Y given by π(i) and π( j), while the next result follows this
definition and shows the correspondencewith the generalized
shapes.

Corollary 1 Given X = {x1, . . . , xk} and Y = {y1, . . . , yk}
with the same distribution of distances up to a permutation
θ ∈ S(k

2)
which is a labeling of points, then Y ∈ [X ] in the

sense of generalized shape.

This connection between the permutation of
(k
2

)
distances

and the permutation of k points gives the generalized shape
equivalence class.We need to knowwhich S(k

2)
permutations

are good permutations in the sense of Eq. (8).
The next theorem, taken from [8], proves that a permuta-

tion over C is a labeling if it preserves adjacency.

Theorem 2 For k 
= 4, θ ∈ S(k
2)

is a labeling (i.e. induces

equivalent shapes modulo rotations, translations and per-
mutations) if and only if ∀i, j, l pairwise distinct indices we
have

θ(i, j) ∩ θ(i, l) 
= ∅ (9)

An interesting thing here is that for k = 4, Theorem 2 is
not true. In fact, observe that the relation θ(i, j) ∩ θ(i, l) ∩
θ(i, m) = ∅ cannot be contradicted because we cannot
choose n distinct from i, j, l, m. The theorembecomes true in
all cases if we impose the additional condition that, for each
pairwise distinct i, j, l, m ∈ {1, . . . , k}, θ(i, j) ∩ θ(i, l) ∩
θ(i, m) 
= ∅.

A simple counterexample for k = 4 case is given by
the point sets from the previous Sect. 3, Fig. 1, where
the sets of distances {AB, BC, AC, AD, B D, C D} and
{AB, BC, AC, C E, B E, AE} are the same and the condi-
tion (ii) from Theorem 2 holds, but the point sets are not
isometric.

In case of the example X = {0, 1, 4, 10, 12, 17} and
Y = {0, 1, 8, 11, 13, 17} in R, k = 6, the distributions of
the ordered vectors of distances of X and Y are the same:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17) so we are in
the hypothesis of the Theorem 2. If we denote the points
of each set with numbers from 1 to 6, following the natural
order, we have: V X

(2,3) = V Y
θ(3,4) and V X

(1,3) = V Y
θ(5,6) so, from

Theorem 2 the two sets do not represent the same generalized
shape.

Equipped with this result that allows us to identify good
permutations, the next theorem shows that if two point sets
are sufficiently close and have the same distribution of dis-
tances, then they represent the same generalized shape. This
result is weaker than desired, but gives some intuition on
which point sets might be determined by their pairwise dis-
tance.

Theorem 3 ( [7] ) Let X = {x1, . . . , xk} ⊂ R
d a set of k

points, then there exists a neighborhood V (X) ∈ (Rd)k of
(x1, . . . , xk) such that (y1, . . . , yk) ∈ V (X) is a configura-
tion with the same distribution of distances vector of X if and
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only if the two point configurations belong to the orbit of the
same generalized shape.

Even if necessary for our framework, the results we have
seen in this section do not help us to calculate the correspon-
dences or the isometric transformation between two sets of
points that represent the same generalized shape. The next
section will analyze a method to recover the isometric trans-
formation between elements of the same generalized shape in
the ideal case, when the distribution of distances are exactly
the same and the existence of the generalized shape is guar-
anteed.

Finally, Sect. 6 will present a method to compute corre-
spondences between the points of two generalized shapes in
the presence of noise.

5 Distance Distribution and Generalized Shapes:
Isometric Transformation

In this sectionwe are in the hypothesis of theTheorem2, i.e. if
there is a correspondence θ between the distance distributions
of two sets, then θ is a labeling. We are interested here to
compute the rigid part of the transformationwithout knowing
the point to point correspondence.

We begin this section with some known general results
from linear algebra that we shall use.

Recall that if π ∈ Sn is a permutation of {1, 2, . . . , n},
then the n × n matrix Pπ :

Pπ = (
eπ(1)eπ(2) . . . eπ(n)

)
(10)

is the permutation matrix associated to π , where e j denotes
a column vector of length n with 1 in the j th position and 0
in every other position.

The permutation matrix Pπ associated to π is orthogonal,
its transpose or inverse correspond to Pπ−1 and det Pπ = ±1.

Multiplying a d ×n matrix X on the right by Pπ permutes
the columns of X by Pπ .

Lemma 1 If Pπ is the permutation matrix associated to π ∈
Sn and X and Y are two n×n positive symmetric semidefinite
matrices such that Y = Pπ X P−1

π then:

(i) X and Y have the same set of eigenvalues
(ii) There exist eigenvalue decompositions of X =UX DU−1

X
and Y = UY DU−1

Y , such that Pπ = UY U−1
X

The proof of this lemma is is a simple consequence of the
definitions.

