
Chicago-Kent College of Law Chicago-Kent College of Law

Scholarly Commons @ IIT Chicago-Kent College of Law Scholarly Commons @ IIT Chicago-Kent College of Law

All Faculty Scholarship Faculty Scholarship

1-1-2011

Vulnerable Software: Product-Risk Norms and the Problem of Vulnerable Software: Product-Risk Norms and the Problem of

Unauthorized Access Unauthorized Access

Richard Warner
IIT Chicago-Kent College of Law, rwarner@kentlaw.iit.edu

Robert H. Sloan
University of Illinois, Chicago, sloan@uic.edu

Follow this and additional works at: https://scholarship.kentlaw.iit.edu/fac_schol

 Part of the Computer Law Commons, and the Privacy Law Commons

Recommended Citation Recommended Citation
Richard Warner & Robert H. Sloan, Vulnerable Software: Product-Risk Norms and the Problem of
Unauthorized Access, 2012 U. Ill. J.L. Tech. & Pol'y 45 (2011).
Available at: https://scholarship.kentlaw.iit.edu/fac_schol/569

This Article is brought to you for free and open access by the Faculty Scholarship at Scholarly Commons @ IIT
Chicago-Kent College of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized
administrator of Scholarly Commons @ IIT Chicago-Kent College of Law. For more information, please contact
jwenger@kentlaw.iit.edu, ebarney@kentlaw.iit.edu.

https://scholarship.kentlaw.iit.edu/
https://scholarship.kentlaw.iit.edu/fac_schol
https://scholarship.kentlaw.iit.edu/faculty_scholarship
https://scholarship.kentlaw.iit.edu/fac_schol?utm_source=scholarship.kentlaw.iit.edu%2Ffac_schol%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=scholarship.kentlaw.iit.edu%2Ffac_schol%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1234?utm_source=scholarship.kentlaw.iit.edu%2Ffac_schol%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.kentlaw.iit.edu/fac_schol/569?utm_source=scholarship.kentlaw.iit.edu%2Ffac_schol%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jwenger@kentlaw.iit.edu,%20ebarney@kentlaw.iit.edu

45

VULNERABLE SOFTWARE:

PRODUCT-RISK NORMS AND THE

PROBLEM OF UNAUTHORIZED ACCESS*

Richard Warner
†

Robert H. Sloan
††

Abstract

Unauthorized access to online information costs billions of dollars per
year. Software vulnerabilities are a key cause of these losses. Software
currently contains an unacceptable number of vulnerabilities. The standard
solution notes that the typical software business strategy is to keep costs down
and be the first to market, even if that means the software has significant
vulnerabilities. Many endorse the following remedy: make software developers
liable for negligent or defective designs. This remedy is unworkable. We offer
an alternative based on an appeal to product-risk norms. Product-risk norms
are social norms that govern the sale of products. A key feature of such norms
is that they ensure that the design and manufacture of products impose only
acceptable risks on buyers. Unfortunately, mass-market software sales are not
governed by appropriate product-risk norms; as a result, market conditions
exist in which sellers profit by offering vulnerability-ridden software. This
analysis entails a solution: ensure that appropriate norms exist. We contend

that the best way to do so is a statute based on best practices for software
development, and we define the conditions under which the statute would give
rise to the desired norm. Why worry about creating the norm? Why not just
legally require that software developers conform to best practices? The
answer is that enforcement of legal requirements can be difficult, costly, and
uncertain; once the norm is in place, however, buyers and software developers
will conform to best practices on their own initiative.

*
 This Article is based upon work supported by the National Science Foundation under Grant No. IIS-

0959116.

† Professor of Law, Chicago-Kent College of Law; Visiting Foreign Professor, Law Faculty,

University of Gdańsk, Poland.

†† Professor and Head, Department of Computer Science, University of Illinois at Chicago.

46 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

TABLE OF CONTENTS

I. Norms .. 49

A. Coordination Norms .. 50

1. Coordination Norms Defined ... 50

2. Why People Conform to Coordination Norms 52

B. Value-optimal Norms .. 53

C. Coordination Norms and Coordination Games 55

1. Definitions .. 55

2. Value-optimality and Nash Equilibria .. 56

II. Product-Risk Norms .. 59

A. The “Fitness” Norm .. 60

B. The “Negligent Design/Manufacture” Norm 62

C. The Least-Cost Avoider Norm .. 64

D. Norm-Implemented Tradeoffs .. 65

E. A New Definition of Value-Optimal Norms 65

III. Acceptable Risk and Ideal Transaction Conditions 65

A. Detecting Norm Violations ... 67

B. Norm-Violation Detectors versus Norm-Inconsistent Sellers 67

C. Sellers’ Inability to Discriminate .. 67

D. The Profit-Maximizing Strategy ... 67

E. Summary of the Product-Risk Norms Model 69

IV. Applying the Model to Software Vulnerabilities 69

A. The “Vulnerability-Ridden” Norm ... 69

B. Why Not Fitness, Negligent Design/Manufacture, and

Least-Cost Avoider? .. 71

C. The “Vulnerability-Ridden” Norm Is Not Value-Optimal 73

V. Best Practices and Best-practices norms ... 74

A. Best Practices Defined .. 74

B. Summary of the Argument for the Best-practices Norm 77

C. Best Practices for Software Development ... 77

D. Developers Do Not Follow Best Practices .. 81

VI. Conditions for Creating the Norm ... 81

A. Perfect Competition .. 82

B. Sufficient Detection .. 83

C. Creating the Norm ... 86

D. The Approximation Goals ... 86

VII. Creating the Norm through Legal Regulation 87

A. Negligence .. 87

B. Products Liability for Defective Design ... 90

C. Statutes Closely Modeled on Negligence or Products Liability 91

D. A Statutory Task ... 91

1. Avoiding a Lemons Market .. 92

2. Creating the Norm .. 93

3. Once the Norm is Established .. 94

VIII. Conclusion ... 94

No. 1] VULNERABLE SOFTWARE 47

Losses from unauthorized access to online information run in the billions

per year.
1
 We assume it would be better to avoid these losses;

2
 our question is

how best to do so. We limit our inquiry by focusing exclusively on one

significant source of unauthorized access: software vulnerabilities.
3
 A

vulnerability is a property of a software system that could be exploited to gain

unauthorized access to a computer or network.
4
 The prevailing and correct

consensus is that software programs currently contain an unacceptable number

of vulnerabilities.
5
 Why? And what is the remedy? The standard answer to

the first question assumes that “businesses are profit-making ventures, so they

make decisions based on both short- and long-term profitability.”
6
 Reducing

vulnerabilities requires a longer and more costly development process, and the

typical profit-maximizing strategy is to keep costs down and be the first to

 1. In 2009, the cost of a data breach to organizations in the United States was an average $6.75 million

per incident. PONEMON INST., 2009 ANNUAL STUDY: COST OF A DATA BREACH 3 (Jan. 2010), available at

http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/US_Ponemon_CODB_09_012209_

sec.pdf. See also Robert W. Hahn and Anne Layne Farrar, The Law and Economics of Software Security, 30

HARV. J.L. & PUB. POL’Y 283, 302–08 (2007) (examining the calculated cost of a security breach). A United

Kingdom government study estimates the yearly cost of data breaches to be £21bn to businesses, £2.2bn to

government and £3.1bn to citizens. DETICA, THE COST OF CYBERCRIME 2 (Feb. 2011), available at

http://www.cabinetoffice.gov.uk/sites/default/files/resources/the-cost-of-cyber-crime-full-report.pdf. Earlier

U.S. estimates of the cost of identity theft alone are also in the billions. For a summary of relevant studies, see

FRED H. CATE, CTR. FOR INFO. POL’Y LEADERSHIP AT HUNTON & WILLIAMS, INFORMATION SECURITY

BREACHES AND THE THREAT TO CONSUMERS 6 (Sept. 2005), available at http://www.fredhcate.com/

Publications/Information_Security_Breaches.pdf (reporting 10.1 million victims of identity theft in 2003 and a

total losses to consumers of over 50 billion). The number of victims has declined recently but costs have

actually risen. Jennifer Saranow Schultz, The Rising Cost of Identity Theft for Consumers, N.Y. TIMES (Feb. 9,

2011, 12:01 PM), http://bucks.blogs.nytimes.com/2011/02/09/the-rising-cost-of-identity-theft-for-consumers/

?src=busln (noting that “[t]he average consumer out-of-pocket cost due to identity fraud increased to $631 per

incident in 2010, up 63% from $387 in 2009. Such costs include the expenses of paying off fraudulent debt as

well as resolution fees, such as legal costs”). Schultz summarizes this report: JAVELIN STRATEGY &

RESEARCH, 2011 IDENTITY FRAUD SURVEY REPORT: IDENTITY FRAUD DECREASES – BUT REMAINING FRAUDS

COST CONSUMERS MORE TIME & MONEY, (Feb. 2011), available at https://www.javelinstrategy.com/uploads/

1103.R_2011%20Identity%20Fraud%20Survey%20Report%20Brochure.pdf (reporting the increasing cost to

consumers of identity theft).

 2. We assume that the gains from allowing unauthorized access (e. g., saving the time, effort, and

money otherwise spent in prevention) are not sufficient to offset the losses. See infra note 98 and

accompanying text.

 3. Vulnerabilities are a major cause of unauthorized access. In 2010, CWE (Common Weakness

Enumeration) and SANS (SysAdmin, Audit, Network, Security) identified cross-site scripting (XSS), SQL

injection, and buffer overflow vulnerabilities as the causes of nearly all major cyber attacks in recent years.

CWE/SANS TOP 25 Most Dangerous Software Errors, SANS INST., http://www.sans.org/top25-software-

errors (last updated June 27, 2011). When releasing the list, the SANS noted that “[t]hese 25 programming

errors, and their ‘on the cusp cousins’ have been the cause of nearly every major type of cyber attack,

including recent penetrations of Google, power systems, military systems, and millions of other attacks on

small businesses and home users.” Joan Goodchild, Security Experts: Developers Responsible for

Programming Problems, CSO (Feb. 16, 2010), http://www.csoonline.com/article/544163/Security_Experts_

Developers_Responsible_for_Programming_Problems. (citation omitted). See also Applications Security:

Eliminating Vulnerabilities in Enterprise Software, INFO. WEEK, 1 (July 9, 2010), http://i.cmpnet.com/

darkreading/vulnerabilitymgmt/July2010_ApplicationsSecurity.Alert[1].pdf (noting that “[m]ost of the hacks

that compromise enterprise security today are those that exploit flaws in applications”).

 4. See, e.g., ROSS ANDERSON, SECURITY ENGINEERING 15 (Wiley Publ’g Inc., 2d ed. 2008) (defining a

vulnerability as “a property of a system or its environment which, in conjunction with an internal or external

threat, can lead to a security failure, which is a breach of the system’s security policy”).

 5. See, e.g., Bruce Schneier, Information Security and Externalities, BRUCE SCHNEIER (Jan. 2007),

http://www.schneier.com/essay-150.html (discussing information security as an economic problem).

 6. Id.

48 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

offer a particular type of software, even if it is imperfect in a variety of ways,

including having vulnerabilities.
7
 Many who offer this diagnosis endorse the

following remedy: make software developers liable for negligent or defective

designs—either by adapting common law tort doctrines or by enacting statutes

based on negligence or product liability concepts.
8
 We do not dispute the

profit-maximizing diagnosis. “The market often rewards first-to-sell and

lowest cost rather than extra time and cost in development.”
9
 But we do reject

the remedy. We offer an alternative based on an appeal to product-risk norms.

Product-risk norms are social norms that govern the sale of products. A

key feature of such norms is that they ensure the design and manufacture of

products impose only acceptable risks on buyers.
10

 Unfortunately, mass-

market software sales are not governed by appropriate product-risk norms; as a

result, market conditions exist in which sellers can, and do, profit by offering

vulnerability-ridden software. This analysis entails a solution: ensure that

appropriate norms exist. We contend that the best way to do so is a statute

based on best practices for software development. Our concern with the norm

may seem puzzling. Since we will suggest a statute, why not just stop there?

Why not just legally require that software developers conform to best practices

and not worry about creating a norm? Our answer is that there are significant

advantages to creating the norm. Enforcement of the legal requirement can be

difficult, costly, and uncertain;
11

 once the norm is in place, however, buyers

and software developers will conform to best practices on their own initiative.

 7. See generally C. SHAPIRO & H. R. VARIAN, INFORMATION RULES: A STRATEGIC GUIDE TO THE

NETWORK ECONOMY 50–51 (1999). The economics and information security community has developed

Shapiro and Varian’s initial insights. Much of this work has been reported in the annual Workshop on the

Economics of Information Security since 2002. For information the workshops from 2002 to 2010, see

http://weis2010.econinfosec.org/index.html. For a good general survey, see Ross Anderson & Tyler Moore,

Information Security: Where Computer Science, Economics and Psychology Meet, 367 PHIL. TRANSACTIONS

ROYAL SOC’Y A 2717, 2721–22 (2009).

 8. Bruce Schneier is a prominent advocate of this view. See Bruce Schneier, Liability changes

everything, BRUCE SCHNEIER, (Nov. 2003), http://www.schneier.com/essay-025.html (arguing that “[i]f we

expect software vendors to . . . invest in secure software development processes, they must be liable for

security vulnerabilities in their products”). The theme appears frequently in the law review literature. See,

e.g., Jennifer A. Chandler, Improving Software Security: A Discussion of Liability for Unreasonably Insecure

Software, in SECURING PRIVACY IN THE INTERNET AGE 155, 166 (Anapum Chander et al. eds., 2006); Shuba

Gosh & Vikram Mangalmurti, Curing Cybersecurity Breaches Through Strict Products Liability, in SECURING

PRIVACY IN THE INTERNET AGE 187, 195; STEWART D. PERSONICK & CYNTHIA A. PATTERSON (eds.),

CRITICAL INFORMATION INFRASTRUCTURE PROTECTION AND THE LAW: AN OVERVIEW OF KEY ISSUES 50

(2003); David Gripman, The Doors Are Locked but the Thieves and Vandals Are Still Getting In: A Proposal

in Tort to Alleviate Corporate America’s Cyber-Crime Problem, 16 J. MARSHALL J. COMPUTER & INFO. L.

167, 175 (1997); Michael L. Rustad & Thomas H. Koenig, The Tort Of Negligent Enablement Of Cybercrime,

20 BERKELEY TECH. L.J. 1553, 1586 (2005) (arguing for recognizing a negligent enablement tort to provide an

incentive to avoid negligent design practices); Michael D. Scott, Tort Liability for Vendors of Insecure

Software: Has the Time Finally Come? 67 MD. L. REV. 425, 467 (2008).

 9. Eugene H. Spafford, Remembrances of Things Pest, 53 COMM. ACM 35, 36 (2010).

 10. See infra Part III.

 11. See generally Paul S. Atkins & Bradley J. Bondi, Evaluating the Mission: A Critical Review of the

History and Evolution of the SEC Enforcement Program, 13 FORDHAM J. OF CORP. & FIN. L. 367, 414 (2008)

(analyzing the enforcement program of the Securities and Exchange Commission); Robert L. Glicksman &

Dietrich H. Earnhart, The Comparative Effectiveness of Government Interventions on Environmental

Performance in the Chemical Industry, 26 STAN. ENVTL. L.J. 317, 367 (2007) (analyzing the chemical

industry’s compliance with federal environmental regulations).

No. 1] VULNERABLE SOFTWARE 49

In Part I, we define norms generally and explain the special case of

coordination norms. We also introduce the concept of a value-optimal norm.

This concept is required for our central claim: that the sale of mass-produced

software is not governed by value-optimal norms. In Part II, we provide the

background essential to defending this claim. We argue that product-risk

norms are coordination norms that ensure that most buyers demand similar

features in particular types of products. We offer three examples. These

examples illustrate that in mass markets, product-risk norms are coordination

norms that promote buyers’ interests by unifying their demands. A mass-

market buyer cannot unilaterally ensure that sellers will conform to his or her

requirements; instead, coordination norms create collective demands. In Part

III, we adapt a well-known law and economics argument to explain why—

under ideal transaction conditions—sellers conform to product-risk norms

because offering norm-conforming products is the profit-maximizing strategy.

As we explain in detail in Part III, transaction conditions are ideal when two

conditions hold: there are enough value-optimal product-risk norms, and the

market is perfectly competitive. We argue in Part IV that software sales fail to

adequately approximate this ideal. While we address the concern that

sufficiently competitive markets may not exist, we focus primarily on the lack

of appropriate value-optimal norms. We argue that buyers are trapped in a

product-risk norm that is not value-optimal, and we contend that the solution is

to replace the current norm with a norm formulated in terms of best practices

for software development. Part V defines the notion of a best practice, and

argues that best practices exist for software development. Part VI specifies the

conditions under which a best-practices norm will arise. In Part VII, we argue

that legal regulation is required to fulfill these conditions, and we sketch an

appropriate statute.

I. NORMS

We begin by describing the purchase of a typical consumer good. When

Alice discovers that her water heater no longer works, she purchases a new

one. She takes it for granted that the gas pilot light will not stop burning every

few days; that the water heater will not burst; that the materials are sufficiently

corrosion resistant; that the water heater will function properly for about ten

years; and so on. Alice does not try to confirm these assumptions. She does

not investigate the water heater, its design specifications, or its manufacturing

process. She simply assumes that its design and manufacture do not impose

unacceptable risks (as long as she uses the water heater for its intended

purpose). She assumes this because she assumes that the sale of the water

heater is governed by relevant product-risk norms. This raises three questions.

What are the relevant norms? Why, and in what sense, do norm-compliant

sales ensure only acceptable risks? And why do buyers and sellers comply

with product-risk norms? Clarifying the relevant notion of a norm is an

essential preliminary task.

Product-risk norms are coordination norms. Coordination norms are one

important species in the broad genus of norms in general. We define the genus

50 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

first. A norm is a behavioral regularity in a group where the regularity exists at

least in part because almost everyone thinks that he or she ought to conform to

the regularity.
12

 Suppose, for example, that the norm in Jones’s small town is

to go to a Protestant church on Sunday; that is, almost everyone goes to a

Protestant church on Sunday (even though there is a Catholic church nearby in

the next town), and almost everyone does so at least in part because almost

everyone believes he or she ought to go to a Protestant church on Sunday. As

the “almost” in “almost everyone” indicates, the existence of a norm does not

require universal compliance. We will not consider the interesting question of

how many count as “almost everyone,” and we will, for convenience, drop the

“almost” and simply understand “everyone” as “almost everyone.”

