
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/120731                             
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/217411437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/120731
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


1 

 

The comparison of auditory, tactile, and multimodal warnings for 1 

the effective communication of unexpected events during an 2 

automated driving scenario 3 

Geitner, Claudiaa; Biondi, Francescob; Skrypchuk, Leec; Jennings, Paula and Birrell, Stewarta* 4 

aWarwick Manufacturing Group (WMG). University of Warwick, International Digital Laboratory, Coventry, CV4 7AL, UK. 5 

bDepartment of Psychology, University of Utah, Salt Lake City, UT 84112, US 6 

cHMI Research Team. Jaguar Land Rover. University of Warwick, International Digital Laboratory, Coventry, CV4 7AL, 7 
UK. 8 

* Corresponding authors: (S. Birrell) s.birrell@warwick.ac.uk 9 

 10 

  11 

mailto:s.birrell@warwick.ac.uk


2 

 

The comparison of auditory, tactile, and multimodal warnings 12 

for the effective communication of unexpected events during 13 

automated driving 14 

In an automated car, users can fully engage in a distractor task, making it a primary 15 

task. Compared to manual driving, drivers can engage in tasks that are difficult to 16 

interrupt and of higher demand, the consequences can be a reduced perception 17 

of, and an impaired reaction to, warnings. In this study we compared three in-18 

vehicle warnings (auditory, tactile, and auditory-tactile) which were presented 19 

during three highly attention capturing tasks (visual, auditory, and tactile) while the 20 

user was engaged in a self-driving car scenario, culminating in an emergency 21 

brake event where the warning was presented. The novel addition for this paper 22 

was that three set paced, attention capturing tasks, as well the three warnings were 23 

all designed in a pilot study to have comparable workload and noticeability. This 24 

enabled a direct comparison of human performance to be made between each of 25 

the attention capturing tasks, which are designed to occupy only one specific 26 

modality (auditory, visual or haptic), but remain similar in overall task demand. 27 

Results from the study showed reaction times to the tactile warning (for the 28 

emergency braking event) were significantly slower compared to the auditory and 29 

auditory-tactile (aka multimodal or multisensory) warning. Despite the similar 30 

reaction times between the in-vehicle auditory warning and the multimodal 31 

warning, the multimodal warning led to a reduced number of missed warnings and 32 

fewer false responses. However, the auditory and auditory-tactile warnings were 33 

rated significantly more startling than the tactile alone. Our results extend the 34 

literature regarding the performance benefits of multimodal warnings by comparing 35 

them with in-vehicle auditory warnings in an autonomous driving context. The set-36 

pace attention capturing tasks in this study would be of interest to other 37 

researchers to evaluate the interaction in an automated driving context, particularly 38 

with hard to interrupt and attention capturing tasks. 39 

Keywords: multimodal warning, tactile warning, driver distraction; 40 

autonomous vehicle; take-over of automation 41 

1. Introduction 42 

The development towards autonomous vehicles is one of the key trends in the automotive 43 

industry (Woodward et al., 2017). With autonomous vehicles drivers’ task-demands change from 44 

actively driving to passively monitoring, with input from the driver being required up to the highest 45 

level of automation (SAE J3016, 2016). Indeed, drivers might be freed from so much of the driving 46 

task in a highly automated car that it can result in ‘underload' (Young and Stanton, 1997; Körber, 47 
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Cingel, Zimmermann, and Bengler, 2015). This underload increases the temptation to engage in 48 

another task (Carsten et al., 2012; Strayer and Fisher, 2015), and subsequent diversion of 49 

attention between tasks can delay reaction times (RT) towards an in-vehicle warning (Spence 50 

and Driver, 1997; Merat, Jamson, and Carsten, 2012). A possible resultant effect might lead to a 51 

safety critical situation when the driver needs to manually respond to an automation failure. In 52 

contrast to driver distraction in manually driven cars, effects in automated vehicles could be worse 53 

because a distractor task may even become the primary task (Blanco et al., 2015) which can be 54 

hard to interrupt. In this study we evaluated such a situation (simulated by a set paced, highly 55 

attention capturing task) in a self-driving scenario. We also investigated the efficacy of multimodal 56 

warnings – one that combine two or more sensory modalities (in this study auditory and tactile 57 

feedback) – in returning the attention of the driver back to the road and the driving task. 58 

Furthermore, we compared an industry developed in-vehicle auditory warning against a 59 

multimodal variant, in order to determine whether the multimodal warning elicits the same 60 

advantages which previous literature found in self-paced tasks during manual driving, in our highly 61 

distracting, self-driving vehicle simulated scenario. 62 

 63 

The fatigue generated from more passive, monitoring tasks required of a driver in an automated 64 

vehicle (Desmond and Hancock, 2001; Körber et al., 2015) can increase the temptation to engage 65 

in non-driving related tasks (Carsten et al., 2012; Llaneras, Sallinger and Green, 2013; Lee, 2014; 66 