Observe that not all the eigen-decompositions of X and
Y lead to Pπ since the decompositions are not unique. The
previous lemma ensure only the existence.

Given a set of points X = {x1, . . . , xk} ⊂ R
d , we call

Gram matrix the k × k matrix whose entries are given by the
inner products Gi j = 〈

xi, xj
〉
. The Gram matrix may also be

given as the matrix product X T X .
A n × n matrix M is called symmetric if Mi j = M ji

for all i, j = 1, . . . , n. A n × n matrix M is called positive
semidefinite if for all x ∈ R

n, xT Mx ≥ 0.
The Gram matrix is positive semidefinite and symmetric,

and every positive semidefinite matrix is the Gram matrix
for some set of vectors. Further, in finite-dimensions it deter-
mines the vectors up to isomorphism, i.e. any two sets of
vectors with the same Gram matrix must be related by a sin-
gle unitary matrix as stated by the next lemma.

Lemma 2 For any two X and Y d×k matrices, if their Gram
matrices are equal, i.e. X T X = Y T Y , then there is a matrix
A ∈ O(d) such that AX = Y .

Proof X T X is positive semidefinite therefore can be written
as QΛQT for Q ∈ O(k) and a non-negative diagonal matrix
Λ. Using the singular value decomposition of X we canwrite
X = UXΣ QT , where UX ∈ O(d) and ΣT Σ = Λ.

Considering X T X = Y T Y we may write also Y =
UY Σ QT , where UY ∈ O(d) and ΣT Σ = Λ.

Then, we can write AX = Y for orthogonal A = UY U T
X .��

The next lemma gives useful hints to connect the distance
distribution with the Gramian derived from two sets.

Lemma 3 Given the sets X = {x1, . . . , xk} and Y =
{y1, . . . , yk}, the following statements are equivalent:

(i)
∥
∥xi − xj

∥
∥ = ∥

∥yi − yj
∥
∥, ∀1 ≤ i, j ≤ k.

(ii) ∀n = 1, . . . , k fixed
〈
xi − xn, xj − xn

〉 = 〈
yi − yn,

yj − yn
〉
, ∀1 ≤ i, j ≤ k.

(iii)
〈
xi − x̄, xj − x̄

〉 = 〈
yi − ȳ, yj − ȳ

〉
, ∀1 ≤ i, j ≤ k.

This lemmamay be easily demonstrated by applying mul-
tiple times the well known result:

‖p − q‖2 = ‖p‖2 + ‖q‖2 − 2 〈p,q〉 , (11)

for all p,q ∈ R
d .

We are ready to give a stronger result about the connection
between the permutations of the distance distribution matrix
and the generalized shapes.

Lemma 4 Given X = {x1, . . . , xk} and Y = {y1, . . . , yk}
two point sets inRd , the following statements are equivalent:

(i) Y ∈ [X ]
(ii) ∃Pπ a permutation matrix, such that DX = PT

π DY Pπ .
Moreover, Pπ = UY U T

X , where UY and UX are orthogo-
nal matrices from an eigenvalue decomposition of Ȳ T Ȳ
and X̄ T X̄ .
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(iii) ∃Pπ a permutation matrix and R ∈ O(d), such that
R X̄ = Ȳ Pπ . Moreover, Pπ = UY U T

X , where UY and
UX are orthogonal matrices from an eigenvalue decom-
position of Ȳ T Ȳ and X̄ T X̄ .

Proof Lemma 3 says that the correspondences between the
elements of the distance distribution matrix are the same as
the correspondences between theGrammatrix of the centered
coordinates ((i)⇔ (iii)), therefore if we show that there exists
Pπ ∈ Sk such that X̄ T X̄ = PT

π X̄ T X̄ Pπ , the same relation-
ship will hold between DX and DY .

Y ∈ [X ] ⇔ exists R ∈ O(d), a vector t ∈ R
d and a

permutation π ∈ Sk such that:
Rxi + t = yπ(i) for all i = 1, . . . , k.
Let Pπ be the permutation matrix associated with π .
If we denote Yπ = {

yπ(1), . . . , yπ(k)

}
, we have Yπ =

Y Pπ and

Ȳπ = Ȳ Pπ . (12)

From hypothesis
∥
∥xi − xj

∥
∥ = ∥

∥yπ(i) − yπ(j)
∥
∥ ∀i, j =

1, . . . , k, if and only if, by Lemma 3,
〈
xi − x̄, xj − x̄

〉 =〈
yπ(i) − ȳ, yπ(j) − ȳ

〉
, ∀1 ≤ i, j ≤ k.

