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Abstract

We analyze the design and performance of equity auctions when bidder’s valuations
and opportunity costs are private information, distributed according to an arbitrary
joint density that can differ across bidders. We identify, for any incentive compatible
mechanism, an equivalent single-dimensional representation for uncertainty. We then
characterize the revenue-maximizing and surplus-maximizing equity mechanisms, and
compare revenues in optimal equity and cash auctions. Unlike in cash auctions, the
adverse selection arising from bidders’ two-dimensional private information in equity
auctions can lead to a global violation of the regularity condition, which represents
a maximal mismatch between incentive compatibility and maximization of revenue or
surplus. Such mismatch can lead a seller to exclude bidders and demand a bidder-
specific stake from a non-excluded bidder; or separate bidders into groups, and sell to
them sequentially.
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1 Introduction

A central premise underlying the use of auctions is that bidders have private information

that affects both their payoffs and a seller’s revenue. In practice, bidder information is often

multi-dimensional. Concretely, a bidder may have private information about both the gross

revenues that it can generate with an auctioned asset and its opportunity cost. For instance,

an acquiring firm in a corporate takeover may be privately informed about its synergy with

the target and its own standalone value; and in project-rights auctions bidders are often pri-

vately informed about the opportunity costs associated with alternative projects to pursue.1

In auctions where bidders pay with cash, if the asset for sale is indivisible, the sole de-

terminant of a bidder’s strategy and seller revenues is the bidder’s net valuation, i.e., the

difference between gross revenues and costs.2 However, when bidders pay with securities that

tie payments to the revenues generated (Hansen 1985; DeMarzo, Kremer and Skrzypacz, DKS

2005), because the winner retains only a share of revenues but incurs all opportunity costs,

the revenue-cost composition affects bidding strategies. Bidders with different revenue-cost

compositions may select the same bid, even though the bid’s value to a seller can vary. Thus,

the multi-dimensional informational structure affects seller revenue in security-bid auctions.

Illustrating the potential consequences, Che and Kim (2010) show that when a bidder’s

opportunity cost rises deterministically with the expected total cash flow sufficiently quickly,

an extreme form of adverse selection arises in standard second-price security-bid auctions:

bidders with higher NPVs bid less, resulting in low seller revenues. This suggests that secu-

rities auctions should be designed with care when opportunity costs are private information.

We derive the optimal equity auction design when bidders’ values and opportunity costs

are private information.3 We allow for an arbitrary joint density over the expected cash flows

vi and opportunity cost xi of a bidder i, requiring only independence across bidders, mild

continuity conditions on the density, and a compact, connected support. Thus, the extent

1Examples include auctions to sell oil or timber leases (e.g., Hendricks and Porter 1988, Paarsch 1997),
auctions for highway building contracts; DKS and Skrzypacz (2013) provide other examples.

2With divisible assets, if a bidder’s opportunity cost of acquiring a quantity is not proportional to its
gross valuation of the quantity, the two dimensions of uncertainty need not collapse to one dimension.

3Equity auctions are the most common form of security auctions: Andrade et al. (2001) report that 58%
of mergers and acquisitions are paid entirely in equity. Faccio and Masulis (2005) and Eckbo et al. (2015)
document reasons underlying the exclusive use of equity.
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of adverse selection is arbitrary, and can vary across bidders.

We first find a transformation of a bidder’s objective that simplifies the resulting envelope

condition.4 We show that in any incentive-compatible mechanism, an agent’s preferences are

determined only by ri ≡ xi
vi

, the ratio of his opportunity cost to expected project revenue.

This ratio represents the equity stake the agent needs to break even. While an agent’s pref-

erences are determined only by this one-dimensional summary of his two-dimensional type,

it does not guarantee that two type pairs with the same break-even equity stake are pooled

in equilibrium. Nonetheless, a novel application of the envelope theorem reduces the design

problem to a one-dimensional problem. It follows that almost all types of a bidder with the

same ri have the same equilibrium probability of winning and the same expected equity share

retained—even if project revenues net of opportunity costs are very different for these types.

These results yield a general characterization of any incentive-compatible equity mecha-

nism that we use to analyze revenue-maximizing and surplus-maximizing mechanisms. When

a seller seeks to maximize revenues, we use this one-dimensional representation to express a

bidder’s virtual valuation as a function of ri only, denoted φ(ri). Different bidder types with

the same ri have the same virtual valuation, which depends on the aggregate properties of

all types with that ri. Expected seller revenues decompose into the sum of a component that

reflects the virtual valuation of the winning bidder and a component that reflects the rents

obtained by a bidder type that needs the highest equity share to break even.

Under the regularity condition that φi(ri) decreases in ri, incentive compatibility and

virtual valuations move in the same direction. We show that the resulting optimal sell-

ing mechanism has the features that (1) a bidder with the highest virtual valuation wins

whenever his virtual valuation exceeds the seller’s valuation, and (2) a bidder type with the

highest break-even equity stake extracts no rents. When the design problem is not regular,

a concavification argument similar to that in Myerson (1981) is used to solve for the opti-

mal mechanism. In the optimal design, the winning bidder has the highest adjusted virtual

valaution, and a bidder type with the highest break-even equity stake still earns no rents.

4The original, un-transformed objective contains a quantity that is the product of a term that depends
on a bidder’s private type, and two terms that are endogenously determined in equilibrium—the equity
share qi and the probability of winning Gi. The product of these three terms complicates the envelope
condition. We transform the objective function so that the term that depends on a bidder’s private type is
multiplied by only one endogenously-determined term, resulting in a tractable envelope condition.
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With two-dimensional uncertainty, the regularity condition in equity auctions becomes

demanding. Virtual valuations measure available rents, and thus tend to grow with a bid-

der’s net valuation vi−xi. In cash auctions, the relevant bidder type is this net valuation, so

the regularity condition, which mandates that virtual valuations increase with bidder type,

holds under mild assumptions—a monotone hazard condition on the distribution of types

suffices. In contrast, in equity auctions, the relevant bidder type is ri, and a lower ri need not

imply a higher net valuation. This is true even when xi depends deterministically on vi, and

more so, due to aggregation, when xi and vi are distributed on a two-dimensional space. In-

deed, the regularity condition can be violated at every ri: virtual valuations can increase in

ri, going in the opposite direction of incentive compatibility over the entire domain. Global

violations imply a maximal mismatch between revenue maximization and incentive compati-

bility. Revenue maximization requires the asset to be allocated to bidders with higher virtual

valuations—who have higher break-even equity stakes when the regularity condition is glob-

ally violated—but incentive compatibility demands that bidder types with lower break-even

equity requirements be weakly more likely to win.

If the regularity condition for a bidder is globally violated, the optimal design pools all

types so that the winning probability does not vary with type. If such violation occurs for

all bidders, it is optimal to identify the bidders with the highest (constant) adjusted virtual

valuation and sell to one of them when that adjusted virtual valuation exceeds the asset’s

value to the seller, demanding the highest share that this bidder would cede to regardless

of his type. Hence, if bidders are ex-ante identical and the regularity condition is globally

violated, then even with multiple bidders, the optimal mechanism is a take-it-or-leave-it

offer—expected seller revenue in the optimal design is unaffected by the number of bidders.5

This feature contrasts with optimal cash auctions. Consistent with this design feature,

Boone and Mulherin (2007) find that mergers and acquisitions involving equity are twice as

likely as pure cash acquisitions to have a single bidder.6 If, alternatively, the regularity condi-

tion for some, but not all, bidders is globally violated, one can implement the optimal mech-

5In contrast, in standard auction formats expected revenues fall with the number of bidders: the greater
is competition, the lower is the winner’s break-even equity stake; and if regularity is globally violated, this
lower break-even stake corresponds to a lower virtual valuation, and hence lower revenue.

6Computed from data in their Table IV.
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anism by first conducting an auction among bidders for whom the regularity condition is not

globally violated, setting a reserve price that reflects the value of selling to bidders for whom

the regularity condition is globally violated. A seller only turns to bidders exhibiting extreme

adverse selection when the virtual valuations of the other bidders are not high enough.

Our analysis provides insights into the forces affecting revenue comparisons of optimal

equity and optimal cash auctions. When uncertainty solely concerns valuations, Hansen

(1985) shows that equity auctions generate higher revenues because equity bids tie payments

to bidder types. When bidders have two-dimensional private information, additional forces

come into play. First, with severe adverse selection, where the regularity condition is largely

violated, revenues in optimal equity auctions rise minimally with the number of bidders.

This favors cash if there are enough bidders. Second, the distribution of net valuations in

the one-dimensional representation for equity mechanisms second-order stochastically domi-

nates that for the original two-dimensional distribution (and hence for cash auctions). With

few bidders, this favors equity because it lets a seller set the reserve price more efficiently,

reducing the risk of no sale. In contrast, with many bidders, what matters primarily is

the upper tail of the distribution, especially with substantial two-dimensional uncertainty.

Reflecting the combined effects, optimal equity auctions generate more revenues than cash

auctions if there are few bidders or moderate levels of two-dimensional uncertainty, while

cash auctions do better with extensive two-dimensional uncertainty and many bidders.

Our dimensionality reduction result extends to mechanisms that maximize expected so-

cial surplus, where we identify a ‘surplus valuation’ that drives the optimal design. This

analysis reveals how equity auctions are inefficient relative to cash auctions when bidders

have two-dimensional types. With cash, a second-price auction ensures an efficient alloca-

tion, and any pooling is surplus-decreasing. In sharp contrast, in equity auctions, pooling

can be surplus-maximizing, just as it can be revenue-maximizing. Indeed, when adverse

selection is severe, disregarding all bids and selling to any bidder with the highest adjusted

surplus valuation maximizes surplus. This contrast with cash auctions reinforces how in eq-

uity auctions with severe adverse selection, incentive compatibility requires “inferior” types

(in terms of either virtual or surplus valuations) to win with a weakly higher probability.