Naujoks, Purucker, and Neukum, 2016). Llaneras et al. (2013) found that drivers engaged more 67 

often in riskier, secondary tasks (e.g. dialling a mobile phone or reading) that involved longer off-68 

road glances in a semi-automated driving condition (adaptive cruise control and automatic 69 

steering) compared to a purely driver assistance condition (adaptive cruise control only). Thus, in 70 

an automated vehicle context, different distractor tasks (such as set paced tasks) may be 71 

necessary to understand delayed driver response times (Eriksson and Stanton, 2017) or 72 

potentially missed feedback.  73 

 74 

In-vehicle haptic feedback can help to reduce driver workload when conducting an unfamiliar 75 

driving task (Birrell, Young, and Weldon, 2013), increase safety by reducing the stop time in an 76 

emergency brake event when the automation system fails, or decrease the time for transition in 77 

a take-over scenario (see literature below). Previously it has been shown in manual driving that 78 

multimodal warnings can lead to a faster RT in high-workload situations compared to unimodal 79 

warnings (Brown, 2005; Ho, Reed, and Spence, 2007; Biondi et al., 2017). Similar benefits were 80 

found in automated driving, where drivers required considerably shorter times to detect a visual 81 

warning when combined with another modality, compared to a unimodal visual warning (Naujoks, 82 

Mai, and Neukum, 2014; Blanco et al., 2015). Research by Naujoks et al. (2014) showed that 83 

drivers returned their hands to the steering wheel faster while reading when exposed to a 84 

multimodal, visual-auditory warnings (2.29 s) compared to visual only warnings (6.19 s). 85 

Pjetermeijer, Bazilinskyy, Bengler, and de Winter (2017) found that drivers touched the steering 86 

wheel faster with a multimodal, auditory-tactile warning verses an auditory or tactile only 87 
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warnings. Thus, multimodal warnings might be beneficial for a highly-automated vehicle when 88 

drivers are not required to actually drive and can focus on another task. 89 

 90 

Despite the apparent benefits of multimodal warnings, they have been underused in the 91 

automotive industry to date in favour of more traditional unimodal visual or auditory warnings. 92 

Traditional warnings may be suitable for when the driver’s primary task is driving, as their visual 93 

attention will be directed mainly forwards, towards the in-vehicle systems and/or roadway. 94 

However, in automated vehicles the user may be engaged in visually and auditory demanding 95 

tasks (e.g. watching a film or using a laptop) with their head, body or even their seat not in a 96 

single, uniformly consistent direction. This may result in traditional warnings being missed or 97 

increased reaction times, as shown in laboratory settings with secondary tasks (Spence and Ho, 98 

2017). Supplementing traditional warnings with haptic feedback, within the specific use case of 99 

highly automated vehicles, warrants further research. This paper extends this knowledge about 100 

multimodal warnings towards a performance comparison between a multimodal, a currently used 101 

in-vehicle auditory, and a tactile warning while completing a highly attention capturing tasks in 102 

three discrete modalities, in a self-driving vehicle simulated scenario. 103 

 104 

Within autonomous vehicle research, multimodal warnings are typically compared in tasks with a 105 

“single distractor” condition such as reading (Naujoks et al., 2014), the Surrogate Reference Task 106 

(Pjetermeijer et al., 2017), or a phone conversation (Biondi et al., 2017). Blanco et al. (2015) 107 

conducted one of the few studies which looked at a set of secondary tasks (web-browsing, e-mail, 108 

and navigation) where the participants decided the pace of those tasks. While a self-paced task 109 

gives opportunities for disengagement, in a naturalistic setting drivers might engage in tasks that 110 

are harder to interrupt such as e.g. with goals to achieve (Lee, 2017) or interest (Horrey et al., 111 

2017) such as some kind of game. Artificial tasks with a set pace can simulate this engagement 112 

which could be considered difficult to interrupt. 113 

 114 

In this paper, we compared the performance of a multimodal warning to a traditional in-vehicle 115 

warning while the driver completed a series of highly attention-capturing, set-paced, primary 116 

tasks. Equally weighted and similar tasks were presented in three modalities which are typically 117 

used for in-vehicle interactions: visual, tactile, and auditory. We compared an auditory-tactile, 118 

auditory-only, and tactile-only, in-vehicle warnings for an emergency braking event during a 119 

simulated autonomous driving scenario. The principles behind the Multiple Resources Theory 120 

(MRT; Wickens, 2002) were used to infer predictions for the performance of each warning type. 121 

