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Abstract

We treat three problems on a two-dimensional ‘punctured periodic domain’:
we take Ωr = (−L,L)2\rK, where r > 0 and K is the closure of an open con-
nected set that is star-shaped with respect to 0 and has a C1 boundary. We
impose periodic boundary conditions on the boundary of Ω = (−L,L)2, and
Dirichlet boundary conditions on ∂(rK). In this setting we consider the Pois-
son equation, the Stokes equations, and the time-dependent Navier–Stokes
equations, all with a fixed forcing function f , and examine the behaviour of
solutions as r → 0. In all three cases we show convergence of the solutions to
those of the limiting problem, i.e. the problem posed on all of Ω with periodic
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boundary conditions.

1. Introduction

The study of fluid flow around an obstacle is a challenging and interesting
problem in fluid mechanics, and has been the subject of much experimental
and numerical investigation (see, among others, [1, 4, 10, 11, 25, 29, 33, 34]).

The mathematical analysis of the influence of an obstacle on the behaviour
of the flow when the size of the obstacle is small when compared to that of the
reference spatial scale has recently received increased attention. The case of a
single obstacle in a two-dimensional ideal flow was analysed by Iftimie, Lopes
Filho, & Nussenzveig Lopes [13]; then Iftimie et al. [14] and Iftimie & Kelliher
[12] considered the viscous case, Lopes Filho [21] treated bounded domains
with several holes, Lacave [16, 17, 18] considered obstacles that shrink to a
curve. For problems in exterior domains (i.e. extending to infinity) the flow
is usually assumed to vanish at infinity, although the case of flows constant at
infinity has been considered by Lopes Filho, Nguyen, & Nussenzveig Lopes
[22]. A related ‘small body’ problem was considered by Robinson [27], who
treated a simplified model of combustion in which physical particles were
replaced by diffuse but compact regions of influence in the flow. Very recently,
Lu [23] treated the Dirichlet problem in the three-dimensional unit ball with
a shrinking hole. Uniform estimates, as the size of the hole goes to zero,
in W 1,p for any 3/2 < p < 3 and counterexamples that the uniform W 1,p-
estimates do not hold when 1 < p < 3/2 or 3 < p < +∞ are provided. These
estimates were extended by the same author [24] to the Stokes problem in a n-
dimensional bounded domain, showing uniform estimates for any n′ < p < n
and counterexamples for 1 < p < n′ or n < p < +∞. Notice that last two
papers do not consider the two-dimensional case for p = 2.

Here we are interested in the vanishing obstacle problem in a two-dimensional
periodic domain with a particularly simple geometry. More precisely, we are
concerned with periodic flows on the punctured domain

Ωr = (−L,L)2 \Kr, L > 0,

where Kr = rK with r > 0 and K is the closure of an open set that is star-
shaped with respect to 0 and has a C1 boundary, and we study the behaviour
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of the solutions of various models when r tends to zero. Throughout the paper
we refer to the excised compact set Kr as the ‘obstacle’ in keeping with the
ultimate application to problems of fluid flow. An illustration of the domain
is provided in Figure 1.

Kr

K

Ωr

Figure 1: Domain Ωr (greyed).

Our primary motivation for this geometry was the moving ‘tracer particle’
problem considered in two dimensions by Dashti & Robinson [3] and in three
dimensions by Silvestre & Takahashi [28]: given a solid disc/sphere of radius
r moving in the fluid, does the motion of the particle follow that of the fluid in
the limit r → 0? Our aim was to include rotation of the tracer in the 2D case,
which was excluded in [3]. However, in the course of the analysis that follows
we observed the failure of certain uniform elliptic regularity estimates that
are required in both these papers (see Section 2.1). The two-dimensional
case has now been resolved by Lacave & Takahashi [19] for small initial
data and when the density of the solid is independent of r (using maximal
regularity estimates for the Stokes equation). Moreover, assuming that the
density of the rigid body goes to infinity, He & Iftimie [7, 8] were able to
tackle the problem in both dimensions (using a truncation procedure.) The
general case remains open. (We choose a particularly simple geometry and a
somewhat simpler problem in which these uniform estimates fail, but there
is no reason to believe that this has any significant effect of the nature of
this phenomenon.)

In order to clarify the setting and provide some background to these uni-
form elliptic estimates, as well as allowing us to outline the main ideas that
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will then be applied in the more complicated Stokes and time-dependent
Navier–Stokes problems (which have the added component of incompress-
ibility) we first consider the Poisson equation as a model problem. Thus our
initial aim (in Section 2) will be to determine the asymptotic behaviour of
the solution of the following problem when r → 0:

−∆ur = f in Ωr, ur periodic, ur = 0 on ∂Kr. (1.1)

While this problem has a solution for any f ∈ L2(Ωr), the limiting problem,

−∆u = f in Ω = (−L,L)2, u periodic,

only has a solution when ˆ
Ω

f = 0. (1.2)

We will show that when (1.2) holds then the solutions of (1.1) are uniformly
bounded in r in the sense thatˆ

Ωr

|∇ur|2 +

ˆ
Ωr

∣∣∣∣ur −  
Ω

ur

∣∣∣∣2
is uniformly bounded, where

ffl
Ω
u = |Ω|−1

´
Ω
u denotes the average of u over

Ω (note that this is the whole domain and not just Ωr). This is enough to
show that

ur −
 

Ω

ur → u

in H1(Ω) and that u satisfies the limiting equation. If (1.2) does not hold
then the limiting problem has no solution, and in this case it follows that
‖ur‖H1 is unbounded as r → 0.

We remark here, and will return to this later, that we have been unable to
obtain a uniform bound on

ffl
Ω
ur, since the constant in the Poincaré inequality

available on Ωr degrades as r → 0 (see Lemma 2.2).