Thus, a mechanism designer can do no better than randomize.
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Literature Review. The study of equity auctions begins with Hansen (1985). Like Hansen

(1985), subsequent papers (e.g., DKS, Che and Kim (2010), Deb and Mishra (2014) or Liu

(2016)) assume one-dimensional information for bidders.7 DKS analyze optimal selling mech-

anisms in standard auction formats when bidders have the same opportunity cost and select

bids from a class of ordered securities. They show that steeper securities yield higher seller

revenues. Che and Kim (2010) introduce bidders whose opportunity costs rise deterministi-

cally with their valuations and show that severe adverse selection can arise that causes steeper

securities to generate less revenues in standard auctions. They also illustrate how the mono-

tonicity of break-even stakes relates to the extent of adverse selection in equity auctions.

In contrast, we consider two-dimensional private information for bidders. We identify

a way to reduce the dimensionality that we use to characterize incentive-compatible equity

mechanisms, and to identify revenue- and surplus-maximizing mechanisms. We can recover

Che and Kim’s (2010) framework when the distribution of types has a positive mass only on

a one-dimensional subset of the two-dimensional space. However, one cannot just myopically

use a one-dimensional formulation: not all two-dimensional distributions reduce to a setting

in which xi is a deterministic function of vi; and even if xi is deterministically and monoton-

ically related to vi, our dimensionality reduction approach is still needed when the relevant

bidder type ri evolves non-monotonically. Moreover, for a given two-dimensional distribu-

tion, equity auctions typically reduce to a different one-dimensional distribution than that for

cash auctions. We derive a stochastic dominance relationship between the two distributions,

and show how the implications for revenue comparisons of optimal equity and cash auctions

depend on both the extent of two-dimensional uncertainty and the number of bidders.

Ekmekci, Kos and Vohra (2016) consider the problem of selling a firm to a single buyer

who is privately informed about post-sale cash flows and the benefits of control. The offer

consists of a menu of tuples of cash-equity mixes, and the bidder must obtain a minimum 50%

stake to gain control. They provide sufficient conditions for the optimal mechanism to take

the form of a take-it or leave-it offer for either 50% of the firm, or for all shares. The minimum

7Samuelson (1987), Zheng (2001), Board (2007), Povel and Singh (2010), Kogan and Morgan (2010),
Gorbenko and Malenko (2011), Liu (2012), Sogo et al. (2016) also analyze security-bid auctions; see
Skrzypacz (2013) for a survey. See Hansen (1987), Laffont et al. (1987), Fishman (1988; 1989), Biais et al.
(2007), or Burkart and Lee (2015), for analyses of security design and rent extraction.
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stake introduces a discontinuity in buyer payoffs, which Ekmekci et al. address by character-

izing incentive-compatible mechanisms via the exclusion boundary, separating types who ob-

tain controlling stakes from those who do not. In contrast, we examine auctions in which bid-

ders offer equities for full ownership and characterize the optimal auction for multiple buyers.

The study of mechanism design problems when agents have type-dependent opportunity

costs (outside options) was initiated in Jullien (2000) and Rochet and Stole (2002), who show

that an interior type can have zero surplus. In their models, the value of the opportunity

cost is independent of the allocated quantity. In our single unit auction setting, however,

this value depends on the allocated quantity: a bidder wins and incurs an opportunity cost,

or loses and incurs no cost; and if allocations are probablistic, the expected opportunity cost

is proportional to the expected allocation. More fundamentally, equity complicates design,

because the monetary value of payments depends on a bidder’s private information about val-

uations, and private information about opportunity costs introduces further complications.

Lastly, Deneckere and Severinov (2017) consider an agent whose gross utility u(q, α, θ) de-

pends on quantity q and privately-known type (α, θ). His net utility in a direct mechanism is

π = u(q(α̂, θ̂), α, θ)− t(α̂, θ̂), (1)

where (α̂, θ̂) is the reported type, and t(α̂, θ̂) is the principal’s revenue. They identify con-

ditions on preferences such that if q1 > 0 is optimal for a type (α1, θ1), and

uq (q1, α2, θ2) = uq (q1, α1, θ1) (2)

for any (α2, θ2) with α2 < α1, then (α2, θ2)’s optimal choice is also q1, reducing the di-

mensionality. Their set-up relates to a cash-only version of our setting. To see why, let

(α, θ) be the bidder’s gross valuation and opportunity cost, let q be the expected probabil-

ity of winning, and let t be the expected cash payment (unconditional on winning). Then

u(q, α, θ) = q (α− θ), and (2) becomes α2 − θ2 = α1 − θ1. That is, the relevant bidder type

is the net valuation. Equity payments materially alter the framework: net utility becomes

π = q(α̂, θ̂)e(α̂, θ̂)α− q(α̂, θ̂)θ, (3)

and seller revenue is q(α̂, θ̂)(1− e(α̂, θ̂))α, where q(α̂, θ̂) and e(α̂, θ̂) are the winning proba-

bility and the bidder’s equity share. Equation (3) cannot be cast in the form of (1), and the

form of seller revenue differs, hinging on both the bidder’s reported and true (private) type.
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These differences highlight how mechanism design involving equity payments with two-

dimensional types differ from existing studies of mechanism design with cash transfers, un-

derscoring that different approaches for dimensionality reduction are needed.

2 The Model

n ≥ 1 risk-neutral bidders compete to acquire an asset/project, over which control rights

are indivisible. Bidder i (i = 1, ..., n) is privately informed about both the expected value

vi > 0 of the cash flows that the asset would generate if he wins, and his opportunity cost

xi ∈ (0, vi) of acquiring the asset. The seller has a publicly-known reservation value vs of re-

taining the asset. Thus, the expected social surplus if i wins is vi−xi−vs. For each bidder i,

vi and xi are jointly distributed according to a strictly positive, continuous pdf fi (vi, xi) over

a compact and connected set Si. The densities fi can differ across bidders, and vi and si are

independently distributed across bidders. We assume maxi,(vi,xi)∈Si
vi−xi−vs > 0, i.e., there

are potential gains to trade. We use ti ≡ (xi, vi) to denote bidder i’s type, f (t) ≡ Πn
i=1fi (ti)

to denote the joint density of t ≡ (t1, t2, ..., tn), and f−i (t−i) ≡ Πk 6=ifk (tk) to denote the

joint density of the types of bidders other than i, where t−i≡ (t1, ..., ti−1, ti+1, ..., tn).

We consider direct-revelation mechanisms in which the winner pays with equities. Let

Qi(t
′
i, t−i) ∈ [0, 1] be the equity share of the project’s cash flows that bidder i retains when

he reports being type t′i and other bidders report t−i. Let Wi(t
′
i, t−i) be the probability

that bidder i wins, and let W0(t′i, t−i) be the probability that no bidder wins (i.e., the seller

retains the asset). We require Σn
j=0Wj(t) = 1 for all t. We define Gi (t

′
i) to be the probability

bidder i wins when i reports t′i and all other bidders report truthfully:

Gi (t
′
i) =

∫
Wi (t

′
i, t−i) f−i (t−i) dt−i. (4)

We define qi (t
′
i) to be the expected equity share that bidder i retains conditional on

winning by reporting type t′i when all others report truthfully,

qi (t
′
i)Gi (t

′
i) =

∫
Qi (t

′
i, t−i)Wi (t

′
i, t−i) f−i (t−i) dt−i. (5)

If bidder i has type ti but reports t′i, and other bidders report truthfully, his expected profit is:

hi (ti, t
′
i) = (viqi (t

′
i)− xi)Gi (t

′
i) . (6)
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Equilibrium requires that the incentive compatibility condition hold,

ti = arg max
t′i

hi (ti, t
′
i) . (7)

The seller’s expected revenue is the sum of the winner’s payments plus the reservation

value when the seller retains the asset:

πs =

∫ ( n∑
i=1

Wi (t) (1−Qi (t)) vi +W0 (t) vs

)
f (t) dt. (8)

Our objective is to identify the mechanism that maximizes expected revenue (8) subject to

incentive compatibility (7) and individual rationality, i.e., that hi(ti, ti) ≥ 0 for all i and ti.

We start by examining the properties of any incentive-compatible mechanism. Observe

that bidder i’s objective function (6) contains a term viqi (t
′
i)Gi (t

′
i), where vi depends on

the bidder’s private type, and both qi (·) and Gi (·) are endogenously determined in equilib-

rium. This complicates the envelope condition vis à vis cash auctions, where the term in a

bidder’s objective function that depends on the bidder’s private type is multiplied only by

one endogenous term, Gi (·). That is, qi = 1 in cash auctions.

Our first step is to simplify the envelope condition by transforming a bidder’s objective

function. We make a simple but fundamental observation: in equation (7), bidder i’s gross

expected valuation vi is in his information set, so it can be treated as a constant in his

optimization problem. This lets us rescale (6), bidder i’s expected profit when he has type

ti, but reports t′i and all other bidders report truthfully. We define

mi (ti, t
′
i) ≡

hi (ti, t
′
i)

vi
(9)

= (qi (t
′
i)− ri)Gi (t

′
i) , (10)

where

ri ≡
xi
vi

(11)

is the fraction of equity a bidder must retain to break even. Equivalently, ri is the fractional

cost bidder i incurs to generate a unit cash flow. We can express incentive compatibility (7) as

mi (ti, ti) = max
t′i

(qi (t
′
i)− ri)Gi (t

′
i) . (12)
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Equation (12) reveals the advantage of the transformation: in the argument for optimiza-

tion, the term that depends on a bidder’s private information is multiplied by only Gi. This

simplifies the resulting envelope condition relative to working directly with (7).

Our second step is to reduce the dimensionality to a single dimension. The right-hand

side of equation (12) only depends on a bidder’s type according to ri = xi
vi

. This means

that mi (ti, ti) must be a function of ri only. Hence, any two type pairs t′i = (x′i, v
′
i) and

t′′i = (x′′i , v
′′
i ) such that

x′i
v′i

=
x′′i
v′′i

= r′i should have the same mi:

mi (t
′
i, t
′
i) = mi (t

′′
i , t
′′
i ) , (13)

i.e.,

(qi (t
′
i)− r′i)Gi (t

′
i) = (q′′i (ti)− r′i)G′′i (ti) . (14)

Equation (14) relates the winning and allocation rules, Gi and qi, of the two types.