Building on the MRT for this autonomous vehicle context, two tasks should interfere the most 122 

when they require the same resource, e.g. the same sensory channel. Thus, an auditory task is 123 

expected to interfere with an auditory warning, and the tactile task is expected to interfere with a 124 

tactile warning etc. A multimodal (auditory-tactile) warning is predicted to have an advantage in 125 

both task conditions, due to the information redundancy offered by the second modality. Hence, 126 
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multimodal warnings can be more efficient, because on a perceptual level the two components of 127 

a multimodal warning can enhance each other (King and Calvert, 2001). 128 

2. Materials and Method 129 

This study evaluated two research questions: 130 

1) Does a multimodal (auditory-tactile) warning perform more efficient compared to 131 

unimodal warnings, specifically a traditional used auditory warning, in distracting 132 

conditions that utilise the same sensor modality as one of its components? 133 

2) Does the subjective perception of a multimodal warning differ (positively in terms of 134 

noticeability or negatively in terms of, e.g., annoyance) over three distracting conditions 135 

compared to a unimodal auditory and a tactile warning? 136 

2.1. Participants 137 

Forty-five participants took part in this study (26 female and 19 male), with 36 of the participants 138 

(80%) aged between 20-39 years old. All participants had normal or corrected-to-normal vision, 139 

normal or corrected-to-normal hearing, and no known illness that could affect tactile perception. 140 

Candidates with diabetes were excluded because of a potential influence on haptic perception 141 

(Travieso and Lederman, 2007). Driving experience or a driver’s license was not required 142 

because a self-driving car scenario was employed for this study. 143 

 144 

The ethical review process was conducted and approved by the University of Warwick’s 145 

Biomedical and Scientific Research Ethics Committee (REGO-2016-1741). 146 

2.2. Design and procedure 147 

The study used a 3 (warning type) x3 (task type) within-subjects factorial design with repeated 148 

measures. Dependent variables were reaction time (RT), and four subjective ratings of the 149 

warning in each scenario. The first factor was the warning type and the second factor the task 150 

type. The three warnings were a multimodal (auditory-tactile) warning, an auditory warning (from 151 

a commercially available car), and a tactile warning. In each driving scenario, only one type of 152 

warning cue (either audio, tactile or multimodal) was presented to the driver, however each 153 

warning was presented eight times during a single scenario, with the warnings appearing 154 

randomly, but separated by at least 10 seconds. The three set paced, attention capturing tasks 155 

(‘Task’ in Table 1) were presented in modalities which covered typical interface modalities and a 156 

range of tasks drivers might engage: reading (visual), listening to an audiobook (auditory), or 157 

physical interaction with a mobile phone (tactile). All tasks were serial presentation tasks which 158 

imposed a continuous level of demand (see section 2.3). For each factor combination (three 159 

warnings and three tasks), a slightly different scenario was designed, resulting in a total of nine 160 

self-driving, simulated scenarios (Table 1). 161 
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Table 1. Study scenarios. 162 

Scenario A B C D E F G H I 

Task Visual 

distraction 

Auditory 

distraction 

Tactile 

distraction 

Visual 

distraction 

Auditory 

distraction 

Tactile 

distraction 

Visual 

distraction 

Auditory 

distraction 

Tactile 

distraction 

Warning Multimodal Multimodal Multimodal Audio Audio Audio Tactile Tactile Tactile 

The participants started the study with an introduction, then completion of the demographic 163 

questionnaire. The participants made themselves comfortable in the driving seat of the driving 164 

simulator (Figure 1), after which a training scenario enabled participants to practice each of the 165 

three tasks and experience the three warnings. After the training scenario, the study started and 166 

the scenarios (Table 1) were presented in a counterbalanced order for each participant. In 167 

addition to the subjective data collected (Table 2) at the end of each scenario, the objective 168 

parameter of reaction time (time taken to press the brake pedal after warning was displayed) 169 

performance was also measured. To remove the variability of brake pedal initiation latencies, 170 

participants were encouraged to rest their foot on the brake pedal during the course of a scenario. 171 

Each warning type was presented eight times per scenario. Each scenario lasted approximately 172 

5 minutes, after which the participants rated the level of workload and their experience of the 173 

warning in the scenario (Table 2). 174 

 175 

 176 

Figure 1. Study procedure. 177 

2.3. Design of the attention capturing tasks  178 

The three tasks were selected to be similar in nature, to proscribe a pace and deliver a continuous 179 

attentional demand which lowered the interruptibility of the task. All tasks were rapid serial 180 

presentation tasks (RSPT). The participant was presented with either visual or auditory stimuli in 181 

rapidly changing serial cues, e.g. a rapid series of numbers and letters, appearing for a predefined 182 

timeframe. After exceedance of this timeframe, the cue disappeared and no cue was presented 183 

for a predefined timeframe (between 80 and 350 ms, dependent on the task). Thereafter, the next 184 

cue appeared. When a target was identified, (in this study a number appeared within a rapidly 185 

scrolling series of letters) the participants should react by tapping on the screen of the recording 186 

device (a Microsoft Surface Pro 4 tablet PC, with 60 Hz screen refresh rate). This task can easily 187 

be transferred to the auditory and visual modality, and has been previously successfully employed 188 

in a variety of research projects (see Soto-Faraco and Spence, 2002; Ho, Tan and Spence, 2005). 189 

