
Chicago-Kent Journal of Intellectual Property Chicago-Kent Journal of Intellectual Property

Volume 6 Issue 2 Article 6

4-1-2007

A Gentlement's Agreement: Assessing the GNU General Public A Gentlement's Agreement: Assessing the GNU General Public

License and its Adaptation to Linux License and its Adaptation to Linux

Douglas A. Hass

Follow this and additional works at: https://scholarship.kentlaw.iit.edu/ckjip

 Part of the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Douglas A. Hass, A Gentlement's Agreement: Assessing the GNU General Public License and its
Adaptation to Linux, 6 Chi. -Kent J. Intell. Prop. 213 (2007).
Available at: https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss2/6

This Article is brought to you for free and open access by Scholarly Commons @ IIT Chicago-Kent College of Law.
It has been accepted for inclusion in Chicago-Kent Journal of Intellectual Property by an authorized editor of
Scholarly Commons @ IIT Chicago-Kent College of Law. For more information, please contact
jwenger@kentlaw.iit.edu, ebarney@kentlaw.iit.edu.

https://scholarship.kentlaw.iit.edu/ckjip
https://scholarship.kentlaw.iit.edu/ckjip/vol6
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss2
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss2/6
https://scholarship.kentlaw.iit.edu/ckjip?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.kentlaw.iit.edu/ckjip/vol6/iss2/6?utm_source=scholarship.kentlaw.iit.edu%2Fckjip%2Fvol6%2Fiss2%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jwenger@kentlaw.iit.edu,%20ebarney@kentlaw.iit.edu

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

A GENTLEMEN'S AGREEMENT
ASSESSING THE GNU GENERAL PUBLIC LICENSE AND ITS ADAPTATION TO LINUx

Douglas A. Hass"

Introduction

"Starting this Thanksgiving, I am going to write a complete Unix-compatible software
system called GNU (for GNU's Not Unix), and give it away free to everyone who can use it. "

With his post to the Usenet 2 newsgroup net.unix-wizards, 3 Richard Stallman launched a sea
change in software development. In 1983, he could not have known that his lasting contribution
would not be the GNU operating system, but instead the controversial software license that he
would develop as its underpinning: the GNU General Public License (GPL).4

Today, the operating system most closely associated with the GPL is Linux, developed
originally by Linus Torvalds, a Finnish university student.5 Research group IDC's Quarterly
Server Tracker marked Linux server revenue growth at three times Microsoft Windows server
growth in the first quarter of 2006, its fifteenth consecutive quarter of double-digit revenue
growth.6 British research firm Netcraft's July 2006 Web Server Survey gives Linux-based
Apache Web servers the largest market share among Web servers queried in its monthly survey. 7

With Linux gaining an increasingly larger position in these markets, the validity of the GPL
takes on increasing importance as well.

The open source community's commercial and non-commercial members are conducting
a robust debate on the intellectual property issues surrounding the GPL and Linux, its most

* Douglas A. Hass, Director of Business Development, ImageStream; J.D. Candidate, 2008, Indiana University
School of Law Bloomington. Special thanks to the University of Auckland Faculty of Law, Professor Louise
Longdin, and Dean Rosemary Tobin for providing the author with a unique opportunity and the necessary
accommodations to write this paper. Thank you also to Professors Fred Cate and Marshall Leaffer at Indiana and
Lawrence Rosen at Stanford, and to those who provided insights and made suggestions. All errors and oversights are
solely attributable to the author.
1 Posting of Richard M. Stallman to net.unix-wizards, New UNIX Implementation (Sept. 27, 1983, 16:35:59 GMT),
available at http://groups.google.com/group/net.unix-wizards/msg/4dadd63a976019d7?dmode-source.
2 Usenet is one of the first distributed discussion systems on the Internet. An electronic mail-like system, Usenet
enabled one-to-many communications. Conceived in 1979, Usenet predates the commercial Internet, and while
message boards on the Web have largely supplanted it, many Usenet newsgroups remain active today. See generally
Usenet, WIKIPEDIA: THE FREE ENCYCLOPEDIA, http://en.wikipedia.org/wiki/Usenet (last visited Dec. 31, 2006).
' Stallman, supra note 1.
4 Since the Linux operating system, discussed at Section I.B., infra, uses version 2 of the GPL, references herein to
the GNU General Public License (GPL) refer to version 2 of that license unless otherwise stated. See generally Free
Software Foundation, GNU General Public License, version 2, http://www.fsf.org/licensing/licenses/gpl.txt (last
visited Jan. 9, 2007) [hereinafter GPL].
'See generally Linux, WIKIPEDIA: THE FREE ENCYCLOPEDIA, http://en.wikipedia.org/wiki/Linux (last visited Dec.
31, 2006).
6 IDC, Worldwide Server Market Experiences Lackluster Quarter Across Multiple Segments, According to IDC,
(May 24, 2006), available at http://www.idc.com/getdoc.jsp?containerld-prUS20180706.
7 Netcraft, July 2006 Web Server Survey, Jun. 28, 2006,
http://news.netcraft.com/archives/2006/06/28/july 2006 web server survey.html (last visited Jan 9, 2007).

6 Chi.-Kent J. Intell. Prop. 213

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

successful project to date. This paper argues that this process has led the Linux community to
adjust its open source development model to accommodate realities of copyright law and the
need to secure both significant commercial participation and widespread industry adoption.
Erroneous ruminations about the GPL's legal effect threaten to undermine this important
adjustment consensus. This paper outlines the GPL's legal shortcomings and boundaries to help
bolster the community's practical, and undervalued, "gentlemen's agreement" that enables
commercial participation in open source projects.

Part I of the paper examines the history of the free software movement founded by
Stallman, including the development of the Linux operating system. Part I also highlights the
stated objectives and terms commonly used by free software proponents. Next, the paper
explains the GPL and discusses implications of recent litigation and possible attacks on the
license's validity in Part II. Part III applies the United States' Copyright Act and relevant U.S.
and international case law to the GPL-licensed Linux operating system to justify the
"gentlemen's agreement" that the Linux community has reached independent of the GPL's
drafters. Part IV discusses the reconciliation of commercial software interests with the free
software objectives for which the GPL acts as a symbol.

I. History of the Free Software Movement and Linux Operating System

A. Richard Stallman, GNU, and the Free Software Foundation

Opponents of the free software movement founded by Richard Stallman can blame Xerox
Corporation for starting Stallman on his path.8 Working in MIT's Artificial Intelligence lab as a
27-year-old computer programmer in 1980, Stallman interrupted a programming session to
retrieve a print job from the state-of-the-art network printer donated by Xerox. 9 In an experience
still commonplace in computer labs today, Stallman arrived to find the printer jammed with his
job still in the queue.' 0 He immediately set out to implement a solution that he had used with the
lab's old printer."I While he could not remedy paper jams with a computer program, Stallman
wrote a program that enabled the printer to send a message to all of the user terminals with
waiting print jobs notifying them that the printer had jammed. 12

Unlike the previous printer, and against common practice at the time, the Xerox printer
came without source code for the software used to operate the printer. Xerox provided only the

8 This section follows Stallman and the development of the GNU project through the development of the GPL and
Linux. The free software movement extends beyond these projects. A separate but related branch of the movement
arose from the University of California-Berkeley and work on the UNIX variant called the Berkeley Software
Distribution, or BSD. Development of BSD variants FreeBSD, NetBSD and OpenBSD continue today under a
different free software license called the Modified BSD License. For more information on BSD, the BSD license,
and the progression of development, see Marshall Kirk McCusick, Twenty Years of Berkeley Unix: From AT&T to
Freely Redistributable, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 31, 31-46 (Chris DiBona
et al. eds., 1999).
9 SAM WILLIAMS, FREE AS IN FREEDOM: RICHARD STALLMAN'S CRUSADE FOR FREE SOFTWARE, Chapter 1 (2002),

available at http://www.faifzilla.org/chO1 .html.
10 Id.

11 Id.
12 id.

6 Chi.-Kent J. Intell. Prop. 214

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

object code.13 After weeks of fruitless searches for the source code, Stallman reportedly
approached a former Xerox employee at Carnegie Mellon University who was one of the
primary developers on the Xerox printer. Citing non-disclosure agreements, he rebuffed
Stallman's request for source code.14 According to biographer Sam Williams, Stallman viewed
this as a rejection of "a system that, until then, had encouraged software programmers to regard
programs as communal resources." 15 Stallman's experience with the Xerox printer, and
subsequent encounters with non-disclosure agreements (NDAs) in the Al lab, galvanized and
clarified the guiding concept of the GNU project he founded in 1983 that "software should be
shared."16

As more and more programmers in the MIT Al lab left to join companies that required
NDAs, Stallman recognized that the collegial programming culture to which he had become
accustomed had changed. 17 Rather than follow the trend, he decided to create a new computing
environment where source code would always remain free. 18 With the wide adoption of UNIX
operating systems at the time, and given his extensive experience with UNIX and its variants,
Stallman decided to create a UNIX compatible operating system called GNU, a recursive
acronym for GNU's Not Unix. 19

Concerned that MIT would attempt to claim ownership of any work he completed on
GNU while the Al lab still employed him, Stallman quit his job in January 1984 to ensure that he
could retain complete control of the source code for GNU. 20 As the body of GNU software -
developed primarily by Stallman - grew, Stallman recognized a need for further organization and
funding. In 1985, Stallman created the Free Software Foundation (FSF) as "a tax-exempt charity

13 Id. Courts have defined object code as "the literal text of a computer program written in a binary language

through which the computer directly receives its instructions." Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9
F.3d 823, 835 (10th Cir. 1993) (citing Autoskill, Inc. v. Nat'l Educ. Support Sys., 994 F.2d 1476, 1492 n.18 (10th
Cir. 1993)). Source code, on the other hand, is "the literal text of a program's instructions written in a particular
programming language." Id. (citing Trandes Corp. v. Guy F. Atkinson Co., 996 F.2d 655, 663 (4th Cir. 1993)). This
paper and many of the sources cited herein also use the companion terms "closed source" and "open source." These
common terms refer to the availability of source code. Closed source projects typically make only the object code
freely available and limit or prevent distribution of source code. Open source projects typically make source code
freely available under the GPL or another similar license.
14 WILLIAMS, supra note 9.
15 Id.
16 Posting of Richard M. Stallman to gnu.cc, More Confusion on GNU Copying Conditions (Nov. 13, 1988,

14:22:34 GMT), available at http://groups.google.com/group/gnu.gcc/browse-thread/thread/3cd3f5a5c6f9457d/.
17 WILLIAMS, supra note 9.
i Stallman, supra note I

I consider that the golden rule requires that if I like a program I must share it with other people
who like it. I cannot in good conscience sign a nondisclosure agreement or a software license
agreement.

So that I can continue to use computers without violating my principles, I have decided to put
together a sufficient body of free software so that I will be able to get along without any software
that is not free.

19 Id.
20 Richard M. Stallman, The GNU Operating System and the Free Software Movement, in OPEN SOURCES: VOICES
FROM THE OPEN SOURCE REVOLUTION, supra note 8, at 53, available at
http://www.oreilly.com/catalog/opensources/book/stal lman.html.

6 Chi.-Kent J. Intell. Prop. 215

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

for free software development. "21 The FSF took over most of the business operations, selling
tapes with GNU and other software, and soliciting donations. Stallman continued programming
for the GNU project and evangelizing his view of free software. 22

During the same period, Stallman continued to experiment with different software
licenses. His first experience came with his Emacs software development during the late 1970s.2 3

After developing the first Emacs implementation in 1975, Stallman's implementation attracted
interest from outside MIT.2 4 To ensure that the project remained open to the benefit of all
programmers, Stallman told interested parties "that it belongs to the Emacs 'Commune,' that in
order to use Emacs you had to be a member of the Commune and that meant that you had the
responsibility to contribute all the improvements that you made." 25 This simple "license" met
only limited success. By 1980, several programmers had released Emacs-based distributions,

26including Brian Reid's Scribe project. Upon selling his project to commercial software
manufacturer Unilogic, Reid inserted source code that disabled his program after a 90-day trial
period to enable Unilogic to sell copies of the editor.27 Stallman believed that "one after another,
people would defect and stop cooperating with the rest of society, until only those of us with
very strong consciences would still cooperate," and he tightened his control over Emacs. 28

In 1984, Stallman continued to adapt GNU Emacs, borrowing heavily for new features
from an existing project developed by a Carnegie Mellon researcher and subsequently sold to
privately held software maker Unipress.29 When Unipress learned of Stallman' s appropriation of
their copyrighted source code, the company threatened to take action. 30 Faced with completely
rewriting this portion of GNU Emacs, Stallman recognized that direct control over the
distribution of Emacs and other free software was limited solely to that code over which he had
personal control.3 '

The incidents with Unilogic and Unipress forced Stallman to rethink the informal
"commune" approach to software licensing. One of Stallman's main goals was to close the

21 id
22 Id.

23 Emacs stands for Editor MACroS, originally a set of instructions for the TECO editor. Programmers have written
numerous Emacs implementations over the years to control editing of text files (including source code), to compile
programs, and even to browse the Web. Two main Emacs implementations exist today, including the GNU Emacs
project that Stallman started in 1984 and still maintains. See generally Emacs, WIKIPEDIA: THE FREE

ENCYCLOPEDIA, http://en.wikipedia.org/wiki/Emacs (last visited Dec. 3 1, 2006).
24 Richard M. Stallman, The GNU Operating System and the Free Software Movement, supra note 8, at 53, available
at http://www.oreilly.com/catalog/opensources/book/stal lman.html.
25 Richard M. Stallman & Bjorn Remseth, Partial Transcript of Lecture at KTH (Kungliga Tekniska Hogskolan
(Royal Institute of Technology) in Stockholm Sweden (Oct. 30, 1986),
http://groups.google.com/group/soc.culture.argentina/msg/38e213511a3360ee (last visited December 31, 2006).
26 Richard M. Stallman, The GNU Operating System and the Free Software Movement, supra note 8, at 53, available
at http://www.oreilly.com/catalog/opensources/book/stallman.html.
21 WILLIAMS, supra note 9, Chapter 6, available at http://www.faifzilla.org/ch06.html.
28 Stallman & Remseth, supra note 25, at 4.
29 WILLIAMS, supra note 9, Chapter 7, available at http://www.faifzilla.org/ch09.html.
30 id.

31 id.

6 Chi.-Kent J. Intell. Prop. 216

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

loophole that led to the Unilogic and UniPress disputes. 32 With the release of the GNU Emacs
project in 1985, Stallman also released two important documents: "The GNU Manifesto" 33 and
the "GNU Emacs General Public License." 34 The GNU Manifesto expanded on Stallman's 1983
announcement of GNU and highlighted his reasoning for rejecting proprietary software.35 It
reiterated Stallman's "golden rule," that he must share programs with others who like those
programs. 6 Rebutting what he saw as common attacks on the GNU position, Stallman outlined
his position on copyright, asserting that societies that granted copyright licenses were worse for
doing so.37 Conversely, Stallman wrote, software programs did not lend themselves to copyright
protection in the way that books had in the 18th and 19th centuries. He also argued, "a person who
enforces a copyright is harming society as a whole both materially and spiritually; in which a
person should not do so regardless of whether the law enables him to [sic].,,38

Stallman reiterated his anathematic approach to copyright protection in the GNU Emacs
General Public License. Consistent with the later GPL, discussed in Part II, the GNU Emacs
General Public License opened with a preamble outlining two of Stallman's three main purposes
for releasing code in the GNU project: (1) to keep software free, and (2) to ensure that licensees
know that the Emacs software carried no warranty. 39 The license provisions first introduced
Stallman's "copyleft" concept: subject to certain restrictions, licensees could modify the software
or any part of it, but any derivative of GNU Emacs had to be licensed under the same terms. 40

Stallman clarified the original 1985 GNU Emacs General Public License in 198841 and
continued to write source code and release software for the GNU Project.42 Each new piece of
software required a new "General Public License." By 1989, after he discussed his plan with
others at FSF and those within the programmer community, 43 Stallman created version 1.0 of the
GNU General Public License (GPL).44 The blanket GPL replaced the individual licenses
Stallman had previously created, including the Emacs license, but maintained language that was
virtually identical to those earlier licenses. 45 The GNU Project successfully developed three
major software tools and several smaller ones by the 1989 release of the license.46 Despite the
simplified licensing and growing acceptance of GNU tools, Stallman's individual control of the

32 Id.
33 Richard M. Stallman, The GNU Manifesto, http://www.gnu.org/gnu/manifesto.html (last visited Dec. 31, 2006).
34 Richard M. Stallman, The GNU Emacs General Public License, http://www.cogsci.indiana.edu/pub/COPYING

(last visited Jan. 13, 2007).
35 Stallman, supra note 33.
36 Id. (Stallman continues by explaining, "Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way.")
3 7

id.

38 id.
39 Stallman, supra note 34. The GNU Emacs General Public License, unlike the GPL, made no mention of patents or
patent licensing. Id.
40 Id. at §§ 1, 2(b). The Emacs license did not describe the nature of the "warranty" that it disclaimed. Id.
41 Id42id

42 WILLIAMS, supra note 9, Chapter 9, available at http://www.faifzilla.org/ch09.html.
43 Id.

44 Richard M. Stallman, GNU General Public License Version 1 http://www.gnu.org/copyleft/copying-1.0.html (last
visited Jan. 11, 2007).
41 Compare id. with Stallman, supra note 34.
46 WILLIAMS, supra note 9, Chapter 9, available at http://www.faifzilla.org/ch09.html.

6 Chi.-Kent J. Intell. Prop. 217

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Project slowed development considerably. Six years after his original Usenet announcement in
net.unix-wizards, the GNU Project still had no operating system kernel, a glaring gap. 47

B. Linus Torvalds and the Emergence of Linux

On a trip to Polytechnic University in Helsinki, Finland in late 1990, Stallman spoke to
an audience including 21-year-old Linus Torvalds, a computer science student and programmer.
In his 2001 biography, Torvalds recalled appreciating Stallman's free software approach,
because it put the improvement of code ahead of monetary or legal concerns. 48 Torvalds had
already developed UNIX code on Polytechnic's systems. 49 While trying to avoid a long walk
across campus in the winter to use the computer lab, he looked to a UNIX variant, Minix, to
provide connectivity from his apartment to the lab.50

Throughout 1991, Torvalds rewrote Minix and made his own Usenet posting announcing
he was "doing a (free) operating system (just a hobby, won't be big and professional like gnu for
386 (486) AT clones)." 51 Torvalds originally released the source code under his own copyright
terms, and did not use the GPL:

- Full source must be available (and free), if not with the distribution then at least
on asking for it.

- Copyright notices must be intact. (In fact, if you distribute only parts of it you
may have to add copyrights, as there aren't (C)'s in all files.) Small partial
excerpts may be copied without bothering with copyrights.

- You may not distibute [sic] this for a fee, not even "handling" costs.52

While rudimentary, Torvalds' copyright notice embodied the basic concept of the GPL: freely
available source code at no charge. With the release of version 0.12 in December 1991, Torvalds
integrated the GNU Project's C code compiler (gcc) and discarded his original license in favor of
the GPL.

53

Between the release of Linux version 0.01 and 0.12, Stallman and the FSF had revised
the GPL. 54 Version 2 of the GPL made what Stallman termed "some fairly small changes" 55 with

47 For readers unfamiliar with Linux or UNIX operating system environments, the Linux Information Project has the
best plain English definition of a "kernel." Linux Information Project, Kernel Definition,
http://www.bellevuelinux.org/kernel.html (last visited Jan. 5, 2007).
48 LINUS TORVALDS & DAVID DIAMOND. JUST FOR FUN: THE STORY OF AN AccIDENTAL REVOLUTIONARY 58-59
(2001).
49

id.
50
Id.

51 Posting of Linus Torvalds to comp.os.minix, What would you like to see most in minix? (Aug. 25, 1991, 20:57:08
GMT), available at http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b.
52 Linus Torvalds, Notes for linux release 0.01, http://www.kernel.org/pub/linux/kernel/Historic/old-
versions/RELNOTES-0.01 (last visited Jan 1, 2007).
53 Linus Torvalds, Release Notes for Linux vO.12, http://www.kernel.org/pub/linux/kernel/Historic/old-
versions/RELNOTES-0. 12 (last visited Jan 1, 2007) (adopting the GPL and discussing features that use gcc 2.0).
54 GPL, supra note 4.

6 Chi.-Kent J. Intell. Prop. 218

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

56the exception of a new Section 7. Affectionately nicknamed the "Liberty or Death" clause by
Stallman, Section 7 represented the most significant change to the GPL and its predecessors. 57

For the first time, Stallman's license recognized software patents. The "Poison Pill" clause,
described in detail in Part II, effectively eliminates the license in the event of court-imposed
limitations due to patent infringement. Torvalds' Linux 0.12 and subsequent versions adopted
this version 2 of the GPL.58

C. Linux and the GPL Today

Linux development has progressed significantly from its early days in Torvalds'
dormitory room. The main kernel development has moved into its fifth generation.59 Ported into
29 different languages from Catalan to Arabic, programmers have created Linux distributions
that operate on more than a dozen different hardware platforms, ranging from standard PCs and
UNIX mainframes, 61 to real-time embedded systems often used in manufacturing and
automation, 62 to more esoteric platforms such as the SEGA Dreamcast 63 and Sony PlayStation.64

In 2002, NASA's Advanced Information System Technology group developed a version of the
Linux operating system called FlightLinux to "address the unique problems of spacecraft
onboard computers."

65

The reach of Stallman's GPL extends beyond the Linux kernel. At SourceForge, one of
the two most prominent on-line repositories of free software, 66 authors have licensed nearly 65%
of over 81,000 licensed projects under the GPL.67 The other main free software repository,

55 Richard M. Stalman, Transcript of Richard Stallman at the 2nd international GPLv3 conference; 21 st April 2006,
http: //fsfeurope. org/projects/gpIv3 /fis-rms-transcript.en.htm I#Iiberty-or-death (last visited an Jan. 19, 2007).
56 GPL, supra note 4, at § 7.
57 Richard M. Stallman, Transcript of Richard Stallman at the 2nd international GPLv3 conference; 21st April 2006,
http: //fsfeurope. org/projects/gplv3 /fis-rms-transcript.en.htm I#Iiberty-or-death (last visited Jan 19, 2007).
58 Torvalds, supra note 53.
59 See The Linux Kernel Archives, http://www.kernel.org/pub/linux/kernel/ (last visited Jan. 4, 2007). The 1.3, 2.0,
2.2, 2.4 and 2.6 release trees represented stable platform releases. The current stable kernel revision as of this
writing is 2.6.20.
60 Linux Online -Distributions and FTP Sites, http://www.linux.org/dist/ (last visited Jan. 4, 2007).
61 Linux Online - List of Distributions, http://www.linux.org/dist/list.html (last visited Jan 4, 2007) (selecting no

criteria to generate the entire list of distributions). The list includes major commercial distributions such as Red Hat
Linux, Debian and SuSE.
62 LynuxWorks, Inc., Real-Time Operating System and Embedded Linux OS from Lynuxworks,
http://www.lynuxworks.com/ (last visited Jan 4, 2007); MontaVista Software Inc., MontaVista Software Platform
to Innovate, http://www.mvista.com/ (last visited Jan. 4, 2007).
63 Linux DC: Linux for the Sega Dreamcast, http://linuxdc.sourceforge.net/ (last visited Jan. 4, 2007).
64 Linux for PlayStation 2 Community, http://playstation2-linux.com/ (last visited Jan. 4, 2007).
65 NASA, FlightLinux -Open Source Linux Operating System for onboard spacecraft use,
http://flightlinux.gsfc.nasa.gov/ (last modified May 10, 2005).
66 Unlike the use of the term "free" at broader software repositories such as CNET's download.com, "free" refers not

to cost, but to "freedom," as in the freedom to freely copy, distribute, and modify software. See Stallman, supra note
20.
67 Compare Open Source Technology Group (OSTG), SourceForge.net: Software Map,
http://sourceforge.net/softwaremap/trove list.php?form cat =14 (last visited Jan. 4, 2007) (listing all licensed
projects at SourceForge) with OSTG, SourceForge.net: Software Map,

6 Chi.-Kent J. Intell. Prop. 219

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Freshmeat, lists nearly 67% of all projects under the GPL.68 Stallman's free software philosophy
reflected in the GPL's self-perpetuating mechanisms, along with the rapid growth of Internet
connectivity, inexpensive bandwidth, and the availability of inexpensive, quality GPL-licensed
software, helped ensure the spread of Linux and other GPL-licensed projects. The GPL's
requirement that programmers, users, and companies distribute all modifications to GPL-licensed
software under the GPL ensured the widespread adoption of those programs and the underlying
GPL.

