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Abstract

We analyze optimal auction mechanisms when bidders base costly entry decisions
on their valuations, and bidders pay with a fixed royalty rate plus cash. With sufficient
valuation uncertainty relative to entry costs, the optimal mechanism features asym-
metry so that bidders enter with strictly positive but different (ex-ante) probabilities.
When bidders are ex-ante identical, higher royalty rates—which tie payments more
closely to bidder valuations—increase the optimal degree of asymmetry in auction de-
sign, further raising revenues. When bidders differ ex-ante in entry costs, the seller
favors the low cost entrant; whereas when bidders have different valuation distribu-
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1 Introduction

This paper investigates the optimal design of auctions when bidders base costly entry deci-

sions on their valuations, and bidders pay with a fixed royalty rate plus cash. Such auctions

are common: Skrzypacz (2013) reports oil and gas lease auctions typically feature equity

payments in the form of royalties; Andrade, Mitchell, and Stafford (2001) report that 70%

of mergers and acquisitions involve some equity; and, as Gorbenko and Malenko (2011)

and Skrzypacz (2013) highlight, venture capital financing, procurement auctions, and lead-

plaintiff auctions often use similar payment structures.

We establish that as long as there is sufficient valuation uncertainty relative to entry costs,

the optimal mechanism features asymmetry so that bidders enter with strictly positive but

different (ex-ante) probabilities. When bidders are ex-ante identical, higher royalty rates—

which tie payments more closely to bidder types—increase the optimal degree of asymmetry

in auction design, allowing the seller to raise revenues further. When bidders differ ex ante,

strategic interactions become more subtle. We show that the optimal bidder to favor, the

extent of such favoritism, and the impact of the royalty rate hinge on the nature of the het-

erogeneity and the size of entry costs. We provide a unified intuition for the driving forces

underlying these findings.

In our setting, bidders have independent and private valuations for the asset, and know

their valuations before incurring entry costs, as in Samuelson (1985) or Sogo, Bernhardt,

and Liu (2016).1 To highlight the basic insights and tradeoffs, we first examine a scenario

with ex-ante identical bidders and symmetric equilibria. Paying for entry is costly and du-

plicative: the entry costs of all bidders save the winner are wasted. The optimal mechanism

trades off between the increased rents that more entrants can bring versus the higher total

entry costs incurred by more bidders. If valuation uncertainty for bidders is modest, so are

the welfare gains from greater selection, but the probability that the asset goes unsold rises

with the number of potential bidders. We provide sufficient conditions under which a seller

should restrict entry to a single bidder, setting a take-it-or-leave-it price.2

1In the appendix we analyze auction designs when bidders only learn their valuations after after entering.
2This result is consistent with Gentry and Stroup (2019). Their estimates reveal that the relative

performance of auctions over negotiations for corporate takeovers is higher when uncertainty about target
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More typically, uncertainty over bidder valuations is more extensive relative to entry costs.

In such a setting with two bidders, we identify mild conditions under which asymmetric auc-

tions that favor one bidder over the other are optimal, so that bidders enter with strictly pos-

itive but different ex-ante probabilities. The intuition underlying the tradeoffs of introducing

asymmetric entry thresholds is simple and, as we shall show, robust. Consider a small spread

away from a symmetric mechanism with entry thresholds where each bidder enters with prob-

ability p ∈ (0, 1) to an asymmetric mechanism in which one bidder enters with probability

p+∆p and the other enters with probability p−∆p. Introducing this asymmetry reduces the

probability of no sale from (1− p)2 to (1− p)2 − (∆p)2, while leaving total expected entry

costs unchanged. However, it forsakes choice when the higher valuation bidder is excluded.

The optimal design balances these gains and costs. To encourage entry by a bidder with

a low valuation, the seller sets a higher reserve for the other bidder. This preserves a high

probability of trade, while obtaining efficient allocations when the handicapped bidder has a

high valuation. Due to the rival’s handicap, the bidder facing a low reserve is willing to enter

even with a low valuation, understanding that the probability of competition is not so high.

Higher royalty rates increase the degree of asymmetry in the optimal design. This reflects

that spreading entry thresholds raises total bidder profits at a seller’s expense. However,

higher royalty rates offset this by reducing bidder profit in the optimal design (reflecting the

Demarzo, Kremer and Skrzypacz (hereafter DKS, 2005) logic that steeper securities enhance

seller revenues). Higher royalty rates differentially reduce the profit of a bidder who faces

a lower reserve when its valuation is high. Thus, they reduce the value attached by a seller

to competition by another bidder, making it optimal to set a higher reserve for that bidder,

increasing the asymmetry.3 Higher royalty rates increase seller profit for a given degree of

asymmetry, and when the degree is set optimally, seller revenues are further enhanced.

To reinforce how higher royalty rates increase the optimal degree of asymmetry we allow

values is extensive.
3The asymmetry refers to direct-mechanisms. In the analogous costless entry setting, Myerson (1981)

shows the optimal direct-mechanism is necessarily symmetric when bidders are ex-ante identical. Deb and
Pai (2017) show in a no entry cost setting that if one maintains interim individual rationality, but relaxes
ex-post individual rationality so that a winning bidder can pay more than the asset’s expected value, then
an asymmetric direct-mechanism can almost always be implemented via a symmetric indirect-mechanism
in which payments hinge on the bids of all bidders.
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for a quadratic cost γ(θ̂2− θ̂1)
2 of adopting asymmetric mechanisms with θ̂1 ̸= θ̂2. Asymmet-

ric mechanisms remain optimal if and only if γ < γ∗ (α), where γ∗ (α) strictly increases with

the royalty rate α: when royalty rates are higher, asymmetric mechanism remain optimal

even when the costs of implementing asymmetric mechanisms are higher.

In practice, bidders typically differ ex-ante from a seller’s perspective. In such settings,

the questions become: which bidder does a seller want to favor, and to what extent? We

analyze how different forms of bidder heterogeneity affect the optimal design in a two-bidder,

uniformly-distributed valuation setting. We first show that when bidders have different entry

costs, the seller favors the low cost bidder, because a seller indirectly pays the entry costs.

In contrast, when one bidder has a higher upper support for valuations than the other,

strategic considerations become subtle. We show that if entry costs are low, a seller favors the

weaker bidder, but once entry costs are sufficiently high, the seller favors the stronger bidder.

Two considerations enter a seller’s decision-making: rent-extraction concerns and effi-

ciency concerns. Optimal entry thresholds reflect virtual valuations, not actual valuations.

When entry costs are low, then reflecting the (entry-cost free) logic of Myerson (1981), a

seller favors the weaker bidder to reduce the stronger bidder’s ability to extract informa-

tional rents when its valuation is high. The seller also wants to reduce the probability of

an inefficient, no sale outcome. Concretely, suppose the probability of entry for bidder i

changes from pi to pi +∆p, while that for bidder j changes from pj to pj −∆p. Then, the

probability of no sale becomes

[1− (pi +∆p)][1− (pj −∆p)] = (1− pi) (1− pj)− (∆p)2 − (pi − pj)∆p.

Thus, when pi > pj, increasing pi and decreasing pj is more effective at reducing the proba-

bility of no sale than the reverse. When entry costs are low, the weaker bidder is more likely

to enter, so the rent-extraction logic underlying why the weaker bidder is favored is initially

reinforced by efficiency considerations, magnifying the degree to which the weaker bidder is

favored—beyond the degree prescribed by Myerson when entry is costless. However, as entry

costs rise, so do the optimal cutoffs, and eventually the stronger bidder becomes more likely

to enter. Hence, once entry costs are high enough, it becomes optimal to favor the stronger
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bidder. Thus, there is a non-monotone relationship between entry costs and the degree to

which the weaker bidder is favored (or disfavored).

Greater royalty rates reduce rent-extraction concerns because they lower bidder informa-

tion rents. As a result, when entry costs are low, greater royalty rates make it optimal to

favor the weaker bidder by less, reducing the optimal degree of asymmetry; and when entry

costs are high, greater royalty rates make it optimal to favor the stronger bidder by more,

raising the optimal degree of asymmetry.

Our analysis provides theoretical foundations for negotiated break-up fees that favor one

bidder over another in a takeover auction or the favoring of a particular supplier in pro-

curement auctions. A firm seeking a buyer often elicits an initial bid from one bidder by

promising to reimburse it for its efforts if it is outbid, thereby committing the target firm to

excluding other bidders unless their valuations are sufficiently high.4 In procurements the

US government often provides preferential treatment to domestic firms and small businesses.

Ayres and Cramton (1996) show such preferential treatments enhance seller revenues in auc-

tions for paging licenses by the FCC, in which winning bids of favored bidders are subsidized

by a fixed rate.5 In a setting with ex-ante asymmetric bidders, McAfee and McMillan (1989)

show that favoring ex-ante weaker bidders can enhance auction revenues. In addition to

revealing the revenue-enhancing effect of bid preference policies in a general framework with

heterogeneous bidders, our endogenous entry model provides guidance on how the optimal

design regarding the identity of which bidder to favor and the extent of that favoritism should

vary with the sizes of entry costs and royalty rates, and the nature of bidder asymmetry.

We contribute to research on the optimal design of security auctions without entry costs,

research on standard (symmetric) security auction designs with entry costs, and research

on cash auctions with entry costs. Absent entry costs, Cremer (1987) shows that optimal

securities auctions extract almost all surplus; and DKS show that if a seller restricts bids

to an ordered set of securities and uses a standard auction format, then steeper securities

yield higher revenues. Liu (2016) identifies the optimal mechanism when bidders are het-

4Bates and Lemmon (2003) find that 37% of the firms in their sample sign break-up/termination fees
and 17% grant lock-up options.

5For empirical analyses of the value of bid preference policies in settings with unknown valuations and
costly entry, see Krasnokutskaya and Seim (2011), Athey, Coey, and Levin (2013), and Nakabayashi (2013).
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erogeneous and pay with equities, generalizing Myerson (1981) from cash auctions to equity

auctions. Skrzypacz (2013) reviews the security-bid auction literature. Our contribution is

to identify optimal mechanisms when bidders bid with cash plus royalty payments and incur

entry costs, so that entry is endogenous.6

Fishman (1988) studies takeover contests in which an acquirer faces a potential rival that

must incur a cost to learn its target firm valuation, showing that a high-valuation acquirer

may offer the target a high price to preemptively discourage a rival from becoming informed.

Marquez and Singh (2013) investigate club bidding in private equities, and how entry costs af-

fect club formation and seller profits. Gorbenko and Malenko (2011) endogenize competition

between sellers in the design of security-bid auctions when bidders learn valuations after in-

curring entry costs. Sogo, Bernhardt, and Liu (2016) examine entry decisions in security-bid

auctions when bidders know their valuations prior to entering. These papers study standard

auction formats with entry costs. In contrast, we analyze optimal cash-plus-royalty auction

mechanisms, optimizing over the entire space of symmetric and asymmetric mechanisms.

For cash auctions, Samuelson (1985) was the first to note that a seller can gain by re-

stricting the potential number of bidders. Other cash auction papers that analyze the benefit

of regulating entry include Ye (2007); Bhattacharya, Roberts, and Sweeting (2014); Sweeting

and Bhattacharya (2015); and Quint and Hendricks (2018). Stegeman (1996) studies ex-ante

efficient cash mechanisms with entry costs. Lu (2009) considers revenue-maximizing cash

mechanisms with ex-ante identical bidders, showing that it suffices to focus on the class of

threshold-entry mechanisms. Lu (2009) and Celik and Yilankaya (2009) provide examples of

optimal mechanisms in which bidders enter with asymmetric and positive probabilities. In

contrast, we examine the optimal design of auctions featuring cash and royalty payments,

both when bidders are ex-ante identical and when they differ. We uncover how the nature

of ex-ante bidder heterogeneity, and the sizes of entry costs and royalty rates interact to

jointly determine the optimal design regarding which bidder to favor and the extent, and we

provide a unified intuition for these results.

6Our insights concerning how α affects the direction and extent of the optimal asymmetry should extend
to auctions where bids are from ordered sets of securities (as in DKS) in terms of how the steepness of the
securities affects the optimal design.
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2 Model

There is a risk-neutral seller and n ≥ 1 risk-neutral potential bidders. The indivisible asset

being auctioned has a normalized value of zero if retained by the seller. Bidder i incurs cost

ϕi > 0 from entering the auction. If bidder i acquires the asset, then it will yield a stochastic

payoff of Zi at date 2. Bidders pay using combinations of cash and royalty/equity where the

royalty payment by winner i is αZi, i.e., the royalty rate α ∈ [0, 1) is the same for all bidders.

At date 0, each potential bidder i receives a private signal θi = E(Zi|θi) about the ex-

pected asset payoff if i wins it. Signals are independently distributed, with θi distributed

according to cdf Fi (θi) and pdf fi (θi), where fi (θi) > 0 is differentiable for θi ∈ [θi, θi]. For

simplicity, we assume a regularity condition that any bidder i’s virtual valuation in pure cash

auctions (Myerson 1981), θi − 1−Fi(θi)
fi(θi)

, strictly increases in θi, and that θi − 1
fi(θi)

> ϕi (i.e.,

virtual valuations exceed entry costs). At date 1, after receiving signals, potential bidders

simultaneously decide whether to enter the auction.

