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Abstract

We derive testable implications of Kyle and Obizhaeva’s (2016) notion of “bet invariance”
for the cross-section of trade-time volatilities. We jointly develop theoretical foundations of “no
speculative arbitrage” whose implications incorporate those of bet invariance. Our proposed
test circumvents the unobservable nature of “bets.” Utilizing a large sample of U.S. stocks
post decimilization, we show that using realized volatilities rather than expected volatilities
introduces noise that substantially biases the tests. This leads us to use estimates of normalized
volatilities based on running 24 month windows. We find strong support for no speculative
arbitrage at a moment in time, but not across time.
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1 Introduction

Do speculators compete away abnormal profit opportunities across assets, trading conditions, and

time? With free entry, speculators should be able to allocate resources to information acquisition

in such a way that expected profit opportunities are equated across these dimensions. Our paper

builds on existing market microstructure theories to develop novel predictions that describe how

speculative arbitrage underlies systematic cross-sectional variation in intraday volatilities. We un-

cover strong evidence that arbitrage equalizes expected profit opportunities from speculation across

assets and trading conditions at a moment in time, but not across time.

We build on the analysis of Kyle and Obizhaeva (2016; henceforth, KO) who conjecture a high-

frequency efficiency result, “bet invariance.” KO introduce the notion of dollar risk transfers, or

the expected dollar loss or gain associated with implementing a bet, i.e., a desired change in an

investor’s position in a risky asset.1 The MMI hypothesis treats bets as random variables featuring

asset- and time-specific probability distributions. KO hypothesize that in a trading environment

with minimal market microstructure frictions, choices of potentially-informed speculators should

lead to an invariant distribution of dollar risk transfers over time and across assets. Otherwise,

speculators could re-allocate resources to assets representing greater expected profit opportunities.2

Our paper derives and implements testable implications of bet invariance for the cross-section

of volatility that rely only on publicly-available data. These implications hold under weaker iden-

tifying assumptions than those required by existing tests. We also develop an intuitive theory, “no

speculative arbitrage,” that produces the same predictions in this context as KO’s “bet invariance.”

We test these implications using a large sample of liquid U.S. stocks post decimilization. Our test is

unique in that it relies only on standard trading data, exploiting cross-sectional variation in volatil-

ity. We show that bet invariance is satisfied only when using expected volatility as an input, rather

than realized spot volatility. We argue that is because speculators equate profit opportunities in

1More generally, a bet can refer to an aggregate measure of all intended positions to be taken (or left) based on
the same piece of positive (negative) information.

2Increased algorithmic and low-latency trading has been found to be associated with improvements in measures
of price efficiency and market quality. See, for example, Hendershott and Riordan (2009), Hasbrouck and Sarr
(2013), O’Hara et al. (2014), Conrad et al. (2015), and Hendershott and Riordan (2009).
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expectation, whereas the actual outcomes are stochastic.

Tests of invariance confront two fundamental challenges. First, invariance represents a restric-

tion on dollar risk transfers of bets, which are intrinsically unobservable. Existing tests do not

circumvent this unobservability, with the consequence that their applicability is limited to a few

particular settings. For example, KO use proprietary data on trades by (non-strategic) portfolio

transition specialists, whose bets they argue are plausibly observable. Our test takes observable

total volatility measures as inputs, directly addressing the unobservability of bet risk transfers.

The second challenge that existing tests must confront is that using observable volatilities re-

quires a set of strong auxiliary assumptions. In particular, they must assume that the arrival rate

of bets does not vary across different public information environments, e.g, times of the trading

day; and they must assume that the bet-to-total volume and volatility ratios are fixed over time

and across market conditions. These auxiliary assumptions are necessary for single-asset tests be-

cause both total volume and total volatility reflect more than the arrival of speculative bets and

its associated volatility.3 We address this second challenge by expanding the implications of bet

invariance to the cross-section of assets, facilitating normalization of cross-sectional variation with

respect to an arbitrary benchmark asset. This normalization allows for less restrictive assumptions

about variation in bet-to-total volume and volatility over time. In particular, we can accommodate

common cross-stock variation over the trading day and with the level of trading activity.

Our empirical analysis focuses on normalized trade-time volatilities that (i) measure the spot

volatility associated with trading a fixed-dollar value, and (ii) control for well known variation in

volatility across time-of-day, as well as microstructure noise. We define a trade-time interval to

be the time required for realizations of sequences of trades with a month-specific fixed-dollar value

to trade: shorter time durations of trade sequences reflect more active trading conditions, i.e.,

3Andersen et al. (2017) identify a setting where these assumptions may be reasonable. They focus on E-mini
S&P500 futures, where they argue that the substantial depth found at best prices makes it plausible for bets to
be proportional to transactions. With modern equity trading strategies, transactions are far smaller than bets (see
Hendershott, Jones, and Menkveld (2011) and O’Hara (2015), among others) for typical stocks, and transaction size
and frequency varies systematically with trading activity and across trading venues. Moreover, reporting systems
differ across trading venues (Upson, Johnson, and McInish (2015)). This means that transaction sizes reported on
the consolidated tape convey different information depending on the venue in which the transaction was executed.
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higher trading activity.4 We therefore define trade-time volatility as the volatility over such trade

sequences.

We first calculate mean trade-time volatilities of each stock in each month by trading condition

(both time-of-day and trading activity level) and then normalize these measures by the corre-

sponding mean trade-time volatility of the median stock. This normalization controls for common

variation in the level of trade-time volatility as well as year-month fixed effects. We establish that

bet invariance implies that the cross-sectional distributions of normalized trade-time volatilities

obtained at different trading conditions should be identical. This means that one can test bet

invariance at a given time-of-day window by regressing the cross-section of normalized trade-time

volatilities obtained at one trading condition on those obtained at any other trading condition.

Invariance predicts that the slope must equal one.

We separately show that the prediction of bet invariance from KO is also implied by a no-

tion that we term “no speculative arbitrage.” This analysis considers speculators who maximize

expected profits from speculation when they identify a profit opportunity and trades have linear

price impacts. We derive the implications of the equilibrium condition that speculators must be

indifferent between profit opportunities across different assets and trading conditions. That is,

the expected profit from investigating one asset rather than another must be the same. Expected

profit opportunities are naturally proportional to volatilities. Adjusting for the arrival rates of such

opportunities and imposing a no-speculative-arbitrage condition, cross-sections of volatility must

be identical across different trading condition environments. When testing at a given time in the

trading day, the identifying assumptions made are only solely that the linear price impact of trade

of stock j in trading condition x at time-of-day d, λjxd, and the arrival rate of profit opportunities,

βjxd, both separably decompose as λjxd = λjλxd and βjxd = βjβxd.
5

An initial regression analysis provides only modest support for either theoretical formulation.

Specifically, the bulk of slope coefficient estimates are economically and statistically less than one:

4This notion of trading activity differs from that in Kyle and Obizhaeva (2016) in that ours refers to the speed
at which a fixed-dollar value is traded as opposed to the arrival time of (unobservable) bets.

5When we test no speculative arbitrage across times of day, we must impose the more demanding identification
assumptions that λjxd = λjλxλd and βjxd = βjβxβd.
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adjusting type one error for multiple testing, the bet invariance prediction is rejected for over 80%

of the 180 possible activity/time-of-day/portfolio combinations. We find a negative association be-

tween the magnitudes of departures from predicted slope coefficients of one and goodness of fit. This

indicates that departures from bet invariance are likely driven by unexpected variation in volatil-

ity, which biases coefficients downward. These departures are the greatest when the independent

variable in our tests represents a higher activity level than that of the dependent variable.

The no-speculative-arbitrage condition is, from the speculator’s perspective, is an ex-ante con-

cept. That is, speculators allocate resources to acquire information about fundamental values to

compete away ex-ante abnormal profits based on their expected profit opportunities (expected

volatilities). Our initial tests, in contrast, take realized volatilities as inputs. These realized volatil-

ities reflect both expected profit opportunities and unanticipated better or worse realizations of

profits that serve to add noise to the estimates of expected relative profit opportunities. This leads

us to decompose the cross-sectional variation in trade-time volatilities entering the right-hand-side

of our bet invariance regressions into expected vs. unexpected variation. For each stock in each

month, we use the average of its normalized volatilities over the preceding 24 months to measure

expected volatilities, and measure unexpected volatility as the difference between the actual and

expected quantities.

