
Chicago-Kent Journal of Intellectual Property Chicago-Kent Journal of Intellectual Property

Volume 6 Issue 1 Article 5

9-1-2006

Beyond Fair Use: The Right to Contract Around Copyright Beyond Fair Use: The Right to Contract Around Copyright

Protection of Reverse Engineering in the Software Industry Protection of Reverse Engineering in the Software Industry

David N. Pruitt

Follow this and additional works at: https://scholarship.kentlaw.iit.edu/ckjip

 Part of the Intellectual Property Law Commons

Recommended Citation Recommended Citation
David N. Pruitt, Beyond Fair Use: The Right to Contract Around Copyright Protection of Reverse
Engineering in the Software Industry, 6 Chi. -Kent J. Intell. Prop. 66 (2006).
Available at: https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss1/5

This Article is brought to you for free and open access by Scholarly Commons @ IIT Chicago-Kent College of Law.
It has been accepted for inclusion in Chicago-Kent Journal of Intellectual Property by an authorized editor of
Scholarly Commons @ IIT Chicago-Kent College of Law. For more information, please contact
jwenger@kentlaw.iit.edu, ebarney@kentlaw.iit.edu.

https://scholarship.kentlaw.iit.edu/ckjip
https://scholarship.kentlaw.iit.edu/ckjip/vol6
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss1
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss1/5
https://scholarship.kentlaw.iit.edu/ckjip?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss1/5?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jwenger@kentlaw.iit.edu,%20ebarney@kentlaw.iit.edu

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

BEYOND FAIR USE:
THE RIGHT TO CONTRACT AROUND COPYRIGHT PROTECTION OF

REVERSE ENGINEERING IN THE SOFTWARE INDUSTRY

David N. Pruitt*

Introduction

The law should promote technological innovation in the computer software industry, but
not at the cost of prohibiting private parties from entering into freely negotiated agreements for
the proper handling of their intellectual property. This Note's position is that federal copyright
law is not intended to prohibit private parties from freely negotiating the way privately owned
intellectual property may be used in a licensing agreement, if the terms are not unconscionable
and do not violate the antitrust laws. Specifically, the focus of this Note is on common software
licensing terms that prohibit licensees from engaging in a process known as reverse engineering.
To the extent that the innovation in the software industry is harmed by such restrictive
provisions, a free-market approach that allows parties to freely enter into licensing agreements
will rely on new software providers to inevitably enter the market and provide more favorable
licensing terms if they can do so at a price that the market will bear.

Reverse engineering is an important process used by computer programmers to build new
software that is compatible with existing software. Although the process involves making copies
of copyright-protected computer software, it falls under the Copyright Act's "fair use"
exception.' The recently enacted Digital Millennium Copyright Act, which prohibits
circumventing technological measures designed to protect access to a copyright-protected work,
provides an exception for the limited purpose of reverse engineering to achieve compatibility
between software products. 2 Still, many software vendors choose to further protect their
intellectual property by including license provisions that prohibit reverse engineering by the
licensee.

3

This Note does not suggest that the process of reverse engineering is not important to the
industry or unworthy of protection, but merely suggests that preventing the enforcement of these
privately negotiated terms is outside the scope of copyright law. In the course of providing
background on the process of reverse engineering, Part I discusses the economic importance of

* David N. Pruitt is an associate with Gozdecki & Del Giudice, LLP in Chicago, IL where he practices in business
counseling, transactions and litigation. He graduated with honors from the Chicago-Kent College of Law in 2005.
Mr. Pruitt would like to thank Clark Hedger for his insightful comments during the writing of this article.

' See, e.g., Sony Computer Entertainment, Inc. v. Connectix Corp., 203 F.3d 596, 602 (9th Cir. 2000) (holding that
reverse engineering meets the statutory criteria for fair use set out in 17 U.S.C. § 107).
2 17 U.S.C. § 1201(0 (West 2005).
3 See, e.g, Apple Computer, Inc., Sample QuickTime 7 Software License Agreement <http://www.apple.com/legal/
sla/quicktime7.html> (last accessed Oct. 19, 2005) (Paragraph 2 of the sample agreement, entitled "Permitted
License Uses and Restrictions," provides in part: "This License allows you to install and use one copy of the Apple
Software on a single computer at a time ... Except as and only to the extent expressly permitted in this License or
by applicable law, you may not copy, decompile, reverse engineer, disassemble, modify, or create derivative works
of the Apple Software or any part thereof.") (emphasis added).

6 Chi.-Kent J. Intell. Prop. 66

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

reverse engineering to the computer software industry. Part II provides the statutory and
doctrinal background of copyright law that initially established computer software as a protected
medium. While most courts have found that private parties are free to negotiate license terms,
even where they go beyond the protection offered by the Copyright Act, 4 commentators argue
that allowing the enforcement of such licensing provisions is preempted under the Copyright Act
and the Supremacy Clause to the United States Constitution because it contravenes the purposes
of federal copyright law.5 Part III discusses and refutes the primary arguments that anti-reverse
engineering provisions are preempted by federal law. Part IV endorses a freedom of contract
policy with regard to intellectual property licensing and argues that decreasing contractual
freedoms is not the way to promote technological innovation. Instead, by allowing the parties to
freely negotiate licensing terms, the market will determine what is most beneficial to the
industry. Finally, Part V discusses the unconscionability and antitrust concerns that will
invalidate certain types of anti-reverse engineering provision abuses that the market is incapable
of curing.

I. What is Reverse Engineering and why is it Important?

A. The Process

Reverse engineering is defined as "the process of developing a set of specifications for a
complex hardware system by an orderly examination of the specimens of that system." 6 Unlike
"forward engineering," which is the process of using abstractions and designs to physically build
a system, reverse engineering uses the system that is already built to identify the components and
their interrelationships and then create a copy or representation of that system for another
purpose.7 Put another way, reverse engineering is simply "going backwards through the
development cycle." 8 Furthermore, the process of reverse engineering does nothing to affect the
original design of the existing software; it is simply used to build a new and entirely separate
system.

9

An understanding of the practical implications of this procedure depends upon the
understanding of a few simple concepts in computer programming. When a programmer designs
a piece of software, it is written in a source code language, for example, C++. The source code
must then be translated into binary, or object code, which is an extensive combination of Is and

4 See, e.g., Bowers v. Baystate Tech., Inc., 320 F.3d 1317 (Fed. Cir. 2003); Davidson & Assoc. v. Jung, 422 F.3d 630
(8th Cir. 2005).
5 See, e.g., Seungwoo Son, "Can Black Dot (Shrink Wrap) Licenses Override Federal Reverse Engineering Rights?:
The Relationship Between Copyright, Contract, And Antitrust Laws," 6 Tul. J. Tech. & Intell. Prop. 63 (2004). See
also Mark A. Lemley, Brief of Amici Curiae in Support of Petition for Panel Rehearing and Rehearing En Banc Of
Defendant-Appellant Baystate Technologies, Inc., 2002 WL 32345615 (2002).
6 Elliot J. Chikofsky and James H. Cross II, "Reverse Engineering and Design Recovery: A Taxonomy." IEEE
Software, pp. 13-17, 13. IEEE Computer Society, Jan. 1990 (citing M.G. Rekoff Jr., "On Reverse Engineering,"
IEEE Trans. Systems, Man and Cybernetics, Mar.-Apr. 1985, pp. 244-252).
7 Id. at 14-15.

8 Wikipedia, the free encyclopedia <http://en.wikipedia.org/wiki/Reverseengineering> (accessed Sept. 16, 2005)
(citing R. Warden, "Re-engineering - a practical methodology with commercial applications," Software Reuse and
Reverse Engineering in Practice, pp. 283 305, Chapman & Hall, London, England, 1992).
9 Id.