This is equivalent to X̄ T X̄ = Ȳ T
π Ȳπ or, using (12),

X̄ T X̄ = PT
π Ȳ T Ȳ Pπ .

The formula of Pπ derives from Lemma 1.
We can rewrite (ii) as X̄ T X̄ = (Ȳ Pπ )T Ȳ Pπ , therefore by

Lemma 2 this is true if and only if there exists an orthogonal
matrix R such that R X̄ = Ȳ Pπ .

We have so far a relation between centered coordinates X̄
and Ȳ together with the matrix R ∈ O(d) and π ∈ Sk .

The equivalence as generalized shapes between X and Y
follows the same reasoning as in Theorem 1, putting t =
ȳ − Rx̄. ��

Notice again that the eigenvalue decomposition is not
unique, therefore the previous result ensures only the exis-
tence of the matrix Pπ and does not help in finding the per-
mutation or the orthogonal matrix that relates the two point
sets.

In our assumption, the permutation that realizes the corre-
spondence between the point sets is not known, so we want
to find the orthogonal matrix that relates the two point sets
without knowing the correspondences. The next theoremwill
introduce a way to find this matrix. The complete solution of
this problem will be given as an algorithmic method.

The d × d matrix Ȳ Ȳ T does not depend on the per-
mutation of the elements of Y , since for all π ∈ Sk ,
Ȳπ Ȳ T

π = Ȳ Pπ PT
π Ȳ T = Ȳ Ȳ T . This allows us to establish

the next result that will be the base of the algorithm that
finds the rigid transformation between two sets representing
the same generalized shape without knowing the correspon-
dences between the point sets.

Theorem 4 Given X = {x1, . . . , xk} and Y = {y1, . . . , yk}
two point sets in R

d with Y ∈ [X ], then the matrices X̄ X̄ T

and Ȳ Ȳ T have the same eigenvalues, including their alge-
braic multiplicities. If the eigenvalues are all distinct we
denote by S the d × d matrix of the si eigenvectors of X̄ X̄ T

written as columns, T the d × d matrix of the ti eigenvec-
tors of Ȳ Ȳ T written as columns and π ∈ Sk the permutation
determined from Ȳπ = R X̄. Then we have:

〈
xj − x̄, si

〉 = δi
〈
yπ(j) − ȳ, ti

〉
, (13)

for all j = 1, . . . , k, i = 1, . . . , d and δi = ±1.
Moreover, if

〈
xj − x̄, si

〉 
= 0 and we denote
Δ = Diag (δ1, . . . , δd), where

δi =
〈
xj − x̄, si

〉

〈
yπ(j) − ȳ, ti

〉 (14)

than R = T ΔST .

Proof From Lemma 4 it follows that if Y ∈ [X ] then ∃R ∈
O(d) such that Ȳπ = R X̄ .

We have Ȳ Ȳ T = R X̄ PT
π Pπ X̄ T RT = R(X̄ X̄ T )RT .

If we decompose the real, symmetric matrix X̄ X̄ T using
the eigen-decomposition X̄ X̄ T = SΛST then:

Ȳ Ȳ T = (RS)Λ(RS)T . (15)

RS is orthogonal as product of orthogonal matrices so (15)
shows that X̄ X̄ T and Ȳ Ȳ T have the same eigenvalues, includ-
ing their algebraic multiplicities and RS is a matrix of eigen-
vectors for Ȳ Ȳ T .

Since the eigenvalues are distinct and knowing that the
geometric multiplicity of an eigenvalue is less than the alge-
braic multiplicity, the dimension of Null

(
X̄ X̄ T − λi Id

)
is

one therefore, for all i = 1, . . . , d if ti is an eigenvector of
Ȳ Ȳ T then ti = ±Rsi .

In the case
〈
xj − x̄, si

〉 
= 0 denoting δi = 〈xi−x̄,si〉〈yπ(j)−ȳ,ti〉 and

Δ = Diag (δ1, . . . , δd), we can write R = T ΔST .
Since the inner product is invariant to isometries and Ȳπ =

R X̄ , with R orthogonal we can write:〈
xj − x̄, si

〉 = 〈
R(xj − x̄), Rsi

〉 = ± 〈
yπ(j) − ȳ, ti

〉
,

and the proof is completed. ��
Remark that if

〈
xj − x̄, si

〉 = 0 for all j = 1, . . . , k ,
δi cannot be determined from (14). In this case X̄ T si = 0,
therefore X̄ X̄ T si = 0. This means si is the eigenvector cor-
responding to the eigenvalue 0. This remark allows us to give
the following corollary.