In Section 3 we obtain similar results for the Stokes problem
−∆ur +∇pr = f in Ωr,

div ur = 0,

ur periodic,

ur = 0 on ∂Kr.
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The main change from the case of the pure Laplacian is that we now have
to deal with divergence-free vector-valued functions. The key technical re-
sult that allows us to do this is a method for approximating divergence-free
periodic functions defined on the whole of Ω by a sequence of divergence-
free functions that satisfy the zero boundary condition on ∂Kr (Lemma 3.4).
Once again, we require that

´
Ω
f = 0. As before, we can find uniform esti-

mates sufficient to show that ur−
ffl

Ω
ur converges to a solution of the limiting

problem, but we are unable to bound the average of ur over Ω.

It would seem that the next natural step would be to consider the sta-
tionary Navier–Stokes equations in Ωr,

−∆ur + (ur · ∇)ur +∇pr = f , ∇ · ur = 0. (1.3)

However, while in the linear problems considered so far bounds on ur−
ffl

Ω
ur

were sufficient to pass to the limit, this is not the case here. Informally, if we
set 〈ur〉 =

ffl
Ω
ur and consider the equation for ũr = ur−〈ur〉 then we obtain

−∆ũr + (ũr · ∇)ũr + (〈ur〉 · ∇)ũr +∇pr = f ,

which contains the additional term (〈ur〉 · ∇)ũr. A uniform bound on 〈ur〉
would enable us to pass to the limit in this term, but we do not currently
have such a bound.

An additional factor that makes this problem different in character from
the others we consider here is that there is no known general uniqueness
result for solutions of (1.3), even on the entire periodic domain. As such, it
is perhaps more natural to consider a perturbation problem (given a solution
of the equation on Ω, investigate the existence of nearby solutions for r
small) than as a limiting problem; or to treat a restricted setting in which
uniqueness results are available (when f is small in an appropriate sense).
For more discussion of this stationary problem we refer to the classical work
of Ladyzhenskaya [20] and Temam [31, 32].

We therefore instead turn in Section 4 to the time-dependent Navier–
Stokes problem, which turns out to be more straightforward and for which
we do not require the use of the Poincaré inequality, since a bound on the
L2 norm follows immediately from the energy inequality (here and in the
following, given any space X of scalar functions, we set X = X2). In this
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case we obtain convergence of ur to the solution u of the periodic Navier–
Stokes equations,

∂tu−∆u + (u · ∇)u +∇p = f , ∇ · u = 0,

where the convergence is strong in L2(0, T ;L2(Ω)) and weak in L2(0, T ;H1(Ω)).
We note that this falls short of L∞ convergence of the velocity field; this is
unsurprising since uniform convergence coupled with the fact that ur = 0 on
∂Kr would imply that the limiting flow was stationary at the origin.

Let us conclude this introduction by noticing that our equations are set
and analysed in dimension 2 for ease of presentation. All the results in this
paper are valid in dimension 3, modulo small modifications due to the absence
of uniqueness result for Navier–Stokes in 3D (see Remark 4.2).

2. Poisson equation

In this section we discuss the asymptotic behaviour of weak solutions for
the Poisson problem 

−∆ur = f in Ωr,

ur periodic,

ur = 0 on ∂Kr.

Let us introduce some notation. Set Ω0 = (−L,L)2 = Ω and Ωr =
(−L,L)2 \Kr, where Kr = rK with r > 0 and K is the closure of an open
set containing 0 and with a C1 boundary. The disc of centre 0 and radius
ζ is denoted by Dζ . We use the subscript ‘per’ on a space X to denote
the restriction to Ω (or to Ωr) of a function that is 2L-periodic on R2 in
both directions and is in Xloc(R2). In this way we define the function spaces
H1

per(Ω) and, for r > 0,

H1
per(Ωr) = the closure of C1

per(Ωr) in H1(Ωr)

and
V0,r = {v ∈ H1

per(Ωr) : v = 0 on ∂Kr}.
Note that any function in V0,r can be extended by zero inside Kr to give a
function in H1

per(Ω); this observation is fundamental to our analysis, and we
will implicitly perform such extension when comparing different V0,r spaces.
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The vanishing obstacle problem for the Poisson equation

−∆ur = f in Ωr, ur ∈ V0,r, (2.1)

consists in determining the asymptotic behaviour of the solution ur when r
tends to 0.

The precise statement of our first convergence result is as follows.

Theorem 2.1. Let f ∈ L2(Ω). For every r > 0 there exists a unique solution
ur ∈ V0,r of the problem

ˆ
Ωr

∇ur · ∇v =

ˆ
Ωr

fv for all v ∈ V0,r. (2.2)

Moreover

a) if
´

Ω
f = 0 then as r → 0

ur −
1

|Ω|

ˆ
Ω

ur → u0 and ∇ur → ∇u0,

where the limits are taken in L2(Ω) and u0 ∈ H1
per(Ω) is the unique

solution of the problemˆ
Ω

∇u0 · ∇v =

ˆ
Ω

fv for all v ∈ H1
per(Ω) (2.3)

that satisfies
´

Ω
u0 = 0.

b) If
´

Ω
f 6= 0 then ‖∇ur‖L2 is unbounded as r → 0.

A few comments are in order.

Note that one can use v = 1 as a test function in (2.3), from which it
follows immediately that there can be no solution of the limiting problem
unless ˆ

Ω

f = 0.

Observe that we do not have convergence of ur itself in L2(Ω). The
main reason for this is that the constant in the Poincaré inequality for the
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punctured domain Ωr tends to degrade as r → 0. We first recall the classical
Poincaré–Wirtinger inequality: there exists a constant C > 0 such that for
any v ∈ H1

per(Ω) ∥∥∥∥v −  
Ω

v

∥∥∥∥
L2(Ω)

≤ C‖∇v‖L2(Ω). (2.4)

Notice that inequality (2.4) is still valid for functions in v ∈ V0,r, and in
particular the constant does not depend on r. However, without subtraction
of the average we have only the following estimate.