The good news about Linux and the GPL, however, masks a larger debate about the
applicability and validity of the GPL itself. To date, no U.S. court has considered a case directly
interpreting or enforcing the GPL. 69 The Linux community has largely policed any blatant
violators, and the few major corporate holdouts regarding the release of GPL-licensed source
code have folded under pressure from the FSF and the community at large. For example,
Linksys, now a division of networking giant Cisco Systems, released Linux code used to operate
its "WRT" model wireless routers in 2003.70 The battle ultimately drove Linksys out of the
Linux community, however. Although the company still offers Linux source code in its GPL
Code Center, 71 and a Linux version of its WRT product line, the company shifted its flagship
wireless router products to commercially licensed VxWorks in 2005.72 While Linksys blamed its
switch on a "larger memory footprint," Linksys officials noted, "a lot of companies in the
networking space have already switched" from Linux to VxWorks. 73

Some companies never embraced the GPL, preferring an interpretation that allowed
proprietary code to interoperate with Linux, a much narrower interpretation of its terms than
Stallman and the FSF advocate. 74 Video and networking card manufacturer NVIDIA releases
only the object code for their products' Linux drivers under a proprietary license.75 NVIDIA
claims that its proprietary license and closed source software release protect its intellectual
property and avoid potential patent infringement lawsuits, valid or not. 76 NVIDIA's creation of
driver modules for the GPL-licensed Linux kernel sparks a heated debate in the broader
community, 77 even though there is little agreement on exactly how the GPL applies, if at all, to

http://sourceforge.net/softwaremap/trovelist.php?form cat-15 (last visited Jan. 4, 2007) (listing GNU GPL
projects only).
61 OSTG, freshmeat.net: Statistics and Top 20, http://freshmeat.net/stats/ (last visited Jan. 4, 2007). The next most-
used license is the FSF's GNU Lesser GNU Public License (LGPL) at 6.33%.
69 See infra Part II. B.
70 Posting of Rob Flickenger, Is Linksys Shirking the GPL? (Maybe Not.), to O'Reilly Emerging Telephony,

http://www.oreillynet.com/etel/blog/2003/07/is linksys shirking the gpl ma.html (Jul. 10, 2003, 04:39 GMT).
71 Cisco Systems, Inc., Linksys.com GPL Code Center, http://www.linksys.com (search for "GPL Code Center" in
the text box provided; then follow the GPL Code Center hyperlink on the results page) (last visited Jan. 5, 2007).
72 LinuxDevices.com, Linksys courts Linux hackers with WRT54G"L," (Dec. 1,2005),

http://www. linuxdevices.com/news/NS4729641740.html.
73 Id
74 See supra text accompanying notes 39-43.
75 NVIDIA Corp., License for Customer Use of NVIDIA Software,
http://www.nvidia.com/object/nv-swlicense.html (last visited Jan. 5, 2006).
76 Stephen Shankland, Nvidia updates closed-source drivers for open-source OSes, CNET NEWS.COM, Jun. 25,
2005, http://news.com.com/2061-10795 3-5762319.html.
77 E.g., Joe Barr, GPL concerns halt Kororaa live CD, NEwSFORGE, May 15, 2006,
http://trends.newsforge.com/article.pl?sid-06/05/15/1451229&from-rss. The terms "kernel" and "module" will

6 Chi.-Kent J. Intell. Prop. 220

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

NVIDIA in this instance. 78 In a 2003 post to the Linux Kernel Mailing List, Linus Torvalds
entered the debate about the GPL's scope when applied to modules in general. While Stallman
and the FSF insist that all code that interacts with GPL code must be GPL-licensed, 79 Torvalds
offered his view that not all modules fall within the definition of derivative works under the
GPL.80

With the widespread adoption of Linux and its continued growth in mainstream
computing,8 I the GPL occupies a central and precarious position as the enabling mechanism for
continued growth of Linux and GPL-licensed projects. Without the GPL, the growth engine
could suddenly stop, unleashing a morass of litigation as individual authors, companies, and end
users rush to stake out territory in a new licensing landscape. Part II examines the GPL itself and
discusses relevant statutory and case law in interpreting the license. Parts III and IV consider the
application of the GPL to derivative works and discuss the policy implications, and a course of
action, for the Linux and broader open source communities.

II. The GNU General Public License

A. Is the GPL a License or a Contract?

Richard Stallman divided the GPL into four main sections: a preamble, a set of numbered
sections outlining various terms and conditions, a warranty disclaimer in sections 11 and 12, and
a short section following the license text describing how to apply the GPL to software
programs.82 The terms and conditions section begins with definitions in section 0. The central
concept of the GPL and other open source licenses is the allocation of intellectual property rights
in software. Sections 1 through 4 describe the primary rights that the GPL purports to grant its
licensees, and its other sections outline a range of other rights and obligations. The potential
reach of these terms depends largely on whether the GPL acts as a license or contract.
Therefore, this analysis begins with a discussion of judicial treatments of software licenses
before turning to the specific terms and conditions outlined in the GPL.

appear frequently from this point forward. Readers unfamiliar with Linux or UNIX operating systems should see the
Linux Information Project definition of a "kernel" supra note 47. A "module" in this context is software code that
can perform one or many different tasks within the Linux operating system. Most modules do not function as
separate programs, but are connected ("linked") to the main kernel either dynamically when their routines are
needed by the operating system or statically when a systems administrator builds the Linux kernel from source code.
78 For a sampling of the recurring debate surrounding the combination of closed source object code and GPL code,

including NVIDIA, see, e.g., Linus Puts Kibosh on Banning Binary Kernel Modules,
http://linux.slashdot.org/article.pl?sid-06/12/14/1328249&from-rss (last visited Jan. 5, 2007).
79 Free Software Foundation, Frequently Asked Questions about the GNU GPL - GNU Project - Free Software
Foundation (FSF), http://www.gnu.org/licenses/gpl-faq.html (last visited Jan. 5, 2007).
80 Posting of Linus Torvalds to the Linux Kernel Mailing List, Re: Linux GPL and binary module exception clause?
(Dec. 4, 2003, 00:00:21 GMT), available at http://lkml.org/lkml/2003/12/3/228.
81 See supra note 7 and accompanying text.
82 GPL, supra note 4.

6 Chi.-Kent J. Intell. Prop. 221

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

In the face of significant authority, the FSF and the GPL itself claim that the GPL acts as
a license, and not a contract. 83 The license acceptance procedures in the GPL appear in Section 5:

You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.84

Professor Rosen suggests "[T]his GPL reliance entirely on copyright law for license
enforcement is legally sound., 85 Professor Eben Moglen, the FSF's General Counsel, essentially
agrees, arguing

The GPL, however, is a true copyright license: a unilateral permission, in which no
obligations are reciprocally required by the licensor. Copyright holders of computer
programs are given, by the [U.S.] Copyright Act, exclusive right to copy, modify and
redistribute their programs. The GPL, reduced to its essence, says: "You may copy,
modify and redistribute this software, whether modified or unmodified, freely. But if you
redistribute it, in modified or unmodified form, your permission extends only to
distribution under the terms of this license. If you violate the terms of this license, all
permission is withdrawn."

86

Professors Rosen and Moglen's analyses stand alone, since laws, treaties, and public policy in
the U.S. and abroad contradict their opinions. Because the GPL's construction as either a bare
license or a contract affects licensee and licensor rights and remedies, as well as the
interpretation of the GPL itself, the legal status and worldwide effect of the GPL is an important
question.

i. Contractual Interpretations of Software Licenses and the GPL
Internationally

When licensors and licensees reside in different countries, the United Nations Convention
on Contracts for the International Sale of Goods (CISG) 87 may apply. The United States and 66
other nations, with the notable exception of the United Kingdom, have ratified the treaty and

83 The analysis of the GPL that follows in this section relies heavily on U.S. copyright law because the GPL authors
drafted and continue to interpret the license from a U.S.-centric point of view.
84 GPL, supra note 4, at § 5.
85 LAWRENCE ROSEN, OPEN SOURCE LICENSING: SOFTWARE FREEDOM AND INTELLECTUAL PROPERTY LAW 138
(2004).
86 Posting of Pamela Jones, to Groklaw, The GPL is a License, Not a Contract, Which is Why the Sky Isn't Falling,
http://www.groklaw.net/article.php?story-20031214210634851 (Dec. 14, 2003, 15:06 PM GMT) (alteration added);
Accord Eben Moglen, Freeing the Mind: Free Software and the Death of Proprietary Culture, 56 ME. L. REv. 1, 6
(2004) ("[The GPL] requires no acceptance. It requires no contractual obligation. It says you are permitted to do,
just don't try to reduce anyone else's rights.").
87 United Nations Convention on Contracts for the International Sale of Goods, Apr. 11, 1980, S. TREATY DOC. NO.
98-9, 19 I.L.M. 668 [hereinafter CISG].

6 Chi.-Kent J. Intell. Prop. 222

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

entered it into force. 88 With software developers spread around the world, a GPL licensor and
licensee will often be parties in different Contracting States under the CISG.8 9

The CISG does not require consideration for contract formation, and does not even define
or use the term consideration. Part II of the CISG governs formation of contracts between parties
in Contracting States in terms of offer and acceptance only. Under the CISG, the GPL
constitutes "an offer if it is sufficiently definite and indicates the intention of the offeror to be
bound in case of acceptance" and "if it indicates the goods and expressly or implicitly fixes or
makes provision for determining the quantity and the price." 91 The GPL terms apply to a piece of
software, an indication of the goods required by CISG Article 14, and outline the terms by which

92 9the GPL binds the licensor. As Professor Moglen notes, the GPL fixes the price: free.93

Section 5 of the GPL contemplates acceptance of the GPL's terms when "by modifying
or distributing the Program ... you indicate your acceptance of this License to do so, and all its
terms and conditions 94 This offer-plus-conduct approach meets the Convention's definition
that "a statement made by or other conduct of the offeree indicating assent to an offer is an
acceptance." 95 The CISG makes no mention of a separate class of licenses with different
treatment from contracts under the treaty.

The GPL "license" meets the simple requirements for contract formation under the CISG.
How the Convention treats software in its definition of goods is less clear. Reported CISG
decisions support the inclusion of software in the CISG definition of goods.96 The text of the
Convention provides no clear definition of either goods or sale, other than the exclusion of
certain goods in Article 2 and sales of services in Article 3.97 The Convention does not mention
sales of software, nor does it exclude the sale of intangible goods. Even though Article 2(f)
explicitly excludes electricity, it does not exclude other intangibles such as the sale of gas. 98

88 UNCITRAL (United Nations Commission on International Trade Law), Status: 1980 United Nations Convention

on Contracts for the International Sale of Goods,
http://www.uncitral.org/uncitral/en/uncitral texts/sale-goods/198OCISGstatus.htmi (last visited Jan. 5,
2007).Ghana and Venezuela have signed the treaty, but not entered it into force. Id.
89 See Free Software Foundation, Guide to Translating,
http://www.gnu.org/server/standards/README.translations.html#TranslationsUnderway (last visited Jan. 5, 2007).
A list of GNU translators alone reveals over three dozen different countries and languages. Id.
90 The CISG never references the term consideration. Given the vast difference between contract formation concepts
at common and civil law, Contracting States would undoubtedly face extreme difficulty in framing an acceptable
definition.
91 CISG, supra note 87, at art. 14.
92 GPL, supra note 4.
93 Jones, supra note 86.
94 GPL, supra note 4, at § 5.
95 CISG, supra note 87, at art. 18(1).
96 See infra text accompanying notes 121-127.
97 Id. at arts. 2(a)-2(f), 3(2).
98 See J.W. Carter, Article 2B: International Perspectives, 14 J. CONTRACT LAW 54, 65 (1999) (Austl.) ("The reason
for including electricity (and gas) is that electricity is capable of being consumed in the same way as, for example,
food. However, this does not mean that we should treat all intangibles as goods.. ."); L. Scott Primak, Computer
Software: Should the U.N. Convention n Contracts for the International Sale of Goods Apply? A Contextual

6 Chi.-Kent J. Intell. Prop. 223

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

The argument for a contractual interpretation in light of the CISG generally makes sense,
however. Issues surrounding the acceptance of GPL terms aside, if Programmer A downloads
"GPL Ware" from Programmer B in consideration of the obligations contained in the GPL, the
transaction between A and B bestows rights in the physical copy of the software on A. At a
minimum, A buys both a physical copy of the software and a license to use the software,
although those rights vary from jurisdiction to jurisdiction.

Although a software program delivered over an intangible medium does not exist in the
way a car's catalytic converter, a bulb for a floodlight, or digital camera zoom lens exists, it
functions much in the same way that these tangible machines function. A piece of software is not
merely a packaged set of copyrighted expressions,99 but a functional "machine" designed to
accomplish a specific set of tasks. Rarely do software developers delight in the aesthetic beauty
of a function call to a Linux kernel thread, reveling instead in its functionality. Viewed through
the prism of a functional machine, software lends itself far more readily to CISG and domestic
law prescriptions on contract formation, obligations, and remedies designed to protect and
regulate sales of "things." Downloadable software fits the "sale of goods" concept outlined in
CISG Article 30. l°0 Article 3 1(c) allows the seller to "[place] the goods at the buyer's disposal at
the place where the seller had his place of business at the time of the conclusion of the contract,"
such as in a download area of a Web site. 10 1

Even if Programmer B includes a clickwrap agreement, specifically requiring
Programmer A to treat the GPL as a bare copyright license that the parties will interpret using
only the jurisdiction's relevant copyright law, the parties maintain the same seller/buyer
relationship. The GPL recognizes intellectual property protections and purports to bind A to use
B's software in accordance with those rights. This limitation on how A may use B's "GPL
Ware" does not change the nature of the transaction. The restrictions do not magically transform
a tangible software "good" into an amorphous glob of expressive letters and symbols ignored by
the CISG or countries' other domestic sales laws. A fixation and license to use a copy of "GPL
Ware" become A's property at the completion of the transaction, subject to intellectual property
rights. Contract law, not copyright law, protects A's rights as a buyer in this transaction.10 2

In 1995, a German district court held that the CISG does apply to contracts for the sale of
standard software. 103 In that case, a German company purchased software from a French

Approach To the Question, 11 COMPUTER/L.J. 197 (1991). Contra Franco Ferrari, Specific Topics of the CISG in the
Light ofJudicial Application and Scholarly Writing, 15 J. L. & CoM. 1, 65, 65 n.430 (1995) (combining dictum from
a non-software related German case with other scholarly definitions and the Convention relating to a Uniform Law
on the International Sale of Goods to propose that only tangible objects qualify as goods under the CISG).
99 Part III addresses the difficulties in finding blanket copyright protection in software.
100 CISG, supra note 87, at art. 30 ("The seller must deliver the goods, hand over any documents relating to them
and transfer the property in the goods, as required by the contract and this Convention.").
'0' Id. at art. 31.
102 This may be true whether a court considers the physical copy of the software or the license as standalone items.
The buyer and seller have established a contractual relationship. Contract law will necessarily govern at least a
portion of the relationship between the parties, even if copyright law or licenses like the GPL supply additional
intellectual property guidance.
103 Landgericht [LG] Mfinchen [Munich District Court], Feb. 8, 1995, Docket No. 8 HKO 24667/93, available at
http://cisgw3.law.pace.edu/cisg/wais/db/cases2/950208g4.html.

6 Chi.-Kent J. Intell. Prop. 224

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

company. The French seller delivered and installed the programs and sued in a German court to
recover the purchase price when the buyer refused to pay. 104 Although this German case
concerned software delivered on tangible media, no logical reasons exist to treat software
delivered over the Internet, like the software in Specht v. Netscape Communications Corp.,l15 or
on tangible media differently. Regardless of the mode of delivery, the software remains a "good"
subject to an agreement between the parties regarding its transfer.

A 2000 case in the Zurich, Switzerland Commercial Court held that "the purchase of
software as well as the joint purchase of software and hardware constitutes a sale of goods that
falls within the ambit of the CISG."1 °6 Citing a German CISG treatise10 7 and the text of the CISG
itself,10 8 the court applied the CISG to a contract for the sale of software and hardware between
an Austrian seller and a Swiss defendant. 109 After the seller delivered the hardware and software,
the parties negotiated a second contract for software maintenance."l 0 Negotiations on the second
contract failed, and the buyer refused to pay for the installed software, citing non-conformity."'I

The Zurich court found that the ancillary installation and customization services did not "prevail
in the [] contract" and "the CISG has to be the governing law of the contract." 112 The seller
provided the Oracle software under a license, and not as a sale." l 3 The court did not draw a
distinction between the license and the sale contract, referring to "the procurement of the user
rights to the standard software" in calculations of the sale versus service component of the
master contract. 114 The court ultimately found for the seller, holding that the buyer had failed to
detail the non-conformity as required by Article 39(1) of the CISG.1 15

Applying the CISG to transfers of software under the GPL license conforms to the
underlying goals of the CISG. Article 7(1) of the CISG contains two instructions for the Sphere
of Application of the treaty: (1) promotion of uniformity in international law, and (2) observance
of good faith. 116 Exempting software licenses, especially if only for intangible delivery, frustrates

104 Id.
105 150 F.Supp. 2d 585 (S.D.N.Y. 2001).
106 Handelsgericht [HG] Zurich [Commercial Court of the Canton of Zurich], Feb. 17, 2000, Docket No. HG

980472, available at http://cisgw3.law.pace.edu/cases/000217s1.html [hereinafter HG Zurich].10 7 VON E. CAEMMERER & PETER SCHLECHTRIEM, KOMMENTAR ZUM EINHEITLICHEN UN-KAUFRECHT-CISG

[COMMENTARY ON THE UN CONVENTION ON THE INTERNATIONAL SALE OF GOODS (CISG)] (Peter Schlechtriem ed.,
Geoffrey Thomas trans., Oxford Clarendon Press 2d ed. 1998). The court cited Caemmerer & Schlechtriem to
support the finding that software could be the object of a tangible goods purchase under the CISG. HG Zurich at §
IV. I.c).
108 HG Zurich, at § IV.l.c. ("see also Art. 3 and Art. 51 N 4 the typical element still remains as a sale of
goods.").
109 Id. at § 11.1.
110 Id. at § IV.1.c).
III Id. at § IV.5.a).
112 Id. at § IV.,.c).
113 Id. at § IV.5.a).
114 Id. at § IV.,.c).
115 Id. at § IV.5. See also note 118, infra, regarding the implications of applying CISG rules on contract formation,

obligation and remedies.
116 CISG, supra note 87, at art. 7(1) ("In the interpretation of this Convention, regard is to be had to its international
character and to the need to promote uniformity in its application and the observance of good faith in international
trade.")

6 Chi.-Kent J. Intell. Prop. 225

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

the purpose of the CISG. While uniform interpretation of software licensing under the CISG is
no more possible than in any other area of CISG jurisprudence, 117 application of the CISG to
GPL license transactions has inherent value. By interpreting the GPL under the auspices of the
CISG, courts place themselves in a better position to consider international legal uniformity and
the international character of software development under the GPL. 1 8

Decisions in foreign courts that find domestic contractual relationship in a software
license also support the interpretation of a GPL as a contract. For example, German law defines a
contract as a congruence of two or more persons' will to create a legal effect. 19 As with the
CISG, the German Civil Code does not require consideration, only a mutual agreement. Section
311 of the German Civil Code requires that "for the creation of an obligation by legal
transaction, and for any modification of the substance of an obligation, a contract between the
parties is necessary, unless otherwise provided by law."' 120 Superficially, the obligations under
the GPL appear to require a contract between the parties, and German courts have adhered to this
interpretation.

In Welte v. Sitecom Deutschland GmbH,12 1 a district court in Munich held that it had "no
doubts as to the validity of the conditions" set forth in the GPL.12 2 The court agreed with "the
prevailing view in German legal doctrine that the terms of the GPL are general terms and
conditions (Allgemeine Geschfitsbedingungen) in the meaning of Section 305 et seq. of the
German Civil Code (BGB)."' 123 The opinion examined the license under application of German
Civil Code Section 305, and stated "general business conditions" of the GPL were "effectively
incorporated into a possible contractual relationship between the defendant and plaintif"'24 The
court then referred to the reversal of rights upon infringement contained in GPL Section 4 as
non-discriminatory to "the contractual partner of the user." 125 Notably, the court interpreted the
GPL under the German Copyright Act, reinforcing the dangers of the lack of a choice of law

117 See Franco Ferrari, Uniform Interpretation of the 1980 Uniform Sales Law, 24 GA. J. INT'L & COMP. L. 183

(1999); PETER WINSHIP, The Scope of the Vienna Convention, in INTERNATIONAL SALES 1-I at, 1-15 (Nina M.
Galston & Hans Smit eds., 1984) (discussing the rejection of his proposal to create an official commentary to the
Convention).
118 The application of the CISG through the characterization of the GPL as a sale of goods may have other
significant implications. Remedies in the CISG differ significantly from those available at common law or under the
UCC. Courts may disallow the GPL's disclaimer of warranty or interpret copyright terms differently depending on
the jurisdiction and the applicable local laws. Other treaties, declarations related to the CISG further affect the
interpretation and validity of contracts in CISG Contracting States, and the resulting implications when only one
party resides in a CISG Contracting State. A full discussion of the GPL's failure to include or consider choice of law
provisions, while likely of significant interest to commercial and non-commercial software developers alike, extends
beyond the scope of this paper.
119 Bfirgerliches Gestzbuch [BGB] [Civil Code] § 145.
120 Id. at §311 Abs. 1, available at http:iiwww iuscomp.org/21a/statutes/BGB.htm (English translation).
121 Landgericht [LG] Manchen I [Munich District Court I], May 19, 2004, Docket No. 21 0 6123/04, available at

http://www.jbb.de/judgment dc munich gpl.pdf [hereinafter Munich I].
122 Id. at 12. But see infra note 322 and accompanying text (disclaimers such as those in GPL §§ 11, 12 "are

generally considered to be invalid under German law").
123 Martin Braun, German Court Upholds Linux License, 5 INT'L IT AND OUTSOURCiNG NEWSL., October 5, 2004,
available at http://www.mayerbrown.com/broker.asp?id 1 893&nid-6.
124 Munich I, supra note 121, at 9 (emphasis added).
125 Id.

6 Chi.-Kent J. Intell. Prop. 226

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

provision and the dangers of inexact definitions of terms. 126 If the prevailing view persists,
German courts will continue to draw no distinction between a license and a contract for purposes
of GPL enforcement. 1

27

ii. Contractual Interpretations of Software Licenses and GPL in the United
States

In the United States, federal courts originally followed the CISG and German
interpretation above, and commonly applied state contract law to licenses. In Power Lift, Inc. v.
Weatherford Nipple-Up Systems, Inc., the Court of Appeals for the Federal Circuit held that "a
license agreement is a contract governed by ordinary principles of state contract law."' 128

Similarly, the same circuit court held that licenses create an implied right to enforce contractual
remedies.129 As late as 1998, Professor Raymond Nimmer wrote, "Contract and intellectual
property law have always co-existed, not only peacefully, but [also] in an aggressive interaction
between mutually supportive fields."'130 However, by 2002, the climate had changed and the
"very few lower court cases that hold to the contrary [were] outside the mainstream and
inconsistent with commercial practice."' 13 1 Although earlier decisions such as Power Lift were
never explicitly overruled, of the few courts that held software licenses were traditional sales
contracts governed by state contract law, "two were reversed on appeal... [and] two were
vacated."'

132

By 2002, federal courts had moved largely to an interpretation that applied copyright law,
albeit narrowly, in order to preempt conflicting contract provisions, and used state contract law
to govern the remainder of software license agreements. In 2000, a California district court heard
a case representative of this doctrinal change in Adobe Systems, Inc. v. One Stop Micro, Inc. 133

Plaintiff Adobe alleged that defendant One Stop acquired Adobe educational license software
packages from an Adobe distributor, "adulterating [those] educational versions of Adobe

126 Id. at 9-12; supra note 118 (discussing the effect of the CISG on the interpretation of the GPL). For a discussion

of definitions in the GPL itself, see infra Part III E.
12' For a discussion of software copyright interpretations and the GPL in the United Kingdom and other
Commonwealth countries, see generally Douglas A. Hass, Uneasy Dtente: Strengthening the Market's Adaptation
of the GNU General Public License in Common Law Jurisdictions, 2 OXFORD J. INTELL. PROP. L. & PRAC.
(2007) (U.K.).
121 871 F.2d 1082, 1085 (Fed. Cir. 1989); See also In re CFLC, Inc., 89 F.3d 673, 677 (9th Cir. 1996). But see
Adobe Sys. Inc. v. One Stop Micro, Inc., 84 F. Supp. 2d 1086, 1092 (N.D. Cal. 2000) (holding that the distribution
agreement was a license and not a sale, therefore, the 'first sale' doctrine was inapplicable); Peter C. Quittmeyer,
Software Licensing, 2003 PRACTISING L. INST. 903, 909 available at WL 763 PLI/Pat 903 ("In general, a license
does not grant or create a property interest at all, but merely a permission to act or, conversely, a covenant not to sue
for such action.").
129 McCoy v. Mitsuboshi Cutlery, Inc., 67 F.3d 917 (Fed. Cir. 1995) (holding that the defendant could resell goods
under commercial contract law principles of mitigation after plaintiff breached a license agreement).
130 Raymond T. Nimmer, Breaking Barriers: The Relation Between Contract and Intellectual Property Law, 13
BERKELEY TECH. L.J. 827, 829 (1998).
131 Raymond T. Nimmer, THE LAW OF COMPUTER TECH.: COPYRIGHT & COMPUTER TECH. § 1:97 (2002).
132 Id. (citing DSC Commc'ns Corp. v. Pulse Commc'ns, Inc., 170 F.3d 1354 (Fed. Cir. 1999) (reversing District

Court ruling that licensee was an owner and expressly rejecting the view that a single payment perpetual license
means that the transfer of the copy was a sale).
133 84 F. Supp. 2d 1086 (N.D. Cal. 2000).

6 Chi.-Kent J. Intell. Prop. 227

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

software and re-packaging them as full retail versions." 134 Adobe argued that an end user license
agreement (the "On/Off Campus Educational Reseller Agreement" or "OCRA") covered all of
its software products. That license granted "a nonexclusive license to use the Software and
Documentation" subject to certain limitations. 135 Among the limitations in the license agreement
were prohibitions on copying or commercial redistribution of the software, and a list of "Reseller
Rights" that further restricted how the defendant could sell Adobe educational license
software. 136

The court overlooked any privity issues and applied the agreement to One Stop even
though it had not signed the OCRA, but purchased the software on the open market.137 Further,
the court held that One Stop had infringed Adobe's copyright by violating Adobe's license
agreement. 13 One Stop, however, contended that it had purchased the software, entitling the
company to a first sale exemption under the U.S. Copyright Act.139 The relevant portion of the
Act provides that "the owner of a particular copy or phonorecord lawfully made under [the Act],
or any person authorized by such owner, is entitled without the authority of the copyright owner,
to sell or otherwise dispose of the possession of that copy or phonorecord."' 140 This first sale
doctrine "terminates the copyright holder's authority to interfere with subsequent sales or
distribution of that particular copy." 141

In 1990, Congress amended the Copyright Act with respect to software purchases.142 As
amended by Congress, the first sale doctrine permits only non-profit libraries and educational
institutions to lend or lease copies of software and phonorecords.143 The amendment corrected a
deficiency in the Act that enabled buyers to purchase a copy of a computer program, and then
lease it or lend it to another without infringing the program's copyright. 144 Because users could
easily copy software, software companies feared that buyers would purchase copies of programs
and lease them to consumers, who would then copy the software themselves.