6 Chi.-Kent J. Intell. Prop. 67

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

Os, in order to be read by a computer. 10 The object code is imprinted on a silicon chip and
commercially distributed, but the source code is usually not made available to commercial
purchasers." Some software, known as open source software, makes the source code available
to its users.12 Of course, since the purpose of reverse engineering is often to translate the
software back into source code, distributing the source code along with the software eliminates
the need to reverse engineer in most cases. Nevertheless, when one has possession of the
commercially distributed object code only, there are a number of ways in which one can reverse
engineer a new product. The first is to simply observe how the object code is read by the
computer.13 For example, a recent case concerned a group of reverse engineers who created
software that allowed users to play games designed for Sony's popular Playstation video game
console on their home computer, rather than on the game console. 14 One way the engineers
sought to accomplish this goal was by observing Sony's basic input-output system ("BIOS") as it
operated on a computer with software intended to simulate the actual Playstation hardware. 15

This way, the engineers were able to observe the signals going between the BIOS and other
programs on the computer, allowing them to craft their own software with similar
compatibility. 16

The second method of reverse engineering that can be performed when someone has
possession of the object code actually involves disassembling the software using a device called
a "decompiler" to read the signals produced while the program is being run and then translating
those signals back into the source code.17 However, the decompiler does not provide the original
programmers' annotations that provide vital instructions as to the functioning of the software. 18

Consequently, the engineer must copy the original code repeatedly and disassemble the software
one instruction at a time in order to ascertain the functioning of each command.19 As such, the
process requires a great deal of skill and time.

B. Economic Consequences

The continued use or restriction of reverse engineering has serious economic implications
for the computer software industry. The economic reason for engaging in reverse engineering is
obvious: to make a compatible software product at a lower cost. Reverse engineering is
particularly crucial because achieving compatibility will allow a firm that makes applications for
computer platforms, for example, Microsoft Windows or Sony Playstation, to compete without

10 Sega Enterprises, Ltd. v. Accolade, Inc., 977 F.2d 1510, 1515 n. 2 (9th Cir. 1992).
11 Id.
12 For a discussion of the history and implications of open source software, see Brian W. Carver, "Share and Share

Alike: Understanding and Enforcing Open Source and Free Software Licenses," 20 Berkeley Tech. L. J. 443, 444-60
(2005).
13 Sony Computer Ent., 203 F.3d at 600 (citing Andrew Johnson-Laird, "Software Reverse Engineering in the Real
World," 19 U. Dayton L. Rev. 843, 845-46 (1994)).
14 [d.
15 Id.
16 [d.
17 Accolade, 977 F.2d at 1515.
18 Sony Computer Ent., 203 F.3d at 600.
19 [d.
20 Paula Samuelson & Suzanne Scotchmer, "The Law & Economics of Reverse Engineering," I I I Yale L.J. 1575,

1580 (2002).

6 Chi.-Kent J. Intell. Prop. 68

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

being required to develop its own computer platform. 2 1 A firm that makes a platform has to
make a business decision as to whether it will allow other firms access to the information they
need to make compatible products. 22 For example, Microsoft has chosen to exercise strict
control over its application programming interfaces ("APIs"), which are necessary to make
Windows-compatible applications, resulting in market dominance year after year. 23 In the late
1980's, Nintendo also kept a tight lid on its APIs in an attempt to corner the market on games
that were compatible with the Nintendo Entertainment System. 24 However, if licensees are
allowed to engage in reverse engineering, the market power of such a restrictive platform
developer will naturally decrease. 25 While it might seem that this would be beneficial as it
would increase competition, it would also decrease the incentives to invest in the development of
computer platforms. 2 6 For example, in the video game industry, firms typically lose money on
the consoles that they sell and hope to make it up by selling games and other accessories. 27

Thus, a platform developer in that industry could develop a superior console, but fail to realize a
profit on its research and development expenditures because of a flooded game market resulting
from reverse engineering.

Still, commentators argue that the process of reverse engineering is so difficult and time
consuming that it would not eliminate the incentive for firms to engage in platform
development. 28 The extremes are obvious enough. On one hand, reverse engineering is
restricted through licensing practices and software is provided at a lower cost, but with less
competition comes less innovation. On the other hand, reverse engineering is allowed to the full
extent encouraging competition and innovation, but software comes at a higher cost because
engaging in platform development is a higher risk in this scenario. Still to be seen is whether
software developers that distribute open source software will be able to profit to the extent that
there is an incentive to develop new and innovative products. These considerations are discussed
at length in Section IV.

II. Copyright Protection of Computer Software

A. Generally

In Sega Enterprises v. Accolade, Sega sued Accolade under the Copyright Act for using
reverse engineering to create video games that were compatible with the Sega Genesis game
console. 29 Accolade argued that disassembling the object code of the Genesis console could not
constitute copyright infringement because that would entail ascertaining the code's ideas and
functional concepts that were not comprehensible to humans. In essence, Accolade was
arguing that the object code contained in computer programs was not entitled to protection under

21 See id. at 1615-16.
22 id.
23 [d. at 1619.
2 4

[d. at 1617.
2 5

[d. at 1621-22.
26 [d.

27 Id. at 1618-19.
2 8

1d. at 1622.
29 977 F.2d at 1514.
30 d. at 1519.

6 Chi.-Kent J. Intell. Prop. 69

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

the Copyright Act. 3 1 Ultimately, the court rejected the argument and held that computer software
code can be protected.32 Nonetheless, an overview of this issue is necessary in order to fully
understand the more specific problem of whether reverse engineering may be prohibited in
software licensing agreements.

Computer programs are protected under the Copyright Act of 1976 as "literary works." 33

The Copyright Act defines literary works as "works, other than audiovisual works, expressed in
words, numbers, or other verbal or numerical symbols.., such as books, periodicals,
manuscripts, phonorecords, film, tapes, disks, or cards, in which they are embodied., 34 The
legislative history provides further clarification that literary works do include "computer data
bases, and computer programs to the extent that they incorporate authorship in the programmer's
expression of original ideas, as distinguished from the ideas themselves." 35 Of course, the notion
that the ideas themselves are not subject to copyright protection is not specific to computer
software; rather, it applies to any medium that is protected under the Copyright Act.36

Copyrights protect the expression of ideas, but not the ideas themselves. To help
distinguish between the two, courts developed the doctrines of "merger" and "scenes a faire." 37

On one hand, if a particular form of expression is necessary to convey an idea, or if there are
only a small number of ways to convey a particular idea, then the idea and the expression
"merge," resulting in the lack of copyright protection for the expression. 38 However, this
doctrine has been difficult to apply in the context of computer software. For example, in one
recent case an audit recovery service developed a software program that identified lost profits
due to payment errors. 39 After the company's former employees started a competitor service and
developed a similar computer program that contained almost identical user interface elements, it
brought an action based on copyright infringement.40 The court found against the plaintiffs
because the similarities between the two pieces of software were merely processes to achieve the

31 id.
32 id.
3 Atari Games Corp. v. Nintendo ofAm., Inc., 975 F.2d 832, 838 (Fed. Cir. 1992).

34 17 U.S.C. § 101 (West 2005).
35 Atari Games Corp., 975 F.2d at 838 (citing H.R. 1476, 94th Cong., 2d Sess. 54 (1976), reprinted in 1976
U.S.C.A.A.N. 5659, 5667).
36 See 17 U.S.C. § 102(b) (West 2005) ("In no case does copyright protection extend to any idea, procedure, process,
system, method of operation, concept, principle, or discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work."). See also Computer Assoc. Int'l v. Altai, Inc., 982 F.2d 693, 703
(2d Cir. 1992) (Stating, "It is a fundamental principle of copyright law that a copyright does not protect an idea, but
only the expression of an idea.").
37 Lexmark Int'l, Inc. v. Static Control Components, Inc., 387 F.2d 522, 535 (6th Cir. 2004).
38 id.
39 PRG Schultz Int'l, Inc. v. Kirix Corp., 2003 WL 22232771 at *2 (N.D. I1. 2003).
40 Id. at *3. Specifically, the similar user interface elements included "menus, toolbars, or right click menus
for accessing common functions such as sorting records, inserting columns, hiding columns or
coloring columns, dockable frames for organizing the user workspace or status bar for displaying
table metrics, grid components for displaying data, tree controls for managing projects, dialogs
or panels for creating or modifying formulas or for creating, modifying, or representing
relationships between tables; and tabbed list controls for storing and displaying formulas." Id.