Corollary 2 If the eigenvalues are all distinct and non-zero,
then ∃ j = 1, . . . , k such that

〈
xj − x̄, si

〉 
= 0, and therefore:

δi =
〈
xj − x̄, si

〉

〈
yπ(j) − ȳ, ti

〉
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Following this corrolary, thematrixΔ= Diag (δ1, . . . , δd)

is completely determined only when π is known, while we
set out to achieve the computation of R without knowing π .
The next corollary will solve this problem by giving a way
to compute Δ.

Let’s first denote, for each i = 1, . . . , d, A−
i the sets:

AX
i− = { ∣

∣〈xj − x̄, si
〉∣∣ : 〈

xj − x̄,

si
〉
< 0, j = 1, . . . , k

}
, i = 1, . . . , d.

AX
i+ = {∣∣〈xj − x̄, si

〉∣∣ : 〈
xj − x̄, si

〉
> 0, j = 1, . . . , k

}
,

i = 1, . . . , d.

In a similar way we define AY
i− and AY

i+ .

Corollary 3 If Y ∈ [X ] and none of the eigenvalues of the
matrix X̄ X̄ T is zero, then, for each i = 1, . . . , d one of the
two cases happens:

(i) AX
i− = AY

i− and AX
i+ = AY

i+ and thus δi = 1

(ii) AX
i− = AY

i+ and AX
i+ = AY

i− and thus δi = −1

In this way the matrix Δ = Diag (δ1, . . . , δd) is deter-
mined without knowing the permutation π .

We conclude this section with the following algorithm
that, in most cases, solves the rigid transformation between
twoelements of the samegeneralized shape, in the casewhere
the point to point correspondences are not known.

Algorithm 1 Orthogonal transformation between two gen-
eralized shapes

1: Input X and Y two k point sets in R
d

2: Compute X̄ X̄ T and Ȳ Ȳ T and their eigenvalues λ1, . . . λd and
μ1, . . . , μd

3: If the eigenvalues are not all distinct in each set then the algorithm
is inconclusive

4: If the set {λ1, . . . λd } is different from the set {μ1, . . . , μd } then
Y /∈ [X ]

5: Compute si and ti , i = 1, . . . , d the sets of eigenvectors of X̄ X̄ T

and Ȳ Ȳ T

6: If ∃i such that the sets
{∣∣〈xj − x̄, si

〉∣∣ : j = 1, . . . k
}

and{∣∣〈yj − ȳ, ti
〉∣∣ : j = 1, . . . k

}
do not coincide then Y /∈ [X ]

7: Compute AX
i− , AX

i+ , AY
i− , AY

i+
8: If ∃i = 1, . . . d such that AX

i− 
= AY
i− ∨ AX

i+ 
= AY
i+ and AX

i+ 
=
AY

i− ∨ AX
i− 
= AY

i+ then Y /∈ [X ]

9: For all i = 1, . . . , d define δi = 1 when AX
i− = AY

i− ∧ AX
i+ = AY

i+
and δi = −1 when AX

i− = AY
i+ ∧ AX

i+ = AY
i−

10: Build the matrix R = T ΔST , where Δ = Diag (δ1, . . . , δd )

In general, the eigenvalues of a matrix cannot be com-
puted exactly, as they are roots of a polynomial, this making
our algorithm impractical. The next section will introduce a
method to find point to point correspondences between two

point sets representing the same shape. However, if the distri-
bution of distances of two point sets is the same up to a thresh-
old, we can compare the eigenvalues of the Gramianmatrices
of the centered coordinates by using a very small threshold ε.
We can do the same to compare the sets AX

i− , AX
i+ , AY

i− , AY
i+ .

Complexity
The Algorithm 1 requires the computation of X̄ X̄ T (com-

plexity at most O(d2k), its eigenvalue decomposition (com-
plexity O(d3), the computation of δi (complexity O(dk)),
the computation of R (complexity at most O(d3)). Since
d << k the resulting complexity is at most O(dk2).

6 Distance Distribution and Generalized Shapes:
Correspondences

6.1 Distance Distribution Permutation

So far, we have seen how to verify the existence of the gener-
alized shape when we know the distance distribution matrix
or the distance distribution vector and how to find the rigid
transformation between two elements of the same general-
ized shape, without knowing the correspondences.

Algorithm 1 shows how to find the registration matrix
when we know the point sets and the fact that they belong to
the same generalized shape. This result is not guaranteed in
the presence of a high level of noise making it not usable for
most practical applications.

In this section we give a method to compute the corre-
spondences between two point sets belonging to the same
generalized shape in the presence of noise and a method to
derive the rigid transformation that relates the two point sets
using the correspondences.