Norms evolve over time through repeated patterns of interaction; the

interactions may initially have their source in custom, private agreement, or

law (or a combination of these factors).
13

 To take custom first, it is easy to

imagine it as the source of the “Protestant church” norm. Suppose it was

customary for some part of the town’s population to attend the church; church-

goers and non-church-goers alike notice the custom, and both groups begin to

think that they ought to conform—either out of religious conviction, or some

other view of why it is a good thing, or in order to avoid the disapproval of

others. Attendees continue to attend while non-attendees increasingly become

attendees. To illustrate private agreement, imagine that two years ago Scott

and Zoe agreed to meet at Starbucks every morning; having done so for two

years, each thinks he or she ought to meet the other at Starbucks. The norm of

driving on the right illustrates the role of legal regulation. The norm owes its

existence at least in part to the fact that it is the law that one drives on the right.

Legal regulation does not, however, always bring a norm into existence; it is

the law that one should obey speed limits, but the norm is to exceed them. We

defer further consideration of the generation of norms to Parts VI and VII.

Until then, we focus on why people continue to conform to already established

norms.

A. Coordination Norms

We first define coordination norms and then turn to the question—critical

for our later purposes—of why people conform to coordination norms.

1. Coordination Norms Defined

Driving on the right is an example of a coordination norm. Before

considering what makes this a coordination norm, note that the general

definition of the genus is fulfilled: everyone (in the United States) drives on the

right, and they do so in part because they think they ought to. Exceptional

 12. See Michael Hechter & Karl-Dieter Opp, What Have We Learned About the Emergence of Social

Norms?, in SOCIAL NORMS 394, 403 (Michael Hechter & Karl-Dieter Opp eds., 2001) (exploring the varied

definitions of the term “norm”).

 13. See DAVID K. LEWIS, CONVENTION: A PHILOSOPHICAL STUDY 5–42 (1969).

No. 1] VULNERABLE SOFTWARE 51

circumstances aside, no one thinks he or she should drive on the left—as long

as everyone else drives on the right. The “as long as” is the distinctive feature

of the example. The “ought” is conditional. Everyone thinks he or she ought

to drive on the right, but only on the condition that everyone else does so. If

everyone started driving on the left, no one would think he or she ought to

drive on the right. This conditional “ought” distinguishes driving on right from

the norms we examined earlier. In the Protestant church norm, for example,

each churchgoer expects others to attend, but attendance does not depend on

that expectation; each attends because each thinks he or she ought to, no matter

what others do. “Attend a Protestant church” and “drive on the right” are both

norms, but they are different species of the same genus; the latter is a

coordination norm, but the former is not. A coordination norm is a behavioral

regularity in a group, where the regularity exists at least in part because almost

everyone thinks that he or she ought to conform to the regularity, as long as

everyone else does.
14

 The “ought” is conditioned on the assumption about

everyone else. We will need to refer to such “oughts” frequently, and to avoid

constant repetitions of “as long as everyone else does,” we will often say that,

for short, that one thinks one ought conditionally to conform.

An example is helpful. You are about to enter an elevator in which others

are already present. Where do you stand? The norm is to maximize the

distance between you and the person nearest you.
15

 Thus, everyone thinks he

or she ought to conform to the norm—but conditionally, as long as everyone

else conforms. There is little point in being the only “nearest neighbor

distance maximizer” if everyone else is just going to stand wherever they like.

The example illustrates an important feature of coordination norms: they make

it possible for parties to coordinate their behavior in ways that realize shared

interests that none could realize on their own. The shared interest in the case

of elevators is finding an acceptable compromise between two goals: using the

elevator when it arrives, and avoiding unacceptable crowding. No elevator

user can strike an acceptable balance on his or her own; others must cooperate

by standing in appropriate places. Following the “maximize the distance from

your nearest neighbor” norm creates the necessary cooperation.
16

 Similar

 14. Our notion of coordination norms is similar to but not as broad as Steven Hetcher’s notion. See

generally STEVEN A. HETCHER, NORMS IN A WIRED WORLD 50 (2004) (stating that coordination norms are "a

pattern of rationally governed behavior maintained by a group in conformity" in order to derive a

"coordination benefit," but they "need not be a proper coordination equilibrium."). Our notion is closely

related to the notion of coordination game in game theory, which has roots going back to THOMAS C.

SCHELLING, THE STRATEGY OF CONFLICT (1960) and to David Lewis’ notion of convention. See LEWIS, supra

note 13, at 36. There are important affinities between our notion of a coordination norm and the notion of

coordination game. The original idea of coordination games and the term “coordination game” comes from

Schelling. SCHELLING, supra at 89–90. The latter notion was further developed and connected to norms and

conventions by Lewis. For a more recent treatment, see generally RUSSELL COOPER, COORDINATION GAMES:

COMPLEMENTARITIES AND MACROECONOMICS (1999) (discussing macroeconomic examples of coordination).

 15. This is a simplification. The true norm is closer to “maximize the distance from your nearest

neighbor subject to the constraint that you stay within the peripheral vision of at least one other passenger and

that you have at least one other passenger within your peripheral vision.”

 16. Following the norm is not of course a unique solution to the cooperation problem; there are

alternatives—e. g., maximize the distance from your nearest neighbor and do not enter unless that distance is

at least three inches.

52 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

points hold for driving on the right. No driver alone can realize the goal of

everyone driving on the same side of the road. The norm ensures the necessary

cooperation.

2. Why People Conform to Coordination Norms

A key claim in our analysis is that coordination norms resist change; once

established, they are self-perpetuating. To explain why, we need to see why

people conform to norms. We begin with non-coordination norms (like the

Protestant church norm) and then turn to coordination norms.

People conform to non-coordination norms because, for the most part,

people do what they sincerely and without reservation think they ought to do.

Cases of “thinking one ought” form a continuum. At one extreme, one

conforms only to avoid sanctions (one may avoid eating one’s meat with one’s

salad fork only to avoid the disapproval of one’s etiquette-obsessed friends); at

the other extreme, sanctions play no role in explaining conformity. One

conforms because one thinks that conformity realizes a state of affairs one

regards as good—attending a Protestant church, for example. In between,

conformity is a mix, in varying degrees, of both factors. People in Jone’s

town, for example, may attend church because they think it is their religious

duty to do so and because others would disapprove if they failed to attend.

Across the entire continuum, it is true to say that one thinks one ought to

conform. The “ought” is a prudential “ought” at the “conform only to avoid

sanctions” end, and a non-prudential “ought” at the “conform to realize a good

state of affairs” end. Our free use of “ought” may ring false to those who

assume that people are entirely self-interested.
17

 We do not share the

assumption, but those who wish to work within its constraints may simply

interpret our “one ought to do” as “it is in one’s self-interest to do.” We will

not make any claims inconsistent with that interpretation.
18

We now turn to coordination norms. The explanation of why people

conform to non-coordination norms is not adequate as an explanation of why

they conform to coordination norms. To see why, recall that coordination

norms are regularities that exist at least in part because everyone thinks that he

or she ought to conform conditionally to the regularity. Thus, one will conform

as long as one expects everyone else to do so. Our earlier explanation simply

does not address cases in which one’s convictions about what one ought to do

depend on one’s expectations about what everyone else will do. Our

explanation of conformity to coordination norms is that conformity yields

mutually concordant expectations about conformity, which yield conformity,

which yields mutually concordant expectations about conformity, and so on.

 17. The assumption dominates economics and law and economics. See generally AMARTYA SEN, THE

IDEA OF JUSTICE 32–33 (2009); AMARTYA SEN, ON ETHICS AND ECONOMICS 15–28 (1987). Sen extensively

criticizes the assumption, decisively in our view. See id. (arguing that rational actors do not exclusively act in

their own self interest at all times).

 18. Even our observation that one may conform to realize a good state of affairs is consistent as long as

one sees such motivations as being, in one way or another, in one’s self-interest.

No. 1] VULNERABLE SOFTWARE 53

In this way, once established, coordination norms are self-perpetuating. There

are two questions. How does conformity yield expectations? And how do

expectations yield conformity?

It is easy to see how conformity yields expectations. Imagine Alice is

about to enter an elevator. Like anyone who has lived long enough in the

community in which the elevator norm obtains, Alice knows that people

conform to the norm because think they ought to.
19

 What is true of Alice is

true of everyone. Everyone who has lived long enough in the community

knows that people conform because they think they ought to. Thus, mutually

concordant expectations exist: everyone expects everyone to conform.

Now how do those expectations give rise to conformity? Start again with

Alice. Alice thinks she ought to conform as long as everyone else does so, the

expectation that everyone else will conform gives her good reason to conform

when she enters the elevator, and acting on that reason, she will conform.

Again, everyone is like Alice. Each person thinks he or she ought to conform

as long as everyone else does, so the expectation that everyone else will

conform gives each person a reason to conform, and acting on that reason, each

will conform. Thus: conformity yields mutually concordant expectations about

conformity, which yields conformity. The continuing conformity reinforces the

mutually concordant expectations about conformity, which yield conformity,

which reinforces the mutually concordant expectations about conformity, and

so on. The process ensures that, once established, coordination norms are

entrenched self-perpetuating practices. Our critique of software sales is that

the “wrong” product-risk coordination norm has become entrenched in

precisely this self-perpetuating way.

B. Value-optimal Norms

The product-risk norm governing software sales is “wrong” in the sense

that it is not value-optimal. So what is a value-optimal norm? To answer,

consider first that one typically conforms to norms without much thought;

when you step into an elevator, you just unreflectively stand in the appropriate

spot. You think you ought to stand there, but you do not worry or wonder

about the justification for that “ought.” You could justify it, however, if you

reflected on the norm under ideal conditions (including having sufficient time,

sufficient information, lack of bias, and so on).
20

 You could justify the balance

the norm strikes between not feeling crowded and being able to use the

 19. For simplicity, we are suppressing interesting issues about the type and extent of knowledge

required for the existence of a norm. See LEWIS, supra note 13, at 52–76 (examining the communal

expectations required for a norm). Given our discussion, we may legitimately assume that the required

knowledge conditions are fulfilled.

 20. The appeal to reasoning under appropriate conditions to justify normative conclusions begins (at

least) with Aristotle. See ARISTOTLE, NICOMACHEAN ETHICS 235 (1911) (“And to like and dislike what one

ought is judged to be most important for the formation of good moral character: because these feelings extend

all one’s life through, giving a bias towards and exerting an influence on the side of virtue and happiness, since

men choose what is pleasant and avoid what is painful.”). For a modern exposition and defense of this

approach, see STEPHEN L. DARWALL, IMPARTIAL REASON 201–17 (1983) (discussing the normative aspect of

the reasoning behind a person’s actions).

54 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

elevator when it arrives. Roughly speaking, a norm is value-optimal when one

can, in light of one’s values, justify the norm.

This is “rough speaking” because justification is a matter of degree. One

might, for example, regard the elevator norm as justified but also think that the

following alternative is even better justified: maximize the distance from your

nearest neighbor and do not enter the elevator unless that distance is at least

three inches. It is essential to take degrees of justification into account to

arrive at an explanation of value-optimality that will serve our purposes in

what follows. Thus, we define a value-optimal norm as follows: a coordination

norm is value-optimal when (and only when), in light of the values of (almost)

all members of the group in which the norm obtains, the norm is at least as

well justified as any alternative. It is the “at least as well justified as any

alternative” which makes the norm optimal; it means one cannot improve by

choosing a better justified norm. There are many optimality notions; Pareto

optimality is perhaps the most well-known one.
21

 Value-optimality is the

notion that we need for our analysis.

Our analysis of software vulnerabilities focuses on a particular type of

failure of value-optimality. The following example illustrates the type. Until

1979,
22

 hockey players in the National Hockey League did not wear helmets

despite the clear risk of severe head injury.
23

 There were two disadvantages to

wearing a helmet: non-helmet-wearing players’ perception that helmet-wearers

lacked toughness, and a small loss in playing effectiveness against non-helmet-

wearing players from the helmet’s restriction of peripheral vision.
24

Nonetheless, had one conducted a secret ballot at the time, the vast majority of

players would have agreed that it would be better if all players wore helmets.
25

“One player summed up the feelings of many: It is foolish not to wear a

helmet. But I don’t—because the other guys don’t. I know that’s silly, but

most of the other players feel the same way.”
26

 In light of the sanctions, each

player thought he ought to conform. The result was that it remained a norm

not to wear a helmet until 1979, when the league required helmets.
27

 Despite

its persistence, the “no helmet” norm was not value-optimal. There was an

 21. A situation is Pareto optimal when and only when it is not possible to improve the well-being of any

one person without making others worse off. See ROBERT COOTER & THOMAS ULEN, LAW & ECONOMICS 14

(Sally Yagan et al. eds., 6th ed. 2011).

 22. Andrew Podnieks, How Fighting Became So Ferocious, N.Y. TIMES (Dec. 15, 2011, 2:48 PM),

http://slapshot.blogs.nytimes.com/2011/12/15/how-fighting-became-so-ferocious/.

 23. See Thomas C. Schelling, Hockey Helmets, Concealed Weapons, and Daylight Saving: A Study of

Binary Choices with Externalities, 17 J. CONFLICT RESOL. 381, 381 (1973) (discussing players’ refusal to wear

helmets absent a National Hockey League mandate, despite a fellow player’s serious brain injury).

 24. Id.

 25. The Economist reports that there really was a secret ballot. The Economics of Hockey Helmets,

ECONOMIST (July 19, 2007, 17:08), http://www.economist.com/blogs/freeexchange/2007/07/the_economics_

of_hockey_helmet (citing James Surowiecki, Fuel for Thought, NEW YORKER (July 23, 2007),

http://www.newyorker.com/talk/financial/2007/07/23/070723ta_talk_surowiecki). We have been unable to

confirm this report. Thomas Schelling considers the results of hypothetical choices in THOMAS C. SCHELLING,

MICROMOTIVES AND MACROBEHAVIOR 198–201 (2d ed. 2006), but he does not consider a secret ballot among

hockey players.

 26. Schelling, supra note 23, at 381 (citation omitted).

 27. Podnieks, supra note 22.

http://www.economist.com/blogs/freeexchange/2007/07/the_economics_%20of_hockey_helmet
http://www.economist.com/blogs/freeexchange/2007/07/the_economics_%20of_hockey_helmet

No. 1] VULNERABLE SOFTWARE 55

alternative the players regarded as far better justified: all players wear helmets.

This example shows why value-optimality matters. The no-helmet norm

defined a tradeoff between the risk of head injury on the one hand, and

peripheral vision and appearing tough on the other. When they conformed to

this norm, the players accepted this tradeoff—even though they regarded

another norm (all players wear helmets) implementing a different tradeoff

(reduced risk of head injury) as far better justified. This is why value-

optimality matters: conformity to a norm that lacks value-optimality means

acting contrary to one’s values. We argue in Part V that software buyers are

trapped in conformity to a product-risk coordination norm that lacks value-

optimality.

C. Coordination Norms and Coordination Games

Our notion of coordination norm has strong connections to the notion of a

coordination game in game theory.
28

 This subsection is not essential to our

argument, and readers with no taste for technical details may wish to skip the

discussion. However, examining the connections with coordination games

sheds important light on our use of the notion of a value-optimal norm. We

assume some basic familiarity with game theory,
29

 and we first briefly recall

some standard definitions.

1. Definitions

In a (normal-form) game, each player has a finite set of actions available.

Each player simultaneously chooses an action, and the outcome of the game,

which is a distinct payoff to each player, is determined by the actions chosen.

A player’s strategy specifies what action he or she will use; a pure strategy is

the choice of one particular action; a mixed strategy randomizes over two or

more actions (e.g., if the possible actions are “Left” and “Right,” then one

mixed strategy is, “Choose Left with probability 1/3; Choose Right with

probability 2/3”). A set of one strategy for each player is called a strategy

profile. A strategy profile is a Nash equilibrium if each player’s strategy is a

best possible response to the combined strategies of all the other players.
30

Nash’s famous theorem says that every game has at least one mixed-strategy

Nash equilibrium.
31

 Intuitively we would expect that a game with pure-

strategy Nash equilibria that is played repeatedly will wind up with the players

settling into one of those equilibria.

Normal-form games with only two players are typically described by

giving a payoff matrix that shows the payoffs for all possible actions by the

 28. See COOPER, supra note 14, at viii–x.

 29. For a good overview of game theory, see, e.g., ROBERT GIBBONS, GAME THEORY FOR APPLIED

ECONOMISTS 2 (1992); KEVIN LEYTON-BROWN & YOAV SHOHAM, ESSENTIALS OF GAME THEORY: A CONCISE,

MULTIDISCIPLINARY INTRODUCTION 3 (2008); MARTIN J. OSBORNE & ARIEL RUBINSTEIN, A COURSE IN GAME

THEORY 11 (1994); PHILIP D. STRAFFIN, GAME THEORY AND STRATEGY 63 (1993).

 30. OSBORNE & RUBINSTEIN, supra note 29, at 216.

 31. LEYTON-BROWN & SHOHAM, supra note 29, at 10.

56 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

players. For example, for the game of deciding which side of the road to drive

on, with actions “Left” and “Right” we have:

 Left Right

Left (10, 10) (0, 0)

Right (0, 0) (10, 10)

 Figure 1: The Driving Game (which side of the road?)

In each cell of the matrix, there is a pair of numbers. The left number gives the

payoff to the player who chooses the row, and the right gives the payoff to the

player who chooses the column. Here there are two Nash equilibria, one where

both players drive on the right and one where both drive on the left.

Let us say that a game is a coordination game if it has at least two pure-

strategy Nash equilibria where all players choose corresponding actions, and

no other pure-strategy Nash equilibria.
32

 Our driving game represents the

purest possible sort of coordination game: both players have the same payoffs

for every combination of actions, and there are strict Nash equilibria for the

action profiles consisting of corresponding moves.

2. Value-optimality and Nash Equilibria

To see the connection to value-optimality, consider the Stag Hunt

Game.
33

 Two hunters each have to decide whether to hunt stag together

(neither can catch a stag alone) or hunt rabbits separately (which they can

 32. To be more precise, we should have said “the actions of the game can be labeled so that it has Nash

equilibria with the players choosing the corresponding actions,” because two games that become the same

when the actions (or players) are relabeled are really the same game. There does not seem to be any one exact

definition of “coordination game” used uniformly throughout the literature. For instance, we did not specify

whether the Nash equilibria must be strict, that is, whether “best response” in Nash equilibrium is to be

defined as “better than all alternatives.” (If it is defined as “at least as good as all other alternatives,” then we

get weak Nash equilibrium). Some authors impose further conditions that we will not discuss here.