6 Chi.-Kent J. Intell. Prop. 70

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

functionality of a recovery audit. 4 1 Consequently, it was impossible to separate the expression
elements of the software code from the functional process elements. 42

On the other hand, the doctrine of "scenes a faire" limits copyright protection to
expression that does not necessarily follow as a matter of circumstance. 43 As applied to
computer software, scenes a faire would not allow protection of software programming that is
"dictated by practical realities," which might include hardware standard, compatibility
requirements and standard industry practices. 44 Since there is high degree of overlap between
these two doctrines, spending a lot of time deciding which doctrine applies is unnecessary. To
that end, courts have focused on whether the idea at issue is capable of alternate modes of
expression in a practical sense, as opposed to one that is merely theoretical. 45 For example, a
telephone directory does not have to be organized alphabetically; rather, it could be organized by
street address, birth date, age, or other individual characteristics. 4 6 However, the practical reality
is that telephone directories are generally organized alphabetically and consumers have come to
expect that to be the case.47 Thus, that particular idea is not capable of an alternative form of
expression under practical circumstances. Still, separating the expressive elements from the
functional elements of a piece of computer code is difficult for someone who has little or no
training in the technical aspects of computer programming, which includes most federal judges.48

Despite the inherent difficulties in determining which portions of software code should be
given copyright protection, software as a whole has received generous protection by the federal
circuit courts. Returning to Accolade, the court granted broad protection to the software at issue
in that case and chose not to separate expressive elements from mere ideas. 49 Accolade argued
that the object code in computer software could not be an expression of an idea because it was
not something that a human could even comprehend. 50 However, the court took the approach
that the Copyright Act does not distinguish between computer programs that can be read by the
user and those that manage the computer system. 51 Moreover, the plain language of the
Copyright Act even extends protection to works that can be understood "either directly or with
the aid of a machine."52

When the Ninth Circuit decided Accolade, the Second Circuit was crafting its own
analysis for determining the extent of copyright protection for computer software. 53 In Computer

41 Id. at *4.
42 Id.
43 Lexmark, 387 F.2d at 535 ("Scenes a faire" literally means scenes that "must be done.").
44 id.

41 Id. at 536.
46 Id. (citing Feist Pub 'Ins, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 363 (1991) (holding that publisher of an
alphabetically organized telephone directory did not meet the originality requirement of copyright protection.)).
4 7

id.

48 See Mark A. Lemley, "Convergence in the Law of Software Copyright?," 10 High Tech. L.J. 1, 6-7 (1995)
(commenting that although the separation of idea and expression is not a new concept in copyright law, the technical
aspect of computer software make it a particularly difficult context for application).
49 Accolade, 977 F.2d at 1519-20.
50

[d.
51 Id. at 1519 (citing Apple Computer, Inc. v. Formula Int'l, Inc., 725 F.2d 521, 525 (9th Cir. 1984)).
52 17 U.S.C. § 102(a) (West 2005) (emphasis added).
53 Son, supra n. 5, at 76.

6 Chi.-Kent J. Intell. Prop. 71

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

Associates v. Altai, the Second Circuit formulated a judicial model for breaking down a computer
software program into distinct sub-programs and then determined the appropriate level of
protection for each.54 The approach, called "abstraction-filtration-comparison" after its three
steps, begins with the abstracting of the computer program at issue into distinct sets of
instructions, or code, upon which higher levels of programming rely.55 A computer program is
essentially comprised of layers of commands in the form of code that all build off of each
other. 56 The first step in this analysis is to deconstruct those layers.57 Of course, trial courts will
rely heavily on expert witnesses for this process. The second step, filtration, is an application of
the copyright laws to each separate module that was abstracted in the first step. 58 Those modules
that came as a result of efficiency or external factors and those that were merely ideas taken from
the public domain can then be filtered out of the analysis because they are not entitled to
copyright protection. 59 Finally, the two computer programs that are the subject of an
infringement action can be compared based on the elements of the program that the court has
determined are entitled to copyright protection. 60

B. The Fair Use Defense

Since the process of reverse engineering involves making intermediate copies of
computer software in an attempt to translate the object code into source code, one who engages
in the process could be liable for copyright infringement even though the final product is not a
copy. 61 Therefore, a reverse engineer has two arguments to rely on in order to avoid liability
under the Copyright Act. The first is to argue that the computer code that was copied during the
process was merely functional and not entitled to copyright protection. If the only portion of the
code that was copied was that which allows compatibility, it is unlikely that there will be a case
for infringement. 62 The second possible argument is that the copying was allowed because it was
a fair use of the copyrighted material. To determine whether the use of a copyright is a "fair
use," the Copyright Act established a four-factor balancing test.63 The factors involve an
examination of the purpose of the use, the nature of the copyrighted work, whether the work was
copied in whole or in part, and the effect on the value of the copyrighted work.64

54 982 F.2d 693, 706 (2d Cir. 1992).
55 [d. at 707.
56 See id.
57 Id.
58 Id.
59 Id. at 708-10.
60 Id. at 710.
61 See Accolade, 977 F.2d at 1518. The court recognized that the computer files generated from the disassembly
program met the statutory definition of a "copy." Id.
62 See Lexmark, 387 F.3d at 544 (finding that no infringement existed because the "lock-up" code contained in
Lexmark's printer cartridge was not entitled to copyright protection, the court determined that it need not consider
the fair use defense, but analyzed the issue nonetheless).
63 17 U.S.C. § 107 (West 2005) (providing that "In determining whether the use made of a particular work in any
particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use,
including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the
copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a
whole; and (4) the effect of the use on the potential market for or value of the copyrighted work.").
64 id.

6 Chi.-Kent J. Intell. Prop. 72

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

1. Purpose of the Use

Although using a copyrighted work for commercial purposes generally weighs against a
fair use finding, 65 courts have looked the other way when it comes to products that result from
reverse engineering. 66 The Accolade court found that the mere production of a competing
product was not enough to negate fair use. 67 Instead, it found that the "purpose and character"
of the copy was to study the functional requirements of the Sega Genesis console. 68 The
creator's profitability motive was therefore an indirect result of using the copyrighted material.
A more recent decision focused on the value of the copyrighted work itself.69 In Lexmark
International v. Static Control, Static Control used reverse engineering to create a microchip that
would allow users of Lexmark printer cartridges to circumvent an authentication program that
prevented certain discount printer cartridges from operating more than once. 70 Those who
purchased Lexmark cartridges at a discount had already agreed to return the empty cartridges to
Lexmark after one use, so the authentication program was merely a means of enforcing that
agreement. 7 1 In evaluating a fair use argument, the court stressed that Static Control did not seek
to exploit the value of the authentication program as it copyrighted work; rather, it used the
program to permit printer functionality. 72 The court also found that even where profitability
would normally weigh against a fair use finding, Static Control's ultimate goal of profitability
was not based on the exploitation of Lexmark's copyrighted material.73 Therefore, the use of a
portion of the code that facilitates compatibility between programs is not considered a direct,
commercial purpose and weighs in favor of a fair use defense.