The problem to solve is, given X = {x1, . . . , xk} and
Y = {y1, . . . , yk} two point sets in Rd with Y ∈ [X ], to find
the permutation π ∈ Sk such that:

R X + t = Y Pπ , (16)

where R ∈ O(d), t ∈ R
d and Pπ is the permutation matrix

associated to π .
Since O(k!) different correspondence permutations are

possible amongst the two point sets, brute force search is
intractable.

As before, the invariant we chose, to find the right cor-
respondences, is given by the distance distribution vector as
defined in section 3.

Theorem 2 proved in what cases the distance distribution
vector defines a generalized shape in a unique way.

We shall derive the permutation π from the permutation
γ ∈ S(k

2)
that ’align’ the two distribution distance vectors

V X = (V X
1,2, . . . , V X

k−1,k) and V Y = (V Y
1,2, . . . , V Y

k−1,k),
such that:
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V X Pγ = V Y . (17)

Equation (17) holds in the ideal case, when no noise is
present. In the practical application we may relax the exact
correspondence and search for a permutation matrix Pγ of
dimension k(k − 1)/2 such that:

Pγ = arg min
Pϕ

∥
∥
∥V X Pϕ − V Y

∥
∥
∥
1

(18)

The use of the Manhattan distance or L1 norm in (18) is
coherent with the definition of the distance between gener-
alized shapes given in the sect. 3 by the Eq. (3). Through the
rest of the paper, when there are no ambiguities, we shall use
the notation ‖·‖1 = |·|.

The L1 norm works better in the presence of noise and is
equivalentwith L2 norm, in the sense of equivalence between
norms. Considering ‖·‖2 ≤ ‖·‖1, the Eq. (18) gives an upper
bound also for the L2 norm.

Since there are (k(k − 1)/2)! ways to arrange a shape
vector, we need an efficient mode to solve (18). We shall
further see that this process takes O(NlogN ), where N =
k(k − 1)/2, by ordering each of the shape vectors.

Lemma 5 If a1 ≤ a2 ≤ . . . ≤ aN , b1 ≤ b2 ≤ . . . ≤ bN

and π : {1, . . . , N } → {1, . . . , N } is a permutation of the
indices, then we have:

|a1−b1|+. . .+|aN −bN |≤ ∣
∣a1−bπ(1)

∣
∣+. . .+∣

∣aN −bπ(N )

∣
∣ ,

(19)

This lemma may be easily demonstrated by induction on
N .

Corollary 4 For any πA and πB permutation of N indices
and a1 ≤ a2 ≤ . . . ≤ aN , b1 ≤ b2 ≤ . . . ≤ bN it holds:

N∑

i=1

|ai − bi | ≤
N∑

i=1

∣
∣aπA(i) − bπB (i)

∣
∣ (20)

Theorem 5 The solution of (18) is given by:

Pγ = PπX PT
πY

, (21)

where PπY , PπX are the permutations matrices that order the
vectors V Y and V X respectively.

Proof From the hypothesis that vectors V X PπX and V Y PπY

are ordered, it follows the Corollary 4 holds:

∣
∣
∣V X PπX − V Y PπY

∣
∣
∣ ≤

∣
∣
∣V X P

′
πX

− V Y P
′
πY

∣
∣
∣

for every and all permutations P
′
πX

, P
′
πY
.

Multiplyingon the rightwith PT
πY

the expressionV X PπX −
V Y PπY we have:

∣
∣
∣V X PπX − V Y PπY

∣
∣
∣ =

∣
∣
∣V X PπX PT

πY
− V Y

∣
∣
∣

from which the conclusion follows. ��
We are now able to find the minimum distance between two
shape vectors that represent in an unique mode two point sets
given in two different coordinate systems regardless of the
point ordering.

Once we have the correspondence between the shape vec-
tors the next step is to find the correspondences between the
points. This will be described in an algorithmic form in the
next section.

6.2 Determining Correspondences

6.2.1 Point-Set Correspondences in a Closed form Solution

The correspondences between the indices of the point sets
X and Y , when Y ∈ [X ] will be given again as a permuta-
tion matrix. To do this we have to associate the two indices
i, j that give the distance DX

i, j = ∥
∥xi − x j

∥
∥ in the distance

distribution matrix (or alternatively DY
i, j ) to a unique index

l in the distance distribution vector and vice versa, to each
of the indexes of the distance distribution vector two indexes
in the point-set. In this second case we have two solutions
considering the order of the two vectors that compose the
distance.