However, a significant contribution of this paper is to extend the previously utilised visual and 190 

auditory serial presentation tasks, into the tactile modality. 191 

 192 

The visual task was adapted from Ho and Spence (2005). A stream of random letters appeared 193 

on the display of a tablet PC (Figure 2). Within the stream of letters, numbers appeared at random 194 

points of time. Whenever a number appeared on-screen the participant was required to tap on 195 
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the screen as fast as possible. The auditory task was adapted from Soto-Faraco and Spence 196 

(2002), and used the same letters and numbers as the visual task. The task was similar to the 197 

visual one; the participants held a tablet, an audio stream of letters was played with a randomly 198 

occurring number as a target.  Participants again responded by tapping on the screen as quickly 199 

as possible when they detected the number. 200 

 201 

     202 

Figure 2. The visual task on a tablet PC (left), and the equipment for the tactile task (right). 203 

The tactile task was designed to mimic the visual and auditory task. Due nature of presenting 204 

information in a tactile modality, it was not possible to present letters and numbers in this task. 205 

The tactile task needed to be a change detection from the previous stimuli without requiring 206 

intense learning. For the study, two motors (Lilypads) were connected to an Arduino system, and 207 

thence to a tablet computer (Figure 2). The participants placed the tablet on their lap, and held 208 

one of the motors in the left and the other in the right hand for the duration of the task. The 209 

following possible stimuli were presented in tactile task: left motor vibrating; right motor vibrating; 210 

both motors vibrating; no motor vibrating. Participants were required to detect when both motors 211 

vibrated at the same time, and then tap on the tablet to register a response. 212 

 213 

In a pilot study, three settings in each of the three tasks (visual, auditory and tactile) were 214 

compared to identify settings across the task types which have a comparable level of demand 215 

(measured by a rating of workload). A participant experienced each of the nine task-settings once, 216 

for 2 minutes. After experiencing a task setting, the participant rated the experienced level of 217 

workload on a scale from zero (very low) to one hundred (very high) (Hill et al., 1992). The 218 

workload ratings were averaged for all participants for each task setting to determine the mean 219 

workload a setting imposed on the participants. The selected settings and their associated 220 

workload ratings were the following: 221 

i. Visual task: workload M = 76; setting: 8 targets, signal appeared for 40 ms, inter-stimulus 222 

intervals 80 ms 223 

ii. Auditory task: workload M = 74.5; settings: 8 targets, signal appeared for 120 ms, inter-224 

stimulus intervals 150 ms 225 

iii. Tactile task: workload M = 65; signal appeared for 40 ms, inter-stimulus intervals 350 ms 226 



8 

 

2.4. Design of the warnings  227 

A pilot study investigated warnings in auditory-tactile, auditory, and tactile modalities as these do 228 

not require visual attention. Auditory and tactile modalities were selected as they have the 229 

advantage of being independent on where the users’ glances are located. 230 

 231 

Two unimodal warnings were investigated in this study: an auditory warning from commercially 232 

available cars and a tactile warning. The auditory warning was a 2 s beep presented in 233 

frequencies between 94-8000 Hz, pulsing seven times, presented over two loudspeakers left and 234 

right to the monitors. Research by Lees and Lee (2007) suggest that warnings should be 235 

presented at 10-15 decibel (dB) above the surrounding noise level. Consequently, the auditory 236 

warning was presented at 70 dB for this study. The tactile warning was constructed by taking the 237 

auditory warning and transforming this into low vibrational frequencies that were ‘hapticly’ 238 

perceptible through the seat of the development simulator (Figure 3). The ButtKicker Gamer 2 239 

(with power amplifier BKA-130-C, providing a power output of 90 watts at 2 ohms) is a rotating 240 

motor on the back of the driver seat which converts audio signals (primarily bass sounds) into a 241 

low frequency vibration. The ButtKicker’s transducer is fitted to the lower rear of the driver seat 242 

and vibrated the whole driver’s seat as a tactile warning. Auditory and tactile warning were 243 

evaluated in a pilot study beforehand to be perceived as equally intense to avoid confounding the 244 

RT by a more intense warning. 245 

 246 

The auditory and tactile unimodal warnings, as described above, were combined to form the 247 

multimodal warning. Two stimuli presented concurrently will have the strongest association the 248 

more characteristics they share (Spence and Ho, 2017). Hence, the auditory and tactile 249 

components of the multimodal warning were presented simultaneously and in parallel, both 250 

shared a similar pattern, but as the warning was a general, non-directional specific one there was 251 

limited need for it to be spatially linked (c.f Wilson, Reed and Braide, 2009; Spence and Ho, 2017).  252 

2.5. Apparatus 253 

The study was conducted in WMG’s 3xD Development Simulator, consisting of a racing car seat 254 

on a metal frame, a racing steering wheel, gearbox, pedals and three monitors on which the virtual 255 

driving scenario was presented (Figure 3). The scenarios showed a car driving through a cross-256 

country road and a small village. Medium density of traffic appeared in the opposite lane, flow 257 

varied, but with the same number of cars were present in all scenarios. The participant’s car drove 258 

in autonomous mode with one car following and two lead cars in front (i.e. the third car in a convoy 259 

of four). The vehicles drove at 50 miles per hour (mph) on straight sections of roadway, and at 260 

approximately 25 mph around bends. Two seconds after a warning onset, the lead car started 261 

braking. 262 

 263 
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After each driving scenario, the warnings were rated in a questionnaire. The participants rated 264 

the noticeability, motivation to respond, annoyance, and how startling the warning was in the 265 

scenario (Table 2). The overall workload scale (Hill et al., 1992) was adapted to let the participant 266 

rate the perceived level of workload between 0 (very low) and 20 (very high). Campbell, Richard, 267 