In cash auctions with costly entry, Stegeman (1996, Lemma 1) establishes that it is with-

out loss of generality to restrict attention to semidirect mechanisms in which messages consist

of types augmented by null messages; and Lu (2009, Lemma 1) establishes that among all

semidirect mechanisms, the seller’s expected revenue is maximized by cutoff entry rules in

which only types θi ≥ θ̂i of each bidder i participate for some θ̂i ∈ [θi, θi]. This result that it

is optimal to have higher types participate extends directly to our setting where the winning

bidder makes both cash and royalty payments, because the royalty rate is fixed. Thus, with-

out loss of generality, we restrict attention to semidirect mechanisms (W,T;α) that induce

a truthful equilibrium with entry cutoffs (θ̂1, · · · , θ̂n).

Concretely, after observing θi, bidder i sends a message mi ∈ Mi ≡ [θi, θi] ∪ ∅, where ∅

is a null message (i.e., no entry). Let M ≡ ×iMi. The mechanism (W,T;α) is comprised

of (i) a profile of winning rules W = (W1, . . . ,Wn), where Wi : M → [0, 1] is the probability

that bidder i wins given m = (m1, ..,mi, ...,mn) and
∑

i Wi(m) ≤ 1, ∀m ∈ M ; (ii) a profile

of monetary (cash) transfer rules T = (T1, . . . , Tn) with Ti : M → R; and (iii) a royalty rate

α that determines the payment αZi when bidder i wins the auction and the asset pays Zi.

Thus, when m = (m1, . . . ,mn) ∈ M is the profile of reported messages, if mi ∈ [θi, θi], bidder
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i incurs entry cost ϕ, pays cash Ti(m) to the seller, and wins the auction with probability

Wi(m), in which case he makes royalty payment αZi to the seller; and if mi = ∅, bidder i

does not enter, receives zero payoff, and Wi(m) = Ti(m) = 0. This formulation corresponds

to a setting where a seller may ask losing bidders to make monetary transfers, but cannot

assign the asset or make monetary transfers to non-entrants.

Truthful bidding yields that mi (θi) = θi if θi ∈ [θ̂i, θi] and mi (θi) = ∅ if θi ∈ [θi, θ̂i).

We define: m (θ) ≡ ×imi (θi), θ−i ≡ (θ1, . . . , θi−1, θi+1, . . . , θn) ∈ ×j ̸=i[θj, θj], m−i (θ−i) ≡

×j ̸=imj (θj), f−i (θ−i) ≡ Πj ̸=ifj (θj), and f (θ) ≡ Πifi (θi). Consider bidder i’s expected

profit πi when all other bidders follow their equilibrium strategies. If he reports ∅ (i.e., if i

does not participate), then πi (∅|θi) = 0. If bidder i instead reports θ′i ∈ [θi, θi], then

πi (θ
′
i|θi) ≡ Gi(θ

′
i)(1− α)θi −

∫
θ−i

Ti(θ
′
i,m−i (θ−i))f−i (θ−i) dθ−i − ϕi, (1)

where

Gi(θ
′
i) ≡

∫
θ−i

Wi(θ
′
i,m−i (θ−i))f−i (θ−i) dθ−i (2)

is i’s expected winning probability if he reports θ′i and other bidders follow their equilibrium

strategies.

Individual rationality for type θi < θ̂i is trivially satisfied because non-participants receive

zero profit. Individual rationality for type θi ≥ θ̂i requires

πi (θi) ≡ πi (θi|θi) ≥ 0, ∀θi ≥ θ̂i, (3)

where πi (θi) denotes i’s equilibrium profit. Incentive compatibility for type θi ≥ θ̂i requires

πi (θi) = max
θ′∈[θi,θi]

πi (θ
′
i|θi) , ∀θi ≥ θ̂i; (4)

Incentive compatibility for type θi < θ̂i requires

max
θ′∈[θi,θi]

πi(θ
′
i|θi) ≤ 0, ∀θi < θ̂i. (5)

A semidirect mechanism (W,T;α) that induces entry cutoffs (θ̂1, · · · , θ̂n) is feasible if it

satisfies the individual rationality and incentive compatibility constraints (3), (4), and (5).
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The seller’s problem is to find a feasible semidirect mechanism with associated entry cutoffs

that maximizes her expected revenue

Πs =

∫
θ

∑
i

[Ti(m(θ)) +Wi(m(θ)) · αθi]f (θ) dθ. (6)

Characterization. By (1), we have that for all θ′i, θi ≥ θ̂i,

πi (θ
′
i|θi) = πi (θ

′
i) + (1− α)Gi(θ

′
i)(θi − θ′i).

Plugging this into the incentive compatibility constraint (4), yields

πi (θi) ≥ πi (θ
′
i) + (1− α)Gi(θ

′
i)(θi − θ′i), ∀θ′i, θi ≥ θ̂i. (7)

Equation (7) shows that a high-type bidder earns more rents than a low-type bidder by at

least (1 − α)Gi(θ
′
i)(θi − θ′i), where θi > θ′i ≥ θ̂i. Here, the factor (1 − α) reflects that the

royalty rate ties the payment value to the bidder’s valuation, reducing the bidder’s rents.

Using standard approaches (Myerson 1981; Krishna 2010), we now establish:

Lemma 1 In any feasible semidirect mechanism that induces entry cutoffs (θ̂1, · · · , θ̂n),

1. The expected profit of bidder i of type θi is

πi (θi) = πi(θ̂i) +

∫ θi

θ̂i

(1− α)Gi(t)dt, ∀θi ≥ θ̂i, ∀i. (8)

2. The seller’s expected revenue is

Πs =

∫
θ

(∑
i

ξi(θi;α)Wi (m (θ))

)
f (θ) dθ −

∑
i

(
ϕi + πi(θ̂i)

)
(1− Fi(θ̂i)), (9)

where

ξi(θi;α) ≡ θi − (1− α)
1− Fi(θi)

fi(θi)
. (10)

All proofs are contained in the Appendix. This lemma extends the standard Myerson

result to auctions with royalty payments and entry costs. Equation (10) is the virtual valua-

tion when bidders pay with a combination of cash and a fixed royalty rate α (Myerson 1981

and Liu 2016), where the factor (1 − α) reflects that security payments allow the seller to
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extract more rents from bidders than pure cash payments, reducing bidder profit. The factor

1 − Fi(θ̂i) in the second term of (9) is the (ex-ante) probability that bidder i participates.

Bidder i’s expected entry cost of (1 − Fi(θ̂i))ϕi represents a loss of social surplus that is

eventually borne by the seller via the bidder’s individual rationality requirement.

Lemma 2 In the optimal mechanism among all feasible semidirect mechanisms that induce

entry cutoffs (θ̂1, · · · , θ̂n):

1. Among bidders with θj ≥ θ̂j, the bidder i with the highest ξi (θi;α) receives the asset.

2. πj(θ̂j) = 0 for all j.

3. The seller’s expected revenue is

Πs =

∫
θ

max
{
1{θ1≥θ̂1}ξ1(θ1;α), ...,1{θn≥θ̂n}ξn(θn;α)

}
f (θ) dθ−ϕi

∑
i

(1−Fi(θ̂i)), (11)

where 1{θi≥θ̂i} is an indicator function.

Thus, in the optimal mechanism, the seller’s revenue is the expected value of the highest

virtual valuation among entrants net of total entry costs. The seller’s problem reduces to

the identification of entry cutoffs (θ̂1, · · · , θ̂n) that maximize (11).

3 Ex-ante Identical Bidders

In this section we consider ex-ante identical bidders, so that ϕi = ϕ and fi = f for all i.

3.1 Optimal Symmetric Mechanism

To begin, we consider symmetric mechanisms that induce the same entry cutoff θ̂i = θ̂ for

all bidders. The distribution of the highest type θ1n among n potential bidders is F n (θ1n).

From (11), the expected revenue in the optimal mechanism with cutoff θ̂ is

Π∗(θ̂) ≡
∫ θ̄

θ̂

ξ(θ;α)dF n(θ)− nϕ(1− F (θ̂)). (12)

9



The entry cutoff θ̂opt that maximizes expected seller payoffs Π∗(θ̂) is characterized by:{
ξ(θ̂opt;α)F n−1(θ̂opt) = ϕ, θ̂opt ∈ (θ, θ̄) if n ≥ 2

θ̂opt = θ if n = 1.
(13)

To see this, observe that dΠ∗(θ̂)

dθ̂
= −nF n−1(θ̂)f(θ̂)η(θ̂;α, ϕ) by (12), where η(θ̂;α, ϕ) ≡

ξ(θ̂;α)− ϕ

Fn−1(θ̂)
. Because ξ(θ̂;α) increases in θ̂, so does η(θ̂;α, ϕ), and η(θ̄;α, ϕ) > 0. For n ≥

2, limθ̂→θ η(θ̂;α, ϕ) < 0. Therefore, there is a unique θ̂opt ∈ (θ, θ̄) such that η(θ̂opt;α, ϕ) = 0.

Inspection reveals that dΠ∗(θ̂)

dθ̂
> 0 if θ̂ < θ̂opt, and dΠ∗(θ̂)

dθ̂
< 0 if θ̂ > θ̂opt. Thus, θ̂opt maximizes

Π∗. For n = 1, F n−1(θ̂) = 1 and dΠ∗(θ̂)

dθ̂
< 0, implying that θ maximizes Π∗.

Increasing α reduces both the informational rents of bidders and the difference between

virtual and real valuations (both ξ and η increase). It follows that greater royalty rates reduce

the optimal entry cutoff. To highlight this starkly, consider the limit case of α → 1 when

n ≥ 2. Then ξ(θ;α = 1) = θ and (13) reduces to θ̂optF n−1(θ̂opt) = ϕ. As the entry cost ϕ

decreases, so does the optimal entry cutoff θ̂opt, going to θ̂optϕ=0 = θ as ϕ → 0. Then (12) yields

Π∗(θ̂optϕ=0;α→1) =

∫ θ̄

θ

θdF n(θ).

Intuitively, when entry is costless, it is optimal to always award the asset (i.e., θ̂optϕ=0 = θ > 0;

and as α → 1, the optimal mechanism leaves no rents to bidders, so seller revenue equals

the social welfare gain created by the asset’s allocation. By (12) again, comparing this

costless-entry benchmark and our costly-entry setting where ϕ > 0 yields

Π∗(θ̂optϕ=0;α→1)− Π∗(θ̂optϕ>0;α→1) = nϕ(1− F (θ̂opt)) +

∫ θ̂opt

θ

θdF n(θ).

Costly entry reduces a seller’s maximum rents in two ways. The first term captures the

direct cost of entry. The second term reflects an indirect efficiency loss: as reasoned above,

costly entry impairs the efficiency of allocations as it is no longer optimal to always award

the asset—the threshold θ̂opt exceeds θ, so a seller foregoes some socially optimal trades.

Restricting entry. We show that with limited uncertainty about bidder valuations, con-

serving on entry costs by restricting entry to one bidder may be optimal; but with more

extensive uncertainty, asymmetric mechanisms that handicap some bidders are best.
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To start, we motivate the tradeoffs associated with exclusion faced by a seller. Fixing

the sum of bidders’ entry probabilities, and thus the total expected direct costs of entry

(the second term in equation (12)), but increasing the number of potential bidders n, has

two opposing effects on social welfare. Conditional on some bidder entering, welfare gains

typically rise with n, as the expected winner’s valuation is higher due to a greater-selection

effect. However, the probability that no bidder enters and no trade occurs also rises with n,

which harms welfare. Intuition for this deterred-entry effect derives from a simple inequality:

Lemma 3 Given n > 1 numbers p1, ..., pn ∈ (0, 1), 1−min{
∑n

j=1 pj, 1} < Πn
j=1(1− pj).

Corollary 1 Suppose that rather than n > 1 potential bidders entering with (ex-ante) prob-

abilities p1, ..., pn ∈ (0, 1), a single potential bidder enters with probability min{
∑n

j=1 pj, 1}.

Then, the asset is strictly more likely to be sold, and total expected entry costs are weakly less.

Because expected total entry costs equal the sum of participation probabilities times ϕ, a

single potential bidder can achieve a higher probability of sale while paying an entry cost that

does not exceed the total entry costs of n potential bidders (i.e., min{Σn
j=1pj, 1} ≤ Σn

j=1pj).

This is the deterred-entry effect of having more potential bidders. The greater-selection

effect—the value of sampling more bidders to improve the draw of entrants with high

valuations—increases with the extent of variation in bidder valuations. When the varia-

tion in valuations is small enough relative to the entry cost ϕ, the deterred-entry effect

dominates the greater-selection effect in an extreme form:

Proposition 1 Let bidder valuations be distributed on [θ̄ − ϵ, θ̄]. If ϵ < ϕ
(
1− ϕ

θ̄

)
, then for

any α, expected seller profits are strictly higher in the optimal mechanism with one potential

bidder than in any symmetric mechanism with n ≥ 2 potential bidders.

The proposition provides a sufficient condition that holds for all α and only depends on

ϵ but not the other details of F (·). To illustrate the result, revisit the case of α → 1 and

take the limit ϵ → 0. If there are n ≥ 2 potential bidders, then by ξ(θ;α = 1) = θ, (13)

reduces to θ̂optF n−1(θ̂opt) = ϕ, yielding

F n−1(θ̂opt) =
ϕ

θ̂opt
.