We find strong support for the predictions of bet invariance when we use expected normalized

volatilities as independent variables in our invariance regression tests. With expected volatilities

as RHS variables, we reject predictions of bet invariance less than one-third of the time.6 The

magnitudes of departures are barely related to the goodness of fit. This indicates that we largely

eliminated the idiosyncratic variation in volatility that drove the departures from invariance found

using realized spot volatilities. These results complement findings in KO. They find visual support

for invariance, but their formal statistical tests reject invariance. Such rejections may just reflect

violations of the stronger auxiliary assumptions imposed by their test construction rather than

violations of invariance.

6Moreover, the magnitudes of any departures from bet invariance are greatly reduced.

4



Finally, we extend our analysis to test whether bet invariance holds across time-of-day win-

dows. To do this, we require stronger identifying restrictions requiring decompositions of λ and β

by stock, activity level and time of day. When using normalized trade-time volatilities from differ-

ent time-of-day windows as test inputs, estimates are more dispersed and show greater departures

from bet invariance. We find large departures from invariance when comparing early and late times

in the trading day. In particular, for smaller stocks, coefficient estimates substantially exceed one

when the normalized expected volatility on the right-hand side is from late in the trading day and

the dependent variable is from early in the trading day, while estimates are far less than one for

the opposite scenario. This suggests that attenuation bias is unlikely to drive the documented

departures. In sum, we find evidence that speculators equate expected profit opportunities at each

moment of the trading day, but not necessarily across different times in the trading day.

The remainder of the paper is organized as follows. Section 2 develops our novel tests of in-

variance, motivates our use of trade-time volatility, and derives the implications of no speculative

arbitrage. Section 3 develops our measure of trade-time volatility, and presents the data. Section 4

presents our findings regarding speculative trading and the cross-section of volatility. Section 5

concludes.

2 Invariance of Risk Transfers and Trade-time Volatility

In this section, we develop a parsimonious test of bet invariance, a fundamental hypothesis under-

lying MMI. Importantly, our test does not require observability of the exact positions, or “bets”,

that investors wish to take. We first briefly describe implications of the theory, highlighting rel-

evant assumptions to our analysis. We then reformulate bet invariance using trade-time return

volatilities, where volatility is measured with respect to a fixed dollar amount traded of a stock.

In doing so, we define the notion of normalized trade-time volatility as the ratio of a stock’s trade-

time volatility to that of a benchmark stock. Our reformulation of bet invariance shows that this

normalized trade-time volatility should have an invariant distribution. We then develop a test, a

regression of normalized trade-time volatility at one trading condition on those at other trading
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conditions, to evaluate bet invariance. We conclude the section by presenting a distinct theoretical

framework of speculative trading where speculators maximize expected profits by choosing bet sizes.

We show that an equilibrium condition that leaves such speculators indifferent between pursuing

profit opportunities across different stocks and trading conditions leads to implications about the

cross-section of volatility that nest those implied by bet invariance.

2.1 Invariance of Bets

To formalize MMI, KO introduce the concepts of bet size and bet arrival rates. As described in

Andersen et al. (2016), an unsigned bet, denoted Q̃jt, is a random variable that captures a trading

decision reflecting a desired change in an investor’s position in security j at time t, in shares. Mul-

tiplying by the asset price Pjt, yields the dollar value, PjtQ̃jt, of this bet. The variable speed at

which bets are placed in the market is translated into a bet arrival rate per unit time, denoted Njt.

When the calendar-time bet volatility is σBjt (in fraction of value per unit time) and the bet arrival

rate per calendar-time interval is Njt, the return volatility per bet (per unit of business time) is

σBjt√
Njt

, presuming that price movements associated with distinct bets are independently distributed.

Multiplying the return volatility per bet by PjtQ̃jt yields the dollar risk transfer associated with

implementing a bet,

Ĩjt ≡ PjtQ̃jt
σBjt√
Njt

. (1)

This object represents the dollar gain or loss associated with implementing the bet Q̃jt. Invariance

of bets states that Ĩjt has an invariant distribution across stocks and over time, where the source

of random variation in Ĩjt is the variation in bet size Q̃jt.

Interpreting bet volatilities as opportunities to make trading profits, the theory requires that

a speculator be indifferent between the potential expected profit opportunities about which she

might acquire information. KO argue that were invariance not to hold between two assets, then

a trader could more profitably acquire information about the asset that faced larger dollar risk

transfers. Essentially, without significant microstructure frictions, traders should compete away

abnormal profit opportunities, leaving dollar risk transfers invariant.

Bet size and bet volatility are intrinsically difficult to measure, creating challenges for tests of
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invariance. Existing empirical analyses sidestep observability concerns in one of two ways: they

either (a) use proprietary data for which the econometrician is privy to the exact bets taken (as

Kyle and Obizhaeva (2016) assert holds for their data); or (b) assert that within the particular

market studied, transactions are proportional to underlying bets (as Andersen et al. (2016) argue

holds in the S&P500 E-mini futures market). Our test for invariance of bets addresses this empir-

ical problem. The key feature of our test is that it relies only on the distributional implications of

invariance and not the implicit observability of the primitive bets via observation of transactions.

Our method translates the invariance of dollar risk transfers of unobservable bets into the invariance

of trade-time total return volatility, an intrinsically observable object that we define below. Our

test uses this observable volatility, as opposed to bet volatility, as an input. Because our approach

only relies on the distributional implications of invariance, it enables tests of invariance in a wider

variety of markets, in particular those where the bets themselves are unobservable.

2.2 From Bet Volatility to Total Volatility

We begin by distinguishing unobservable bet volume and bet volatility from observable “total” vol-

ume and “total” volatility, and providing formal links between these notions. Both trading volume

and return volatility are affected by sources other than bet implementation. Fundamentally, trad-

ing volume is the sum of bet volume and other sources of (e.g., intermediary) volume. Similarly,

total return volatility represents aggregate price movements driven by both bet implementation

(bet volatility) and other forces, including public information arrival and market frictions.

In addition to requiring the observability of underlying bets, existing tests of invariance such

as those in KO make the identifying assumption that both the proportions of bet volume to total

volume and bet volatility to total volatility are constant over time and across stocks. Importantly,

our test of invariance relaxes these assumptions. Specifically, our method allows for the proportions

of bet-to-total volume and bet-to-total volatility to vary with bet size quantile. We require only

that this variation maintain a one-to-one mapping from bet volume to total volume and from bet

volatility to total volatility. We exploit these one-to-one mappings to derive the implications of bet

invariance for the cross-sections of total volatility.
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As noted above, existing tests rely on (implicit) observations of bets. Our method translates the

invariance of dollar risk transfers of unobservable bets into the invariance of observable trade-time

total return volatilities, which we define below. Bet invariance implies that for a fixed stock-specific

bet size quantile Q̃
(X)
jt , the respective invariant Ĩ

(X)
jt (adding bet quantile superscripts to equation

(1), above) is constant in the cross-section of stocks and over time.

We relax this structure in two ways. First, we recognize that the arrival rate of information

or the amount of information for a stock may vary according to public information characteristics.

One can accommodate this formally by imposing a less demanding notion of bet invariance, by

only imposing bet invariance conditional on public information C, where C might, for example,

capture time of day. This weakens the restrictions implied by bet invariance by only requiring

that no speculative arbitrage hold given conditioning information. For example, this allows for the

possibility that speculation opportunities may be better in some public information environments

than in others. This weaker notion only demands that a speculator be indifferent among the avail-

able opportunities. This generalization also facilitates controlling for the feature that bet arrival

rates likely vary with public information. For example, near open, there may be higher rates of

information arrival due to overnight release of information.

Thus, for stocks j and k, at any conditional distribution quantile x, c ∈ (0, 1) (of bet size

Q̃
(X=x|C=c)
jt and Q̃

(X=x|C=c)
kt ),

PjtQ̃
(X=x|C=c)
jt

(
σBjt√
Njt(c)

)
≡ Ĩ(X=x|C=c)

jt = Ĩ
(X=x|C=c)
kt ≡ PktQ̃

(X=x|C=c)
kt

(
σBkt√
Nkt(c)

)
. (2)

We continue our reformulation of bet invariance conditional on C, omitting the formal dependence

on C where it does not cause confusion.

Second, we relax bet invariance to account for the fact that, in practice, the link between bet vol-

ume and total volume and that between bet volatility and total volatility may vary systematically.