Lemma 2.2. Let ζ > 0 be such that Dζ ⊂ K. Take r > 0 such that
rζ < (2−

√
2)L. Then for all v ∈ V0,r

‖v‖L2(Ωr) ≤ c| log(rζ)|‖∇v‖L2(Ωr). (2.5)

Proof. We first notice that we can assume that Kr = Drζ . Indeed, assume
that (2.5) holds for V0,r and Ωr defined using Drζ instead of Kr; then v ∈ V0,r

can be extended by 0 to Kr\Drζ , and this extension is periodic and vanishes
on ∂Drζ . Applying (2.5) to this extension shows that this estimate is also
satisfied by v itself. From hereon in this proof, we therefore assume that
Kr = Dr̃ with r̃ = rζ.

We assume that v ∈ C1
per(Ωr) with v = 0 on ∂Dr̃, with the result for

v ∈ V0,r obtained by a density argument. We extend v periodically outside
Ωr, the assumption that r̃ < (2−

√
2)L meaning that any x with |x| ≤

√
2L

in the extended domain does not lie within one of the additional ‘holes’, see
Figure 1.

At x = ρx̂ (where x̂ = x/|x|), we can write

|v(x)| = |v(ρx̂)− v(r̃x̂)| =
∣∣∣∣ˆ ρ

r̃

d

ds
v(sx̂) ds

∣∣∣∣ ≤ ˆ ρ

r̃

|∇v(sx̂)| ds.

8



Figure 2: Periodic extension of the domain Ωr used in the proof of Lemma 2.2

Then, since D√2L ⊃ Ωr, setting R =
√

2L we have

ˆ
Ωr

|v(x)|2 ≤
ˆ 2π

0

ˆ R

r̃

ρ|v(ρx̂)|2 dρ dθ

≤
ˆ 2π

0

ˆ R

r̃

ρ

(ˆ ρ

r̃

|∇v(sx̂)| ds
)2

dρ dθ

≤
ˆ 2π

0

ˆ R

r̃

ρ

(ˆ ρ

r̃

s−1 ds

)(ˆ ρ

r

s|∇v(sx̂)|2 ds

)
dρ dθ

≤
ˆ 2π

0

ˆ R

r̃

ρ log(ρ/r̃)

(ˆ ρ

r

s|∇v(sx̂)|2 ds

)
dρ dθ

≤
(ˆ R

r̃

ρ log(ρ/r̃) dρ

)(ˆ
D√

2L

|∇v|2 dx

)
,

≤ c| log r̃|‖∇v‖2
L2(Ωr),

using the fact that
´
DR
|∇v|2 ≤ 2

´
Ωr
|∇v|2 since we have extended v perio-

dically outside Ωr.

We note that the fact that the constant in Lemma 2.2 is not independent
of r is not merely an artefact of our method of proof: while it may be possible
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to improve the dependence on r, one cannot remove it. Indeed, consider the
case Kr = Dr and the family of functions ur defined on Ωr by

ur(x) = log(1 + log(ρ/r))

where ρ is distance of x from the origin. This defines a function in V0,r, since
its values on the boundary of Ω agree on opposite faces. Now, certainly

‖ur‖2
L2(Ωr) ≥

ˆ
r≤|x|≤L

|ur(x)|2 dx = 2π

ˆ L

r

ρ(log(1 + log(ρ/r)))2 dρ

= 2πr2

ˆ L/r

1

s(log(1 + log s))2 ds

≥ 2πr2

ˆ L/r

L/2r

s(log(1 + log s))2 ds

≥ 2πr2(L/2r)2 log(1 + log(L/2r))2

=
πL2

2
log(1 + log(L/2r))2,

which is unbounded as r → 0. However,

∂ρur =
1

1 + log(ρ/r)

1

ρ

and so

‖∇ur‖2
L2(Ωr) ≤

ˆ
r≤|x|≤

√
2L

|∂ρur|2 dx = 2π

ˆ √2L

r

1

(1 + log(ρ/r))2

1

ρ
dρ

≤ 2π

ˆ ∞
1

1

s(1 + log s)2
ds <∞.

We now state a preliminary lemma on approximation of functions in
H1

per(Ω) by functions in V0,r, which will be used to pass to the limit.

Lemma 2.3. Given v ∈ H1
per(Ω) there exists a sequence vε ∈ V0,ε such that

vε → v in H1(Ω) as ε→ 0.

Proof. (The proof consists essentially of showing that {0} has zero 2-capacity
in R2, see Heinonen, Kilpeläinen, & Martio [9].)
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Let γ > 0 be such that K ⊂ Dγ. Without loss of generality, we can
assume that 0 < εγ < 1. Let

φε(x) = min(1, (− log(εγ))ν − (− log |x|)ν) , x ∈ Ω\Dεγ,

for ν ∈ (0, 1/2), and φε is extended by 0 in Dεγ and by 1 outside of D1. It is
clear that φε(x) = 1 where

(− log |x|)ν ≤ (− log(εγ))ν − 1⇔ |x| ≥ exp
(
−((− log(εγ))ν − 1)1/ν

)
=: r(ε).

Notice that r(ε)→ 0 as ε→ 0. Thus, using polar coordinates, we have

ˆ
Ω

|∇φε|2 = 2π

ˆ r(ε)

εγ

(
ν(− log ρ)ν−1 × −1

ρ

)2

ρdρ

= 2π

ˆ r(ε)

εγ

ν2(− log ρ)2ν−2 dρ

ρ
= − 2πν2

2ν − 1
(− log ρ)2ν−1

∣∣∣r(ε)
εγ
→ 0 (2.6)

when ε → 0. Moreover φε → 1 a.e. on Ω while remaining bounded by
1. Assume that v ∈ H1

per(Ω) ∩ L∞(Ω). Then by dominated convergence
φεv → v in L2(Ω) as ε → 0. Moreover, ∇(φεv) = (∇φε)v + φε∇v so that,
using v ∈ L∞(Ω) and (2.6) for the first term and the dominated convergence
for the second term, ∇(φεv)→ ∇v in L2(Ω). Hence,

φεv → v in H1
per(Ω) as ε→ 0.