By characterizing the original transaction as a license, rather than a sale, as Adobe had
done, and by prohibiting transfers of the license, software companies hoped to avoid the first sale
doctrine and establish contractual privity to sue directly any companies "renting" the software to

134 Id. at 1093.
135 Id. at 1091.
136 Id. at 1091, n.2.
137 Id. at 1088. The court explains "Adobe initially distributes the educational versions to an Adobe-authorized
educational distributor, who then transfers the software to an Adobe-authorized educational reseller." Id. One Stop
purchased the software, containing the shrink-wrapped OCRA, from a distributor. Id.
138 Id. at 1093 ("One Stop has committed copyright infringement as a matter of law under § 501 (a): Anyone who
violates any of the exclusive rights of the copyright owner as provided by sections 106 through 118 ... is an
infringer of the copyright."'). The same court reaffirmed this analysis in a 2002 case that also involved Adobe:
Adobe Sys., Inc. v. Stargate Software, Inc., 216 F. Supp. 2d 1051 (N.D. Cal. 2002).
139 Adobe Sys. Inc. v. One Stop Micro, Inc., 84 F. Supp. 2d at 1093.
141 17 U.S.C. §109(a) (2000).
141 Parfums Givenchy, Inc. v. Drug Emporium, Inc., 38 F.3d 477, 480 (9th Cir. 1994).
142 Computer Software Rental Amendments Act of 1990, 104 Stat. 5134 (1990) (codified at 17 U.S.C. § 109(b)
(2000)).
141 17 U.S.C.A. § 109(b)(1)(A) (West Supp. 1991).
144 See generally Bobbs-Merrill Co. v. Straus, 210 U.S. 339 (1908); 17 U.S.C.A. § 109(a) (West 1977).

6 Chi.-Kent J. Intell. Prop. 228

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

others. Congress resolved the tension between the first sale doctrine and state contract law by
passing the amendment. 145 This amendment eliminated the need to term sales as "licenses" for
purposes of avoiding the first sale doctrine.146 Unsurprisingly, despite provisions in the end user
license agreement that denoted a sale, 147 the court agreed with Adobe, finding that the OCRA
was a software licensing agreement and that the first sale doctrine was therefore inapplicable. 148

Tellingly, though, the Adobe court continued to refer to the license agreement as a
contract throughout its opinion. 149 The court cited California civil code in allowing parol
evidence to construe the ambiguity between the plaintiff s and defendant's interpretations of the
contract as either a license or sale. 150 Ruling that the OCRA was a license and not a sale, the
court referred to "the express restrictive language of the contract." 151 The court refused to
recognize Professor Moglen's concept of a license that rested outside the bounds of state contract
law and was governed solely by U.S. copyright law. Instead, the court applied copyright law
narrowly and used state contract law to define and interpret the relationship between licensor and
licensee.

152

The most frequently cited case supporting this principle, ProCD, Inc. v. Zeidenberg,
appears in numerous first-year Contracts casebooks. 153 The court in ProCD held that a unilateral
software license, such as the shrinkwrap end-user license in that case, or the GPL here, is
enforceable as "a simple two-party contract." 154 Whether general or restrictive, the court found
that a license "is not equivalent to any of the exclusive rights within the general scope of
copyright ",5 The court's argument in ProCD also effectively rebuts any arguments
asserting that federal copyright law preempts all state law claims in contract, tort, or other
areas. 156 Section 301 of the Copyright Act provides, in relevant part, that federal laws preempt
"all legal or equitable rights that are equivalent to any of the exclusive rights within the general

145 See generally Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141 (1989); Sears, Roebuck & Co. v.

Stiffel Co., 376 U.S. 225 (1964).
14 6 See 104 Stat. 5134.
147 Adobe Systems, Inc. v. One Stop Micro, Inc., 84 F. Supp. 2d 1086, 1090 (N.D. Cal. 2000) ("Reseller shall have
the right to purchase"; "the respective Educational Software Products owned by Reseller"; "Adobe may, at its
option, repurchase").14

1 Id. at 1092.
149 E.g., id. at 1090 (interpreting the agreement as a contract under California Civil Code).
150 Id. ("The parties' intent is inferred exclusively from the language of the contract, assuming the language is 'clear

and explicit.' See Cal. Civ. Code. § 1638.")
151 Id. at 1092.
152 For other cases supporting the combination of narrow copyright law application and broad contract law
application, see, e.g., Microsoft Corp. v. Harmony Computers & Electronics, Inc., 846 F. Supp. 208, 210 (E.D.N.Y.
1994); Adobe Systems, Inc. v. Stargate Software, Inc., 216 F. Supp. 2d 1051 (N.D. Cal. 2002); Softman Prod. Co. v.
Adobe Systems, Inc., 171 F. Supp. 2d 1075, 1080 (C.D. Cal. 2001).
153 86 F.3d 1447 (7th Cir. 1996). For examples of casebooks, see, e.g., THOMAS D. CRANDALL & DOUGLAS J.
WHALEY, CASES, PROBLEMS, AND MATERIALS ON CONTRACTS (4th ed. 2004); ALLAN FARNSWORTH ET AL.,

CONTRACTS: CASES AND MATERIALS (6th ed. 2001).
154 ProCD, 86 F.3d at 1455.
155 Id.
156 The converse is also true. The court did not go as far as Power Lift, 871 F.2d 1082, 1085 (Fed. Cir. 1989), finding

it "prudent to refrain from adopting a rule that anything with the label 'contract' is necessarily outside the
preemption clause: the variations and possibilities are too numerous to foresee." ProCD, 86 F.3d at 1455.

6 Chi.-Kent J. Intell. Prop. 229

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

scope of copyright."' 157 Therefore, in order for the Act to preempt claims under state law, "(1) the
work at issue [must come] within the subject matter of copyright, and (2) the state law rights
[must be] equivalent to any of the exclusive rights within the scope of copyright."' 58 State law
survives preemption when claims made under contract law contain an "extra element" that
differs materially from those rights protected by copyright law. 159 The Ninth Circuit held in
Altera that "[a] state law tort claim concerning the unauthorized use of the software's end-
product is not within the rights protected by the federal Copyright Act."' 160

The Altera court also noted, "[m]ost courts have held that the Copyright Act does not
preempt the enforcement of contractual rights."161 However, the Ninth Circuit in Del Madera

Properties v. Rhodes & Gardner, Inc., 162 refused a plaintiff s claim for unjust enrichment
because it lacked an extra element. 163 The court specifically cited the lack of expected
consideration between the parties. 164 In Del Madera, however, the parties' dispute revolved
around a copyrighted map prepared by the plaintiff and not a software license with terms
requiring the licensee to undertake and avoid certain actions. 165

Although neither case turned on contract validity issues, the only two U.S. cases as of this
writing that involved the GPL accepted the license as a valid contract. In Progress Software
Corp. v. MySQL AB, 166 neither party challenged the validity of the GPL. MySQL's counterclaim
alleged a breach of contract by the plaintiff in violating the terms of the GPL. 167 The parties in
the second case, Monta Vista Software, Inc. v. Lineo, Inc., 168 also accepted the validity of the
GPL. The parties' complaints discussed contractual breaches of the GPL, among other alleged
violations.

169

"' 17 U.S.C. § 301 (2000).
158 Grosso v. Miramax Film Corp., 383 F.3d 965, 968 (9th Cir. 2004) (internal citations and quotation marks

omitted) (alterations added), amended by, reh'g denied by 400 F. 3d 658 (2005).
159 Altera Corp. v. Clear Logic, Inc., 424 F.3d 1079, 1089 (9th Cir. 2005) (citing Summit Mach. Tool Mfg. v. Victor
CNC Sys., 7 F.3d 1434, 1439-40 (9th Cir. 1993)).
160Altera Corp., 424 F.3d at 1090.
161 Id. at 1089 (citing Bowers v. Baystate Techs. Inc., 320 F.3d 1317, 1323-24 (Fed. Cir. 2003); ProCD, Inc. v.
Zeidenberg, 86 F.3d 1447 (7th Cir. 1996); Nat'l Car Rental Sys. Inc. v. Computer Assocs. Int'l, 991 F.2d 426, 431
(8th Cir. 1993)).
162 820 F.2d 973 (9th Cir. 1987).
163 Id. at 978.
164 Id.
165 Id. at 975. Nonetheless, a U.S. court could refuse similar claims if it deems that the forbearances in the GPL do

not constitute valid consideration. Claims for unjust enrichment may be unavailable in other common law
jurisdictions. A debate about preemption and the sufficiency of consideration and what, if any, requirements various
common law and civil law jurisdictions, the CISG, and state UCC enactments impose on both is beyond the scope of
this paper. For purposes of discussion, this paper accepts the majority U.S. rule on preemption as outlined by the
Ninth Circuit in Altera.
166 195 F. Supp. 2d 328 (D. Mass. 2002).
167 Laura A. Majerus, Court Evaluates Meaning of "Derivative Work" in an Open Source License, FINDLAW, Jun.
16, 2003, http://library.findlaw.com/2003/Jun/16/132811.html (last visited Jan. 5, 2007).
16' First Amended Complaint of Plaintiff, MontaVista Software, Inc. v. Lineo, Inc., No. 2-02 CV-00309J (D. Utah

Jul. 23, 2002).
169 E.g., id. at 50 ("The aforesaid individual or joint acts of Defendants constitute a breach of the GPL."). The
parties settled the case before trial in 2003.

6 Chi.-Kent J. Intell. Prop. 230

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Despite the presence of an offer, purported consideration, and an invitation to accept the
GPL, Professor Moglen's argument still has merit, albeit for different reasons. Rather than a
novel interpretation of law that attempts to attach the GPL to U.S. copyright law, the license
argument finds more solid ground in the realm of property law. Accepting Professor Moglen's
argument, the GPL unilaterally grants a property right in order to achieve Stallman's goal of a
self-perpetuating software commons. 170 The GPL uses its grant of property rights, here the rights
to copy, distribute, and modify copyright-protected material, to enforce its social contract. 17 1

Contrary to the court's view in ProCD,172 under this interpretation the GPL does not create an
agreement for the transfer of software with separate promises. Rather, the GPL creates a single,
non-exclusive right to use the GPL-licensed source code subject to conditions spelled out in the
license. Depending on local copyright law, this property right argument could potentially
overcome the CISG and various civil code jurisdiction equations between licenses and sales of
goods, while Professors Moglen and Rosen's interpretation immediately fails in many
jurisdictional situations outside of U.S. courts.

Professor Moglen may provide the best argument against this approach, though, when he
argues that "Free software ... is a commons: no reciprocity ritual is enacted there. A few people
give away code that others sell, use, change, or borrow wholesale to lift out parts for something
else."' 173 The copyright system rewards authors "by means of an incentive system,"'174 validating
Ronald Coase's theory on production.175 Coase recognized that transaction costs create
disincentives for actors to participate in a market. 176 The disincentive also applies to production:
market actors decide what to produce, instead of purchase, based on transaction costs inside and
outside the firm.177 Copyrights confer a property right-the right to exclude others-in an
author's works. This exclusive property right overcomes the transaction costs of production
inherent in a commons. Instead of facing a tragedy of the commons, copyright law allows
authors to earn a return on their investment by charging what the market bears for access to the
creation. Coase's theorem dictates that authors will charge a fee sufficient to induce them to
create the work initially. 178 Economically, a market's buyers internalize the additional costs
under the assumption that authors would not otherwise create those works. 179 The rights created
by copyright, according to Coase's theorem, generate a marginal increase in authorship sufficient
to overcome the costs of exercising the rights to exclude, (copyright licensing, patent licensing,

170 Jones, supra note 86.
171 See GPL, supra note 4, at §§ 1-4.
172 See supra text accompanying note 154 (characterizing a license as a "simple two-party contract").
173 Eben Moglen, Anarchism Triumphant: Free Software and the Death of Copyright,
http://emoglen.law.columbia.edu/mypubs/anarchism.html (last visited Jan. 6, 20076).
174 Robert A. Kreiss, Accessibility and Commercialization in Copyright Theory, 43 UCLA L. REv. 1, 14 (1995).
175 See generally Ronald H. Coase, The Institutional Structure of Production, in ESSAYS ON ECONOMISTS AND
ECONOMICS 3, 9 (1994).
176 Id.
177 Id.

1
7 8 Id.

179 See Kreiss, supra note 174, at 8.

6 Chi.-Kent J. Intell. Prop. 231

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

etc.) plus any transaction costs associated with the system itself.180 If free software is truly a
commons, it contradicts copyright law doctrine.

The survival of the vibrant free software commons, therefore, depends on the ability of
community members to enforce the community's social norms. Enforcing the GPL as a contract
comports with current U.S. and international case law. Additionally, the construction of the GPL
as a contract carries other benefits to licensees and licensors that seek to enforce the free
software community's values. For example, contractual interpretation opens up a range of
options to licensors, including enforcement by distributors of code rather than just copyright
holders, and the availability of state and local venues.18 1 Part III discusses the danger of relying
solely on copyright law for GPL enforcement given the limited protections that copyright affords
certain types of software under Linux.

A. A Brief Primer on Assent to Software Licenses

Despite the ProCD decision that raised the validity of shrinkwrap licenses, software
companies have increasingly turned to less traditional methods of contract formation better
suited to an on-line environment. The GPL is no exception. Companies as varied as
Ticketmaster, 182 CNET's download.com, 18 3 and United Airlines 84 rely on form contracts.
Commentators have long seen the value in using these streamlined, standardized agreements, and
an overwhelming majority of contracting parties today relies on standard forms.18 5 In the realm
of open source software, licensors cannot efficiently negotiate contracts with every licensee. The
requirement of individual negotiations, or even product-by-product form contracts, helped prod
Richard Stallman to create the GPL in the first place. 186

In 1972, the Supreme Court's decision in Gottschalk v. Benson severely limited
protections available to software, denying patentability for a mathematical formula out of a fear
that such a patent "in practical effect would be a patent on the algorithm itself."' 8 7 Although

... Sony Corp. of America v. Universal City Studios, Inc., 464 U.S. 417 (1984) ("The immediate effect of our
copyright law is to secure a fair return for an 'author's' creative labor. But the ultimate aim is, by this incentive, to
stimulate artistic creativity for the general public good.").
181 See ROSEN, supra note 85, at 139.
182 Ticketmaster, Purchase Policy, http://www.ticketmaster.com/h/purchase.html (last visited Jan. 6, 2007).
183 CNET Networks, Site Terms of Use, http://www.cnetnetworks.com/editorial/terms.html (last visited Jan. 6,
2007).
184 United Airlines, Contract of Carriage Guide, http://www.united.com/ual/asset/Contract of Carriage 070606.pdf

(last visited Jan. 6, 2007).
185 See Restatement (Second) of Contracts § 211 cmt. a (1981) ("Standardization of agreements serves many of the

same functions as standardization of goods and services; both are essential to a system of mass production and
distribution."); W. David Slawson, Standard Form Contracts and Democratic Control of Lawmaking Power, 84
HARv. L. REv. 529, 529-30 (1971) (standard form contracts "probably account for more than ninety-nine percent of
all the contracts now made"); Randy E. Barnett, Consenting to Form Contracts, 71 FORDHAM L. REv. 627, 627
(2002) ("There is a remarkable dissonance between contract theory and practice on the subject of form contracts. In
practice, form contracts are ubiquitous. From video rentals to the sale of automobiles, form contracts are
everywhere. Yet contract theorists are nothing if not suspicious of such contracts, having long ago dubbed them
pejoratively 'contracts of adhesion."').

See Stallman, supra note 57 (discussing the process that led Stallman to create a single GPL).
409 U.S. 63, 71 (1972).

6 Chi.-Kent J. Intell. Prop. 232

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

courts and amendments to the Copyright Act have changed interpretations of patent and
copyright law in the thirty-plus years since Gottschalk, the decision and lack of clarity created
considerable uncertainty in the market at the time.188 Given the uncertainty, software developers
like ProCD created licenses that protected their products from unauthorized copying and
distribution to others, blocked efforts to "reverse engineer" the software to alter it or create a
similar competing product, and limited warranty claims. 189 With mass distribution of software
increasing dramatically through the 1990s as businesses and individuals increasingly adopted
personal computers and networks, "individually negotiated contracts [were] not feasible."' 90 The
solution, shrinkwrap licenses, had little legal foundation in contract law. Buyers received a
sealed package with notification that a license governed the software inside.191 The seller,
however, typically placed the license inside the sealed package or physically on the media
itself.192 Unlike a traditional contract, the parties to shrinkwrap agreements do not negotiate and
the buyer makes no manifestation of assent to the unseen terms. Retailers, then and now,
dissuade customers from returning items by refusing to accept opened boxes or charging
exorbitant restocking fees.193 Such terms and the lack of a simple, or any, remedy create the
possibility of significant abuse by software companies.

Despite uncertainty about the validity of shrinkwrap or "terms later" licenses,
standardized licensing became the enabling mechanism for growth. The holding in ProCD,
despite significant criticism in legal academia, cemented this method of standardized, electronic
commerce. 194 As delivery options expanded and software capabilities evolved, the shrinkwrap
license expanded to include intangible media such as Internet downloads, and gave rise to two
other common licensing processes.

As software capabilities improved, software companies built programs designed for
permanent installation on personal computers and servers. Shrinkwrap licenses morphed into
"clickwrap" licenses that required users to review and accept a license agreement presented
automatically during software installation.195 Since software no longer ran solely from the
enclosed media and could be copied and distributed easily, software companies had an additional

188 Steven Fraser, Canada-United States Trade Issues: Back from Purgatory? Why Computer Software "Shrink-
Wrap" Licenses Should Be Laid to Rest, 6 TUL. J. INT'L & COMP. L. 183, 189. Part III, infra, argues that the
uncertainty is no less pronounced today.
181 See, infra, Part III.190 Robert Gomulkiewicz & Mary Williamson, A Brief Defense of Mass Market Software License Agreements, 22

RUTGERS COMPUTER & TECH. L.J. 335, 342 (1996).
191 See, e.g., ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1450 (7th Cir. 1996) (discussing shrinkwrap license used by

ProCD).
192 Id. at 339-41 (explaining that buyers can enter into a shrinkwrap license agreement by, for example, "tearing

open the plastic wrapper covering the box" or "installing or using the software").
193 See, e.g., Amazon.com, Refunds, http://www.amazon.com/gp/help/customer/display.html /102-6299803-

1267335?nodeld-901926 (last visited Jan 6, 2007) (discussing the restocking fee for "[a]ny... software.., that has
been opened (taken out of its plastic wrap) [is] 50% of [the] item's price.") (alterations added).
194 For criticisms of Judge Easterbrook's holding in ProCD and shrinkwrap licenses as a whole, see, e.g., Barnett,
supra note 185 (criticizing the difference between form contract theory and practice); Roger C. Bern, "Terms Later"
Contracting: Bad Economics, Bad Morals, and a Bad Idea for a Uniform Law, Judge Easterbrook Notwithstanding,
12 J.L. & POL'Y 641, 641-43 (2004); Fraser, supra note 188 (advocating the elimination of shrinkwrap licenses).
195 Gomulkiewicz & Williamson, supra note 190, at 340 (describing transitions in end user licensing as
technological improvements provided additional options for software companies).

6 Chi.-Kent J. Intell. Prop. 233

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

incentive to secure valid license agreements from end users. Given these new concerns and the
academic criticism of the "terms later" model, software installation programs routinely required
users to check a box or click a button labeled "I agree," "I accept" or a similar manifestation of
assent. 196 Without accepting the license agreement, the software installation typically aborts. 197

Many Microsoft products now require users to scroll to the bottom of the on-screen license
before the installation process enables the "Accept" button. 198 This added clickwrap step avoids
criticism that licensors encourage users to bypass or skip complicated, lengthy license
agreements.199 Ultimately, consumers face the same choice as with shrinkwrap contracts:
rejecting the license and returning unopened software could be expensive and difficult, if not
infeasible.

As software distribution moved on-line, some companies made their license agreements
available pre-purchase by putting the document on-line and linking their Web site to it.200 The
GPL relies primarily on this "browsewrap" method. Despite language in Section 2(c) describing
situations where "you must cause [the Program], when started running for such interactive use in
the most ordinary way, to print or display an announcement including an appropriate copyright
notice," few GPL programs do so.20 1 Theoretically, users have the ability to review the
documentation before acceptance, but links to legal terms are rarely obvious.20 2 In Specht v.
Netscape Communications Corp., the court refused to enforce Netscape's browsewrap license for
its SmartDownload software because the customer was neither required to view the license nor

'9' Gary Hamilton & Jeffrey Hood, The Shrink-Wrap License - Is it Really Necessary?, 10 COMPUTER & INTERNET
LAWYER, 16, 16 (1993) (describing "clickwrap" contracts and user assent during the installation process).
197 Id. (describing the clickwrap installation process).
19' Although this added scroll requirement ostensibly "forces" users to read the license agreement, it also can cause

considerable frustration for users, e.g., Posting of Hugh Thomas to microsoft.public.windowsupdate, available at
http://groups.google.com/group/microsoft.public.windowsupdate/browse-thread/thread/7e9b87da3 e4066 If/3f8a4d2
6bc3 If52b%233f8a4d26bc3 If52b (Jan. 7, 2003, 15:16:52 GMT).
'99 See Scarcella v. America Online, No. 1168/04, 798 N.Y.S.2d 348 (Civ. Ct. Sept. 8, 2004), aff'd, 811 N.Y.S.2d
858 (App. Div. 2004). In Scarcella, a Civil Court refused to enforce a forum clause in part because "the sign-up
process involved viewing over 80 computer 'screens' (91, to be exact...), two of which invited Claimant to
consent to the terms of the Member Agreement." The court noted that customers can easily avoid reviewing the
agreement, since "[t]he customer can bypass all that bother by simply pressing the 'OK, I Agree' button. If the
customer nonetheless.., presses the 'Read Now' button, Defendant affords him or her a second opportunity to skip
over what will become the contract."
201 See Specht v. Netscape Comm'cns Corp., 150 F. Supp. 2d 585, 594 (S.D.N.Y. 2001) (defining a browsewrap
license). Some companies follow a hybrid approach, using a shrinkwrap license accompanied by posting the full
terms and conditions on-line in a "browsewrap" format. E.g., Dell, Inc., U.S. Terms and Conditions of Sale,
http://www.dell.com/content/topics/global.aspx/policy/en/policy?c-us&l-en&s-gen&-section- 12 (last visited
Jan. 9, 2007).
201 GPL, supra note 4, at § 2(c). As a test of Section 2(c)'s provisions, the author ran several common interactive,
GPL-licensed Linux programs on a Web server running Linux version 2.6.9 (on file with author). Even interactive
programs written by the GNU Project such as "find", "gcc", "bash", "gzip" and "grep" failed to display copyright
notices during interactive operation or when passing the commands a "help" option. A few of the programs had a
"version" option that displayed a copyright and a reference to "free software" but not the GPL, its license terms or
where to find them.
202 E.g., Dell, supra note 200. The Dell link to terms and conditions of sale appears in small print at the bottom of
each page amidst seven or eight other links about Dell and Dell's Web site. Id. However, buyers must agree to
Dell's terms and conditions of sale through a clickwrap agreement prior to completing a purchase, addressing the
concerns expressed by the court in Specht. Id.

6 Chi.-Kent J. Intell. Prop. 234

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

manifest assent to it prior to downloading the software. 20 3 The court, while noting the acceptance
of clickwrap licenses, required that the customer would (a) actually see the license agreement
and (b) manifest actual assent.20 4

Browsewrap licenses present fewer challenges for the GPL in the context of acceptance
by software developers than with unsophisticated users. 20 5 Professor Moglen argues that the
"GPL only obliges you if you distribute software made from GPL'd code, and only needs to be
accepted when redistribution occurs. And because no one can ever redistribute without a license,
we can safely presume that anyone redistributing GPL'd software intended to accept the GPL. , 206

The second sentence may overstate the motives of software developers in some contexts,
especially since software developers may interpret the GPL differently than Professor Moglen
and the FSF. A Linux software developer, though, would face considerable difficulty convincing
a court that the developer was simply unaware of the existence of the license and its general
terms, one of the central issues in Specht, given the significant publicity surrounding the GPL,
Linux, and open source software generally. 20 7

B. Forming a Contract Under the GPL

Of the three methods of software license acceptance described above, the GPL most
closely resembles a browsewrap license. Although the GPL claims to require notification akin to
a shrinkwrap license, 20 8 this does not happen in practice. A visit to SourceForge.net, a leading
on-line repository for GPL-licensed and other open source licensed programs, shows that visitors
can download every project without assent to, or even a review of, the accompanying license.20 9

203 Specht, 150 F. Supp. 2d at 595-96.
204 Id. at 595.
205 This paper is primarily concerned with developers and the application of the GPL to works developed for the
Linux operating system. Therefore, the more common public policy arguments against the enforcement of adhesion
contracts against unsophisticated users carry less weight in this analysis. The concerns remain vitally important, if
not somewhat muddled, though. For an in-depth discussion of adhesion contracts and the public policy problems
presented by shrinkwrap, clickwrap, and browsewrap licenses for end users, see generally Andrew Burgess,
Consumer Adhesion Contracts and Unfair Terms: A Critique of Current Theory and a Suggestion, 15 ANGLO-AM.
L. REv. 255 (1986) (critiquing classical contract theory on contracts of adhesion, and proposing that adhesion
contracts are only unfair when they contradict public policy); Robert Oakley, Fairness in Electronic Contracting:
Minimum Standards for Non-Negotiated Contracts, 42 Hous. L. REv. 1041 (2005).
206 Eben Moglen, Enforcing the GNU GPL, Sept. 10, 2001, http://www.gnu.org/philosophy/enforcing-gpl.html (last
visited Jan. 9, 2007).
207 Specht, 150 F. Supp. 2d at 591 ("More specifically, [the court] must consider whether the web site gave Plaintiffs
sufficient notice of the existence and terms of the License Agreement"). A Google search for "GPL AND
enforceability" generated over 539,000 results. Google,
http://www.google.com/search?hl-en&lr-&rls-com.microsoft%/3Aen-us%/3AIE-
Address&q-GPL+AND+enforceability&btnG-Search (last visited onJan. 8, 2007). Indeed, the controversy about
the GPL and Linux led directly to the author's decision to research and write about this topic in the first place.
208 See supra note 201 and accompanying text (discussing and empirically testing the provisions of GPL § 2(c)).
209 E.g., SourceForge.net: Openads (aka Max Media Manager):Ad Server, http://sourceforge.net/projects/max (last

visited on Jan. 8, 2007). Underneath a large green "Download" link box, the page lists the name of the license in
small text along with other categories. Id. Following the large green "Download" link on the page takes visitors to
SourceForge.net: Files - Max Media Manager: Open Source Ad Server,
http://sourceforge.net/project/showfiles.php?group id-103644 (last visited on Jan. 8, 2007). This page contains
multiple direct download links, but no references to the GPL.