2. Effect on the Value of the Copyrighted Work

Closely related to the purpose of the use is the effect of the use on the copyrighted work's
value. The Lexmark court focused heavily on the value of the copyrighted work itself and not on
the final product. 74 Although the value of the toner cartridges might have been affected, the
court found that the market for Lexmark's Toner Loading Program was not.75 Similarly, the
mere fact that reverse engineering yields a product that competes against the copyrighted work
does not negate fair use. 76 When Connectix used reverse engineering to create a similar BIOS to
that of Sony's Playstation game console, it ultimately created a new system that would compete
with the Playstation. 77 Still, the court did not consider the economic loss that resulted from
competition to be the kind of loss in value of a copyrighted work that the Copyright Act was

65 Harper & Row Publishers, Inc. v. Nation Enters., 471 U.S. 539, 562 (1985).
66 See Accolade, 977 F.2d at 1522 (9th Cir. 1992) (stating that the presumption of unfairness in copying a
copyrighted work for commercial purposes can be rebutted depending on the characteristics of the specific use).
67 Id. at 1523.
68 Id. at 1523-24.
69 See Lexmark, 387 F.3d 522.
7 0 Id. at 530-31.
71 id
7 2 [d. at 544.
73 Id.
7 4

Id. at 545.
75 Id.
76 Sony Computer Ent., 203 F.3d at 607.
77 id.

6 Chi.-Kent J. Intell. Prop. 73

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

concerned with in evaluating fair use.78 Moreover, relying on Accolade, the court distinguished
between a copyright use that results in a competitive product and one that actually supplants the
original product. 79 It found that the former could be a fair use while the latter was simply an
infringement.

80

3. Nature of the Copyrighted Work

Just as the First Amendment differentiates between more and less important forms of
speech, the fair use analysis differentiates between more and less important copyrighted
expression. As if it were announcing the difference between political speech and commercial
speech, the Supreme Court recognized that "some works are closer to the core of intended
copyright protection than others." 81 Much like commercial speech, computer software code falls
outside the realm of typically protected works because it contains certain functional elements
that are not protected under the Copyright Act. 82 However, as explained above, the reverse
engineer must also copy the expressive elements contained in the software through the
decompilation process in order to ascertain the functional elements of the computer software
needed to produce a compatible product. 83 In Accolade, Sega argued that Accolade's copying of
the expressive elements of its video game software, as opposed to simply copying the functional
elements, prevented a fair use finding. 84 Nonetheless, the Ninth Circuit rejected Sega's argument
because the unprotected, functional elements of the software could not be examined without
copying the expressive elements. 85 Therefore, the video game program was given "a lower
degree of protection than more traditional literary works." 86 Consequently, the nature of
computer software also weighs in favor of a fair use defense with regard to reverse engineering.

4. Amount and Substantiality of the Portion Used In Relation to the Entire Work

When applied to reverse engineering, the "amount and substantiality" factor will almost
always weigh against the reverse engineer, but will not prevent a fair use finding. Since reverse
engineering's purpose is to work backward from an existing computer program to translate the
unreadable object code into readable source code, the engineer must copy the entire program.
However, as the Ninth Circuit found in both Accolade and Sony, the reverse engineer's ultimate
use of the entire program is extremely limited; accordingly, this factor is not substantial in the
reverse engineering context. 87

C. The Digital Millennium Copyright Act

78 id.
7 9

id.

80 Id.
81 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 586 (1994).
82 Sony Computer Ent., 203 F.3d at 603.
83 Accolade, 977 F.2d at 1525-26.
14 Id. at 1526.
85 Id.
86 id.

87 See Accolade, 977 F.2d at 1526, see also Sony Computer Ent., 203 F.3d at 605-06.

6 Chi.-Kent J. Intell. Prop. 74

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

Enacted in 1998, the Digital Millennium Copyright Act ("DMCA") strengthened the
protection of copyrights by prohibiting the circumvention of technological measures that are
used to protect copyrighted works. 88 However, the DMCA included an exception to this
prohibition for reverse engineering that was being used to achieve "interoperability" between
two programs. 89 In one sense, the DMCA was codifying the federal courts' interpretation of the
fair use doctrine as applied to reverse engineering. The DMCA defines interoperability as "the
ability of computer programs to exchange information, and of such programs mutually to use the
information that has been exchanged." 90 Indeed, the exception is a limited one and does not
grant an absolute right of reverse engineering. Still, some have argued that the Act may even
place additional restrictions on the process. 91 Nonetheless, the protections and exceptions
afforded by the DMCA are still "rights against the world,, 92 and do not affect the ability of two
private parties to enter into a contract. Therefore, even though the DMCA specifically allows
reverse engineering in some circumstances, it should not affect the ability of private parties to
enter into a contract that restricts the right to reverse engineer. This is further evidenced by the
policies underlying passage of the DMCA. The problem Congress faced was that the technology
used by copyright owners to protect digital works was being outrun by technology that would
allow others to circumvent that protection.93 Consequently, the Act was primarily intended to be
a "burglar's tools" statute targeting those who were using circumvention techniques to illegally
obtain copyrighted digital materials, as opposed to those who entered into licensing agreements
to obtain the materials.

94

D. The Uniform Computer Information Transactions Act (UCITA)

The Uniform Computer Information Transactions Act ("UCITA") is a proposed uniform
state law that seeks to settle the law surrounding contracts and licenses in the information
technology field. 95 Often criticized for disproportionately favoring software vendors, UCITA
has only been adopted in Maryland and Virginia, both of which have a large high technology
presence.96 Nonetheless, the UCITA provisions concerning reverse engineering of computer
software are an important part of the legal landscape surrounding the controversy over anti-
reverse engineering clauses in software licensing contracts.

The project that became the UCITA was originally intended to be an additional article of
the Uniform Commercial Code, article 2B, but its status changed to the freestanding uniform act

88 17 U.S.C. § 120 1(a)(1)(A) (West 2005).

'9 17 U.S.C. § 1201(f) (West 2005).
90 17 U.S.C. § 120 1(f)(4) (West 2005).
91 See Carla Meninsky, "Locked Out: The New Hazards of Reverse Engineering," 21 J. Marshall J. Computer &

Info. L. 591, 611 (Summer 2003) (discussing the possible liability under the DMCA anti-trafficking provisions for a
software engineer that includes circumvention technology in software that is later offered for sale).
92 See infra n. 103.
93 Thomas A. Mitchell, "Copyright, Congress & Constitutionality: How the Digital Millennium Copyright Act Goes
Too Far," 79 Notre Dame L. Rev. 2115, 2116-17 (Oct. 2004).
94 See id. at 2127 (citing Susan W. Brenner, "Complicit Publication: When Should the Dissemination of Ideas and
Date be Criminalized?," 13 Alb J. Sci. & Tech. 273, 403 (2003)).
95 See Samuelson, supra n. 20, at 1627.
96 Frances E. Zollers, et al., "No More Soft Landings For Software: Liability For Defects In An Industry That Has
Come Of Age," 21 Santa Clara Computer & High Tech. L.J. 745, n. 198 (May 2005).

6 Chi.-Kent J. Intell. Prop. 75

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

that now exists when the American Law Institute withdrew amidst widespread criticism. 97 As its
name suggests, the Act applies only to computer information transactions; therefore, it would not
implicate an intellectual property license concerning property other than computer software. 98

While the UCITA does not expressly authorize anti-reverse engineering provisions in licensing
agreements, it does so implicitly with its widespread authorization of mass-market license
agreements which routinely contain such terms.99 On the other hand, a specific provision stating
that license terms contrary to federal law are unenforceable leaves open the possibility that anti-
reverse engineering provisions could be preempted.100 Still, the overarching theme embodied by
the UCITA is that parties are free to negotiate their own terms in a licensing agreement.