From Eq. (7), considering that i represents the index of a
row and j represents the offset inside the i-th row in the dis-
tance distribution matrix, the mapping (i, j) �−→ l is given
by:

(i, j) �−→ (i − 1)(2k − i)/2 + j − i (22)

Conversely, if we denote the distance distribution vector
index l, the problem is to find the correspondent (i, j) couple
of indexes, where again i represents the row and j represents
the off-set in the distance distribution matrix.

In this case, i is given by the smallest positive number that
satisfies:

l ≤ ik − i(i + 1)/2 (23)

Transforming (23) in a second order inequality:

i2 − (2k − 1)i + 2l ≤ 0 (24)

we observe that the sum and the product of the roots are
positive, therefore the solution for the i − th index is given
by the smallest integer bigger than the smallest root of the
associated second order equation:
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i =
⌈

k − 1/2 −
√

(2k − 1)2 − 8l/2
⌉

(25)

From (25) and (22) it follows:

j = l + i − (i − 1)(2k − 1)/2 (26)

We are now able to write the algorithm that finds the cor-
respondences of two point sets having the same cardinality,
regardless of the coordinate system where each of the sets
are represented and of their ordering.

Algorithm 2 Correspondences Algorithm

1: Input X, Y two k point sets in R
d , Y ∈ [X ]

2: Compute the distance distribution vectors V X , V Y

3: Compute the permutations πY , πX that orders V X , V Y

4: Pγ ← PπX PT
πY

5: For iX := 1tok − 1
6: (22) gives the indexes l1X , l2X in V X corresponding to (iX , iX +

1), (iX , iX + 2)
7: Compute l1Y = Pγ (l1Y ) and l2Y = Pγ (l2Y )

8: Use (25) and (26) and find (i1Y , j1Y ) and (i2Y , j2Y ) corresponding to
l1Y , l2Y

9: The correspondence of Xi is Yic ,
where ic = {

i1Y , j1Y
} ∩ {

i2Y , j2Y
}

10: End For
11: Find the last correspondence

Observe that the line 9 of Algorithm 2 is guaranteed by
the Theorem 2.

6.2.2 Point-Set Correspondences with Noise

The Algorithm 2 gives the closed form solution of the cor-
respondence of the two point sets X and Y representing the
same generalized shape.

This solution holds in the ideal case, when no noise is
present. In the case of noisy data there is no guarantee to find
a common index ic in the row 9-th of the Algorithm 2. To
solve this we use a technique of voting, associating to each
couple (xi , y j ) an increasing vote for each possible corre-
spondence, therefore we build an association matrix. To find
the correspondence matrix M we simply extract the maxi-
mum value in each row of the association matrix.

The detailed algorithm is as following:

Algorithm 3 Correspondence Algorithm with noise

1: Input X, Y two k point sets in R
d , Y ∈ [X ]

2: Initialize a k × k matrix M to zero
3: Compute the vectors V X , V Y

4: Compute the permutations πY , πX that orders V X , V Y

5: Pγ ← PπX PT
πY

6: For lA := 1tok(k − 1)/2
7: Compute (iX , jX ) corresponding to lX and (iY , jY ) corresponding

to γ (lX )

8: Increase of 1 M(iX , iY ), M(iX , jY ), M( jX , iY ), M( jX , jY )

9: End For
10: Set the largest element of each row of M to 1 and the others to 0

Fig. 2 Two 3D datasets with different noise levels. The points marked
with blue asterisk represent the model and the points marked with red
circle represents the model transformed by a random permutation and
different levels of noise. (Color figure online)

6.3 Correspondence Test and Results

In this section we present the results of the correspondence
algorithm. We run tests with different levels of noise and
we compute, for each of the tests, the percentage of good
correspondences.

The point sets used for testing are depicted in the Figs. 2
and 3.

Figure 2 depicts the 3D model dataset denoted by the ’*’
blue points. The dataset was permuted and random noise was
added (red circles) before the correspondence algorithm was
launched. Figure 3 shows the original point-set aligned along
a continuous line obtained by interpolation, while the ’◦’
points are obtained by adding random noise to a permutation
of the original dataset.

In both 2D and 3D tests, since we compute the correspon-
dences relying only on the shape vector, which is invariant
to isometries, the permutations of the noisy dataset suffice to
test the robustness of our algorithm.

Even if the tests done are very simple and synthetic, we
reiterate here that we are addressing applications where there
is noise and small deformations without a clear distinction
between the two (considered that data usually represent the
surface or the border of an object in the real world and is
acquired as unstructured set of points). Our main interest in
recovering correspondences is to get the best rigid alignment
between the data sets.