Let v ∈ H1
per(Ω) supposed to be extended by periodicity to R2. Let %n

be a standard mollifier, i.e. %n(x) = n2%(nx) where % is a C∞ function with
support in the unit disc and such that % ≥ 0 and

´
R2 % = 1. Then set

vn(x) = %n ∗ v(x) =

ˆ
R2

%n(y)v(x− y)dy.

It is clear that vn is periodic in x – with the same period as v, smooth (and
thus in L∞(Ω)) and, as n→∞,

vn, ∇vn → v, ∇v in L2(Ω) and L2(Ω)2, respectively.

This allows us to deduce the existence of the required sequence using a di-
agonal argument.
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We remark that we have shown that ∪ε>0V0,ε is dense in H1
per(Ω) in the

strong topology. We are now in a position to prove our first convergence
result.

Proof (Theorem 2.1). For fixed r > 0, the existence and uniqueness of ur
follow from the Lax–Milgram Lemma and Lemma 2.2.

We consider the cases when
´

Ω
f = 0 and

´
Ω
f 6= 0 separately.

a) Assume that
´

Ω
f = 0. We first obtain an estimate for the solution

ur. By taking v = ur in (2.2) and using the Poincaré–Wirtinger inequality
(2.4) one has

‖∇ur‖2
L2 =

ˆ
Ω

|∇ur|2 =

ˆ
Ω

fur

=

ˆ
Ω

f

(
ur −

 
Ω

ur

)
≤ ‖f‖L2

∥∥∥∥ur −  
Ω

ur

∥∥∥∥
L2

≤ C‖f‖L2‖∇ur‖L2 ,

from which it follows that

‖∇ur‖L2 ≤ C‖f‖L2 , (2.7)

with a constant C > 0 independent on r.

Next, define

ũr = ur −
 

Ω

ur.

Then from the bound (2.7) and the Poincaré–Wirtinger inequality (2.4),
‖ũr‖H1(Ωr) is uniformly bounded.

It follows that, up to the extraction of a subsequence, ∇ur = ∇ũr ⇀ ∇u0

and ũr → u0 in L2(Ω). Note that
ˆ

Ω

u0 = lim
r→0

ˆ
Ω

ũr = lim
r→0

ˆ
Ω

(
ur −

 
Ω

ur

)
= 0. (2.8)

Now, we pass to the limit in the weak formulation (2.2). Fix r0 > 0 and
observe that, since K is star-shaped with respect to 0, one has V0,r0 ⊂ V0,r

12



for all r < r0. Thus,
ˆ

Ω

∇ur · ∇v =

ˆ
Ω

fv for all v ∈ V0,r0 .

The weak convergence of ∇ur to ∇u0 in L2(Ω) allows us to pass to the limit
and obtainˆ

Ω

∇u0 · ∇v =

ˆ
Ω

fv for all v ∈ V0,r0 , for all r0 > 0. (2.9)

From Lemma 2.3, given v ∈ H1
per(Ω) there exists a sequence of test functions

vε ∈ V0,ε such that vε → v in H1(Ω). Thus, by (2.9),

ˆ
Ω

∇u0 · ∇vε =

ˆ
Ω

fvε.

Passing to the limit as ε→ 0, it follows that
ˆ

Ω

∇u0 · ∇v =

ˆ
Ω

fv for all v ∈ H1
per(Ω),

as claimed.

Since the limiting problem has a unique solution when one imposes the
zero average condition, it follows that all convergent subsequences must have
the same limit. As a consequence, the original sequence converges without
the need to extract a subsequence.

It remains to show that in fact ∇ur → ∇u0 in L2(Ω) as r → 0. To this
end we show that ‖∇ur‖2

L2 → ‖∇u0‖2
L2 . Since ur −

ffl
Ω
ur → u0 in L2(Ω),

ˆ
Ωr

|∇ur|2 =

ˆ
Ωr

fur =

ˆ
Ω

fur =

ˆ
Ω

f

(
ur −

 
Ω

ur

)
→

ˆ
Ω

fu0.

However, from (2.3) we have
ˆ

Ω

|∇u0|2 =

ˆ
Ω

fu0,

which implies that ˆ
Ω

|∇ur|2 →
ˆ

Ω

|∇u0|2.

13



Coupled with weak convergence this norm convergence implies strong con-
vergence of ∇ur to ∇u0 in L2(Ω).

b) Assume that
´

Ω
f 6= 0. We note here that if

´
Ω
f 6= 0 and one as-

sumes a uniform bound on ‖∇ur‖L2 , then one can follow the above argument
(apart from obtaining the zero average condition (2.8)) to show that there
is a solution of the limiting problem. But as remarked after the statement
of Theorem 2.1, there can be no such solution. It follows that in this case
‖∇ur‖L2 cannot be uniformly bounded as r → 0.

Remark 2.4. We note that ‖∇ur‖L2 increases as r decreases. Indeed, if r′ < r
then V0,r ⊂ V0,r′ . So we can take v = ur in both formulations

ˆ
Ωr

∇ur · ∇v =

ˆ
Ωr

fv and

ˆ
Ωr′

∇ur′ · ∇v =

ˆ
Ωr′

fv

to obtainˆ
Ωr

|∇ur|2 =

ˆ
Ωr

fur and

ˆ
Ωr′

∇ur′ · ∇ur =

ˆ
Ωr′

fur =

ˆ
Ωr

fur.

Thus ˆ
Ωr

|∇ur|2 =

ˆ
Ωr′

∇ur′ · ∇ur

whence
‖∇ur‖2

L2(Ωr) ≤ ‖∇ur′‖L2(Ωr′ )
‖∇ur‖L2(Ωr),

i.e.
‖∇ur‖L2(Ωr) ≤ ‖∇ur′‖L2(Ωr′ )

.