However, it does not imply that

Gi (t
′
i) = Gi (t

′′
i ) and qi (t

′
i) = qi (t

′′
i ) , (15)

because G′′i (ti) and qi (t
′′
i ) can differ from G′i (ti) and qi (t

′
i), and yet (14) still holds. That

is, due to the two-dimensional nature of the set Si, an infinite number of type pairs (xi, vi)

typically correspond to any given ri, and (15) need not hold for all such pairs. We next use

the envelope condition to derive the stronger result that (15) holds in “almost all cases”.

To proceed, we project every point of Si onto ri, and define ri and r̄i to be respectively

the minimum and maximum values of ri. To facilitate the analysis, we add the mild structure

that there is no atom at any value of xi/vi = ri.
8 Thus, ri < r̄i. Define f̃i (ri) to be the

associated probability density function over ri, which is strictly positive for ri ∈ (ri, r̄i).

By (13), without loss of generality we define

Mi (ri) ≡ mi (ti, ti) . (16)

By (12), Mi (ri) is the maximum of a family of affine functions and hence is convex. Because

Mi (ri) is also bounded and hence absolutely continuous, it is differentiable almost every-

where in the interior of its domain. Define Ri to be the set of all ri ∈ (ri, r̄i) at which Mi (ri)

8This ensures that bidder types where Mi(ri) (see equation (16)) is non-differentiable have zero mass.
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is differentiable, which includes all points in (ri, r̄i) except those of measure zero. In light

of the no-atom condition, we ignore the measure zero set of points at which Mi (ri) is non-

differentiable in any analysis that involves integration. By (12) and the envelope theorem,

at every point ti = (vi, xi) ∈ Si with xi/vi ∈ Ri, we obtain the simple relation:

dMi (ri)

dri
= −Gi (ti) . (17)

Thus, if
x′i
v′i

=
x′′i
v′′i
∈ Ri, then because Gi (t

′
i) and Gi (t

′′
i ) both equal −dMi(r)

dr
|r=r′i , we have:

Lemma 1 In any incentive-compatible equity mechanism, (15) holds if
x′i
v′i

=
x′′i
v′′i
∈ Ri.

We now derive the necessary and sufficient conditions for incentive compatibility and

individual rationality.

Theorem 1 (necessary and sufficient conditions for IC and IR) An equity mech-

anism is incentive compatible and individually rational if and only if, for all i:

(i) If t′i = (v′i, x
′
i) and t′′i = (v′′i , x

′′
i ) satisfy

x′i
v′i

=
x′′i
v′′i

, then mi (t
′
i, t
′
i) = mi (t

′′
i , t
′′
i ). That is,

mi (ti, ti) is a function of ri only.

(ii) The function Mi (ri) defined in (16) is weakly convex over ri ∈ [ri, r̄i].

(iii) If xi/vi ∈ Ri, then (17) holds. Further, (15) holds for any type pairs t′i and t′′i such

that
x′i
v′i

=
x′′i
v′′i
∈ Ri.

(iv) The winning probability is non-increasing in ri for all i: for any type pairs t′i = (x′i, v
′
i)

and t′′i = (x′′i , v
′′
i ) if

x′i
v′i
>

x′′i
v′′i

, then Gi (t
′
i) ≤ Gi (t

′′
i ).

(v) Mi (r̄i) ≥ 0.

Part (iv) follows from the incentive compatibility condition. It reflects the intuition that

ri represents the fractional cost of generating one unit of revenue, and that a bidder with a

smaller fractional cost is more competitive. Part (iii) shows that (15) holds if xi/vi ∈ Ri.

However, for type pairs t′i and t′′i such that
x′i
v′i

=
x′′i
v′′i

/∈ Ri, (15) need not hold. That is, at ri

where Mi (ri) is not differentiable, Gi (t
′
i) and Gi (t

′′
i ) can differ. Part (iv) bounds the amount

by which they can differ: any Gi (t
′
i) must lie between limr→r−i

dMi(r)
dr

and limr→r+i
dMi(r)
dr

.
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We next derive an expression for expected revenue in any incentive compatible mecha-

nism. Abusing notation slightly, for all ti ∈ Si such that ri ∈ R, we use (17) to write Gi (ti)

as Gi (ri). Because an absolutely continuous function is the definite integral of its derivative,

Mi (ri) = Mi (r̄i) +

∫ r̄i

ri

Gi (r) dr. (18)

By (18), Mi (ri) is non-increasing in ri = xi
vi

, as is Gi (ri).

To facilitate the analysis, for a given r, we define

ai (r) ≡ lim
ε→0

E [vi|r ≤ xi/vi ≤ r + ε] , (19)

where the expectation is taken over Si. Here, ai (r) is the expected value of vi conditional

on xi/vi being in an “ε” neighborhood of r. Note that this expectation is not the same as

E [vi|xi/vi = r] because (19) implies a weighting that is non-uniform for different type pairs

with the same r. The lemma below shows how to do this weighting in the two-dimensional

case where the probability density fi (xi, vi) is finite, and Example 1 provides an illustration.

Example 2 will show how to do the weighting in the limiting case where the two-dimensional

distribution degenerates to a single dimension, so that fi (xi, vi) is infinite.

Lemma 2 For each R ≥ 0, define ρi(R) ≡ fi

(
xi = r√

(1+r2)
R, vi = 1√

(1+r2)
R
)

, where

fi (xi, vi) is the probability density for (xi, vi) ∈ Si, and fi (vi, xi) = 0 for (vi, xi) /∈ Si. Then

ai (r) =
1√

(1 + r2)

∫∞
0
R2ρ (R) dR∫∞

0
Rρ (R) dR

.

We now use standard mechanism-design techniques to decompose expected seller revenue.

Definition 1 Bidder i’s virtual valuation at ri ∈ [ri, r̄i] in equity auctions is

φi (ri) ≡ (1− ri) ai (ri)−

∫ ri
ri
ai (r) f̃i (r) dr

f̃i (ri)
. (20)

Theorem 2 (Revenue decomposition) In any incentive-compatible mechanism of equity

auctions, the seller’s expected revenue (8) decomposes:

πs = πs,a + πs,b, (21)
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where

πs,a ≡ −
n∑
i=1

Mi (r̄i)

∫ r̄i

ri

ai (r) f̃i (r) dr (22)

and

πs,b ≡
∫
S1×...×Sn

( n∑
i=1

Wi (t)φi (ri) +W0 (t) vs

)
f (t) dt1...dtn. (23)

πs,a is bounded by bidders’ rationality constraints: because Mi (r̄i) ≥ 0, its maximum pos-

sible value is zero, which obtains if Mi (r̄i) = 0 for all i. πs,b is maximized by allocating the as-

set to the bidder with maximal virtual valuation φi (xi) if that φi (xi) exceeds the seller’s val-

uation. It is instructive to use (19) and ri = vi/xi to rewrite the first term of φi (xi) in (20) as

(1− ri) ai (ri) ≡ lim
ε→0

E
[
vi − xi

∣∣ r ≤ xi/vi ≤ r + ε
]

. (24)

Hence, this term is the bidder’s expected net valuation (conditional on xi/vi being in an “ε”

neighborhood of r), similar to the first term in the virtual valuation for a cash auction. The

second term of the virtual valuation reflects the difference that the relevant bidder type is

the break-even stake in equity auctions whereas it is the net valuation in cash auctions.

Theorem 2 implies a dimensionality reduction result: a seller’s revenue from any given

mechanism for any two-dimensional distribution over (xi, vi) equals that for a one-dimensional

distribution where xi and vi are parameterized in terms of ri:

Corollary 1 (One-dimensional representation) A seller’s revenue in a given mech-

anism for any two-dimensional distribution of (xi, vi) is the same as that for the one-

dimensional distribution in which for each bidder i, all points (xi, vi) associated with a given

ri are replaced by the single point (riai (ri) , ai (ri)), and ri is distributed according to f̃i (ri).

Corollary 1 contains subtle implications. First, in our one-dimensional representation,

only one type pair (xi (ri) , vi (ri)) corresponds to any ri. However, this does not imply that

vi is a deterministic function of xi (Example 1 will illustrate this). Thus, it is not without

loss of generality to consider only settings in which xi and vi are deterministically related.

Second, if we start with a one-dimensional problem, our one-dimensional representation re-

sult is still needed if multiple type pairs correspond to a given ri (Example 2 illustrates

12



this). Moreover, dimensionality reduction in cash auctions typically results in a different

one-dimensional distribution as bidder types aggregate via net valuation, so if one wishes to

compare equity and cash auctions, one needs to begin with the higher dimensional primitives.

The following proposition highlights this difference in the dimensionality reduction.

Proposition 1 The distribution of net valuations vi − xi for the one-dimensional distribu-

tion in Corollary 1 second-order stochastically dominates the distribution of net valuations

for the original two-dimensional distribution.

Proposition 1 has implications for revenue comparisons of equity and cash auctions that

we later explore. We next illustrate how to use the one-dimensional representation.

Example 1 (Skrzypacz (2013)). n ex-ante identical bidders bid with equity. Bidder i

expects revenue vi = xi + yi, where the net valuation, yi, and opportunity cost, xi, are each

independently and uniformly distributed on [0, 1].

We have ri = 0 and r̄i = 1. In the appendix, we obtain the form of ai (ri) and show that

a seller’s expected revenue from any mechanism given the two-dimensional distribution of

the example is the same as it would be were xi and vi parameterized (via ri) as

(xi, vi) =
( 2ri

3 max {ri, 1− ri} ,
2

3 max {ri, 1− ri}

)
, (25)

where ri is distributed according to

f̃i (ri) =
1

2

(
1 +

(
min

{1− ri
ri

,
ri

1− ri
})2
)
/
(
r2
i + (1− ri)2) . (26)

In equation (25), the relationship between xi and vi is
∪
-shaped: there are two xi corre-

sponding to each vi ∈
(

2
3
, 4

3

)
. Nonetheless, there is only one type pair associated with each

ri, which is what our one-dimensional representation result details.