III. The Preemption Argument

A. Express Preemption

Opponents of anti-reverse engineering clauses argue that the clauses are preempted by
federal law. Of course, it is not the contract itself that would be preempted, it is the state's
contract law that allows enforcement of the contract. These opponents rely on two separate
grounds in support of their argument: express preemption and conflict preemption.'10 The basis
for express preemption is found in §301(a) of the Copyright Act, which states:

[A]ll legal or equitable rights that are equivalent to any of the exclusive rights
within the general scope of copyright.., are governed exclusively by this title.
Thereafter, no person is entitled to any such right or equivalent right in any such
work under the common law or statutes of any state.10 2

In other words, the Copyright Act expressly preempts any state law that attempts to provide
parallel protection of rights protected by the federal law. 13 For example, a state cannot pass a
statute that prohibits any and all copying of computer software because that concerns a right that
is equivalent to those conferred by the Copyright Act. 104 However, the Federal Courts of Appeal
have inferred an exception to the strict preemption stated by Congress in the Copyright Act.
When an additional element is required by the state law cause of action, the state law claim is
outside the scope of the copyright protection. Therefore, the claim is not preempted by the
Copyright Act. 105 Moreover, recent decisions have held that the Copyright Act does not preempt
an action for breach of a software license agreement because it contains elements in addition to
those required for a copyright claim. 10 6

97 Pratik A. Shah, "The Uniform Computer Information Transactions Act," 15 Berkeley Tech. L.J. 85, 87-88 (2000).
98 Id. at 88.
99 See Samuelson, supra n. 20, at 1627-28.
100 UCITA § 105(a) (West 2006).
101 Jacob A. Gantz, "(Private) Order(ing) in the Court?: How the Circuit Courts Should Resolve the Current Conflict

Over Reverse Engineering Clauses In Mass Market Licenses," 36 Rutgers L.J. 999, 1022 (Spring 2005).
102 17 U.S.C. §301(a) (West 2005).
103 Davidson & Assocs. v. Jung, 422 F.3d 630, 638 (8th Cir. 2005).
104 Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 269 (5th Cir. 1988).
105 Data Gen. Corp. v. Grumman Sys. Support Corp., 36 F.3d 1147, 1164 (1st Cir. 1994).
106 See, e.g., Altera Corp. v. Clear Logic, Inc., 424 F.3d 1079, 1089 (9th Cir. 2005).

6 Chi.-Kent J. Intell. Prop. 76

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

Using precisely that analysis, ProCD v. Zeinenberg held that license agreements
governing the use of computer software were not preempted by the Copyright Act. 107 The
"additional elements" required by the state law claim were those required to show a valid
contract, including mutual assent and consideration. 0 8 ProCD concerned a software licensee
that violated the terms of use contained in a software license agreement and argued that its
"shrink-wrap" nature rendered it invalid. 109 However, the licensee's secondary argument was
that the software licensing provisions were preempted by § 301 of the Copyright Act. In a
particularly persuasive analysis, Judge Easterbrook concluded that contract rights are not
equivalent to the rights conferred upon parties by the Copyright Act because copyrights create
exclusive rights against the world, while contracts only affect their parties and do not create
exclusive rights that bind strangers."10 In Easterbrook's view, allowing the Copyright Act to
preempt licensing provisions would create a slippery slope that would ultimately allow video
store customers to refuse to return videos within the specified period on grounds that the rental
agreement was preempted by the copyright protection afforded to the video itself.111

Consequently, the court emphatically rejected the licensee's express preemption claim.

Since ProCD, the federal circuits have uniformly rejected the express preemption
argument in the context of a software licensing agreement. 112 In light of these precedents, a
plaintiff seeking to invalidate a license provision containing a reverse engineering prohibition
will face overwhelming odds if she tries to do so on express preemption grounds because the suit
will always contain the additional elements pertaining to a valid contract. Still, at least one
commentator has argued that the rights created by a contractual provision prohibiting reverse
engineering are equivalent to those protected by the Copyright Act, and are preempted as a
result. 113 This argument relies on the legislative history of the Copyright Act, which states: "[a]s
long as a work fits within one of the general subject matter categories of sections 102 and 103,
the bill prevents the States from protecting it even if it fails to achieve Federal statutory
copyright [protection]."" 4 Since reverse engineering is a fair use and fails to achieve copyright
protection, the argument reads this nugget of legislative history to authorize federal preemption
of licensing provisions that prohibit it.115 However, this statement of congressional intent refers
to an affirmative act by a state to give further protection to works that are not protected by the
Copyright Act. Interpreting such language to include the passive action of a state to allow
private parties to dictate the use of their own private property would expand the scope of § 301 's
preemption formula to include claims in contract and tort that are far beyond what Congress

107 ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1453-55 (7th Cir. 1996).
1
0 8 Id.

109 Id. A shrink-wrap license agreement is an agreement that is contained beneath the shrink-wrap of a

commercially available software program that is not revealed to the consumer until after he or she has returned
home and opened the box. Courts have generally concluded that these contracts are enforceable on grounds that the
contract is not formed until after the consumer has opened the box containing the licensing terms and decided not to
return the product. See id. at 1452-53.
11°Id. at 1454.
1 Id.
112 See Bowers, 320 F.3d at 1325.
113 Son, supra n. 5, at 117.

114 Id. (citing H.R. Rep. No. 94-1476, 94th Cong., 2d Sess. 129-13 1, reprinted in 5 U.S.C.A.A.N. 5747 (1976)).
115 See id.

6 Chi.-Kent J. Intell. Prop. 77

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

must have intended.11 6 By allowing two private parties to enter into a contract that prohibits
reverse engineering of a purchased piece of computer software, the state is not protecting
additional works within the scope of the Copyright Act, but rather allowing two private parties to
protect their own property. Consequently, the judicially created "additional elements" test is
sufficient because it distinguishes between a state-created cause of action that affirmatively
protects rights within the scope of the Copyright Act and one that has only a limited effect on
copyrights by virtue of private party decisions.

B. Conflict Preemption

The second argument that reverse engineering provisions in software license agreements
are preempted by federal copyright laws is based on the supremacy clause to the United States
Constitution. 117 Even those who make the argument that the Copyright Act expressly preempts
anti-reverse engineering clauses in licensing agreements acknowledge that conflict preemption is
a much more viable theory.118 Conflict preemption applies when it is impossible to comply with
both federal and state law, or when state law creates an obstacle to the objectives that Congress
envisioned when it created the federal law. 19 Critics of anti-reverse engineering clauses argue
that such a provision contradicts the seminal purpose of Congress when it enacted the Copyright
Act. 120

A recent case in the Eighth Circuit concluded that Congress did not intend to strip private
parties of their right to freely negotiate contractual terms by including reverse engineering as a
fair use defense under the Copyright laws.121 In that case, the software provider was a company
called Blizzard that developed and sold computer games for use on personal computers. 122 To
further the sales of its computer gaming software, Blizzard developed an online network called
"Battle.net" that allowed purchasers of its software to play against other purchasers through the
network. 123 In order for users to log on to Battle.net, the system had to authenticate their
Blizzard software in order to ensure that they were using a properly authorized, i.e. not pirated,
piece of software. 124 At the same time, those who did in fact purchase the gaming software had
agreed to a shrink-wrap license agreement that prohibited reverse engineering of Blizzard's

116 Without the additional elements test, express preemption would affect state created rights far beyond the

enforcement of licensing agreements. For example, in Shively v. Bozanich, 31 Cal. 4th 1230, 80 P.3d 676 (2003),
the California Supreme Court decided a statute of limitations question with regard to a defamation action. In that
case, the plaintiff, Jill Shively, brought an action against the district attorney in the O.J. Simpson criminal
proceedings for allegedly defamatory statements that were made and later published in a book. Id. at 1238, 80 P.3d
at 680. Although copyright law was not an issue in the case, we can presume that the published work was within the
scope of copyright protection. The same logic that would preempt enforcement of anti-reverse engineering
provisions in licensing agreements would also preempt this defamation claim because it involved a copyrighted
work. Surely, Congress did not intend to preempt such a broad range of state law claims when it enacted the
Copyright Act.
117 U.S. Const. art. VI, cl. 2.
118 Son, supra n. 5, at 118.
119 Jung, 422 F.3d at 638.
120 Gantz, supra n. 97, at 1022-23.
121 Jung, 422 F.3d at 640.
122 Id. at 633.
123 Id.
124 Id.