2.1. Failure of ‘uniform elliptic regularity’

The Poisson equation enjoys elliptic estimates on the second derivatives.
Here we describe an example that shows that, for a punctured domain (with
a slightly different geometry to that in (2.1)), such estimates may not be
uniform with respect to the size of the hole. We consider the annulus (‘punc-
tured disc’)

Ωε = D2 \Dε,
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with Dirichlet conditions on the inner and outer boundary. We solve the
Poisson equation in plane polar co-ordinates for radially symmetric solutions,
using ′ for d/dr:

1

r
(ru′)′ = f(r) u(ε) = 0, u(2) = 0.

We take f = 1− (3r/4) so that
´

Ω
f dx =

´ 2π

0

´ 2

0
rf(r) dr dθ = 0.

Then

(ru′)′ = r − 3r2

4
⇒ ru′(r) =

r2

2
− r3

4
+ C

and so

u′(r) =
r

2
− r2

4
+
C

r
.

Integrating again we obtain

u(r) =
r2

4
− r3

12
− ε2

4
+
ε3

12
+ C log(r/ε),

and the boundary condition at r = 2 implies that

C =
1

log(2/ε)

[
−1

3
+
ε2

4
− ε3

12

]
.

Rewrite the governing equation as

u′′ +
1

r
u′ = f.

Then ‖u′′‖L2 is bounded by ‖f‖L2 + ‖r−1u′‖L2 . So consider

u′(r)

r
=

1

2
− r

4
− C

r2
.

As the first two terms are in L2, we need only consider the final term. Noting
that

‖r−1u′‖2
L2 = 2π

ˆ 2

ε

r(r−1u′)2 ∼ 2πC2

ˆ 2

ε

1

r3
∼ C2ε−2,

so ‖u‖Ḣ2 ∼ ε−1(− log ε)−1 with log corrections.

One can find a similar example in the three-dimensional case, namely
f(r) = 1− 5r2/3 on the spherical shell between r = ε and r = 1.

The lack of such a bound unfortunately appears to invalidate the argu-
ments treating a moving disc in [3] and a moving sphere in [28].
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3. The Stokes equations

In this section we extend the results of the previous section to the Stokes
problem

−∆ur +∇pr = f in Ωr, ur|∂Kr = 0, divur = 0.

First we introduce the required spaces of vector fields. Recall that, given
a space of scalar functions X, we write X for the two-component space X×X.
Define for r ≥ 0

H1
per(Ωr) = the closure of C1

per(Ωr) in H1(Ωr),

H1
per,σ(Ωr) = {v ∈ H1

per(Ωr) : div v = 0 in Ωr},

V0,r = {v ∈ H1
per(Ωr) : v = 0 on ∂Kr},

and
V0,r,σ = {v ∈ H1

per,σ(Ωr) : v = 0 on ∂Kr}.
We observe that any function belonging to V0,r or V0,r,σ can be extended by
zero inside of Kr to give a function in H1

per(Ω) or H1
per,σ(Ω), respectively.

We will determine the asymptotic behaviour of weak solutions to the
following Stokes problem when r → 0 :

−∆ur +∇pr = f in Ωr, ur ∈ V0,r,σ.

Our second convergence result is as follows. We use a colon in the left-
hand side of (3.1) to denote summation in both indices,

∇u : ∇v =
2∑

i,j=1

(∂iuj)(∂ivj).

Theorem 3.1. Let f ∈ L2(Ω). For every r > 0 there exists a unique solution
ur ∈ V0,r,σ of the problem

ˆ
Ωr

∇ur : ∇v =

ˆ
Ωr

f · v for all v ∈ V0,r,σ. (3.1)

Moreover
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a) if
´

Ω
f = 0 then as r → 0

ur −
1

|Ω|

ˆ
Ω

ur → u0 and ∇ur → ∇u0,

where the limits are taken in L2(Ω) and u0 ∈ H1
per,σ(Ω) is the unique

solution of the problem

ˆ
Ω

∇u0 : ∇v =

ˆ
Ω

f · v for all v ∈ H1
per,σ(Ω) (3.2)

that satisfies
´

Ω
u0 = 0;

b) if
´

Ω
f 6= 0 then ‖∇ur‖L2 is unbounded as r → 0.

Note that if we set v = (1, 0) and v = (0, 1) as test functions in (3.2),
then one can see immediately that for

ˆ
Ω

f 6= 0

a solution cannot exist.

The only difference from the Poisson problem is that we now have to ap-
proximate functions in H1

per(Ω) by functions in V0,r,σ, i.e. we must incorporate
the divergence-free condition. If we have such approximating functions then
we can use the same argument as before to show convergence of solutions
to those of the limiting problem. Indeed, the Poincaré inequalities work the
same way as before and if

´
Ω
f = 0 then

‖∇ur‖L2 ≤ C‖f‖L2 , ∀r > 0,

where C is a constant independent of r.

To deal with the divergence-free issue, we consider the following diver-
gence problem for g ∈ L2(Ω), and

´
Ω
g = 0:{

divh = g in Ω,

h ∈ H1
0(Ω).

(3.3)
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When Ω is star-shaped with respect to every point of DR(x0) := x0 + DR

with DR(x0) ⊂ Ω, the existence of a solution h of this problem is proved in
[6, Lem. III.3.1] together with the inequality

‖h‖H1
0(Ω) ≤ C‖g‖L2(Ω),

where the constant C depends on R and the diameter of Ω. Note that the
divergence problem does not have a unique solution, since by adding any
divergence-free function that vanishes on the boundary to the function h one
would get another solution. Nevertheless, for more general bounded domains,
for instance, those satisfying the cone condition, the following result is true
(cf. [6, Thm III.3.1, Rmk. III.3.1]).