For example, the fraction of total trading volume that is not bet related may be systematically

higher or lower around earnings announcements (or certain days of the week, etc.) than at other

times, and market frictions may be larger or smaller then, as well.7 We control for this by allowing

7“Parasitic” high-frequency trading is another mechanism that may increase this fraction: high-frequency traders
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systematic variation in these market primitives to vary as a function of the bet size quantile x.

Importantly, our formulation is agnostic about the exact nature of any such systematic variation.

We next formally demonstrate the links between bet volume and total volume, and bet volatility

and total volatility, requiring only that bet volume and volatility translate monotonically to total

volume and total volatility, respectively.

We define ζx to be the ratio of total trading volume to bet volume at bet size quantile x.

We capture the ratio of total volatility σjt to bet volatility σBjt by ψx ≥ 1, recognizing that total

volatility exceeds bet volatility by (ψx − 1) × 100 percent due to news arrival, market frictions,

etc. For example, price movements due to the arrival of public macro news induce volatility that

speculators may not necessarily be able to bet on.

Our primary identification assumption is that while we allow for variation in these parameters as

a function of the bet size quantile x, we assume that ηx = ζxψx is a common factor across all stocks.

That is, while ηx can vary deterministically in very general ways with bet size quantile x, it does not

vary systematically across stocks. With this identification assumption in hand, we multiply equa-

tion (2) by ηx. Multiplying the two sides of equation (2) by ηx transforms the bet dollar risk transfer

into a function of total dollar volume and total volatility. Hence, we reformulate invariance of bets

from MMI into quantitative properties based on observable total volume and volatility. That is,

PjtQ̃
(X=x)
jt

(
σBjt√
Njt

)
ηx ≡ Ĩ(X=x)

jt ηx = Ĩ
(X=x)
kt ηx ≡ PktQ̃

(X=x)
kt

(
σBkt√
Nkt

)
ηx, (3)

and

PjtQ̃
(X=x)
jt ζx

(
ψxσBjt√
Njt

)
≡ Ĩ(X=x)

jt ηx = Ĩ
(X=x)
kt ηx ≡ PktQ̃

(X=x)
kt ζx

(
ψxσBkt√
Nkt

)
. (4)

With bet invariance now stated in total volume and volatility terms, we reformulate bet invari-

ance using a fixed dollar amount traded of a stock, eliminating the need to observe individual bets.

We consider a constant dollar value Sqt for any stock j in a portfolio q of stocks at time t. Because

Q̃jt is stochastic, and bet volume does not represent total volume, we define a random variable Ãjt

who identify institutional order flow remove liquidity in the same direction to profit from providing it at a later
time, adding to the amount of non-bet volume and volatility (CITE CITE CITE).
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such that

Sqt = ÃjtPjtQ̃jtζ. (5)

Ãjt exactly offsets variations in total dollar volume, while ζ scales bet volume, PjtQ̃jt, to total

volume. That is, Ãjt ≡
Sqt

PjtQ̃jtζ
is the random variable that transforms the constant Sqt to the

realized dollar bet size, given ζ. For a fixed bet arrival rate Njt and calendar-time bet volatility σ̄jt,

one can interpret Ãjt as the stochastic time required for dollar volume Sqt to trade in the market:

Ãjt is smaller (the required time is shorter) when trading activity is higher. We only require that ζ

vary deterministically with bet size quantile in such a way (monotonically suffices) as to preserve a

one-to-one mapping between the probability distribution of Q̃jt and the probability distribution of

trading activity (and hence a one-to-one inverse mapping with the probability distribution of Ãjt).

As a result, the xth percentile of dollar bet size corresponds to the 1− xth percentile of Ãjt.

From MMI, implementing dollar bet amount PjtQ̃jt of stock j at time t has a volatility per

bet
σBjt√
Njt

. Equation (4) presents invariance of bets in a form based on total volume and total

volatility, implying that the (generally unobservable) business-time total volatility associated with

trading the rescaled bet value PjtQ̃jtζ is
ψσBjt√
Njt

. This leads us to define the observable trade-time

total volatility associated with realization of Sqt = ÃjtPjtQ̃jtζ at a given quantile Ã
(X=1−x)
jt as

σ̃(Sqt)
(X=x)
jt ≡ Ã(X=1−x)

jt

(
ψxσBjt√
Njt

)
. (6)

σ̃(Sqt)
(X=x)
jt represents the total volatility associated with realization of Sqt dollars worth of stock

j’s transactions at bet size quantile Q̃
(X=x)
jt .

2.3 Invariance of Bets and the Cross-section of Total Volatility

We next derive the implications of invariance of bets for the cross-section of trade-time total volatil-

ity. The key step is to translate the distributional properties of risk transfers of unobservable bets

to distributional properties of observable trade-time volatilities (associated with fixed-dollar values

Sqt). Equation (5) at the bet size percentile 1 − x yields PjtQ̃
(X=1−x)
jt ζ(1−x) =

Sqt

Ã
(X=x)
jt

. Thus, we
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can rewrite the invariance condition, equation (4), as:

Sqt

(
ψ1−xσBjt

Ã
(X=x)
jt

√
Njt

)
≡ Ĩjtη(X=1−x) = Ĩktη

(X=1−x) ≡ Sqt

(
ψ1−xσBkt

Ã
(X=x)
kt

√
Nkt

)
. (7)

Letting k represent the stock with median bet volatility, we rearrange equation (7) as:Ã(X=x)
jt

Ã
(X=x)
med,t

 =
ψ1−xσBjt

√
Nmed,t

ψ1−xσBmed,t
√
Njt

. (8)

Our final step is to multiply both sides of (8) by the right-hand side, so that the left-hand side be-

comes the ratio of observable trade-time volatilities whose general form was defined in equation (6):

( Ã
(X=x)
jt

ψ1−xσB
jt√

Njt

Ã
(X=x)
med,t

ψ1−xσB
med,t√

Nmed,t

)
=


(
σBjt

)2
(
σBmed,t

)2
(Nmed,t

Njt

)
. (9)

The left-hand side of equation (9) is what we term normalized trade-time volatility (see equation 6),

Ỹ
(X)
jt ≡

σ̃(Sqt)
(X)
jt

σ̃(Sqt)
(X)
med,t

=

(
Ã

(X)
jt

Ã
(X)
med,t

)(
σBjt
√
Nmed,t

σBmed,t
√
Njt

)
. (10)

It is the ratio of stock j’s trade-time total volatility to the trade-time total volatility of portfolio

q’s median stock. The right-hand side of equation (9) is a constant that does not vary with X.

Equation (10) demonstrates the implication of MMI’s bet invariance hypothesis for the cross-

sectional distribution of observable trade-time volatilities. Specifically, it implies that the trade-time

total volatilities associated with Sqt at trading activity quantiles (i.e., inverse of Ãjt) x1 and x2

must be identical once one normalizes by the median trade-time volatilities at those quantiles.

We have shown that invariance requires that, for all j and t, Ỹ
(X)
jt be constant in X. Thus, we

have that, for distinct activity quantiles x1 and x2,

σ̃(S)
(X=x1)
jt

σ̃(S)
(X=x1)
med,t

≡ Ỹ (X=x1)
jt = Ỹ

(X=x2)
jt ≡

σ̃(S)
(X=x2)
jt

σ̃(S)
(X=x2)
med,t

. (11)

Dividing yields an empirically-testable implication of bet invariance,

Ỹ
(X=x1)
jt

Ỹ
(X=x2)
jt

= 1, ∀ x1, x2. (12)

We test equation (12) using regression analysis and stock-level observations of Ỹ
(X)
jt obtained

at different trading activity conditions. Invariance imposes restrictions not only stock-by-stock,
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but also with other public information trading features (conditioning information) such as activity

level or time-of-day. We extend our formulation to control for time-of-day, denoted d ∈ D (more

generally indexed above by c ∈ C). Invariance imposes that Ỹ
(X,D)
jt is constant across X and D.

We operationalize the restrictions imposed by invariance by taking natural logs, defining

ỹ(X,D)jt ≡ ln(Ỹ
(X,D)
jt ). (13)

To test the strong form of MMI’s bet invariance proposed by Kyle and Obizhaeva (2016), we

estimate

ỹ(x, d)jt = α0 + α1ỹ(x′, d′)jt + ujt, (14)

where ujt ∼ N(0, δ), x and x′ index trading activity levels, d and d′ index time-of-day windows,

and (x, d) 6= (x′, d′). This strong form of bet invariance predicts that α0 = 0 and α1 = 1. We also

consider a weaker form of invariance that only imposes that Ỹ
(X,D)
jt be constant in X conditional

on D. To test this we estimate

ỹ(x, d)jt = α0 + α1ỹ(x′, d)jt + ujt, (15)

where ujt ∼ N(0, δ), x and x′ index trading activity levels, d indexes a particular time-of-day

window, and x 6= x′.8 We next show that the same relationships obtain when profit maximizing

speculators are subject to a no-speculative-arbitrage condition.