6 Chi.-Kent J. Intell. Prop. 235

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Even with conduct (distribution of GPL-licensed programs), notice appears lacking when
applying the notice rule in Specht strictly.

Although U.S. courts are split on the validity of shrinkwrap, clickwrap, and browsewrap
licenses, a few general rules have emerged that appear to reform the GPL's notice deficiency.
The UCC and Restatement Second of Contracts also provide some relief for GPL enforcement
against developers. The GPL should fall under the "usage of trade" definitions in both the
Restatement and the UCC. 210 The UCC clearly endorses the conduct portion of the GPL's notice-
plus-conduct model. Parties may form a contract "in any manner sufficient to show agreement,
including conduct by parties recognizing the existence of such a contract." 211 Under a contractual
interpretation of the GPL, courts consider the "regularity of observance in a place, vocation, or
trade as to justify an expectation that it will be observed with respect to a particular
agreement. '212 Courts will "liberally construe and apply to promote [the UCC's] underlying
purposes and policies," which include "the continued expansion of commercial practices through
custom, usage and agreement of the parties." 213

The specific terms that a court will enforce in any single case depends on the facts
surrounding the case, the course of performance of any prior agreements, and, most importantly,
the usage of trade in the Linux community as it relates to the specific dispute. The notice-plus-
conduct model may form a contract between parties who both know or reasonably should know
some of the terms of the GPL beforehand. Courts may also find a contract where the parties both
know or reasonably should know that the license exists. For example, the notice on SourceForge
that a particular piece of software uses the GPL may be sufficient for a court to enforce those
terms as an agreement.

Existing case law surrounding shrinkwrap and browsewrap licenses that use a notice-
plus-conduct model suggests that courts would find that the GPL creates an enforceable contract,
if a party challenged this point directly. The earliest significant case surrounding notice-plus-
conduct licenses is Step-Saver Data Systems, Inc. v. Wyse Technology.214 Although often
criticized as rejecting shrinkwrap licenses, 2 15 the court did not reject the concept. The holding in
the case turned instead on two peculiar facts. The plaintiff, a software reseller, sued for breach of
warranty when the defendant's software failed.216 The defendant's shrinkwrapped terms
disclaimed all warranties, and the court considered whether the parties' agreement included that

210 This paper concerns the modification, distribution, and derivation of GPL code by individual and corporate
software developers and applies the UCC to any transactions between the parties. While some individual, non-
merchant users may fall into this paper's scope of analysis, the vast majority of parties distributing GPL software are
"merchants" dealing "in goods of the kind" in accordance with the UCC definition. U.C.C. § 2-104(1) (1995). Even
an individual user writing for his own enjoyment may be one who "holds himself out as having knowledge or skill
peculiar to the practices or goods involved in the transaction" and, consequently, falls under the "merchant"
definition.
211 U.C.C. § 2-204(1) (1995).
212 Restatement (Second) of Contracts § 222(1) (1981). The revised UCC § 1-205 (2004) contains virtually identical
language.
213 U.C.C. § 1-102 (1995).
214 939 F.2d 91 (3d Cir. 1991).

215 E.g., I.Lan Sys. v. Netscout Serv. Level Corp., 183 F. Supp. 2d 328, 337 (D. Ma. 2002).
216 Step-Saver, 939 F.2d at 91-92.

6 Chi.-Kent J. Intell. Prop. 236

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

disclaimer. 2 17 The court accepted the notice-plus-conduct model, but rejected the disclaimer,
finding that the parties had formed their contract before the plaintiff received the shrinkwrap
license.

218

The dispositive issue in the case was not the shrinkwrap license, which otherwise could
have supplied the terms of the contract between the parties. The Step-Saver court did not dispute
the potential validity of the license or "the existence of a contract, but the nature of its terms." 219

The court relied on two facts unique to this case. First, the court noted that the parties had agreed
before making the order that Step-Saver could "transfer its copies [of the software] to the
purchasers of the Step-Saver multi-user system" despite a contrary term on the shrinkwrap
license.220 The court also relied on evidence that, twice before, the defendant had attempted
unsuccessfully to get Step-Saver to sign formal agreements containing warranty disclaimers. 22 1

Both facts illustrated that the parties expressly did not intend to agree on the shrinkwrap license
terms.

222

Returning to ProCD, Inc. v. Zeidenberg,223 the Seventh Circuit held that the parties
formed a contract despite the fact that the terms were contained inside a sealed box.224

Purchasers had notice that ProCD placed additional terms in the package.225 Although the court
focused on the terms on the outside of the box, which the defendant agreed were part of the
agreement, courts can find an analogy between the outside of the box in ProCD and the Linux
environment. Developers working within the Linux community would face a high burden of
proof to show that they had no notice that the GPL existed and applied to Linux. In any GPL
contract formation issue, the usage of trade would supply the notice of additional terms, as it did
in ProCD.

226

217 Id. at 96-97. Wyse Technology was one of two named defendants. Id. at 93-94. Wyse sold the software to Step-

Saver for use on Wyse's WY-60 terminal. Id. The other defendant, The Software Link, Inc., manufactured the
failed software. Id. AccordArizona Retail Systems, Inc. v. Software Link, Inc., 831 F. Supp. 759, 766 (D. Ariz.
1993) (adopting the same holding as the Step-Saver court in a subsequent case alleging breach of warranty by The
Software Link).
218 Step-Saver, 939 F.2d at 95-96. Describing the process, the court states:

Step-Saver would typically purchase copies of the program in the following manner. First, Step-
Saver would telephone TSL and place an order. (Step-Saver would typically order twenty copies
of the program at a time.) TSL would accept the order and promise, while on the telephone, to ship
the goods promptly. After the telephone order, Step-Saver would send a purchase order, detailing
the items to be purchased, their price, and shipping and payment terms. TSL would ship the order
promptly, along with an invoice. The invoice would contain terms essentially identical with those
on Step-Saver's purchase order: price, quantity, and shipping and payment terms. No reference
was made during the telephone calls, or on either the purchase orders or the invoices with regard
to a disclaimer of any warranties.219 Id. at 98.

220
Id. at 103.

2 2 1
Id. at 102-03.

222 Id.

223 86 F.3d 1447 (7th Cir. 1996).
2 2 4 Id. at 1450-51.
225 Id.
226 Id.

6 Chi.-Kent J. Intell. Prop. 237

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

The Seventh Circuit affirmed its holding in ProCD only a year later in Hill v. Gateway
2000, Inc. 227 Unlike the package in ProCD, the computer that the plaintiffs, the Hills, purchased
did not have a warning on its packaging about additional terms to follow delivery. 228 Although
the Hills asserted at oral argument that the failure to include terms on the outside of the box
distinguished the case from ProCD, the court termed the difference "functional, not legal. 229

The court dismissed the difference because ProCD used its box for retail display in a store;
Gateway's box, "by contrast, [was] just a shipping carton... not on display anywhere. Its
function is to protect the product during transit, and the information on its sides is for the use of
handlers ("Fragile!" "This Side Up!") rather than would-be purchasers. '" 230 The court refused to
require Gateway to place the notice on the outside of a box that a purchaser would immediately
open and discard, thus implying that the Hills had notice after such actions. The court noted that
the Hills would have "had a better argument if they were first alerted to the bundling of hardware
and legal-ware after opening the box and wanted to return the computer in order to avoid
disagreeable terms, but were dissuaded by the expense of shipping." 231

The court also based its conclusion in part on Gateway's public statements. Gateway's
advertisements did not specify the terms of their warranties or support, instead stating only
"[Gateway's] products come with limited warranties and lifetime support." 232 The court
consequently concluded that customers should know that computers from Gateway would arrive
with additional legal terms.233

This portion of the court's holding is important for contract formation under the GPL. In
the Linux community, the GPL acts both as the primary license of the Linux kernel and enjoys
wide acceptance in related software projects.234 Both Linux and its relationship to the GPL
garner significant publicity. Advertisements, news stories, and notices on Web sites and in the
source code itself sufficiently notify developers that additional terms exist. 23 As with the Hills,
who chose not to ask for the additional terms in advance but to review them when the computer
arrived, the GPL imposes a conduct requirement. "By keeping the computer beyond 30 days [the
time specified in the shrinkwrap] the Hills accepted Gateway's offer, including the arbitration
clause" at issue in the case. 236 Similarly, a developer by "modifying or distributing" GPL code
indicates "acceptance of [the] License. 237

227 105 F.3d 1147 (7th Cir. 1997).
228 Id. at 1150.
229 Id.
230 Id.
231 Id.
232 Id.
233 Id.
234 See supra notes 67-68 and accompanying text.
235 See, e.g, Open Source Technology Group (OSTG), SourceForge.net: VRRP - Virtual Router Redundancy
Protocol, https://sourceforge.net/projects/vrrpd/ (last visited Feb. 16, 2007) (Web site listing the GPL as the
governing license for the VRRP project); Linux Cross Reference, Linux-2.6.17/drivers/net/eepro.c,
http://www.gelato.unsw.edu.au/lxr/source/drivers/net/eepro.c (last visited Feb. 16, 2007) (source code file for a
common network hardware driver listing the GPL as the governing license).
236 Hill, 105 F.3d at 1150.
237 GPL, supra note 4, at § 5.

6 Chi.-Kent J. Intell. Prop. 238

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

In light of the wide usage of the GPL by Linux developers, distribution of GPL software,
whether modified or unmodified, standalone or as part of a compilation, allows courts to readily
apply this common rule. A licensor can usually establish conduct, since parties often learn of
infringement only after actual distribution or publication of potentially infringing code. The key
is notice. If a licensee understands (or reasonably should understand) that a GPL licensor will
deal only on terms in the GPL, regardless of whether the license is provided at the time of
agreement, then the portions of the GPL that form the common understanding of the parties
govern their agreement. The definitions of terms contained in the GPL and the interpretation of
copyright law are less clear.23 8 Ambiguous terms will likely force courts to state contract law forinterpretations.

However, as long as the requirement of the GPL is clear to both licensor and licensee
before contract formation, then the notice-plus-conduct model contemplated by the GPL operates
successfully despite the lack of formal notice in practice. Courts will likely hold Linux
developers to the same standard as parties who receive printed forms and choose not to read
them. The notice-plus-conduct model binds the Linux developer to the GPL, regardless of the
interpretation of its terms, just as form contracts bind those agreeing to the substance of a
purchase of concert tickets at Ticketmaster, 239 a visit to CNET's download.com, 24 0 or a purchase
of flight itineraries from United Airlines. 241 Although none of the parties know the exact,
relevant terms, they all agree to proceed on that basis.

Where the GPL may not result in contract formation with end users, the failure does not
thwart its goals. The GPL intends to restrict licensees from expropriating GPL-licensed code and
distributing it. For developers undertaking the conduct described by the GPL, however, courts
will not enforce all of the terms of the GPL automatically. While conduct indicates that the
developer intends to agree to the general basis of the GPL, developers may interpret GPL
provisions differently, leaving agreement perhaps only on the broad type of transaction (one
involving GPL code), but nothing else. With a contract formed, courts must next turn to the
obligations and definitions in the GPL text.

C. Rights and Obligations in the GPL

Regardless of the interpretation of the GPL as a license or as a contract, the text of the
GPL helps to determine its enforceability. As described in Part I, Stallman rewrote the GPL from
the GNU Emacs General Public License as a template license. Rather than creating individual
licenses for each new GNU program, the GPL can apply to any program, provided a licensor
incorporates the terms of the GPL by notice in the software. 242 The GPL opens with a Preamble
designed to highlight its intended audience. 243 While Stallman intended the GPL to act as a legal

238 This paper deals with these subjects in Parts II.E. and III, infra, respectively.
23' Ticketmaster, supra note 182.
241 CNET Networks, supra note 183.241 United Airlines, supra note 184. See also Carnival Cruise Lines, Inc. v. Shute, 499 U.S. 585 (1991) (enforcing a

forum selection clause included in three pages of terms attached to a cruise ship ticket).
242 See GPL, supra note 4 (describing how to apply the GPL to programs in a short explanation that accompanies the
GPL text).
243 Id.

6 Chi.-Kent J. Intell. Prop. 239

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

document, the absence of legalese suggest that he and the FSF wrote the Preamble with a lay
audience in mind. Without using Stallman's "copyleft" term,244 the Preamble describes its

245concept and the primary purposes of the GPL.. Interestingly, the copyright notice preceding the
Preamble forbids modifications of any type to the license: "Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed., 246 While the
GPL encourages the free distribution of GPL-licensed code and derivative works, the license
prohibits authors from creating derivative works from the text of the GPL itself.

First, and most importantly, the GPL is "designed to make sure that you have the freedom
to distribute copies of free software ... that you receive source code or can get it ... [and] that
you can change the software or use pieces of it in new free programs." 247 While the GPL
guarantees these rights for the licensee, it imposes the same restrictions on parties when they, in
turn, become licensors instead of licensees. Stallman' s "copyleft" idea, retains copyright in the
software, but requires licensees and licensors to share GPL-licensed code freely. The Preamble
specifically refers to Stallman and the FSF's purposes, noting, "[lt]o protect your rights, we need
to make restrictions that forbid anyone to deny you these rights or to ask you to surrender these
rights." 248 The Preamble informs licensees that the purpose of the GPL is, in part, to ensure "that
you know you can do these things" described in the license.249

The second purpose of the GPL outlined in its Preamble specifically concerns warranty
and patent issues. Couched in terms of protecting the original author's reputation, the Preamble
"make[s] certain that everyone understands that there is no warranty for this free software." 250

The last full paragraph of the Preamble repeats the concerns Stallman had for software patents,
referring to GPL Section 7's termination provisions for patented software. 251 The disclaimer of
warranty, mentioned in the Preamble and discussed in Part II.F herein, appears in many
proprietary licenses and other open source licenses, but the license termination in GPL Section 7
is a unique creation.

Sections 1 through 3 of the GPL grant to licensees rights reserved for the copyright
holder under the Copyright Act and address rights not contained in the Act. The Act reserves for
copyright holders "the exclusive rights to do and to authorize252 any party to "reproduce the

244 WILLIAMS, supra note 9, at http://www.faifzilla.org/ch09.html (last visited Jan 11, 2007). Williams describes the
origin of the term:

[A] California hacker named Don Hopkins mailed him a manual for the 68000 microprocessor.
Hopkins, a Unix hacker and fellow science-fiction buff, had borrowed the manual from Stallman a
while earlier. As a display of gratitude, Hopkins decorated the return envelope with a number of
stickers obtained at a local science-fiction convention. One sticker in particular caught Stallman's
eye. It read, "Copyleft (L), All Rights Reversed." Following the release of the first version of
GPL, Stallman paid tribute to the sticker, nicknaming the free software license "Copyleft."

245 GPL, supra note 4, at Preamble.
246 GPL, supra note 4.
247 Id. at Preamble.

248 Id.

249 Id.

250 Id.

251 Id.

252 17 U.S.C. § 106 (2000).

6 Chi.-Kent J. Intell. Prop. 240

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

copyrighted work,, 253 to "distribute copies, ' 254 and to "prepare derivative works., 255 The GPL
reserves these same rights: "You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium... 25626 "modify your copy or copies of the
Program or any portion of it, thus forming a work based on the Program, and copy and distribute
such modifications" 257 and "copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2 above." 258

Section 2 embodies Stallman's "copyleft" idea, granting licensees the licensor's statutory
rights to copy, distribute, and reproduce works or derivative works, provided downstream
licensees receive the same exact rights when licensees reproduce and redistribute works. 259 The
GPL not only attempts to grant rights to licensees, but also eliminates the potential for
opportunistic developers to expropriate source code, deploy it in their own works, and license
those works under non-GPL licenses. Section 4 reinforces the grant under Section 2 by ensuring
that only the GPL applies to licensed software:

You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

2 6 0

Section 4 adds an enforcement mechanism to the earlier sections' grants of rights.
Licensees that distribute infringing works, commandeer licensed code for use in proprietary-
licensed works, or infringe the GPL in other ways automatically lose their rights under the

261GPL.. Presumably, such a violation would leave a putative licensee with only those rights
granted under the Act (essentially none, when compared with those that the GPL provides).

Section 4 also contains a protection for parties downstream of infringing licensees. When
an upstream licensee loses a license grant under the GPL, Section 4 protects licensees who
received GPL-licensed works from any infringement actions. 262 This grant accompanies Section
6 of the GPL, which attempts to address any lack of privity issues. Section 6 creates "a license
from the original licensor to copy, distribute or modify the Program" and grants it to each
downstream licensee.263

253 Id. at § 106(1).
254 Id. at § 106(3).
255 Id. at § 106(2).
256 GPL, supra note 4, at § 1.257 Id. at § 2.
258 Id. at § 3.
251 See id. at § 2.260 Id. at § 4.
261 Id.

262 Id.
263 Id. at § 6.

6 Chi.-Kent J. Intell. Prop. 241

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Sections 1 through 3 also grant access to "verbatim copies of the Program's source
code. 264 Section 3 defines

source code for a work [to] mean the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable.265

The reference in Section 1 to "verbatim copies" in a "preferred form" and the extended
definition of source code to include "associated interface definition files, plus ... scripts"
attempts to guard against potentially abusive practices by licensees. A narrower definition of
source code would enable licensees to obfuscate source code and evade the purposes of the GPL
while remaining in technical compliance. Without these specific inclusions, a licensee could
release source code conglomerated into a single file, or exclude header definitions, makefiles,
and other configurations necessary to compile a binary version of the Program.2 66 When Linksys
originally released source code used on their wireless routers, the company did not include its
modifications to the GPL code used on the routers until after the Linux and open source
communities applied significant pressure on the company to do so.267 Absent the safeguards in
Sections 1 and 3, Linksys could have justifiably excluded their modifications. 268

Section 3, though, does not require licensees to distribute all related GPL source code in
every situation:

However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable. 269

This logical exclusion allows licensees to distribute source code for the entire Linux
operating system along with a single program solely because the licensee wrote the program to
work with Linux. The section continues by obligating distributors of derivative works to
accompany the work "with a written offer ... to give any third party" the source code to the

264 Id. at § 1.
265 Id. at § 3.
266 Programmers use "headers" or "header files" (common names referring to the same type of file, often ending in
".h") to describe elements of the main source code, including variables, functions or other commonly referenced
items. A "makefile" is a set of instructions for the operating systems' automated compiler. The makefile provides
detailed information on sets of files, headers, libraries, and source code and how to combine these files and
programs together to create executable programs.
267 See supra note 70 and accompanying text.
268 Arguably, the protections discussed here may not go far enough to provide functional source code to users. As a

commenter to the blog post in note 70, supra, noted, Linksys could release GPL code that only compiles when using
a non-GPL licensed compiler. Without the compiler, the source code would be useless, since users could not use it
to create functional binaries. Linksys' original source code release also may not have violated the spirit of the GPL,
even if it violated its terms. The company's initial reluctance to release proprietary modifications to GPL code did
nothing to prevent the open source community from obtaining the original, unmodified code from either Linksys or
its original authors or maintainers.
269 GPL, supra note 4, at § 3.

6 Chi.-Kent J. Intell. Prop. 242

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

derivative work, but only for a minimum of three years, though parties may make a longer
offer.

270

Section 2 modifies this obligation to release source code to conform to Stallman's view
that software should be free.2 71 Section 2 requires "any work that you distribute or publish" that
is covered by the GPL must "be licensed as a whole at no charge to all third parties under the
terms of [the GPL]."272 In addition to requiring parties to license any works covered by the GPL
solely under the GPL, closing another potential loophole for opportunistic developers, this
section effectively limits what parties can charge to the costs of physical media, as allowed by
Section 1. Creative accountants could assign labor costs, portions of fixed overhead expenses,
amortization of goodwill and numerous other charges to the "costs" of producing physical media
with GPL software. However, the requirement to provide "verbatim copies of the Program's
source code" allows interested users to provide their own physical media and eliminate any
assigned "costs." Without any pricing power in the market for GPL software, developers cannot
sustain prices above the marginal cost of producing physical media.

Finally, the GPL recognizes the importance of awareness and notification. Throughout
the license, the GPL reminds those who copy and distribute Programs, or derivative works, to
make others aware of copyrights and the GPL. Section 1 grants rights, but only when licensees
"conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the
Program."

273

Section 2 applies this principle to "works based on the Program," requiring licensees to
"copy and distribute such modifications or work under the terms of Section 1 above." 274 Section
2 extends this notification provision by requiring that "modified files.., carry prominent notices
stating that you changed the files and the date of any change." 275 This non-attribution provision
mirrors those found in myriad other open source licenses. 276 Section 2(a) protects downstream
licensees by ensuring they know that the Program received is not the original work, and that the
Program provides information about both the original authors and the authors responsible for the
derivations.

Section 2(c) attempts to implement an automated notification as a bulwark against an
author's failure to notify users. The section requires licensees to "cause [the Program], when

270 Id.
271 See supra text accompanying note 18.
272 GPL, supra note 4, at § 2.
273 Id. at § 1.

274 Id. at § 2.
275 Id. at § 2(a).
276 E.g., Open Source Initiative (OSI) - The MIT License, http://www.opensource.org/licenses/mit-license.php (last
visited Jan. 9, 2007) ("The above copyright notice and this permission notice shall be included"); OSI, BSD
License, http://www.opensource.org/licenses/bsd-license.php (last visited Jan. 9, 2007) ("Redistributions of source
code must retain the above copyright notice" and "Neither the name of the <ORGANIZATION> nor the names
of its contributors may be used to endorse or promote products derived from this software).

6 Chi.-Kent J. Intell. Prop. 243

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice," 277 Stallman and the FSF were
prescient to include a provision requiring a Program to output the notice, because download sites
and authors routinely fail to provide adequate notification.278 Again, this provision illustrates the
GPL authors' intent to ensure that downstream licensees receive adequate notice of the GPL and
an opportunity to review its terms. As with the licensor-to-licensee notice requirements detailed
in Section 1 and Section 2, authors, including the FSF itself, routinely ignore the provision in
Section 2(c) requiring automated notice. 279

D. Divining Intent: Defining "works based on the Program" and Other Terms

In addition to general rights and obligations, acceptance provisions, and statements of
Stallman and the FSF's philosophies about free software, the GPL contains a number of
important, albeit ambiguous, definitions of its terms. Section 0 of the GPL defines key terms and
outlines the scope of the license itself (in relevant part):

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based
on the Program" means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) 280

The FSF's principles contained in its Free Software Definition animate the GPL. 281 The Free
Software Definition relies primarily on the term "software. " 282 The GPL, however, uses the term
"program" more closely associated with the Copyright Act's "computer program." 17 U.S.C.
§ 101 defines computer program as "a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result."283 The term "program" in the
GPL falls within this definition. The GPL defines the term "Program" in part as "any program or
other work., 28 4 The GPL never defines Section O's phrase "other work," presumably referring to
the Act's definitions. The Act defines more than a dozen variations on the term "work., 285 Given

277 GPL, supra note 4, at § 2(c).
278 See supra note 209.
279 See supra note 201 and accompanying text.
280 GPL, supra note 4, at § 0.
281 Free Software Foundation, The Free Software Definition GNU Project, http://www.gnu.org/philosophy/free-
sw.html (last visited Jan.9, 2007).
282 Id. The FSF definition does use the term "program" in a few places interchangeably with the term "software," for

example: "The freedom to run the program... The freedom to study how the program works... The freedom to
improve the program Id. The use is sparse and seemingly used to delineate the difference between "free
software" as a subset of the larger "programs."
213 17 U.S.C. § 101 (2000). References herein to "the Act" refer to the Copyright Act of 1976, as amended to include
computer programs in the category of literary works by the Copyright Act of 1980.
284 GPL, supra note 4, at § 0.
281 17 U.S.C. § 101 (2000). Among the examples relevant to a discussion of software, the Act lists a "translation...
abridgement, condensation" and "editorial revisions, annotations, elaborations" in addition to the broader "other
modifications" definition.

6 Chi.-Kent J. Intell. Prop. 244

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

that the GPL licenses software and purports to control future works related in some way to that
software, the definition of "other work" under the GPL would likely include only the Act's
definitions of "collective work," "compilation," "derivative work," and "joint work." To this
point, the GPL's definitions align nicely with the Copyright Act definitions.