 We speculate that there is no precise definition because the notion of coordination is of most interest

in social science and legal communities interested in social norms or situations of mixed cooperation and

competition, and perhaps of less interest to the mathematical game theory community that tends to be the

source of strict definitions. Schelling remarks in his Preface to the 1980 edition of THE STRATEGY OF

CONFLICT, “I wanted to show that some elementary theory, cutting across economics, sociology and political

science, even law and philosophy and perhaps anthropology, could be useful not only to formal theorists but

also to people concerned with practical problems. I hoped too, and I now think mistakenly, that the theory of

games might be redirected toward applications in these several fields. . . . [G]ame theorists have tended to stay

instead at the mathematical frontier.” SCHELLING, supra note 14, at vi.

 33. See generally BRIAN SKYRMS, THE STAG HUNT AND THE EVOLUTION OF SOCIAL STRUCTURE 1–13

(2003) (describing the Stag Hunt game, which “is a prototype of the social contract”).

No. 1] VULNERABLE SOFTWARE 57

easily catch on their own).
34

 Stags provide a lot more food than whatever

number of rabbits each could catch alone, and thus each prefers cooperating to

hunt stags to hunting rabbits alone. Thus the payoff matrix might be:

 Stag Rabbit

Stag (10, 10) (0, 3)

Rabbit (3, 0) (3, 3)

 Figure 2: The Stag Hunt Game

Or perhaps if one hunter is likely to catch extra rabbits if the other hunter is

(futilely) hunting a stag by himself, it might look like:

 Stag Rabbit

Stag (10, 10) (0, 5)

Rabbit (5, 0) (3, 3)

 Figure 3: Stag Hunt game with slightly different payoffs

The key point is that either way the choice “Rabbit, Rabbit” forms a Nash

equilibrium.
35

 Each player, if he believes the other player will choose rabbit,

should himself rationally choose rabbit.
36

 But why would a player believe that

the other will choose rabbit when they both prefer stag? Distrust is a sufficient

reason. Imagine hunting stag is more difficult and uncertain than hunting

rabbits. Each will hunt stag only as long as he or she believes the other will.
37

As soon as one of them becomes convinced that the other will desert the stag

hunt to catch rabbits, he or she too will abandon the stag hunt. Where there is

insufficient trust, hunting rabbits will become the norm.
38

 It will be a

behavioral regularity, and—since it is a Nash equilibrium—each will think he

 34. Id. at 1.

 35. See id. at 3.

 36. Id.

 37. Id.

 38. See id. (stating that rational players “need a measure of trust” to hunt stag instead of rabbits).

58 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

or she ought to conform as long as the other does.
39

The norm is not value-optimal, however. There is another Nash

equilibrium—stag-stag, and each player believes that that is the best outcome

and hence believes that the coordinating behavior to achieve this outcome is

value-optimal.
40

 However, as long as a player believes that the other players

are going to choose rabbit, then he believes that he too should choose rabbit.
41

Indeed, it would not merely be risky but outright foolish to choose stag if one

knows that the other players will choose rabbit.

The rabbit norm traps the players in a suboptimal equilibrium. Our

notion of a value-optimal norm generalizes this idea beyond the confines of

game theory. We will argue shortly that the stag-hunt game corresponds to

buyers’ choices in buying vulnerability-ridden software, with the rabbit action

corresponding to settling for defective software, and the stag action

corresponding to demanding higher-quality software. Demanding higher-

quality software is the value-optimal alternative, but buyers are trapped in the

choice of defective software.
42

 It is illuminating in this regard to return to the

1970s professional hockey players.
43

For simplicity, we consider just two players, each representing some

substantial fraction of all the hockey players. Here we could get two quite

different games depending on just what assumptions we make about the

hockey players’ utility. First we might get exactly the same payoff matrix as

the one in Figure 3 changing only the labels on actions from Stag, Rabbit to

Helmet, Bare.

 Helmet Bare

Helmet (10, 10) (0, 5)

Bare (5, 0) (3, 3)

 Figure 4: Hockey Helmet Game (as Stag Hunt)

We obtain the payoff matrix in Figure 4 by assuming that players prefer

helmets to bare heads; and prefer an advantage in winning to an even game;

and prefer an even game to being at a disadvantage.
44

 However, another

 39. See id. at 10 (“[W]hat a rational player in the stag hunt will do depends on what the player thinks the

other will do.”).

 40. Id. at 3.

 41. Id.

 42. See infra Part IV.

 43. See supra notes 22–27 and accompanying text.

 44. To be precise, we obtain the payoff matrix shown by assuming that having a helmet is worth 7 units

of utility, being bare-headed is worth 0, having an advantage in winning is worth 5, being in a neutral position

No. 1] VULNERABLE SOFTWARE 59

plausible set of assumptions about the hockey players’ preferences gives us the

famous Prisoners’ Dilemma game.
45

 We need assume only that their

preference for an advantage in winning the game is larger than any preference

for wearing a helmet. For example, we might have:
46

 Helmet Bare

Helmet (5, 5) (0, 10)

Bare (10, 0) (3, 3)

 Figure 5: Hockey Helmet Game (as Prisoner’s Dilemma)

The two payoff matrices look quite similar, but there is a very important

difference. For the Stag-hunt version of the hockey helmet game, there are in

fact two Nash equilibria, and if everybody in the league is playing bare-

headed, then we have a difficult but potentially solvable problem: how do we

move to the other Nash equilibrium, or in our terms, how do we move from the

norm that is not value-optimal to the norm that is value-optimal? However, in

the Prisoner’s Dilemma version, there is only one Nash equilibrium, the low-

payoff one at Bare, Bare paying 3 to each player.

Our use of value-optimality generalizes this game-theoretic theme from

coordination games to coordination norms. When a norm lacks value-

optimality, there is (at least) one other alternative norm that is better justified;

in game theoretic terms, there are—so to speak—(at least) two Nash equilibria,

one of which all players prefer to the other. The “so to speak” qualification is

essential. We have defined coordination games only for two-player

interactions; the parties to the norms we consider typically number in the

millions. Still, we think that the coordination games offer mathematically

precise model that illuminates the broader phenomenon of value-optimality in

the case of coordination norms.

II. PRODUCT-RISK NORMS

Typically, product sales are governed by (more or less) value-optimal

for winning is worth 0, and being at a disadvantage is worth -7, and that the preferences are independent and

can be added.

 45. For an excellent, detailed discussion of the prisoner’s dilemma, see WILLIAM POUNDSTONE,

PRISONER’S DILEMMA 101–31 (1992).

 46. Figure 5‘s payoff matrix is based on the assumption that the utilities for an advantage in winning, an

even game, and a disadvantage are respectively 10, 3, and -2, and the independent utility for having a helmet is

2.

60 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

norms. In Section IV, we argue that software sales are not governed by an

appropriate value-optimal product-risk, and thus are an aberration from the

typical pattern. In this section, we illustrate the typical pattern with three

examples.

Each example is a coordination norm that allocates the burden of

avoiding losses. Sellers bear whatever investment is required to produce

norm-conforming products while buyers bear the risks of loss from using a

norm-conforming product (unless those risks are assigned to the seller by other

norms, by law, or by contract). We have deliberately chosen examples that

may appear to govern the allocation of risks of unauthorized access due to

software vulnerabilities. We argue in Part IV that they do not. The argument

rests on the following point, which we emphasize in the discussion of the

examples: one applies product-risk norms against a background of shared

judgments about the proper allocation of risk in particular cases. The relevant

shared judgments in the case of software sales assign the vulnerability-created

risk of unauthorized access in ways inconsistent with the examples, and indeed

in ways generally inconsistent with product-risk norms governing non-

software sales.

One preliminary question remains: who are the parties to the norms? The

answer may seem obvious—buyers and sellers; after all, they need to

coordinate so that sellers offer what buyers want to buy. Further, if the norms

are to allocate risks between buyers and sellers, how could both not be parties

to the norm? It is indeed possible to represent product-risk norms as buyer-

seller coordination norms; however, it is also possible, and simpler and more

elegant, to model the norms as norms to which the only parties are buyers. The

key point is that sellers design mass-software in response to sufficiently large

groups of buyers; hence, no buyer can unilaterally ensure that his or her

desired level of risk will be available—only a sufficiently large collective

demand can accomplish that. Coordination via product-risk norms creates the

required collective demand, to which profit-motive driven sellers respond.

Since the profit motive is sufficient to ensure the sellers’ response, there is no

need to see the sellers as a party to the coordination norm.
47

A. The “Fitness” Norm

The norm is that buyers “demand” products that are fit for the ordinary

purpose for which such products are used. We use “demand” here in the

following sense: “demand a fit product and (other things being equal)
48

 refuse

to buy an unfit product.” We will use “demand” in this “demand and refuse to

buy” sense throughout in our discussion of product-risk norms.

There is no doubt that the “fitness” norm is indeed a norm. The required

 47. See infra Part III.

 48. The “other things being equal” is merely to handle exceptions that do not matter for our purposes—

e. g., a buyer may accept an unfit product if he or she has a non-standard use for it, or if the seller is a relative

from whom the buyer believes he must not refuse.

No. 1] VULNERABLE SOFTWARE 61

regularity exists: buyers do demand fit products.
49

 Moreover, they think they

ought to do so—conditionally. As long as everyone conforms, non-conformity

would mean unilaterally demanding an unfit product. The demand would go

unfulfilled, and the non-conforming buyer would forego the purchase of the

product. To the extent that doing so is unacceptable, the buyer will think he or

she ought to conform. Of course, if enough buyers were interested in

purchasing “unfit” products, seller would begin to offer them (other things

being equal), and a new “fitness” norm would develop to govern those sales;

products “fit” under the new norm would not be “fit” under the old one.

Varying notions of fitness are possible because “fitness” is determined by

contextually-sensitive normative judgments. It could hardly be otherwise.

Fitness depends on the type of product, the circumstances in which it is

ordinarily used, the knowledge and skill of typical buyers, and the values in

light of which buyers evaluate the product.
50

 In a significant range of cases,

there is sufficient overlap in values, use, knowledge, and skill that buyers

converge on roughly the same judgments of fitness in particular cases. Lindy
Homes, Inc. v. Evans Supply Co., Inc.

51
 is an excellent example, even though it

does not concern the fitness norm (at least not directly). The case concerns the

Implied Warranty of Merchantability, which is asserted in Uniform

Commercial Code section 2-314(2)(c).
52

 Under that provision, a seller

warrants that the goods are fit for the ordinary purpose for which such goods

are used.
53

 The task before the court was to determine fitness.

Lindy Homes used electrogalvanized sixpenny casing nails in cedar

plywood siding.
54

 Electrogalvanized nails rust when used in cedar; nails

galvanized by a different process—“hot-dipped”—are far more rust-resistant,

and the standard practice in the construction industry is to use hot-dipped nails

in cedar.
55

 When the electrogalvanized nails rusted, Lindy Homes sued the

 49. The demand has a long history. As British common law responded to the rise of a market economy

in the seventeenth century, it explicitly noted that the commercial custom and practice was to offer fit

products. Such acknowledgments, moreover, are not confined to modern market economies; Ancient Roman

law also notes the same custom and practice. See JAMES OLDHAM, ENGLISH COMMON LAW IN THE AGE OF

MANSFIELD 79–205 (2004); Friedrich Kessler, The Protection of the Consumer Under Modern Sales Law, Part

1, 74 YALE L.J. 262. 263–64 (1974); George L. Priest, A Theory Of The Consumer Product Warranty, 90

YALE L.J. 1297, 1299–1302 (1981). The existence of the demand is consistent with spectacular failures to meet

it. For example, in June 2010, in just a small fraction of the recalls that month, “McDonald’s asked customers

to return 12 million glasses emblazoned with the character Shrek. Kellogg’s warned consumers to stop eating

28 million boxes of Froot Loops and other cereals. Campbell Soup asked the public to return 15 million

pounds of SpaghettiOs, and seven companies recalled 2 million cribs.” Lindsay Layton, A Slew of Defective

Products Leaves Consumers with ‘Recall Fatigue,’ SEATTLE TIMES, July 3, 2010,

http://seattletimes.nwsource.com/html/nationworld/2012268615_recallfatigue03.html.

 50. U.C.C. § 2–314(2)(c) (2011).

 51. See Lindy Homes, Inc. v. Evans Supply Co., Inc., 357 So. 2d 996, 999 (Ala. Civ. App. 1978)

(finding no breach of implied warranty because buyer could not prove the nails were not “fit for the ordinary

purpose for which such goods are used”).

 52. U.C.C. § 2–314(2)(c).

 53. Id. The norm and the legal rule are not the same; people generally know and adhere to the norm

while only the relatively legally sophisticated are aware of U.C.C. § 2-314(2)(c).

 54. Lindy Homes, 357 So.2d at 998.

 55. Id. at 999.

62 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

seller, Evans Supply, for breach of the implied warranty of merchantability.
56

The court held that the electrogalvanized nails were fit for the ordinary use

made of them, a use that did not include their use in cedar.
57

 The court relied

on the industry-wide normative judgment it was “common knowledge in the

trade that galvanized casing nails should not be used in exterior siding because

a . . . ‘hot-dipped’ galvanized nail is proper in such a condition.”
58

We have not argued that the “fitness” norm is value-optimal, but we take

the point to be sufficiently plausible that we may, for purposes of illustration,

assume it is. We make the same assumption about the next two examples.

B. The “Negligent Design/Manufacture” Norm

The norm is that buyers demand products that do not, as a result of

negligent design or manufacture, impose an unreasonable risk of loss on

buyers who use the product as intended. The relevant regularity exists: buyers

demand such products,
59

 and moreover, buyers think they ought conditionally

to demand such products. The argument is essentially the same as in the case

of the “fitness” norm. A buyer who had an unusual use for a particular product

might not care whether the intended uses of the product imposed an

unreasonable risk of loss; however, as long as everyone else conforms, such a

buyer will think he or she ought to conform. Non-conformity would mean

unilaterally demanding a norm-deviant product; this demand would go

unfulfilled, and the buyer would forego the purchase of the product. To the

extent that going without is unacceptable, such a buyer will think he or she

ought conditionally to conform. As with the fitness norm, if enough buyers

were interested in purchasing “unreasonably risky” products for an alternate

use, seller would begin to offer them (other things being equal), and a new

“negligent design/manufacture” norm would develop to govern those sales;

products not “unreasonably risky” under the new norm might still be

“reasonably risky” for the range of uses governed under the old norm.

Applying a “negligent design/manufacture” norm requires making two

context-sensitive, fact-specific judgments: one about unreasonable safety and

one about negligent design or manufacture. In re Sony BMG Music
Entertainment is an excellent illustration.

60
 Part of its merit is that it concerns

software. The example illustrates that the norms we discuss in this section do

indeed govern some aspects of software; our claim, which we defend in Part

IV, is that the norms do not apply to risks arising from software

 56. Id. at 997.

 57. Id. at 999.

 58. Id.

 59. People clearly do think that sellers ought not to offer products that, as a result of negligent design,

impose an unreasonable risk of loss on buyers who use the product in the intended way. It is difficult to

imagine anyone sincerely claiming that sellers ought to offer such negligently designed products, and indeed

precisely the opposite conviction plays a central role in the development of products liability law. See, e.g.,

Richard Wright, The Principles of Products Liability, 26 REV. LITIG.1067, 1070 (2007).

 60. Sony BMG Music Entm’t, FTC File No. 062-3019 (July 17, 2007), http://www.ftc.gov/os/

caselist/0623019/index.shtm.

No. 1] VULNERABLE SOFTWARE 63

vulnerabilities.
61

Between 2003 and 2005, Sony BMG Music Entertainment sold over 14

million music CDs containing one of two copy protection programs—XCP or

MediaMax.
62

 The programs allowed users to make only three physical copies

of the CD, limited the ability to transfer files from the CD to other devices

(including the iPod), allowed Sony to monitor users’ listening habits, and were

extremely difficult to uninstall.
63

 Buyers were not given adequate notice of

these aspects of the software.
64

 Thus, using the CDs imposed the following

largely undisclosed risks: interference with plans to make more than three

copies, interference with plans to play files on other devices, and the invasion

of privacy by monitoring buyers’ listening habits. Buyers found these risks

unreasonable:

Once the public became aware of the [risks] . . . CDs distributed with
[the software] . . . experienced a steep drop-off in sales within some
market segments. . . . In addition, Sony BMG spent millions to settle
the steady stream of lawsuits arising out of the . . . incident. Less
quantifiably, the resulting backlash from artists and customers
significantly damaged the reputations of Sony BMG and its parent
corporations.

65

The unreasonableness judgments are fact-specific, context-sensitive

judgments about the number of times it is reasonable to expect to copy music

from a CD to other devices, about what sorts of devices it is reasonable to copy

to, and about the legitimacy of monitoring music listening habits.

Fact-specific, context-sensitive judgments are also the basis of the

determination that Sony’s actions were negligent. It is a standard practice in

the music CD business to conduct a pre-release review of copy protection

software to determine whether it works acceptably.
66

 Sony BMG certainly had

the resources to conduct such a review.
67

 If it did so, it did so negligently; it

should have discovered the flaws in the software.
68

 Sony might instead have

relied on the expertise of the suppliers of First4Internet (XCP) and SunnComm

 61. The software in Sony BMG did contain vulnerabilities. See Deirdre K. Mulligan & Aaron K.

Perzanowski, The Magnificence of the Disaster: Reconstructing The Sony BMG Rootkit Incident, 22

BERKELEY TECH. L.J. 1157, 1166 (2007). Our discussion focuses exclusively on other aspects of the software.

 62. Complaint at ¶3, Sony BMG Music Entm’t, FTC File No. 062-3019 (Jun. 28, 2007) (No. C-4195),

available at http://www.ftc.gov/os/caselist/0623019/ 0623019cmp070629.pdf.

 63. See Bruce Schneier, Sony’s DRM Rootkit: The Real Story, SCHNEIER ON SECURITY (Nov. 17, 2005),

http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html.

 64. Mulligan & Perzanowski, supra note 61, at 1168.

 65. Id. at 1168–69. As a result of the ensuing consumer outrage, Sony lost roughly $6.5 million in

return fees and manufacturing costs alone. Id. at 1170.

 66. Id. at 1179.

 67. The resources to conduct such a review were available to Sony BMG from Sony Corporation of

America, which has a 50% interest in Sony BMG whose holdings include Sony Electronics and Sony

Computer Entertainment America. Id. Sony, along with Philips, owns the rights to the core DRM patents of

Intertrust. In theory, at least, Sony BMG could have implemented a suite of better technical solutions. See

Press Release, Sony Corp., Philips and Sony Lead Acquisition of Intertrust (Nov. 13, 2002), available at

http://www.sony.com/SCA/press/021113.shtml.