2.4 No-specuative-arbitrage and the cross-section of total volatility

In this section, we establish that a general version of equation (11), i.e., the implication of bet in-

variance for the cross-section total volatility, follows from a no-speculative-arbitrage condition. Our

derivation starts out with premises that are complementary but distinct from those underlying MMI.

When speculators identify a profit opportunity they choose trade amounts that maximize expected

profits from speculation. We then impose a no-speculative-arbitrage condition after adjusting for

variations in the arrival rates of such opportunities. No speculative arbitrage and bet invariance

8In Appendix 4.6, we present estimation results given d 6= d′. We find that placing stronger restrictions on how
normalized trade-time volatilities must be related across trading condition environments tend to give rise to stronger
violations of bet invariance predictions.
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yield the same implications for how cross-sections of volatility obtained at different trading condi-

tions must be related. Our development sketches a simple economic mechanism for bet invariance.

No speculative arbitrage is a restriction that says that a speculator should be indifferent as

to which stocks she investigates at a moment in time. The price impact of trade for different

stocks should adjust in equilibrium to deliver this indifference. While an individual speculator

typically only selects among a subset of stocks to investigate, collectively speculators select from

the universe of stocks. This delivers the equal expected profit from investigation condition, i.e. the

no-speculative-arbitrage condition.

Consider a stock j in market activity condition x at time d of the trading day. The maintained

assumption is that if stock j has publicly-known conditional expected value E[vj |(x, d)] ≡ E[vjxd],

then the expected price impact of a trade of size qjxd at that moment takes the familiar linear form

pjxd(qjxd, E[vjxd]) = E[vjxd] + λjxdqjxd,

where the price impact parameter λjxd can vary with the stock j, the market conditions x (e.g.,

because the extent of liquidity provision can vary), and the time of day d (e.g., because informa-

tion arrival can vary). A realized profit opportunity arises when a speculator acquires information

that suggests that the true value of the asset is given by vjxd 6= E[vjxd]. Optimization leads the

speculator to solve

max
qjxd

qjxd(vjxd − pjxd(qjxd, E[vjxd])) = max
qjxd

qjxd(vjxd − E[vjxd]− λjxdqjxd) (16)

Solving the resulting first-order condition yields the standard linear trading outcome:

qjxd =
vjxd − E[vjxd]

2λjxd
.

Substituting for qjxd into (16) yields the realized profit opportunity,

(vjxd − E[vjxd])
2

4λjxd
.

From an ex-ante perspective, when deciding which stock to investigate, what matters is the ex-

pected profit that the speculator anticipates from investigation. This hinges on the expected profit

opportunity when one arrives, and the arrival rate of those opportunities.
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The expected profit opportunity for stock j conditioned on market activity condition x at

time-of-day d is just

Ej
[
(vjxd − E[vjxd])

2|(x, d)
]

4λjxd
≡
Ej
[
(vjxd − E[vjxd])

2
]

4λjxd
≡

σ2jxd
4λjxd

. (17)

That is, the expected profit opportunity is given by stock j’s volatility divided by 4 times the price

impact of trade. The arrival rate of profit opportunities for stock j in market activity condition x

at time d is given by βjxd, where the arrival of profit opportunities can again depend on the stock,

level of market activity and time of day. No speculative arbitrage requires that expected profit

opportunities, after adjusting for arrival rates of such opportunities, must be equal across stocks

and market conditions. That is, for a stock k in market activity condition x′ and time-of-day d′

βjxdσ
2
jxd

4λjxd
=
βkx′d′σ

2
kx′d′

4λkx′d′
(18)

To empirically test whether no speculative arbitrage holds at a given time-of-day window, we

make the identifying assumption that the arrival rates of profit opportunities and price impacts

decompose as λjxd = λjλxd and βjxd = βjβxd. That is, there can be heterogeneity in arrival rates of

profit opportunities and price impacts across stocks, the impact of trading activity at a given time

of day is similar across stocks. Thus, this formulation allows for the possibility that the impact of

activity could vary by time of day.

To empirically test the stronger restriction that no speculative arbitrage holds at different

time-of-day windows, we make the stronger identifying assumption that the arrival rates of profit

opportunities and price impacts decompose as λjxd = λjλxλd and βjxd = βjβxβd. That is, the

impact of trading activity is similar across stocks at different times of the day.

To derive a testable notion of the no-speculative-arbitrage condition at a given time of day, we

first observe that it must hold for all stocks including the median stock M in some portfolio q, at

any two distinct market activity levels. That is,

βMβxdσ
2
Mxd

4λMλxd
=
βMβx′dσ

2
Mx′d

4λMλx′d
. (19)
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Dividing (18) by (19) yields:
βjσ

2
jxd

λj

βMσ2
Mxd

λM

=

βkσ
2
kx′d
λk

βMσ2
Mx′d

λM

(20)

Substituting for j = k and using x 6= x′, and cancelling the common terms on both sides yields the

implication of no speculative arbitrage:

σ2jxd
σ2Mxd

=
σ2jx′d
σ2Mx′d

, (21)

a general version of equation (11). Our argument shows that with no speculative arbitrage, the

cross-section of volatilities relative to the volatility of a benchmark asset, e.g, the asset with median

volatility, should not vary across trading conditions. This result is identical to the implication of

bet invariance about trade-time volatilities associated with realizations of a fixed dollar volume; we

will empirically test this using equation (15) within a given time-of-day window.

With the stronger maintained identifying assumption of separability across stock, activity and

time of day, no speculative arbitrage implies

σ2jxd
σ2Mxd

=
σ2jx′d′

σ2Mx′d′
(22)

for (x, d) 6= (x′d′), allowing for tests using activity levels from different times in the trading day.

This is a much more demanding notion, both because the maintained identifying assumption is

stronger and because it says that speculators can somehow arbitrage intertemporally.

3 Aggregation method and data

3.1 Trade time and normalized trade-time volatility

Our test of bet invariance takes as inputs estimates of volatility that realize as a fixed dollar value

Sqt is traded (see equations (5)–(15)). We now develop empirical counterparts to ỹ(x, d)jt, the log

of normalized trade volatility, for a given stock (i), on a given day (t), at a given activity level (x),

at a given time of day (d). For each stock, we must first identify trade sequences of fixed-dollar

values. We follow the approach suggested by Barardehi, Bernhardt, and Davies (2019).9 Each year,

9Motivated by features of trading in modern markets, Gourièroux et al. (1999) and Easley et al. (2012), among
others, employ similar techniques that aggregate trade information.
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we number transactions in stock j sequentially, using index nj . For transaction nj , we use τj(nj),

Qj(nj), and Pj(nj) to denote respectively, (i) its time measured in seconds from the beginning of the

year, (ii) its size (in shares), and (iii) the corresponding mid-point of best bid and best ask prices.

A trade sequence consists of consecutive transactions that have an aggregate dollar value of

at least Sqt for each stock in size group q in month t. Thus, a shorter time duration indicates

higher trading activity. The first trade sequence begins with the first trade of the year, and each

subsequent trade sequence begins with the first trade following the previous sequence.

Formally, we iteratively solve for the last trade of the kth trade sequence, k = {1, 2, 3, . . .}, as:

nkj = argmin
n∗


n∗∑

n=nk−1
j +1

PCj (n)×Qj(n)

∣∣∣∣∣∣∣
n∗∑

n=nk−1
j +1

PCj (n)×Qj(n) ≥ Sqt

 , (23)

where n0j = 0 and the value of aggregate trades is measured using the previous day’s closing price,

PCj (nj).
10 Using the previous day’s closing price to calculate dollar volumes prevents contempora-

neous price movements from affecting identification of trade sequences.11 We construct trade se-

quences that span two trading days, but exclude them from the analysis. Calculating overnight trade

sequences and then excluding them, (1) delivers a random starting point for the first trade sequence

of a given day, precluding any systematic bias; (2) circumvents issues associated with overnight price

adjustments or information arrival;12 and (3) avoids combining trading activity levels from near

close with those just after open, which typically differ.13 Figure 1 illustrates a typical pattern.