Section 0 continues, though, by defining a "work based on the Program" as "either the
Program or any derivative work under copyright law: that is to say, a work containing the
Program or another portion of it ,,286 This definition muddles the Copyright Act definitions
of collective and derivative works. Under the Copyright Act, a work merely containing the
Program would likely fall into the concept of aggregation embodied in the definition of
"collective work., 287 The Act defines a collective work as "... . a work.., in which a number of
contributions, constituting separate and independent works in themselves, are assembled into a
collective whole." 288 A work that incorporates and modifies the entire Program or some portion
of it would fall under the definition of a "derivative work." A derivative work according to the
Act is ". . . a work based upon one or more preexisting works, such as a translation ... or any
other form in which a work may be recast, transformed, or adapted., 289 The GPL definition
incorrectly tries to incorporate both concepts into the single phrase "based on the program."

Section 0 elaborates on its definition of a "work based on the Program" by including
verbatim copies, modified versions, or translated versions of the Program. 290 Here, the GPL
again fails to make the distinction between a work containing the Program and a work based on
the Program, or collective and derivative works as Congress defined them under the Act. To
combine these terms into a single all-encompassing definition is illogical, especially given the
GPL' s reference in the same sentence to copyright law, and the importance of those terms of art
under the Act. The definition, however, is critical in defining the reach of the GPL to programs
that run under or work with Linux without incorporating GPL code.

The first paragraph of Section 0 is one of several places where the GPL refers to a "work
based on the Program." In the second paragraph of Section 0, the GPL clarifies the definition
slightly in response to concerns from developers using GPL-licensed editors and compilers. 291

The GPL applies to "Output from the Program is covered only if its contents constitute a work
based on the Program ,292 In short, merely using an editor or program compiler licensed
under the GPL does not trigger GPL coverage of the created work by itself. This reference does
not help to explain the GPL' s apparent combination of collective and derivative works in Section
0.

286 GPL, supra note 4, at § 0.
287 The Debian Linux distribution's repository of GPL and non-GPL software is one example of a collective work.
The originality embodied in the decisions about which programs to include in the collection qualifies for copyright
protection. The collection does not affect the underlying copyrights in the collected works. See infra notes 301-3 02
and accompanying text.
211 17 U.S.C. § 101.
289 Id.

290 GPL, supra note 4, at § 0.
291 Free Software Foundation, supra note 79.
292 GPL, supra note 4, at § 0.

6 Chi.-Kent J. Intell. Prop. 245

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

The GPL turns to a "work based on the Program" again in Section 2. The second full
paragraph attempts to clarify how the GPL applies to different types of works:

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.293

The first sentence applies the GPL to a "modified work as a whole." The Act refers to
"work[s] consisting of... modifications" representing an "original work of authorship" in the
context of derivative works. 294 The second sentence above, therefore, applies to non-derivative
works and echoes the Act's intent in granting rights to creators of works. The third sentence
addresses the independent works when distributed "as part of a whole" and, alternately, to "each
and every part regardless of who wrote it." This sentence does not clarify what a "work based on
the Program" is, but establishes that the distribution of a derivative work requires a party to have
a license "to the entire whole ... regardless of who wrote it." 295 This sentence also follows the
Act's grant of exclusive rights of reproduction, distribution, and the creation of derivative works
to copyright holders. 296

The next paragraph in Section 2 asserts another intention directly contradictory to the Act
by expressing that its "intent is to exercise the right to control the distribution of derivative or
collective works based on the Program." 297 The Act does not grant rights to works as broadly as
the GPL does. The Act restricts the right to control its grant of rights "to the material contributed
by the author of such work," noting that a copyright in derivative works or a compilation "does
not affect or enlarge the scope, duration, ownership, or subsistence of, any copyright protection
in the preexisting material. 298 While the GPL may intend to exercise certain rights, the Act does
not support textually such a broad grant or interpretation.

Section 2 concludes by exempting collective works from the GPL, stating "mere
aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License." 299 This last sentence restricts the GPL's application solely to
"works based on the Program," without reconciling the differences between this GPL definition
and the Act's definition of derivative works.

293 Id. at § 2.
294 17 U.S.C. § 101.
295 GPL, supra note 4, at § 2.
296 § 106.
297 GPL, supra note 4, at § 2.
'9' 17 U.S.C. § 103(b).
299 GPL, supra note 4, at § 2.

6 Chi.-Kent J. Intell. Prop. 246

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Commentators have noted that, notwithstanding any arguments against construing the
GPL according to its stated intent, licensees can easily avoid the requirements of Section 2 by
separating the distribution of GPL and non-GPL tools.300 Debian, one of the major Linux
versions, maintains both "free" (fully GPL-licensed) and "contrib" and "non-free" (non-GPL
licensed) archives. 30 1 Debian maintains that the "non-free works are not a part of Debian. ,302

The GPL could redefine derivative works from the narrower definition in the Act as part
of a mutual contract between licensor and licensee. The GPL's vague but apparently broader
definition and its conflict with the Act creates potential problems for the open source community
and licensees. Acknowledging the split in the definitions could potentially leave the Linux
community in full-scale war over which software users can license, which they cannot, and how
to enforce the GPL regardless of either side's position on the definitions. This paper will return
to the problem of derivative works in Part III.

E. The GPL 's Limits: Enforceability, Patent Protection, and Warranties

Not every provision of the GPL grants rights or delineates obligations. Stallman and the
FSF devote nearly half of the GPL's sections to areas that the license does not address:
enforceability (Sections 7 and 8), patent protection (Section 7) and warranties (Section 11 and
12).303 The GPL's focus on the policy of "free ' 30 4 software requires the inclusion of sections
protecting that policy from revision by courts, licensees, or patent holders.

The longest of the five limiting sections, Section 7, attempts to address most of these
issues at once. Understanding Section 7 requires breaking down each paragraph into its several
parts. Section 7 opens by stating its ultimate purpose. The section attempts to prevent outside
acts, including contracts between individual parties, litigation settlements, claims of
infringement, court decisions, and any other reason, from altering the GPL's provisions:

If, as a consequence of a courtjudgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. 30 5

This passage leaves much of its interpretation up to licensees and, ultimately, courts. The GPL
does not attempt to define consequences of a court judgment, or the scope of pertinent
obligations. Professor Moglen explains that this provision "ensures that other rules outside of the

300 ROSEN, supra note 85, at 118.
301 Debian Social Contract - Social Contract with the Free Software Community,

http://www.debian.org/social contract (last visited Jan. 9, 2007).
302 Id.

303 See GPL, supra note 4.
304 Again, the word "free" refers to "freedom" rather than price. See supra note 66.
305 GPL, supra note 4, at § 7.

6 Chi.-Kent J. Intell. Prop. 247

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

direct software license cannot take rights away from users, distributors, and modifiers of GPL'd
software."

306

Section 7 then provides strong incentive for licensees to consider the GPL's provisions
carefully before proceeding. The section warns, "if you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. '3 °7 This provision, construed in the way
the FSF intends, could make it impossible for a GPL licensee to retain rights under the GPL
while maintaining rights under other agreements or compliance with other obligations. For
example, consider a licensee that wants to incorporate GPL code into its software product that
also contains licensed code from a chipset vendor whose license prohibits disclosure of the
chipset code. Since the licensee cannot comply simultaneously with the GPL's obligation to
release source and the chipset vendor's non-disclosure obligation, Section 7 would preclude
licensees from distributing the Program at all. Section 7 restricts its effects to distribution of the
code, leaving the licensee free to modify the code for its own internal use. For companies that
produce products for sale, though, the loss of distribution rights essentially amounts to a loss of
all significant rights.

The section also contains a limited severability clause that attempts to save the section
should courts rewrite or invalidate portions of it: "If any portion of this section is held invalid or
unenforceable under any particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances. '" 30 8

Although no court has addressed this specific section of the GPL, neither sentence would
have much, if any, effect. The first sentence uses a simplified version of common contract
language, however, if a court strikes the critical first paragraph, then not much of the section
remains to be enforced. Courts ultimately have discretion to interpret agreements and fashion
remedies, regardless of the intent of the drafters.30 9 While courts would hear arguments from
licensors, licensees, the FSF, and others in the open source community about preserving the
integrity of the license, courts would hesitate to allow the GPL to unilaterally limit its available
options for remedy. The second sentence goes further in trying to avoid any precedential effects
of partial or entire invalidations of Section 7. The GPL leaves "other circumstances" undefined,
but courts could distinguish cases or establish precedent without guidance from the GPL.

Section 7 finishes with a paragraph explaining that the section's provisions are "a
consequence of the rest of this License" and an attempt at "protecting the integrity of the free
software distribution system, which is implemented by public license practices."3 10 Although
stated broadly, the provision likely refers to protecting the GPL and its model. Other "public

306 Eben Moglen, Remarks at the Free Software Foundation Seminar: Detailed Study and Analysis of the GPL and

LGPL (Jan. 20, 2004) (summary available at http://gnucvs.vlsm.org/licenses/200104_seminar.html) (last visited Jan.
9, 2007).
307 GPL, supra note 4, at § 7.
308 Id.
309 Restatement (Second) of Contracts § 206 (1981) states the common law rule that ambiguity should be construed

against the drafter, a potentially problematic rule for enforcement of the GPL's ambiguous terms.
310 GPL, supra note 4, at § 7.

6 Chi.-Kent J. Intell. Prop. 248

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

licenses" such as the BSD License, 311 the Mozilla Public License, 312 and the Apache License313

do not contain these clauses. The Apache License, for example, contains an entirely different
patent protection clause that limits the effect on derivative works and downstream licensees
without completely invalidating the license as the GPL does in Section 7.314 The GPL model
zealously protects free software, and Stallman and the FSF intend the section to preserve the
GPL, even if the result is to remove software from the open source community that licensees
would happily pay to license. Even if a court chose to refashion the GPL to include paid patent
licensing options, the community would reject using the code and would rewrite offending
portions to protect the integrity of the GPL. 315 Linux International President John "maddog" Hall
summarizes the community's position on infringing code nicely: "Take your code, please! We
don't want it." 316

Sections 8 and 10 act as companions to Section 7. In the GPL's only reference to non-
U.S. law and one of two sections that allows licensors to modify the GPL, Section 8 allows
licensors to grant a license with "an explicit geographical distribution limitation excluding"
countries where "distribution and/or use of the Program is restricted ... by patents or by
copyrighted interfaces." 317 Given the goal of wide, free distribution of GPL software, the GPL
drafters made a sensible concession. In Section 10, the license again uses explanatory language
rather than a binding provision. Here, the section instructs licensees on remedies for the GPL's
incompatibility with other licenses, directing them to "write to the author to ask for permission"
to incorporate "the Program into other free programs whose distribution conditions are
different." 318 The section notes that the FSF "sometimes make[s] exceptions" for its own
software in the interests of promoting free software development and distribution.319

Sections 11 and 12 contain warranty disclaimer language common in many contracts.
However, the blanket disclaimers may conflict with some non-U.S. jurisdictions' proscriptions
on warranty disclaimers. The sections, written in all capital letters and headed with a label "NO
WARRANTY," attempt to disclaim any warranties for the software. Section 11 disclaims
warranties "of any kind, either expressed or implied, including, but not limited to, the implied

311 OSI, BSD License, supra note 276.
312 Mozilla Foundation, Mozilla Public License version 1.1, http://www.mozilla.org/MPL/MPL-1.1 .html (last

visitedJan. 9, 2007).
313 Apache Software Foundation, Apache License Version 2.0, http://www.apache.org/licenses/LICENSE-2.0.html
(last visited Jan. 9, 2007).
314 Id. at § 3. For a full discussion of the Apache Software Foundation's approach to patent infringement, how the

Apache Software Foundation has interpreted the GPL and a detailed treatment of the dispute between the Apache
Software Foundation and the Free Software Foundation that, as of this writing, renders the Apache License, v2.0, as
incompatible with the GPL, see generally Apache Software Foundation, Apache License v2.0 and GPL
Compatibility, http://www.apache.org/licenses/GPL-compatibility.html (last visited Jan. 9, 2007).
311 See Pamela Jones et al, Digging for Truth - Research in support of an Open Source/Free Software Community's
Reply to Darl McBride, THE INQUIRER, Sept. 19, 2003, http://www.theinquirer.net/default.aspx?article 11649 (last
visited Jan. 9, 2007) (discussing SCO's suit against IBM for copyright infringement and offers by Torvalds,
Stallman, Moglen, and others to remove infringing code).
316 Jones, supra, note 86 (citing Remarks of John Hall at 2003 Usenix Conference, Jun. 12, 2003).
317 GPL, supra note 4, at § 8.
318 Id. at § 10.
31 9

Id.

6 Chi.-Kent J. Intell. Prop. 249

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

warranties of merchantability and fitness for a particular purpose." 320 Section 12 disclaims
liability "unless required by applicable law" for any "general, special, incidental or consequential
damages."

321

The GPL fails to include a choice of law provision in any section and does not attempt to
state positively what warranty and remedial rights a licensee retains under the license. As a
result, courts in non-U.S. jurisdictions may hesitate to apply these sections and attempt to hold
developers and distributors of GPL licensed programs to standards of liability in their local
jurisdictions. In Germany, the disclaimers in Sections 11 and 12 "are generally considered to be
invalid under German law." 322 Under the French Code de la Consommation and Civil Code,
merchantability disclaimers are invalid when asserted against non-merchants. 323 Under
Australian law, "an exclusion of implied conditions and warranties may not be effective in
Australia, even when the governing law of the open source license is a State of the USA or some
other place." 324 To the apparently great extent that provisions in foreign codes prevent warranty
and liability disclaimers only as applied to consumers and not merchants, the status of Sections
11 and 12 are irrelevant here. 325

In its only other official section, Section 9, the GPL provides notice that the FSF may
update or change the license. As of this writing, the FSF has developed several drafts of version
3 of the GPL, due for release in early 2007 or whenever the FSF finalizes the terms of the revised
license.326 Public statements by Linux kernel developers and other GPL licensors, and the text of
GPL version 2, make application of future versions and notice requirements more difficult. 327

The proposed GPL version 3 and its effect both on GPL version 2 and the issues raised here

320 Id. at § 11.
321 Id. at § 12. Author and lawyer Andrew St. Laurent notes that Section 12 fails to disclaim liability for direct

damages. Laurent suggests that this could force distributors to remedy defective media, or it could simply be an
oversight. Courts could read the list of damages as "illustrative, not definitive." ANDREW ST. LAURENT,

UNDERSTANDING OPEN SOURCE & FREE SOFTWARE LICENSING 48 (2004).
322 Julian Hoppner, The GPL prevails: An analysis of the first-ever Court decision on the validity and effectivity of
the GPL, 1 SCRIPT-ED 628 (2004), available at http://www.law.ed.ac.uk/ahrb/script-ed/issue4/GPL-case.pdf (last
visited Jan 9, 2007) (citing an expert report prepared for VSI, the German software industry association). The
German Institute for Legal Issues on Free and Open Source Software created the German Free Software License in
2004, http://www.dipp.nrw.de/d-fsl/index html/lizenzen/en/D-FSL-1 0 en.txt (last visited Jan. 9, 2007), as a GPL-
compatible license that conformed to German law.
323 C. CONS. art. L. 132-1 (Fr.) (forbidding warranty disclaimers against consumers and non-merchants); C. Civ. art.
1386-15 (Fr.) (forbidding warranty disclaimers against consumers and non-merchants in suits for damages caused by
a defective products). To address the shortcomings of the GPL, three public research foundations in France have
released the free software licensing agreement called "CeCILL" (an acronym combining the names of the three
organizations), http://www.cecill.info/licences/Licence CeCILL Vl.l-US.txt (last visited Jan. 9, 2007), to address
"conformity with French law" along with the free software principles of the FSF. CeCILL claims to be compliant
with French tort and intellectual property law.
324 Peter C.J. James, Open Source Software: An Australian Perspective, LEGAL ISSUES RELATING TO FREE AND OPEN
SOURCE SOFTWARE 63, 76-80 (Brian Fitzgerald & Graham Bassett eds., 2003).
325 However, even under the UCC, Sections 11 and 12 may present problems. U.C.C. §2-316 (1995) allows the
exclusion or modification of warranties, but does not specifically address whether this grant applies only to contracts
or to both contracts and licenses. Software licenses may further complicate any interpretation.
32' Free Software Foundation, GPLv3 2nd Discussion Draft, Jul. 27, 2006, http://gplv3.fsf.org/draft (last visited Jan.
9, 2007).
311 See infra Part IV.C.

6 Chi.-Kent J. Intell. Prop. 250

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

merit more significant treatment than this overview of terms. The paper undertakes a discussion
of the potential effects of GPL version 3 in Part IV.

II. The Linux Kernel Module Problem

A. The Unavoidable Technical Discussion

For purposes of examining the GPL and Copyright Act, Linux has three different types of
software: standalone applications running in kernel space or user space,328 the Linux kernel
itself, and kernel modules that use the "system call interface" described later in this section. Each
of these types of programs presents a potentially different treatment under the GPL and
Copyright Act. Of the three, the GPL and Copyright Act speak clearly about the first two.

Standalone applications do not fall under the definition of a "derivative work," regardless
of whether the applications run in user or kernel space. 329 Provided the developer did not use
GPL-licensed code to create it, no application merely running on an operating system can
constitute a derivative work of that operating system. An entire industry has grown up around
proprietary applications that run on hundreds of operating systems, including Linux.

The Linux kernel developers have licensed the Linux kernel code under the GPL.330

Developers that directly modify this source code fall on the opposite end of the spectrum from
developers of standalone applications. Developers that acquire the Linux source code, modify it,
and compile it to form a new kernel, have created a derivative work of Linux. The GPL requires
that such modifications also use the GPL. 331

The third category creates significant debate. With the ambiguous definitions in the
GPL,332 and rather paltry protections provided to software under the Act,333 this kernel module
code likely falls outside of the definition of "derivative works." To this point, this paper has
carefully avoided technical discussions about kernel modules, program compilation, static and
dynamic linking, and a host of other Linux and programming-specific topics. In order to
understand fully the debate about the applicability of the GPL under the Copyright Act (and to

328 For background information on the difference between the kernel and user space, see generally

User Space, WIKIPEDIA: THE FREE ENCYCLOPEDIA, http://en.wikipedia.org/wiki/User space (last
visited Jan. 9, 2007). The article describes the difference between "kernel space" and "user space"
this way: An operating system usually segregates the available system memory into kernel space
and user space. The kernel space is strictly reserved for running the kernel, device drivers and any
kernel extensions. This kernel space is usually never swapped out to the disk. On the other hand
user space is the memory area used by all user mode applications and this memory can be
swapped (paged) out at any time depending upon the current system requirement.

329 See supra text accompanying note 283 (discussing the Copyright Act definition of derivative works).
330 See supra note 53.
331 GPL, supra note 4, at § 2.
332 See Part 11 E, infra.
333 See Part 11, infra.

6 Chi.-Kent J. Intell. Prop. 251

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

highlight the relative simplicity of the proposed solution in Part IV.), this section proceeds first
with an unavoidable, but brief, technical discussion. 334

Linux, like other UNIX and UNIX-like operating systems and even Microsoft Windows,
runs concurrent "processes," programs and sub-programs, handling different tasks under the
operating system. 335 All of the processes use system resources: system memory (RAM),
processing power measured by the amount and percentage of the processor's available
processing time used, input/output to physical media such as hard drives or CD-ROMs, network
connections (bandwidth), etc. 336 The Linux kernel is the core that allocates these resources to
individual processes as requested.337 Rubini & Corbet 338 use a helpful diagram to illustrate the
basic structure of the Linux kernel:

334 This section includes only the barest details necessary to understand the issues. While some technical language is
unavoidable, this section attempts to present the concepts in as non-technical a manner as possible. As such, some of
the actual concepts described in this section may have more technical nuance than this paper conveys. For a more in-
depth explanation of kernel modules and device drivers, see Linux Information Project supra note 77; see generally
ALLESSANDRO RUBINI & JONATHAN CORBET, LINUX DEVICE DRIVERS (2d ed. 2001), available at
http://www.xml.com/ldd/chapter/book/index.html (last visited Jan. 9, 2007).
335 Non-Linux users can get a sense of this hierarchy by pressing Ctrl-Alt-Del on any Windows 2000, Windows XP,
or Windows Vista release. The "Windows Task Manager" appears, displaying the applications running on the
system. One of the available tabs in this dialog box is "Processes." This tab provides Windows' version of the "top"
program under Linux, showing each process (Image Name), which user started the process, what percentage of time
the CPU spends servicing the process, and the amount of system memory allocated to the process.
336 RUBINI & CORBET, supra note 334, at Chapter 1, available at http://www.xml.com/ldd/chapter/book/chO 1.html
(last visited Jan 8, 2007).
3 3 7

Id.
338 Id.

6 Chi.-Kent J. Intell. Prop. 252

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

vA I Wi~ fi iCiVUP q (I

deeoeil rla~rmig&

The "system call interface" in the diagram represents the "mechanism used by an
application program to request service from the operating system.' '339 The kernel flow diagram
shades the "application programs" of particular interest under the GPL: kernel modules. 340 The
kernel module, as the name suggests, is a routine or set of routines that does not constitute a
standalone program by itself.34 1 On an as needed basis, each "module" of code can add itself to
the core code run by the Linux kernel. 34 As the diagram illustrates, the Linux kernel supports
numerous types of modules, including device drivers, the type of module on which the
subsequent sections focus as an example. 343

Developers can create the simplest of kernel modules easily, as in this variation on the
familiar "Hello, world" program that grade school students learn in compulsory secondary
school computing courses:

339 See generally System Call, WIKIPEDIA: THE FREE ENCYCLOPEDIA, http://en.wikipedia.org/wiki/System call (last

visited Jan. 8, 2007).
340 RUBINI & CORBET, supra note 334, at Chapter 1, available at http://www.xml.com/Idd/chapter/book/chO 1.html
(last visited Jan 8, 2007).
341 See Linux Information Project, supra note 77.
342 id.

343 RUBINI & CORBET, supra note 334, at Chapter 1, available at http://www.xml.com/Idd/chapter/book/ch01 .html

(last visited Jan 8, 2007).

6 Chi.-Kent J. Intell. Prop. 253

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

#include <linux/module.h>
#include <linux/kernel.h>
int init module (void) f

printk("Hello, world.\n");
return 0;
I
void cleanup module (void)

printk("Goodbye, world.\n");
I

As with the more familiar BASIC language program, this simple module prints two simple
messages. The first two lines invoke the system call interface from the diagram in order to assist
the compiler program in creating a binary version of this source code for the Linux system to
execute. The inclusion of the module.h and kernel.h header files is mandatory, as are the names
of the functions "init module" and "cleanup module." 344 Without these standard files and
function names specified by the kernel, the module will not load (run) in the Linux operating
system.34 5 For this interaction with the kernel, developers must use this convention, or API.346

After the Linux kernel starts (the machine "boots up" and loads the operating system into
memory), a simple program, "insmod," can instruct the kernel to load the additional functionality
in the "Hello, world" module. 347 The "Hello, world" module above has virtually no functionality
and can only print a message. However, in the case of device drivers for video cards or network
drivers for Ethernet cards, for example, the loaded code adds significant functionality. Linux
kernel modules can also modify the behavior of the kernel itself, such as changing the way that
the kernel allocates its resources. 34 8

When the insmod program inserts a loadable module into the kernel, the process includes
a linking step. 349 The kernel must resolve function names that the module uses, such as
"init module" and "cleanup module" in the "Hello, world" example, as well as any data
structures that the module uses or populates with data.350 The Linux kernel also supports adding
the module code directly when a compiler builds the kernel from source code. Programmers can
combine module source code with the source code for the kernel (or other program) that will use

344 See Vans Info., Ltd., Introduction to Linux kernel modules, http://www.freeos.com/articles/4051 /(last visited
Feb. 15, 2007).
345 Id.
346 Id. The acronym API stands for Application Program[ming] Interface, "routines or protocols that perform certain
widely-used functions." U.S. v. Microsoft Corp., 253 F.3d 34, 53 (D.C. Cir. 2001).
347 Vans Info., Ltd., supra note 344.
348 See, e.g., MontaVista Software, MontaVista Linux Products, http://www.mvista.com/products/ (last visited Jan.

9, 2007). MontaVista designed its "real time" version of Linux for embedded devices. Among other contributions,
"real time" operating system developers change some of the schedulers and timers used within the Linux kernel. The
changes guarantee that the kernel can complete certain tasks in a predictable, definable timeframe, regardless of the
number of processes running on the system. Real time operating systems have obvious uses in manufacturing or
automation.
349 Vans Info., Ltd., supra note 344.
351 In exceedingly non-technical terms, the "resolution" involves the kernel looking up the name of each function
that the module calls. The kernel ensures that it has a copy of that function and its actual instructions before loading
the module. Modules using unknown functions or data structures will generate an error when loaded.

6 Chi.-Kent J. Intell. Prop. 254

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

the module. 351 The compilation process creates a single object code file containing the compiled
versions of both the module and the program it extends. Instead of loading and unloading the
modules as needed, the kernel contains a permanent copy of the module's compiled code.

The Linux community has debated the applicability of the GPL to code that links
statically or dynamically to the Linux kernel for many years.352 Both the dynamic and static
linking approaches have their respective merits technically. As discussed in the following
sections, for legal purposes in determining the status of the module's source code under the
Copyright Act, the dynamic or static nature of the interaction between a module and the Linux
kernel has no functional distinction.