Theorem 3.2. Let Ω be a bounded domain in R2 such that Ω = ∪nj=1Uj,

where each Uj is star-shaped with respect to some open disc Dj with Dj ⊂ Uj.
Then, given g ∈ L2(Ω) with

´
Ω
g = 0, there exists at least one solution h to

(3.3) satisfying
‖h‖H1

0(Ω) ≤ C∗C‖g‖L2(Ω),

where C depends on n, the diameter of Ω and the smallest radius of the discs
Dj. The constant C∗ is the maximum of

C1 = 1 +

(
|U1|
|F1|

)1/2

and

Ck =

(
1 +

(
|Uk|
|Fk|

)1/2
)

k−1∏
i=1

(
1 +

(
|Ui \ Ui|
|Fi|

)1/2
)
, k ≥ 2,

where Ui = ∪ns=i+1Us and Fi = Ui ∩ Ui.

We are going to apply this theorem to the domain Ωε. Strictly, Theorem
3.2 applies to Ωε with Dirichlet boundary conditions on the lateral bound-
aries, but since the resulting function h belongs to H1

0 (Ωε), it can trivially
be extended periodically to produce a function in H1

per(Ωε).

Remark 3.3. It is not difficult to see that the constant in the inequalities can
be bounded independently of ε, as follows. Since ∂K is C1, we can find a
covering (U0, . . . , UN) of Ω by open sets, constructed by joining points on ∂Ω
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to 0, such that each Ui\K is star-shaped with respect to all points in a disc
Di (see Figure 3), and Ui ∩ (∪Nj=i+1Uj) has a non-zero area. For ε ∈ (0, 1)
set U ε

i = Ui\Kε. Since K is star-shaped with respect to 0, the open sets
(U ε

i )i=0,...,N cover Ωε, and each U ε
i is star-shaped with respect to Di (not

depending on ε). Moreover, the areas |U ε
i ∩ (∪Nj=i+1U

ε
j )| are bounded above

by the areas corresponding to ε = 1. Therefore, we see that the constants in
Theorem 3.2 can be bounded independently of ε, as claimed.

Ωε

D0

Kε

K

D1

U0

U1

Figure 3: Two sets U0 (greyed) and U1 (dashed boundary) to illustrate that the constant
in Theorem 3.2 can be taken to be bounded independently of ε.

We now prove the required lemma on the approximation of functions in
H1

per,σ(Ω) by functions in V0,ε,σ.

Lemma 3.4. If v ∈ H1
per,σ(Ω) then there exists a sequence vε ∈ V0,ε,σ such

that
vε → v in H1(Ω) as ε→ 0.

Proof. Let φε be the function introduced in the proof of Lemma 2.3. We
first assume that v ∈ H1

per,σ(Ω)∩L∞(Ω). Then for ε small φεv ∈ V0,ε. Since
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div(v) = 0 it follows
div(φεv) = ∇φε · v.

Moreover, ˆ
Ωε

∇φε · v =

ˆ
Ωε

div(vφε) = 0.

Noting that also that ∇φε ·v belongs to L2(Ω), it follows that it satisfies the
conditions required by Theorem 3.2, and so the divergence problem{

divhε = −∇φε · v in Ωε,

hε ∈ H1
0(Ωε),

has a solution hε satisfying

‖hε‖H1
0(Ωε) ≤ C‖∇φε · v‖L2(Ωε),

where C depends only on p and Ω. Setting vε = hε + φεv it is clear that
vε ∈ V0,ε,σ and, by Lemma 2.3, recalling that ∇φε → 0 in L2(Ω)2 we obtain

vε → v in H1(Ω) as ε→ 0.

It remains only to prove that a function in H1
per,σ(Ω) can be approximated by

functions in H1
per,σ(Ω)∩L∞(Ω) which will allow us to conclude via a diagonal

argument.

Let v ∈ H1
per,σ(Ω) supposed to be extended by periodicity to R2. Let %n

be a standard mollifier, i.e. %n(x) = n2%(nx) where % is a C∞ function with
support in the unit disc and such that

% ≥ 0 ,

ˆ
R2

% = 1.

Then set

vn(x) = %n ∗ v(x) =

ˆ
R2

%n(y)v(x− y)dy.

It is clear that vn is periodic in x – with the same period as v – divergence
free, smooth (and thus in L∞(Ω)) and, as n→∞,

vn, ∇vn → v, ∇v in L2(Ω) and L2(Ω)2, respectively.

This completes the proof.
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To prove Theorem 3.1 we essentially recapitulate the proof of Theorem
2.1 in this new setting.

Proof (Theorem 3.1). Define

ũr = ur −
 

Ω

ur.

Then from the Poincaré–Wirtinger inequality, ‖ũr‖H1(Ωr) is uniformly bounded.
Therefore for a subsequence ∇ur = ∇ũr ⇀ ∇u0 in H1(Ω) and ũr → u0 in
L2(Ω), where u0 satisfies

´
Ω
u0 = 0.

For a fixed r0, ∀r < r0 one has V0,σ,r0 ⊂ V0,σ,r. Thus

ˆ
Ω

∇ur : ∇v =

ˆ
Ω

f · v for all v ∈ V0,σ,r0 .

Passing to the limit in r we obtain

ˆ
Ω

∇u0 : ∇v =

ˆ
Ω

f · v for all v ∈ V0,σ,r0 . (3.4)

Let v ∈ H1
per,σ(Ω) and let vε be the approximating sequence from Lemma

3.4. Then for ε ≤ r0 we have
ˆ

Ω

∇u0 : ∇vε =

ˆ
Ω

f · vε

and passing to the limit in ε we obtain

ˆ
Ω

∇u0 : ∇v =

ˆ
Ω

f · v for all v ∈ H1
per,σ(Ω)

as required. (This is (3.2).)