 68. Sony’s “decision [to offer the CDs with the copy protection software] points to a culpable failure of

internal procedures to safeguard against the wide-scale distribution of flawed protection measures.” Mulligan

& Perzanowski, supra note 61, at 1178–79.

64 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

(MediaMax), but such reliance would clearly have been culpable.
69

First4Internet’s expertise was in content filtering technology, particularly the

recognition of pornographic images; it had virtually no experience in copy

protection technology.
70

 SunnComm was no better. It began as a provider of

Elvis impersonation services and had the lack of business savvy and

technological insight to purchase a 3.5” floppy disk factory in 2001. It had

virtually no relevant experience with copy protection software prior to entering

the contract with Sony.
71

C. The Least-Cost Avoider Norm

The norm is that, other things being equal, buyers demand products that

assign the risk of a loss to the party that can most cost-effectively prevent or

remedy the loss—the least cost-avoider.
72

 Car buyers rather than sellers, for

example, bear losses for failure to change the oil sufficiently often, since the

buyers are in possession of the car and are the ones who can most easily keep

track of mileage. Another example: in the case of refrigerators, sellers are

liable for defects in the motor while buyers are liable for wear and tear on the

shelves and doors. The least-cost avoider is the seller in regard to motor

defects because it has more expertise and benefits from economies of scale; the

buyer, on the other hand, is the least-cost avoider in regard to damage to the

motor, doors, and shelves since the buyer may avoid damage simply by careful

use.
73

To see that the least-cost avoider norm really is a norm, consider that

allocating risks to the least-cost avoider yields a net savings overall. Widely

shared values dictate that, other things being equal, one should realize such

savings when one can. Thus, everyone thinks he or she ought conditionally to

conform. Non-conformity would mean unilaterally demanding something else;

the demand would go unfulfilled, and the buyer would forego the purchase of

the product. Thus, the requirements for the existence of a coordination norm

are fulfilled. The required regularity exists—buyers demand products in which

the risks of use are allocated to the least cost-avoider; moreover, the regularity

exists because buyers think they ought conditionally to conform.

One applies the least-cost avoider in light of fact-specific, context-

sensitive judgments. Applying the least-cost avoider norm requires making

fact-specific, context-sensitive tradeoffs between the least-cost avoider bearing

losses and potentially conflicting goals. The reason is that, under the norm, the

least-cost avoider bears relevant losses, other things being equal. “Other

things” are not “equal” when imposing losses on the least-cost avoider

 69. Id. at 1179–80.

 70. Id. at 1180.

 71. Id.

 72. See generally GUIDO CALABRESI, THE COSTS OF ACCIDENTS: A LEGAL AND ECONOMIC ANALYSIS

136 (1970); Ronald H. Coase, The Problem of Social Cost, 3 3 J.L. & ECON. 1, 11 (1960).

 73. Alan Schwartz & Louis L. Wilde, Imperfect Information in Markets for Contract Terms: The

Examples of Warranties and Security Interests, 69 VA. L. REV. 1387, 1398 (1983).

No. 1] VULNERABLE SOFTWARE 65

unacceptably conflicts with other goals.
74

 The norm assigns a risk of loss to

the least-cost avoider when and only when there are no unacceptable conflicts

with other goals.

D. Norm-Implemented Tradeoffs

In each of the above examples, the norm implements tradeoffs among

competing goals. A norm-conforming seller must make tradeoffs because the

greater the seller’s investment of time, effort, and money in creating norm-

conforming products, the less is available for pursing other goals. The tradeoff

for norm-conforming buyers comes from bearing the risk of using norm-

conforming products. They must invest in precautions to avoid those losses

and spend the time, effort, and money to recover from losses they fail to avoid.

The more they invest, the less they have for other pursuits.

E. A New Definition of Value-Optimal Norms

These points about tradeoffs allow us, in the case of product-risk norms,

to replace our earlier, general definition of value-optimality with one that is

equivalent but more informative. The earlier definition was that a norm is

value-optimal when and only when it is at least as well justified as any

alternative. In the case of product-risk norms, we can replace this general

criterion with: a product-risk norm is value-optimal when and only when the

tradeoffs it implements are as least as well justified as any alternative. We

argue in Part IV that the norm governing software sales is not value-optimal

because there is an alternative norm that implements a better justified tradeoff.

Car buyers rather than sellers, for example, bear losses for failure to

change the oil often enough, because the buyers are in possession of the car

and are the ones who can most easily keep track of mileage. Another example:

in the case of refrigerators, sellers are liable for defects in the motor, while

buyers are liable for wear and tear on the shelves and doors. The least-cost

avoider is the seller in regard to motor defects because it has more expertise

and benefits from economies of scale; the buyer, on the other hand, is the least-

cost avoider in regard to damage to the motor, doors, and shelves since the

buyer may avoid damage simply by careful use.
75

We turn now to the question: why—and in what sense—do norm-

compliant sales ensure only acceptable risks? We begin with the “in what

sense” part of the question. What do we mean by “acceptable”?

III. ACCEPTABLE RISK AND IDEAL TRANSACTION CONDITIONS

We define acceptable as follows: product-risk norms ensure that the

 74. One may, for example, think that someone who commits an intentional tort should bear the losses he

or she causes even if the victim is the least cost-avoider. See generally Wright, supra note 59, at 1099–1103.

 75. See Schwartz & Wilde, supra note 73, at 1398 (using refrigerators as an illustration of how

comparative advantage determines warranty content).

66 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

design and manufacture of a product imposes only acceptable risks (when and

only when the norm is value-optimal). To see the rationale, suppose you had a

choice between various norms. How would you choose? You would choose

the norm (or in the case of ties, one of the norms) best justified in light of your

values. Our definition of “acceptable” simply acknowledges this fact. But one

may rightly object, what if there are not enough value-optimal norms?

Product-risk norms are paired with particular risks. The “fitness” norm, for

example, addresses the risk of using unfit products but not risk of using a

negligently designed or manufactured product. Instead the “negligent

design/manufacture” norm addresses that risk. Product-risk norms cannot

ensure acceptable risks when there are significant risks that are not addressed

by at least one value-optimal product-risk norm.

Our solution is to introduce the first of the two assumptions

characterizing ideal transaction conditions. The first is that there is no

significant risk that is not governed by at least one value-optimal product-risk

norm. Call this norm completeness.
76

 Norm completeness defines an ideal

that practice only approximates. Practice tends to approximate norm

completeness because sellers and buyers have exchanged products for

centuries, and over the years, relevant value-optimal norms have evolved. In

Part V, we argue that software sales are an aberration that falls unacceptably

short of the ideal of norm completeness.

Norm completeness guarantees that enough product-risk norms exist, but

it does not guarantee that sellers will conform to the norms. Indeed, product-

risk norms would appear to make buyers an easy target for exploitation.

Norm-conforming buyers typically do not investigate products in any detail;

they simply take it for granted that products do not impose any unacceptable

risks as a result of their design and manufacture. So would sellers exploit that

fact to sell products that do impose such risks when doing so maximizes

profits?

Our answer is to introduce the second assumption characterizing ideal

transaction conditions: the assumption of a perfectly norm-competitive market

(discussed below). When both assumptions hold, the profit-maximizing

strategy is for sellers to conform to product-risk norms. It is the profit-

maximizing strategy in practice—to the extent practice approximates ideal

transaction conditions. Our argument adapts a well-known law and economics

argument.
77

 We begin with a summary of the argument: (1) whenever a

business violates a norm, at least some consumers will notice; (2) consumers

who detect a norm-violation will not, other things being equal, buy from norm-

inconsistent businesses; (3) businesses are unable to discriminate between

 76. We will, for simplicity, assume that consistency with norms is an all-or-nothing matter: a transaction

is either entirely consistent, or entirely inconsistent. In practice, consistency is often a matter of degree.

Similarly, in regard to value-optimality, we assume that one’s values show either that one ought to act in

accord with a given norm, or that one ought not. In practice, there may be open questions where one’s values

do not show that one ought to act in accord with the norm but also do not show that one ought not.

 77. The argument is adapted from Alan Schwartz & Louis L. Wilde, Intervening in Markets on the Basis

of Imperfect Information: A Legal and Economic Analysis, 127 U. PA. L. REV. 630, 640 (1979), which

discusses the profit-maximizing strategy of businesses in more detail.

No. 1] VULNERABLE SOFTWARE 67

consumers who will, and those who will not, detect a norm-inconsistency; (4)

therefore, in a perfectly norm-competitive market, the profit-maximizing

strategy is for businesses to conform to norms.

A. Detecting Norm Violations

It is quite unlikely that norm-inconsistent products will escape the notice

of every buyer. Awareness of norm-inconsistent products can come from news

reports, magazine articles, books, consumer watch-dog groups,
78

 negative

publicity from consumer complaints, and litigation. This is not to make any

claim about how many buyers detect norm-violations. It is the second

assumption, formulated later, that includes such a claim.

B. Norm-Violation Detectors versus Norm-Inconsistent Sellers

When buyers detect norm-inconsistent sellers, they will not—other things

being equal—buy from them. Consider that a norm is a regularity to which

one thinks one ought to conform. Norm-violation detectors will therefore

perceive a norm-inconsistent seller as not treating them as they ought to be

treated. Other things being equal, buyers will purchase from sellers they

perceive as treating them as they ought to be treated, not from those whom

they perceive as not doing so.
79

C. Sellers’ Inability to Discriminate

If sellers could reliably discriminate between buyers who will, and those

who will not detect a norm-inconsistency, they could remain norm-consistent

in the case of inconsistency-detectors but violate norms for the rest. Sellers

can in some cases spot those buyers that are likely to detect violations of

norms. They can easily identify repeat customers who have objected to

violations in the past, and it would not take too much research to identify a

customer as, for example, the President of a consumer protection group like

Consumer Reports. Such cases aside, when you walk into a retail store or

order an item over the phone or online, nothing reliably signals whether you

will detect norm-inconsistent behavior.
80

D. The Profit-Maximizing Strategy

The final claim is that when sellers cannot discriminate between those

who do and those who do not detect norm-inconsistencies, then in a perfectly
norm-competitive market, the profit-maximizing strategy is to conform to

 78. See, e.g., Robert A. Hillman, Online Boilerplate: Would Mandatory Website Disclosure of E-

Standard Terms Backfire?, 104 MICH. L. REV. 837, 853 (2006) (discussing the role of watchdog groups).

 79. See, e.g., J. R. Avrill, Studies on Anger and Aggression, 38 AM. PSYCHOL. 1145, 1149 (1983)

(noting that violation of norms in an exchange provokes anger and may lead to the termination of the

exchange).

 80. You may, of course, reveal yourself as an inconsistency-detector if you explicitly insist on norm-

consistent treatment, or if you detect and object to norm-inconsistent behavior.

68 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

product-risk norms; hence, rational, profit-motive driven sellers will do so.

The assumption of a perfectly norm-competitive market is the second

idealizing assumption. In Part V, we consider the extent to which software

markets approximate this ideal.

 When is a market perfectly norm-competitive? Two conditions must

hold. The first is standard economic notion of perfect competition.
81

 We

define competition as perfect when and only when five conditions hold
82

:

1. Profit-motive Driven Sellers. Businesses seek to maximize profit.
83

2. Lack of Market Power. Neither sellers nor buyers can individually
control the price or determine the features of a product or service.

84

3. Homogeneous Products and Services. The products and services
involved in pay-with-data exchanges are quite diverse, but the
homogeneity that matters for us is that they are all pay-with-data
exchanges. The relevant similarity is in the mechanism of the sale, not
the items sold. The argument we offer works for all pay-with-data
exchanges, no matter what is exchanged, so we our references below
to “products and services” are to any particular product or service
involved in a pay-with-data exchange.

4. Zero Transaction Costs. Competitors may costlessly enter and
leave the market, and buyers can costlessly switch from one seller to
another.

5. Perfect Information. The perfect information requirement takes
various forms.

85
 Minimally, buyers and sellers know all prices. Most

generally, all buyers and sellers are assumed know everything relevant
to their production and consumption decisions.

86

The second condition adds to the knowledge specified in (5). To

formulate the condition, recall the point made above: buyers will, other things

being equal, not buy from a seller who violates product risk norms. The

second condition is that there are enough buyers who know when norm

violations occur. More precisely: there are enough norm-violation-detecting

buyers that a seller’s gain from norm-inconsistent behavior is smaller than the

loss which results when norm-violation-detectors buy from norm-consistent

sellers. We will need a name for this requirement. Call it the sufficient

 81. See, e.g., JEFFREY L. HARRISON, LAW & ECONOMICS: POSITIVE, NORMATIVE AND BEHAVIORAL

PERSPECTIVES 24–25 (2d ed. 2007) (discussing perfect and non-perfect competition).

 82. Our definition follows a standard pattern. See WALTER NICHOLSON & CHRISTOPHER SNYDER,

MICROECONOMIC THEORY: BASIC PRINCIPLES AND EXTENSIONS 415 (2012).

 83. Id.

 84. Definitions often substitute the requirement that there be a large number of sellers and buyers; the

point, however, is to make the size of the market sufficient to ensure that no one seller or buyer has the power

to set prices and determine features.

 85. Some definitions of perfect competition omit any mention of perfect information. See Scott A.

Beaulier & Wm. Stewart Mounts, Jr., Asymmetric Information about Perfect Competition: The Treatment of

Perfect Information in Introductory Economics Textbooks 1–3 (Sept. 2008), available at

www.scottbeaulier.com/Information_Version_2.doc. We include it in our definition because appeals to perfect

information (and real world approximations to it) play a central explanatory role for us.

 86. See id. at 4–5.

 86. See id. at 4–5.

No. 1] VULNERABLE SOFTWARE 69

detection requirement.

Together perfect competition and sufficient detection entail that the

profit-maximizing strategy is to be a norm-consistent seller. Perfect

competition ensures that every norm-violation detecting buyer will buy from

norm-consistent sellers, if at least one such seller exists. Sufficient detection

ensures that there are enough norm-violation-detecting buyers that norm-

inconsistent sellers lose more than they gain. Thus, the profit-maximizing

strategy is to be a norm-consistent seller; hence, rational profit-motive driven

sellers will be norm-consistent.
87

E. Summary of the Product-Risk Norms Model

The model makes two idealizations. The first is the assumption of norm-

completeness; the second is the assumption of a norm-competitive market.

Norm completeness ensures that every purchase is governed by value-optimal

product-risk norms; perfect norm-competitiveness ensures that rational, profit-

motive driven sellers conform to the norms. When both assumptions hold,

product sales are governed by norms that implement acceptable tradeoffs—

tradeoffs to which buyers give free and informed consent. These assumptions

define an ideal that is only approximated in practice. The closer practices

come to the ideal, the more product sales involve acceptable tradeoffs to which

buyers consent.

We argue next that software sales fall unacceptably far short of this ideal.

IV. APPLYING THE MODEL TO SOFTWARE VULNERABILITIES

In this section, we focus exclusively on the failure to approximate norm-

completeness. We consider perfect norm-competitiveness in Part VI. Norm-

completeness requires that every significant risk be allocated by at least one

value-optimal norm. There are two ways to fail to meet this requirement.

Norms may not exist, or existing norms may not be value-optimal. We claim

that software sales exhibit the latter sort of failure: sales are governed by a

norm that is not value-optimal. Our argument is divided into three parts. We

first identify the norm. We then explain why, appearances to the contrary, the

earlier examples of product-risk norms do not apply. Finally, we argue that the

norm is not value-optimal.

A. The “Vulnerability-Ridden” Norm

The “vulnerability-ridden” norm is that buyers demand vulnerability-

ridden software. The required regularity obtains—buyers do demand such

software. It is commonplace to complain that buyers are unwilling to pay a

premium for more secure software; they demand quick-to-market, cheap,

 87. We assume that sellers, as members of the community in which the norm obtains, are aware of the

norms and realize that they fail to meet buyers’ demands when they fail to act in accordance with demand–

unifying coordination norms. See supra note 19.

70 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

vulnerability-ridden software.
88

 The explanation of the existence of the

regularity is that buyers think that they ought conditionally to demand such

software. Thus, the conditions for the existence of a demand-unifying product-

risk norm are fulfilled: buyers regularly demand vulnerability-ridden software,

and they do so at least in part because they think they ought conditionally to do

so. To see that buyers think they ought conditionally to demand vulnerability-

ridden software, divide buyers into three groups: buyers ignorant of the

relevant risks, buyers who are aware of the risks but underestimate them, and

those who are aware of the risks and accurately estimate them. In each group,

buyers think they ought conditionally to demand vulnerability-ridden software,

but they think so for different reasons.

Group One: Ignorance. Many buyers lack relevant information; security

experts, consumer advocates, and those who make or seek to influence public

policy may understand the risks involved in using vulnerability-ridden

software, but many users have at best a minimal understanding.
89

 Since they

are unaware of the risks, the buyers do not see why they should pay a premium

for more secure software; hence, they think they ought conditionally to

demand quick-to-market, cheap, vulnerability-ridden software. The “ought” is

conditional because a buyer would change his or her mind if all other buyers

demanded secure software. An isolated demand for vulnerability-ridden

software would go unmet.

Group Two: Underestimation. Buyers may be aware of the risks but

underestimate them. “An amazingly robust finding about human actors . . . is

that people are often unrealistically optimistic about the probability that bad

things will happen to them.”
90

 Like buyers who are simply unaware of the

risk, risk-underestimating buyers do not see why they should pay more for

secure software, and thus think they ought conditionally to demand quick-to-

market, cheap, vulnerability-ridden software.

Group Three: Compelling Reason. Even when buyers correctly estimate

the risks, they will still think they ought to demand vulnerability-ridden

software. Imagine Alice deciding whether to use the Adobe Acrobat Reader;

she is well aware that the Reader has significant vulnerabilities,
91

 but given the

“vulnerability-ridden” norm, she has only two options: use the Reader or not.

 88. See MARK G. GRAFF & KENNETH R. VAN WYK, SECURE CODING: PRINCIPLES & PRACTICES 28

(2003); Douglas A. Barnes, Note, Deworming the Internet, 83 TEX. L. REV. 279, 297–99 (2004).