B. Early Treatment. The "Broad" Construction of Derivative Works

The component architecture in Linux is not unique. The concept of "object-oriented
programming" and programming tools like Microsoft's Visual FoxPro or Visual C++ rely on the
practice of reusing code and combining smaller routines and functions into a larger program.353

Libraries, subroutines, and kernel modules simplify the programming process, and the
application interfaces that enable these bolt-on components make functionality more robust
without adding additional, complex designs and structures. 354

Depending on what a Linux kernel module does and how the programmer and the Linux
kernel developers designed a particular interface, a module could have a simple or complex
interface to the Linux kernel. The "Hello, world" is no more complex than plugging a cord into a
wall socket. An interface to provide communication between a high-speed data networking card
and the Linux kernel's networking substructure would look more like the equipment in the power
company's substation. Anywhere along the complexity spectrum, the functionality provided by a
kernel module requires that the module communicate with Linux through a common interface. In
the "Hello, world" example, the interface copied from the Linux kernel is limited to two function
calls. In a network card driver, the module may copy required data structures and other function
names, similar to the way that Xbox or PlayStation players master the myriad of moves in a
football game or a first-person action title. Regardless of complexity, the location of the
module's compiled code is immaterial. The interaction, not the combining of the "boxes" that
comprise the code repositories, implicates copyright law.

The Copyright Act, without specifically mentioning software, defines a derivative work
as "a work based upon one or more preexisting works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture version, sound recording, art

351 See Vans Info., Ltd., supra note 344.
352 See, e.g., Posting of Jeremy Andrews to KernelTrap, Linux: Reverse Engineering Wireless Drivers,
http://kerneltrap.org/node/6692 (Jun. 7, 2006, 11:01 GMT) (discussion about a Linux Kernel Mailing List thread
concerning the legality of adding non-GPL licensed wireless driver code to the Linux kernel); Posting of Alan
Sanderol to Slashdot, Kororaa Accused of Violating GPL, http://linux.slashdot.org/article.pl?sid-06/05/14/2059242
(May 14, 2006, 20:19 GMT).
353 See generally HAROLD ABELSON & GERALD JAY SUSSMAN, STRUCTURE AND INTERPRETATION OF COMPUTER

PROGRAMS 187-358 (1996).
354 Id.

6 Chi.-Kent J. Intell. Prop. 255

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

reproduction, abridgment, condensation, or any other form in which a work may be recast,
transformed, or adapted. ',355 Two other provisions of the Act affect this provision.

Section 103(a) eliminates protection for "any part" of the derivative work that contains
unauthorized portions of the original work.356 Unfortunately, this provision is silent on who does
hold the copyright in the infringing work, though the most "plausible possibility is that no one
has copyright ownership of an unauthorized derivative work.357 Ultimately, this restriction
has little practical significance for the GPL, since 103(a) leaves intact the original copyright.
Although an unauthorized derivative work may not enjoy copyright protection, copyright
protection for the original GPL-licensed work would prevent any downstream licensees from
exploiting the GPL code.

Section 103(b) of the Act extends copyright protection only "to the material contributed
by the author of such work, as distinguished from the preexisting material employed in the work,
and... is independent of, and does not affect or enlarge the scope, duration, ownership, or
subsistence of, any copyright protection in the preexisting material., 358 Read together with
Section 103(a), the owner of the original work "is effectively the only party that can exploit such
a derivative work., 3 59 As discussed in Part II, supra, the GPL purports to restrict non-GPL
software from linking with GPL-licensed programs by asserting the copyright holder's exclusive
right to prepare derivative works granted by the Act. However, courts have increasingly sought
to narrow the definition of derivative works, especially for code written to be compatible with
underlying original works. 360 This trend toward stricter tests for derivative works contradicts the
broad assertions in the GPL.

Earlier cases, however, interpreted Section 101 broadly. The Seventh Circuit found a
derivative work when a product altered or changed the output of an original work in Midway
Mfg. Co. v. Artic Int'l, Inc.361 The court held that the defendant's video acceleration boards
created a derivative audiovisual work by speeding up game play in the plaintiff s games.362

Commentators have decried this type of broad definition of Section 101. By 1984, articles
warned that the derivative works definition "[was] not only expansive, it [was] still
expanding. ' 363 Later commentators lamented that a broadened definition would lead to situations

315 17 U.S.C. § 101 (2000).
356 Id. at § 103(a).
357 Sean Hogle, Unauthorized Derivative Source Code, 18 No. 5 COMPUTER& INTERNET LAWYER 1, 5 (2001).
358 17 U.S.C. § 103(b).
359 Hogle, supra note 357, at 5.
360 Id. at 6 ("Courts, however, have been increasingly solicitous of parties who copy only interfaces of copyrighted
software, where the purpose of doing so is to achieve interoperability."); Part III, infra.
361 704 F.2d 1009 (7th Cir. 1983).
362 Id. at 1013-14. See also Addison-Wesley Pub. Co. v. Brown, 223 F. Supp. 219 (D.N.Y. 1963) (holding that a

problem solutions manual for a physics textbook constituted an infringing derivative work of that text).
363 Ralph S. Brown, The Widening Gyre: Are Derivative Works Getting Out of Hand?, 3 CARDOZO ARTS & ENT. L.J.

1,2-3 (1984).

6 Chi.-Kent J. Intell. Prop. 256

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

where "any work that [did] not violate the prohibition against copying would at least violate the
prohibition against derivatives ,364

An early pair of cases illustrating what the Ninth Circuit subsequently called a
"hopelessly overbroad" definition of derivative works365 will be familiar to most adults who
grew up during the 1980s. Worlds of Wonder, Inc. v. Veritel Learning Systems, Inc. 366 and
Worlds of Wonder, Inc. v. Vector Intercontinental, Inc. 367 did not involve software, but closely
mirrored the debate about software linked to GPL code. Worlds of Wonder created the animated
teddy bear Teddy Ruxpin. The bear told stories and sang based on sounds and a signal from a
cassette tape player in his back.368 The defendants in each case created their own tapes
containing new stories. 369 These tapes emitted the same voice and signal and "interoperated"
with Worlds of Wonder's product. 37 In essence, the defendants had written "software" (or what
today would be software, rather than a cassette tape) to interoperate with Teddy Ruxpin and
allow him to tell new stories. The court apparently enjoyed the third-party tapes far less than the
children who listened to them, however. Despite the fact that the new tapes contained no Worlds
of Wonder content, the courts found them to constitute infringing derivative works.371

Commentator and judicial criticism of the principles behind the holdings in Midway and
the two Worlds of Wonder cases is unsurprising. As discussed below, subsequent courts have had
difficulty reconciling these decisions with the Act. Even the Midway court acknowledged the
difficulty, admitting that "[i]t is not obvious from this language [of Section 101 of the Act that] a
speeded-up video game is a derivative work., 3 7 2 Essentially, the early court decisions looked at
the output of the combination of works rather than at the works themselves. Under this broad
definition, courts would struggle to find any add-on components or software that did not create
an infringing derivative. Any board added to a Midway video game or tape playable in Teddy
Ruxpin necessarily would have created a similar output, since the underlying game and toy were
unchanged. Under this older definition, reading a copy of this paper in Adobe Acrobat Reader
would create an infringing work of Microsoft Windows, since the add-on Adobe program creates
output nearly identical to the output of other programs for Windows.

364 Christian H. Nadan, A Proposal to Recognize Component Works, 78 CAL. L. REv. 1633, 1640 (1990); See also

Glynn Lunney, Jr., Reexamining Copyright's Incentives-Access Paradigm, 49 VAND. L. REv. 483, 547-48 (1996)
(positing that the "systematic expansion of the derivative right in the twentieth century" narrowed the range of
lawful fair uses); Michael Gemignani, Copyright Protection: Computer-Related Dependent Works, 15 RUTGERS
COMP. & TECH. L.J. 383, 410 (1989) (urging a narrow interpretation of derivative works in software contexts).
365 Micro Star v. FormGen Inc., 154 F.3d 1107, 1110 (9th Cir. 1998).
366 658 F. Supp. 351 (N.D. Tex. 1986). The court cited Midway and its standard with approval at 354-56.
367 653 F. Supp. 135 (N.D. Ohio 1986). The court cited Midway and its standard with approval at 139-40.

368 Veritel Learning Systems, 658 F. Supp. at 352-53.
369 Id. at 353; Vector Intercontinental, 653 F. Supp. at 137.
370 Veritel Learning Systems, 658 F. Supp. at 356; Vector Intercontinental, 653 F. Supp. at 139-140.
371 VeritelLearning Systems, 658 F. Supp. at 356; Vector Intercontinental, 653 F. Supp. at 139-140. The Texas court

called Teddy Ruxpin an "audiovisual work comprising animated plush toy bear with unique voice." Veritel Learning
Systems, 658 F. Supp. at 356. Readers in need of a non-mentally taxing diversion after the short technical discussion
that led off this section can judge for themselves if Teddy Ruxpin and his friend Grubby have unique voices by
visiting YouTube, 1980's Teddy Ruxpin & Grubby Commercial, http://www.youtube.com/watch?v-h0sgFxFeuqM
(last visited Jan. 9, 2007), or learn more about the new, all-digital Teddy Ruxpin and friends at BackPack Toys Int'l,
Ltd.,The world of Teddy Ruxpin, http://www.teddyruxpin.com/ (last visited Jan. 9, 2007).
372 Midway Mfg. Co. v. Artic Int'l, Inc., 704 F.2d 1009, 1014 (7th Cir. 1983).

6 Chi.-Kent J. Intell. Prop. 257

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Both courts explained their holdings by pointing out that the defendants had designed
their products specifically to combine with the plaintiffs' products, and that the products were
useful only in combination. 373 Linus Torvalds repeated this same broad construction argument to
support his conclusion that Linux kernel modules would constitute a derivative work, even
though the code did not incorporate protected expression. Torvalds argued, "You just can't make
a binary module for Linux, and claim that that module isn't derived from the kernel ... [E]ven if
you made your own prototypes and tried hard to avoid kernel headers, it would still be connected
and dependent on the kernel. 374

The definitive 1980s-era broad construction case is the Third Circuit's Whelan
Associates, Inc. v Jaslow Dental Lab., Inc. 375 To avoid an interpretation that would allow nearly
verbatim copying, yet still offer a simple rule to apply, the Whelan court took Midway to its
extreme as it applied to software. In Whelan, the plaintiff alleged infringement of its copyright in
a custom program for dental laboratory record keeping. 376 Whelan developed the custom
program based on specifications its customer, Jaslow designed. Jaslow later developed and
started marketing its own competing version of the Whelan program, and Whelan sued.3 77

Although Jaslow did not copy Whelan's source code directly, the structure, sequence, and
organization (SSO) of the two programs were extremely similar.378

The Third Circuit started its analysis by citing the general rule that non-literal expressive
elements of a program were copyrightable. Noting that its reading of the Act ran opposite
holdings in cases before the 1980 revision, the court justified its construction by looking at the
Act itself and finding "no statutory basis for treating computer programs differently from other
literary works in this regard., 379 To establish a rule, the court looked back to Baker v. Selden and
its separation of idea from expression. Although programs are utilitarian, the Whelan court held
that the central holding in Baker was a general idea that "the purpose or function of a utilitarian
work would be the work's idea, and everything that is not necessary to that purpose or function
would be part of the expression of the idea." 380

With this general rule in mind, the Third Circuit set out to devise a test that would
separate the protectable expression from the unprotectable idea. The court applied a simple test,
describing the "idea" in the case as "the efficient management of a dental laboratory (which

373 Veritel Learning Systems, 658 F. Supp. at 356 (the defendants' infringing "tapes were designed exclusively for
[plaintiffs'] Teddy Ruxpin"); Midway Mfg. Co. v. Artic Int'l, Inc., 547 F. Supp. 999, 1014 (N.D.Ill. 1982) (the
defendants' "speed-up kit was designed solely to modify Midway's Galaxian game"), aff'd 704 F.2d 1009 (7th Cir.
1993). In Midway and the two Worlds of Wonder cases, none of the courts found a public interest in encouraging the
creation of add-on modules to plaintiffs' products, even though the modules arguably constituted protected creative
works themselves. E.g., Midway, 547 F. Supp. at 1015 ("The court can conceive of no public interest that is
furthered by allowing defendant to continue to distribute and sell its infringing material.").
374 Posting of Linus Torvalds to Linux Kernel Mailing List, Re: Linux GPL and binary module exception clause?,
available at http://lkml.org/lkml/2003/12/5/116 (Dec. 5, 2003, 17:19:52 GMT).
375 797 F.2d 1222 (3d Cir. 1986).
376 Id at 1225-27.
377 Id.
371Id. at 1228.
379 Id. at 1240.
380 Id. at 1236 (citing Baker v. Selden, 101 U.S. 99, 102 (1879)) (emphasis omitted).

6 Chi.-Kent J. Intell. Prop. 258

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

presumably has significantly different requirements from those of other businesses).,, 381 This
simplistic reading assumed that a computer program has just one idea. This approach makes
separating idea from expression a simple endeavor. The court expressed the difference this way:
"Because that idea could be accomplished in a number of different ways with a number of
different structures, the structure of [Whelan' s] program is part of the program's expression, not
its idea. '' 382 Because the court could separate the "idea" of managing a dental lab from the
myriad of ways that parties could write software to accomplish that broad rule, they found
Jaslow's program an infringing derivative work because of the similar SSO. 383 The court felt that
its simple dichotomy test best "provide[d] the proper incentive for programmers by protecting
their most valuable efforts," citing research that programmers spent most of their time, and cost
of labor, developing the structure and logic of a program. 384

The broad interpretation in Midway, Whelan, and other cases may have worked well for
video games or cassette tapes, but not for software. Whelan's primary weakness was its
definition of "idea." The definition was at once both too broad and too narrow. In an overall
sense, Section 102(b) of the Act excludes facts, processes, procedures, ideas that have "merged"
with expressions, and other considerations from copyright protection.385 The Whelan court
acknowledged facts and "scenes a faire," 386 but its exclusion of only the idea of the program and
other elements necessary to that idea was too narrow. At the same time, defining the idea as
managing a dental lab was too broad. Judge Learned Hand wrote long ago that courts could
define ideas at different levels of abstraction.3 87 A court's choice of level of abstraction
singularly affects the analysis of any possible derivative work infringement. In Whelan, the
court's definition of the idea as "efficiently managing a dental laboratory" could have easily
fallen under a broader expression umbrella. A computer program, while undoubtedly helpful, is
merely one possible expression of an idea of efficient management of a dental laboratory. By
choosing a low level of abstraction, the Whelan court extended broad protection to the plaintiff s
program.

388

Neither the pre-1980 approach that necessitated Congressional action, nor the broad tests
applied in Midway and Whelan, addressed software copyrights effectively. Judge Hand
recognized this difficulty in separating idea from expression with a general rule, since "no

381 Id. at 1236 n.28.
382 Id. at 1236.
383 Id. at 1239-40.
384 Id. at 1237.
385 See, e.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836-38 (10th Cir. 1993).
386 Whelan, 797 F.2d at 1236.
387 E.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).
311 See also DAVID NIMMER, 4-13 NIMMER ON COPYRIGHT § 13.03(F) ("[t]he crucial flaw in [Whelan's] reasoning is
that it assumes that only one 'idea,' in copyright law terms, underlies any computer program, and that once a
separable idea can be identified, everything else must be expression."). None of this discussion suggests the Whelan
court might have reached a different decision if it had applied either a higher level of abstraction or the Altai test
devised later by the Second Circuit. The court may have found protected expression even if it had completed a
deeper analysis.

6 Chi.-Kent J. Intell. Prop. 259

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

principle can be stated as to when an imitator has gone beyond copying the 'idea', and has
borrowed its 'expression'. Decisions must therefore inevitably be ad hoc."389

C. The Modern "Narrow" Construction of Derivative Works in Software

By the early 1990s, courts began discarding the traditional infringement analysis. 390

While Congress' revision to the Copyright Act declared software a literary work,39' programs
clearly contain elements of a machine. 392 Because of this hybrid purpose, courts abandoned the
more general analysis in Whelan. Instead, the circuit courts formulated different rules that
narrowed the scope of protection-and consequently the realm of derivative works-in favor of
greater copyright exclusions. As discussed below, courts began comparing programs at more
fundamental levels in addition to the Whelan approach of considering the work's output or
general functionality.

Since the Second Circuit decided Computer Associates International, Inc. v. Altai, Inc. in
1992, no court has adopted Whelan's "broad" construction, opting instead for a narrower
approach.393 The first blow to Whelan came from the Supreme Court in Feist Publications, Inc.
v. Rural Telephone Service Co.394 The Court rejected the "sweat of the brow" test generally and
noted that the Second Circuit, who had originally developed the test, had since fully repudiated
it. 395 The Court made clear that despite the plaintiff s significant labor cost investment in
developing a telephone directory, labor investment did not automatically transform
uncopyrightable ideas and facts into protected, copyrightable elements. 396

A third critical passage of the Act unravels Torvalds' and the FSF's contention that
software modules that link for interoperability create a derivative, and undermines the broad
construction in Whelan. Section 102(b) of the Act limits protection for certain types of works:
"In no case does copyright protection for an original work of authorship extend to any idea,
procedure, process, system, method of operation, concept, principle, or discovery, regardless of
the form in which it is described, explained, illustrated, or embodied in [an otherwise protected]

319 Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960) (emphasis in original).
390 E.g., Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807, 820 (1st Cir. 1995) (Boudin, J., concurring) ("Applying

copyright law to computer programs is like assembling a jigsaw puzzle whose pieces do not quite fit."); Computer
Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992) (describing earlier attempts to apply traditional
copyright analysis to software as "fit[ting] the proverbial square peg in a round hole").
391 Altai, 982 F.2d at 712 ("Congress has made clear that computer programs are literary works entitled to copyright
protection.").
392 See supra text accompanying notes 99 101; Patent Act, 35 U.S.C. § 101 (2000) (offering patent protection for
"any new and useful process, machine, manufacture, or composition of matter").
393 982 F.2d 693 (2d Cir. 1992). The only circuit to reject the narrow construction in Altai did so because it felt that
the Altai test was too broad, not too narrow. Lotus Dev. Corp., 49 F.3d at 815. The Third Circuit has never expressly
overruled Whelan, but declined to follow it. The court opted to use the Altai test in Dun & Bradstreet Software
Servs. v. Grace Consulting, Inc., 307 F.3d 197, 214-15 (3d Cir. 2002). See also infra note 423 and accompanying
text.
394 499 U.S. 340 (1991).
395 Id. at 360.
396 Id.

6 Chi.-Kent J. Intell. Prop. 260

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

work., 397 Regardless of the amount of time that a programmer spends developing the SSO of a
program, under Feist and Section 102(b), such functional aspects and ideas do not fall within the
scope of copyright protection.

The Second Circuit took the lead in narrowing the Whelan test, first in Computer
Associates International, Inc. v. Altai Inc.398 Applying Section 102(b), the Ninth Circuit began to
deny protection to specific elements of programs: purely functional features, features dictated by
efficiency, and features necessary for compatibility with other programs.399 The Altai court
criticized the Whelan approach for focusing on the work's idea rather than specific ideas within
the work. Those internal ideas may merge with expression, and because a program's "ultimate
function or purpose is the composite result of interacting subroutines ... [and] each subroutine is
itself a program, and thus, may be said to have its own 'idea', Whelan's general formulation that
a program's overall purpose equates with the program's idea is descriptively inadequate. '" 400

Instead of using the inadequate Whelan approach, the court recognized that a work might
employ multiple ideas, requiring a court to examine the program from multiple levels of
abstraction. 40 1 In Altai, Computer Associates ("CA") sued Altai for copying portions of CA's
scheduling program to make the Altai program compatible with CA's. Altai's original version
copied code directly from CA's program, but Altai rewrote those portions when it received CA's
complaint. 40 2 The resulting code, while no longer a literal copy of CA's code, depended heavily
on it and used non-literal expressions from CA's program.4 03

The Second Circuit agreed with the Whelan analysis, 40 4 although the court did "not end
[its] analysis... [but] determine[d] the scope of copyright protection that extend[ed] to a
computer program's non-literal structure." 40 5 In the continued analysis, the Altai court departed
from Whelan as a "somewhat outdated appreciation of computer science." 40 6

391 17 U.S.C. § 102(b) (2000) (emphasis added). Professor Rosen omits mention of subsection (b) from his book.
ROSEN, supra note 85. For example, on page 19 of the book, supra, Rosen cites a portion of 17 U.S.C. § 102, but
omits the "(a)" from the citation without notation. A reader who never researches the text of the Act would never
know that subsection (b) exists. Subsection (b) is critical to Altai and other cases discussed in Section III, infra.
Without mentioning the subsection directly, Rosen does summarize its intent on page 39. ROSEN, supra note 85, at
39. In an e-mail to the author explaining this less legalistic approach, Rosen noted that he "think[s] it is generally not
helpful to confuse technical people with the idea/expression distinction when they are deciding whether or not to
copy a published work or to modify it for commercial purposes." E-mail from Lawrence Rosen, Lecturer in Law,
Stanford University, to Douglas A. Hass, Author (Sept. 6, 2006, 00:09:42 GMT) (on file with Journal of Intellectual
Property at Chicago-Kent).
398 982 F.2d 693 (2d Cir. 1992).
399 Id. at 707-10.
400 Id. at 705.
401 Id. at 705-06.
402 Id. at 700.
403 In the case before the Ninth Circuit, Altai did not appeal the district court's finding that the original literal
copying constituted a copyright infringement. Id. at 701.4o4 Id. at 702-03.
405 Id. at 703.
406 Id. at 706.

6 Chi.-Kent J. Intell. Prop. 261

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Instead of the simple idea/expression test, the Altai court adopted a three-stage
"abstraction, filtration, comparison" test 40 7 based on the Ninth Circuit's endorsement of the
"analytic dissection" of computer programs in Brown Bag Software v. Symantec Corp. 408 and
Judge Hand's abstraction test in Nichols v. Universal Pictures Corp. 409 The first step,
abstraction, involves dividing the program into its component parts.410 Returning to the diagram
of the Linux system call interface, 411 the high-level function of Linux as an operating system
breaks down into the five kernel subsystems. Within each subsystem, different routines
implement features (concurrency, multitasking, connectivity, etc.) or support hardware (network
drivers, video drivers, etc.). Some subsystems break down further, such as in the network
subsystem or architectures to support a particular range of network interfaces. Each subsystem
breaks into component routines, functions, subroutines, and, ultimately, mathematical
instructions.

Unlike Whelan, the court did not choose any one level of abstraction as the best level.
Instead, the Altai test proceeded to examine each level of abstraction to determine what, if any,
protected expression existed at that level. 412 Here, the court borrowed reasoning from Judge
Hand in Nichols, who noted "there is a point in this series of abstractions where they are no
longer protected, since otherwise the [author] could prevent use of his 'ideas'." 413

Once the court had abstracted it, Altai proceeded to filter the unprotectable elements out
of the program. 4 14 The Altai court agreed with Whelan that the Act does not protect an
underlying idea or any elements necessary to implement that idea.415 In addition to this general
maxim, Altai supplied several additional considerations for this second stage. First, the court
excluded any code structure dictated by efficiency, because "efficiency concerns ... so narrow
the practical range of choice as to make only one or two forms of expression workable
options."

416

Second, and more important for analysis of the GPL, the court adopted a form of "scenes
a faire" for software. The Altai court identified several standard practices and techniques
common to programming applicable in a specific industry or programming in general. The court
named examples of

extrinsic considerations such as (1) the mechanical specifications of the computer on
which a particular program is intended to run; (2) compatibility requirements of other
programs with which a program is designed to operate in conjunction; (3) computer

40 7 Id. at 706-11.
408 960 F.2d 1465, 1475 (9th Cir. 1992).
409 45 F.2d 119, 121 (2d Cir. 1930) (discussing that courts could test copyright infringement cases at different levels

of abstraction).410 Altai, 982 F.2d 706-07.
411 See supra diagram accompanying note 338.
412 See Altai, 982 F.2d 706-07.
413 Nichols, 45 F.2d at 121.414 Altai, 982 F.2d at 707-10.

415 Id.
416 Id. at 707-08.

6 Chi.-Kent J. Intell. Prop. 262

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

manufacturers' design standards; (4) demands of the industry being serviced; and (5)
widely accepted programming practices within the computer industry. 417

The third stage involved analyzing the remaining portions of the original work and
allegedly infringing work. This step compared only the "core of protectable expression." 418 The
court then applied a more standard infringement test to the cores in each work to determine if the
works were substantially similar, and, if so, whether any copying was substantial enough to
constitute infringement. 419 At each level of abstraction, the plaintiff had to prove substantial
similarity to, and substantial copying of, a protectable expression.420 The Altai court rejected
CA's counterargument that the abstraction, filtration, comparison test would strip the industry of
protection for the fruits of research and development, providing a disincentive to market
participants. In dismissing this argument, the court relied on Feist's rejection of the "sweat of the
brow" defense, stating "[t]he interest of the copyright law is not in simply conferring a monopoly
on industrious persons, but in advancing the public welfare through rewarding artistic creativity,
in a manner that permits the free use and development of non-protectable ideas and
processes."