Since the limiting problem has a unique solution when one imposes the
zero average condition, it follows that all convergent subsequences must have
the same limit. As a consequence, the whole original sequence converges
toward u0.
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To see that∇ur → ∇u0 in L2(Ω) we show that ‖∇ur‖2
L2(Ω) → ‖∇u0‖2

L2(Ω).

Since ur −
ffl

Ω
ur → u0 in L2(Ω),

ˆ
Ωr

|∇ur|2 =

ˆ
Ωr

f · ur =

ˆ
Ω

f · ur =

ˆ
Ω

f ·
(
ur −

 
Ω

ur

)
→

ˆ
Ω

f · u0.

But from (3.2) we have
ˆ

Ω

|∇u0|2 =

ˆ
Ω

f · u0,

which implies that ˆ
Ω

|∇ur|2 →
ˆ

Ω

|∇u0|2.

Coupled with weak convergence this implies strong convergence of ∇ur to
∇u0 in L2(Ω).

4. The time-dependent Navier–Stokes equations

In this section we tackle the vanishing obstacle problem for the Navier–
Stokes equations. The corresponding problem in a two-dimensional exterior
domain (i.e. R2 \Kr) was analysed in [14] with the initial condition for the
velocity corresponding to a fixed initial vorticity (independent of r). Here,
by considering a periodic domain and suitable initial data we provide a less
technical proof by using arguments along the lines of the previous sections.
Let us observe that the setting here is simpler due to the fact that the velocity
is bounded in L2.

We consider weak solutions to the following Navier–Stokes problem

∂tur −∆ur + (ur · ∇)ur +∇pr = f in Ωr × (0,∞),

divur = 0 in Ωr × (0,∞),

ur = 0 in ∂Kr × (0,∞),

periodic,

ur(0) = u0
r in Ωr,

(4.1)

and show that they converge to periodic solutions of the equations on Ω.
Note that in this section we do not require that

´
Ω
f = 0.
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We introduce the spaces

Hr,σ = the closure of {v ∈ C1
per(Ωr) : v = 0 on ∂Kr, div v = 0 in Ωr}

in L2(Ωr)

and
Hσ = H0,σ = {v ∈ L2

per(Ω) : div v = 0}.

We can now prove our convergence result for time-dependent Navier–
Stokes solutions.

Theorem 4.1. Let T > 0, u0
r ∈ Hr,σ and f ∈ L2((0, T ) × Ω). For every

r > 0 there exists a unique weak solution ur of problem (4.1), i.e. a unique
ur ∈ L2(0, T ;V0,r,σ) ∩ L∞(0, T ;Hr,σ) with ∂tur ∈ L2(0, T ;V′0,r,σ), such that

〈∂tur,v〉+

ˆ
Ωr

∇ur : ∇v +

ˆ
Ωr

[(ur · ∇)ur] · v =

ˆ
Ωr

f · v

for all v ∈ V0,r,σ, (4.2)

ur(0) = u0
r. (4.3)

In addition, ur satisfies the energy inequality

‖ur(t)‖2
L2(Ωr) +

ˆ t

0

‖∇ur‖2
L2(Ωr) ≤ C(T )

(
‖u0

r‖2
L2(Ωr) +

ˆ t

0

‖f‖2
L2(Ωr)

)
. (4.4)

Furthermore, if u0
r ⇀ u0 in L2(Ω) as r → 0, then

ur → u strongly in L2(0, T ;Hσ) and weakly in L2(0, T ;H1
per,σ(Ω)),

where u is the unique weak solution of the Navier–Stokes problem

〈∂tu,v〉+

ˆ
Ω

∇u : ∇v +

ˆ
Ω

[(u · ∇)u] · v =

ˆ
Ω

f · v for all v ∈ H1
per,σ(Ω),

u(0) = u0.

Remark 4.2 (Dimension 3). This theorem also holds in dimension 3, modulo
the following modifications: ur and u are no longer ensured to be unique,
and the convergence ur → u only holds up to a subsequence as r → 0.
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Proof. The proof of existence of weak solutions follows by using the Galerkin
method and, since we are in dimension two, the uniqueness is also standard.
The energy inequality, which follows formally from the differential inequality

∂t‖ur‖2
L2(Ωr) + 2‖∇ur‖2

L2(Ωr) ≤ ‖f‖2
L2(Ω) + ‖ur‖2

L2(Ωr)

using the Gronwall lemma, follows rigorously from the same limiting Galerkin
procedure, with an energy inequality obtained for each approximation. (See
Constantin & Foias [2], Galdi [5], or Robinson [26], for example.)

We split the proof of convergence into three steps. Briefly, we will obtain
estimates for the solution ur independent of r, show that ur converges to a
limit in various senses, and show this is sufficient to pass to the limit in the
weak formulation of the problem.

Step 1: Estimates. From the energy inequality (4.4) we already know that

ur is bounded in L∞(0, T ;Hσ) ∩ L2(0, T ;H1
per,σ(Ω)) (4.5)

uniformly for r > 0. Recall that ur has been extended by zero inside Kr.

We need some strong convergence in order to pass to the limit in the
nonlinear term. To this end, we first estimate the time derivative of ur from
(4.2). Observe that

ˆ
Ωr

[(ur · ∇)ur] · v = −
ˆ

Ωr

[(ur · ∇)v] · ur, for all v ∈ V0,r,σ.

Thus, for any v ∈ V0,r,σ

|〈∂tur,v〉| =
∣∣∣−ˆ

Ωr

∇ur : ∇v +

ˆ
Ωr

[(ur · ∇)v] · ur +

ˆ
Ωr

f · v
∣∣∣

≤ C(‖∇ur‖L2(Ω) + ‖ur‖L2(Ω)‖ur‖H1(Ω) + ‖f‖L2(Ω))‖v‖H1(Ω)

≤ C(‖ur‖H1(Ω) + ‖f‖L2(Ω))‖v‖H1(Ω), a.e. t, (4.6)

where we have used the interpolation inequality

‖u‖L4(Ω) ≤ C‖u‖
1
2

L2(Ω)‖u‖
1
2

H1(Ω)

and that ur is uniformly bounded in L∞(0, T ;Hσ).
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Next, we claim that

‖ur(·+ h)− ur(·)‖2
L2(0,T−h;L2(Ω)) ≤ Ch.