The noise we added for the purposes of this work is com-
posed by pseudorandom values drawn from the standard nor-
mal distribution with mean 1 and different standard devia-
tions (see Table 1). The noise level is given by the standard
deviation σi , i ∈ {1, .., 5} and represents a percentage frac-
tion of the maximum extension of the point set X , that is
σi = i max

xi ,x j ∈X

∥
∥xi − x j

∥
∥ /100.

The computation of the rigid transformation in the case
of noisy data will be addressed in the next section. In this
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Fig. 3 Testing 2D data for empirical robustness evaluation. On each of
the images the points marked with blue asterisk represent the model
(joined by a continuous line obtained through interpolation) meanwhile

the points marked with red circle represent the model transformed by
a random permutation and different levels of noise. The fish model on
the left column follows [16,24]. (Color figure online)

123



230 J Math Imaging Vis (2015) 52:218–233

Fig. 3 continued

section we compute the correspondences between two point
sets X and Y = X Pπ + N (μ, σ 2), where Pπ is a random
permutation of |X | elements, N is the normal distribution of
mean μ = 0 and variance σ 2 (see Figures 3 and 2).

As we can see from the results (Table 1), the number of
wrong correspondences increases with the amount of noise.
This is an obvious observation but we are more concerned
weather we are able to recover the right registration trans-
formation from the correspondences we found. The answer
is yes as we see in the next section and, in this case, we can
update the correspondences after the registration using the
nearest neighbor technique. Another observation is that good
correspondences are strongly related to the highest value in
the correspondences matrix M from the Algorithm 3. Keep-
ing in mind that we only need 3 correspondences to find the
parameters for the rigid alignment we may keep only a part
of the good correspondences to find the best rigid alignment.
The selection order of this correspondence will be given by
the highest value in the correspondences matrix.

7 Correspondences and Registration Evaluation Using
Pulmonary Landmark Points Derived from 4D CT
Image Data

Thoracic 4D computed tomography (CT) image data abound
of high-contrast, anatomical landmarks such as vessel and
bronchial bifurcations. The fourth dimension is given by the
movement during the respiratory cycle.

Castillo et al. in [11] extracted a large number of landmark
point pairs for the evaluation of image registration spatial
accuracy (Figs. 4 and 5). We use this dataset to test the per-
formance of our correspondence algorithm, then we register
the landmarks using the rigid and non-rigid transformations.

The dataset from [11] includes 4D CT images from five
patients free of pulmonary disease who were treated for
esophageal cancer. Each patient uderwent treatment plan-
ning in which 4D CT images of the entire thorax and upper
abdomen were acquired at 2.5 mm spacing. In this study a
high number of landmarks were manually extracted by an
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Table 1 Correspondences test

Test no-points no Noise level % Good corresp. %

1–34 1 88

1–34 2 76

1–34 3 65

1–34 4 56

1–34 5 41

2–38 1 89

2–38 2 70

2–38 3 62

2–38 4 53

2–38 5 44

fish-91 1 72

fish-91 2 65

fish-91 3 58

fish-91 4 37

fish-91 5 34

face 3D-392 1 65

face 3D-392 2 48

face 3D-392 3 37

face 3D-392 4 35

face 3D-392 5 24

Fig. 4 A 3D rendering of thoracic image with the pulmonary area and
the extracted landmarks overlying a grayscale CT slice

expert in thoracic imaging in 5 different breathing phases for
each of the patient. The localization error of these landmarks
is around 1 mm.

For the purpose of our study we compared for each patient
the initial breathing phase against the other 4 breathing
phases by registering the landmarks without prior knowledge
of the correspondences. After the computation of the land-
marks correspondences, we registered the landmarks and we
computed the Hausdorff distance, as in the previous section.

Table 2 summarizes the results of the correspondences
expressed as a percentages.

Estimates of the Hausdorff distance between the regis-
tered set of landmarks are summarized in Table 3. The rigid

Fig. 5 A 2D grayscale CT slice with 3D landmarks

Table 2 Percentage of good correspondences for each patient and dif-
ferent breathing phases

Case Breathing phase

number 2 % 3 % 4 % 5 %

1 86 80 75 60

2 82 79 73 59

3 81 76 71 58

4 85 80 74 59

5 84 78 73 57

Table 3 The Hausdorff distance after the rigid and the non rigid regis-
tration

Case Breathing Hausdorff distance (mm)

number phase rigid non-rigid

1 2 2.862 1.874

3 3.583 2.936

4 4.812 4.021

5 6.104 5,513

2 2 2.729 1.908

3 3.485 2.901

4 4.764 4.177

5 6.091 5.498

3 2 2.922 1.957

3 3.579 2.990

4 4.970 4.323

5 6.245 5.556

4 2 2.820 2.015

3 3.828 3.104

4 5.057 4.238

5 6.302 5.647

5 2 2.730 1.826

3 3.749 2.857

4 4.807 4.113

5 5.970 5.324
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registration is based on the correspondences found before.
Since the number of good correspondences is greater than
50 % of the total number of points, we have used an extrac-
tion of p = 0.3 of the best correspondences. For the non-
rigid registration, we used the TPS interpolation. The input
for the TPS interpolation is given by the same percentage of
correspondences.