421

Altai gained wide acceptance across a number of jurisdictions. All but three federal
circuit courts follow the Second Circuit's approach422 including the Federal Circuit and Federal
Claims Court. 423 The Seventh Circuit has never considered the Altai decision directly, but has
cited it with approval424 and several of the Seventh Circuit district courts have followed the
decision. 425 The Eighth Circuit and D.C. Circuit have never considered Altai, either, but district

417 Id. at 709-10 (citing NIMMER, supra note 388).
418 Id. Later in the same passage, the court also refers to each stage's protectable expression as the "golden nugget."419 Id. at 710-11.
420 Id.
42 11d. at 711.
422 For other Second Circuit decisions following this approach, see, e.g., MyWebGrocer, LLC v. Hometown Info,
Inc., 375 F.3d 190 (2d Cir. 2004); Briarpatch Ltd., L.P. v. Phoenix Pictures, Inc., 373 F.3d 296 (2d Cir. 2004);
Samara Bros. Inc. v. Wal-Mart Stores, 165 F.3d 120 (2d Cir. 1998); Softel, Inc. v. Dragon Med. & Sci. Commc'ns,
118 F.3d 955 (2d Cir. 1997).
423 E.g., Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 839 (Fed. Cir. 1992); Trek Leasing, Inc. v.
United States, 66 Fed. Cl. 8 (2005); Dun & Bradstreet Software Servs. v. Grace Consulting, Inc., 307 F.3d 197, 214-
15 (3rd Cir. 2002); Trandes Corp. v. Guy F. Atkinson Co., 996 F.2d 655, 658-660 (4th Cir. 1993); Kepner-Tregoe,
Inc. v. Leadership Software, 12 F.3d 527, 534-36 (5th Cir. 1994); Kohus v. Mariol, 328 F.3d 848, 855-857 (6th Cir.
1993); Apple Computer v. Microsoft Corp., 35 F.3d 1435, 1442-43 (9th Cir. 1994) (using the Ninth Circuit's
modified version of Altai called "analytic dissection"); Autoskill, Inc. v. Nat'l Educ. Support Sys., 994 F.2d 1476,
1489-93 (10th Cir. 1993); Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1543-47 (11 th Cir. 1996). The Tenth Circuit
has extended the Altai test beyond software to a potentially wide range of other cases in Country Kids 'N City
Slicks, Inc. v. Sheen, 77 F.3d 1280, 1285 n.5 (10th Cir. 1996) ("The 'abstraction-filtration-comparison' test, or the
'successive filtration' test, was developed for use in the context of alleged infringement of computer software
However, we see no reason to limit the abstraction-filtration-comparison approach to cases involving computer
programs.") (internal citations omitted).
424 Micro Data Base Sys., Inc. v. Dharma Sys., Inc., 148 F.3d 649, 652 (7th Cir. 1998).
425 E.g. Computer Assocs. Int'l v. Quest Software, Inc., 333 F. Supp. 2d 688, 694 (N.D. Ill. 2004); Micro Data Base
Sys. v. Nellcor Puritan-Bennett, Inc., 20 F. Supp. 2d 1258, 1262 (N.D. Ind. 1998).

6 Chi.-Kent J. Intell. Prop. 263

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

courts in those jurisdictions have used the test.4 26 The First Circuit criticized and declined to
follow the Altai test, but only because the court felt that the test was too broad, not too narrow.427

Internationally, Altai also quickly gained acceptance. 428

Not all of the approaches follow Altai identically. Notably, the Tenth Circuit clarified the
filtration test in Gates Rubber, because any "[a]pplication of the abstractions test will necessarily
vary from case-to-case and program-to-program. Given the complexity and ever-changing nature
of computer technology, we decline to set forth any strict methodology for the abstraction of
computer programs." 429 The Tenth Circuit adopted six levels of "generally declining abstraction"
to facilitate its Altai-style analysis in the case, 43 strongly suggesting that the court would apply
more levels of abstraction than those offered in Altai. The Fifth Circuit explicitly adopted a more
detailed approach in Engineering Dynamics, Inc. v. Structural Software, Inc.431 Despite the
differences in the exact filtration test that the circuit courts use, Whelan is no longer good law
now that the circuit courts have adopted Altai and its progeny.432

Using Altai, courts increasingly have prevented software makers from using copyright
law to control linked software. A pair of video game cases from the Ninth Circuit illustrates the
shift. For example, in Sega Enterprises, Ltd. v. Accolade, Inc., the Ninth Circuit held that
Accolade could "reverse engineer" Sega's video game system to create games that ran on the
system, even though it involved copying Sega's code.433 Similarly, in Sony Computer
Entertainment, Inc. v. Connectix Corp., the court permitted the defendant to reverse engineer
Sony's game console in order to write an emulator that allowed users to play Sony's games on a
personal computer. 434

D. Applying Altai and its Progeny to Linux Kernel Modules and the GPL

As Judge Hand's discussion of abstraction in Nichols suggests, the highest levels of
abstraction provide very little copyright protection for Linux kernel modules. Most

421 Control Data Sys. v. Infoware, Inc., 903 F. Supp. 1316, 1322 (D. Minn. 1995); United States v. Microsoft Corp.,
1998-2 Trade Cas. (CCH) P 72,261 15 (D.D.C. 1998). The D.C. Circuit Court has used the Altai test in conjunction
with architectural work, however. Sturdza v. United Arab Emirates, 281 F.3d 1287, 1295 (D.C. Cir. 2002).
427 Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807, 815 (1st Cir. 1995).
42sE.g., Chua Puay Kiang v. Singapore Telecomm. Ltd. (1999), 3 S.L.R. 640 (Sing.); Coogi Austl. Pty. Ltd. v.
Hysport Int'l Pty. Ltd. (1998), 157 A.L.R. 247 (Austl.); Admar Computers Pty. Ltd. v. Ezy Sys. Pty. Ltd. (1997), 38
I.P.R. 659 (Austl.); Data Access Corp. v. Powerflex Svcs. Pty. Ltd. (1996), 33 I.P.R. 194 (Austl.); Ibcos Computers,
Ltd. v. Barclays Mercantile Highland Finance, Ltd., (1994) 29 I.P.R. 25 (Ct. Chanc.) (U.K.); John Richardson
Computers, Ltd. v. Flanders, (1993), 26 I.P.R. 367 (Ct. Chanc.) (U.K.); Delrina Corp. v. Triolet Sys., [1993] 4
C.P.R. 3d I (Ont. Ct. Just.), aff'd, [2002] 17 C.P.R. 4th 289 (Ont. Ct. App.) (Can.); Matrox Elec. Sys. v. Gaudreau,
[1993] R.J.Q. 2449, 2457-58 (Mont. Ct. Just.) (Can.).
429 Gates Rubber Co. v. Bando Chem. Indus., 9 F.3d 823, 834 (10th Cir. 1993).
430 Id. at 835. The levels that the Gates Rubber court used were "(i) the main purpose, (ii) the program structure or

architecture, (iii) modules, (iv) algorithms and data structures, (v) source code, and (vi) object code." Id.
43 26 F.3d 1335, 1342-43 (5th Cir. 1994).
432 Even the Third Circuit no longer follows Whelan. See supra note 423 and accompanying text (noting that the
Third Circuit has used the Altai test).
433 977 F.2d 1510, 1527-28 (9th Cir. 1992).
434 203 F.3d 596, 608 (9th Cir. 2000) (holding that reverse engineering a video game system in order to write
emulation software that plays the video game system's games is a fair use).

6 Chi.-Kent J. Intell. Prop. 264

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

programmers, both inside and outside the Linux and open source communities, write for
efficiency, meaning that highly abstracted structures often have only one or two forms of
expression. The "Hello, world" module sample earlier in this section provides one simple
example. The only way to instruct the Linux kernel to load or unload the module is to call a
specific function by name.435 The Altai test would eliminate the efficient functions used to load
and unload Linux modules, for example.

Linus Torvalds, posting on the Linux Kernel Mailing List, suggested "when you have the
GPL, and you have documented for years and years that [the kernel module interface] is NOT a
stable API, and that it is NOT a boundary for the license and that you do NOT get an automatic
waiver when you compile against this boundary, then things are different [than with a stable
API]."4 3 6 At the same time, Torvalds focuses on today's kernel modules "that are MUCH more
extensive than they were back in '95 or so. These days modules are used for pretty much
everything, including stuff that is very much 'internal kernel' stuff and as a result the kind of
historic 'implied barrier' part of modules really has weakened., 437 Torvalds argues "there are
cases where something would be so obviously Linux-specific that it simply wouldn't make sense
without the Linux kernel. In those cases it would also obviously be a derived work, and as such.
. it falls under the GPL license." 438 The level of integration required, in essence, could render a

kernel module's source code useless for other software platforms. The Sega court provided a
clear rationale for rejecting the Whelan-style approach suggested by Torvalds.439

In Sega, the court denied copyright protection for "functional requirements for
compatibility with the Genesis console 440 Under this approach, the right of the kernel
module author to create a compatible module overrides any nominal copyright infringement
created by the static or dynamic linking process.441 Sega's Genesis console had no public API
whatsoever, 442 stable or otherwise, yet the court still carved the functional elements out of the
Act. Regardless of the status of the API or system interface required for compatibility, any parts
of a program that a developer must copy-such as kernel headers, definition files, variables, or
mandatory Linux kernel function calls-in order to create a Linux-compatible kernel module
would not receive copyright protection.

435 See supra text accompanying note 346.
436 Posting of Linus Torvalds to Linux Kernel Mailing List, available at http://lkml.org/lkml/2003/12/10/101 (Dec.

10, 2003 00:23:33 GMT) (emphasis in original).
437 Posting of Linus Torvalds to Linux Kernel Mailing List, available at http://lkml.org/lkml/2003/12/3/234 (Dec.
10, 2003 00:23:33 GMT) (emphasis in original).
438 Alessandro Rubini, An Interview with Linus Torvalds, 32 LINuX GAZETTE, Sept. 1998, available at
http://linuxgazette.net/issue32/rubini.html (last visited Sept. 7, 2006).
439 See supra text accompanying note 374.
440 Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1993). Accord Bateman v. Mnemonics, Inc.,
79 F.3d 1532, 1536 (1 1th Cir. 1996) ("The interfaces between the application program, operating system, and
hardware are internal, and thus are invisible to the user For the entire system to function, the components must
be 'compatible'- i.e., communication must be unimpeded throughout the system.") (internal citation omitted).
441 Sega, 977 F.2d at 1527-28 (holding that otherwise infringing copies made during the development of an add-on
module are permitted when the copies are a necessary step toward making the module compatible).
442 Id. at 1526 ("The interface procedures for the Genesis console are distributed for public use only in object code

form).

6 Chi.-Kent J. Intell. Prop. 265

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

The Linux source code is publicly available, unlike Sega's code for the Genesis.443 Any
Linux copyright holder would have a far weaker argument for protection given the public
availability of code under the GPL (unlike the closed source Sega Genesis code). No court from
Midway to Sega has ever discussed stability, relative usefulness, platform specificity, or
advancements in functionality as acceptable standards. However functionally extensive or poorly
documented the API is, the source code provides the tools necessary for developers to write
Linux-compatible modules. The portions of Linux kernel source code necessary to make a
compatible module fall under the Sega exclusion.

To rebut Sega, Torvalds and other commentators 444 rely on a misreading of the Ninth
Circuit's 1998 decision in Micro Star v. FormGen, Inc.4 4 5 The Ninth Circuit opened its analysis
with an indictment of the broad Whelan-style interpretation of derivative works under the Act,
and called it "hopelessly overbroad. 4 46 Micro Star had created additional levels for FormGen's
Duke Nukem game using FormGen's MAP file format. 447 The MAP files did not contain any
game code or art from the game's libraries. 448 The files merely acted "as a paint-by-numbers kit"
that instructed the game where to place different items available in game play.449 To determine if
the plaintiffs MAP files infringed the defendant's copyrights, the court used a dual-prong test:
"a derivative work must exist in a concrete or permanent form.., and must substantially
incorporate protected material from the preexisting work., 450

The court found infringement, but not because of "linking" from the MAP files to the
game art libraries. 45 1 Micro Star's argument used precisely the same arguments in this paper
against finding infringement in making compatible works. The court noted that Micro Star
claimed, "the MAP files are not derivative works because they do not, in fact, incorporate any of
[Duke Nukem's] protected expression. '" 452 The court implicitly accepted this argument, and held
that Micro Star "misconstrue [d] the protected work. The work that Micro Star infringes is the
[Duke Nukem] story itself' by retelling the story of the original game.4 53 The court drew a
further distinction between the unprotected elements used for interoperability and the protected
story in its footnote explaining why "[a] book about Duke Nukem would infringe for the same
reason, even if it contained no pictures:" 454

443 See id. at 1514-15 (discussing Accolade's reverse engineering of the object code into source code, an
unnecessary step if source code was publicly available).
444 E.g. Patrick K. Bobko, Linux and General Public Licenses: Can copyright keep "open source" softwarefree?,
28 AIPLA Q.J. 81 (2000) ("Linux-derived works are analogous to new tapes for 'Teddy Ruxpin' [in the Worlds of
Wonder cases] or additional levels for the 'Duke Nukem' computer game [in Micro Star]").
445 154 F.3d 1107 (9th Cir. 1998).
446 Id. at 1110.
447 Id.
448 Id.

449 Id.
450 Id. at 1109-10 (internal quotation marks and citation omitted).
451 Id. at 1112-13.
4 5 2

Id. at 1112.
453 Id.
454 Id.

6 Chi.-Kent J. Intell. Prop. 266

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

We note that the [Micro Star] MAP files can only be used with [Duke Nukem]. If another
game could use the MAP files to tell the story of a mousy fellow who travels through a
beige maze, killing vicious saltshakers with paperclips, then the MAP files would not
incorporate the protected expression of [Duke Nukem] because they would not be telling
a [Duke Nukem] story. 455

Notably, the court did not say that merely telling a second story would avoid
infringement. The court focused on the incorporated expression of the Duke Nukem story,
disregarding the argument contained in FormGen's brief that "the MAP file structure...
embodies substantial protected expression improperly copied and distributed for commercial
gain by Micro Star." 456 FormGen raised this argument in its brief as a ground for appeal after the
district court had rejected this same argument at trial, finding that the structure of the MAP files
themselves were ineligible for copyright protection.457

The Ninth Circuit explicitly drew the distinction between the protected story and
unprotected functional elements required to create a MAP file to distinguish the violation in
Micro Star from the non-infringing uses in Sega and Connectix. 45 In Sega and Connectix, the
alleged infringers created compatible games for gaming consoles. The consoles had no protected
"story" to extend. Similarly, the holding in Micro Star cannot apply to Torvalds' linking
argument Linux kernel modules because Linux has no "story" and kernel modules create no
"sequel" in the way that Micro Star's MAP files did. On non-protection for those functional SSO
elements required for compatibility, Micro Star is in complete accord with the earlier Ninth
Circuit rulings. 459

Torvalds also discussed the introduction of the "EXPORT SYMBOL GPL" kernel
symbol. He noted that this symbol serves as "documentation" and a "big cluehint" to developers
that if they use functions containing this symbol, then they must license the resulting GPL-reliant
code under the GPL. 4 6 The Ninth Circuit refined the Sega analysis further in Sony Computer
Entertainment, Inc. v. Connectix Corp. to address this type of barrier to the creation of works. 461

The court rejected Sony's argument that the type or amount of intermediate copying necessary
affected the infringement analysis.462 Applying the Connectix analysis to Linux, a choice
between code with or without EXPORT SYMBOL GPL would present a developer "with two
engineering solutions that each require intermediate copying of protected and unprotected

455 Id. at 1112 n.5.
456 Appellees' and Cross-Appellants' Opening and Answering Brief at 26, Micro Star v. FormGen, Inc., 154 F.3d

1107 (9th Cir. 1998) (Nos. 96-56426, 96-56433).
457 Micro Star v. FormGen, Inc. 942 F. Supp. 1312, 1316 (S.D. Cal. 1996) ("Therefore, the court finds that movants
have not shown a valid copyright in the data sequence contained in the Nuke It MAP files "), aff'd in part, rev'd
in part by 154 F. 3d 1107 (9th Cir. Cal. 1998).
458 See supra notes 433-434 and accompanying text.
459 Accord The United States Copyright Office "Copyright Registration for Computer Programs (Circular 61),
Revised July 2006" available at http://www.copyright.gov/circs/circ61.pdf ("Note: The description of authorship on
the application should not refer to elements such as 'menu screens,' 'structure, sequence and organization,' 'layout,'
'format,' or the like.").
46' Torvalds, supra note 436.
46 203 F.3d 596 (9th Cir. 2000).
462 Id. at 605.

6 Chi.-Kent J. Intell. Prop. 267

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

material, [requiring that the developer] often follow the least efficient solution."463 The Ninth
Circuit rejected this approach to infringement analysis as "erect[ing] an artificial hurdle" and
creating "precisely the kind of wasted effort that the proscription against the copyright of ideas
and facts ... [is] designed to prevent."' 464 The Ninth Circuit in Sega and Connectix explicitly
eliminated the need, for example, to avoid automatically EXPORT SYMBOL GPL, to create
"wrappers" that separate closed source code from the Linux kernel, or to use "clean room"
development procedures to insulate developers from the "taint" of the GPL-licensed kernel code
and allow them to redevelop necessary code from scratch.465 All of these approaches erect
artificial hurdles rejected in Feist and as applied to software in Sega and Connectix.

Torvalds goes further than advocating adopting a Whelan-style test. He suggests
considering the reason for development, since "these days it would be hard to argue that a new
driver or filesystem was developed without any thought of Linux." 466 This test would divine the
intent of the developer, and attempt to determine whether the developer wrote the software with
the intent to make it Linux compatible. In addition to the existing EXPORT SYMBOLGPL
"artificial hurdle," this added intent test would return courts to Whelan and transform any
software that works with Linux into a derivative work, much like the Teddy Ruxpin tapes. As
discussed earlier in this section, courts have consistently declined to follow this broad
interpretation since Altai.

In the preamble to the GPL, the FSF essentially argues that the license does not erect an
artificial hurdle.467 The GPL carries no fees and expressly makes source code freely available for
the public. At first glance, this free software approach would support "growth in creative
expression, based on the dissemination of other creative works and the unprotected ideas
contained in those works, that the Copyright Act was intended to promote." 468 The Sega court,
however, rejected this favorable license argument. The court extended the right of developers to
create compatible modules free from the control of the original copyright holder even if the
original copyright holder was willing to license that right under other terms.469 Sega offered
Accolade a license agreement that would have allowed Accolade to create Sega-compatible
games with the condition that Sega manufacture those games.470 Despite this license offer, the
court declined to find copyright infringement in Accolade's creation of Sega-compatible games
without a license.471 The commercial nature of the use did "not alter [their] judgment in this

463 Id. (emphasis in original).
464 Id. (citing Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 354 (1991) (internal quotation marks

omitted).
465 See Torvalds, supra note 436. Torvalds contributed his post to an existing mailing list thread that discussed
NVIDIA's use of "wrapper" code for this purpose. The citation at note 436 includes all of the messages in the
thread, including Torvalds' post. See also Free Software Foundation, GNU SASL Library Libgsasl,
http: //www.gnu.org/software/gsasl /(last visited Jan. 11,2007) (discussing one goal of the project as a "clean room
implementation" that "means the copyright and license conditions are clear.").
466 Torvalds, supra note 436.
467 GPL, supra note 4, at Preamble (contrasting licenses "designed to take away your freedom" with the GPL,
claiming that the GPL is "intended to guarantee your freedom to share and change free software").
468 Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1523 (9th Cir. 1993).
469 Id. at 1514 (discussing Sega's available license for independent developers of computer game software).

470 Id.
471 Id. at 1522-23.

6 Chi.-Kent J. Intell. Prop. 268

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

regard., 472 The court found that Accolade's creation of Sega-compatible games had led to "an
increase in the number of independently designed video game programs offered for use with the
Genesis console," precisely what the Act "was intended to promote." 473 Like Sega's license, the
GPL would only apply the Act's principle of growth to some works (those carrying its license).

E. Policy Rationales Behind Sega and its Progeny

The Ninth Circuit carefully rejected Torvalds' postulation that the intimately connected,
but undocumented and unstable, kernel module API granted Linux copyright holders the sole
right to authorize the creation of compatible modules. 474 Unlike Sega and Connectix, authors of
GPL programs do not stand to profit directly from the sale of the software or development
licenses, but the Sega court found no distinction between commercial and non-commercial
uses. 475 While Stallman, the FSF, and the GPL itself highlight economic and philosophical
justifications for the open source software movement, the Ninth Circuit offers its own
compelling economic and natural law justifications for its narrowed approach.

The holdings in Sega and Connectix rest on a scholarly foundation. In Sega, the court
looked at Accolade's disassembly of Sega software as a scholarly pursuit, despite its commercial
underpinning. The Connectix court found no support for a distinction between "studying" and
"use" in its analysis.476 The Sega court emphasized that Accolade "discover[ed] the functional
requirements for compatibility" and "wrote its own procedures based on what it had learned., 477

The court found that Accolade was not trying to "avoid performing its own creative work" but
was permissibly using Sega's code to "study [its] functional requirements. '" 478 The court
repeatedly drew an analogy between Accolade's module development and the "scholarship, or
research" fair use defenses contained in the Act.4 79 Where the GPL encourages certain
developers by making source code available, the copyright exemptions and fair use exceptions
encourage developers who would not otherwise develop GPL code. The GPL and the exceptions
for functional elements and fair use exceptions that enable closed source code to link to GPL-
licensed code further the Act's purposes.

472 Id.

473 Id. at 1523.
474 Sony Computer Entme't, Inc. v. Connectix Corp., 203 F.3d 596, 602 (9th Cir. 2000) (the Act's fair use provisions
excuse the copying required to create a compatible module); Sega, 977 F.2d at 1522 (holding that a linking interface
is an unprotectable idea under the Act) [hereinafter Connectix].
475 Sega, 977 F.2d at 1523.
476 Connectix, 203 F.3d at 604.
477 Sega, 977 F.2d at 1522.
478 Id. AccordAtari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 843 (Fed. Cir. 1992) (holding that the Act
permits uses to "understand the ideas and processes in a copyrighted work.").
479 17 U.S.C. § 107 (2000). Although the exceptions to copyright protection in 17 U.S.C. § 102(b) that include
challenges for compatibility and the fair use exceptions in 17 U.S.C. § 107 are undoubtedly related, they function
differently. The provisions in § 102(b) serve to deny copyright protection to a work or portions of it. Section 107
applies the doctrine of fair use after a court determines that a work qualifies for copyright protection. The two tests
frequently work toward the same end, though. As other courts have noted "while [nonprotectable ideas and
functional elements] may be unoriginal and not worthy of copyright protection, [original expression], though
original and hence copyrightable, may also be denied protection where its use is found to be 'fair' under [the fair use
statute]." Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1540 n.18 (11 th Cir. 1996).

6 Chi.-Kent J. Intell. Prop. 269

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

In addition to scholarship and research, the Act contains an economic component that
grants incentives to create new works that build on existing works.48 Developers write software
by building on processes and procedures in the work of others, similar to the broader literary
works category itself.481 As in the expanded market for Sega Genesis-compatible games in Sega,
the expanded availability of software and supported hardware for Linux creates a public benefit
and a further incentive to create Linux-compatible works.482 Accordingly, the Ninth Circuit in
Sega and Connectix found that module writers not only could link to existing programs for
compatibility and interoperability, but also profit from selling those modules. The Connectix
court explicitly rejected Sony's argument that commercial use raised a "presumption of
unfairness" that defeated any assertions of fair use or non-infringement. 483 The earlier Sega
decision rejected Sega's argument that Accolade could not claim fair use or non-infringement if
it competed in Sega's market.484

Like the generic abstraction standard applied by the circuit courts under Altai and its
progeny, courts have used flexible standards to draw lines between permissible use for
interoperability and impermissible infringement when interpreting the non-exclusive statutory
requirements of Section 107.485 Neither Congress nor courts chose to draw these lines along the
boundaries of intimate links or stable APIs, but instead along the boundaries of market
competition. While closed source kernel modules could compete with GPL code in the Linux
kernel or in other open source modules,486 courts must consider if "[the challenged use] should
become widespread, [whether] it would adversely affect the potential market for the copyrighted

411 Sega, 977 F.2d at 1523 ("It is precisely this growth in creative expression, based on the dissemination of other
creative works and the unprotected ideas contained in those works, that the Copyright Act was intended to
promote.").
481 See, e.g., Mazer v. Stein, 347 U.S. 201, 217 (1954) ("Unlike a patent, a copyright gives no exclusive right to the
art disclosed; protection is given only to the expression of the idea not the idea itself.") (internal citations omitted);
Accord Leeds Music Ltd. v. Robin, 358 F. Supp. 650 (S.D. Ohio 1973) ("For unlike the business of building better
mousetraps (where the continuing possibilities of achieving dramatic technological breakthroughs may still exist) it
might well be said that there are no truly new ideas under the sun.").
412 Sega, 977 F.2d at 1523 ("[P]ublic benefit... may arise because the challenged use serves a public interest").
Open source proponents obviously support this proposition as well. Stallman and other open source proponents
based the open source movement on this communal theory. E.g. Stallman, supra note 20 (discussing the common
origins of his GNU project and the GPL); STEVEN WEBER, THE SUCCESS OF OPEN SOURCE 179-80 (2004)
(postulating that communal open source licenses encourage open source development projects and their unique
social structures).
483 Connectix, 203 F.3d at 606 n.10.
484 Sega, 977 F.2d at 1523.
485 17 U.S.C. § 107 (2000). "[T]he factors to be considered shall include--

(1) the purpose and character of the use, including whether such use is of a commercial nature or
is for nonprofit educational purposes;
(2) the nature of the copyrighted work;
(3) the amount and substantiality of the portion used in relation to the copyrighted work as a
whole; and
(4) the effect of the use upon the potential market for or value of the copyrighted work.

486 See Connectix, 203 F.3d at 607 (Connectix's emulator for Sony's games "does not merely supplant" Sony's
gaming console); Sega, 977 F.2d at 1523 (terming Accolade's products a "legitimate competitor" in Sega's market,
despite the fact that Accolade's games "undoubtedly affected" that market) (internal quotation marks omitted).