3 Optimal Equity Mechanisms

An optimal equity mechanism maximizes a seller’s expected revenue subject to the incentive

compatibility and individual rationality conditions. We first derive optimal equity mecha-

nisms given the standard regularity condition in Assumption 1:
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Assumption 1 The design problem is regular: φi (ri) strictly decreases over [ri, r̄i] for all i.

Proposition 2 Under Assumption 1, a direct-revelation mechanism is optimal if and only if

(i) the winning rule Wi (ti, t−i) depends on ti only through ri, satisfying

Wi (t) =

{
1 if φi (ri) > max {maxj 6=i {φj (rj)} , vs}
0 if φi (ri) < max {maxj 6=i {φj (rj)} , vs}

, (27)

where φi (ri) is the virtual valuation in (20), for all i and t, ties are broken arbitrarily,

(ii) the equity-retention rule qi (ti) depends on ti only through ri, via

(qi (ri)− ri)Gi (ri) =

∫ r̄i

ri

Gi (r) dr, for all i and ri. (28)

Corollary 2 Under Assumption 1, an optimal equity mechanism is given by: the winning

rule in (i) of Proposition 2, and the following equity-retention rule for the winning bidder,

Qi (t) = φ−1
i

(
max

{
max
j 6=i
{φj (rj)} , vs

})
. (29)

Qi(t) is the maximum value of the break-even ri corresponding to a virtual valuation that

exceeds vs and allows i to win against t−i, where φ−1
i (·) denotes a bounded inverse of φi (·):

φ−1
i (x) ≡

{
r̄i if x < φi (r̄i)

y ∈ [ri, r̄i] s.t. φi (y) = x if x ∈ [φi (r̄i) , φi (ri)]
. (30)

The mechanism in Corollary 2 is simply the second-price auction with an optimal reserve

when bidders are ex-ante identical. Thus, the optimal design is exactly the same as in cash

auctions (Myerson 1981) or equity auctions where bidders’ opportunity costs are common

knowledge (Liu 2016). This correspondence reflects properties that hold generally for both

cash and equity auctions: (1) the regularity condition requires virtual valuations to strictly

increase in the direction where incentive compatibility requires the winning probability to

weakly increase, and (2) standard formats select in this “reinforced” direction of incentive

compatibility. To see what these two properties mean, consider equity auctions: (1) incentive

compatibility requires the winning probability to weakly decrease in ri, whereas regularity

requires the virtual valuation to strictly decrease in ri, and (2) the winning probability in

standard formats strictly decreases in ri. Thus, when the regularity condition holds, this
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“reinforced” direction is in line with revenue maximization. It follows that with ex-ante

identical bidders, standard formats are optimal when the regularity condition holds.

We now solve for the optimal mechanism in a general setting in which Assumption 1 need

not hold. We follow the general approach of Myerson (1981), making minor adjustments for

the fact that incentive compatibility requires that the winning probability Gi decrease in ri,

whereas in cash auctions, the winning probability must increase in bidder type. We then

show that in equity auctions the features of the optimal mechanism differ dramatically ac-

cording to whether the regularity condition is or is not violated. These differences are more

striking than the analogous differences that emerge in cash auctions.

Let F̃i (ri) be the cdf of f̃i (ri). For any y ∈ [0, 1], define

bi (y) = φi

(
F̃−1
i (y)

)
and Bi (y) =

∫ y

0

bi (z) dz. (31)

Define Ci(·) to be the concave hull of Bi(·). Define

φ̄i(ri) = C ′i(F̃i(ri)) (32)

for ri ∈ [ri, r̄i]. For any vector of bidder types t, let N (t) be the set of bidders for whom

φ̄i (ri) is both maximal and higher than vs

N (t) =

{
i|φ̄i (ri) ≥ max

{
max
j

{
φ̄j (rj)

}
, vs

}}
.

Proposition 3 The following constitutes an optimal equity mechanism:

(i) the winning rule is

W̄i (t) =

{
1/|N (t) | if i ∈ N (t)

0 if i /∈ N (t)
, (33)

for all i and t, and

(ii) the equity-retention rule for the winning bidder is

Q̄i(t) = φ̄−1
i

(
max

{
max
j 6=i

{
φ̄j (rj)

}
, vs

})
, (34)

which is the maximum value of the break-even ri that corresponds to a virtual valuation

exceeding vs that allows i to win against t−i, and

φ̄−1
i (x) ≡

{
r̄i if x < φ̄i (r̄i)

max
{
y|y ∈ [ri, r̄i] and φi (y) = x

}
if x ∈

[
φ̄i (r̄i) , φ̄i (ri)

] . (35)
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When the design problem is not regular, virtual valuations increase in ri on some range.

Because incentive compatibility requires the allocation probability to be weakly decreasing in

ri, always allocating the asset to a bidder with the highest virtual valuation is not incentive

compatible. Proposition 3 concavifies with an adjusted virtual valuation that pools types

on the increasing range and treats them equally. The adjusted virtual valuation is weakly

decreasing in ri. Allocating the asset to a bidder with the highest adjusted virtual valuation

maximizes a seller’s revenue subject to the incentive compatibility requirement.

Regardless of whether the regularity condition holds for a bidder, in the optimal de-

sign, the type of that bidder with the highest break-even equity stake extracts no rents.

This implication is less direct than it may seem: in a non-optimal, but incentive-compatible

mechanism, the type with the lowest rent of a given bidder varies across mechanisms, and

need not be the one with the highest break-even equity stake for that bidder.9 Nonetheless,

a key insight is that while the bidder’s rent hi (ti, ti) can be non-monotone, Mi (ri) (which

equals hi/vi) must be non-increasing by (17). By (9) and individual rationality, it follows

that if hi (ti, ti) is zero for any type ti, then hi for a type with the highest break-even equity

stake must also be zero. Thus, in the optimal design, for all bidders, any type with the

highest break-even equity stake earns zero rent.

3.1 Illustrations of virtual valuations in a one-dimensional setting

We illustrate virtual valuations in the setting of Che and Kim (2010) where xi is a determin-

istic function of vi with dxi
dvi

< 1 so that both gross valuation and net valuation increase in vi.

Abusing notation slightly, we use fi (vi) to denote the pdf of vi, and let Fi (vi) denote the cdf.

ri = xi(vi)
vi

strictly monotone in vi. Then

f̃i (ri) = fi (vi) |
dvi
dri
|, (36)

and the expected value of vi given ri in (19) becomes ai (ri) = vi. The form of
∫ ri
ri
ai (r) f̃i (r) dr

in (20), however, will depend on whether xi(vi)
vi

is decreasing or increasing in vi. If xi(vi)
vi

is

9As an extreme illustration, suppose the seller faces a single bidder i and (suboptimally) lets the bidder
win for free. Then the lowest-rent bidder type has the lowest net valuation vi − xi, which, as we show in
section 3.1, need not correspond to the bidder with the highest break-even equity stake.
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strictly increasing in vi, then ri corresponds to vi, and f̃i (r) dr = fi (v) dv. Therefore,∫ ri

ri

ai (r) f̃i (r) dr =

∫ vi

vi

vfi (v) dv. (37)

If, instead, xi(vi)
vi

strictly declines in vi, then ri corresponds to v̄i and f̃i (r) dr = −fi (v) dv, so∫ ri

ri

ai (r) f̃i (r) dr = −
∫ vi

v̄i

vfi (v) dv =

∫ v̄i

vi

vfi (v) dv. (38)

The corresponding virtual valuations follow directly from (20). Importantly, the virtual valu-

ation takes a different form depending on whether xi(vi)
vi

increases or decreases in vi, reflecting

the differences between (37) and (38). Next, we examine a more complicated setting where

xi(vi)
vi

is not monotone in vi, and show that virtual valuations take yet further different forms.

Example 2 (hybrid case): ri = xi(vi)
vi

nonmonotone in vi (∩-shaped in vi).

Let vi be uniformly distributed on [5, 15] with xi = 0.6vi − 1 for vi ∈ [5, 10] and

xi = 0.2vi + 3 for vi ∈ [10, 15], and let vs = 0. Then xi = 2 at vi = 5, xi = 5 at vi = 10, and

xi = 6 at vi = 15, and xi
vi

= 0.6− 1
vi

for vi ∈ [5, 10], and xi
vi

= 0.2 + 3
vi

for vi ∈ [10, 15].

Even though xi is deterministic and strictly increasing in vi, because multiple points

correspond to the same ri, aggregation is still needed. We have ri = 0.4 and r̄i = 0.5. Each

ri ∈ (0.4, 0.5) corresponds to two points:

0.6− 1

vi
= ri ⇒ vi =

1

0.6− ri
and 0.2 +

3

vi
= ri ⇒ vi =

3

ri − 0.2
. (39)

To calculate the associated density f̃i (ri) and to find the proper weighting in calculating

ai (ri), observe that the absolute value of the derivative of vi over ri at these two points are

|dvi
dri
| = 1

(0.6− ri)2 and |dvi
dri
| = 3

(ri − 0.2)2 .

Because vi is uniformly distributed over an interval of length 10, the density over vi is

0.1. Hence, the density over ri is 0.1|dvi
dri
| summed over the two points, yielding10

f̃i (ri) =
0.1

(0.6− r)2 +
0.3

(r − 0.2)2 .

10In this example the derivative of ri is not continuous at r̄i. Were ri continuous and differentiable in vi,
then, from the first-order condition, f̃ (ri) would be infinite at r̄i. This would not violate the premise of no

atom at any xi/vi, because the integral of f̃i (ri) goes to zero as the width of the interval vanishes.
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To calculate ai (ri), refer to equation (19). Noting that the weight of mass at each of

these two points is 0.1|dvi
dri
|/f̃i (ri), and that vi relates to ri via (39), we have

ai (ri) =

0.1
(0.6−r)2

f̃i (ri)

(
1

0.6− ri

)
+

0.3
(ri−0.2)2

f̃i (ri)

(
3

r − 0.2

)
. (40)

Substituting for these components into (20) yields the virtual valuation.

Discussion. These examples share the salient feature that vi − xi increases in vi so that

a high type is unambiguously defined. In cash auctions, the relevant bidder type is the net

valuation vi − xi, and in the optimal design the zero-rent type has the lowest net valuation.