Brown, and McCallum (2007) suggest that warnings should not be annoying or startling, though, 268 

they must be noticeable. Furthermore, Wogalter, Conzola, and Smith-Jackson (2002) suggest 269 

that motivation plays a role in response to the warning and this can, besides past experiences 270 

with the system, be influenced by the characteristics of the warning. Hence these additional 271 

criteria were also selected to be subjective rated in this study. A similar questionnaire with a 272 

seven-point rating scale was used by the authors in a previously published study (Geitner, Birrell, 273 

Krehl, and Jennings, 2018) and by (Brown, 2005). 274 

 275 

   276 

Figure 3. The WMG 3xD Development Simulator. 277 

Table 2. Questionnaire about the subjective perception of the warning cues 278 

1) How would you rate the workload in the last scenario? 

Very low Very high 
                    

 

2) How clearly was the warning cue noticeable? 

Not very much  Very much 
       

 

3) How much did warning cue motivate you to respond? 

Not very much  Very much 
       

 

4) How startling was the warning cue? 

Not very much  Very much 

       

 

5) How annoying was the warning cue? 
Not very much  Very much 
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2.6. Data analysis 279 

The study had a three (warning cue) by three (distractor tasks) factorial design. Data analysis 280 

was conducted in R (R Core Team, 2014). The main objective dependent variable was RT, with 281 

other subjective dependent variables were the ratings (Table 2) given to each warning after every 282 

scenario. 283 

 284 

We define RT as the time passed from onset of the warning to the initiation of the brake pedal. 285 

The RT data was analysed for outliers and missed warnings, excluding RTs longer than 2.5s or 286 

shorter than 0.4s from the analysis. Overall, 27 values (less than 1% of the data) were discarded. 287 

Missing values were replaced by the mean RT value for the participant’s other existing RTs in this 288 

scenario. The dataset met the criteria of Sphericity, tested with a Mauchly’s test (Task: W=0.98, 289 

p=0.6; Cue: W=0.93, p=0.21; Task-cue: W=0.85, p=0.6). Following this a repeated measure 290 

ANOVA analysis was conducted, with the RT being the dependent variable, and cue type and 291 

task type the independent variables. Paired t-tests were applied as post-hoc comparisons (with 292 

Bonferroni correction applied). 293 

 294 

The rating data was tested for normality with the Shapiro-Wilk test (Noticeability: p<0.001, 295 

Motivation: p<0.001; Annoyance: p<0.001; Startling: p<0.001). The ratings for noticeability, 296 

motivation, annoyance and startling were not normally distributed. A paired Wilcoxon signed rank 297 

test as a non-parametric statistic was then applied for a within-subject variable comparison of the 298 

ratings across the three warning cues. 299 

3. Results 300 

3.1. Reaction time (RT) 301 

An initial three (warning cue) by three (distractor task) repeated measure ANOVA was conducted 302 

to evaluate main effects of task and warning type. The ANOVA revealed a significant main effect 303 

of task (F(2, 88), p<.001, generalised η2 = 0.81), and a main effect of warning (F(2, 88), p<.001, 304 

generalised η2 = 0.03), and an interaction effect between task and warning (F(4, 176), p<.001, 305 

generalised η2 = 0.01). Given the presence of a main effect, RTs were then compared across the 306 

three warning types separately in each of the three task conditions, and presented as a box plot 307 

in Figure 4. The box plot used in Figures 4, 5 and 6 presents the median value as the middle line 308 

of the box, the first and third quartile by the lower and upper hinge, whiskers that extend from the 309 

hinges to values no larger than 1.5 times the Interquartile Range (IQR), with values that are out 310 

of that range as presented dots and represent outliers of the data. 311 

 312 

RTs in the tactile task condition are shown in Figure 4. Participants reacted significantly faster to 313 

the multimodal (M = 1.28 s) and auditory warnings (M = 1.27 s) compared to the tactile warning 314 

(M = 1.33 s), p<0.005 and p<0.001 respectively. In the tactile task condition, the RT to the 315 
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multimodal warning (M = 1.28 s) and to the auditory warning (M = 1.27 s) did not differ 316 

significantly, p>0.05. 317 

 318 

RTs in the auditory task condition are shown in Figure 4 as overview. In the auditory task 319 

condition, RTs did not differ significantly across the three warning cues (multimodal: M = 0.75 s, 320 

SE = 0.008; auditory: M = 0.78 s, SE = 0.009; tactile: M = 0.78 s, SE = 0.01). 321 