For stock j, the time duration of the kth trade sequence (i.e., the inverse of trading activity) is,

durjk = τj(n
k
j )− τj(nk−1j + 1). (24)

To compute the trade-time volatility in basis points of this trade sequence, we follow the approach

suggested by Andersen, Bollerslev, and Diebold (2010) to measure spot volatility and use the square

root of the sum of trade-by-trade squared mid-quote price returns, where the quoted prices are the

10The last quoted bid-ask midpoint is used when the closing price is not available.
11Using the previous day’s closing price avoids introducing biases driven by contemporaneous price movements.

For example, with rapidly increasing prices, using that day’s prices can give rise to non-trivially growing dollar
volumes, causing a downward bias in the time duration of the corresponding trade sequence.

12For instance, we do not need to adjust Qj(·) and Pj(·) for stock splits or dividend distributions.
13Excluding overnight trade sequences drops observations that mix realized volatility from very different trading

conditions at close and open of successive trading days. This gives invariance a better chance to succeed in the data.
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Figure 1: Illustration of trade sequence construction. Panel A presents the dollar volume for a
representative mid-sized stock, Acuity Brands Inc. (AYI) on September 22, 2011 over a two hour period.
Panel B shows how we aggregate trades into a trade sequence until cumulative dollar volume Sqt is reached.
As dollar volumes vary over time in Panel A, durations of the associated trade sequence vary in Panel B.
Panel C shows evolutions of quoted price mid-point associated with transactions.
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prevailing quotes across all trading venues at the time of each transaction. That is,

σjk =

√√√√√√ nk
j∑

n=nk−1
j +1

(
Pj(n+ 1)

Pj(n)
− 1

)2

× 10, 000. (25)
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We exclude a trade-by-trade return observation if it exceeds 10% in absolute value. This filter iden-

tifies and removes instances of data entry error. This filter matters: a preliminary draft failed to

account directly for such data entry errors, which led to a small group of extreme normalized trade-

time volatility observations, necessitating a second layer of empirical analysis to account for them.

We next describe how we construct the empirical counterparts of the normalized trade-time

volatilities ỹ(x, d)jt (see equation(15)) used in our test of invariance. To begin, we create portfolios

of small, mid-sized, and large stocks. Portfolios are formed at the beginning of each year after

excluding the largest 30 stocks based on market capitalization at the close of the final trading day

of the previous year.14 The next largest 400 stocks form our portfolio of large stocks, the following

400 stocks form the portfolio of mid-sized stocks, and those with market-cap rankings between

831–1230 form the portfolio of small stocks. Thus, each size portfolio q ∈ {s,m, l} contains 400

stocks. Working with such relatively liquid stocks assures that our findings do not reflect liquid vs.

illiquid stock phenomena.

Each month we fix a target dollar value Sqt for all stocks in a size portfolio q. The target dollar

value is 0.03% of median market capitalization of the stocks in the portfolio at the end of the previ-

ous month. This means that we use a total of 3×12×13 = 468 target dollar values over our 13-year

sample period, 2005–2017, or one for each size portfolio by month by year grouping. The average

target dollar values for portfolios of large, mid-sized, and small stocks are $3.098 million, $0.675

million, and $0.174 million, respectively. Table 1 shows the evolution of the quartile statistics of

time durations of trade sequence that correspond to Sqt fixed dollar-values vary over the years in

our sample. A typical trade-time observation is 12-30 minutes long, trading off having enough

observations to assess intra-daily variations in trading conditions, while still being large enough to

avoid the positive autocorrelation associated with dynamic order splitting. In untabulated results,

we find that the mean autocorrelation in returns across successive trade sequences is insignificantly

different from zero.

14We exclude these very large stocks due to the huge variation in their market capitalizations and trading volumes;
this heterogeneity means that a fixed targeted dollar value for this group of stocks would be either too small for
the largest in the group or too large for smallest stocks in the group. See Ijiri and Simon (1977), Axtell (2001), or
Gabaix and Landier (2008) for work on the power law in firm size.
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Table 1: Cross-stock-month averages of stock–specific quartile statistics of trade-time
measures associated with 0.03% of median market-capitalization by size portfolio and
year. Trade-time measures, in minutes, of Sqt are calculated for each stock. First quartiles, me-

dians, and third quartiles of durjk are calculated for each stock in each month. Cross-stock-month
averages of the quartile statistics are reported by stock market-capitalization portfolio and year.

Year
Portfolio Statistic 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Large
1st Quartile 16.9 15.9 11.6 8.3 7.5 8.2 8.6 9.5 10.3 10.7 10.7 10.2 11.7

Median 26.9 24.7 18.7 13.3 13.0 14.7 15.2 16.9 18.6 19.0 18.8 18.4 21.4
3rd Quartile 40.2 36.4 28.0 20.1 20.4 23.4 24.2 26.5 29.4 29.7 29.1 28.7 33.3

Mid-sized
1st Quartile 15.8 14.0 11.2 8.3 9.1 9.5 9.0 9.8 10.2 9.3 9.2 9.4 10.2

Median 26.5 23.8 18.9 14.3 16.7 18.3 17.7 19.4 20.8 19.0 18.6 19.1 21.9
3rd Quartile 40.8 36.7 29.8 22.7 27.3 30.6 30.1 32.7 35.6 32.1 31.1 32.2 37.7

Small
1st Quartile 18.8 16.4 11.9 12.5 14.2 16.4 16.9 21.4 19.6 14.6 15.1 19.7 21.3

Median 32.1 28.6 21.7 23.2 27.2 32.5 34.9 41.9 39.1 30.5 30.9 37.4 41.3
3rd Quartile 50.4 45.1 35.7 38.7 46.5 55.3 60.5 70.9 66.6 52.7 53.8 61.7 69.4

We assign each trade sequence to one of fifteen time-of-day/activity level categories, first de-

composing the trading day into three time-of-day windows, {9:30AM–11:15AM (d = 1), 11:15AM–

2:15PM (d = 2), 2:25PM–4:00PM (d = 3)}, and then sorting trade sequences within a time-of-day

window into quintiles of trading activity. A trade sequence is assigned to a time-of-day window

according to the window containing the mid-point of the trade sequence. For example, a trade se-

quence beginning at 11:13AM and ending at 11:19AM is assigned to time window d = 2. All trade

sequences within a month and time of day window are assigned to quintiles of trading activity–trade

sequences with shorter time duration feature higher trading activity. These sorts assure an equal

number of observations across different activity levels in each time-of-day window of a stock and

allow us to control for fixed month effects.

The final step is to calculate the normalized mean trade-time volatility for stock j in month t:

σ̄(x, d)jt is stock j’s mean trade-time volatility, obtained by averaging σjk (equation (25), above)

across stock j’s trade sequences, in month t at trading activity level x and time-of-day d. The

cross-stock median of σ̄(x, d)jt in month t for stocks j in portfolio q is denoted σ̄(x, d)qmed,t. Our

empirical analysis focuses on normalized mean trade-time volatility,

ȳ(x, d)jt ≡ ln

(
σ̄(x, d)jt

σ̄(x, d)qmed,t

)
with j ∈ q. (26)
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Normalizing by month and trading condition controls for systematic variation including common

time fixed effects. We will show that it controls for the systematic variation in trade-time volatil-

ity by time of day and trading activity documented by Barardehi and Bernhardt (2019), and for

any common variation in microstructure environments (i.e., in microstructure noise) across trading

conditions. Controlling for these factors ensures that we are testing “bet invariance,” as delineated

in the Market Microstructure Invariance hypothesis in Kyle and Obizhaeva (2016) and as derived

in our no-speculative-arbitrage conditions, above, rather than picking up microstructure noise or

patterns in volatility associated with trading conditions.15

3.2 Data

We focus on the largest U.S.-based NYSE-listed common stocks by market capitalization (CRSP

share codes 10 and 11) in our January 1, 2005 to December 31, 2017 sample period. We exclude

stocks that do not maintain a minimum daily closing price of $1 over the course of a year. Our sam-

ple consists of stocks that feature the necessary identifying information to match with TAQ data.