 89. See Bruce Schneier, Insider Threat Statistics, SCHNEIER ON SECURITY (Dec. 19, 2005),

http://www.schneier.com/blog/archives/2005/12/insider_threat.html (reporting that among corporate

employees, “[t]wo thirds (62%) admitted they have a very limited knowledge of IT Security” and “[m]ore than

half (51%) had no idea how to update the anti-virus protection on their company PC”). See also Consumer

Labeling for Software Security, SANS INST. INFOSEC READING ROOM, http://www.sans.org/reading_room/

whitepapers/awareness/consumer-labeling-software-security_10 (last visited Jan. 17, 2012) (stating that naïve

consumers are uninformed of the risks involved with insufficient computer security). Consumer awareness has

increased over time. Tim Wilson, Consumer Awareness Of Online Threats Is Up, Study Says, DARK READING

(Jan. 25, 2010, 8:54 AM), http://www.darkreading.com/security/vulnerabilities/222400407/index.html.

 90. Christine Jolls, Behavioral Economics Analysis of Redistributive Legal Rules, 51 VAND. L. REV.

1653, 1659 (1998).

 91. See Joel Yonts, PDF Malware Overview, SANS INST. (July 19, 2010), http://www.sans.org/security-

resources/malwarefaq/pdf-overview.php (showing the history of vulnerabilities discovered in Adobe Acrobat

Reader).

No. 1] VULNERABLE SOFTWARE 71

There is no third option of unilaterally demanding and receiving a less

vulnerable Reader. She will think she ought to conditionally use the Reader as

long as she is confident that she can take reasonable precautions to protect

herself from unauthorized access. She realizes that, to the extent she

transmits .pdf files to others who may not exercise the care she does, she

imposes on them risks of unauthorized access by giving them yet one more

occasion to use the Reader. But such third party risks have virtually no impact

on her decision; given the extremely widespread use of the Reader, her

decision not to use it would only yield an infinitesimal reduction in the risks to

others.
92

B. Why Not Fitness, Negligent Design/Manufacture, and Least-Cost

Avoider?

But what about the three product-risk norms discussed earlier—fitness,

negligent design/manufacture, and least cost-avoider? Why don’t they apply to

software sales? Let us examine the fitness norm first.

How can vulnerability-ridden software be fit? To see why it is fit,

consider that fitness is determined, not by the opinion of software experts, but

by contextually-sensitive judgments of software buyers. Software sales violate

the norm only if those judgments classify the software as unfit. Software

buyers share no such judgment. They demand quick-to-market, cheap,

vulnerability-ridden software. One may rightly object that our buyers who

correctly assess the risks of using vulnerability-ridden software may regard

such software as unfit. However, even if they do, their judgment is, so to

speak, inert. Buyers assessing risk correctly still think they ought conditionally

to conform to the “demand vulnerability-ridden software” norm and hence

conform to the norm. That is the norm that governs, not the “negligent-design-

manufacture” norm—despite any judgment of unfitness that buyers who assess

risk correctly may make.

Essentially the same points hold for the “negligent design/manufacture”

norm. It may appear to apply because some vulnerabilities are clearly the

result of negligent design.
93

 Software “buffer overflows” are a good example

of this. A buffer is a temporary location on a computer that a program uses to

store information before it sends it to the CPU for processing.
94

 Programmers

can take effective steps to ensure that, before storing information in a buffer,

the program checks to see if the capacity of the buffer is large enough to

contain the information. To fail to do so is to create a buffer overflow

vulnerability, which one can exploit to take over a computer and make it run

 92. The third-party risks are, in the terminology of economics, externalities—effects of a decision on

those who did not make the decision and whose interests were not taken into account in making the decision.

See HARRISON, supra note 81, at 44–45.

 93. We are not using “negligent” here in legal sense. We simply have in mind the non-legal use to mean

“without sufficient attention.” We discuss negligence as a tort in Part VI.

 94. See, e.g., Corey Pincock, Secure Windows Initiative Trial by Fire: IIS 5.0 Printer ISAPI Buffer

Overflow, SANS INST. INFOSEC READING ROOM, http://www.sans.org/reading_room/whitepapers/win2k/

secure-windows-initiative-trial-fire-iis-50-printer-isapi-buffer-overflow_190 (last visited Jan. 24, 2012).

72 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

programs one has written.
95

 The consensus of software development experts is

that, in a wide range of cases at least, it is negligent to create a buffer overflow

vulnerability.
96

 As computer security writers note, “[T]he existence of a classic

overflow strongly suggests that the programmer is not considering even the

most basic of security protections.”
97

Agreement on such instances of negligence is not, however, sufficient to

show that software sales violate the negligent design/manufacture norm. The

norm is that sellers do not offer products that, as a result of negligent design or

manufacture, impose an unreasonable risk of loss on buyers using the product
as intended. Unreasonableness is determined by shared judgments that

allocate risks of loss between sellers and buyers; thus, to claim that

vulnerability ridden software imposes unreasonable risks is to claim the shared

judgment does so. Software buyers share no such judgment. The argument is

exactly parallel to the argument in the case of the “negligent

design/manufacture” norm. Buyers prefer quick-to-market, cheap,

vulnerability-ridden software. Buyers who assess risk incorrectly regard the

risks as unreasonable, but it does not matter whether they do or not. They still

think they ought conditionally to conform to the “vulnerability-ridden” norm.

The case for thinking software sales violate the least-cost avoider norm

may, at first sight, seem considerably stronger, for as we will argue shortly,

software developers are the least-cost avoider for a wide range of losses arising

from software vulnerabilities. It does not follow, however, that sales of

vulnerability-ridden software violate the least-cost avoider norm. One applies

the least-cost avoider norm in light of shared normative judgments that allocate

the burden of avoiding the risk of loss. Thus, to claim that vulnerability-ridden

software violates the best loss avoider norm is to claim that shared judgments

allocate burden on software developers in a significant range of cases. As we

argue below in Part IV.C, the opposite is true. Buyers demand quick-to-

market, cheap, vulnerability-ridden software. It does not matter whether

buyers who assess risk incorrectly judge software developers to be the best

loss-avoids in some cases; they conform to the “demand vulnerability-ridden

software” norm anyway.

Arguing that software sales do not violate the three product-risk norms

given as examples does not show that sales do not violate other product-risk

norms; however, the argument generalizes to other norms. Consider any

product-risk norm that purportedly assigns the risk of at least some

vulnerability to software developers. That claim will be inconsistent with the

fact that buyers demand quick-to-market, cheap, vulnerability-ridden software.

 95. See Aleph One, Smashing the Stack for Fun and Profit, PHRACK MAG., Aug. 11, 1996, available at

http://www.phrack.com/issues.html?issue=49&id=14#article (noting that “over the last few months there has

been a large increase of buffer overflow vulnerabilities being both discovered and exploited”).

 96. See, e.g., Pincock, supra note 94 (noting that “[b]ecause buffer overflows begin with poor

programming practices it is essential that vendors train their programmers to write secure code”).

 97. CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’), COMMON

WEAKNESS ENUMERATION, http://cwe.mitre.org/data/definitions/120.html (last updated Sep. 13, 2011).

No. 1] VULNERABLE SOFTWARE 73

C. The “Vulnerability-Ridden” Norm Is Not Value-Optimal

A product-risk norm is value-optimal when and only when the tradeoffs it

implements are as least as well justified as the tradeoffs implemented by an

alternative norm. The “vulnerability-ridden” norm is not value-optimal

because there is a better justified alternative. Under the current norm, buyers

bear the risk of loss from unauthorized access resulting from vulnerabilities;

the better justified option shifts a good part of that risk on to software

developers.

The existence of a consensus on this point may seem surprising. It is

difficult to obtain reliable data concerning losses, even in the case of readily

quantifiable data such as the time, effort, and money involved in detecting

unauthorized access, diagnosing its effects, removing malware that may have

been installed, and lost productivity resulting from network malfunctions. This

difficulty does not, however, prevent widespread agreement that the cost of

unauthorized access runs in the billions of dollars a year.
98

 While not all of

these losses can be traced back to software vulnerabilities, vulnerabilities are

nonetheless a significant factor,
99

 and the consensus is that the cost of

improving software development procedures to an extent that would

significantly reduce vulnerabilities would be considerably less than the

aggregate cost of unauthorized access mediated by vulnerabilities.
100

 Software

developers are—to a considerable extent—the least-cost avoider with regard to

a wide range of vulnerabilities.

This conclusion is reinforced by considering losses that resist

quantification, primarily: invasion of privacy, loss of trust, and anxiety from a

sense of increased risk.
101

 The assessment of a matter of making normative

judgments about the desirability of competing policy goals—in particular, the

goals served by keeping software costs down versus the value of trust, privacy,

and a reduced sense of risk. To the extent one thinks a reduction in non-

quantitative losses is worth an increase in software development costs, one has

an additional reason to regard software developers as the least cost-avoiders

over a wide range of cases.

We conclude that the “vulnerability-ridden” norm is not value-optimal.

The solution is to replace that norm with a value-optimal norm. But what

 98. See CATE, supra note 1, at 6–7.

 99. See Schultz, supra note 1, at 1.

 100. See GRAFF & VAN WYK, supra note 88, at 56; ROGER S. PRESSMAN, SOFTWARE ENGINEERING: A

PRACTITIONER’S APPROACH 13–14 (2001); PONEMON INST., BUSINESS CASE FOR DATA PROTECTION: A STUDY

OF CEOS AND OTHER C-LEVEL EXECUTIVES IN THE UNITED KINGDOM 2 (Mar. 2010),

http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/IBM%20Business%20Case%20for%20D

ata%20Protection%20UK%20White%20Paper%20FINAL6%20doc.pdf (noting that “C-level executives

believe the cost savings from investing in a data protection program of £11 million is substantially higher than

the extrapolated value of data protection spending of £1.9 million. This suggests a very healthy ROI for data

protection programs”). The study is of course not a study of investment in software development, but the

significant savings from protecting data on networks suggest that reasonable software development practices

that reduced the incidence of vulnerabilities would save money.

 101. See Alessandro Acquisti et al., Is There a Cost to Privacy Breaches? An Event Study, ICIS 2006

PROCEEDINGS, 1563, 1564–65 (2006), http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1215&context=

icis2006.

74 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

exactly should the alternative norm be? The more software developers must

invest to create norm-conforming software, the less is left over for other

important goals, including promoting software innovation,
102

 promoting the

development of open source software,
103

 and ensuring sufficient

competitiveness among software sellers.
104

 The less developers invest, the

greater the risk of loss from unauthorized access, and hence the greater the

investment buyers must make in avoiding those losses or recovering from them

when they occur. The more buyers invest, the less they have for the wide

variety of other goals they pursue. A value-optimal norm must define a best

justified tradeoff among the competing goals.

V. BEST PRACTICES AND BEST-PRACTICES NORMS

We claim that the norm should be that buyers demand software developed

following best practices. One immediate difficulty is that “[b]est practices has

become an overused, underdeveloped catchphrase employed by industries and

professions to signal an often unsubstantiated superiority in a given field.”
105

Accordingly, our first step is to explain what we mean by “best practices.” We

then argue for the “buyers demand best practices software” norm.

A. Best Practices Defined

A best practice in a particular industry is a practice (method, process, or

system) meeting two conditions. The first condition consists of two parts. Part

one: with regard to one or more goals, there must be widespread agreement

that it is highly desirable that those goals be achieved.
106

 Call these goals the

best practice goals. Part two: there must be widespread agreement that

following the practice is a sufficiently reliable, sufficiently detailed means of

meeting the best practice goals.
107

An example is helpful. In the United Kingdom, the Electrical Safety

Council promulgates best practices for electrical wiring.
108

 The Council offers

“a series of Best Practice Guides in association with leading industry bodies

 102. See MICHAEL A. CARRIER, INNOVATION FOR THE 21ST CENTURY: HARNESSING THE POWER OF

INTELLECTUAL PROPERTY AND ANTITRUST LAW 19–33 (2009) (emphasizing the importance of innovation).

 103. On the importance of open source software, see Edward M. Corrado, The Importance of Open

Access, Open Source, and Open Standards for Libraries, ISSUES IN SCI. & TECH. LIBRARIANSHIP, Spring 2005,

available at http://www.istl.org/ 05-spring/article2.html.; David A. Wheeler, Why Open Source Software /

Free Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!, http://www.dwheeler.com/

oss_fs_why.html (last updated April 16, 2007) (offering statistics to show that open source software can be a

better option than proprietary software). Best practices appropriate for proprietary software might unduly

constrain the development of open source software.

 104. See generally CARRIER, supra note 102, at 304–12 (discussing competition in intellectual property).

 105. Ira P. Robbins, Best Practices on “Best Practices”: Legal Education and Beyond, 16 CLINICAL L.

REV. 269, 271 (2009).

 106. Id. at 291 (explaining that the first requirement requires that “those who attempt to discover or

define a best practice must agree on the goal that the practice is intended to achieve”).

 107. Id. at 292 (discussing benchmarking as an objectively verifiable means of meeting best practice

goals).

 108. See generally Best Practice Guides. ELECTRICAL SAFETY COUNCIL (Jan. 24, 2012),

http://www.esc.org.uk/industry/industry-guidance/best-practice-guides/.

No. 1] VULNERABLE SOFTWARE 75

for the benefit of electrical contractors and installers, and their customers.”
109

The best practice goal is adequate safety, a goal widely regarded as highly

desirable;
110

 further, there is also widespread agreement that following the

practices is a sufficiently reliable way to achieve that goal. The practices

contain specific, detailed requirements for testing and installation. The best

practices for electrical wiring, for example, require that the electrician

determine whether the insulation resistance in electrical circuits is at least one

megaohm; if not, equipment on that circuit must be disconnected, or 30 mA

RCD protection must be installed.
111

 Even a cursory survey of best practices

reveals that they typically provide quite detailed advice. We defer our

explanations of “sufficiently reliable,” and “sufficiently detailed” to the

discussion of the second condition.

To formulate the second condition, note that practices meeting the first

condition implement tradeoffs between the best practice goal and a variety of

other competing goals.
112

 The reason is that following best practices typically

requires an increased investment of time, effort, and money. Conforming to

electrical wiring best practices, for example, requires various inspections and

the installation of hardware upgrades.
113

 This increases the cost of maintaining

buildings, and the increased cost entails tradeoffs between safety and other

goals. Increased wiring costs can, for example, affect the availability of low

cost rentals.

Best practices for pharmaceutical company staffing and expenditure are

another example. The tradeoff is between costs and discovering, developing,

and distributing high-quality drugs at reasonable prices. This fact forms a key

selling point for Best Practices, a company that licenses access to a database of

best practices:

By finding the optimal level of staffing and spending to achieve
efficiency and effectiveness, companies can save money while
maintaining a high-value medical affairs function [discovering,
developing, and distributing high-quality drugs at reasonable prices].
Medical affairs leaders can use the information in this . . . document to
learn how top companies find the optimal level of staffing and
spending to achieve both efficiency and effectiveness in executing the

 109. See, e.g., ELECTRICAL SAFETY COUNCIL, SELECTION AND USE OF PLUG-IN SOCKET OUTLET TEST

DEVICES 2 (Jan. 24, 2012), available at http://www.esc.org.uk/fileadmin/user_upload/documents/industry/

best_practice/BPG8_10.pdf.

 110. See Statistics, ELECTRICAL SAFETY COUNCIL, http://www.esc.org.uk/stakeholder/policies-and-

research/statistics/ (last visited Jan. 17, 2012) (offering safety statistics).

 111. 30 mA RCD protection (the British equivalent of CGFI switches) greatly reduces the risk of an

electrical shock sufficient to cause arterial fibrillation, the main cause of death from electric shock. See

ELECTRICAL SECURITY COUNCIL, BEST PRACTICE GUIDE 6 (2d ed. 2010), available at http://www.esc.org.uk/

pdfs/business-and-community/electrical-industry/BPG1v2_web.pdf.

 112. See, ELECTRICAL SAFETY COUNCIL, REPLACING A CONSUMER UNIT IN DOMESTIC PREMISES WHERE

LIGHT CIRCUITS HAVE NO PROTECTIVE CONDUCTOR 5 (Mar. 2010), available at http:// www.esc.org.uk/

fileadmin/user_upload/documents/industry/ best_practice/BPG1v2_web.pdf (advising that “where the

customer is . . . not prepared to accept the cost or disruption of re-wiring . . . but still needs a new consumer

unit [circuit breaker box], . . . the installer needs to carry out a risk assessment before agreeing to replace only

the consumer unit”).

 113. See id. at 6 (discussing the need for risk inspection and testing).

http://www.esc.org.uk/

76 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

mission of medical affairs.
114

To trade costs against healthcare is, of course, to trade costs against the

vast number of concerns and goals affected by the quality and availability of

health care. A large number of similar examples can be found in the Best

Practices Database in Improving the Living Environment.
115

 The database

provides access to “the practical ways in which public, private and civil society

sectors are working together to improve governance, eradicate poverty, provide

access to shelter, land and basic services, protect the environment and support

economic development.”
116

Now we can state the second condition: the tradeoffs implemented by

following the practices are at least as well justified as any alternative.
117

 This

is what makes the practices best practices. One cannot improve the tradeoffs

by switching to alternative practices. Discussions of best practices do not

explicitly offer this “at least as well justified” gloss on what makes best

practices best.
118

 In its discussion of pharmaceutical best practices the

company Best Practices characterizes best practices as “optimal”; such

practices yield “the optimal level of staffing and spending.”
119

 Another

common characterization is “best in class”—a company adopts best practices

by “measuring . . . functions, processes, activities, products, or services against

those of [its] competitors and improving . . . [to match] the best-in-

class”
120

 To be optimal or best-in-class is, however, surely to be at least

as well justified as any alternative. Whatever the language used, we take it to

be clear that a best practice is one that is at least as well justified as any

alternative; if there is a better justified alternative, the practice can hardly be

best.

The “at least as well justified” requirement explains why we do not

require best practices to be the most reliable way to achieve the consensus

goals.
121

 The best justified tradeoffs may sacrifice some reliability in the name

of furthering other goals. The requirement also explains why—and in what

sense—best practices are sufficiently detailed methods. Recall the Electrical

Safety Council requirement that 30 mA RCD protection must be installed in

 114. Medical Affairs Staffing & Spend: Maximizing Value, Decreasing Cost, BEST PRACTICES, LLC,

http://www.best-in-class.com/bestp/domrep.nsf/products/medical-affairs-staffing-spend-maximizing-value-

decreasing-cost (last visited Feb. 3, 2012).

 115. BEST PRACTICES DATABASE IN IMPROVING THE LIVING ENVIRONMENT, http://www.bestpractices.org

(last visited Feb. 3, 2012).