11



Taking limits on both sides yields

lim
ϵ→0

F n−1(θ̂opt) = lim
ϵ→0

ϕ

θ̂opt
=

ϕ

θ̄
,

where the last equality holds because θ̂opt approaches θ̄ as ϵ → 0. Thus,

lim
ϵ→0

F
(
θ̂opt(n)

)
=
(ϕ
θ̄

) 1
n−1

,

where we index optimal entry cutoff θ̂opt by n (for n ≥ 2). Indexing profits Π by n, (12) yields

lim
ϵ→0

Π
(
θ̂opt(n), n

)
= lim

ϵ→0
θ̄

∫ θ̄

θ̂opt(n)

dF n(θ)− lim
ϵ→0

nϕ(1− F (θ̂opt(n)))

= lim
ϵ→0

θ̄
(
1− F n

(
θ̂opt(n)

))
− lim

ϵ→0
nϕ(1− F (θ̂opt(n)))

= θ̄

(
1−

(ϕ
θ̄

) n
n−1

)
− nϕ

(
1−

(ϕ
θ̄

) 1
n−1

)
= θ̄ − θ̄

ϕ

θ̄

(ϕ
θ̄

) 1
n−1 − ϕ

(
1−

(ϕ
θ̄

) 1
n−1

)
− (n− 1)ϕ

(
1−

(ϕ
θ̄

) 1
n−1

)
= θ̄ − ϕ− (n− 1)ϕ

(
1−

(ϕ
θ̄

) 1
n−1

)
, (14)

where the first equality follows from 0 ≤ θ̄−θ ≤ ϵ for all θ ∈ [θ̂opt, θ̄] and
∫ θ̄

θ̂opt(n)
dF n(θ) ≤ 1.7

For n = 1, because θ̂opt(1) = θ = θ̄ − ε by (13), (12) yields

lim
ϵ→0

Π
(
θ̂opt(1), 1

)
= θ̄

∫ θ̄

θ̄−ϵ

dF (θ)− ϕ = θ̄ − ϕ, (15)

where the first equality holds by a similar argument as that for the first equality of (14). By

(14) and (15), expected revenue strictly decreases in n, maximizing at n = 1.8

3.2 Optimality of Asymmetric Mechanisms

We now show that when the possible valuations of potential bidders differ by enough (vis à vis

entry costs), then while excluding bidders is not optimal, neither is a symmetric mechanism.

7More concretely, note that 0 ≤
∫ θ̄

θ̂opt(n)
θ̄dFn(θ) −

∫ θ̄

θ̂opt(n)
θdFn(θ) ≤ ϵ

∫ θ̄

θ̂opt(n)
dFn(θ) ≤ ϵ. Hence, as ϵ

approaches zero,
∫ θ̄

θ̂opt(n)
θ̄dFn(θ)−

∫ θ̄

θ̂opt(n)
θdFn(θ) goes to zero, establishing the first equality of (14).

8For n ≥ 2, m(1 − a1/m) increases in m = n − 1 for a < 1: letting b = 1/m, the derivative with respect
to m is 1− ab(1− ln(ab)) > 0, as d

dxx(1− ln(x)) = − ln(x) > 0 for x < 1, and limx→1 x(1− ln(x)) → 1.
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For simplicity, we focus on n = 2. We first consider α → 1, where the tradeoffs are simpler.

As α → 1, seller revenue in (11) in the optimal (possibly asymmetric) mechanism reduces to∫ θ̄

θ̂2

∫ θ̄

θ̂1

max {θ1, θ2} dF (θ1) dF (θ2) + F (θ̂2)

∫ θ̄

θ̂1

θ1dF (θ1) + F (θ̂1)

∫ θ̄

θ̂2

θ2dF (θ2)

− ϕ(2− F (θ̂1)− F (θ̂2)). (16)

The first term in (16) is the social welfare gain when both bidders enter, and the second and

third are the social welfare gains when only one of the bidders enters.

We next establish a benchmark result for the case of α → 1 that asymmetric mechanisms

that handicap one bidder are optimal when valuations can differ sufficiently:

Proposition 2 Suppose (i) df(θ)
f(θ)

> − 1

(θ̄−θ)
ln θ̄

(θ̄−θ)
for all θ ∈

[
θ, θ̄
]
, i.e., the pdf does not de-

crease too quickly, and (ii) there is enough valuation uncertainty that θ̄−E [θ] > ϕ. Then, as

α approaches 1, optimal mechanisms are asymmetric, with both bidders entering with strictly

positive but different (ex-ante) probabilities. That is, θ̂opt1 ̸= θ̂opt2 and max{θ̂opt1 , θ̂opt2 } < θ̄.

Proposition 2 provides conditions under which the optimal mechanism with ex-ante iden-

tical bidders is asymmetric, so that bidders enter with strictly positive but different (ex-ante)

probabilities, a result that does not hinge on large entry costs (see condition (ii)). To see

the logic, consider a small spread away from a symmetric mechanism with entry thresholds

θ̂1 = θ̂2 = θ̂, where each bidder enters with probability p ∈ (0, 1), to an asymmetric mecha-

nism with entry thresholds θ̂1 = θ̂− ϵ and θ̂2 = θ̂+ ϵ∗, where ϵ and ϵ∗ are chosen so that one

bidder enters with probability p+∆p and the other enters with probability p−∆p.

Introducing this asymmetry reduces the probability of no sale from (1− p)2 to (1− p)2−

(∆p)2, while leaving total expected entry costs unchanged.9 However, it forsakes some choice

when the higher valuation bidder is excluded. Condition (i) ensures that the density does

not decline so quickly that the potential (and hence expected) value of that foregone choice

is too high, making it always optimal to spread the cutoffs of a symmetric mechanism. Con-

dition (ii) ensures that always excluding a bidder (in which case, it is optimal for the other

9This intuition leads to the optimality of asymmetric mechanism only when ϕ > 0. Absent entry costs,
the logic breaks down: the optimal mechanism features p = 1, so one cannot have a probability of p+∆p.
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bidder always to enter, because ϕ < θ) is not optimal: the left-hand side of θ̄ − E[θ] > ϕ

is the expected benefit of entry by a bidder with valuation θ̄ when the other bidder always

enters, while the right-hand side is the cost.

The optimality of asymmetric mechanisms extends beyond optimal securities auctions

that use steep securities (α → 1) to extract full rents, to hold for optimal mechanisms fea-

turing any fixed royalty rate α ∈ [0, 1) plus cash. To highlight this, the remainder of the

paper specializes to two bidders and sufficient uniform uncertainty over valuations on [θ, θ̄]:

Assumption A1: There are two potential bidders whose valuations are independently and

uniformly distributed on [θ, θ̄] with 2θ − θ̄ > ϕ and θ̄−θ
2

> ϕ.

In this uniform distribution setting, the condition 2θ − θ̄ > ϕ is equivalent to our earlier

assumption that ϕ < θ − 1
f(θ)

. It ensures that with a single potential entrant, the optimal

cutoff is θ.10 We now show that the qualitative content of Proposition 2 holds for all fixed

royalty rates α ∈ [0, 1] given only slightly stronger sufficient conditions:

Proposition 3 Under A1, for any α,

(i) The optimal mechanism is asymmetric, with both bidders entering with strictly positive

but different probabilities.

(ii) If, in addition, α > 2(2θ̄−3θ)

3(θ̄−θ)
, then in the optimal mechanism, one bidder always enters

and the other bidder enters with an ex-ante probability strictly between zero and one, where

the cutoff valuation is θ +
√

2ϕ(θ̄−θ)
2−α

∈ (θ, θ̄). This cutoff strictly increases in α.

Figure 1 illustrates Proposition 3 that one bidder always enters (θ̂1 = θ) and the other

bidder enters only when its valuation exceeds a cutoff θ̂2. It shows how the optimal cutoff θ̂2

increases in both ϕ and α; that is, greater ϕ or α increases the optimal degree of asymmetry.

When α > 2(2θ̄−3θ)

3(θ̄−θ)
, a slight increase in the spread between θ̂1 and θ̂2 raises seller

revenues—the benefit of increased probability of including one bidder swamps the cost of

increased probability of excluding the other bidder when its valuation is higher. But then

the optimum features a boundary solution. However, as explained below Proposition 2, the

condition θ̄ − E[θ] = 1
2

(
θ̄ − θ

)
> ϕ ensures that it is not optimal to always exclude one

10Given this condition, the virtual valuation for a fixed royalty rate α plus cash, (10), calculated at θ,
exceeds ϕ for any α.
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(a) θ̂1 and θ̂2 as a function of ϕ (α = 0.5).
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(b) θ̂1 and θ̂2 as a function of α (ϕ = 1).

Figure 1: Optimal entry cutoffs θ̂1 and θ̂2 as a function of ϕ and α when bidder valuations
are independently uniformly distributed on [9, 12] and ϕ < 1.5 so A1 holds.

bidder, implying that it is optimal for one bidder to always enter, and for the other to enter

with an ex-ante probability between zero and one. In this case, first-order conditions yield

that the other potential bidder should enter when its valuation is at least θ+
√

2ϕ(θ̄−θ)
2−α

< θ̄.

Proposition 3 offers insights into the factors that affect the relative merits of symmetric

and asymmetric mechanisms, as bidders earn strictly positive rents that depend on the roy-

alty rate α and differ between these two types of mechanisms. Proposition 3 reveals that the

benefit of the asymmetric mechanism rises with α. Greater αmake the condition α >
2(2θ̄−3θ)
3(θ̄−θ)

less stringent. While α does not affect the social welfare benefits of spreading, the proof re-

veals that spreading the entry thresholds increases total bidder payoffs at a seller’s expense.

Decreased tying (reduced α) raises bidder profits, magnifying this effect, especially when the

entry threshold is low.11 The conditions in the proposition ensure that the positive effect of

spreading on social welfare outweighs the negative effect of increasing total bidder payoffs.

With entry costs, expected revenues in the optimal mechanism increase in α for two rea-

sons. First, increasing the royalty rate α reduces the profit of the bidder who always enters.

In turn, this reduces the value that the seller attaches to entry by the other bidder. Thus,

second, the seller can further increase revenue by setting a higher entry threshold for the

other bidder, i.e., increasing the degree of asymmetry in cutoffs.

Implementation costs for asymmetric mechanisms. Any optimal asymmetric mecha-

11By (8) in Lemma 1 and πj(θ̂j) = 0 in Lemma 2, bidder i’s expected profit given signal θi is

(1−α)
∫ θi
θ̂i

Gi(θ)dθ, where Gi (θ) is the probability that i wins given signal θ. This profit decreases in α and θ̂i.
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nism that induces entry cutoffs (θ̂opt1 , θ̂opt2 ) with θ̂opt1 < θ̂opt2 can be implemented by a second-

price auction with reserve price ri = (1 − α)θ̂opti for bidder i ∈ {1, 2} and entry subsidy

ϕ to any entrant i whose bid exceeds ri, where the auction winner i makes the additional

royalty payment αZi with α ∈ [0, 1).12 These reserve prices and subsidy reflect that after

entering the auction, entry costs are sunk, it is a weakly dominant strategy for a bidder with

valuation θ to bid (1−α)θ in the second-price auction with royalty rate α, and each entrant

is reimbursed with its entry cost to address individual rationality.

In practice, asymmetric mechanisms may be costly to implement. For example, there

may be legal costs of discriminating between bidders in auctions that feature asymmetric

rules or complexity costs associated with inducing an asymmetric equilibrium among the

multiple-equilibria in auctions that use symmetric rules.13 To model this we add a quadratic

cost γ(θ̂2 − θ̂1)
2 for asymmetric mechanisms with θ̂1 ̸= θ̂2.

Proposition 4 Suppose A1 holds, and there is a quadratic cost γ(θ̂2 − θ̂1)
2 for adopting

mechanisms with θ̂2 ̸= θ̂1. Then an asymmetric mechanism with θ̂1 ̸= θ̂2 is optimal if and

only if γ < γ∗ (α), where

γ∗(α) ≡ 2θ − θ̄ + (θ̄ − θ)α

4(θ̄ − θ)2

increases in α.

One might posit that because the costs of slight separation are only of second order, some

separation is always optimal under A1. However, this logic is flawed: the benefits of slight

separation are also of second order. In fact, asymmetric mechanisms are optimal if and only

if the asymmetry cost parameter γ is sufficiently small, i.e., γ < γ∗(α). γ∗(α) increases in α—

with higher royalty rates, asymmetric mechanism can remain optimal even when the costs of

implementing asymmetric mechanisms are higher. This result reinforces our earlier findings

that the relative benefit of asymmetric mechanisms over symmetric ones increases in α.

12With ex-ante symmetric bidders, this mechanism corresponds to that used in the proof of Lemma 2,
and as the proof of the lemma shows, it implements the optimal mechanism.

13Campbell (1998) provides a sufficient condition for the existence of asymmetric equilibria in second-price
auctions with two bidders.
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4 Heterogeneous Bidders

The preceding analysis establishes how strategic considerations can lead a seller to treat bid-

ders heterogeneously even when bidders are ex-ante identical so that the choice of which bid-

der to favor is arbitrary. In practice, ex ante, a seller is often aware of dimensions along which

potential bidders differ. For example, a target firm may believe that one potential acquiring

firm is more likely to have higher synergies than another. The target could reinforce the

initial asymmetry by favoring the bidder with the higher expected synergies. Alternatively,

it could encourage participation by the bidder with lower expected synergies by favoring it.