 322 

RTs in the visual task condition are shown in Figure 4 as overview. In the visual task condition, 323 

RTs were faster for the multimodal warning (M = 1.25 s) compared to the tactile warning (M = 1.3 324 

s), p<0.001, and for the auditory warning (M = 1.23 s) compared to the tactile warning, p<0.001. 325 

RTs between multimodal warning and auditory warning did not differ significantly, p>0.05. 326 

 327 

Figure 4. Reaction time to each warning cue (audio, tactile and multimodal) presented for all 328 

three set paced, attention capturing tasks conditions (audio, tactile and visual). 329 

 330 

Overall, the RTs to all warning cues were shorter in the auditory task condition compared to the 331 

other two task conditions (Figure 4). This might be related to the nature of the task or task setting. 332 

An auditory task might be easier to combine with partial monitoring of the road and reacting to a 333 

warning. Critically, the auditory task involved the lowest percentage of correct target detections 334 

compared to the other tasks ranging between 25-30% of the targets (target detection rates: mean 335 

29.4% (auditory task), mean 84.3% (visual task), and mean 45.6% (tactile task)). However, the 336 

low correct detection could also be a result of the task difficulty (high workload). To investigate 337 

the engagement of participants in the task in more detail, all interactions (taps) on the tablet were 338 

analysed over the course of the task. Those taps comprised correct responses to targets and 339 

false interactions, were separated into sub-sections of 30 seconds for analysis. Whenever at least 340 

one tap on the tablet occurred in such a 30 seconds interval, one was added to the engagement 341 

counter. The engagement in the auditory task was generally high, with only two incidences of no 342 

taps with a 30 seconds period recorded by participants. 343 

 344 
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In total 19 warnings were missed. The most warnings were missed in the auditory warning 345 

conditions (11 misses), with less in the multimodal (4 misses) and in the tactile (4 misses) 346 

conditions. The most false reactions (i.e. brake pedal being pressed when no warning was active) 347 

occurred in conditions with the tactile warning (43 false reactions) compared to the multimodal 348 

(20 false reactions) and to the auditory warning (19 false reactions).  349 

3.2. Subjective perception 350 

Overall, the three warnings were rated significantly different for noticeability ( 351 

Figure 5). A Wilcoxon signed rank test revealed that the multimodal warning (M = 6.33) was rated 352 

as significantly more noticeable compared to the auditory (M = 5.96), V = 1646.5, p<.001), and 353 

the tactile warning (M = 5.56), V = 2499.5, p<0.001. The auditory warning was rated as 354 

significantly more noticeable compared to the tactile warning, V = 2237, p<0.001. 355 

 356 

The multimodal warning (M = 6.24) was rated as significantly more motivating to respond than 357 

the auditory warning (M = 5.87), V = 2068.5, p<0.001, and the tactile warning (M = 5.65), 358 

V = 2437.5, p<0.001. The motivation to respond was not significantly different between auditory 359 

and tactile warnings ( 360 

Figure 5). 361 

 362 

Figure 5. Subjective ratings (ranked between 1 and 7, as per Table 2) for each of the three cues: 363 

noticeability (top left), motivation (top right), startling (aka. startlement, bottom left), and 364 

annoyance (bottom right). 365 

 366 

The multimodal warning (M = 4.46) was rated as being significantly more startling than the 367 

auditory warning (M = 4.07), V = 2545, p<0.001, or the tactile warning (M=3.95), V = 3298.5, 368 
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p<0.001. There was no significant different in the startling ratings between auditory and tactile 369 

warnings, p>0.05 ( 370 

Figure 5). 371 

 372 

There were no significant differences between the multimodal warnings (M = 3.25) and the 373 

auditory warnings (M = 3.25)  when rated for annoyance (Figure 5). Both the multimodal warning 374 

(V = 2205.5, p=.015) and the auditory warning (V = 2157.5, p=.016) were rated as significantly 375 

more annoying compared to the tactile warning (M = 2.99). 376 

 377 

The ratings for noticeability and startlement were similar across the task conditions for the 378 

multimodal warning, auditory warning and the tactile warning ( 379 

 380 

Figure 6). 381 

 382 

 383 

Figure 6. Subjective ratings (ranked between 1 and 7, as per Table 2) for each of the three cues: 384 

noticeability (top), and startling (aka. startlement, bottom). 385 

4. Discussion and conclusion 386 

In our autonomous driving scenario with a highly attention-capturing series of set pace tasks with 387 

similar workload, the auditory-tactile warning and the industry used auditory warning conditions 388 

showed similar reaction times (RT) – with both being significantly faster than the tactile only 389 
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warning. Answering the first research question, the auditory-tactile warning resulted in fewer 390 

missed warnings and fewer false reactions. The reduction in false reactions in the multimodal 391 

condition is similar to Blanco et al. (2015) for a visual-haptic alert; where drivers gave incorrect 392 

responses during a cautionary take-over alert, 83.3% of these were in the unimodal (visual) 393 

condition, compared to just 16.7% in the multimodal condition. Within the automated driving 394 

context, and independent to warning type or modality, providing the driver with knowledge of the 395 

attributes and limitations of a low capability automated system led to an increase in false 396 

responses, as the drivers’ were overly cautious about when the system might fail (Khastgir et al., 397 