6 Chi.-Kent J. Intell. Prop. 78

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

software for any reason. 125 The defendants produced a similar network through reverse
engineering that allowed garners to compete against each other online with the Blizzard products.
However, the newly created network did not require the authentication code; thus, users of
unauthorized software could also use the new network. 126 Blizzard sued the defendants arguing
that the reverse engineering was a breach of the license agreement.

The Jung court considered the defendant's argument that conflict preemption precluded
state enforcement of the anti-reverse engineering licensing provisions. 127 Defendants relied
primarily on Vault v. Quaid Software, which invalidated a Louisiana statute that specifically
provided for the enforcement of anti-reverse engineering terms in a licensing contract under the
doctrine of conflict preemption. 128 However, Jung made a clear distinction between a state
statute that affirmatively authorizes the use of anti-reverse engineering clauses, and a situation
where the state merely enforces an agreement between two parties.129 In other words, the Jung
court adopted the logic that previous courts had applied to express preemption cases to hold that
a license agreement cannot stand as an obstacle to the Congressional intent of the Copyright Act.

While these precedents validate private party licensing agreements that grant additional
intellectual property rights, they may create an additional obstacle for the further enactment of
the UCITA. The decision in Vault makes it clear that an affirmative state authorization of
reverse engineering may be a significant impediment to the full purposes and objectives of
Congress in terms of the Copyright Act. The UCITA stops short of specifically authorizing anti-
reverse engineering in license contracts, but its specific authorization of mass market licenses
that often include these provisions will undoubtedly give preemption proponents more
ammunition. Others argue that the inclusion of a reverse engineering exception in the DMCA
strengthens the conflict preemption argument. 130 While this argument lends further support to
the result in Vault, it does not go so far as to say that enforcing a private contract would impede
the Congressional intentions behind the copyright laws.

IV. Policy In Favor Of Freedom of Contract

Ultimately, a freedom of contract policy should be adopted with regard to software
licensing. Such a policy will allow the market to determine on its own which licensing
provisions will be most beneficial to the software industry. The Supreme Court has long held
that the freedom to contract is not an absolute right, and that federal and state legislatures are free
to restrict the right so long as the restriction is reasonably related to a non-discriminatory
legislative purpose. 131 Nevertheless, the policy in favor of allowing private parties to freely
negotiate their own contractual terms is a longstanding American legal tradition. 13 2 Central to

125 Id. at 634.
126 Id. at 636.
127 Id. at 638.
128 847 F.2d 255, 268-70 (5th Cir. 1988).
129 422 F.3d at 640.
130 Gantz, supra n. 97, at 1023.
131 See, e.g., West Coast Hotel Co. v. Parrish, 300 U.S. 379, 398 (1937).
132 See, e.g., U.S. v. Grace Evangelical Church of South Providence Ridge, 132 F.2d 460, 462 (7th Cir. 1942)
(stating the rationale that "[m]en [and women] shall have the utmost liberty of contracting and that their agreements,
when entered into fairly and voluntarily, shall be held sacred and enforced by the courts").

6 Chi.-Kent J. Intell. Prop. 79

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

this policy is that the contracts must be entered into voluntarily and fairly. When a software
vendor has unequal bargaining power, two circumstances unrelated to copyright law provide
purchasers with baseline protections where the general freedom of contract policy could fail. 133

The first is when the bargaining power so unfairly favors the software vendor that the terms are
unconscionable. The second is when a software vendor violates the Sherman Act, which
prohibits agreements in restraint of trade and certain unlawful conduct by monopolists. Outside
of those situations, the freedom of contract policy should be observed and software licenses
should be enforced according to the terms of the agreement even when the protection of the
agreement goes beyond the scope of copyright law. To the extent that the ability to reverse
engineer is vital to the progression of technology, the market will fill such a demand. 134

A. Unconscionability Concerns

The unconscionability doctrine exists mainly to protect against contracts that are grossly
one-sided, or present unfair surprises to consumers. 135 Although unconscionability may be
difficult to show, the doctrine provides an important check on a software vendor's ability to
impose unreasonable terms on its customers. When a contract contains an unconscionable term,
the Uniform Commercial Code gives courts the power to invalidate the entire contract, or
enforce the remainder minus the unconscionable term. 136 The Code defines unconscionable
clauses as those that "are so one-sided as to be unconscionable under the circumstances existing
at the time of the making of the contract."' 137 Unconscionability exists in a procedural and
substantive form.138 While substantive unconscionability is concerned with the end result of a
contractual term, procedural unconscionability targets the circumstances that were in place when
the contract was formed, i.e., bargaining power, sophistication of the parties and knowledge of
the terms contained in the contract. 139 In order to invalidate a contract, both forms must be
shown on a sliding scale, i.e., the more procedurally unconscionable a contract, the less
substantively unconscionable it needs to be. 140

Without a bright line rule for determining unconscionability, the application of the
doctrine depends on how a particular court views all of the circumstances that exist when a
contract is formed. There are a number of ways in which software license agreements are
formed. They can be formed in a traditional fashion where multiple drafts of a document are
passed back and forth between the parties until it is satisfactory to both parties. More commonly,

133 See generally, Son, supra n. 5 (discussing the application of unconscionability doctrine and antitrust law to anti-

reverse engineering provisions in software contracts).
134 Critics of this proposition also raise the argument that the market cannot respond to provisions in mass-market
licenses because it would require the collective action of consumers who do not plan on engaging in reverse
engineering and accept the terms on a take-it-or-leave-it basis. See Samuelson, supra n. 20, at 1629. In essence, the
argument is that the market cannot respond to terms that are not negotiated in the first place. However, the target of
this argument should be the validity of shrink wrap agreements in general, not the ability of private parties to agree
to a particular term.
135 For a discussion of the evolution of the unconscionability doctrine, see Maxwell v. Fidelity Fin. Servs., 184 Ariz.
82, 907 P.2d 51 (1995).
136 U.C.C. § 2-302(1) (West 2005).
137 U.C.C. § 2-302, Official Comment Para. 1 (West 2005).
138 Davidson & Assoc., Inc. v. Internet Gateway, Inc., 334 F.Supp.2d 1164, 1179 (E.D. Mo. 2004).

139 Id.
140 Comb v. Paypal, Inc., 218 F.Supp.2d 1165, 1172 (N.D. Cal. 2002).

6 Chi.-Kent J. Intell. Prop. 80

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

however, software licenses are the product of shrink-wrap and click-wrap agreements where the
user does not agree to the terms until he or she opens the packaging or begins to install the
product. 14 1 Under California law, contracts of adhesion, defined as a "standardized contract,
which, imposed and drafted by the party of superior bargaining strength, relegates to the
subscribing party only the opportunity to accept or reject it," are procedurally unconscionable. 142

At least in circumstances where the subscribers to a shrink wrap agreement are not sophisticated,
California courts have found that click wrap agreements are procedurally unconscionable. 143 In
general, sophisticated software companies (and even less-than-sophisticated ones) understand the
purpose and the terms of a licensing agreement. Therefore, a company that knowingly violates
an anti-reverse engineering clause in its license agreement and then later claims that the terms
were unconscionable will have difficulty finding a court sympathetic to its argument. 144

Even where procedural unconscionability exists, the subscriber still must show that the
terms are substantively unconscionable. In Combs v. Paypal, the court found that a click-wrap
license agreement requiring Paypal users to submit to arbitration was substantively
unconscionable because it was completely void of mutual remedies. 145 In addition, because the
disputes in Paypal involved small amounts of money, the court found that customers were
effectively prohibited from seeking additional relief in the courts. 146 However, this argument has
been rejected when specifically applied to anti-reverse engineering clauses. 147 Nonetheless, with
the right facts, a software user could argue that prohibiting reverse engineering in the license
agreement effectively prevents the user from correcting defects in the software that could be
corrected if the user had access to the program's source code. In that case, the licensee's biggest
hurdle would be to convince the court that it was not sophisticated enough to contemplate this
scenario prior to entering into the agreement.