In contrast, in equity auctions, the relevant bidder type is ri, and in the optimal design the

zero-rent type has the highest ri. Thus, when xi(vi)
vi

first increases and then decreases in vi,

the zero-rent-type has an intermediate net valuation. Moreover, when ri = xi(vi)
vi

increases

in vi, the zero-rent-type in the optimal design has the highest net valuation, which is the

opposite of what arises in cash auctions.

Our one-dimensional representation result does more than reduce the dimensionality of

analysis. In a one-dimensional setting like Example 2, although the relationship between xi

and vi is monotone, it is not the final form of our representation result because ri evolves

non-monotonically. In such settings, the representation result helps to derive the virtual

valuation and identify the lowest rent type. Further, the representation result shows ri is the

relevant bidder type: as a function of ri, the virtual valuation (20) takes a simple and unique

form. In contrast, even in a one-dimensional setting, if one uses vi or vi−xi as the bidder type,

the functional form of the virtual valuation will differ depending on the monotonicity of ri.

4 Global Violation of Regularity Condition

Assumption 1 requires virtual valuations to decrease in ri, i.e., to move in line with incentive

compatibility. The virtual valuation measures available rents and thus tends to increase with

a bidder’s net valuation vi − xi. In cash auctions, the net valuation is the relevant bidder

type, and hence, the regularity condition holds under mild assumptions—a monotone hazard

condition on the distribution suffices. In contrast, in equity auctions the relevant bidder type

is given by the break-even equity stake ri, and a lower ri need not correspond to a higher
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net valuation. This is true even when xi depends deterministically on vi, and more so, due

to aggregation, when xi and vi are distributed on a two-dimensional space.

Definition 2 The regularity condition is globally violated for bidder i if for any types t1

and t2 such that φi (t1) > φi (t2), incentive compatibility requires Gi (t1) ≤ Gi (t2).

Global violations imply that virtual valuations go in the opposite direction of the regular-

ity requirement over the entire domain: From Theorem 1 part (iv), the regularity condition

is globally violated for bidder i if φi (ri) increases in ri over [ri, r̄i].

Proposition 4 Suppose that in the one-dimensional representation, xi is deterministically

related to vi. Then, for any fi (vi) strictly positive over [vi, v̄i] and xi (vi) < vi, there ex-

ist ε1, ε2 > 0 such that the regularity condition is globally violated for bidder i if d lnxi
d ln vi

∈

(1, 1 + ε1) and | d
dv

(
d lnxi
d ln vi

)
| < ε2 at all vi ∈ [vi, v̄i].

Proposition 4 shows that global violations occur when xi(vi) is slightly more than unit

elastic in the reduced dimensionality space of Corollary 1. This condition imposes no re-

strictions on the scale of opportunity costs relative to vi. This means that global violations

can arise in “vanilla” economies in which opportunity costs are tiny, making the “efficiency

cost” of not allocating the asset to a bidder with the highest valuation high.

This feature that virtual valuations go against the regularity requirement over the entire

domain can never arise in cash auctions or in equity auctions with constant opportunity

costs. In cash auctions, the virtual valuation is

ψi (yi) = yi −
1−Di (yi)

di (yi)
, (41)

where yi ≡ vi − xi is bidder i’s net valuation and D (·) and d (·) are the cdf and pdf of

yi. Thus, ψi (yi) < yi < ȳi = ψi (ȳi) for yi < ȳi. Similarly, φi (yi) < yi < ȳi = φi (ȳi) for

yi < ȳi for virtual valuations in equity auctions with constant opportunity costs. Thus, even

though the virtual valuation may decline over some range of vi in violation of the regularity

condition, it cannot decrease over the entire range.

The global violation of the regularity condition represents the greatest possible mismatch

between revenue maximization and incentive compatibility. Revenue maximization requires
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a seller to allocate the asset to bidders with higher virtual valuations as much as possible,

but incentive compatibility demands the opposite. This mismatch has novel implications:

Lemma 3 If the regularity condition is globally violated for bidder i, then φ̄i in (32) is the

same for all types of bidder i.

Corollary 3 If the regularity condition is globally violated for bidder i, then in the optimal

design, bidder i’s expected winning probability is independent of his type.

Corollary 4 If the regularity condition is globally violated for all bidders, then it is optimal

for the seller to disregard all bids and sell to any bidder i ∈ arg maxj φ̄j (if φ̄i > vs), asking

for fraction 1− r̄i of equity. The bidder always accepts the offer.

Boone and Mulherin (2007) find that in corporate takeovers that use equities as payments,

selling firms typically only ask a subset of potential bidders, often a single bidder, to partic-

ipate. Consistent with this, we show that if the regularity condition is globally violated for

all bidders, then it is optimal for a seller first to identify those bidders whose adjusted virtual

valuation is maximal, and to exclude bidders with lower adjusted virtual valuations. The

seller selects one non-excluded bidder and sells to that bidder when the maximal adjusted

virtual valuation exceeds vs. The seller demands the highest equity share that this selected

bidder i would be willing to cede regardless of his type, hence demanding share 1− r̄i. Note

that when bidders are ex-ante heterogeneous, multiple bidders can have the highest adjusted

virtual valuation but their values of r̄i can differ. When this is so, the seller can choose any

of these bidders, but the seller must tailor its equity demand to the selected bidder.

Corollary 5 Suppose bidders are ex-ante identical and the regularity condition is globally vi-

olated. Then expected seller revenue in the optimal equity auction does not vary with the num-

ber of bidders n. In contrast, in a standard first- or second-price format, revenue falls with n.

When the regularity condition is globally violated, not only are standard (first- or second-

price) equity auction designs not optimal, even with optimal reserve prices, but expected

seller revenue falls as competition rises. The greater is n, the lower is the winner’s break-

even equity stake ri, and this corresponds to a lower virtual valuation φi when the regularity
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condition is globally-violated. By (23), seller revenue falls. Indeed, as n goes to infinity, the

winner’s break-even stake approaches the ri associated with the lowest virtual valuation. This

contrasts with cash auctions (or equity auctions with constant opportunity costs), in which

with ex-ante identical bidders, revenues in standard auction formats strictly rise with n (when

the highest net valuation exceeds vs), and a seller extracts full rents as n goes to infinity.

The result that competition reduces seller revenues when the regularity condition is glob-

ally violated reflects the intuition highlighted earlier that standard auction formats select in

a “reinforced” direction of incentive compatibility. Thus, with global violations of regularity,

the lowest virtual-valuation bidder is selected; and increased competition reduces this “low-

est” virtual valuation. In contrast, in cash auctions (or equity auctions with constant oppor-

tunity costs), the regularity condition can be locally violated, but it cannot be violated at suf-

ficiently high net-valuations, and as n grows large so does the probability of a high valuation.

If opportunity costs are common knowledge, optimal equity auctions generate higher rev-

enues than cash auctions, even with ex-ante heterogeneous bidders (Hansen 1985; Liu 2016).

Corollary 5 shows that if adverse selection is so severe that the regularity condition is globally

violated, optimal equity auctions generate less revenues than cash auctions when n is large,

consistent with Che and Kim (2010). In fact, this holds as long as virtual valuations for equity

auctions are distorted at high types (i.e., if φ (r) is less than the maximum net valuation).11

We now give a simple way to implement the optimal mechanism if the regularity condition

is globally violated for some bidders, showing how to distinguish between bidder populations.

Corollary 6 Suppose the regularity condition is globally violated for bidders 1 through n̂,

but not bidders n̂+ 1...n, where n̂ < n. Then it is optimal to sell sequentially in two stages:

the seller first sells to bidders {n̂+1, . . . n} via the modified mechanism in Proposition 3 that

replaces vs with max
{
vs,maxj=1...n̂ φ̄j

}
. If the asset is not sold in the first stage, the seller

sells to the first n̂ bidders, using the mechanism in Corollary 4.

Of note, Corollaries 3 through 6 hold as long as regularity is largely, even if not globally,

violated: the corollaries follow as long as φ̄i (see Lemma 3) is the same for all types of bidder

11A sufficient condition for such distortion is that for a positive measure of types that correspond to the
lowest break-even stake, the associated net valuation is strictly less than the maximum net valuation.
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i, for which global violation of regularity is a sufficient, but not necessary, condition.

Revenue Comparisons. Our analysis provides insights into the forces that affect revenue

comparisons of optimal equity and cash auctions. If uncertainty solely concerns valuations,

then optimal equity auctions generate higher revenues, reflecting that equity bids tie pay-

ments to bidder type (Hansen 1985). When bidders have two-dimensional private informa-

tion, additional forces come into play. First, if the regularity condition is largely violated, it

favors cash over equity, a difference that is enhanced by more bidders because the adverse

selection causes equity revenues to rise slowly at best with the number of bidders. This effect

tends to rise with increased two-dimensional uncertainty that magnifies the adverse selection.

Second, as Proposition 1 shows, the distribution of net valuations in the one-dimensional

representation for equity mechanisms second-order stochastically dominates the distribution

of net valuations for the original two-dimensional distribution (and hence for cash auctions).

The effects of this stochastic dominance are subtle. With few bidders, second-order stochas-

tic dominance lets a seller set the reserve more efficiently, reducing the probability of no sale,

and raising revenues. In contrast, with many bidders, the probability of no sale is small and

what matters primarily is the upper-tail of the distribution, so that second-order stochastic

dominance reduces revenues. Thus, this feature favors equity when there are few bidders,

but it favors cash when n is large. Both of these effects are stronger when the extent of

two-dimensional uncertainty increases, which increases the differences in the distributions.

Reflecting the combined forces, optimal equity auctions yield more revenues than cash

auctions if there are few bidders or moderate two-dimensional uncertainty, but cash auctions

do better with many bidders and high two-dimensional uncertainty. Example 3 illustrates.

Example 3. n ex-ante identical bidders bid with equity or cash. Bidder i’s expected valu-

ation is vi = 2xi + yi, where yi is independently and uniformly distributed on [1, 3]. Bidder

i’s opportunity cost xi is uniformly distributed over [4− d, 4 + d], where d ∈ [0, 4].