We now address how asymmetries in primitives affect a seller’s choice of which bidder to

favor, and how extensive such favoritism should be. That is, we derive how different forms

of ex-ante bidder heterogeneity affect the optimal auction design. We first consider a setting

where bidders have different entry costs ϕi, but are otherwise identical. We then consider

bidders who have different supports for their valuation distributions Fi.
14

4.1 Heterogeneity in entry costs

We first show that when bidders differ in ϕi, there is a natural bidder to favor—the low entry

cost bidder—making the optimal way to select the favored bidder unique. Thus, in contrast

to the costless entry setting of Myerson (1981), there is a discontinuity in the optimal degree

of asymmetry with respect to the underlying bidder heterogeneity.

Assumption A1′: There are two potential bidders whose valuations are independently and

identically uniformly distributed on [θ, θ̄], but who have different entry costs ϕ2 > ϕ1 > 0,

where 2θ − θ̄ > ϕ1 and θ̄−θ
2

> ϕ2.

Proposition 5 Under A1′, the optimal mechanism favors the low cost entrant: θ̂1 < θ̂2 < θ̄.

The intuition is straightforward. Because bidder valuations are symmetrically distributed,

when it is optimal to favor one bidder in the auction design, efficiency considerations mandate

that the seller should favor the bidder with lower entry costs.

14In our fixed royalty rate setting, project investment costs (as in DKS) do not affect outcomes, even if
they differ between bidders. Such costs do matter in pure equity auctions, where investment costs affect a
bidder’s information advantage and favoring bidders with smaller investment costs is optimal (Liu, 2016).

17



4.2 Heterogeneity in the distribution of bidder valuations

We now consider bidders who have the same lower support θ for their valuations, but differ-

ent upper supports. Without loss of generality, we suppose that θ̄1 > θ̄2. We again assume

2θ−2θ̄1 > 0. We will show that with heterogeneous supports, the size of ϕ is critical for deter-

mining which bidder to favor and the extent. Accordingly, we place minimal restrictions on

ϕ, requiring only that ϕ < θ̄1 (ϕ ≥ θ̄1 is uninteresting because zero entry becomes optimal).

With uniformly-distributed valuations, the virtual valuation (10) of bidder i ∈ {1, 2} is

ξi(θi) = θi − (1− α)
(
θ̄i − θi

)
(17)

= (2− α) θi − (1− α) θ̄i.

Bidder 1 corresponds to the “strong bidder” in Myerson (1981). Myerson shows that without

entry costs, optimal selling mechanisms handicap this strong bidder. The logic is that if both

bidders have the same valuation θ, then the strong bidder has a lower virtual valuation, so the

seller benefits from setting a higher reserve price for this bidder. Extending this to our costly

entry setting, one might conjecture that it should be optimal to “favor” weak bidder 2 by set-

ting a lower threshold for bidder 2. Counterintuitively, we establish that when entry is costly,

the optimal bidder to favor varies, depending on both the entry costs and the royalty rate.

The logic reflects the insight highlighted earlier underlying how asymmetric thresholds af-

fect the probability of no sale. We explain in two steps. As a starting point, consider a small

spread away from an initial position with identical thresholds θ∗1 = θ∗2 ∈
(
θ,min

(
θ̄1, θ̄2

))
, so

that bidder i enters with probability pi = (θ̄i − θ∗i )/(θ̄i − θ), to asymmetric entry thresholds

θ̂1 = θ∗1−ϵ∗ and θ̂2 = θ∗2+ϵ, where ϵ and ϵ∗ are chosen so that bidder 1 enters with probability

p1+∆p and bidder 2 with p2−∆p. Importantly, unlike the symmetric case, now p1 > p2 even

though initial entry thresholds are identical, θ∗1 = θ∗2. The probability of no sale becomes

[1− (p1 +∆p)][1− (p2 −∆p)] = (1− p1) (1− p2)− (∆p)2 − (p1 − p2)∆p.

This equation conveys the key change introduced by heterogeneity in bidders’ valuation dis-

tributions. The second term − (∆p)2 is negative regardless of the sign of ∆p; this reflects

the advantage of introducing asymmetric cutoffs as in a symmetric setting. However, now,
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there is a third term, − (p1 − p2)∆p, which is negative only if ∆p > 0. This means that

when p1 > p2, increasing p1 and decreasing p2 is more effective at reducing the probability

of no sale than increasing p2 and decreasing p1. Thus, favoring bidder 1 increases efficiency.

Next, recognize that the threshold choices θ∗1 and θ∗2 should reflect virtual valuations, not

actual valuations. Heuristically, one can think of θ∗1 and θ∗2 as solving a constrained optimiza-

tion problem: maximize a seller’s expected revenue Πs subject to an equal virtual valuation

constraint, ξ1(θ
∗
1) = ξ2(θ

∗
2) ≡ ξ∗. With heterogeneity in the distribution of valuations, the so-

lution typically features θ∗1 ̸= θ∗2, and, as we detail, p1 may be either larger or smaller than p2.

Thus, collectively, there are two consequences to favoring a “strong” bidder. First, My-

erson’s logic implies that favoring the stronger bidder reduces a seller’s ability to extract

informational rents. Because greater equity shares α reduce bidder information rents, this

force declines when α increases. Second, there is an efficiency effect, the direction of which

depends on whether p1 > p2 or p1 < p2. Recall that θ∗1 and θ∗2 solve the constrained opti-

mization problem. Therefore, ξ∗ increases in ϕ. In a benchmark setting where ϕ approaches

0, entry becomes almost costless, and Myerson’s logic implies that the optimal mechanism

features θ∗1 > θ∗2 = θ: because ξ2(θ) > 0 by 2θ > θ̄i, the optimal design features θ∗2 = θ

and ξ1(θ
∗
1) = ξ2(θ).

15 As a result, p1 < p2 = 1. When ϕ is positive but small, the efficiency

considerations embodied in the third term “− (p1 − p2)∆p” reinforce the Myerson logic, i.e.,

it becomes optimal to increase θ̂1 even further above θ̂2, beyond the degree when entry is

costless. However, because ξ∗ increases in ϕ and ξ1(θ̄1) > ξ2(θ̄2), as ϕ is increased, p1 even-

tually reaches p2. Beyond that point, further increases in ϕ raise p1 past p2, making it more

effective to reduce the probability of no sale by closing the gap between θ̂1 and θ̂2. When

this efficiency effect is strong enough to overcome the Myerson logic (which falls with α), the

difference θ̂1−θ̂2 not only shrinks, but it reverses sign: the optimal design can feature θ̂1 < θ̂2.

For simplicity, we first consider the limiting case where θ̄2 approaches θ, i.e., there is

little uncertainty about the weak bidder’s valuation. This yields a closed-form solution that

demonstrates how the two forces play out. We then illustrate numerically how the intuition

15In the special case of costless entry, ϕ = 0, the value of θ∗1 is not unique: any value below the solution of
ξ1(θ

∗
1) = ξ2(θ), e.g., θ

∗
1 = θ, can also be optimal, even though bidder types with values below ξ1(θ

∗
1) = ξ2(θ)

have no chance of winning. This non-uniqueness reflects that when ϕ = 0, social welfare is not wasted by entry
of bidder types with no chance of winning. Once ϕ is positive, it is not optimal to have such bidder types enter.
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extends when θ̄2 − θ is non-negligible. To ease presentation, we work with the probability of

entry rather than the threshold of entry for the weak bidder 2, defining p2 ≡ θ̄2−θ̂2
θ̄2−θ

to be the

probability that the bidder enters, i.e., θ̂2 = θ + (1− p2) (θ̄2 − θ). We have:

Proposition 6 Assume uniform distribution, 2θ − θ̄1 > 0 and ϕ < θ̄1. Consider the case

where θ̄2 approaches θ. Then there exists a cutoff value ϕ∗ (α) ∈
(
0, θ̄1 − θ

)
(defined in the

proof), with dϕ∗(α)
dα

< 0 such that

(i) If ϕ ∈ (0, ϕ∗ (α)), then the weak bidder always enters, p2 = 1, and

θ̂1 =
(1− α) θ̄1 + θ + ϕ

2− α
> θ. (18)

θ̂1 strictly decreases in α, and strictly increases in ϕ (∂θ̂1
∂ϕ

> 0), where the rate of increase

grows with the royalty rate α ( ∂2θ̂1
∂α∂ϕ

> 0).

(ii) If ϕ ∈
(
ϕ∗ (α) , θ̄1

)
and α > 0,16 then the weak bidder never enters, p2 = 0, and

θ̂1 =

{
θ if ϕ ≤ (2− α) θ − (1− α) θ̄1
(1−α)θ̄1+ϕ

(2−α)
if ϕ > (2− α) θ − (1− α) θ̄1,

(19)

which weakly decreases in α.

(iii) θ̂1 is nonmonotone in ϕ: it decreases as ϕ crosses ϕ∗(α), limϕ→ϕ∗(α)− θ̂1 > limϕ→ϕ∗(α)+ θ̂1,

but it weakly increases in ϕ, ∂θ̂1
∂ϕ

≥ 0 for ϕ > ϕ∗(α).

These results show that in the limit as ϕ approaches 0, the logic of the costless Myerson

benchmark obtains, so that θ̂2 = θ and θ̂1 > θ. Then, as the entry cost ϕ rises, θ̂2 remains at θ,

but θ̂1 continuously increases, where the rate at which θ̂1 increases in ϕ rises when the royalty

rate α is higher. Eventually, ϕ reaches ϕ∗ (α), at which point θ̂1 falls to θ and the probabil-

ity that bidder 2 enters falls to 0, i.e., θ̂2 = θ̄2. Once ϕ reaches a second-higher threshold,

max
{
ϕ∗ (α) , (2− α) θ − (1− α) θ̄1

}
, θ̂1 increases again while the probability that bidder 2

enters remains at 0. Finally, increases in α reduce the optimal magnitude of asymmetry when

ϕ is small, but increase it when ϕ is large: θ̂1 decreases in α regardless of whether ϕ < ϕ∗ (α)

or ϕ > ϕ∗ (α); but p2 = 1 when the entry cost is small, and p2 = 0 when the entry cost is large.

16Even when α = 0 and ϕ > ϕ∗(α) or α is arbitrary and ϕ = ϕ∗(α), p2 = 0 and (19) are still a solution
for the optimization. However, other solutions may also exist.
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These findings reflect the intuition highlighted earlier. First, when entry costs are small,

it is optimal to magnify the threshold difference in the direction of the Myerson logic, fur-

ther favoring the weak bidder—beyond the degree when entry is costless. However, once

entry costs are sufficiently large, the reverse—favoring a “strong” bidder—becomes opti-

mal. Further, the relative importance of efficiency considerations—as embodied in the term

“− (p1 − p2)∆p”—increases with ϕ (i.e., p1 − p2 becomes large when the entry cost is high),

and as entry cost rises, there is a “regime change” when the efficiency consideration becomes

more important than the rent-extraction (Myerson) consideration. Moreover, for any given

entry cost, the relative importance of rent-extraction considerations decreases in α because

higher α reduces bidder rents. It follows that when entry costs are low, greater royalty rates

make it optimal to favor the weaker bidder by less, reducing the optimal degree of asym-

metry; but when entry costs are high, greater royalty rates make it optimal to favor the

stronger bidder by more, raising the optimal degree of asymmetry.

(a) α = 0 (b) α = 0.15

(c) α = 0.30 (d) α = 0.45

Figure 2: Optimal entry cutoffs θ̂1 and θ̂2 as a function of entry cost ϕ for different royalty
rates α with independently uniformly distributed valuations, over [3, 5] for bidder 1 and
[3, 4] for bidder 2. That is, bidder 1 is stronger than bidder 2.

Figure 2 illustrates how the key ideas in Proposition 6 extend to settings in which θ̄2−θ is
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non-negligible. It plots optimal cutoffs for a strong bidder 1 whose valuation θ1 is drawn from

a uniform distribution on [3, 5] and a weak bidder 2 whose valuation θ2 is drawn from a uni-

form distribution on [3, 4], for four fixed royalty rates α. The figure indicates that it is optimal

to favor the weak bidder when the entry cost ϕ is small: θ̂1 > θ̂2 = θ. As ϕ rises, θ̂2 remains at

θ, but θ̂1 continuously increases. However, eventually ϕ hits a critical value at which the op-

timal entry cutoffs discontinuously reverse so that θ̂1 < θ̂2. That is, once ϕ exceeds a critical

value, it becomes optimal to favor the strong bidder. This critical value decreases in α reflect-

ing that the relative importance of efficiency concerns increases with α.17 Further, increases

in α make it optimal to favor a weak bidder by less, i.e., θ̂1− θ̂2 shrinks when entry costs are

low; but to favor a strong bidder by more, i.e., θ̂2 − θ̂1 expands when entry cost are high.

5 Conclusion

With entry costs, optimal selling mechanisms trade off between the increased rents that more

entrants can bring and the higher total entry costs incurred by more bidders that a seller in-

directly bears via the endogenous entry choices. We establish that as long as there is enough

uncertainty over bidder valuations relative to entry costs, it is optimal to handicap some

bidders in order to encourage other bidders to enter. When bidders are ex-ante identical,

greater royalty rates differentially reduce the profit of a bidder who enters more frequently,

making it optimal to raise the reserve for another bidder.

In practice, bidders typically differ ex ante in their attributes. We derive how the nature

of ex-ante bidder heterogeneity affects a seller’s choice of which bidder, if any, to favor, and

how extensively to favor that bidder. When bidders differ in their participation costs, effi-

ciency considerations lead a seller to favor the low entry cost bidder. Optimal designs are

more complex when a seller knows that one bidder is likely to have a higher valuation than

another. The rent extraction considerations present in Myerson’s (1981) costless entry set-

ting provide incentives to favor the weaker bidder in order to extract more informational rents

17These patterns of reversal and nonmonotonicity with respect to entry costs are unique features of
settings with heterogeneous bidders, where, as Proposition 6 and the example show, at each ϕ there is
typically a unique optimum. With ex-ante identical bidders, at each ϕ there are typically two equilibria
(one with θ̂1 < θ̂2 and the other with θ̂1 > θ̂2) and no transition can be discerned.