6 Chi.-Kent J. Intell. Prop. 270

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

work., 48 7 "Diminishing potential sales, interfering with marketability, or usurping the market"
for the original work can support a finding of infringement.48 8

These tests leave courts with wide discretion to determine when a competing software
product "usurps" the original product. If anything, in the open source software market, open
source products would tend to usurp closed source ones and not the reverse.4 89 Similarly, the Act
and the test outlined in Sega, do not clearly define when information from an original program
used to create a compatible one rises to the level of "misappropriation." In situations where the
Act does not offer guidance, the courts "invoke the misappropriation doctrine to remedy
allegations of 'piracy' or 'dirty tricks'," in light of the "competitive market context." 490

In Sega and Bateman,491 the courts relied on the benefit of "network externalities"
derived from increasing numbers of users and owners of software. 492 Software gains value when
it is compatible with other popular software. 493 As a simple illustration, consider the number of
programs available for Microsoft Windows as opposed to those available for Sun's Solaris
operating system. The benefits of a broad network of users and compatibility with existing
software often causes customers to choose otherwise technically inferior products over less
widely supported, but superior, ones. 494 Anyone who has experienced the Windows "Blue Screen
of Death" or who has moved either to Linux or to Apple's Macintosh platform would probably
agree. While the Windows platform does not always dominate from a technical standpoint, it
nonetheless commands a dominant market share. Network externalities, therefore, present a
compelling reason for courts to take a broad view of developers' use rights for compatibility and
interoperability.

A narrow view of exceptions for compatibility and interoperability would not only allow
GPL licensors to leverage control over their own code, but to exert monopoly control over

487 Sony Corp. of Am. v. Universal City Studios, 464 U.S. 417, 451 (1984).
411 Sega, 977 F.2d at 1523 (citing Hustler Magazine, Inc. v. Moral Majority, Inc., 796 F.2d 1148, 1155-56 (9th Cir.
1986)). See also supra text accompanying note 331 (noting that obvious infringement occurs when developers
directly modify GPL licensed kernel code to create a derivative work). Compare Atari Games Corp. v. Nintendo of
Am. Inc., 975 F.2d 832, 843 (Fed. Cir. 1992) (finding that fair use does not protect "extensive efforts to profit" from
creating a compatible copyrighted work); Sony Corp., 464 U.S. at 451 (holding that, unlike noncommercial uses that
may be eligible for fair use protections, "every commercial use of copyrighted material is presumptively an unfair
exploitation" of copyright). Unlike Sega, the Federal Circuit in Atari found that the uses in question exceeded the
necessary requirements for compatibility and ventured into outright misappropriation.
489 E.g., supra Part I A. (discussion of Stallman's creation of an open source alternative to UNIX); WILLIAMS, supra
note 9 at http://www.faifzilla.org/ch07.html (last visited Jan 11,2007) (discussing "the so-called 'Symbolics War' of
1982-1983" where Stallman usurped Symbolics' proprietary LISP code with his own open source code).
490 Leo J. Raskind, The Misappropriation Doctrine as a Competitive Norm of Intellectual Property Law, 75 MINN.
L. REv. 875, 876-77 (1991).
491Sega, 977 F.2d at 1523; Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1537 n.1 1(1 th Cir. 1996).
492 See Timothy S. Teter, Note, Merger and the Machines: An Analysis of the Pro-Compatibility Trend in Computer
Software Copyright Cases, 45 STAN. L. REv. 1061, 1066 (1993). The Eleventh Circuit in Bateman relied extensively
on Teter's analysis in its opinion. Teter's note predates the Sega case, but the Ninth Circuit's references to public
benefit illustrate a reliance on the same network externalities principle.
493 Id.
494 Id. at 1067.

6 Chi.-Kent J. Intell. Prop. 271

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

compatible products as well.495 Sega and Bateman indicate that copyright protection does not
extend to these network externalities, otherwise copyright owners would gain monopoly control
over entire ideas.496

The natural law arguments follow from the same network externalities. By allowing
developers to copy code for compatibility or interoperability purposes, courts separate the value
of creating new works from the value inherent in existing ones. 497 As discussed earlier, markets
place a value on software based in part on its compatibility and interoperability and its adoption
by previous consumers, and not just the aesthetic beauty of its source code expression or the
relative effort of its developers. Sega, Connectix, and Bateman suggest that as a matter of natural
law, the commercial value of compatible software belongs to the subsequent developer and the
community of software users, and not the original copyright holder.498

III. Solving the Dilemma by Embracing the Status Quo

A. Identifying the Problem

Richard Stallman and others promoting the GPL have a thoroughly reasonable attraction
to copyright law. Copyright is simple: even a moment of poetic inspiration jotted down on the
back of cocktail napkin automatically gains copyright protection. The innovative, if legally
dubious, construct of the GPL enables at least a partial return to the collaborative commons that
Stallman experienced in his early days at MIT. At the same time, though, copyright is weak: it
covers only narrowly defined expressions. Both independent authorship and compatibility
provide subsequent developers with defenses to infringement. Unless a copyright holder can
prove plagiarism of source code and convince a court to ignore the ambiguities and holes in the
GPL, the Act provides little coverage.

The current amorphous exception for kernel modules is dangerous. Linux and the GPL
face the same problem today that Stallman faced in the late 1970s, though with far more players,

491 Id. ("Where copying to achieve compatibility is not permitted, the forces of network externalities may enable a
software producer to achieve a far-reaching monopoly."); Joseph Farrell, Standardization and Intellectual Property,
30 JURIMETRICS J. 35, 36 (1989) ("[T]he more people use a given computer operating system, the more software is
likely to be written for [it] [E]ntry, competition, and innovation may be easier if a competitor need only
produce a single better component ... [rather] than develop an entire 'system."').
496 Sega, 977 F.2d at 1523-24 ("[A]n attempt to monopolize the market by making it impossible for others to
compete runs counter to the statutory purpose of promoting creative expression and cannot constitute a strong
equitable basis for resisting the invocation of the fair use doctrine."); See Bateman, 79 F.3d at 1543 n.23 (noting that
copyright owners own copyrights, not their works, evidenced by the work entering the public domain after the
expiration of the copyright).
497 Connectix, 203 F.3d 596, 608 (9th Cir. 2000) (allowing intermediate copying necessary to the development of
compatible modules); See Sega, 977 F.2d at 1523 (holding that the material copied by Accolade was for
compatibility and not a part of Accolade's software that "determine[d] the program's commercial success").
498 See Teter, supra note 492 ("Standardization of user interfaces prevents user 'lock-in' because users do not have
to learn a new user interface in order to switch application programs."); See also Lotus Dev. Corp. v. Borland Int'l,
Inc., 49 F.3d 807, 819 (1st Cir. 1995) (Boudin, J., concurring) ("A new [user interface] may be a creative work, but
over time its importance may come to reside more in the investment that has been made by users in learning the
[user interface]).

6 Chi.-Kent J. Intell. Prop. 272

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

developer and commercial, than before. A single developer could easily upset the delicate
balance between the GPL and its software commons ideal on one hand and legal realities created
by the Altai line of cases on the other. The Emacs balancing act unraveled over this same
debate.499 In an interview with Linux Weekly News, Professor Moglen illustrated the problem
clearly:

If the kernel is pure GPL, then I think we would all agree that non-GPL, non-free
loadable kernel modules represent GPL violations. Nonetheless, we all know that there
are a large number of such modules and their existence is tolerated or even to some
degree encouraged by the kernel maintainers, and I take that to mean that as an indication
that there is some exception for those modules. 500

Moglen correctly argues that closed source kernel modules violate the spirit of the GPL,
yet acknowledges that Linux still tolerates an undefined exception for code, which also violates
that spirit. Competing interests compound the problem. Moglen and the FSF must divide
loyalties between promoting the vision of a software commons and encouraging the wide
acceptance of Linux and other GPL-licensed projects.

Moglen focused on the locus of the problem as he continued:

The kernel also maintains a technical mechanism, namely the GPL-only symbols and
tainting structure, which seems to suggest an API for the connection of non-GPL'd code
to the kernel, which also seems to me a strong indication of the presence of an exception.
The difficulty as a lawyer, even a lawyer that is reasonably knowledgeable about these
matters, is that I don't understand what the terms of that exception are.501

Here, Professor Moglen hints at the legal reasoning behind the exception explained in
Part III. Closed-source modules that do not copy code beyond necessary compatibility elements
do not violate copyright law under the Altai interpretation. At best, proving infringement would
require a lengthy, detailed expert analysis of source code in front of courts unlikely to reverse
course on copyright protection just to fit the ideological goals of the GPL's drafters.

IBM and SCO have spent millions battling each other in court50 2 ostensibly over source
code. SCO's suit, whatever its merit, represents another field of battle in a long competitive
struggle. Linux is merely the latest proxy. With every commercial open or closed source entry
into the Linux market, the incentives to litigate increase. The incentive to siphon money or
market share from competitors or to enforce ideology may lead to a case that confuses rather
than resolves the kernel module ambiguity.

499 See supra text accompanying notes 23-28.
501 Joe Brockmeier, Interview: Eben Moglen, LINUX WEEKLY NEWS, http://lwn.net/Articles/ 147070/ (Aug. 10,
2005).
501 Id.
502 See Jones, supra note 315.

6 Chi.-Kent J. Intell. Prop. 273

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

B. Two Potential Solutions

Richard Stallman, the GPL's chief architect, made his intentions very clear in his GNU
Manifesto. His utopian goal was to reject all commercial or proprietary modifications and
eliminate money from software development. 50 3 Stallman believed "this can give us a feeling of
harmony which is impossible if we use software that is not free. For about half the programmers
I talk to, this is an important happiness that money cannot replace." 50 4

However, as with all purported Utopias, not all is well. Stallman's plans left software
developers and commercial companies looking to leverage open source software with several
problems to face. The FSF and Linux community could choose a course that would all but
eliminate closed source code from coexisting with GPL-licensed code. Eliminating major drivers
of growth and destroying a collaborative system that has made Linux a leading operating
system, 50 5 while certainly detrimental to the community, has the sole, but significant, benefit of
ideological consistency. Instead of focusing on copyright law, the FSF and other GPL-licensed
code developers could turn to patent law.

The open source community has traditionally demonized software patents, 506 and the
GPL employs a termination clause in an attempt both to avoid patent problems and to penalize
patent holders. 507 Open source proponents could argue that the decentralized, collaborative
development environment eliminates the need for patent licensing necessary in commercial
software development. The problem, however, is that the open source community, Linux, and the
GPL exist in a commercial world.

The GPL and Stallman's "copyleft" idea allow open source developers to try to operate
outside of the intellectual property framework that dominates commercially licensed software.
Many open source developers have no patent portfolio of their own that could aid them in
litigation over the GPL, either in prosecuting GPL violations or in defending patent infringement
actions. Additionally, while attempting to opt out of the copyright framework, developers have
often written code with little attention paid to potential patent infringement. The community's
attitude focuses on cleaning up after infringement happens. 508

Since developers and copyright holders cannot opt out of intellectual property law and
cannot force closed source code from the market wielding only copyrights, open source
developers must either acquire patents of their own, or rely on patent portfolios held by parties
that also participate in the proprietary software market. For years, commercial software vendors
and predatory patent holders have built up large portfolios of intellectual property that could pose
threats to the open source community. If a court finds that portions of the Linux kernel, for
example, infringe a patent, then the entire community, commercial and non-commercial, could

503 Stallman, supra note 33.
504 Id.

505 See supra text accompanying notes 6-7.
506 See, e.g., League for Programming Freedom, Software Patents, http://lpf.ai.mit.edu/Patents/patents.html (last
visited Jan. 11, 2007).
507 GPL, supra note 4, at § 7.
508 See supra notes 315-316 and accompanying text.

6 Chi.-Kent J. Intell. Prop. 274

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

face potential liability. By setting itself largely outside of U.S. intellectual property law, open
source developers have traditionally had few patents of their own to use for protection in any
litigation.50 9 Here, the open source community faces two paths on the intellectual property road:
work to eliminate software patents, or use the existing intellectual property system to achieve the
goals of the FSF and the rest of the open source community.

Despite anti-patent advocates concerns, the open source community has chosen the latter
option with its patent commons project. Commercial and open source software Linux developers
can agree on one critical point: "Software patents are a huge potential threat to the ability of
people to work together on open source." 510 Patent holders can contribute or license patents to
the Open Source Development Labs (OSDL) project, now part of The Linux Foundation,5 11

assuring that the patents will help "accelerat[e] the development and use of open source
software" and defend against predatory use of patents against open source projects.5 12 Alongside
The Linux Foundation, IBM, Novell, Red Hat, Phillips, and Sony have formed the Open
Invention Network (OIN). 3

The major corporate members of The Linux Foundation and OIN groups, including IBM
and HP, continue to invest heavily in patented software technology. In 2004, IBM obtained 3,248
patents from the U.S. Patent and Trademark Office (USPTO), the most obtained by a single
company for the twelfth year running.514 The USPTO granted HP nearly 1,800 patents.515 Even
more traditionally open source companies such as Red Hat have begun building patent
portfolios. 516 However, IBM, HP, Red Hat and others still must deliver returns to shareholders.
Their pledges not to assert patents against the open source community rely on economics, not
benevolence. IBM effectively "licensed" 500 patents to the open source community through its
non-assertion pledge, but holds over 10,000 patents in total.517

509 The creation of projects like the Open Source Development Labs to promote patents and patent licensing for the

open source community illustrates the difficulty that open source developers have had registering and licensing
intellectual property.
511 OSDL, OSDL Announces Patent Commons Project (Aug. 9, 2005), available at http://old.linux-
foundation.org/newsroom/press-releases/2005/2005 08 09 beaverton.html/newsitem-view. In early 2007, the
OSDL merged with the Free Standards Group to create The Linux Foundation. The Linux Foundation, New Linux
Foundation Launches (Jan. 22, 2007), available at http://old.linux-
foundation.org/newsroom/press releases/2007/2007january 22_beaverton.html.
511 See id.
512 Id.

513 OIN, Open Invention Network Formed to Promote Linux and Spur Innovation Globally through Access to Key

Patents (Nov. 10, 2005), available at http://www.openinventionnetwork.com/press release I I 05.php.
514 Stephen Shankland, IBM Offers 500 Patents for Open Source Use, CNET NEWS.COM, Jan. 10, 2005,
http://news.com.com/2100-73443-5524680.html (last visited Jan. 11, 2007).
515 Id.

516 USPTO, USPTO Full-Text and Image Database, http://patft.uspto.gov/netacgi/nph-

ParserSectl PTO2&Sect2 HITOFF&p l&u 0 2Fnetahtml%2FPTO%2Fsearch-
adv.htm&r 0&f-S&l 50&d PTXT&Query AN%2F%22Red+Hat%22 (last visited Jan. 11, 2007). Red Hat has
also made a pledge to use its patents only to further open source efforts. Red Hat, Inc., Statement of Position and
Our Promise on Software Patents, http://www.redhat.com/legal/patent policy.html (last visited Jan. 11, 2007).
511 Shankland, supra note 512.

6 Chi.-Kent J. Intell. Prop. 275

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

IBM accepts commoditization of the markets covered by its 500 pledged patents because
it can extract profits in other areas of its products and services portfolio. This has two
implications for the open source community: (1) patents assume even greater importance in these
non-pledged areas, and (2) IBM's pledge not to assert does not prevent closed source code from
creeping into coexistence with GPL-licensed code. IBM may actually be giving up very little in
its pledges, since the patents in the pledge may or may not have value as revenue generators.
IBM does not provide non-assertion guarantees for its ostensibly profitable closed source
products or patent holdings.518

As commercial development blossoms further in the maturing Linux market, the
pressures on the GPL from closed source, interoperable software will only increase. If the
community wants to avoid embracing the code entirely, it must extend its patent portfolio to
include the patentable processes in the core Linux kernel itself. Groups such as The Linux
Foundation and OIN not only must obtain patents from the USPTO and acquire patents from
other holders, but also must aggressively pursue closed source companies whose software relies
on those patents. To this point, these groups and the Linux community as a whole have focused
on defense, rather than offense. If closed source code does represent a scourge, then the
traditional tool of patent litigation represents the most effective weapon against it.

Starting a patent war would require significant funding and a strong desire to carry out
Stallman's utopian ideals to a potentially bitter end. Patent acquisition by The Linux Foundation
and OIN creates a standoff that enables Linux to avoid infringement confrontations, or at least
deter them. Patent litigation, while ideologically consistent with the goals of complete free
software, could have disastrous consequences for the adoption of Linux.

Ultimately, the push to patent by the open source community may justify a wholesale
rethinking of software patents in general. Unfortunately, determining the effects of eradicating
software patents is impossible without evidence that would allow Congress and the courts to
weigh the comparative intellectual property benefits to open source and commercial software
communities. That process extends far beyond the scope of this paper.

Unlike the days when software was a vehicle to sell hardware, and despite utopian ideals
of an open source software world entirely free of patents and copyrights, today's open source
community must coexist with the commercial software industry. Viral propagation of the GPL
license is unnecessary. Closed source kernel modules that incorporate GPL code from the Linux
kernel for compatibility do nothing to prevent others from obtaining the original, unmodified
Linux kernel code from its original authors or maintainers. 519 The animosity toward closed
source Linux kernel modules and other code makes little sense given the rapid convergence of

511 IBM, IBM Statement of Non-Assertion of Named Patents Against OSS,
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf (last visited Jan. 10, 2007.
519 Putting aside the legal issues, this same argument applies to modifying GPL-licensed code directly to create a

derivative work. Proprietary extensions or modifications to GPL-licensed code do not prevent users from obtaining
the original, unmodified source code. Users can choose between using the proprietary source code, the open source
code (forgoing the proprietary extensions), or developing open source versions of the proprietary code under the
same shelter from infringing expressions described in Part I1, supra. Richard Stallman himself chose the last option
when faced with proprietary code from Symbolics in 1982-83. See supra note 489.

6 Chi.-Kent J. Intell. Prop. 276

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

closed and open source licensing models. Commercial companies often provide access to source
code under favorable terms.520

This does not mean that the GPL has no place in today's integrated open source/closed
source software industry. In the commercial software world, copyright strikes a perfect balance
between protection and innovation. Under Altai, copyright holders get protection from those who
effortlessly plagiarize their code. At the same time, developers retain a strong incentive to author
new works and compete, since Altai provides broad protection for both independent invention
and compatibility.5 2 1 The GPL, under the analysis in this paper, strikes that same perfect balance.
The Debian project's use of "free" (fully GPL-licensed) and "contrib" and "non-free" (non-GPL
licensed) archives provides an excellent example of the ability of closed and GPL code to coexist
to the benefit of Linux users and developers worldwide.5 22

The nebulous "exception" for closed source code encourages participation from a broader
base of developers and companies. The exception's existence does not represent a fundamental
problem; its uncertain nature does. The FSF and the Linux community should embrace closed
source code, instead of ignoring or sidestepping the problem as Stallman did when the Emacs
project ran into similar problems with its ill-defined license.523 Rather than continuing an API
that is "NOT a stable API, ,524 Linux should follow the example of its UNIX-variant cousin,
FreeBSD. FreeBSD uses the BSD license, 52 allowing both open source and closed source
modules to coexist without ambiguity.

For example, FreeBSD uses a networking architecture called netgraph.526 Along with the
rest of FreeBSD, this modular architecture accepts modules under virtually any license. 527 Unlike
Linux, Netgraph's API integrates tightly with the FreeBSD kernel, using a well-documented set
of standard function calls, data structures, and memory management schemes.528 Regardless of
the underlying licensing structure, modules written for netgraph compliance must interact with
netgraph's structure in a predictable, predefined manner.5 29

520 E.g., Microsoft Corporation, Shared Source Initiative,

http://www.microsoft.com/resources/sharedsource/default.mspx (last visited Jan. 11, 2007); ImageStream Internet
Solutions, Inc., Inetics Technology, http://www.imagestream.com/Inetics.html (last visited Jan. 11, 2007).
521 In practice, the plagiarism protections in copyright law have their own special problems when applied to
software, though. While there is no chance that an author would accidentally create a near-verbatim version of this
paper, the structure of programming languages dictates a different result in the software realm. A developer creating
a Linux kernel module that prints the text message "Hello, world" when loaded would undoubtedly create something
nearly identical to the "Hello, world" module in the text accompanying note 346, supra.
522 See supra text accompanying note 302.523 See supra text accompanying note 2328.

524 Torvalds, supra note 436.
525 See supra note 276.
526 Dru Lavigne, FreeBSD: An Open Source Alternative to Linux, http://www.freebsd.org/doc/en US.ISO8859-
1/articles/linux-comparison/article.html (last visited Jan. 11, 2007).
527 Id.

521 See generally Archie Cobbs, All About Netgraph, DAEMON NEWS, March 2003,
http://ezine.daemonnews.org/200003/netgraph.html (last visited Janl 1, 2007).
52 9

Id.

6 Chi.-Kent J. Intell. Prop. 277

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

Open source code can contain (and constrain) closed source code inside the strict
parameters of a stable, documented, well-defined API. The GPL, despite its flaws, serves a
useful purpose in guiding the direction of Linux development. If the FSF, Torvalds, Stallman,
Moglen, or Linux developers generally find closed source code odious, devising open source
APIs and architectures to control closed source code's interaction with the Linux kernel
accomplishes as much of the GPL's stated goals as legally possible. Torvalds hinted at the
efficacy of this approach when discussing the API in newer Linux kernels, suggesting,
"historically... you could load a module using nothing but.., standard interfaces" and that this
approach created an "implied barrier" between modules and the kernel. 530 While a functionality-
crippling barrier is unnecessary, a stricter focus on standardized interfaces and architectures,
such as the one used by netgraph, would balance the community's concerns about closed source
code with the realities of copyright law.

This approach preserves the long-term success of Linux by recognizing the limitations of
the Act and embracing the actual practice of positive symbiotic commercial/open source Linux
software development. The Linux community has an opportunity to adopt such an approach as it
debates a new version of the GPL that may or may not cover subsequent Linux distributions.

C. Reversioning: The Move to GPLv3

At the time of this writing, the FSF has undertaken an effort to create a new version of
the GPL to replace the aging GPLv2.53' Prior to the release of the first draft of the GPL version
3, Stallman and Moglen identified several issues that the new version needed to address: 532

1. Internationalization: GPLv2 relied solely on United States law and must adopt a more
international flavor.

2. Standardization: Stallman and Moglen argue that the GPL acts as an international standard
for open source licenses and developers, and any update must consider this reliance.

3. Adaptation: Digital rights management and patents represent two of a number of new threats
to open source software, and a new version must respond to these changed circumstances.53 3

Unfortunately, Stallman and Moglen have largely avoided the debate over kernel
modules. Instead, much of the discussion of the new version of the GPL has focused on digital
rights management. 534 Despite the hope that competing factions can find common ground and
result in creating "everyone a license that reflects their own view of freedom," 535 Linus Torvalds
does not plan to adopt the new version of the GPL for Linux. 536 A failure to resolve the

530 Torvalds, supra note 436.
531 Eben Moglen and Richard M. Stallman, GPL Version 3: Background to Adoption, Jun 9, 2005,
http://www.fsf.org/news/gpl3.html (last visited Jan 11,2006).
532 Id.

533 Id.

534 Victor Loh, Embedded Linux and GPLv3, EXTREMETECH, Sept. 7, 2006,
http://www.extremetech.com/article2/0,1697,2013471,00.asp (last visited Jan. 11, 2007).
535 Id.

536 Posting of Linus Torvalds to the Linux Kernel Mailing List (Jan. 25, 2006, 22:39:16 GMT), available at
http://lkml.org/lkml/2006/1/25/273 ("The Linux kernel is under the GPL version 2 And quite frankly, I don't
see that changing Conversion isn't going to happen.").

6 Chi.-Kent J. Intell. Prop. 278

Copyright © 2007, Chicago-Kent Journal of Intellectual Property

outstanding issues with the GPL could leave them for courts, and not the open source
community, to resolve.

Until the community completes the reversioning process, an assessment of the GPLv3 is
premature. The second draft addresses a few of the issues that this paper raises, ignores several
others, and raises a host of new questions. Of course, unless Torvalds and the Linux community
accept the GPLv3 as a whole (an unlikely outcome, because the GPLv2 does not require GPL
licensors to adopt new versions automatically), the reversioning work may not resolve any of the
issues raised in this paper.

Conclusion

Courts and legal practitioners worldwide have only recently joined the open source and
Linux communities' intellectual property debate en masse. Despite the often inaccurate guidance
some in the industry offer, the Linux community has adapted its development model to U.S. and
international copyright and contract law. At the same time, the Linux community has protected
vital commercial participation and encouraged widespread industry adoption. The legal issues
underlying this transformation have not undergone a robust analysis. This paper sheds light on
those issues and tests some of their limits in an attempt to cement the community's legally
prudent consensus on closed source participation in open source projects.

The GPL fails to define fundamental terms adequately, including the inconsistent use of
"based on" (derivative works), the lack of a choice of law provision, and the ambiguous
treatment of patents. The GPL holds itself out as a "viral" license, purporting to foist itself on
any software developer who has incorporated GPL code into a project. These and other factors
discussed in Part II, combined with the Linux community's outdated views on copyright
protection for kernel modules in Part III, make it unlikely that a court could give full effect to the
GPL or protect open source code from closed source intrusions in the manner envisioned by the
FSF and Linus Torvalds.

However, the GPL does act as the most important beacon for Linux and the rest of the
open source world. The GPL's most significant contribution may differ greatly from the one
envisioned by its creators: collaborative, decentralized development rather than free software.
Contrary to some non-legal analysis, the "gentlemen's agreement" model employed by Linux is
a common sense adaptation of the GPL. This arrangement successfully accommodates both
closed source and open source software. The gentlemen's agreement is also consistent with U.S.
copyright law. Rather than push to change this functional approach, the community should work
to embrace and solidify it. Courts and market inertia will force both the open source and closed
source models to coexist. Neither purely open source nor purely closed source models for Linux
will succeed without the other.

6 Chi.-Kent J. Intell. Prop. 279

	A Gentlement's Agreement: Assessing the GNU General Public License and its Adaptation to Linux
	Recommended Citation

	Gentlemen's Argument - Assessing the GNU General Public License and Its Adaptation to Linux, A