Implicitly, d measures the extent of two-dimensional uncertainty. In cash auctions, the

regularity condition holds for all d. In contrast, in equity auctions, the regularity condition

is violated unless d is very close to zero. For a given d, we use the fraction of all type pairs

(vi, xi) for which d
dr
φ (r) > 0 at their corresponding r to measure the extent of violations.
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Figure 1 shows how violations of the regularity condition in equity auctions rise with d,

leading the extent of pooling in the optimal mechanism to rise.

Figure 1: Violations. d is on the horizontal axis. The vertical axis is the fraction of
probability mass for which the regularity condition is violated.

Figure 2 plots how the expected revenue differences between optimal equity and cash

auctions varies with d for different numbers of bidders.12 The non-monotone curvature (“rip-

ples”) in the evolution of the expected revenue difference with d illustrates the possible com-

plicated interactions of the different forces. With one or two bidders, equity auctions always

generate higher revenues, even with extensive two-dimensional uncertainty. With more than

two bidders, cash auctions generate higher expected revenues as long as there is sufficient two-

dimensional uncertainty, a difference that rises with n. Once d is sufficiently large, further

increases in d amplify revenue differences between the two auction designs for all n. Thus,

with substantial two-dimensional uncertainty, optimal equity auctions greatly outperform

optimal cash auctions with one bidder, but the opposite holds once there are enough bidders.

12The regularity condition for cash auctions is satisfied for all d in this example. Thus, a second-price
auction with optimal reserve is always optimal. In contrast, with equity auctions, the mechanism in
Proposition 3 becomes the optimal mechanism when the regularity condition is violated.
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Figure 2: Revenue comparison. Number of bidders: 1 (magenta, star), 2 (blue dot) 3
(green solid line), 4 (red, dash), 5 (black, dash dot). The horizontal axis measures d. The
vertical axis is revenues for optimal equity minus revenues for optimal cash auctions.

5 Surplus-maximizing mechanisms

Lemma 1 holds for any incentive-compatible mechanism. As a result, our one-dimensional

representation can be used to analyze mechanisms that maximize expected social surplus:

η =

∫ ( n∑
i=1

Wi (t) (vi − xi) +W0 (t) vs

)
f (t) dt. (42)

To proceed, we identify a ‘surplus valuation’, which is the analogue of a virtual valuation:

Definition 3 Bidder i’s surplus valuation at ri ∈ [ri, r̄i] in equity auctions is

κi (ri) ≡ (1− ri) ai (ri) . (43)

Theorem 3 In any incentive-compatible mechanism of equity auctions, expected surplus is:

η =

∫
S1×...×Sn

( n∑
i=1

Wi (t)κi (ri) +W0 (t) vs

)
f (t) dt1...dtn. (44)

By (24), the surplus valuation κi (ri) is the expected net valuation at ri. Comparing (44)

with (23) suggests that the role κi (ri) plays in surplus maximizing is analogous to that played

24



by the virtual valuation in revenue maximizing. Indeed, analysis of surplus-maximizing

mechanisms follows that of revenue-maximizing mechanisms, simply by replacing ‘virtual

valuation’ with ‘surplus valuation’. Thus, the regularity condition for surplus maximization

requires κi (ri) rather than φi(ri) to strictly decrease over [ri, r̄i]. When this regularity condi-

tion holds for all i, then in the surplus-maximizing mechanism: (1) a bidder with the highest

surplus valuation wins whenever this surplus valuation exceeds the seller’s valuation, and

(2) the equity share r retained by the winning bidder i solves κi (r) = maxj 6=i {κj (rj) , vs}.

When the regularity condition is violated for one or more bidders, a surplus-maximizing

mechanism can be constructed along the lines for revenue-maximization (Proposition 3) via

concavification. We sketch this structure out in the appendix.

The properties of cash and equity auctions for surplus-maximizing mechanisms differ.

With cash, a second-price auction (with optimal reserve) always maximizes surplus. With

equity, however, a second-price auction typically fails to maximize surplus when bidders are

ex-ante heterogeneous, even if the design is regular. This difference reflects that in cash

auctions, bidders have the same “surplus valuation” function—the surplus valuation is given

by a bidder’s net valuation, even when bidders are ex-ante heterogeneous—whereas in eq-

uity auctions, the surplus valuation function κi (·) differs across heterogeneous bidders. As

a result, the surplus-maximizing equity mechanism does not have a second-price format.13

Moreover, the regularity condition for surplus maximization in cash auctions always holds:

the net valuation is trivially an increasing function of itself. In contrast, in equity auctions,

the analogous regularity condition can be violated everywhere.14 When such global viola-

tions arise, disregarding all bids and selling to any bidder with the highest adjusted surplus-

valuation maximizes expected surplus (when the adjusted surplus valuation exceeds vs).

Thus, in equity auctions, pooling can be both revenue-maximizing and surplus-maximizing.

This contrast reinforces how with severe adverse selection, incentive compatibity requires

“inferior” types (in terms of either virtual or surplus valuations) to win with a weakly higher

probability. As a result, a mechanism designer can do no better than to make the winning

13Note that if bidders have publicly-known but heterogeneous opportunity costs, then regularity holds and
the surplus-maximizing equity mechanism reduces to the efficient mechanism identified by Hansen (1985).

14Lemma 4 in the appendix provides a condition for the regularity condition to be locally violated.
This condition implies that global violations occur when the extreme adverse selection (decreasing bidding
strategy) condition identified by Che and Kim (2010) holds.
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probability independent of bidder type.

Finally, in equity auctions, when the regularity condition is sometimes but not always

violated, the support over which adjusted surplus valuations pool typically differs from that

over which adjusted virtual valuations pool, implying that revenue-maximizing mechanisms

are not efficient. Figure 3 reveals that in the canonical uniform-uniform setting of Example

3, violations are greater for surplus maximization than revenue maximization. In contrast, in

cash auctions, the opposite holds because the regularity condition for surplus maximization

can never be violated, while it can be for revenue maximization.

Figure 3: Violations: Surplus-maximizing vs. Revenue-maximizing mechanisms.
The horizontal axis measures d. The vertical axis is fraction of probability mass with viola-
tions of regularity condition. Surplus-maximizing: green line. Revenue-maximizing: red line.

To see the intuition for the difference, observe that the virtual valuation (20) differs from

the surplus valuation (43) by the second term in (20). This term is zero at ri = ri, and it is

negative (it is subtracted) for all ri > ri. For the most part, this term decreases in ri, causing

regularity to be violated to a lesser extent for revenue maximization. So, too, in cash auctions,

the virtual valuation (41) differs from the surplus valuation by the second term. This sec-

ond term is zero for the highest net-valuation and it is strictly negative elsewhere, generally

(but not always) trending upward in net valuation—in the direction mandated by regularity.

The difference is that, without this second term, the regularity condition always holds for
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surplus maximization: adding this second term can only lead to violations of regularity, but

not reduce them. Thus, from an efficiency perspective, revenue-maximizing mechanisms can

only over-pool in cash auctions, whereas they tend to under-pool in equity auctions.

6 Conclusion

In equity auctions when bidders’ values and opportunity costs are private information, ad-

verse selection can arise that results in conflict between revenue maximization, which requires

a seller to allocate the asset to bidders with higher virtual valuations; and incentive compati-

bility, which demands that bidder types with lower break-even equity requirements be weakly

more likely to win. Unlike in cash auctions, virtual valuations and incentive compatibility

may go globally in opposite directions. We derive the implications for the optimal design. For

example, if adverse selection is extreme for all bidders, a seller does best to identify bidders

with the highest adjusted virtual valuation, exclude all others, select one non-excluded bid-

der, and demand the highest equity share that this bidder would cede regardless of his type.

Thus, our work provides guidance on standard formats, identifying when they cease to be an

appropriate selling mechanism; and when they still perform well given simple modifications.

These insights also hold for equity mechanisms that maximize expected social surplus.

The general principles identified should extend to auctions in which bidders offer ordered

securities other than equities. For example, the optimality of simple ways to sell when adverse

selection is severe for some or all bidders should hold for a given class of ordered securities.

Liu and Bernhardt (2018) investigate settings in which a seller can combine different classes

of ordered securities, showing that a seller can then do better when adverse selection obtains.
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8 Appendix: Proofs

Proof of Lemma 2: Consider a plane where xi is on the x-axis and vi is on the y-axis. Then,

R is the distance from point
(
xi = rR√

(1+r2)
, vi = R√

(1+r2)

)
to the origin. Now consider the

fan-shaped sector in the first quadrant defined by lines xi/vi = r and xi/vi = r+ε. Denote the

opening angle between the two lines by dθ. From the property of a fan-shaped sector that the

length of the arc at radius R is Rdθ, the total mass between R and dR is proportional to R. �

Proof of Theorem 1: We first prove the “only if”. Conditions (i) – (iii) follow from the text.

To prove condition (iv), note that if it is not profitable for ti to mimic t′i, and vice versa, then

(qi (t
′
i)− ri)Gi (t

′
i) ≤ (qi (ti)− ri)Gi (ti)

and

(qi (ti)− r′i)Gi (ti) ≤ (q′i (ti)− r′i)G′i (ti) .

Adding these two equations yields (r′i − ri) (Gi (t
′
i)−Gi (ti)) ≤ 0, which yields condition (iv).

By (9) and individual rationality, Mi (ri) ≥ 0 for all ri, establishing condition (v).