22



from the stronger bidder when its valuation is high. However, a seller also wants to minimize

the probability of no sale. If entry costs are low, the weaker bidder is more likely to enter so

the seller favors the weaker bidder beyond the degree prescribed by Myerson, thereby reduc-

ing the probability of no sale. However, as entry costs rise, so do optimal entry cutoffs, and

eventually the stronger bidder becomes more likely to enter. Once entry costs rise by enough,

it becomes optimal to favor the stronger bidder. Greater royalty rates reduce the optimal

degree of asymmetry if entry costs are low, but increase the asymmetry if entry costs are high.

Our analysis provides theoretical foundations for the asymmetric auction designs of pro-

curement auctions that favor certain designated suppliers, and the designs of wireless spec-

trum auctions that favor particular types of bidders. So, too, target firms in takeover auctions

frequently design bidding rules that favor one bidder over another (see, e.g., Povel and Singh,

2006). For example, a target often elicits an initial bid from one bidder by promising to re-

imburse it with a break-up fee that compensates the bidder for its efforts. This commits the

target firm to excluding other bidders unless their valuations are sufficiently high.

In the appendix, we contrast our setting with one in which potential bidders only learn

valuations after entering. We establish that when potential bidders do not have an informa-

tion advantage over the seller when making entry decisions, the seller can extract all bidder

rents by using lump-sum transfers: tying payments to valuations is unnecessary. More-

over, the seller need not handicap particular bidders when bidders are ex-ante identical—the

optimal amount of entry arises endogenously in equilibrium.
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Appendix

Proof of Lemma 1: By (1) and (4), πi (·) is the maximum of a family of affine functions,

so it is convex. Because πi (·) is also bounded and hence absolutely continuous, it is dif-

ferentiable almost everywhere in the interior of its domain. By (7), at all θ′i > θ̂i, a line

at θ′i with a slope of (1 − α)Gi(θ
′
i) supports the function πi (·). Thus, at each point that

πi (·) is differentiable, dπi(θi)
dθi

= (1−α)Gi(θi). The first part of the lemma follows because an

absolutely continuous function is the definite integral of its derivative.

The seller’s expected revenues (6) can be rewritten as

∑
i

∫ θi

θ̂i

∫
θ−i

[Ti(θi,m−i(θ−i)) +Wi(θi,m−i(θ−i)) · αθi]f−i (θ−i) dθ−idFi (θi)

=
∑
i

∫ θi

θ̂i

[∫
θ−i

Ti(θi,m−i(θ−i))f−i (θ−i) dθ−i +Gi (θi) · αθi
]
dFi (θi)

=
∑
i

∫ θi

θ̂i

[
Gi(θi)θi −

∫ θi

θ̂i

(1− α)Gi(t)dt− πi(θ̂i)− ϕi

]
dFi (θi)

=
∑
i

∫ θi

θ̂i

[
Gi(θi)θi −

∫ θi

θ̂i

(1− α)Gi(t)dt

]
dFi (θi)−

∑
i

(1− Fi(θ̂i))
(
πi(θ̂i) + ϕi

)
,

where the second equality follows from substituting for
∫
θ−i

Ti(θi,m−i (θ−i))f−i (θ−i) dθ−i us-

ing (1) and then substituting for πi(θi) using (8). Further,∫ θi

θ̂i

∫ θi

θ̂i

(1− α)Gi(t)dtdFi (θi) =

∫ θi

θ̂i

(1− α) (1− Fi (θi))Gi (θi) dθi

follows from integrating by parts, so the seller’s expected revenue can be rewritten as

∑
i

∫ θi

θ̂i

[
θi − (1− α)

1− Fi (θi)

fi (θi)

]
Gi(θi)dFi (θi)−

∑
i

(1− Fi(θ̂i))
(
πi(θ̂i) + ϕi

)
=
∑
i

∫ θi

θ̂i

∫
θ−i

ξi(θi;α)Wi(θi,m−i (θ−i))f (θ) dθ −
∑
i

(1− Fi(θ̂i))
(
πi(θ̂i) + ϕi

)
=
∑
i

∫
θ

ξi(θi;α)Wi(m (θ))f (θ) dθ −
∑
i

(1− Fi(θ̂i))
(
πi(θ̂i) + ϕi

)
.

The first equality follows from substituting (2) for Gi(θi) and the definition of ξi(θi;α) in (10).

The last equality holds because Wi(m (θ)) = 0 if mi (θi) = ∅ and mi (θi) = ∅ for θi < θ̂i. □
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Proof of Lemma 2: We first show that the expected revenue in (11) is attainable. Consider

the following mechanism: Given reports m ∈ M , let W be such that the seller gives the asset

to the bidder who reports mi ̸= ∅ and has the highest ξi (θi;α) such that mi = θi ≥ θ̂i. For

any given θ−i, denote the infimum of all bids such that bidder i can win against θ−i by

zi (θ−i) ≡ inf{θi ≥ θ̂i : ξi (θi;α) ≥ ξj (θj;α) , ∀j ∈ {k : θk ≥ θ̂k}}

and, for any given reports m ∈ M , let the payment rule be

Ti (m) =


(1− α) zi(θ−i)− ϕi if bidder i wins

−ϕi if mi = θi ≥ θ̂i and bidder i loses

0 if mi = ∅ or mi < θ̂i.

We show that truth-telling is an equilibrium. For type θi < θ̂i, it is optimal to report ∅ and

not enter because, if he instead entered and bids above θ̂i (so that his entry cost could be reim-

bursed), his winning profit would be negative. Next, suppose that type θi ≥ θ̂i reports θ
′
i > θi

instead of θi. If zi(θ−i) > θ′i > θi, then bidder i still loses; if θ′i ≥ zi(θ−i) > θi, then bidder i

wins and makes a negative profit of (1−α)θi−ϕi−((1−α)zi(θ−i)−ϕi) = (1−α)(θi−zi(θ−i))

rather than the zero profit it would have received from bidding θi; and if θ′i > θi ≥ zi(θ−i),

then bidder i still wins and makes the same profit. Suppose that type θi ≥ θ̂i reports θ
′
i < θi

instead of θi. If zi(θ−i) ≥ θi > θ′i, then bidder i still loses; if θi > zi(θ−i) > θ′i, then bidder i

loses and makes a zero profit instead of making the positive profit of (1−α)(θi−zi(θ−i)) that

it would have received from bidding θi; and if θi > θ′i ≥ zi(θ−i), then bidder i still wins and

makes the same profit. Thus, truth-telling is an equilibrium. Further, because πi(θ̂i) = 0 for

all i in this mechanism, (9) reduces to (11), proving that (11) is attainable.

Observe that the first term on the right-hand side of (9) cannot exceed that of (11) (the

equality holds if and only if the first part of the lemma is satisfied), and neither does the sec-

ond term by πi(θ̂i) ≥ 0,∀i. Thus, (11) is the expected revenue in the optimal mechanism. □
Proof of Proposition 1: With a single potential bidder and any α, a seller can al-

ways extract a surplus of at least θ̄ − ϵ − ϕ by making a take-it-or-leave-it cash demand

of (1 − α)(θ̄ − ϵ) − ϕ, together with the royalty payment associated with the fixed rate α.

This leaves the lowest valuation type θ̄−ϵ indifferent to entry. Hence, Π (p, n = 1) ≥ θ̄−ϵ−ϕ.
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Now consider n > 1 potential bidders. If the probability that each bidder enters is p, the

seller’s payoff is bounded as follows:

Π (p, n > 1) < (1− (1− p)n) θ̄ − npϕ, (20)

where 1 − (1− p)n is the probability that at least one potential bidder enters. Thus,

(1− (1− p)n) θ̄ is an upper bound on welfare gains and npϕ is the expected entry cost (the

inequality is slack because the winner’s type is typically below θ̄ and bidders may earn posi-

tive rents). Maximizing the right-hand side of (20) with respect to p yields p∗ = 1− (ϕ
θ̄
)

1
n−1 .

Substituting this into the right-hand side of (20) yields

Π (p, n > 1) < θ̄ − nϕ+ (n− 1)

(
ϕ

θ̄

) 1
n−1

ϕ.

One can show that the right-hand side decreases in n for n ≥ 2. Thus,

Π (p, n > 1) < θ̄ − 2ϕ+
ϕ2

θ̄
< θ̄ − ε− ϕ ≤ Π(p, n = 1) ,

where the second inequality follows from ϵ < ϕ
(
1− ϕ

θ̄

)
. □

Proof of Proposition 2: Explicitly writing out the max term in (16) yields that, for θ̂1 ≤ θ̂2,

Π∗(θ̂1, θ̂2) =

∫ θ̄

θ̂2

(∫ θ2

θ̂1

θ2dF (θ1) +

∫ θ̄

θ2

θ1dF (θ1)

)
dF (θ2)

+ F (θ̂2)

∫ θ̄

θ̂1

θ1dF (θ1) + F (θ̂1)

∫ θ̄

θ̂2

θ2dF (θ2)− ϕ(2− F (θ̂1)− F (θ̂2)). (21)

We first show that if ϕ < θ̄−E [θ], then always excluding a bidder (without loss of generality

bidder 2) is not optimal. If only bidder 1 enters then because ϕ < θ, setting θ̂1 = θ is

optimal. Differentiating (21) at (θ̂1 = θ, θ̂2 = θ̄) with respect to θ̂2 yields

∂Π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ, θ̂2=θ̄

= −f
(
θ̄
) (

θ̄ − E[θ]− ϕ
)
< 0, (22)

where the inequality holds by θ̄−E [θ] > ϕ. Thus, always excluding a bidder is not optimal.

We now show that symmetric mechanisms with θ̂1 = θ̂2 are never optimal. Because al-

ways excluding a bidder and always having two bidders (i.e., setting θ̂1 = θ̂2 = θ) are never
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optimal, without loss of generality suppose that θ̂1 ≤ θ̂2 ∈
(
θ, θ̄
)
. Consider the asymmetric

mechanism: θ̂2 = θ∗+ϵ and θ̂1 = θ∗−ϵ∗, where ϵ is small and ϵ∗ solves F (θ∗)−F (θ∗ − ϵ∗) =

F (θ∗ + ϵ)− F (θ∗) ≡ ∆p. Using “o” to stand for “terms of order,” we have

∆p = f (θ∗) ϵ+ o
(
ϵ2
)

and ϵ∗ = ϵ+ o
(
ϵ2
)
.

We show that ∆Π∗ = Π∗ (θ∗ − ϵ∗, θ∗ + ϵ)−Π∗ (θ∗, θ∗) > 0. We need only compare terms

concerning social welfare because ϵ∗ is set to equate the terms with ϕ in both mechanisms.

We retain terms up to order ϵ2. There exist contributions to ∆Π∗ only in 3 cases:

Case 1: θ2 ∈ (θ∗, θ∗ + ϵ) and θ1 ∈ (θ∗ − ϵ∗, θ∗). The contribution to ∆Π∗ is

− (∆p)2
(
ϵ+ o

(
ϵ2
))

= 0 + o
(
ϵ3
)
.

Case 2: θ2 ∈ (θ∗, θ∗ + ϵ) and θ1 /∈ (θ∗ − ϵ∗, θ∗). The contribution exists only when

θ1 ∈ (θ, θ∗ − ϵ∗) and it is

−∆p (F (θ∗)−∆p)
(
θ∗ +

ϵ

2
+ o

(
ϵ2
))

= −∆p (F (θ∗)−∆p)
(
θ∗ +

ϵ

2

)
+ o

(
ϵ3
)

= −∆pF (θ∗)
(
θ∗ +

ϵ

2

)
+ (∆p)2 θ∗ + o

(
ϵ3
)
.

Case 3: θ2 /∈ (θ∗, θ∗ + ϵ) and θ1 ∈ (θ∗ − ϵ∗, θ∗). The contribution exists only when

θ2 ∈ (θ, θ∗) and it is

∆pF (θ∗)
(
θ∗ − ϵ

2
+ o

(
ϵ2
))

= ∆pF (θ∗)
(
θ∗ − ϵ

2

)
+ o

(
ϵ3
)
.

Adding up all contributions from the 3 cases yields

∆Π∗ =∆pF (θ∗)
(
θ∗ − ϵ

2

)
−∆pF (θ∗)

(
θ∗ +

ϵ

2

)
+ (∆p)2 θ∗ + o

(
ϵ3
)

=∆p (∆pθ∗ − F (θ∗) ϵ) + o
(
ϵ3
)

=∆pϵ (f (θ∗) θ∗ − F (θ∗)) + o
(
ϵ3
)
.

Thus, symmetric mechanisms are never optimal if

f (θ∗) θ∗ − F (θ∗) > 0, for all θ∗ ∈ (θ, θ̄), (23)
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or equivalently if F (θ∗)
f(θ∗)θ∗

< 1. We next show that (23) holds. Define k ≡ 1

(θ̄−θ)
ln θ̄

(θ̄−θ)
. The

premise df
f
> −k implies that, for all θ ∈ [θ, θ∗], ln f(θ∗)−ln f(θ)

θ∗−θ
> −k, or ln f(θ)

f(θ∗)
< k (θ∗ − θ),

which yields f (θ) < f (θ∗) exp (k (θ∗ − θ)). Thus,

F (θ∗)

f (θ∗) θ∗
<

1

θ∗

∫ θ∗

θ

exp (k (θ∗ − θ)) dθ =
exp (k (θ∗ − θ))− 1

kθ∗
.