 116. Id.

 117. Cf. Robbins, supra note 105, at 291 (noting that to be a best practice, there can be only one way to

accomplish the best practice goal).

 118. See supra Part II.E (discussing value-optimal norms).

 119. Medical Affairs Staffing & Spend, supra note 114.

 120. ROBERT J. BOXWELL JR., BENCHMARKING FOR COMPETITIVE ADVANTAGE 30 (1994). The quote

characterizes “benchmarking”; benchmarking is setting standards as a step toward adopting practices that

realize them. Id. at 17. The practices are “best practices” if they are “best in class.” “State of the art” is a

similar characterization; as Robbins notes, Great Britain also uses the term best practices in the area of public

management, defining a best practice as generally accepted “state of the art” approach. Robbins supra note

105, at 281 (citing Tessa Brannan et al., Assisting Best Practice as a Means of Innovation, 4 LOC. GOV’T

STUD. 23, 24 (2008)).

 121. See supra Part II.E. (discussing value-optimal norms).

No. 1] VULNERABLE SOFTWARE 77

electrical circuits with less than one megohm of resistance.
122

 This requirement

allows one to compare Electrical Safety Council practices to practices that

require different combinations of cost and protection against electrical shock.

In general, where one has a variety of competing goals, one will want to

compare various tradeoffs among those goals to determine which tradeoffs are

the best justified. Best practices must be sufficiently detailed to allow one to

make those comparisons.

B. Summary of the Argument for the Best-practices Norm

We begin with a summary of the argument. (1) Best practices for

software development exist, and software developers would significantly

reduce vulnerabilities if they followed them. (2) Best practices make tradeoffs

among competing goals, where the tradeoffs are at least as well justified as the

tradeoffs implemented by alternative practices. Therefore (3), a “buyers

demand best practices software” norm would be a value-optimal norm whose

implementation would significantly reduce vulnerabilities.

Premise (2) follows from our discussion of best practices. As that

discussion shows, best practices for software development—assuming they

exist—make tradeoffs among relevant competing goals that are at least as well

justified as alternatives. Relevant goals include, as we noted earlier, prompting

innovation, promoting the development of open source software, and ensuring

sufficient competitiveness.
123

 Given (2), the conclusion in (3) follows since a

product-risk norm is value-optimal provided the tradeoffs it implements are at

least as well justified as any alternative tradeoffs. The only question then is

whether best practices exist for software development. One could reasonably

think that they do not. It is, after all, routine to observe, as leading security

expert Eugene Spafford does, that software “is usually produced using error-

prone tools and methods, including inadequate testing.”
124

 Such practices can

hardly qualify as best. Our view is that this does not show that best practices

do not exist; it merely shows that existing best practices are not followed.

C. Best Practices for Software Development

We begin with a specific example. It is a best practice to ensure that,

before a program stores information in a buffer, it first checks to see if the

amount of information is greater than the capacity of the buffer.
125

 Failing to

do so creates a buffer overflow vulnerability.
126

 The practice meets the two

requirements for being a best practice.
127

 The first requirement is that there

 122. BEST PRACTICE GUIDE, supra note 102, at 6.

 123. See supra notes 102–04 and accompanying text.

 124. Spafford, supra note 9, at 36.

 125. See CAPERS JONES, SOFTWARE ENGINEERING BEST PRACTICES: LESSONS FROM SUCCESSFUL

PROJECTS IN THE TOP COMPANIES 531 (2010) (explaining that the use of debugging tools to check for buffer

overflow problems “are so common that usage is a standard practice and therefore would be classed as a best

practice”).

 126. See id. at 514 (noting that “buffer overflows are common examples of vulnerabilities”).

 127. See Robbins, supra note 105, at 291–92 (explaining the requirements for best practices).

78 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

must be widespread agreement that it is highly desirable to realize a certain

goal, and there must be widespread agreement that following the practice is a

sufficiently reliable and sufficiently detailed means of meeting that goal.
128

 As

we noted earlier, there is consensus on the goal of reducing vulnerabilities by

requiring a greater investment in software development.
129

 The consensus is,

first, that an increased investment in software development would reduce the

number of vulnerabilities in software over a significant range of cases, and

hence the losses from unauthorized access.
130

 There is also widespread

agreement that the practice—ensuring that the amount of information to be

stored does not exceed the capacity of the buffer—avoids buffer overflow

vulnerabilities.
131

The second requirement is that the tradeoffs which the practice

implements must be at least as well justified as any alternative.
132

 It seems to

be true, as the consensus is that the time, effort, and money needed to ensure

the amount of information to be stored does not exceed the capacity of the

buffer is far less than the losses thereby avoided.
133

 There are many such

examples. A vulnerability is just a particular type of defect, similar in principle

to any other software defect, such as giving the wrong answer or crashing. The

same high-level picture holds for both software defects in general and software

vulnerabilities in particular: the amount depends very much on the design and

programming practices used.
134

 There is widespread agreement that one

should ensure adequate overall management of the creation of the software,

from first deciding what the behavior of the software should be, and then

through designing it, writing it, and especially testing it.
135

 There is also

widespread agreement on how to write and design the actual computer

programs (“code” in the language of programmers) that collectively are the

software.
136

 This includes, for example, such matters as the choice of

appropriate data structures and algorithms, structuring the flow of control well,

obeying abstraction barriers, and breaking the overall software into appropriate

size pieces.
137

 The techniques for developing sufficiently defect-free software

are collectively known as software engineering.
138

 How to write individual

 128. See id. at 278.

 129. See supra Part IV.C.

 130. See supra Part IV.C.

 131. See Pincock, supra note 94, and text accompanying note 94.

 132. See supra note 117 and accompanying text.

 133. Ethan Preston & John Lofton, Computer Security Publications: Information Economics, Shifting

Liability and the First Amendment, 24 WHITTIER L. REV. 71, 135–36 (2002); Krerk Piromsopa & Richard J.

Enbody, Secure Bit: Transparent, Hardware Buffer-Overflow Protection, IEEE TRANSACTIONS ON

DEPENDABLE & SECURE COMPUTING, Oct.–Dec. 2006, available at http://www.cse.msu.edu/cgi-user/web/tech/

document?ID=619; David Wheeler, Secure Programmer: Countering Buffer Overflows, DEVELOPER WORKS

(Jan. 27, 2004), http://www.ibm.com/developerworks/linux/library/l-sp4.html.

 134. See ANDERSON, supra note 4, at 15.

 135. See ALBERT ENDRES & DIETER ROMBACH, A HANDBOOK OF SOFTWARE AND SYSTEMS

ENGINEERING: EMPIRICAL OBSERVATIONS, LAWS AND THEORIES 74 (2003) (“Well-structured programs have

fewer errors and are easier to maintain.”).

 136. See id. (discussing the most important requirements for writing programs).

 137. See id. at 35 (explaining that software engineers have to devise solutions to problems and designing

the solution is “the most challenging and most creative activity in software and systems engineering”).

 138. See id. at 1 (“Software engineering is the part of systems engineering that deals with the systematic

No. 1] VULNERABLE SOFTWARE 79

computer programs well, and the basics of software engineering are fairly

well-settled subjects,
139

 and should be known by competent software

developers. For example, one can find many aphorisms summarizing these

principals in a handbook of software engineering.
140

 More importantly, the

basics of how to construct good quality code and the basics of software

engineering formed a significant fraction of the core (required) portion of the

model computer science bachelor’s degree curriculum jointly published by the

two main professional societies for computer science in 2001.
141

 Furthermore,

most of that same material was also found in the earlier 1978 and 1991

versions of that model undergraduate curriculum, though of course some

important details have changed as the field has evolved. Writing secure

software also requires some additional knowledge. Some minimal training in

writing secure software is a standard part of today’s undergraduate curriculum

for computer science majors,
142

 but was not so common a decade ago. In

general, a great deal is known about what sort of software development

practices lead to fewer software defects, and what sort lead to more defects.

One particular area of software engineering that has seen real progress in the

past 20 years or so is testing.
143

 There are a whole host of automated

techniques for testing whether software under development contains errors,

and use of these techniques significantly lower the defect rate in the final

product. Failure to use any of these newer testing techniques leads to higher

defect rates. It is common wisdom among experts in software development

that all the proper attention to all the issues we have mentioned lead to lower

defect rates, and various studies from over the years back up this common

development, evaluation, and maintenance of software.”).

 139. However, the choice of which software engineering methodology is the best one for managing

various sorts of projects is contentious. In particular, there is debate about the relative merits of a traditional

methodology called the Waterfall Model, with its origins in the late 1960s, versus various other

methodologies, such as Spiral or Agile. See, e.g., David L. Parnas, A Rational Design Process: How and Why

to Fake it 3, available at http://www.cs.tufts.edu/~nr/cs257/archive/david-parnas/fake-it.pdf (criticizing the

Waterfall Model); Kent Beck et al., Manifesto for Agile Software Development (2001),

http://agilemanifesto.org/ (outlining the Agile Model).

 140. See generally ENDRES & ROMBACH, supra note 135. A small sample of the sort of rules includes:

Boehm’s first law: “Errors are most frequent during the requirements and design activities and are the more

expensive the later they are removed.” Id. at 17. Dijkstra–Mills–Wirth law: “Well-structured programs have

fewer errors and are easier to maintain.” Id. at 74. Fagan’s law: “Inspections significantly increase

productivity, quality, and project stability.” Id. at 100. Herzel–Myers law: “A combination of different

verification and validation [i.e., testing] methods outperforms any single method alone.” Id. at 107.

 141. See, e.g., ERIC ROBERTS ET AL., COMPUTING CURRICULA 2001: COMPUTER SCIENCE 17 (2001). Of

the roughly 280 hours of “core” material listed here, perhaps half the core material in Programming

Fundamentals, a third of the core material in Programming Languages, and almost all the core material in

Software Engineering concerns the basics of good software development practices. Together those hours make

up about a third of that core curriculum. A recent revision does not make significant changes from the point of

view of the issues we consider here, except for adding some material on how to write secure software to the

core. See LILLIAN CASSEL ET AL., COMPUTER SOC’Y OF THE INST. FOR ELEC. & ELEC. ENG’RS & THE ASS’N

FOR COMPUTING MACH., CS2008, COMPUTER SCIENCE CURRICULUM 2008: AN INTERIM REVISION OF CS 2001

(Dec. 2008), available at http://www.acm.org/education/curricula-recommendations.

 142. See ROBERTS ET AL., supra note 135, at 17 (2001). For examples of standard textbooks on software

engineering, see, e.g., ROGER PRESSMAN, SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH (7th ed.

2009); IAN SOMMERVILLE, SOFTWARE ENGINEERING (9th ed. 2010).

 143. See ANDERSON, supra note 4, at 829.

80 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

wisdom.
144

In sum, there are software development practices that meet the conditions

for being best practices.
145

 First, there is a goal—reducing the number of

vulnerabilities—and there is widespread agreement that the goal is desirable,

and that following the practices is a sufficiently detailed, reliable way to

achieve that goal. Second, there is widespread agreement, at least to some

extent, that the tradeoffs implemented by following the practices are at least as

well-justified than any alternative. The “at least to some extent” qualification

acknowledges that there is some indeterminacy here. It is clear that the

tradeoffs involved in following certain best practices—such as checking on

adequate buffer size—are at least as well justified as any alternative, and it is

clear in general that one or more combinations of the practices discussed above

implement tradeoffs that are at least as well justified as any alternative. But it

is not clear what those combinations are. Exactly what tradeoffs among the

various competing goals are best justified is unclear; there are competing

arguments for weighing various goals in various ways.
146

In evaluating such tradeoffs, it is important to bear in mind an often

overlooked limit on what best practices can achieve. Software is different

from other engineered products in that sufficiently complex software inevitably

has programming flaws.
147

 In contrast, design flaws are not inevitable in, for

example, refrigerators, batteries, and bridges even when they exhibit

considerable complexity. Software alone combines complexity and inevitable

flaws. Thus, no matter how much one invests in development procedures

designed to reduce programming flaws, flaws—and perhaps vulnerabilities—

will remain. There are two reasons for this.

First, most of engineering is governed by continuous mathematics,

whereas software is governed by discrete mathematics.
148

 Continuous

mathematics includes the mathematics of the real numbers, which describe the

 144. See generally Anthony Hall, Seven Myths of Formal Methods, 7 IEEE SOFTWARE 11, 11–19 (Sept.

1990) (discussing Praxis studies and the CASE project). See also I. J. Hayes, Applying Formal Specification

to Software Development in Industry, SE-11 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 169, 175–76

(Feb. 1985) (discussing the usefulness of software engineering techniques in some particular projects); Alan

MacCormack et al., Trade-offs between Productivity and Quality in Selecting Software Development

Practices, 20 IEEE SOFTWARE 78, 81–84 (Sept.–Oct. 2003) (comparing various software engineering

techniques).

 145. See generally JONES, supra note 125, at 7–10 (describing what qualifies a software development

practice as a "best practice").

 146. See CARRIER, supra note 102, at 22 (discussing the analogous issues that arise in the context of

copyrights and patents; many of the concerns and competing arguments cross over).

 147. As far back as the 1980s, a panel convened to study the issues with software for President Regan’s

Strategic Defense Initiative noted, “Simply because of its inevitable large size, the software capable of

performing the battle management task for strategic defense will contain errors. All systems of useful

complexity contain software errors.” STRATEGIC DEF. INITIATIVE ORG., DEP’T OF DEF., 19980819-140.

EASTPORT STUDY GROUP: SUMER STUDY 1985. A REPORT TO THE DIRECTOR, STRATEGIC INITIATIVE

ORGANIZATION 14 (1985), available at http://dodreports.com/ada351613 (emphasis added). Recently, Capers

Jones noted that one goal of software engineering best practices is to increase the percentage of bugs removed

prior to delivery from 85 percent to something that “approach[es] 99 percent,” (not that it approaches 100%).

JONES, supra note 113, at xxvi.

 148. Eric Roberts, Computers and Society, in ENCYCLOPEDIA OF COMPUTER SCIENCE 1591, 1594

(Anthony Ralston et al. eds., 4th ed. 2000).

No. 1] VULNERABLE SOFTWARE 81

physics of motion and electricity.
149

 Discrete mathematics includes the

mathematics of the integers and of strings of letters.
150

 For our purposes, the

heart of continuous mathematics is the notion of a continuous function. The

definition of continuous function is typically given in calculus classes using

Greek lambdas and epsilons, but what a continuous function means to an

engineer is that if, in a continuous system, you make a very small error in one

of your inputs, the error in the behavior of your system must also be small.

The discrete mathematics that governs software offers no such guarantees. An

error in a single line of a million-line program can cause arbitrarily large

errors. The second thing that makes software different from other engineered

entities is that there is no way to “over engineer” for safety in designing

software, as one can in designing many physical systems.
151

 For example, if

one wants to design a building to withstand 140 mile per hour winds, one can

do the calculations about the necessary material strength, thickness, etc., to

withstand 150 mile per hour winds, and then build according to those

calculations to create an extra margin for safety. There are analogous things to

do in many engineering situations, but not in the construction of software.

D. Developers Do Not Follow Best Practices

Software developers do not follow the best practices. As we noted

earlier, software “is usually produced using error-prone tools and methods,

including inadequate testing.”
152

 Creating buffer overflow vulnerabilities is a

clear violation of best practices, but the vulnerability is still a common

occurrence
153

 and still ranks third on the SANS Institute’s 2011 list of the top

twenty-five most dangerous software errors.
154

 Why don’t software developers

conform more closely to best practices? The answer lies in the behavior of

buyers. Buyers are trapped in a self-perpetuating coordination norm under

which they demand vulnerability-ridden software. In such a case, the profit-

maximizing strategy for software developers is to be the first in the market to

offer a particular type of software or an upgrade to existing software.

Reducing vulnerabilities by following best practices requires a longer and

more costly development process, so software developers avoid those

practices.

VI. CONDITIONS FOR CREATING THE NORM

The solution is to create a value-optimal, best-practices norm governing

software sales in a market which sufficiently approximates perfect norm-

 149. See J. D. JOSHI, FOUNDATIONS OF DISCRETE MATHEMATICS 1–3 (1989) (explaining the differences

between continuous and discrete mathematics).

 150. Roberts, supra note 148, at 1594.

 151. Id.

 152. Spafford, supra note 9, at 36.

 153. Jason Lam, Top 25 Series – Rank 3 – Classic Buffer Overflow, APPSEC BLOG (Jan. 24, 2012, 7:42

PM), http://software-security.sans.org/blog/2010/03/02/top-25-series-rank-3-classic-buffer-overflow#

comments.

 154. Id.

82 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

competitiveness. The closer the market approximates perfect norm-

competitiveness, the more rational, profit-motive driven sellers conform to the

norm. The existence of the value-optimal norm ensures the norm-governed

sales implement acceptable tradeoffs, tradeoffs to which buyers give free and

informed consent. We remark in passing that the norm would do more than

just reduce the number of vulnerabilities; it would reduce the number of

software defects generally. As we noted earlier, a vulnerability is a type of

software defect, and following best practices reduces defects generally.
155

How can one best ensure that a value-optimal norm operates in a sufficiently

norm-competitive market? We first consider ensuring a sufficiently norm-

competitive market and then turn to creating the norm.

A perfectly norm-competitive market exists when and only when two

requirements are fulfilled: perfect competition and sufficient detection.

Current markets fall far short of both requirements.

A. Perfect Competition

The operating system market falls far short of the requirement of multiple

sellers. Microsoft dominates, with a relatively small market share going to

Apple and Linux (and in the future, Google’s Chrome operating system could

possibly acquire a share of the market as well).
156

 There are also significant

barriers to entry, as operating systems are very costly to develop and whether

they will be adopted is uncertain.
157

 In addition, operating systems are not

sufficiently homogeneous; switching from one to the other involves significant

costs.
158

 These issues require detailed analysis in the context of antitrust and

intellectual property law,
159

 and that task lies outside the scope of our efforts

here. In contrast to the operating system market, markets for software

applications and utilities may sufficiently approximate perfect competition, but

 155. See supra Part V.C.

 156. Operating System Market Share, NETMARKETSHARE.COM http://marketshare.hitslink.com/operating-

system-market-share.aspx?qprid=8 (last visited January 27, 2012).

 157. See David A. Wheeler, More than a Gigabuck: Estimating GNU/Linux’s Size,

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html (last updated July 29, 2002) (estimating that “it

would cost over $1 billion ($1,000 million – a Gigabuck) to develop this GNU/Linux distribution by

conventional proprietary means in the U.S. (in year 2000 U.S. dollars)”). See also Amanda McPherson, Brian

Proffitt & Ron Hale-Evans, Estimating the Total Development Cost of a Linux Distribution, LINUX FOUND.