To prove the “if” part, assume conditions (i) through (v) hold. We show it is not profitable

for a type ti to mimic a type t′i, i.e., mi (ti, t
′
i)−mi (ti, ti) ≤ 0. By conditions (i) and (ii),

mi (ti, t
′
i)−mi (ti, ti) = mi (ti, t

′
i)−mi (t

′
i, t
′
i) +Mi (r

′
i)−Mi (ri)

= (r′i − ri)Gi (t
′
i) +Mi (r

′
i)−Mi (ri) . (45)

If r′i = ri, then mi (ti, t
′
i) −mi (ti, ti) = 0, hence deviation is not profitable. Now consider

a report t′i 6= ti for which r′i 6= ri. By conditions (i) – (iii) and the fact that an absolutely

continuous function is the definite integral of its derivative, (18) holds and (45) yields

mi (ti, t
′
i)−mi (ti, ti) = (r′i − ri)Gi (t

′
i) +

∫ ri

r′i

Gi (r) dr. (46)
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By condition (iv), the right-hand side of (46) is non-positive regardless of whether r′i > ri

or r′i < ri. Thus, mi (ti, t
′
i)−mi (ti, ti) ≤ 0, i.e., deviation is not profitable. This establishes

incentive compatibility. By condition (v) of the theorem, (18), and Gi ≥ 0, we have Mi (ri) ≥

0 for all ri. Therefore, by (9), individual rationality holds.

Proof of Theorem 2. Let πs,i be bidder i’s contribution to the seller’s expected profit:

πs,i =

∫
Si

Gi (ti) (vi − xi − vs) fi (ti) dti −
∫
Si

hi (ti, ti) fi (ti) dti. (47)

Adding vs, the seller’s expected revenue becomes:

πs =
n∑
i=1

πs,i + vs. (48)

To aid analysis, define

Ai (ri) =

∫ ri

ri

ai (r) f̃i (r) dr (49)

and

li (r) = lim
ε→0

E [vi − xi − vs|r ≤ xi/vi ≤ r + ε] , (50)

where the expectation is taken over Si. We next rewrite πi in terms of ri. Integrate the first

term on the RHS of (47) using (15):∫
Si

Gi (ti) (vi − xi − vs) fi (ti) dti =

∫ r̄i

ri

Gi (ri) li (ri) f̃i (ri) dri, (51)

Similarly, by (9), the second term on the RHS of (47) becomes∫
Si

hi (ti, ti) fi (ti) dti =

∫
Si

Mi (ri) vifi (ti) dti =

∫ r̄i

ri

Mi (ri) ai (ri) f̃i (ri) dri. (52)

Substituting (51) and (52) into (47) yields

πs,i =

∫ r̄i

ri

Gi (ri) li (ri) f̃i (ri) dri −
∫ r̄i

ri

Mi (ri) ai (ri) f̃i (ri) dri. (53)

Substituting (18) for Mi(ri) and using (49), we rewrite the second integral in (53) as∫ r̄i

ri

(
Mi(r̄i) +

∫ r̄i

ri

Gi (r) dr
)
dAi (ri) = Mi (r̄i)Ai (r̄i) +

∫ r̄i

ri

Ai (ri)Gi (ri) dri. (54)

Next, substitute (54) into (53) to obtain

πs,i =

∫ r̄i

ri

Gi(ri)
(
li (ri)−

Ai (ri)

f̃i (ri)

)
f̃i (ri) dri −Mi (r̄i)Ai (r̄i) . (55)
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We now return to the original two-dimensional framework and write πs,i as

πs,i =

∫
Si

Gi (ti)

(
li (ri)−

Ai (ri)

f̃i (ri)

)
fi (ti) dti −Mi (r̄i)Ai (r̄i)

=

∫
S1×...×Sn

Wi (t)

(
li (ri)−

Ai (ri)

f̃i (ri)

)
f (t) dt1...dtn −Mi (r̄i)Ai (r̄i) .

Noting li (r) = (1− r) ai (r)−vs by xi = (xi/vi)vi and (50), plugging in (48) and substituting

for the virtual valuation, the theorem follows.

Derivations for Example 1. We use the uniform-uniform distribution of (xi, yi) rather

than that of (xi, vi). For xi
vi

= ri, we have xi
xi+yi

= ri, yielding

yi =

(
1

ri
− 1

)
xi. (56)

For a given ri ∈ (0, 1), (56) is the straight line through (0,0) with slope k (ri) ≡ 1
ri
−1 = 1−ri

ri
.

If k (ri) ≤ 1, then this line forms a right-angle triangle with the xi axis and line xi = 1.

The length of the segment inside the unit square is therefore
(
1 + k (ri)

2)0.5
. Similarly, if

k (ri) > 1, the length of the line segment inside the square is
(

1 + 1
k(ri)

2

)0.5

. Combining, for

all ri, we write the length of the line segment inside the square as{(
1 +

(
min

{
k (ri) ,

1

k (ri)

})2}.5
=
{(

1 +
(

min

{
1− ri
ri

,
ri

1− ri

})2}.5
.

The angle corresponding to this line is θ (ri) ≡arctan
(

1
ri
− 1
)
, which has derivative dθ

dri
=

−1
r2i +(1−ri)2

. Thus, the mass in the differential fan-shaped sector with slopes between k (ri)

and k (ri + dri) is 1
2

(
1 + min

{
1−ri
ri
, ri

1−ri

}2)
/
(
r2
i + (1− ri)2) dri, reflecting that the area of a

fan-shaped sector is 1/2 times the radius squared times the opening angle. This yields (26).

We now calculate ai (ri) in (19). If ri ≥ 0.5, then k (ri) ≤ 1 and line (56) leaves the unit

square at point (xi = 1, yi = 1/ri − 1) where vi = xi + yi = 1/ri. Consider the fan-shaped

sector inside the square bounded by lines with angles θ and θ+dθ. Taking the mass-weighted

expectation of vi in this sector yields ai (ri) = 2
3ri

, where the factor 2/3 comes from the prop-

erty of a fan-shaped sector that the length of the arc at radius R is Rdθ—and hence the

total mass between R and dR is proportional to R, and that the value of vi at radius R is

proportional to R. Including the other scenario in which ri < 0.5, we have

ai (ri) =
2

3

{
1/ri if ri ≥ 0.5

1 + 1/k (ri) = 1/ (1− ri) if ri < 0.5
. (57)

32



That is, ai (ri) = 2
3 max{ri,1−ri} . By Corollary 1, (25) follows.

Proof of Proposition 1: In the one-dimensional distribution prescribed by Corollary 1, for

any r, conditional on ri ∈ [r, r + ε] where ε is infinitesimal, i’s net valuation is ai (r) (1− r).

By (19),

ai (r) (1− r) ≡ lim
ε→0

E
[
vi(1− r)

∣∣ r ≤ xi/vi ≤ r + ε
]

(58)

= lim
ε→0

E
[
vi − xi

∣∣ r ≤ xi/vi ≤ r + ε
]

. (59)

Thus, the net valuation distribution for the original two-dimensional distribution is a mean-

preserving spread of that for the one-dimensional representation of Corollary 1. �

Proofs of Proposition 2 and Corollary 2:

Step 1: To prove Corollary 2, we first show that truth-telling is an equilibrium. Compare the

profits of bidder i with type ri from truthful reporting and under-reporting (i.e., reporting

a type pair that corresponds to a lower break-even equity stake than ri). (1) If truthful and

under-reporting both result in winning, then by (29), profits are the same. (2) If truthful

and under-reporting both result in losing, profits are also the same (zero). (3) If truthful

reporting results in losing, but under-reporting results in winning, under-reporting is strictly

unprofitable because max{maxj 6=i {φj (rj)} , vs} > φi (ri) and Qi < ri by (29). Summarizing,

truthful reporting weakly dominates under-reporting. A similar argument shows that truth-

ful reporting weakly dominates over-reporting. Further, individual rationality is satisfied

because a bidder can always ensure a zero profit by reporting a sufficiently high ri.

Next, we show Mi (r̄i) = 0 for all i. By (10), it suffices to consider Gi (r̄i) > 0. By

(27) and (29), when bidder r̄i wins in equilibrium, Qi = r̄i and hence Mi (r̄i, r̄i) = 0. Thus,

πs,a (equation (22)) is zero, which is its maximum possible value. Further, because a bidder

with the maximum virtual valuation φi (xi) wins when φi (xi) > vs, πs,b obtains its maximum

possible value. Because this mechanism maximizes πs,a and πs,b simultaneously, it is optimal.

Step 2: We show the “if” part of Proposition 2 by assuming (27) and (28). By (10), (27),

and (28), it is without loss to denote mi (ti, t
′
i) by mi (ri, r

′
i). Equation (10) yields

mi (ri, ri)−mi (ri, r
′
i) = (qi (ri)− ri)Gi (ri)− (qi (r

′
i)− ri)Gi (r

′
i)

= (qi (ri)− ri)Gi (ri)− (qi (r
′
i)− r′i)Gi (r

′
i) + (ri − r′i)Gi (r

′
i) ,
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which, by (28), yields

mi (ri, ri)−mi (ri, r
′
i) =

∫ r′i

ri

Gi (r) dr − (r′i − ri)Gi (r
′
i) ≥ 0,

where the inequality follows because Wi (ri, t−i) is weakly decreasing in ri and hence so is

Gi (ri). This establishes that truth-telling is an equilibrium. Further, by (28) and (10),

mi (r̄i, r̄i) = 0. By arguments similar to those in Step 1, the mechanism is optimal.

Step 3: We prove the “only if” part of Proposition 2. As Corollary 2 shows, a mecha-

nism exists that simultaneously maximizes πs,a and πs,b. An optimal mechanism cannot do

worse, so it must also maximize both πs,a and πs,b. Thus, we have (27). Similarly, we have

mi (r̄i, r̄i) = 0 for all i. By (4) and (27), Gi is a function of ri only and is continuous in ri,

and Mi (ri) ((18)) is differentiable everywhere. By Theorem 1, qi is a function of ri only.

Thus (28) follows upon equating the right-hand sides of (10) and (18).

Proof of Proposition 3: As Ci (·) is the concave hull of Bi (·), we have

Ci (y) = max
ω,z1,z2

{ωBi (z1) + (1− ω)Bi (z2)}

s.t. {ω, z1, z2} ∈ [0, 1]3 and ωz1 + (1− ω) z2 = y.

Thus, Ci (·) is the lowest concave function on [0, 1] such that Ci (y) ≥ Bi (y) for all y.