We first use NCUSP from CRSP and CUSIP from TAQ to match data across the two databases; for

the stocks without such links, we use TSYMBOL from CRSP and SYMBOL from TAQ to match

data. Remaining unmatched stocks are dropped from the sample. As described above, we then

drop the 30 largest stocks, and split the next 1200 stocks into subsamples of 400 small, medium,

and large stocks. Each month, market-capitalizations are defined as the product of CRSP closing

prices and corresponding number of shares outstanding at the end of the previous month.

Transaction quantities and time stamps are obtained from the consolidated trade history in the

NYSE TAQ database. We consider all stock trades on all U.S.-based trading venues, including

those regulated by FINRA, during regular market hours between 9:30AM and 4:00PM (EST). We

construct National Best Bid and National Best Offer prices at the time of each transaction from

the consolidated quotes history and NBBO files in the TAQ database, and match each transaction

with the corresponding mid-point price.16

15Our findings are unaffected by the benchmark used for normalization. In untabulated robustness analyses, identi-
cal findings obtain when, instead of the stock with month-specific median volatility, we normalize trade-time volatili-
ties with respect to the volatility of the stock that is at the first or the third quartile of a given monthly cross-section.

16We use a modified version of the SAS code available on Professor Craig Holden’s website
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4 Cross-section of trade-time volatility

In this section, we conduct our test of bet invariance (no-speculative-arbitrage) in the cross-section

of trade-time volatilities. We first establish that normalization by the median stock in each sam-

ple eliminates all economically meaningful time-of-day patterns in realized normalized trade-time

volatilities. We first regress these realized volatilities on realized volatilities across trading activity

levels, and find substantial departures from the central prediction of bet invariance. Analysis of

these departures reveals a systematic relationship: departures grow larger when comparing less

active to more active markets, and the corresponding goodness of fit in these regressions weak-

ens. Because, the notion of no speculative arbitrage is an ex-ante concept—a speculator’s decision

about which asset to investigate depends on the expected profit they anticipate from investigation—

realized volatilities, as independent variables, possess noise that biases coefficients downward. To

correct for this, we next decompose volatilities on the right-hand sides of our invariance regressions

into expected and unexpected volatilities. This corrected analysis provides strong support for bet

invariance, revealing that the initial departures were largely driven by unexpected cross-sectional

variation in realized volatilites.

4.1 Time-of-day effects in the cross-section of trade-time volatility

We first show that normalizing trade-time volatilities with respect to a benchmark stock—the stock

with median volatility—controls for level effects of trading activity and time-of-day on trade-time

volatility.17. This normalization avoids conflating variation driven by level effects with the relative

cross-sectional differences in profit opportunities associated with bet invariance.

Figure 2 contrasts the cross-sections of log actual trade-time volatilities with those of normalized

trade-time volatilities. The top panel plots quartile statistics averaged over months of log actual

trade-time volatilities for different time-of-day windows and trading activity levels. The figure

shows that actual trade-time volatility drops over the trading day and also with trading activity.

In contrast, the bottom panel reveals that normalized trade-time volatilities, ȳ(x, d)jt, do not mean-

(https://kelley.iu.edu/cholden/) to construct best quoted prices and match midpoints with transactions.
17See Barardehi and Bernhardt (2019) for a discussion of these patterns.
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Figure 2: Cross-section of trade-time volatility by size portfolio. For each market-cap category
in each month medians, 25th percentiles, and 75th percentiles of trade-time volatility (ln(σ̄(x, d)jt) and
the normalized trade-time volatility (ȳ(x, d)jt) are calculated. Averages of the three statistics are obtained
by time-of-day window d and trading activity level x across the 48 months of data. Market-capitalization
portfolios are formed at the beginning of the year.
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ingfully vary with trading activity or time of day—normalization removes almost all of the level

effects associated with different trading conditions. Indeed, the cross-stock medians across trading

activity levels and time of day are virtually identical, and the other quartile statistics display only

modest variation as activity rises.

4.2 Preliminary test of bet invariance

We now test the less demanding form of bet invariance as posited by KO and as formulated above

in our no-speculative-arbitrage conditions. To do so, we estimate the linear association between

normalized mean trade-time volatility at a given time-of-day and activity level, from equation (26),

and that in all other activity levels in the same time-of-day window. That is, we estimate

ȳ(x, d)jt = α0 + α1ȳ(x′, d)jt + ujt with ujt ∼ N(0, δ), (27)

for x, x′ ∈ {1, 2, 3, 4, 5} and d ∈ {1, 2, 3}.

With five activity levels, indexed by x 6= x′, and three time-of-day windows, indexed by d, there

are a total of (5 × 4) × 3 = 60 ordered pairs of dependent and independent variables, reflecting
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5×4
2 ×3 = 30 distinct unordered pairs of trading activity levels, accounting for different time-of-day,

for equation (27). For each stock size category q, we estimate equation (27) for each of these 60

pairs using a Fama-MacBeth approach.18 We then investigate estimated α1 coefficient magnitudes

and their statistical significance, and formally test the prediction of bet invariance, H0 : α1 = 1,

each time we estimate equation (27).

Figure 3 shows that, at a first glance, the data do not provide overwhelming support for the

prediction of bet invariance. The top row presents histograms for α̂1. The histograms indicate that

most point estimates fall below one: point estimates range between 0.68 and 1.04, and they tend to

fall further below for smaller and mid-sized stocks.19 The middle row shows the histograms of the

corresponding t-statistics that test the null of H0 : α1 = 1. The overwhelming majority of estimates

are statistically different from one (most estimates are less than one, and over 80% of the t-statistics

exceed 4 in absolute value, with over 95% exceeding 2). Of course, when we formally test the hypoth-

esis H0 : α1 = 1, we reject the null most of the time—but these differences are not quantitatively

large. Invariance also predicts that α0 = 0. Consistent with this, we find that the economic magni-

tudes of α0 estimates are negligible in magnitude, varying between −0.027 and 0.025, even though

nearly half of these estimates are statistically different from zero and only 20% of estimates have

t-statistics that exceed 4 in absolute value. The bottom row in Figure 3 shows that for all size port-

folios and in all years, equation (27) fits the data well, with most R2 magnitudes exceeding 80%. Our

initial findings do not support the theory of bet invariance or a no-speculative-arbitrage condition.

We examine all 60 ordered pairs of normalized trade-time volatility that one can choose from

the five trading activity levels, within different three time-of-day windows. While there are only 30

distinct unordered such pair sets, theory does not specify the choice of dependent and independent

variables in the regression analysis. We next show that this choice matters, as it explains the

magnitudes of violations of bet invariance.

18We display Newey-West standard errors.
19This of course refers to smaller (rank 701–1000) stocks within the largest 1000 stocks.
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Figure 3: Empirical distributions of α̂1s, t(H0 : α1 = 1)s, and R2s by stock size category. For
each market-cap category, equation (27) is estimated using a Fama-MacBeth approach given the 60 possible
pairs of normalized mean trade-time volatilities at different time-of-day windows and activity levels (ȳ(x, d)
and ȳ(x′, d)). The top row presents the empirical distributions of α̂1 point estimates. The middle row
presents the empirical distributions of corresponding t-statistics for H0 : α1 = 1, with vertical dashed lines
indicating t = −4 and t = 4. The bottom row presents the empirical distributions of R2s.
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4.3 Trading activity level and the goodness of fit

We next explore the magnitude of departures from bet invariance, i.e., the amount by which α1

estimates differ from unity (shown in Figure 3). We begin by examining the association between

departures from bet invariance and measures of goodness of fit for equation (27). We then relate
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these associations to the levels of trading activity that underlie pair sets of normalized trade-time

volatility entering our tests.

Figure 4: Co-variation between α̂1 and R2 by trading activity levels. For each market-cap category,
equation (27) is estimated using a Fama-MacBeth approach given the 60 possible pairs of normalized mean
trade-time volatilities at different time-of-day windows and activity levels (ȳ(x, d) and ȳ(x′, d)). The figures
present the correspondence between α̂1 and R2 from the fit based on each pair. Shapes are color-coded to
gray and black to identify ȳ(x, d) and ȳ(x′, d) pairs with x > x′ and x < x′, respectively. Trading activity
levels x, x′ ∈ {2, 3, 4, 5} are reflected by symbols { + , 4 , � , ◦ }, respectively.
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Figure 4 illustrates two important findings. First, it shows that estimates of α̂1 from equa-

tion (27) tend to be smaller when R2 is smaller. As shown by the data points in Figure 4, R2 is far

smaller when higher trading activity levels x or x′ underlie trade-time volatilities used as inputs.