B. Antitrust Concerns

1. Sherman Act §1

The antitrust laws provide another check on the ability of software vendors to impose
unreasonable terms in a licensing agreement. The basic types of antitrust claims are created
under the Sherman Act. Sherman Act § 1 makes it illegal to form an agreement in restraint of
trade.148 As Justice Brandeis recognized, the very essence of a contract or an agreement is to

141 See ProCD, 86 F.3d at 1453-55 (upholding the validity of shrink wrap agreements).
142 Paypal, 218 F.Supp.2d at 1172 (citing Armendariz v. Found. Health Psycheare Serv., 24 Cal. 4th 83, 113; 99 Cal.

Rptr. 2d 745 (Cal. 2000)).
143 Paypal, 218 F.Supp.2d at 1173 (holding that a click wrap agreement where the average transaction was $55.00

was an invalid contract of adhesion).
144 In Internet Gateway, 334 F.Supp.2d at 1179, the court rejected an unconscionability argument on grounds that

the subscribers to the licensing agreement were not "unwitting members of the general public," but were computer
programmers familiar with the technical language used in the licensing agreement.
145 218 F.Supp.2d at 1173-74. The license agreement in Paypal required the subscriber to submit to arbitration as its

sole remedy, while Paypal was allowed to unilaterally restrict accounts and withhold funds until the customer was
later determined to be entitled to the funds in dispute. Id.
146

Id. at 1175.
147 Internet Gateway, 334 F.Supp.2d at 1180 (holding that anti-reverse engineering clause is not a harsh or
oppressive term).
148 15 U.S.C. §1 (West 2005).

6 Chi.-Kent J. Intell. Prop. 81

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

restrain trade. 149 Thus, the courts have interpreted the statute to include not only an agreement in
restraint of trade, but one that is competitively unreasonable. 150 The courts have developed two
categories for determining whether an agreement in restraint of trade is competitively
unreasonable: per se illegality and the rule of reason. Per se illegality concerns practices like
price fixing 15 1 and market dividing152 that are so blatantly anti-competitive that simply showing
that they occurred is enough to show a violation. By contrast, the rule of reason is a flexible
model of analysis that weighs all the facts and circumstances including the type of restraint, its
likely anti-competitive effects, pro-competitive justifications and the parties' market power. 153

An anti-reverse engineering clause in a licensing agreement at least arguably restrains
trade because it limits a software user's access to information needed to produce comparable or
even compatible products. 154 In terms of reasonableness, such a clause would be viewed under
the rule of reason analysis because it does not fit into a recognized per se category. However,
there is an academic trend that favors Judge (later President and Chief Justice) Taft's view that
viewing § 1 violations should be based on whether the restraint is "naked" or "ancillary."' 155

"Naked" restraints are those which have no purpose other than restraining competition. 156

"Ancillary" restraints are "restraints that arguably aid productive business transactions." 157

Under this model, naked restraints are per se illegal, while ancillary restraints that are reasonably
related to furtherance of a productive business transaction are legal unless the restraint gives the
defendant monopoly power. 158 One commentator has argued that anti-reverse engineering
clauses that prohibit the copying of material otherwise allowed under the fair use doctrine are
naked, per se illegal restrictions.159 Moreover, the argument contends that the effects of these
clauses are unreasonable because they go beyond the protection of copyright law and may stifle
technological advancement because it limits a competitor's ability to develop a compatible
product. 16 While it is true that the potential inability of a competitor to produce a compatible
product could stifle technological advancement to some degree, this argument goes too far.
Anti-reverse engineering clauses are not naked restrictions. In fact, they further productive
business transactions by allowing software producers to protect their investment in research and
development and prevent others from free-riding off of their success.

As an ancillary restriction, anti-reverse engineering clauses will be evaluated under the
rule of reason, or, alternatively, based on whether they further a productive business transaction.

149 "But the legality of an agreement or regulation cannot be determined by so simple a test, as whether it restrains

competition. Every agreement concerning trade, every regulation of trade, restrains. To bind, to restrain, is of their
very essence." Chicago Board of Trade v. U.S., 246 U.S. 231, 238 (1918).
150 See, e.g., Nat'l Society of Prof'l Engineers v. U.S., 435 U.S. 679, 690 (1978); Standard Oil Co. v. U.S., 221 U.S.

1, 65 (1911).
' See, e.g., U.S. v. Socony- Vacuum Oil Co., 310 U.S. 150 (1940).

112 See, e.g., U.S. v. Topco Assocs., 405 U.S. 596 (1972).
153 Cal. Dental Ass'n v. FTC, 526 U.S. 756, 782 (1999) (Breyer, J., dissenting).
154 Son, supra n. 5, at 128-29.
155 Thomas C. Arthur, "Farewell to the Sea of Doubt: Jettisoning the Constitutional Sherman Act," 74 Cal. L. Rev.

263, 329-45 (1986).
156 Id. at 271.
157 Id.
15

1 Id. at 334.
159 Son, supran. 5, at 131.
160 Id.

6 Chi.-Kent J. Intell. Prop. 82

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

On one hand, this approach will protect software producers whose sole motivation is to protect
the heavy investment they have already made in developing a software product. On the other
hand, it will guard against cases where the motivation behind the agreement is to prevent healthy
competition, or to drive others from the market. The approach will also allow a court to easily
invalidate such a clause when the vendor's market power is extremely high. Therefore, § 1 will
allow anti-reverse engineering provisions to exist in licensing agreements, but will provide an
important check on the abuse of licensing agreements.

2. Sherman Act §2

Section 2 is not concerned with the activities of small businesses, but instead prohibits
unilateral efforts by a firm to monopolize or attempt to monopolize a market. 16 1 For
monopolization claims under §2, the plaintiff must show that the defendant has possession of
monopoly power in a relevant market and has willfully maintained this power or used it in an
exclusionary manner.162 Since a § 2 claim requires the plaintiff to show that the defendant has
monopoly power in a relevant market, the claim's success hinges on how broadly or narrowly the
market can be defined. 163 The more narrowly the market is defined, the more likely that the
defendant's market share will constitute "monopoly power." 164 In addition, the relevant market
refers to both product markets and geographic markets. 165

Anti-reverse engineering clauses imposed by a firm with monopoly power in a relevant
market might constitute willful and exclusionary conduct. One commentator offers the
following example: a company wants to enter the web browser market, but needs to make the
browser compatible with the leading operating system. 166 The leading operating system is
produced by a firm with monopoly power in the market for operating systems. 167 In addition, the
monopolist also produces a web browser that is bundled with its operating system. 168 Finally,
the licensing agreement that comes along with the operating system strictly prohibits reverse
engineering, even for interoperability purposes.169 In many cases, this would be an example of
illegal use of monopoly power because the firm that has monopoly power in the operating
system market is trying to leverage it to acquire or maintain a monopoly in the web browser
market. This is accomplished via the anti-reverse engineering clause because the firm seeking to
enter the market would otherwise be able to use the process to develop a new web browser
compatible with the dominant operating system. And the firm that is imposing the restrictive
agreement is clearly not using it to protect its own research and development for the operating
system. After all, if the firm were competing against anyone else in the operating system market,
it would want other firms to be able to make web browsers compatible with its operating system
because it would make them more competitive in their own market. Thus, imposing an anti-
reverse engineering clause in a licensing agreement under these facts would likely be a §2

161 15 U.S.C. §2.
162 U.S. v. Grinnell, 384 U.S. 563, 570-71 (1966).
163 See U.S. v. Aluminum Co. ofAm. (Alcoa), 148 F.2d 416 (2d Cir. 1945).
164 See id.
165 Brown Shoe Co. v. U.S., 370 U.S. 294, 324 (1962).
166 Son, supra n. 5, at 142.
167 Id.