By the mean value theorem, there exists a θ∗∗ ∈ [θ, θ∗] such that exp (k (θ∗ − θ)) − 1 =

k exp (k (θ∗∗ − θ)) (θ∗ − θ). Thus,

exp (k (θ∗ − θ))− 1

kθ∗
≤ k exp (k (θ∗ − θ)) (θ∗ − θ)

kθ∗

= exp (k (θ∗ − θ))
(θ∗ − θ)

θ∗

≤ exp
(
k
(
θ̄ − θ

)) (θ̄ − θ
)

θ̄
= 1.

Thus, F (θ∗)
f(θ∗)θ∗

< 1, establishing (23). □

Proof of Proposition 3: We compare mechanism 1 in which θ < θ̂1 ≤ θ̂2 < θ̄, with mecha-

nism 2 where θ̂1 is replaced by θ̂1−ϵ and θ̂2 replaced by θ̂2+ϵ. Expected seller revenues equal

expected social welfare minus expected bidder payoffs. Accordingly, we first calculate the

difference in social welfare gains and then calculate the difference in expected bidder payoffs.

We first calculate the difference in social welfare gains ∆Π∗ = Π∗(θ̂1−ϵ, θ̂2+ϵ)−Π∗(θ̂1, θ̂2),

where Π∗ denotes social welfare defined in equation (21). Observe that there is a contribution

to ∆Π∗ only when both θ1 and θ2 lie in [θ, θ̂2 + ϵ], which occurs with probability
(

θ̂2+ϵ−θ
θ̄−θ

)2
.

Consequently, with an abuse of notation, we compute contributions to Π∗(θ̂1 − ϵ, θ̂2 + ϵ) and

Π∗(θ̂1, θ̂2) only when θ1 and θ2 are in [θ, θ̂2 + ϵ]. Replacing θ̄ with θ̂2 + ϵ in equation (21), we

have for mechanism 1

Π∗
(
θ̂1, θ̂2

)
=

(
θ̂2 + ϵ− θ

θ̄ − θ

)2{(
ϵ

θ̂2 + ϵ− θ

)2(
θ̂2 +

2

3
ϵ

)
+

ϵ

θ̂2 + ϵ− θ

θ̂2 − θ

θ̂2 + ϵ− θ

(
θ̂2 +

1

2
ϵ

)
+

(
1− ϵ

θ̂2 + ϵ− θ

)
θ̂2 − θ̂1 + ϵ

θ̂2 + ϵ− θ

θ̂2 + θ̂1 + ϵ

2

}
− ϕ

(
2θ̄ − θ̂2 − θ̂1

θ̄ − θ

)
.

The first term inside the braces corresponds to θ2, θ1 ∈ [θ̂2, θ̂2 + ϵ]; the second term corre-

sponds to θ2 ∈ [θ̂2, θ̂2 + ϵ] and θ1 ∈ [θ, θ̂2], and the third term corresponds to θ2 ∈ [θ, θ̂2] and
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θ1 ∈ [θ̂1, θ̂2 + ϵ]. For mechanism 2,

Π∗(θ̂1 − ϵ, θ̂2 + ϵ) =

(
θ̂2 + ϵ− θ

θ̄ − θ

)2{
θ̂2 − θ̂1 + 2ϵ

θ̂2 + ϵ− θ

θ̂2 + θ̂1
2

}
− ϕ

(
2θ̄ − θ̂2 − θ̂1

θ̄ − θ

)
.

Thus,

∆Π∗ =

(
1

θ̄ − θ

)2{
1

2

(
θ̂2 + ϵ− θ

)(
θ̂2 − θ̂1 + 2ϵ

)(
θ̂2 + θ̂1

)
− ϵ2

(
θ̂2 +

2

3
ϵ

)
− ϵ
(
θ̂2 − θ

)(
θ̂2 +

1

2
ϵ

)
− 1

2

(
θ̂2 − θ

)(
θ̂2 − θ̂1 + ϵ

)(
θ̂2 + θ̂1 + ϵ

)}
=

(
1

θ̄ − θ

)2{
− 2

3
ϵ3 +

(
θ̂1 − θ̂2 + θ

)
ϵ2 +

(
θ̂2 − θ̂1

)(
θ − 1

2

(
θ̂2 − θ̂1

))
ϵ

}
. (24)

The leading term in (24) is ϵ whose coefficient is (θ̂2− θ̂1)(θ− 1
2
(θ̂2− θ̂1)). As long as θ > 1

3
θ̄,

which is implied by 2θ > θ̄ + ϕ, this coefficient is positive, meaning that social welfare Π∗

increases as the gap between the two cutoffs (slightly) widens.

We next calculate bidders’ payoffs in the optimal mechanism with entry cutoffs (θ̂1, θ̂2).

By Lemmas 1 and 2, bidder i with θ̂i earns zero, the higher valuation bidder wins if both bid-

ders enter, and a solo entrant wins. Thus, by (8), bidder i’s unconditional expected profit is

πi = (1− α)

∫ θ̄

θ̂i

∫ θi

θ̂i

Wi (θ) dθdF (θi)

= − (1− α)

∫ θ̄

θ̂i

∫ θi

θ̂i

Wi (θ) dθd (1− F (θi))

= (1− α)

∫ θ̄

θ̂i

(1− F (θi))Wi (θi) dθi.

Because θ̂1 ≤ θ̂2, we have W2 (θ2) = F (θ2) and

W1 (θ1) =

{
F (θ1) if θ1 > θ̂2
F (θ̂2) if θ1 ∈ [θ̂1, θ̂2].

Thus,

π1 = (1− α)F (θ̂2)

∫ θ̂2

θ̂1

(1− F (θ1)) dθ1 + (1− α)

∫ θ̄

θ̂2

(1− F (θ1))F (θ1) dθ1

π2 = (1− α)

∫ θ̄

θ̂2

(1− F (θ2))F (θ2) dθ2.
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Letting π∗(θ̂1, θ̂2) be the sum of both bidders’ equilibrium payoffs,

π∗(θ̂1, θ̂2) ≡ π1 + π2

= (1− α)F
(
θ̂2

)∫ θ̂2

θ̂1

(1− F (θ1)) dθ1 + 2 (1− α)

∫ θ̄

θ̂2

(1− F (θ))F (θ) dθ.

With the uniform distribution, F (θ) = θ−θ
θ̄−θ

and 1− F (θ) = θ̄−θ
θ̄−θ

. Thus,(
θ̄ − θ

)2
1− α

π∗(θ̂1, θ̂2) = (θ̂2 − θ)

[
θ̄(θ̂2 − θ̂1)−

1

2
(θ̂22 − θ̂21)

]
+ 2

∫ θ̄

θ̂2

(
−θ2 + θ

(
θ̄ + θ

)
− θ̄θ

)
dθ

= (θ̂2 − θ)

[
θ̄(θ̂2 − θ̂1)−

1

2
(θ̂22 − θ̂21)

]
+ 2

[
1

3
θ̂32 −

1

3
θ̄3 +

1

2

(
θ̄ + θ

)
(θ̄2 − θ̂22)− θ̄θ(θ̄ − θ̂2)

]
. (25)

We next calculate ∆π∗ ≡ π∗(θ̂1 − ϵ, θ̂2 + ϵ)− π∗(θ̂1, θ̂2):(
θ̄ − θ

)2
1− α

∆π∗ = (θ̂2 − θ + ϵ)

[
θ̄(θ̂2 − θ̂1 + 2ϵ)− 1

2

(
(θ̂2 + ϵ)2 − (θ̂1 − ϵ)2

)]
+ 2

[
1

3
(θ̂2 + ϵ)3 − 1

3
θ̄3 +

1

2

(
θ̄ + θ

) (
θ̄2 − (θ̂2 + ϵ)2

)
− θ̄θ(θ̄ − θ̂2 − ϵ)

]
− (θ̂2 − θ)

[
θ̄(θ̂2 − θ̂1)−

1

2
(θ̂22 − θ̂21)

]
− 2

[
1

3
θ̂32 −

1

3
θ̄3 +

1

2

(
θ̄ + θ

)
(θ̄2 − θ̂22)− θ̄θ(θ̄ − θ̂2)

]
. (26)

On the right-hand side of (26), the terms proportional to ϵ sum up to[(
θ̄(θ̂2 − θ̂1)−

1

2
θ̂22 +

1

2
θ̂21

)
+ (θ̂2 − θ)

(
2θ̄ − θ̂2 − θ̂1

)
+ 2

(
θ̂22 −

(
θ̄ + θ

)
θ̂2 + θ̄θ

)]
ϵ

= (θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ϵ,

and the terms proportional to ϵ2 sum up to[
2θ̄ − θ̂2 − θ̂1 + 2θ̂2 −

(
θ̄ + θ

)]
ϵ2 = (θ̄ − θ + θ̂2 − θ̂1)ϵ

2.

Including all terms yields(
θ̄ − θ

)2
1− α

∆π∗ = (θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ϵ+ (θ̄ − θ + θ̂2 − θ̂1)ϵ

2 +
2

3
ϵ3.
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Because the right-hand side of the above is strictly positive for ϵ > 0, and 1 − α > 0, we

have ∆π∗ > 0, implying that spreading the cutoffs raises bidders’ payoffs.

Together with ∆Π∗ in (24), we have

(
θ̄ − θ

)2
(∆Π∗ −∆π∗) = −2

3
ϵ3 +

(
θ̂1 − θ̂2 + θ

)
ϵ2 +

(
θ̂2 − θ̂1

)(
θ − 1

2

(
θ̂2 − θ̂1

))
ϵ

− (1− α)

{
(θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ϵ+ (θ̄ − θ + θ̂2 − θ̂1)ϵ

2 +
2

3
ϵ3
}

=
(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̂2 − θ̂1

)
+ α

(
θ̄ − θ +

1

2

(
θ̂2 − θ̂1

))]
ϵ

+
[
(2− α)

(
θ − θ̂2 + θ̂1

)
− (1− α) θ̄

]
ϵ2 + o

(
ϵ3
)
, (27)

which is positive for small ϵ at θ̂2 = θ̂1, for all α ≥ 0, given the assumption that 2θ > θ̄.

∆Π∗ −∆π∗ represents the increase in the seller’s profit associated with adopting the more

asymmetric mechanism, implying that interior symmetric cutoffs cannot be optimal.

Next, it follows from (21) and (25) that

(
θ̄ − θ

)2 ∂

∂θ̂2

(
Π∗(θ̂1, θ̂2)− π∗(θ̂1, θ̂2)

) ∣∣∣∣
θ̂1=θ

= −
(
1

2
θ̄2 − θ̂2θ +

1

2
θ̂22

)
+

1

2
θ̄2 − 1

2
θ2 +

(
θ̄ − θ

)
ϕ

− (1− α)

{
(θ̂2 − θ)

[
θ̄ − 1

2
(θ̂2 + θ)

]
+ (θ̂2 − θ)(θ̄ − θ̂2) + 2θ̂22 − 2

(
θ̄ + θ

)
θ̂2 + 2θ̄θ

}
= −1

2
(2− α)(θ̂2 − θ)2 +

(
θ̄ − θ

)
ϕ. (28)

The right-hand side of (28) is strictly positive at θ̂2 = θ, implying that θ̂2 = θ̂1 = θ cannot

be optimal, and it is immediate that θ̂2 = θ̂1 = θ̄ cannot be optimal. Thus, no symmetric

mechanism is optimal.

Next, to show that always excluding a bidder is not optimal, suppose by way of contra-

diction that it is. Then under 2θ − θ̄ > ϕ, setting θ̂1 = θ is optimal (given the premise that
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bidder 1 is the sole entrant). Differentiating (25) at (θ̂1 = θ, θ̂2 = θ̄) with respect to θ̂2 yields

(θ̄ − θ)2

1− α

∂π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1 = θ, θ̂2=θ̄

= θ̄(θ̄ − θ)− 1

2
(θ̄2 − θ2) + (θ̄ − θ)θ̄ − θ̄(θ̄ − θ)

+ 2(θ̄2 − θ̄(θ̄ + θ) + θ̄θ)

=
(θ̄ − θ)2

2
> 0.

Moreover, by (22), ∂Π∗(θ̂1,θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ, θ̂2=θ̄

< 0, implying that

∂

∂θ̂2

(
Π∗(θ̂1, θ̂2)− π∗(θ̂1, θ̂2)

) ∣∣∣∣
θ̂1=θ, θ̂2=θ̄

< 0.

Thus, always excluding one bidder is not optimal; that is, θ̂2 ̸= θ̄. This completes the proof

of part (i) of the proposition.

Because symmetric cutoffs are not optimal, assume that θ̂2 > θ̂1. To establish when

θ̂1 = θ is optimal, observe that the leading term in (27) is ϵ, which has coefficient(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̂2 − θ̂1

)
+ α

(
θ̄ − θ +

1

2

(
θ̂2 − θ̂1

))]
≥
(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̄ − θ

)
+ α

(
θ̄ − θ +

1

2

(
θ̄ − θ

))]
=
(
θ̂2 − θ̂1

)[
3θ − 2θ̄ +

3

2
α
(
θ̄ − θ

)]
.