Second, for portfolios of small and mid-sized stocks, this effect is shown predominantly in one sub-

sample of ordered activity level ordered pairs: when x > x′, i.e., when the independent variable

corresponds to the less active market condition, α̂1’s vary minimally with R2 as x rises and are all

close to one; in contrast, for x < x′, α̂1 estimates fall sharply along with their corresponding R2’s as

x′ rises, especially when x′ corresponds to the most active market conditions. This pattern inten-

sifies going from the portfolio of mid-sized firms to that of small firms. In other words, departures

from bet invariance tend to reflect situations where the level of trading activity x′ that underlies

normalized trade-time volaltilities entering the right-hand-side (RHS) of equation (27) is higher.

These results are consistent with idiosyncratic components driving more of the cross-sectional
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variation in volatilities in more active markets. For example, such idiosyncratic variation in volatil-

ities can reflect public information news arrival that drives price movements and market activity.

Such increased idiosyncratic variation should naturally reduce measures of goodness of fit. That

is, when high idiosyncratic variation enters a RHS measure of volatility, it biases estimates of α1

downward, as they are a component of volatility that is not orthogonal to expected speculative

profit opportunities. These patterns are weaker for the portfolio of large stocks, where α1 coef-

ficients are closer to one, R2s are higher, and trade-time volatilities obtained at higher trading

activities tend to produce smaller α̂1 coefficients regardless of the relationship between x and x′.

This result suggests that idiosyncratic variation is relatively greater for smaller, less actively traded

and followed, stocks. We next show support for this conjecture by splitting the cross-sectional

variation in volatility into systematic and idiosyncratic components.

4.4 Reconsidering expected profit opportunities

Bet invariance, in our setting, delineates a no-speculative-arbitrage condition in the following way:

the profit opportunities from speculation in a given asset, relative to those in a benchmark asset,

e.g., the median stock, should be constant across trading conditions. With free entry, speculators

arbitrage away any differences across trading conditions. This interpretation does not preclude large

realized differences between profit opportunities across stocks due to unanticipated shocks or public

information arrival that may increase or reduce volatility, that result in deviations from predictions

of bet invariance. The distinction between expected versus realized profit opportunities is partic-

ularly important because of our empirical design. Our monthly estimates of trade-time volatility

measure spot volatility (see equation (25)); and spot volatility is sensitive to high-frequency, e.g.,

intraday, price fluctuations. Thus, normalized trade-time volatilities can vary due to unanticipated

information- or liquidity-driven price movements that do not enter the ex-ante considerations of

speculators, as they are unlikely to be exploitable by speculators.

To obtain a better measure of expected profit opportunities, we now decompose the cross-

sectional variation in trade-time volatility at a given trading activity level and time-of-day window

into expected vs. unexpected volatilities. Expected variations in trade-time volatility proxy the dif-
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ferences in expected profit opportunities that speculators ex ante consider when allocating resources

to acquire information about fundamental values in the universe of assets. Realized cross-stock vari-

ation in normalized trade-time (spot) volatility captures both public information arrival from which

speculators cannot profit, and potentially unexpected variation in profit opportunities. This unex-

pected component is an individual stock’s improved or worsened speculation opportunities, relative

to a benchmark asset. In sum, the normalized trade-time (spot) volatilities that the econometri-

cian uses measures with noise the true relative expected profit opportunities that enter speculator

decision-making and the no-speculative arbitrage condition, especially true in active market condi-

tions. To address this, we now estimate expected profit opportunities over time to reduce the noise

in our measure.

To integrate this theoretically, we take expectations over time of the two sides of the invariance

relation, equation (11):

ln
(
Ỹ

(x,d)
jt

)
= ln

(
Ỹ

(x′,d′)
jt

)
⇒ Et

[
ln
(
Ỹ

(x,d)
jt

)]
= Et

[
ln
(
Ỹ

(x′,d′)
jt

)]
. (28)

We implement this empirically by using the mean of the previous 24 months of spot trade-time

volatilities as an estimate of Et

[
ln
(
Ỹ

(x,d)
jt

)]
.

Assuming an additive error structure for the LHS of equation (28), we have
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Thus,

ln
(
Ỹ

(x,d)
jt

)
= Et

[
ln
(
Ỹ

(x′,d′)
jt

)]
− U (x,d)

jt , (30)

where U
(x,d)
jt is a mean-zero random innovation.

We posit that the departures documented in Figure 3 reflect the distinction between expected

profit opportunities that speculators pursue ex ante vs. an unpredictable component that does not

enter a speculator’s decision making.

4.5 Bet invariance of expected speculative opportunities

To empirically capture the two sources of cross-stock variation in profit opportunities to speculation,

we decompose equation (27)’s RHS trade-time volatility into expected vs. unexpected components.
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We use each stock’s average normalized trade-time volatility over the previous 24 months (or the

longest time-series available within the 24 months) to proxy for expected volatilities. The differ-

ence between the realized and expected volatilities captures unexpected volatility. That is, expected

trade-time volatility is

ȳ(x′, d)Ejt =
1

Ljt

t−1∑
m=t−25

ȳ(x′, d)jm, (31)

where Ljt is the number of ȳ(x′, d)jm observations between months t−1 ≤ m ≤ t−25. Accordingly,

unexpected volatility is given by

ȳ(x′, d)Ujt = ȳ(x′, d)jt − ȳ(x′, d)Ejt. (32)

We operationalize an empirical test of equation (30) by replacing the RHS variable in equation (27)

with ȳ(x′, d)Ejt and ȳ(x′, d)Ujt, separately, to investigate bet invariance by examining the cross-stock

distributions of expected vs. unexpected normalized volatilities, respectively.

We now show that the prediction of bet invariance is largely retrieved when we use expected

normalized trade-time volatilities as the independent variable in our bet invariance regression. We

establish that the departures from the implications of bet invariance are almost entirely driven by

unexpected variation in the cross-section of trade-time volatilities. We estimate

ȳ(x, d)jt = αE0 + αE1 ȳ(x′, d)Ejt + uEjt with uEjt ∼ N(0, δ), (33)

for x, x′ ∈ {1, 2, 3, 4, 5} and d ∈ {1, 2, 3}

and

ȳ(x, d)jt = αU0 + αU1 ȳ(x′, d)Ujt + uUjt with uUjt ∼ N(0, δ), (34)

for x, x′ ∈ {1, 2, 3, 4, 5} and d ∈ {1, 2, 3},

maintaining the estimation approach used to fit equation (27).

Figure 5 illustrates support for bet invariance when we substitute expected volatilities for re-

alized volatilities on the right-hand side of the invariance regressions. Compared to Figure 3, the

histograms of the slope coefficients, αE1 , display visibly denser concentrations near 1 for all stock
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Figure 5: Empirical distributions of α̂E
1 s and t(H0 : αE

1 = 1)s. For each market-cap category,
equation (33) is estimated using a Fama-MacBeth approach given the 60 possible pairs of normalized mean
trade-time volatilities across different time-of-day windows and at different activity levels, (ȳ(x, d) and
ȳ(x′, d)). The top row presents the empirical distributions of α̂1 point estimates. The bottom row presents
the empirical distributions of corresponding t-statistics for H0 : α1 = 1, with vertical dashed lines indicating
t = −4 and t = 4.
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size portfolios. Point estimates now range between 0.81 and 1.09, indicating an upward density

shift relative to those shown in Figure 3. Moreover, the t-statistics testing the null H0 : αE1 = 1

are far more concentrated around zero than those for H0 : α1 = 1 as in our previous tests. Only

29% of t-statistics exceed 4 in absolute value, with just over 60% exceeding 2. As a result, one

cannot reject the prediction of bet invariance in most cases when we use this improved measure of

expected profit opportunities.

Moreover, the use of expected volatilities as the right-and side variable in invariance regressions

largely eliminates the association between deviations from bet invariance and measures of goodness

of fit. Figure 6 plots αE1 estimates against the corresponding R2 measures. The patterns reinforce

our premise that deviations from the prediction of bet invariance found using normalized spot
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volatilities reflect that these normalized spot volatilities are noisy measures of expected volatilities.