8 Conclusions and Future Work

The solution of the absolute orientation (Procrustes prob-
lem) is given by efficient methods in closed form, but to
solve the registration of arbitrary point sets that represent the
same shape acquiredwith different sensors and/or in different
moments, there is no closed form solution. As summarized
in the introduction, the solutions known so far range from
iterative methods, where the optimization take place on each
step toward a local minimum (as the ICP algorithm), capable
to handle a certain amount of noise, to very complex meth-
ods that can handle also outliers and deformations, where the
solution is given after a complicate process of optimization
and using a large set of parameters.

In this paper, we built the basis for a closed form solution,
robust to a small amount of noise, of the Procrustes problem
in the case when no matching correspondences are given
a priori. The solution we have proposed makes use of the
distribution of the distances. We have first analyzed, from a
theoretical point of view, when the distribution of distances
completely characterizes the shape of a point set and how
to recover the isometric transformation between two sets of
points, when the distribution of distances is given but the
correspondences are not. Beside this theoretical contribution,
we have developed algorithms to find the correct alignment of
shapes given as unstructured point sets. The registration took
place after the correspondences were found and the iteration
is used only to refine the distance between the aligned shapes.
We have seen in the introduction that there are no efficient
methods that can handle the variability of the data (i.e. noise,
outliers, deformation) that can guarantee the goodness of the
result and, in the same time, the possibility of the validation.

Some of the research areas, where the registration requires
a completely validatedmethod, range from themedical appli-
cations (registration in the OR of surfaces extracted from the
3D reconstruction of organs) to robotic applications, where
the accuracy and the real-time response are fundamental.

In the case of themedical applications the registration rely
on datasets representing most of the time deformed surfaces
but in order to map the instruments in the imaging space (e.g.
biopsy needle, endoscopic camera, laparoscope etc.) we still
need to isolate the rigid component of the registration.

With the solution we propose in this paper, we are able
to register noisy data represented by sets of points with the
same cardinality.

The experimental test we have performed employed a tho-
racic dataset from which a set of landmarks was extracted on
different breathing phases. The algorithmwehave introduced
was able to recover a high number of correspondences and
to extract the rigid transformation between the point sets
without having the homologies between the landmarks
before. A further refinement was obtained by applying a non-
rigid transformation to the result. The next step will be to
extend the method to handle incomplete data and outliers.

To replace the ICP algorithmwith a closed form variant, in
the case of dense point sets we may subsample to provide the
candidates for potential correspondences. The main question
is to subsample the points in a way that such that subsam-
ple points are still matchable. The joint clustering-matching
algorithm presented by Chui in [12] can be a valid alternative
for this extension.

If we replace the Euclidean distances in the shape matrix
with geodesics we may handle also a larger class of isome-
tries that include also the so called inelastic deformations,
i.e. deformations that do not stretch or tear the object (see
also [10]).

The results we have presented may be used also to extend
the theory of shapes as defined by [18]. The equivalence class
of k-ad points inRd will handle in this case also the permuta-
tions. It will be interesting to study how the topological prop-
erties of the new formed equivalence classes will change.

Another application of our method for the computation
of correspondences could be in the case of matching a col-
lection of shapes. In this case, once we compute the corre-
spondences between each couple of shapes by using the gen-
eralized shapes method, we may invoke a cycle-consistency
criterion - the fact that composition of maps along a cycle of
shapes should approximate the identity map. The solutions
of this problem, at the state of the art, range from fuzzy corre-
spondences [19], semidefinite programing [15] to permuta-
tion synchronization, which finds all thematchings jointly, in
one shot, via a relaxation to eigenvector decomposition [26].
The same reasoning can be applied to the synchronization
of the rotation matrices in the registration of a shape repre-
sented in different coordinate systems, oncewehave an initial
guess to all couples of coordinate systems using the gener-
alized shapes context. Some examples of the solution to the
synchronization problem over the special orthogonal group
SO(d) is by using a penalty function involving the sum of
unsquared deviations toward a convex optimization in [32],
or using the semidefinite programing based relaxation which
approximates the maximum likelihood estimator in [2].
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