2018). The use of multimodal warnings, as shown in this paper, might support the driver with this 398 

uncertainty. 399 

 400 

Participants reacted faster to multimodal and auditory only warnings compared to the tactile-only 401 

warning in the visual task condition. Although this cannot be predicted by the MRT it has been 402 

found in laboratory settings that the perception of visual stimuli can decrease the perception of 403 

tactile stimuli that are presented in parallel (Auvray et al., 2008; Murphy and Dalton, 2016). Auvray 404 

et al. (2008) evaluated how people detect changes between two patterns of tactile pulses 405 

presented on the finger. When participants wore an eye mask to eliminate the visual channel 406 

between being presented the two tactile patterns, they  had more difficulties in detecting the 407 

change. Murphy and Dalton (2016) conducted a visual task, with high and low difficulties, 408 

responding to the presence or absence of a tactile stimulus in parallel. They reported that 409 

detection accuracy decreased under highly difficult visual tasks, compared with the low visual 410 

task. Both studies indicate that a visual task can decrease tactile perception – an effect also 411 

observed in this current study. 412 

 413 

The multimodal warning was associated with a faster RT than the tactile warning in the tactile 414 

task condition, and also RTs to the auditory warnings were faster than to the tactile warning. This 415 

results are complementary to the MRT (Wickens, 2002), where different sensory channels are 416 

assumed to be separate resources. Both the tactile task and tactile only warning, utilised the 417 

same sensory channel, which increased the RT to the tactile warning. The auditory component 418 

of the multimodal warning and the auditory only warning utilised an alternative sensory channel, 419 

not occupied by the task, and hence the performance benefits were observed. 420 

 421 

A similar effect of task interference would have been expected between auditory warning and 422 

auditory task, because warning and task utilise the same modality. However, in this condition 423 

there was no significant difference in RT between the three warnings. This reason could be due 424 

to a speed accuracy trade-off, as the auditory task conditions resulted in the shortest RTs towards 425 

the warning compared to the other two task conditions, but lowest detection rate of the targets in 426 

the distracter task. Another explanation might be that participants disengaged from the auditory 427 

task, and therefore were able to react faster to the auditory warning than would be expected. 428 

Participants gave higher than average numbers of false responses in the auditory task condition 429 
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which indicates that although they remained physically engaged, even if these response were 430 

incorrect, they may also have been less cognitively engaged when responding. The lower rate of 431 

correctly detected targets may have led to less interest and consequently less cognitive 432 

engagement in the auditory task. This has been suggested in previous research which reported 433 

that brake responses can be longer when completing in-vehicle tasks that are interesting for 434 

drivers (Horrey et al., 2017). 435 

 436 

In answer to the second research question, the multimodal warning was rated as more noticeable 437 

and more motivating to respond than the auditory and tactile only warnings. Pjetermeijer et al. 438 

(2017) reported auditory-tactile warnings were rated as most effective compared to auditory and 439 

to tactile only warnings. However, in their study, this increase in effectiveness was combined with 440 

a rating of being more startling. In this current study auditory-only and auditory-tactile warning 441 

were also rated more startling compared to the tactile-only warning. Positively, similarly to 442 

previous research, our results suggest that the multimodal warning was not perceived as being 443 

more annoying compared to the unimodal traditional auditory warning (Biondi et al., 2016). 444 

Similarly, in Pjetermeijer et al. (2017) tactile warnings were rated as least annoying compared to 445 

auditory and auditory-tactile warnings. However, annoyance might be less important when we 446 

consider a safety related warning, as its main purpose is alerting the driver. 447 

 448 

A potential limitation of this study, is that the RT did not include the movement of the foot to the 449 

pedal. The participants kept their foot on the pedal for the duration of the scenario, which is not a 450 

common driving behaviour. In a more realistic setting RTs are expected to increase by an 451 

additional time that is required to move the foot to the brake pedal. In addition, within real driving 452 

scenarios the time to press the brake pedal might not be the optimal performance measure, as 453 

steering around or accelerating through an obstruction might be a more suitable response. Future 454 

work should consider a variety of driver interventions in order to eliminate the response bias, and 455 

ensure perceptual (or performance) enhancements for multimodal warnings are still observed. 456 

The sample selected for this study included inexperienced, or unregistered drivers, as interaction 457 

with the control of the vehicle (barring pressing the brake pedal) was not part of this study. 458 