It is straightforward to show that truth telling is an equilibrium. We next establish

optimality. Given any allocation rule Wi (·) and associated Gi (·) as defined in (4), we have∫ r̄i

ri

Gi (ri)
(
C ′i

(
F̃i (ri)

)
− bi

(
F̃i (ri)

))
f̃i (ri) dri

= Gi (ri)
(
Ci

(
F̃i (ri)

)
−Bi

(
F̃i (ri)

))
|r̄iri +

∫ r̄i

ri

(
Bi

(
F̃i (ri)

)
− Ci

(
F̃i (ri)

))
dGi (ri)

=

∫ r̄i

ri

(
Bi

(
F̃i (ri)

)
− Ci

(
F̃i (ri)

))
dGi (ri) ≥ 0, (60)

where the inequality in (60) follows because Bi(F̃i(ri)) ≤ Ci(F̃i(ri)) and Gi(·) is non-

increasing in ri by incentive compatibility.

Let Ḡi (ri) be the distribution corresponding to allocation rule W̄ (·) in (33). Then (60)

holds as an equality,∫ r̄i

ri

Ḡi (ri)
(
C ′i

(
F̃i (ri)

)
− bi

(
F̃i (ri)

))
f̃i (ri) dri = 0, (61)
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because when Bi(F̃i(ri)) < Ci(F̃i(ri)), the concave hull Ci (·) is a straight line locally, imply-

ing the derivative C ′i (·) = φ̄i (·) is constant. Thus Gi (·) is constant and dGi (·) = 0. Further,∫ ( n∑
i=1

W̄i(t)(φ̄i(ti)− vs)
)
f(t)dt1..dtn ≥

∫ ( n∑
i=1

Wi(t)(φ̄i(ti)− vs)
)
f(t)dt1...dtn

=
n∑
i=1

∫ r̄i

ri

Gi (ri)
(
C ′i

(
F̃i (ri)

)
− vs

)
f̃i (ri) dri

≥
n∑
i=1

∫ r̄i

ri

Gi (ri)
(
bi

(
F̃i (ri)

)
− vs

)
f̃i (ri) dri

=

∫ ( n∑
i=1

Wi (t) (φi (ti)− vs)
)
f (t) dt1..dtn, (62)

where the second inequality follows from (60). Moreover, from (61), we have∫ ( n∑
i=1

W̄i(t)
(
φ̄i (ti)− vs

))
f(t)dt1...dtn =

∫ ( n∑
i=1

W̄i(t) (φi (ti)− vs)
)
f (t) dt1...dtn. (63)

Substituting (63) into the left-hand-side of (62) yields∫ ( n∑
i=1

W̄i (t) (φi (ti)− vs)
)
f (t) dt1...dtn ≥

∫ ( n∑
i=1

Wi (t) (φi (ti)− vs)
)
f(t)dt1...dtn.

Thus, W̄i (·) maximizes the term πs,a in (21). The mechanism in the proposition also maxi-

mizes πs,b by having Mi (r̄i) = 0 for all i. Optimality of the mechanism follows.

Proof of Proposition 4: Observe that if, for some d1 > 0,

d lnxi
d ln vi

∈ (1, 1 + d1) (64)

at all vi ∈ [vi, v̄i] then

xi
vi
vi < xi < xi

(
vi
vi

)1+d1

. (65)

This observation means that for any r∗ ∈
(
xi
vi
, 1
)

(the value of r∗ is unimportant), there

exists a d∗1 > 0, such that for any d1 ∈ (0, d∗1), we have xi
vi
< r∗ for ∀vi ∈ [vi, v̄i]. By (64),

d lnxi
d ln vi

=
dxi
dvi

vi
xi
≤ 1 + d1 ⇔

dxi
dvi
≤ xi
vi

(1 + d1) . (66)

Define d∗∗1 ≡ min
{
d∗1,

1
r∗
− 1
}

. Then, for all d1 ∈ (0, d∗∗1 ), xi
vi
< r∗ and (66) yield dxi

dvi
< 1.
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To proceed further, in (64) let d1 ∈ (0, d∗∗1 ). We have

d

dvi
φi (vi) = 1− dxi

dvi
−

(
d

dvi

∫ vi
vi
vdFi (v)

fi (vi)

)
xi (vi)

v2
i

(
d lnxi(vi)

d ln vi
− 1

)

−

∫ vi
vi
vdFi(v)

fi(vi)

( d

dvi

xi(vi)

v2
i

)(d lnxi(vi)

d ln vi
− 1
)
−

∫ vi
vi
vdFi(v)

fi(vi)

xi(vi)

v2
i

( d

dvi

d lnxi(vi)

d ln vi

)
.

We first show that the absolute values of

∫ vi
vi
vdFi(v)

fi(vi)
and its derivative are both bounded:

|

∫ vi
vi
vdFi (v)

fi (vi)
| ≤ v̄i

minvi {fi (vi)}
≡ B1

and

| d
dvi

∫ vi
vi
vdFi (v)

fi (vi)
| = |vi −

∫ vi

vi

vdFi (v)
f ′i (vi)

f 2
i (vi)

| ≤ v̄i

(
1 + max

vi

{
| f
′
i (vi)

f 2
i (vi)

|
})
≡ B2.

Further, the absolute values of xi
v2i

and its derivative are both bounded:

|xi
v2
i

| < x̄i
v2
i

≡ B3 and
d

dvi

xi
v2
i

=
1

v2
i

dxi
dvi
− 2xi

v3
i

and thus

| d
dvi

xi
v2
i

| < 1

v2
i

+
2x̄i
v3
i

≡ B4.

Thus,

d

dvi
φi (vi) > 1− dxi

dvi
− (B2B3 +B1B4)

(
d lnxi(vi)

d ln vi
− 1

)
−B1B3

(
d

dvi

d lnxi(vi)

d ln vi

)
. (67)

Let ε1 ∈ (0, d∗∗1 ). When d lnxi
d ln vi

∈ (1, 1 + ε1), dxi
dvi

< 1. In addition, by (67), there exists

ε2 > 0 such that when | d
dv

(
d lnxi
d ln vi

)
| < ε2, d

dvi
φi (vi) > 0 at all vi ∈ [vi, v̄i]. Because ri strictly

increases in vi by d lnxi
d ln vi

> 1, φi strictly increases in ri, completing the proof.

Proof of Lemma 3: If the regularity condition is globally violated for bidder i, then Bi (·)

in (31) is convex. Therefore, the concave hull Ci (·) is a straight line on [0, 1].

Sketch of Analysis of Surplus-maximizing mechanisms. The analysis directly follows

that for revenue-maximizing mechanism. Here we define the key notation; substituting into

the analogous arguments for revenue-maximization yields the results.
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Let ηi be bidder i’s contribution to expected social surplus (over the value when the seller

retains the asset):

ηi =

∫
Si

Gi (ti) (vi − xi − vs)fi (ti) dti.

Adding the surplus of vs when the seller retains the asset, total expected surplus is

η =
n∑
i=1

ηi + vs. (68)

We next rewrite ηi in terms of ri using (15) and (19):

ηi =

∫ r̄i

ri

Gi (ri) (κi (ri)− vs) f̃i (ri) dri. (69)

Returning to the original two-dimensional framework, we have

ηi =

∫
S1×...×Sn

(
Wi (t) (κi (ri)− vs)

)
f (t) dt1...dtn

Substituting yields the formulation in (44).

Definition 4 The design problem for surplus maximization is regular if κi (ri) strictly de-

creases over [ri, r̄i] for all i.

Proposition 5 Suppose that the design problem for surplus maximization is regular. Then

the following constitutes a surplus-maximizing equity mechanism:

(i) the winning rule is

Wi (t) =

{
1 if κi (ri) > max {maxj 6=i {κj (rj)} , vs}
0 if κi (ri) < max {maxj 6=i {κj (rj)} , vs}

, (70)

for all i and t.

(ii) the equity-retention rule for the winning bidder is

Qi (t) = κ−1
i

(
max

{
max
j 6=i
{κj (rj)} , vs

})
, (71)

where κ−1
i (·) denotes a bounded inverse of κi (·):

κ−1
i (x) ≡

{
r̄i if x < κi (r̄i)

y ∈ [ri, r̄i] s.t. κi (y) = x if x ∈ [κi (r̄i) , κi (ri)]
. (72)
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In cash auctions, the regularity condition—which mandates that the surplus valuation be

increasing in net valuation—always holds because the surplus valuation is the net valuation.

By contrast, the regularity condition in equity auctions that κi (ri) decrease in ri, need not al-

ways hold. Indeed, in one-dimensional deterministic setting of Che and Kim (2010), we have

Lemma 4 If xi is deterministic of vi and dxi
dvi
∈ (0, 1), then the regularity condition holds

for bidder i if and only if ri is strictly decreasing in vi.

Proof: By dxi
dvi
∈ (0, 1), bidder i’s net valuation strictly increases with vi. Thus net valuation

strictly decreases in ri if and only if ri strictly decreases in vi. The lemma follows.

When the regularity condition is violated for one or more bidders, a surplus-maximizing

mechanism can again be constructed along the lines for the revenue-maximizing mechanism,

defining an adjusted surplus valuation κ̄i (ri) that is constructed via κi (ri) in a similar way

as how φ̄i (ri) is constructed via φi (ri). For any vector of bidder types t, let N (t) be the

set of bidders for whom κ̄i (ri) is both maximal and higher than vs.

Proposition 6 The following constitutes a surplus-maximizing equity mechanism:

(i) the winning rule is

W̄i (t) =

{
1/|N (t) | if i ∈ N (t)

0 if i /∈ N (t)
(73)

for all i and t, and

(ii) the equity-retention rule for the winning bidder is the same as that in part (ii) of

Proposition 5 with κi (ri) replaced by κ̄i (ri).

If the regularity condition for surplus maximization is globally violated for all bidders,

then as with revenue-maximizing mechanisms, pooling can be optimal. That is, the best a

mechanism designer can do is to randomize:

Corollary 7 If the regularity condition for surplus maximization is globally violated for

all bidders, then it maximizes expected surplus to disregard all bids and sell to any bidder

i ∈ arg maxj κ̄j (if κ̄i > vs), asking for equity share 1−r̄i. The bidder always accepts the offer.
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