(Oct. 2008), http://www.linuxfoundation.org/sites/main/files/publications/estimatinglinux.html. The authors

note that:
In 2002, David A. Wheeler published a well-regarded study that examined the Software Lines of Code
present in a typical Linux distribution. His findings? The total development cost represented in a
typical Linux distribution was $1.2 billion. We’ve used his tools and method to update these findings.
Using the same tools, we estimate that it would take approximately $10.8 billion to build the Fedora 9
distribution in today’s dollars [2008], with today’s software development costs. Additionally, it would
take $1.4 billion to develop the Linux kernel alone.

Id.

 158. See SHAPIRO & VARIAN, supra note 7, at 103–72 (claiming switching costs lead to customer lock-

in).

 159. See generally CARRIER, supra note 102, at 5–10 (detailing various legal impediments to innovation);

William H. Page and & Seldon J. Childers, Software Development as an Antitrust Remedy: Lessons from the

Enforcement of the Microsoft Communications Protocol Licensing Requirement, 14 MICH. TELECOMM. &

TECH. L. REV. 77, 79 (2007).

No. 1] VULNERABLE SOFTWARE 83

as with operating system markets, we will put the question aside. For our

purposes, we may assume perfect competition.

B. Sufficient Detection

Sufficient detection is the requirement that there are enough norm-

violation-detecting buyers that a seller’s gain from norm-inconsistent behavior

is smaller than the loss that results when norm-violation-detectors buy from

norm-consistent sellers. It may appear that this condition is not fulfilled.

Typical consumers lack the expertise required to distinguish—by inspecting

the software—between vulnerability-ridden software and software with

significantly fewer vulnerabilities.
160

 This is worrisome, as it potentially leads

to a lemons market. We first explain the notion of a lemons market, and then

consider whether a lemons market does in fact exist in regard to software

vulnerabilities.

We explain a lemons market using a version of the “used car” example

first employed by the economist George Akerlof in his seminal article, The
Market for Lemons.

161
 Suppose a town has 300 used cars for sale: 100 good

ones worth $2,000, 100 so-so ones worth $1,500, and 100 lemons worth

$1,000. Buyers cannot tell the difference between a good and bad car; thus,

buying a used car means entering a lottery in which the buyer has a 1/3 chance

of getting a good car, a 1/3 chance of getting a so-so car, and a 1/3 chance of

getting a lemon.
162

 The expected value of the purchase is $1,500. Rational

buyers, thus, will pay only $1,500 for a used car; consequently, buyers who

value their good cars at over $1,500 do not offer those cars for sale. Thus, the

market now contains lemons worth $1,000 and not-so-good cars worth $1,500;

the expected value of a used car drops to $1,250; consequently, buyers who

value their cars above $1,250 do not offer them for sale. The process

continues until only the lemons are left on the market.
163

 In general, a lemons

market exists when four conditions are fulfilled: (1) the products on the market

vary significantly in the extent to which they have certain properties (the

properties that make a car a lemon, for example), and buyers regard products

with the properties in question as having less expected value than those

without them;
 164

 (2) there is an asymmetry of information where buyers cannot

discriminate between products with the properties and those without, but

sellers can at least partially distinguish them; and furthermore, (3) there is no

 160. See generally John R. Michener et al., “Snake-Oil Security Claims” The Systematic

Misrepresentation of Product Security in the E-Commerce Arena, 9 MICH. TELECOMM. & TECH. L. REV. 211,

223 (2003); Bruce Schneier, How Security Companies Suckers Us With Lemons, WIRED (Apr. 19, 2007),

http://www.wired.com/politics/security/commentary/securitymatters/2007/04/securitymatters_

0419?currentPage=all.

 161. George A. Akerlof, The Market for “Lemons”: Quality Uncertainty and the Market Mechanism, 84

Q. J. ECON. 488, 489−92 (1970).

 162. See id. at 489 (hypothesizing that individuals will buy “without knowing” whether they are buying

a lemon).

 163. See id. (stating that the “bad cars” will drive the good ones off the market).

 164. One may wonder about the meaning of “significantly”; considerations we offer in Part VII explain

and motivate the qualification.

84 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

reliable signal of quality (i.e., sellers with an excellent car have no way to

reliably disclose this fact to buyers); however, (4) buyers know there is a mix

of products on the market.

Are these four conditions fulfilled for software vulnerabilities? In

answering this question, it is important to distinguish two markets: the market

for security software and systems, such as firewalls, anti-virus software, or

secure USB memory sticks, and the market for other sorts of mass-consumer

software. Bruce Schneier has argued convincingly the former market is a

lemons market.
165

 Others have picked up on his claim and argued that it may

also apply to software that is (relatively) secure—that is, software that is

relatively free of vulnerabilities.
166

 We are not so sure. While there are strong

arguments that security software is a lemons market, it is unclear whether

secure software is a lemons market. Conditions (2) and (4) are arguably

fulfilled, but (1) and (3) are problematic. We first briefly review the arguments

in favor of regarding (2) and (4) as fulfilled. Condition (2): Typical consumers

do not have the expertise to distinguish by inspecting the software between

secure and insecure software,
167

 while the developers do know something

about what production practices they are using. Condition (4): Buyers—or at

least a significant portion of buyers—do know that the market contains both

vulnerability-ridden and not so vulnerability-ridden software.
168

Condition (1) requires (in part) that buyers regard vulnerability-ridden

software as having less perceived expected value than similar software with

significantly fewer vulnerabilities. At the moment, this is not true. Buyers are,

on the whole, not willing to pay more for more secure software.
169

 Our

proposal in Part VII is designed to change this, but if all it does is change

consumer preferences, it may simply contribute to the creation of a lemons

market in software. Accordingly, our proposal will also suggest a mechanism

for avoiding a lemons market.

Condition (3) requires that there do not exist any reliable signals that

differentiate vulnerability-ridden from similar software with significantly

fewer vulnerabilities. Typical consumers do not have the expertise to

distinguish by inspecting the software between vulnerability-ridden software

and software with significantly fewer vulnerabilities. Inspection is not,

however, the only way to determine the extent to which software suffers from

vulnerabilities. The general quality of the software is a moderately reliable

 165. See Schneier, supra note 160.

 166. See, e.g., Barnes, supra note 88, at 292 (noting that “[a]s long as software is maintained as a trade

secret, and development occurs behind closed doors, buyers have nothing more to go on than vague,

unprovable assertions about quality and security (which are cheap to make)” and asserting a lemons market

results); Hahn & Layne-Farrar, supra note 1, at 314 (suggesting the possibility of a lemons market where

software developers offered software that varied in the degree of security).

 167. See Schneier, supra note 160 (noting that many consumers cannot tell the difference between

encrypted USB drive options and implying that vendors will know the actual security capabilities of its

devices).

 168. See Hahn & Layne-Farrar, supra note 1, at 302 (“Software and network security issues receive

substantial press.”).

 169. See supra Part IV.A (discussing how market conditions create a demand for vulnerability ridden

software).

No. 1] VULNERABLE SOFTWARE 85

signal of the extent to which it contains vulnerabilities. Vulnerabilities are a

kind of flaw or defect in the software, and it is reasonable to assume that their

occurrence correlates with the occurrence of other flaws, such as a tendency to

crash or give wrong answers.
170

 Indeed, it is routine not to distinguish sharply

between defects and vulnerabilities. As security experts observe in a recent

book, “Software defects are the single most critical weakness in computer

systems. . . . [S]oftware defects lead directly to software exploit[ation].”
171

The correlation between vulnerabilities and defects is sufficiently strong that at

least some buyers will infer that improperly functioning software is likely to

contain significant vulnerabilities.
172

 This signaling mechanism is far from

perfect, but sufficient detection does not require that all or most buyers detect

vulnerability-ridden software, just that enough do to impose losses on sellers

who offer such software. Thus, there is very possibly a signaling mechanism

that is strong enough to prevent a lemons market.

Our ultimate proposal in Part VII for changing the market to encourage

the creation of secure software does not rely solely on this possible signaling

mechanism to avoid a potential lemons market. We argue that the statute we

propose, if adequately enforced, will ensure that condition (1) fails to hold.

That condition requires that software products vary significantly in the extent

to which they have vulnerabilities, and that buyers regard vulnerability-ridden

software as having less perceived expected value than similar software with

significantly fewer vulnerabilities. We explain and give a motive for the “vary

significantly” provision, and we argue that it will not be fulfilled. Thus, our

proposal avoids the problem of a lemons market.

While showing how to avoid a lemons market is important, it is not the

main thrust of our statutory proposal. Our central claim is that the statute, if

adequately enforced, will give rise to a best-practices norm. We argue in Part

VII that, once the norm is in place, the sufficient detection assumption will be

more or less true. There will be, in enough different situations, enough norm-

violation-detecting buyers that norm-inconsistent sellers suffer losses.

 170. Programs containing vulnerabilities are often developed in ways that violated programming laws of

the sort identified in ENDRES & ROMBACH, supra note 135 (citing programming laws). Development practices

that violate those laws frequently create a variety of defects in addition to vulnerabilities.

 171. GREG HOGLUND & GARY MCGRAW, EXPLOITING SOFTWARE: HOW TO BREAK CODE 14 (2004)

(emphasis added). These lines come at the end of an introductory section of the book that moves from

discussing famous software defects that had nothing to do with security and attackers to discussing defects that

constitute security holes. Id. Two examples of non-security defects the authors give are the NASA’s 1999

Mars lander software failure, where a metric versus English units error caused the loss of the $165 million

systemand the Denver International Airport automated baggage handling system fiasco. See, e.g., SARA

BAASE, A GIFT OF FIRE: SOCIAL, LEGAL, AND ETHICAL ISSUES FOR COMPUTING AND THE INTERNET 417 (3 ed.

2008); MICHAEL J. QUINN, ETHICS FOR THE INFORMATION AGE 362 (4 ed. 2010); NASA’s Metric Confusion

Caused Mars Orbiter Loss, CNN (Sept. 30, 1999), http://articles.cnn.com/1999-09-30/tech/

9909_30_mars.metric_1_mars-orbiter-climate-orbiter-spacecraft-team?_s=PM:TECH (last visited Feb 16,

2011).

 172. See HOGLUND & MCGRAW, supra note 171, at 10–14 (stating that software defects are the single

most critical weakness in computer systems).

86 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

C. Creating the Norm

Creating the norm requires ensuring that the conditions for the existence

of a coordination norm are fulfilled. (1) The relevant regularity must obtain:

buyers must regularly demand best practices software; and (2) the regularity

must exist at least in part because buyers think they ought to conform as long

as everyone else does.
173

 Assume, for the moment, a perfectly norm-

competitive market. Then, it is in principle clear how to ensure these

conditions are fulfilled: convince almost all buyers to demand best practices

software—where they demand this, at least in part, because they think they

ought to as long as everyone else does. Assuming the demand persists long

enough, profit-motive driven software developers will—in a perfectly

competitive market—begin to meet the demand. When they do, buyers will

continue to demand, and the following regularity will be established: buyers

demand best practices software. The regularity will exist in part because

buyers think that they ought to conform as long as everyone else does. The

conviction that they ought to conform will be reinforced by the fact that

unilateral non-conformity will mean going without software the buyer wants.

The assumption of a perfectly competitive market is essential. It ensures

that developers will respond to the buyer demand; without such a response the

demand will almost certainly fade away. Buyers of Netbook computers could

demand Netbooks with a processor equivalent in power to the Pentium 4

processor, but sellers will not meet the demand a processor that powerful—it

currently generates too much heat to function in a Netbook. Netbook buyers

will either cease to demand such a processor, or they will cease to purchase

Netbooks. The latter option is unlikely in the case of software generally, so an

unmet buyer demand will eventually simply fade away.

D. The Approximation Goals

To summarize, there are three goals: (1) convince buyers that they ought

conditionally to demand best practices software and ensure that they do indeed

demand it for that reason; (2) avoid the creation of a lemons market; and (3)

once the norm exits, ensure that, in enough different situations, there will be

enough norm-violation-detecting buyers that norm-inconsistent sellers suffer

losses. Call these the approximation goals. Market forces will not achieve the

approximation goals.
174

 Buyers are trapped in the self-perpetuating

“vulnerability-ridden” coordination norm; moreover, the persistence of the

 173. See supra Part I.A (discussing coordination norms).

 174. The market has given rise to vulnerability disclosure businesses. iDefense, for example, pays for

information about the existence of vulnerabilities and communicates this information to its clients. See

IDEFENSE CYBER INTELLIGENCE, THREAT INTELLIGENCE AND SECURITY, http://www.verisigninc.com/en_US/

products-and-services/network-intelligence-availability/idefense/index.xhtml (last visited Jan. 17, 2012). This

is not a general solution for consumers, who will not be willing to pay the significant charges that businesses

like iDefense demand. See The Law And Economics Of Software Security, supra note 1, at 315–316. CERT

(Computer Emergency Response Team) discloses vulnerabilities for a credit. CERT/CC Vulnerability

Disclosure Policy, CERT, http://www.cert.org/kb/vul_disclosure.html (last visited Jan. 16, 2012). The

disclosures are too technical for the average user, however.

No. 1] VULNERABLE SOFTWARE 87

norm ensures that the profit–maximizing strategy is to be the first in the market

to offer a particular type of software or an upgrade to existing software, even if

the software or upgrade is imperfect in a variety of ways, including having

vulnerabilities. As long as buyers are trapped in the norm, they will not

demand best practices software. Even those who understand the individual and

social advantages of such software are unlikely to do so; a unilateral demand

for best practices software simply falls on deaf ears. We conclude that legal

regulation is required to achieve the two approximation goals.
175

 The question,

then, is what sort of legal regulation will best achieve the approximation goals.

VII. CREATING THE NORM THROUGH LEGAL REGULATION

We first consider common law negligence and products liability for

defective design, as well as statutory proposals modeled more or less along the

lines of those two common law doctrines.
176

 We argue that these approaches

clearly fail to achieve the approximation goals. We offer a statutory alternative

built around the idea of best practices.

A. Negligence

A software developer is liable in negligence for losses resulting from

vulnerability only if the vulnerability was the result of the software developer’s

failure to act as a reasonable developer would.
177

 There are a number of

difficulties in using negligence to regulate vulnerabilities in software;
178

 we

focus entirely on assessing how well it will achieve the approximation goals.

It is certainly possible that negligence cases could lead to the fulfillment

of the approximation goals. Here is one possible scenario. Successful

negligence claims against software developers yield a series of decisions that,

other things being equal, it is negligent not to follow this or that best practice

 175. In general, norms arise through custom, private agreement, or legal regulation. See supra text

accompanying note 13. A best–practices norm is unlikely to arise by custom as long as buyers are trapped in

the “vulnerability–ridden” norm. It is also unlikely to arise by private agreement. Mass market, standard form

contracts typically disclaim liability for direct and indirect damages and place limits on any potential liability.

See Priest, supra note 49, at 1347–49. Priest’s article presents empirical results in support of the claim that the

disclaimers in standard form contracts are best explained as an optimal allocation of the risk of product

malfunctions between the seller and the buyer. Id.

 176. See, e.g., NAT’L RESEARCH COUNCIL, CRITICAL INFORMATION INFRASTRUCTURE PROTECTION AND

THE LAW: AN OVERVIEW OF KEY ISSUES 50 (Stewart D. Personick & Cynthia A. Patterson eds., 2003) (“As a

motivating factor for industry to adopt best practices, tort law can be a significant complement to standard-

setting, because compliance with industry–wide standards is usually an acceptable demonstration of due

care.”).

 177. See Geoffrey T. Harvey, New SQM (Software Quality Management) Methods, Tools Raise the Bar

for Software Developers, 3 SOFTWARE QUALITY MGMT. MAG. (Apr. 2003), available at http://

www.bregmanlaw.com/_assets/docs/New%20SQM%20Methods.pdf (“[A] developer who produces a product

that contains problems, such as security vulnerabilities, may be accused of negligence if the developer's

production practices fall below standard industry practices and if the problems could have been avoided by

using standard industry practices.”).

 178. See Chandler, supra note 8, at 155, 175 (discussing that in a hypothetical lawsuit involving a victim

of distributed denial of service a “plaintiff will likely have suffered only pure economic losses, a category of

loss for which courts are reluctant to permit recovery in negligence”).

88 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

(e. g., it is negligent to create a buffer overflow vulnerability).
179

 The “other

things being equal” rider acknowledges that a developer who can demonstrate

the reasonableness of a departure from best practices will not be liable. On the

basis of the series of decisions, courts and software developers both conclude

that, other things being equal, it is negligent not to follow best practices for

software development.
180

 Publicity about the law suits, combined perhaps with

advertising from best practice complaint developers, convinces almost all

buyers that they ought to demand best practices software, and they begin to

demand it for that reason. All software developers respond by following the

practices. This eliminates worries about fulfilling the sufficient detection

condition. Since all software is best-practices software, there is no need to

detect software that is not. Thus the following regularity arises: buyers

demand best practices software. Once the regularity is in place, unilateral non-

conformity will mean going without software the buyer wants, and buyers will

think that they ought to conform as long as everyone else does.

Each step in this scenario is problematic. It is hardly automatic that the

successful completion of the first step (namely, successful negligence claims

against developers) would result in developers actually following best

practices. Developers would have to be convinced that the cost of doing so

was less than the expected legal liability.
181

 Even in that case, it is hardly

plausible that all developers will follow best practices; irrational developers

will not do so. Further, it is far from obvious that publicity and advertising

would convince almost all buyers that they ought to demand best practice

software and lead them to demand it on that basis. Our focus, however, is on

the first step—the assumption that courts will hold generally that it is negligent

not to follow best practices. This is unlikely to happen; hence, it is unlikely

that the process will even get started.

The role of custom in establishing reasonableness makes it extremely

unlikely that courts will do so. As the Restatement notes, “In determining

whether conduct is negligent, the customs of the community, or others under

like circumstances, are factors to be taken into account, but are not controlling

where a reasonable man would not follow them.”
182

 The relevant customs for

software development are not the best practices but the prevailing industry

practices.
183

 In theory, industry practices are just “factors to be taken into

account, but are not controlling where a reasonable man would not follow

 179. Another example is a “time of check to time of use” vulnerability. See CWE-367: Time-of-check

Time-of-use (TOCTOU) Race Condition, COMMON WEAKNESS ENUMERATION, http://cwe.mitre.org/

data/definitions/367.html (last updated Sept. 13, 2011); J. Craig Lowery, A Tour of TOCTTOUs, SANS INST.