This leading coefficient is positive (meaning that it is optimal to spread entry cutoffs until

either θ̂1 = θ or θ̂2 = θ̄) if and only if α > 2(2θ̄−3θ)

3(θ̄−θ)
. But, because θ̂2 ̸= θ̄, we must have θ̂1 = θ.

Then, setting the right-hand side of the first-order condition (28) for θ̂2 to zero yields

θ̂2 = θ +

√
2ϕ
(
θ̄ − θ

)
2− α

< θ +
√
2ϕ
(
θ̄ − θ

)
< θ̄,

where the last inequality holds by θ̄− θ > 2ϕ. Therefore, the optimal cutoffs are θ̂1 = θ and

θ̂2 ∈ (θ, θ̄), establishing part (ii) of the proposition. □
Proof of Proposition 4: We incorporate the cost of implementing asymmetric mecha-

nisms to the two mechanisms considered in the proof of Proposition 3 (where in mechanism

2, θ̂1 is replaced by θ̂1 − ϵ and θ̂2 replaced by θ̂2 + ϵ). The difference of this cost in the two

32



mechanisms is γ(θ̂2 − θ̂1 + 2ϵ)2 − γ(θ̂2 − θ̂1)
2 = 4γ[(θ̂2 − θ̂1)ϵ + ϵ2]. Subtracting this cost

(multiplied by (θ̄ − θ)2) from the right-hand side of (27) yields that

(θ̄ − θ)2(∆Π∗ −∆π∗) = (θ̂2 − θ̂1)

[
2θ − θ̄ − (θ̂2 − θ̂1) + α(θ̄ − θ +

1

2
(θ̂2 − θ̂1))− 4(θ̄ − θ)2γ

]
ϵ

+ [(2− α)(θ − θ̂2 + θ̂1)− (1− α)θ̄ − 4(θ̄ − θ)2γ]ϵ2 + o(ϵ3), (29)

where ∆Π∗ − ∆π∗ is the increase in the seller’s profit from adopting the more asymmet-

ric mechanism derived in the proof of Proposition 3. For any symmetric mechanism with

θ̂2 = θ̂1 ∈
(
θ, θ̄
)
, the right-hand side of (29) reduces to

[2θ − θ̄ + α(θ̄ − θ)− 4(θ̄ − θ)2γ]ϵ2 + o
(
ϵ3
)
.

If γ < γ∗ (α), this expression is strictly positive. Furthermore, θ̂2 = θ̂1 = θ or θ̂2 = θ̂1 = θ̄ is

not optimal. Thus, symmetric mechanisms are not optimal.

To show that when γ ≥ γ∗ (α), symmetric mechanisms are optimal, suppose instead that

the optimal mechanism features θ̂2 > θ̂1. The leading term on the right-hand side of (29) is

(θ̂2 − θ̂1)

(
2θ − θ̄ − (θ̂2 − θ̂1) + α(θ̄ − θ +

1

2
(θ̂2 − θ̂1))− 4(θ̄ − θ)2γ

)
ϵ

≤ (θ̂2 − θ̂1)

(
2θ − θ̄ − (θ̂2 − θ̂1) + α(θ̄ − θ +

1

2
(θ̂2 − θ̂1))− 4(θ̄ − θ)2γ∗ (α)

)
ϵ

< (θ̂2 − θ̂1)
(
2θ − θ̄ + α(θ̄ − θ)− 4(θ̄ − θ)2γ∗ (α)

)
ϵ

= (θ̂2 − θ̂1)
(
2θ − θ̄ + α(θ̄ − θ)− (2θ − θ̄ + (θ̄ − θ)α)

)
ϵ = 0.

This implies that the seller would strictly benefit by slightly closing the gaps between θ̂2 and

θ̂1 (i.e., ϵ < 0). Thus, θ̂2 > θ̂1 cannot be optimal, implying that symmetric mechanisms are

optimal if γ ≥ γ∗ (α). □
Proof of Proposition 5: By (11), in any optimal mechanism with entry cutoffs (θ̂1, θ̂2),

the seller’s revenue is

Π∗(θ̂1, θ̂2) =

∫ θ̄

θ̂2

∫ θ̄

θ̂1

max {ξ(θ1), ξ(θ2)} dF (θ1) dF (θ2)

+ F (θ̂2)

∫ θ̄

θ̂1

ξ(θ1)dF (θ1) + F (θ̂1)

∫ θ̄

θ̂2

ξ(θ2)dF (θ2)−
∑
i

ϕi(1− F (θ̂i)).
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We first show that inducing θ̂1 > θ̂2 cannot be optimal. Suppose it is. All terms in the

seller’s revenue save for the last one are symmetric in θ̂1 and θ̂2. Therefore, interchanging θ̂1

and θ̂2 would increase the seller’s revenue because ϕ2 > ϕ1. It follows that θ̂1 ≤ θ̂2.

For θ̂1 ≤ θ̂2, the seller’s revenue can be rewritten as

Π∗(θ̂1, θ̂2) =

∫ θ̄

θ̂2

(∫ θ2

θ̂1

ξ(θ2)dF (θ1) +

∫ θ̄

θ2

ξ(θ1)dF (θ1)

)
dF (θ2)

+ F (θ̂2)

∫ θ̄

θ̂1

ξ(θ1)dF (θ1) + F (θ̂1)

∫ θ̄

θ̂2

ξ(θ2)dF (θ2)−
∑
i

ϕi(1− F (θ̂i)).

Suppose θ̂2 = θ̄. Then, because 2θ − θ̄ > ϕ1 implies ξ(θ) > ϕ1, θ̂1 = θ is optimal. However,

∂Π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ, θ̂2=θ̄

= f(θ̄)

(∫ θ̄

θ

(ξ(θ1)− ξ(θ̄))dF (θ1) + ϕ2

)

= f(θ̄)

(∫ θ̄

θ

((2− α)θ1 − (2− α)θ̄)dF (θ1) + ϕ2

)

= f(θ̄)

(
−(2− α)

θ̄ − θ

2
+ ϕ2

)
< f(θ̄)

(
− θ̄ − θ

2
+ ϕ2

)
< 0,

where the last inequality holds by θ̄−θ
2

> ϕ2. Thus, θ̂2 < θ̄.

Next consider any symmetric entry cutoff θ̂′ = θ̂1 = θ̂2 ∈ (θ, θ̄). Then,(
∂Π∗(θ̂1, θ̂2)

∂θ̂2
− ∂Π∗(θ̂1, θ̂2)

∂θ̂1

)∣∣∣∣
θ̂′=θ̂1=θ̂2

= −f(θ̂′)

∫ θ̄

θ̂′
ξ(θ)dF (θ) + f(θ̂′)

∫ θ̄

θ̂′
ξ(θ)dF (θ)− F (θ̂′)ξ(θ̂′)f(θ̂′) + f(θ̂′)

∫ θ̄

θ̂′
ξ(θ)dF (θ)

+ F (θ̂′)ξ(θ̂′)f(θ̂′)− f(θ̂′)

∫ θ̄

θ̂′
ξ(θ)dF (θ) + (ϕ2 − ϕ1)f(θ̂

′)

= (ϕ2 − ϕ1)f(θ̂
′) > 0.

The last equality holds by the full-support assumption and ϕ2 > ϕ1: reducing θ̂1 and in-

creasing θ̂2 marginally from any symmetric cutoff θ̂′ ∈ (θ, θ̄) increase seller revenues. Thus,
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θ̂1 = θ̂2 ∈ (θ, θ̄) cannot be optimal. Moreover,

∂Π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ̂2=θ

= ϕ2f(θ) > 0

implies that θ̂1 = θ̂2 = θ is not optimal. Therefore, we must have θ̂1 < θ̂2 < θ̄. □
Proof of Proposition 6: Let (θ̂1, θ̂2) be entry cutoffs. Let Π(θ̂1, p) be the seller’s expected

revenue in the optimal mechanism, where p ∈ [0, 1] is the probability that bidder 2 enters.

With uniformly-distributed valuations, the virtual valuation of bidder i ∈ {1, 2} is given

by (17). Thus limθ̄2→θ ξ2(θ2) = θ for all θ2. Let θ̃ be the value of θ1 such that ξ1(θ1) = θ:

θ̃ =
θ + (1− α) θ̄1

2− α
.

To calculate Π(θ̂1, p), there are two cases to consider:

Case 1: θ̂1 ≥ θ̃. Noting that with θ̄2 → θ, the (very) weak bidder 2 wins only when strong

bidder 1 does not enter and bidder 2 enters (which occurs with probability p), (11) yields that

Π(θ̂1 ≥ θ̃, p) =

∫ θ̄1

θ̂1

ξ1(θ1)dF1(θ1) + F1(θ̂1)pθ −
(
(1− F1(θ̂1)) + p

)
ϕ

=
1

θ̄1 − θ

((α
2
− 1
)
θ̂21 + (1− α) θ̄1θ̂1 +

α

2
θ̄21 + (θ̂1 − θ)pθ − (θ̄1 − θ̂1 + p(θ̄1 − θ))ϕ

)
.

(30)

The first term is the contribution to Π when θ1 ∈ [θ̂1, θ̄1], the second term is when θ1 ∈ [θ, θ̂1).

Case 2: θ̂1 < θ̃. Then, with θ̄2 → θ, bidder 1 always wins when θ1 ∈ [θ̃, θ̄1]; while bidder 2

wins if it enters (with probability p) and θ1 ∈ [θ̂1, θ̃). Thus, (11) yields

Π(θ̂1 < θ̃, p) =

∫ θ̄1

θ̃

ξ1(θ1)dF1(θ1) +

∫ θ̃

θ̂1

(pθ + (1− p) ξ1(θ1)) dF1(θ1)

+ F1(θ̂1)pθ −
(
(1− F1(θ̂1)) + p

)
ϕ

=
1

θ̄1 − θ

((α
2
− 1
)
θ̃2 + (1− α) θ̄1θ̃ +

α

2
θ̄21

)
+

1

θ̄1 − θ

[
pθ(θ̃ − θ̂1) + (1− p)(θ̃ − θ̂1)

((
1− α

2

)
(θ̂1 + θ̃)− (1− α) θ̄1

)]
+

θ̂1 − θ

θ̄1 − θ
pθ −

(
θ̄1 − θ̂1
θ̄1 − θ

+ p

)
ϕ,
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where the first term is the contribution to Π when θ1 ∈ [θ̃, θ̄1], the second term is when

θ1 ∈ [θ̂1, θ̃), and the third term is when θ1 ∈ [θ, θ̂1).

The optimal choices of θ̂1 and p maximize expected seller revenue:

(θ̂∗1, p
∗) ∈ arg max

θ̂1∈[θ,θ̄1], p∈[0,1]
Π(θ̂1, p).

We denote the maximum value of Π by Π∗ ≡ Π(θ̂∗1, p
∗) .

Lemma 4 Let Π∗
p=0 ≡ maxθ̂1∈[θ,θ̄1] Π(θ̂1, p = 0) and Π∗

p=1 ≡ maxθ̂1∈[θ,θ̄1] Π(θ̂1, p = 1). Then,

(i) Π∗ = max
{
Π∗

p=0,Π
∗
p=1

}
, and

(ii) If Π∗
p=0 > Π∗

p=1, then p∗ = 0 in all solutions; if Π∗
p=0 < Π∗

p=1, then p∗ = 1 in all

solutions; and if Π∗
p=0 = Π∗

p=1, then solutions feature different p∗, and there exists at least

one solution for each p∗ ∈ [0, 1].

Proof: Although the form of Π(θ̂1, p) is complicated, it has the simple feature that Π(θ̂1, p) is

affine in p. In particular, regardless of whether θ̂1 ≥ θ̃ or θ̂1 < θ̃, ∂Π(θ̂1,p)
∂p

is independent of p:

∂Π(θ̂1 ≥ θ̃, p)

∂p
=

θ̂1 − θ

θ̄1 − θ
θ − ϕ;

∂Π(θ̂1 < θ̃, p)

∂p
=

θ̃ − θ̂1
θ̄1 − θ

(
θ −

(
1− α

2

)(
θ̂1 + θ̃

)
+ (1− α) θ̄1

)
+

θ̂1 − θ

θ̄1 − θ
θ − ϕ.

Utilizing this feature, we consider the value of
∂Π(θ̂∗1 ,p

∗)

∂p
, where (θ̂∗1, p

∗) is a solution that

maximizes Π(θ̂1, p). There can be only three cases:

1. If
∂Π(θ̂∗1 ,p)

∂p
< 0, then p∗ = 0. To see this, suppose to the contrary that p∗ > 0. Then

Π(θ̂∗1, p = 0) > Π(θ̂∗1, p
∗), contradicting the premise that (θ̂∗1, p

∗) is a solution for opti-

mality. Thus p∗ = 0. Furthermore, it follows that Π∗
p=0 > Π∗

p=1.

2. If
∂Π(θ̂∗1 ,p

∗)

∂p
> 0, then by same logic, we have p∗ = 1 and Π∗

p=0 < Π∗
p=1.