168 Id.
169 Id.

6 Chi.-Kent J. Intell. Prop. 83

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

violation. As a result, even under a freedom of contract policy with regard to software licensing,
the antitrust laws will provide a level of protection to software purchasers preventing vendors
from abusing the policy.

C. A Free Market Approach

Finally, if anti-reverse engineering clauses in licensing agreements are truly detrimental
to technological innovation, then the market will produce an alternative to the restrictive
licensing practices that include anti-reverse engineering clauses. To some extent, the market has
already done this with the emergence of open-source software producers.

From an economic perspective, the reason that copyright law exists is to allow holders of
copyrights to enter into contracts for the dissemination of their work in a more efficient
manner. 170 Without copyright law, the owner could not efficiently exclude non-owners from
obtaining the information, which would eliminate the incentive to invest in the high cost of
producing new work.171 At the same time, allowing the holder of the copyright to exercise a
complete monopoly would also be inefficient. The monopoly price would be far enough above
the marginal cost of each copy that many potential buyers would be excluded. 172 Moreover,
assuming that forms of expression entitled to copyright protection are all built at least in part
upon previously copyrighted works, the monopoly price would increase the costs of producing
new works due to royalty fees and transactional costs required to obtain the existing works. 173

Therefore, copyright law does not grant an absolute monopoly to holders. Instead, it has created
exceptions like the fair use doctrine in an attempt to strike a balance between the copyright
holder's right and the user's right to access information. 174

In order to maintain the balance sought by copyright law, those who make the investment
required to develop and distribute computer software must be able to further protect their
property rights as they see fit through licensing agreements. Critics of this argument instead
suggest that further restriction of the right to reverse engineer through licensing agreements will
impede innovation and discourage developers from building off of the ideas of others. 175

Even if the critics are correct in their assertions that access to source code through reverse
engineering, or just free distribution, is vital to the continued technological innovation in the
computer software industry, an obvious solution is being ignored: let the market decide which
terms are better for the industry. If access to source code is in such high demand, the market will
produce software vendors that are willing to distribute open source software, or allow reverse
engineering for limited purposes in licensing agreements. Open source software is software that
allows users to access its source code and to modify and redistribute the software. 176 The Open
Source Movement began in the 1970s when software was rarely bought or sold outside the

170 See Niva Elkin-Koren, "Copyright Policy and The Limits of Freedom of Contract," 12 Berkeley Tech. L. J. 93,
98-99 (1997).
171 Id.

172 Id. at 99.
173 Id. at 100.
17

4 Id. at 100-01.
175 See Lemley, supra n. 5.
176 Carver, supra n. 12, at 450.

6 Chi.-Kent J. Intell. Prop. 84

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

context of a hardware transaction as a response to the first few software vendors that attempted
to withhold source code from its users through confidentiality agreements. 177 In the late 1990s,
the Open Source movement received a jolt with the development of an open source operating
system knows as Linux designed to compete against major operating systems such as Microsoft
Windows. 17 8 Linux and most other open source programs were distributed using a free General
Public License ("GPL"). The GPL required free distribution of the source code, freedom to
improve the program and make those improvements public, and required that subsequent
distributions be made under the GPL.179 In addition, the GPL does not permit a distributor to
charge licensing fees.180 Therefore, firms that develop and license open source software make
money by providing customer service, user manuals and other complementary services for which
fees can be charged. 181

In a sense, the emergence of open source software is a market response to restrictive
licensing practices by commercial software firms. Open source software allows users to do all of
the things that critics of anti-reverse engineering clauses in software licenses argue are
fundamental to the industry. Software is freely distributed under the GPL and users are free to
copy the source code that is required to make new programs that are compatible with old ones.
Of course, open source is still in its infancy and whether the incentives to produce software
under this model will persist is still an open question. Nonetheless, the fate of open source
software will say a lot about which licensing practices are most beneficial to the industry.

As the Open Source movement continues, one of the following two scenarios is likely to
emerge, which will ultimately reveal which type of marketing practice is better for the industry.
The first possible scenario is that the quality of open source products will become just as high as
those that are commercially available and firms will be able to make a profit by selling
complementary services. In this scenario, commercial software vendors will have to adhere to
the new licensing practices in order to compete. Thus, one can assume that overly restrictive
licenses that prohibit reverse engineering among other things were not necessary to protect the
investment required to develop new products.

The second scenario is that open source products remain in the market but do not increase
in market share and are not able to compete with the quality of commercially available products.
If this were to happen, the most likely reason for it would be that firms are unable to recover
their development costs through the complementary services that are offered in conjunction with
the software. Of course, antitrust concerns could also contribute to the struggle to increase
market share. However, since the law already provides a remedy for an antitrust violation, one
must assume a lack of antitrust violations for the sake of this argument. The result of this
scenario is that commercially available products will continue to dominate the market.
Assuming the contracts are freely negotiated and free from antitrust violations, the inference

177 Id. at 445.
17' Robert W. Gomulkiewicz, "How Copyleft Uses License Rights To Succeed In The Open Source Software
Revolution And The Implications For Article 2B," 36 Hous. L. Rev. 179, 184 (Spring 1999).
179 David S. Evans & Anne Layne-Farrar, "Software Patents And Open Source: The Battle Over Intellectual

Property Rights," 9 Va. J. L. & Tech. 10, 16 (2004).
180 Id.
181 Id. at 18.

6 Chi.-Kent J. Intell. Prop. 85

Copyright © 2006, Chicago-Kent Journal of Intellectual Property

must be that restrictive licensing practices are necessary to create incentives to develop new,
high quality computer software products.

Ultimately, this market-based approach to determine which licensing practice is most
beneficial to the industry is most in tune with the economic goals of copyright law. Since
copyright law aspires to provide an efficient level of protection to a copyright owner in order to
be sure that there is still an incentive to produce new works, it would be inefficient not to allow
copyright holders to engage in licensing practices that do the same. Indeed, if the anti-reverse
engineering protections currently contained in software licenses are not required to preserve this
incentive, the market will make that decision.

Conclusion

The debate over the enforceability of anti-reverse engineering provisions will only
increase as we proceed into the digital age. However, the market should not be regulated to the
point that software vendors are unable to fully protect their investments in developing new
intellectual property. While copyright law does not fully protect an owner from prohibiting
licensees from engaging in reverse engineering, it also does not prevent that owner from
demanding additional protections of his or her copyright in a private transaction. Nonetheless,
critics argue that public policy in favor of innovation overrides the freedom to contract under
these circumstances. Therefore, a state should not be allowed to enforce these private
agreements that go further than the express protections of federal copyright law. Before we run
to Congress demanding a federal law that expressly preempts state enforcement of anti-reverse
engineering clauses, we must give the market a chance to decide which licensing practices are
truly the most beneficial to the industry.

6 Chi.-Kent J. Intell. Prop. 86

	Beyond Fair Use: The Right to Contract Around Copyright Protection of Reverse Engineering in the Software Industry
	Recommended Citation

	Beyond Fair Use: The Right to Contract around Copyright Protection of Reverse Engineering in the Software Industry