INFOSEC READING ROOM (Aug. 2002), http://www.sans.org/reading_room/whitepapers/securecode/tour-

tocttous_1049. As a type of race condition, time-of-check to time-of–use vulnerabilities rank twenty-fifth on

the SANS list of the top twenty-five most dangerous software errors. CWE/SANS TOP 25 Most Dangerous

Software Errors, supra note 3.

 180. NAT’L RESEARCH COUNCIL, supra note 176, at 50–53.

 181. See HARRISON, supra note 81, at 308 (stating that when prevention efforts are more costly than tort

liability, then paying for liability rather than prevention is more efficient for businesses).

 182. RESTATEMENT (SECOND) OF TORTS § 295A (1965).

 183. See id. § 295A cmt. b. (1965); David Owen, Proving Negligence in Modern Products Liability

Litigation, 36 ARIZ. ST. L. J. 1003, 1038 (2004).

No. 1] VULNERABLE SOFTWARE 89

them.”
184

 In practice, however, it is difficult for a plaintiff to overcome the

defendant’s claim that it followed industry practice and hence proceeded

reasonably.
185

 This is not a defect in tort law; it is a sensible approach to

assessing reasonable design choices for one who is in the business of designing

products to sell for a profit. What practices should a software developer adopt

when designing software for sale in the current market? Buyers demand

vulnerability-ridden software and will generally not pay a premium for more

secure software. The developer’s competitors cater to this demand by offering

relatively inexpensive, insecure software. A developer who invests too much

in software development runs the risk of business losses. Software developers,

just as much as buyers, are in the grip of the “vulnerability-ridden” norm. In a

wide range of cases, developers will be able to make a convincing case that

they acted reasonably.

The case may not always be successful, of course. Courts have rejected

such reasonableness claims where the plaintiff has identified a readily

available way to avoid the damage that the industry practices ignore. A classic

case is The T. J. Hooper.
186

 Two tugs, the Montrose and the T. J.Hooper,

encountered a gale while towing barges.
187

 The tugs and the barges sank.
188

The cargo owners sued the barge owners, who in turned sued the owner of the

two tugs; the owner petitioned to limit his liability.
189

 The court found that the

tugs negligently unseaworthy because they lacked shortwave radios.
190

 Had

they been so equipped, they would have received reports of worsening

weather; had they received the reports, they would have avoided the storm by

putting in at the Delaware breakwater.
191

 The case illustrates a familiar pattern

in torts cases: (1) an activity imposes a significant risk of harm on third-parties,

where (2) those engaging in and benefiting from the activity under invest in

protecting the third parties; (3) the law responds by imposing on those

engaging in the activity a duty to take reasonable steps to prevent harm to

third-parties, where (4) other things being equal, a reasonable step is one that

reduces expected damage to third-parties by an amount greater than the total

cost of the step. Current software development practices certainly appear to fit

this pattern. Software developers underinvest in software development by

ignoring best practices, thereby producing vulnerability-ridden software that

 184. RESTATEMENT (SECOND) OF TORTS § 295A (1965).

 185. See Gideon Parchomovsky & Alex Stein, Torts and Innovation, 107 MICH. L. REV. 285, 292 (2008).

(utilizing Sledd v. Washington Metropolitan Area Transit Authority, 439 A.2d 464 (D.C. 1981) (per curiam) as

an example of this effect).

 186. The T. J. Hooper, 60 F.2d 737 (2d Cir. 1932). Parchomovsky and Stein cite Texas & Pacific

Railway Co. v. Behymer, 189 U. S. 468 (1903), as a similar case. Parchomovsky & Stein, supra note 185, at

293. The Behymer court does indeed note that what “is usually done may be evidence of what ought to be

done, but what ought to be done is fixed by a standard of reasonable prudence, whether it is complied with or

not.” Behymer, 189 U.S. at 470. Behymer, however, concerns the sudden stopping of a train in circumstances

in which the court found the sudden stop negligent. There is no suggestion that sudden stops in such situations

were an industry practice.

 187. The T. J. Hooper, 60 F.2d at 737.

 188. Id.

 189. Id.

 190. Id. at 739.

 191. Id. at 739.

90 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

imposes, in the aggregate, significant losses on buyers and society as a whole.

Should tort law hold that not following best practices is negligent? It is

unlikely that the courts will do so. There are two key differences between

shortwave radios of the T. J. Hooper and software best practices.

The first is that the cost of shortwave radios was relatively small.
192

 The

cost of acquiring a radio did not put a barge owner at a competitive

disadvantage; indeed, it arguably conferred one since the owner could offer

lower risk transport at the same cost as competitors. This is a critical factor in

making it unreasonable not to acquire a radio—even in the market context at
the time. The second difference is that barge owners could easily make a

rough and ready comparison between the cost of the radio and the expected

losses avoided by its use.
193

 The losses, when they do occur, can be huge; and,

while the occurrence of violent storms is difficult to predict, their occurrence

from time to time is certain. This is a key factor in justifying the holding of

negligence. If the comparison was uncertain and controversial, it would be far

less clear that owners acted unreasonably. In the case of software, the

comparison is uncertain and controversial. As we noted earlier, it is clear that

some combination of best practices implement best-justified tradeoffs among

the relevant goals, but it is unclear and controversial what combinations those

are. For both of these reasons, it is unlikely that the courts will hold that it is

negligent not to follow best practices.
194

B. Products Liability for Defective Design

A product is defective in design only when use of the product involves a

 192. As the court notes, “[a]n adequate receiving set suitable for a coastwise tug can now be got at small

cost and is reasonably reliable if kept up; obviously it is a source of great protection to their tows.” Id.

 193. See id. (implying the benefits clearly outweigh the small costs).

 194. This may strike some as dubious, because as Thomas Smedinghoff notes, “[r]ecent case law . . .

recognizes that there may be a common law duty to provide security, the breach of which constitutes a tort.”

Thomas J. Smedinghoff, Defining the Legal Standard for Information Security: What Does “Reasonable”

Security Really Mean?, in SECURING PRIVACY IN THE INTERNET AGE, supra note 8, at 22. In support,

Smedinghoff cites Wolfe v. MBNA Am. Bank, 485 F. Supp. 2d 874, 882 (W.D.Tenn. 2007), Guin v. Brazos

Higher Educ. Serv. Corp., No. 05-668, 2006 WL 288483, at *4 (D. Minn. Feb. 7, 2006), and Bell v. Michigan

Council 25 of the Am. Fed’n of State, County, and Municipal Emps., AFL-CIO, Local 1023, No. 246684,

2005 WL 356306, at *5 (Mich. Ct. App. Feb. 15, 2005). These cases certainly support Smedinghoff’s cautious

claim that recent cases recognize that there may be a common law duty to provide security, but no case

suggests that it is negligent not to follow best practices. Guin holds that a laptop theft from a home was not

foreseeable because the person in possession of it lived in a relatively safe neighborhood, had taken reasonable

steps to prevent burglary. Guin, No. 05-668, 2006 WL 288483, at *4. Wolfe concerns the failure to verify the

authenticity information in a credit card application taken by a telemarketer. Wolfe, 485 F. Supp. 2d at 879.

Bell concerns the non-online theft of information from a labor union; the court held that “defendant did owe

plaintiffs a duty to protect them from identity theft by providing some safeguards to ensure the security of their

most essential confidential identifying information.” Bell, No. 246684, 2005 WL 356306, at *5. Other recent

cases demonstrate that the courts may be reluctant to expand negligence doctrine to create liability for

contributing to unauthorized access. In Forbes v. Wells Fargo Bank, N.A., 420 F. Supp. 2d 1018, 1021 (D.

Minn. 2006), the court rejects negligence liability for a bank’s role in permitting unauthorized access to

information that could be used to commit identity theft; the court notes that the plaintiff did not allege any

harm, just an increased risk of harm. Id. Standard tort law does not allow recovery for a merely increased risk

of harm. Banknorth, N.A. v. BJ’s Wholesale Club, Inc., 442 F. Supp. 2d 206, 216 (M.D. Pa. 2006), holds that

even where there is a present injury to the plaintiff, the economic harm rule prevents recovery when the injury

is merely economic. Id.

No. 1] VULNERABLE SOFTWARE 91

foreseeable and unreasonable risk of harm.
195

 As with negligence, the role of

custom in establishing reasonableness makes it unlikely that courts will hold

that failing to follow best practices (or a defensible alternative to best

practices) creates a foreseeable and unreasonable risk of harm.
196

 Evidence of

industry practices is relevant under both of the main tests used to determine

defectiveness—the “risk-utility” test (a product is defective when its risk of

harm exceeds its benefits), and the “consumer expectations” test (a product is

defective when it fails to meet the reasonable expectations of consumers).
197

Defendants may seek to show that a product was not defective by introducing

evidence that other sellers customarily use the same design.
198

 For the same

reasons given in the discussion of negligence, it is unlikely that the courts will

hold that it is negligent not to follow best practices.

C. Statutes Closely Modeled on Negligence or Products Liability

The arguments above also apply to any statute modeled sufficiently

closely on the common law requirements for negligence or products liability;

indeed, the critique applies to any statute that incorporates a “reasonableness”

requirement for software development where the courts will rely heavily on

custom in interpreting that requirement.
199

 We suggest a different statutory

alternative, modeled on best practices, as the best way to promote the

approximation goals. Our goal is not to define the statute itself but to define

the task of creating it. Our brief discussion is a catalog of problems to be

solved, not a list of solutions.

D. A Statutory Task

The statute would identify best practices and require that software

developers either follow them, or to avoid liability, be able to demonstrate the

reasonableness of their alternative practices. It is essential to implement this

requirement in a way that allows developers reasonable flexibility in their

choice of development methodologies; otherwise, the statute will excessively

inhibit innovation. The statute could also delegate to a standard setting

organization, like the Computer Security Division of the National Standards

Institute (NIST)
200

 or the American National Standards Institute (ANSI),
201

 to

 195. See Wright, supra note 59, at 1078.

 196. DAVID G. OWEN, PRODUCTS LIABILITY LAW 10–23 (2005) (discussing the use of custom in

providing defectiveness derives at least in part from its use in proving negligence).

 197. Parchomovsky & Stein, supra note 185, at 299.

 198. David Owen, Proof of Product Defect, 93 KY. L.J. 1, 5 (2004). Plaintiffs may also seek to show that

the product was defective by introducing evidence that other sellers use a safer design, but unless these other

sellers are following best practices, this will not provide a basis for requiring that software developers follow

best practices. Id.

 199. Such statutory reasonableness requirements are common. As Smedinghoff notes in regard to

statutory standards network security for businesses, “Laws and regulations rarely specify the security measures

a business should implement to satisfy its legal obligations. Most simply obligate companies to establish and

maintain ‘reasonable’ or ‘appropriate’ security procedures, controls, safeguards, or measures, but give no

further direction or guidance.” Smedinghoff, supra note 194, at 23.

 200. COMPUTER SECURITY DIVISION, http://csrc.nist.gov/index.html. Computer Security Division does

92 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

adopt and enforce its standards. It could also delegate to an agency to fashion

standards with advice from the private sector. There are well-known problems

with the delegation approach.
202

 Regulatory capture in particular is a concern.

The concern is that commercial interests that dominate the software industry

will have such a powerful influence on the formulation of the standards that the

standards will fall far short of genuine best practices, and instead advance

commercial or special interests.
203

We now turn to issues that arise in using such a statute as a means to

realizing the approximation goals.

1. Avoiding a Lemons Market

How would the statute ensure that there are a sufficient number of norm-

violation-detecting buyers? As we noted in the discussion of negligence, the

problem disappears if all developers follow best practices. This is of course

extremely unlikely, but it is also not required. It is enough if almost all follow

best practices. The main problem then is to ensure sufficient compliance.

But this may seem obviously wrong. If some developers deviate from

best practices, will not the conditions for a lemons market arise? Recall that a

lemons market exists when the following conditions hold: (1) the products on

the market vary significantly in the extent to which they have certain properties

(vulnerabilities, in this case), and buyers regard products with the properties in

question as having less expected value than those without them; (2) there is an

asymmetry of information where buyers cannot discriminate between products

with the properties and those without, but sellers can at least partially

distinguish them; and furthermore, (3) there is no reliable signal of quality;

not currently offer best standards for software development.

 201. ANSI, http://www.ansi.org/ (last visited Feb. 3, 2012), does not currently offer standards for

software development. It refers to the International Standards Organization ISO/IEC 24773:2008 standard.

New ISO/IEC International Standard to Certify Software Engineering Professionals, ANSI,

http://www.ansi.org/news_publications/news_story.aspx?menuid=7&articleid=2034 (last visited Feb. 3, 2012).

ISO/IEC 24773:2008 does not specify best practices in our sense of the term. Its purpose is to establish “a

framework for comparison of schemes for certifying software engineering professionals. A certification

scheme is a set of certification requirements for software engineering professionals. ISO/IEC 24773:2008

specifies the items that a scheme is required to contain and indicates what should be defined for each item.”

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, http://www.iso.org/iso/catalogue_detail.htm?

csnumber=41543 (last visited Feb. 3, 2012). Other certification proposals have also failed to create viable best

practices standards. Two notable failures are the Trusted Computer System Evaluation Criteria (TCSEC) (for

a useful summary and links, see Rainbow Series, WIKIPEDIA, http://en.wikipedia.org/wiki/Rainbow_Series

(last visited Feb. 3, 2012), and the COMMON CRITERIA, http://www.commoncriteriaportal.org/ (last visited Feb.

3, 2012). For criticisms of both approaches, see ANDERSON, supra note 4, at 517–38.

 202. CARRIER, supra note 102, at 323–44 provides a succinct overview of the concerns. The discussion

concerns standards in the sense of “a common platform that allows products to work together.” Id. at 323.

Essentially the same issues arise in defining best practices, however.

 203. See Jon D. Hanson & David G.Yosifon, The Situation: An Introduction to the Situational Character,

Critical Realism, Power Economics, and Deep Capture, 152 U. PA. L. REV. 129, 202–30 (2003) (explaining

the concept of deep capture and its effects on the economy). The Federal Communications Commission is

arguably an example of regulatory capture. See Hannibal Travis, Of Blogs, eBooks, and Broadband: Access to

Digital Media as a First Amendment Right, 35 HOFSTRA L. REV. 1519, 1523–26 (2007) (describing the FCC’s

control over the broadcasting market). See also JONATHAN E. NUECHTERLEIN & PHILIP J. WEISER, DIGITAL

CROSSROADS: AMERICAN TELECOMMUNICATIONS POLICY IN THE INTERNET AGE 392–95 (2005).

No. 1] VULNERABLE SOFTWARE 93

however, (4) buyers know there is a mix of products on the market.
204

We suggested earlier that (3) probably does not hold, but we will not rely

on that suggestion here. Instead, we note that (1) is most likely not fulfilled. If

almost all developers offer best-practices software, the probability of

purchasing non-best practices software is very low; hence the existence of such

software on the market only minutely affects the expected value of a purchase.

Rational buyers will simply ignore the minimal impact. They will not

calculate the reduction in expected value of a purchase caused by the existence

of vulnerability-ridden software. The reason is that it is rational not to try to

assess the small difference in expected value and simply treat all software as if

it were best-practices software. The costs of making the assessment are greater

than any gain it yields.
205

 Thus, half of (1) will be true: buyers will regard

vulnerability-ridden software as having less expected value than software with

significantly fewer vulnerabilities. But half of (1) will be false: the products

on the market vary significantly in the extent to which they have

vulnerabilities. There will not be enough vulnerability-ridden software to

make it rational to take the minimal reduction in expected value into account in

purchasing decisions.

2. Creating the Norm

How will the statute help convince buyers that they ought conditionally to

demand best practices software and ensure that they do demand it for that

reason? Our answer is that steps must be taken to “educate” buyers about the

advantages of best-practices software. We put “educate” in quotes because

techniques for creating the conviction form a continuum from genuine

education to manipulation. At the “education” end, one presents the relevant

information about the individual and social gains from more secure software

and counts on rational reflection to create the conviction. As one moves

toward the “manipulation” end, one increasingly supplements presentation of

information and rational reflection with techniques designed to produce the

conviction in other ways. The task is to use some combination of techniques to

produce the desired conviction in buyers. One possibility is that, in order to

gain a competitive advantage, developers who comply with the statute might

themselves inform consumers about the advantages of “best practices”

software and tout their software not only as best-practices software, but as

software that exceeds the legal minimum. Alternatively, there are

governmental ways to change citizens’ minds, as the anti-littering, anti-

smoking, and anti-drug campaigns illustrate.

 204. See supra Part VI.B.

 205. See A. M. Odlyzko, The Case Against Micropayments, LECTURE NOTES IN COMPUTER SCI. 2742 at

1, 5 (2003) (explaining that even small barriers to usage discourage usage). See also A. M. Odlyzko, Internet

Pricing and the History of Communications, 36 COMPUTER NETWORKS 493, 501 (2001) (supporting the idea

that fixed fees are more consumer-friendly).

94 JOURNAL OF LAW, TECHNOLOGY & POLICY [Vol. 2012

3. Once the Norm is Established

Once the norm is in place, it is important that buyers and software

developers conform on their own initiative, not because of the threat of

enforcement of statutory requirements; otherwise, one must rely on difficult,

costly, and uncertain enforcement. Developers will voluntarily conform as

long as there is a sufficient number of norm-violation-detecting buyers. Once

the norm is in place, there may well be. Developers themselves can ensure that

buyers possess information about norm-inconsistent sellers. If Microsoft, for

example, offers norm-inconsistent software, Google’s advertising for its

Chrome operating system can call that fact to buyers’ attentions. Awareness of

norm-inconsistent software can also come from publications like Consumer
Reports, consumer watch-dog groups, and negative publicity from consumer

complaints and litigation.
206

VIII. CONCLUSION

Software sales currently depart dramatically from the typical pattern of

sales governed, more or less, by value optimal-norms in a relatively norm-

competitive market. Instead, buyers and developers are trapped in the

“vulnerability-ridden” norm in a market that (most likely) falls far short of the

norm-competitive ideal. The solution is to devise a suitable statutory stepping

stone toward a value-optimal best-practices norm governing software sales in a

sufficiently norm-competitive market.

 206. See Hillman, supra note 63, at 853 (discussing the pros and cons of watchdog groups).

	Vulnerable Software: Product-Risk Norms and the Problem of Unauthorized Access
	Recommended Citation

	tmp.1477938501.pdf.ZkKXL