3. If
∂Π(θ̂∗1 ,p

∗)

∂p
= 0, then for any p ∈ [0, 1], (θ̂∗1, p) is also optimal. □
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We now use this lemma to solve for all (θ̂∗1, p
∗). We have

∂Π(θ̂1 ≥ θ̃, p)

∂θ̂1
=

1

θ̄1 − θ

(
(α− 2)θ̂1 + (1− α)θ̄1 + pθ + ϕ

)
; (31)

∂Π(θ̂1 < θ̃, p)

∂θ̂1
=

1

θ̄1 − θ

[
(1− p)

(
(α− 2)θ̂1 + (1− α)θ̄1

)
+ ϕ
]
. (32)

(Step 1): We first calculate Π∗
p=0. We show

Π∗
p=0 =

{
θ + α

2

(
θ̄1 − θ

)
− ϕ if ϕ ≤ ξ1(θ) = (2− α) θ − (1− α) θ̄1

1
4−2α

(θ̄1−ϕ)
2

θ̄1−θ
if ϕ > (2− α) θ − (1− α) θ̄1.

(33)

To establish (33), noting that conditional on p = 0, bidder 1 is the only potential bidder, it

follows from (11) that Π(θ̂1, p = 0) is maximized by (19), where the θ̂1 in the second line of

(19) solves the first-order condition ξ1(θ̂1) = ϕ. By (11) and (17),

Π(θ̂1, p = 0) =
1

θ̄1 − θ

[(
1− α

2

)((
θ̄1
)2 − (θ̂1)2)− (1− α) θ̄1

(
θ̄1 − θ̂1

)]
− θ̄1 − θ̂1

θ̄1 − θ
ϕ

=
θ̄1 − θ̂1
θ̄1 − θ

[(
1− α

2

)(
θ̄1 + θ̂1

)
− (1− α) θ̄1 − ϕ

]
=

θ̄1 − θ̂1
θ̄1 − θ

[α
2
θ̄1 +

(
1− α

2

)
θ̂1 − ϕ

]
. (34)

If ϕ ≤ (2− α) θ− (1− α) θ̄1, then, plugging the first line of (19) (θ̂1 = θ) into (34) estab-

lishes the first line of (33). If, instead, ϕ ∈
(
ξ1(θ), θ̄1

)
, then plugging the second line of (19)

into (34) yields

Π∗
p=0 =

θ̄1 − θ̂1
θ̄1 − θ

[
α

2
θ̄1 +

(
1− α

2

) (1− α) θ̄1 + ϕ

(2− α)
− ϕ

]
=

θ̄1 − θ̂1
θ̄1 − θ

[
α

2
θ̄1 +

(1− α) θ̄1 + ϕ

2
− ϕ

]
=

θ̄1 − θ̂1
θ̄1 − θ

[
1

2
θ̄1 −

1

2
ϕ

]
=

(
θ̄1 − ϕ

)
θ̄1 − θ

1

2− α

[
1

2
θ̄1 −

1

2
ϕ

]
,

which establishes the second line of (33).
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(Step 2): We next calculate Π∗
p=1. We show

Π∗
p=1 =

{
θ − ϕ if ϕ ≥ θ̄1 − θ

Π̂ if ϕ < θ̄1 − θ,
(35)

where

Π̂ ≡ 1

θ̄1 − θ
×
{(

(1− α) θ̄1 + θ + ϕ
)2

2 (2− α)
+

α

2
θ̄21 − θ2 − 2θ̄1ϕ+ θϕ

}
. (36)

To establish (35), note that (32) yields

∂Π(θ̂1 < θ̃, p = 1)

∂θ̂1
=

ϕ

θ̄1 − θ
> 0,

by which we have Π∗
p=1 = maxθ̂1∈[θ,θ̄1] Π(θ̂1, p = 1) = maxθ̂1≥θ̃ Π(θ̂1, p = 1). Then (31) yields

∂Π(θ̂1 ≥ θ̃, p = 1)

∂θ̂1
=

1

θ̄1 − θ

(
(α− 2)θ̂1 + (1− α)θ̄1 + θ + ϕ

)
,

which is decreasing in θ̂1. Moreover, evaluating it both at θ̃ and θ̄1 yields that

∂Π(θ̂1 = θ̃, p = 1)

∂θ̂1
=

1

θ̄1 − θ

(
(α− 2)θ̃ + (1− α)θ̄1 + θ + ϕ

)
=

1

θ̄1 − θ

(
−ξ1(θ̃) + θ + ϕ

)
=

ϕ

θ̄1 − θ
> 0;

∂Π(θ̂1 = θ̄1, p = 1)

∂θ̂1
=

1

θ̄1 − θ

(
−θ̄1 + θ + ϕ

)
.

Thus, ∂Π(θ̂1=θ̄1,p=1)

∂θ̂1
≥ 0 if and only if ϕ ≥ θ̄1−θ. Hence, if ϕ ≥ θ̄1−θ, then θ̂1 = θ̄1 maximizes

Π(θ̂1, p = 1); evaluating (30) at θ̂1 = θ̄1 and p = 1 yields the first line of (35).

Now consider ϕ < θ̄1 − θ. Because ∂Π(θ̂1≥θ̃,p=1)

∂θ̂1
declines with θ̂1, the first-order condition

∂Π(θ̂1≥θ̃,p=1)

∂θ̂1
= 0 is necessary and sufficient for maximization. Plugging the solution for the

first-order condition, (18), and p = 1 into (30) yields

Π∗
p=1 =

1

θ̄1 − θ
×
{(α

2
− 1
)((1− α)θ̄1 + θ + ϕ

2− α

)2

+ (1− α) θ̄1
(1− α)θ̄1 + θ + ϕ

2− α

+
α

2
θ̄21 +

(
(1− α)θ̄1 + θ + ϕ

2− α
− θ

)
θ −

(
2θ̄1 −

(1− α)θ̄1 + θ + ϕ

2− α
− θ

)
ϕ

}
,

yielding the second line of (35).

Finally, consider the difference Π∗
p=0 − Π∗

p=1. Optimality of Π∗
p=0 yields Π∗

p=0 ≥ Π(θ̂1 =
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θ, p = 0) = θ + α
2

(
θ̄1 − θ

)
− ϕ for all ϕ. By (35), Π∗

p=1 = θ − ϕ if ϕ ≥ θ̄1 − θ. Thus,

Π∗
p=0 ≥ Π∗

p=1 if ϕ ≥ θ̄1 − θ, and strict inequality holds if α > 0.

Under ϕ < θ̄1 − θ, we first show Π∗
p=0 < Π∗

p=1 when ϕ approaches 0. By (33) and (35),

Π∗
p=1 − Π∗

p=0 =
1

θ̄1 − θ
×
{(

(1− α) θ̄1 + θ
)2

2 (2− α)
+

α

2
θ̄21 − θ2

}
− θ − α

2

(
θ̄1 − θ

)
=

1

θ̄1 − θ
×
{(

(1− α)θ̄1 + θ
)2

2(2− α)
−
(
(1− α)θ̄1 +

α

2
θ
)
θ

}
=

1

(θ̄1 − θ)2(2− α)
×
{(

(1− α)θ̄1 + θ
)2 − 2(2− α)

(
(1− α)θ̄1 +

α

2
θ
)
θ

}
=

1

(θ̄1 − θ)2(2− α)
×
{
(1− α)2θ̄21 − 2(1− α)2θ̄1θ + (1− α)2θ2

}
=

(1− α)2(θ̄1 − θ)

2(2− α)
> 0.

Moreover, differentiating (33) with respect to ϕ yields

∂Π∗
p=0

∂ϕ

{
= −1 if ϕ ≤ (2− α) θ − (1− α) θ̄1
≥ −1 if ϕ > (2− α) θ − (1− α) θ̄1,

and, for ϕ ∈
(
0, θ̄1 − θ

)
, differentiating the second line of (35) with respect to ϕ yields

∂Π∗
p=1

∂ϕ
= −1 +

ϕ− (θ̄1 − θ)

(2− α)(θ̄1 − θ)
< −1.

Hence, Π∗
p=0 − Π∗

p=1 strictly increases in ϕ for ϕ ∈ (0, θ̄1 − θ). When α > 0, because (1)

Π∗
p=0 − Π∗

p=1 < 0 when ϕ approaches zero, (2) Π∗
p=0 − Π∗

p=1 > 0 when ϕ ≥ θ̄1 − θ, and (3)

Π∗
p=0−Π∗

p=1 is continuous in ϕ (see (33) and (35)), there exists a unique ϕ∗(α) < θ̄1− θ such

that Π∗
p=0 − Π∗

p=1 = 0, or

Π∗
p=0 (α, ϕ

∗)− Π̂ (α, ϕ∗) = 0, (37)

where Π̂ is given by (36). This ϕ∗(α) has the property that Π∗
p=0 < Π∗

p=1 for all ϕ < ϕ∗(α)

and Π∗
p=0 > Π∗

p=1 for all ϕ ∈
(
ϕ∗(α), θ̄1

)
.

To determine the sign of dϕ∗(α)
dα

, we apply the implicit function theorem to (37) to obtain

dϕ∗(α)

dα
= −

d(Π∗
p=0−Π̂)
dα

d(Π∗
p=0−Π̂)

dϕ∗(α)

.
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By (36), we have

d

dα
Π̂ ≡ 1

θ̄1 − θ
×
{
−

θ̄1
(
(1− α) θ̄1 + θ + ϕ

)
2− α

+

(
(1− α) θ̄1 + θ + ϕ

)2
2 (2− α)2

+
1

2
θ̄21

}
=

1

θ̄1 − θ

1

2 (2− α)2

{(
(1− α) θ̄1 + θ + ϕ

)2 − θ̄1
(
(1− α) θ̄1 + θ + ϕ

)
2 (2− α) + (2− α)2 θ̄21

}
=

1

θ̄1 − θ

(
θ̄1 − θ − ϕ

)2
2 (2− α)2

,

and by (33) we have

d

dα
Π∗

p=0 =

{ 1
2

(
θ̄1 − θ

)
if ϕ ≤ (2− α) θ − (1− α) θ̄1

1
2(2−α)2

(θ̄1−ϕ)
2

θ̄1−θ
if ϕ > (2− α) θ − (1− α) θ̄1.

Noting that 2 − α > 1 and θ̄1 − θ − ϕ < θ̄1 − θ, we readily have
d(Π∗

p=0−Π̂)
dα

> 0. Because
d(Π∗

p=0−Π̂)
dϕ∗(α)

> 0 for ϕ∗(α) < θ̄1 − θ, we have dϕ∗(α)
dα

< 0.

Finally, note that limϕ→ϕ∗(α)− θ̂1 is given by (18) evaluated at ϕ = ϕ∗(α), and limϕ→ϕ∗(α)+ θ̂1

is given by (19) evaluated at ϕ = ϕ∗(α). Thus, limϕ→ϕ∗(α)− θ̂1 > limϕ→ϕ∗(α)+ θ̂1. Furthermore,

θ̂1 in (19) weakly increases in ϕ. This completes the proof. □
Unknown Valuations. Suppose that bidders do not know their valuations before making

entry decisions. Then, if m potential bidders enter, defining Qm(θ
1) to be the distribution

over the highest valuation, a seller’s expected payoff cannot exceed

Π̄m ≡
∫ θ̄

θ

θ1dQm

(
θ1
)
−mϕ.

This reflects that social welfare cannot exceed
∫ θ̄

θ
θ1dQm (θ1), and expected bidder payoffs

(net of entry costs) must be nonnegative. Thus, an upper bound on a seller’s expected payoff

is Π̄m∗ , where m∗ = argmaxm≤n Π̄m. It follows that m
∗ ≥ 1 when ϕ < θ. We now show that

Π̄m∗ is attainable simply by using lump-sum transfers (the same fee for each bidder, where

a negative entry fee corresponds to a cash reimbursement):

Proposition 7 Π̄m∗ is implementable in the pure-strategy equilibrium of any standard for-

mat in which bidders bid with a fixed royalty rate α ∈ [0, 1) plus cash, face a reserve that does

not exceed the break-even bid of a bidder with valuation θ, and pay an entry fee of π∗−ϕ, where
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π∗ is the expected payoff of an entering bidder (excluding entry costs) given m∗ entrants.

Proof : We show that m∗ potential bidders’ entering constitutes an equilibrium. Any en-

tering bidder receives expected payoff (gross of entry cost) of ϕ. Thus, entering is a best

response. Further, if n > m∗, then each potential bidder who did not enter strictly prefers

not to enter: the expected payoff (gross of entry cost) from entry would be strictly less than

ϕ due to the heightened competition, making entering unprofitable. Thus, the equilibrium

holds. In equilibrium, each bidder’s ex-ante expected payoff (including entry costs) is zero,

and social welfare is maximized for the given m∗ entrants, establishing the proposition. □
One way to implement this mechanism is to use α = 0, i.e., pure cash auctions (hence, no

tying) and an entry fee.18 By contrast, if bidders know their valuations before entry, potential

bidders have an informational advantage that a seller must offset by tying payments to their

private information, as in Lemmas 1 and 2. Further, with unknown-valuations, efficiency is

not impaired by having no trade—a seller always awards the asset, as the profit equals the

welfare gain from trade. In contrast, with known valuations, a seller raises entry thresholds,

screening out low-valuation bidders.

When bidders do not know their valuations prior to making entry decisions, two types of

equilibria exist: a pure strategy equilibrium (McAfee and McMillan, 1987) in which entrants

expect non-negative profits, but with greater entry, expected profits would become nega-

tive; and a mixed strategy equilibrium (Levin and Smith, 1994) in which potential bidders

enter with a common probability p. The equilibrium in Proposition 7 delivers the optimal

number of entrants: full surplus extraction is obtained via the pure-strategy equilibrium,

as in McAfee and McMillan (1987), in which the right (deterministic) number of bidders

endogenously choose to enter, making it unnecessary to restrict entry.
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