Whenever a study would investigate the perception of the road scenery or interaction with other 459 

road users, participants without driving license would need to be excluded. 460 

4.1. Implications for research about distraction in automated vehicles 461 

Previous research has shown that automation can lead to an attentional underload situation in 462 

which drivers are tempted to engage in non-driving related tasks, which may result in these tasks 463 

actually becoming the primary task (i.e., self-regulation; Strayer and Fisher, 2015). In this study 464 

we utilised three highly attention-capturing, set-paced tasks as primary tasks to compare the 465 

effectiveness of warnings in different modalities. The benefits of these ‘artificial’ tasks, as utilised 466 

in this study, were that they could simulate a similar level of demand over various sensory 467 

modalities, and were a first step towards an evaluation of distraction specifically in an automated 468 
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vehicle setting. In addition, each warning types was presented a total of eight times, but randomly 469 

distributed throughout each driving scenario. Meaning that the participants were expecting 470 

multiple warnings to be presented – which is a key difference to real driving. Within the current 471 

study, the self-driving scenario (and indirectly the driving simulator) was there to provide 472 

additional context to the study, making it an enhanced, or hybrid, lab study rather than an 473 

evaluation of real driving. This is where self-driving or automated driving scenarios – either 474 

completed in high fidelity, driver-in-the-loop simulators, or conducted in the real-world – could 475 

utilise more tasks from the rich setting of perceptual studies. This approach is supported by 476 

Spence and Ho (2015) who advocate that fundamental, lab-based research provides relevant 477 

ideas for the design of warning signals and information system. 478 

 479 

More research is needed to understand what tasks drivers would conduct in an automated 480 

vehicle, to understand the spectrum and effects of those tasks. It is particularly important how 481 

drivers switch between tasks as this can influence the time required for a take-over request, as 482 

specific goals can extend the transition of attention from one task to another (Lee, 2017). The 483 

tasks in this study were a continuous input stream that did not have any option for interruption, 484 

beyond simply disengaging from the task itself. Research into distraction in an automated vehicle 485 

scenario should consider ‘interruptability’ of tasks. Additionally, naturalistic tasks may involve 486 

unforeseen components with a safety-critical impact which can only be understood by observing 487 

behaviour. For example, some tasks might require the shutting down or putting away of a device, 488 

before the action to the take-over signal can be initiated, and so require additional time before the 489 

task can be interrupted – time that is not accounted for in an artificial task setting. A simple 490 

example of this is drinking a cup of coffee, where there is a need to put it away before performing 491 

a response to a warning in an automated vehicle (Banks, Eriksson, O’Donoghue and Stanton, 492 

2018). Future studies may investigate behaviour in an automated vehicle with artificial and 493 

naturalistic tasks. 494 

4.2. Implications for warnings automated vehicles 495 

This study showed that the auditory-tactile warnings were as effective in terms of RT as in-vehicle 496 

auditory warnings over the course of the three set pace tasks with a similar level of workload. 497 

Compared to unimodal warnings, the multimodal warning resulted in a reduced number of missed 498 

and false responses. In future research, this advantage of multimodality on missed and false 499 

reactions to warnings could be explored in more detail, over a variation in a highly automated 500 

driving context with tasks that reflect the worst cases of user behaviour, e.g., hard to interrupt and 501 

highly attention-capturing, such as the set pace tasks in our study. Specifically, a low percentage 502 

of missed alarms would shorten the time required for an emergency brake or the take-over 503 

manoeuvre. Besides speed and effectiveness, quality of response is equally as important (Gold, 504 

Dambök, Lorenz, and Bengler, 2013; Radlmayer et al. 2014). In this scenario we utilised an 505 

emergency brake event; however, a take-over of control scenario utilises a wider range of 506 
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variables, such as steering, speed control and an extended understanding of the surrounding 507 

traffic. 508 

 509 

An auditory-tactile warning, a tactile warning and an auditory warning were compared in this 510 

study. A comparison to a visual-tactile warning could be interesting in a future study. Previously 511 

it has been shown that a visual-tactile take-over warning is beneficial over a visual warning 512 

(Naujoks et al., 2014; Blanco et al., 2015). Compared to an auditory-tactile warning, a visual 513 

multimodal warning could contain more information – for example, information regarding other 514 

nearby vehicles. However, it is not yet shown how such more detailed information would be traded 515 

of in quality and speed of the take-over manoeuvre. 516 

 517 

This study primarily focused on the noticeability of the three warnings, which has been shown to 518 

be just the first stage of the human-machine interaction process (Norman, 2002). Other stages 519 

such as conveying a meaning and adequateness of response were not considered, but would be 520 

relevant for evaluation for future design of warnings. In order to be able to generalise results from 521 

this study to the effectiveness of the warnings, they were presented more frequently than in a real 522 

driving scenario, which can make participants more vigilant to respond to such warnings. Future 523 

studies should consider, in combination with the evaluation of meaning and adequateness, 524 

presenting the warnings to drivers a limited number of times in each driving scenario. 525 

Highlights 526 

• Multimodal and auditory warnings had faster reaction times to tactile only warnings 527 

• Multimodal warning resulted in fewer missed and false responses in all task conditions 528 

• Multimodal warning rated as more noticeable and motivating to respond over unimodal 529 

• Three set paced attention capturing tasks of similar workload were developed and used 530 
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