Once much of the measurement error is removed, not only do the slope coefficients shift upward,

but the association between departures from invarance and R2 measures of invariance regressions

largely vanish, especially for mid-sized and large stocks.20

Figure 6: Co-variation between α̂E
1 and R2 by trading activity levels. For each market-cap category,

equation (33) is estimated using a Fama-MacBeth approach given the 60 possible pairs of normalized mean
trade-time volatilities at different time-of-day windows and activity levels (ȳ(x, d) and ȳ(x′, d)). The figures
present the correspondence between α̂E

1 and R2 from the fit based on each pair. Shapes are color-coded to
gray and black to identify ȳ(x, d) and ȳ(x′, d)E pairs with x > x′ and x < x′, respectively. Trading activity
levels x, x′ ∈ {2, 3, 4, 5} are reflected by symbols { + , 4 , � , ◦ }, respectively.
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We conclude our analysis by providing more direct evidence that the deviations from bet invari-

ance are driven by realizations of unexpected components of realized normalized volatilities. To do

this, we establish the strict stochastic dominance of the distributions of α̂U1 with respect to those

of α̂E1 . Figure 7 demonstrates this graphically: cumulative densities of α̂U1 substantially exceed

those of α̂E1 for all values of α1 estimates. Averages of α̂U1 for portfolios of large, mid-sized, and

small firms are 0.73, 0.78, and 0.75 respectively; whereas the counterparts for α̂E1 are 0.95, 0.96,

and 0.96, demonstrating the fundamental effect of unexpected variation in volatility in driving the

departures from bet invariance.

20The R2 measures in Figure 6 are 20-30 percentage points less than their counterparts in Figure 4. These differ-
ences reflect that equations (33) and (27) share the same dependent variable, but the variation in the independent
variable of equation (33) is smaller. In fact, ȳ(x′, d)jt = ȳ(x′, d)Ejt + ȳ(x′, d)Ujt, and ȳ(x′, d)Ujt has a mean of zero.
Thus, the numerator of the R2 statistic for equation (33) is, by construction, smaller than that for equation (27),
while the denominators are the same.
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Figure 7: Cumulative densities of α̂U
1 and α̂E

1 . For each market-cap category, equations (33) and (34)
are estimated using a Fama-MacBeth approach given the 60 possible pairs of normalized mean trade-time
volatilities at different time-of-day windows and activity levels. For each size portfolio, the cumulative
density distributions are plotted.
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4.6 Bet invariance of expected speculative opportunities across time-of-day

We now extend our analysis to investigate whether there are abnormal profit opportunities across

time-of-day. To do this, we must make the stronger identifying assumption that λjxd = λjλxλd

and βjxd = βjβxβd (see equation (18)). We use normalized volatilities obtained from different

time-of-day windows, estimating

ȳ(x, d)jt = αE0 + αE1 ȳ(x′, d′)Ejt + uEjt with uEjt ∼ N(0, δ), (35)

for x, x′ ∈ {1, 2, 3, 4, 5} and d, d′ ∈ {1, 2, 3}.

This specification is the same as that in equation (33), save that x and x′, indexing trading activity

levels, may or may not be equal, and d 6= d′ index time of day. With three times of day and five

activity levels and the restriction that time of day must differ on the two sides of equation (35),

we have a total of (3 × 5) × (2 × 5) = 150 regressions. Figure 8 shows that using expected trade-

time volatilities as independent variables when testing the stronger form of bet invariance does not

retrieve the unit coefficient prediction of no speculative arbitrage. To the contrary, αE1 estimates

given different time-of-day display larger dispersion than those obtained within time-of-day.

That predictions of a stronger form of bet invariance are not supported by the data suggests
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Figure 8: Cumulative densities of α̂E
1 for d = d′ vs. d 6= d′. For each market-cap category, equa-

tions (33) and (35) are estimated using a Fama-MacBeth approach given the, respectively, 60 and 150 possible
pairs of normalized mean trade-time volatilities at different time-of-day windows and activity levels. For
each size portfolio, the cumulative density functions of α̂E

1 obtained from the two specifications are plotted.
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that speculative arbitrage may not be carried out across different times of the trading day. We

provide supportive evidence of this by conditioning αE1 estimates on the distance between the time-

of-day windows underlying the respective LHS and RHS normalized volatility measures. That is,

we condition estimates according to whether or not both LHS and RHS volatilities in our tests

represent early or late trading hours. In this way, we isolate LHS and RHS combinations that

represent the largest time-of-day disparities. Figure 9 shows that the greatest departures from

αE1 = 1 are present in cases in which the equation (35) LHS is from early in the day and the RHS

is from late in the day. Furthermore, the greatest dispersion in estimates is found when including

midday volatilities on either side of the regression. This provides further evidence that speculative

arbitrage may be more effective within a smaller interval of time.

Analysis in Section 4.5 revealed that expected normalized trade-time volatilities at a given time

of the day are roughly equal regardless of the activity level, consistent with the implication of

no-speculative arbitrage. That is, at any given time in the trading day, speculators adjust their

resource allocation to deliver roughly an invariant distribution of expected returns to speculation

across stocks. Also recall that our test of bet invariance jointly tests the identifying restrictions

imposed on price impacts (λ) and the arrival rates of speculative profit opportunities (β). As
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Figure 9: Cumulative densities of α̂E
1 when or d = 1 and d′ = 3 vs. d = 3 and d′ = 1. For each market-

cap category, equation (35) is estimated using a Fama-MacBeth approach given the 150 possible pairs of nor-
malized mean trade-time volatilities at different time-of-day windows and activity levels. For each size portfo-
lio, the cumulative density functions of α̂E

1 obtained given d = 1 and d′ = 3 vs. d = 3 and d′ = 1 are plotted.
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such, finding empirical support for bet invariance (no speculative arbitrage) within time-of-day

windows indicates the plausibility of our identifying assumptions that the linear price impact of

trade and the arrival rate of profit opportunities decompose as λjxd = λjλxd and βjxd = βjβxd. To

extend bet invariance or our notion of no speculative arbitrage across different times of day requires

stronger identifying restrictions, requiring decomposition across stocks, activity levels and time of

day, λjxd = λjλxλd and βjxd = βjβxβd.

Figure 9 shows that, when d and d′ are from early and late in the day, respectively, coefficient

estimates vary widely from the predicted value of 1. For smaller stocks, within our sample of rel-

atively larger stocks, this is also true when d is late, and d′ is early. Moreover, it indicates that

attenuation bias does not underlie deviations of invariance from one for small stocks: αE1 estimates

substantially exceed one for small stocks when d = 3 and d′ = 1, and any attenuation bias would

only reduce these estimates. Because measurement errors are more likely to affect results for smaller

stocks, this also suggests that attenuation bias is unlikely to drive estimates that are less than one

when d = 1 and d′ = 3. One must still be cautious when interpreting these estimates. Due to

the necessary identifying restrictions for testing across times of day, these findings need not reflect

violations of invariance. It could instead be that either the price impacts or arrival rates of profit
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opportunities feature stock-specific variations across different points in a trading day, or both.

5 Conclusion

This paper builds upon and extends existing market microstructure theories to test whether spec-

ulators arbitrage away abnormal profit opportunities across assets and trading conditions. Our

paper derives testable implications from the Market Microstructure Invariance hypothesis “bet in-

variance,” developed by Kyle and Obizhaeva (2016), for the cross-section of volatility that rely

only on publicly-available data. Our test addresses the non-observability of bets by translating

implications for risk transfers of bets into implications for the distribution of observable trade-time

volatilities. Moreover, our framework is less restrictive than previous tests of invariance in that

our formulation allows for heterogeneous arrival of bets and price impacts on stocks, over time and

across trading activity levels. We show that bet invariance implies that the slope of a cross-sectional

regression of normalized trade-time volatilities from one trading condition on those from another

trading condition must equal one. We then show that this prediction is also implied by an intuitive

“no speculative arbitrage” condition that the expected profit from investigating one asset rather

than another must be the same.

We obtain weak support for bet invariance when using realized spot volatilities as inputs. Most

slope coefficients are economically and statistically less than one. We also find evidence of significant

noise in the estimates when the independent variable is associated with high trading activity. When

we instead use expected normalized volatilities, based on the average of the previous 24 months, to

proxy for expected volatility, we find support for the theory. This establishes that departures are

driven by unexpected cross-sectional variations in volatility that bias coefficient estimates down-

ward. However, we do not find supporting evidence from one time of day to another. In sum, we

find strong evidence of the role of speculative trading in equating expected profit opportunities to

speculators across assets and trading conditions, but not across time. Our findings shed light on

the systematic cross-stock patterns of volatility at intraday frequencies.
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