Indeed,

‖ur(·+ h)− ur(·)‖2
L2(0,T−h;L2(Ω))

=

ˆ T−h

0

〈ur(t+ h)− ur(t),ur(t+ h)− ur(t)〉dt

=

ˆ T−h

0

〈
ˆ t+h

t

∂tur(s)ds,ur(t+ h)− ur(t)〉dt

=

ˆ T−h

0

ˆ t+h

t

〈∂tur(s),ur(t+ h)− ur(t)〉dsdt.

Note that we have used that
´

Ωr
w · v = 〈w,v〉 for w ∈ Hr,σ and v ∈ V0,r,σ.

As ur(t + h) − ur(t) ∈ V0,r,σ a.e. t, we can use estimate (4.6). Thus, by
applying Young inequality and Fubini Theorem, we arrive at

‖ur(·+ h)− ur(·)‖2
L2(0,T−h;L2(Ω))

≤
ˆ T−h

0

ˆ t+h

t

(‖ur(s)‖H1(Ω) + ‖f(s)‖L2(Ω))‖ur(t+ h)− ur(t)‖H1(Ω)dsdt

≤
ˆ T−h

0

ˆ t+h

t

(‖ur(s)‖2
H1(Ω) + ‖f(s)‖2

L2(Ω)

+ ‖ur(t+ h)‖2
H1(Ω) + ‖ur(t)‖2

H1(Ω))dsdt

≤ (‖f‖2
L2(0,T ;L2(Ω)) + 3‖ur‖2

L2(0,T ;H1(Ω)))h

≤ Ch

where C is independent of r. The claim is proved.

Step 2: Convergence of ur. Since ur is bounded in L∞(0, T ;L2(Ω)),

‖ur(·+ h)− ur(·)‖L2(0,T−h;L2(Ω)) → 0 as h→ 0 uniformly in r,

and H1
per,σ(Ω) ⊂⊂ Hσ, we can apply Theorem 3 from [30, p. 80] and conclude

that
ur is relatively compact in L2(0, T ;Hσ).
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Hence, up to a subsequence, it holds

ur ⇀ u in L2(0, T ;H1
per,σ(Ω)) and

ur → u in L2(0, T ;Hσ)

By interpolation and the Hölder inequality,

ˆ T

0

‖ur − u‖2
L4(Ω) ≤ C

ˆ T

0

‖ur − u‖L2(Ω)‖ur − u‖H1(Ω)

≤ C
(ˆ T

0

‖ur − u‖2
L2(Ω)

) 1
2
.

Thus, we infer in addition that

ur → u in L2(0, T ;L4(Ω)). (4.7)

Step 3: Passage to the limit in the weak formulation. By using
that, for a fixed r0, ∀r < r0 one has V0,r0,σ ⊂ V0,r,σ, multiplying (4.2) by
ξ ∈ C∞0 [0, T ) and integrating in time, we have

−
ˆ T

0

ˆ
Ω

ur · vξ′ +
ˆ T

0

ˆ
Ω

∇ur : ∇vξ −
ˆ T

0

ˆ
Ω

[(ur · ∇)v] · urξ

=

ˆ T

0

ˆ
Ω

f · vξ +

ˆ
Ω

u0
r · vξ(0)

for all v ∈ V0,r0,σ and ξ ∈ C∞0 [0, T ).

The weak convergences are sufficient to pass the limit in the linear terms.
To show the convergence of the nonlinear term, we re-write

ˆ T

0

ˆ
Ω

[(ur · ∇)v] · urξ − [(u · ∇)v] · uξ

=

ˆ T

0

ˆ
Ω

[((ur − u) · ∇)v] · urξ + [(u · ∇)v] · (ur − u)ξ.

We prove that the first term on the right-hand side goes to zero; the conver-
gence of the second term is proved similarly. By using the Hölder inequality
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in space and then in time, we have∣∣∣ˆ T

0

ˆ
Ω

[((ur − u) · ∇)v] · urξ
∣∣∣

≤
ˆ T

0

‖ur − u‖L4(Ω)‖∇v‖L2(Ω)‖ur‖L4(Ω)‖ξ‖L∞(0,T )

≤ C
(ˆ T

0

‖ur − u‖2
L4(Ω)

) 1
2
(ˆ T

0

‖ur‖2
H1(Ω)

) 1
2
,

where we have used the embedding H1(Ω) ⊂ L4(Ω). The convergence follows
from convergence (4.7) and estimate (4.5).

Passing to the limit in r we obtain

−
ˆ T

0

ˆ
Ω

u · vξ′ +
ˆ T

0

ˆ
Ω

∇u : ∇vξ −
ˆ T

0

ˆ
Ω

[(u · ∇)v] · uξ

=

ˆ T

0

ˆ
Ω

f · vξ +

ˆ
Ω

u0 · vξ(0)

for all v ∈ V0,r0,σ and ξ ∈ C∞0 [0, T ).

Next, we argue as in the Stokes problem by using the approximation from
Lemma 3.4. Given v ∈ H1

per,σ(Ω) there exist vε ∈ V0,ε,σ such that vε ⇀ v in
H1

per,σ(Ω). Thus, for ε ≤ r0 one has

−
ˆ T

0

ˆ
Ω

u · vεξ′ +
ˆ T

0

ˆ
Ω

∇u : ∇vεξ −
ˆ T

0

ˆ
Ω

[(u · ∇)vε] · uξ

=

ˆ T

0

ˆ
Ω

f · vεξ +

ˆ
Ω

u0 · vεξ(0).

Passing to the limit in ε we get

−
ˆ T

0

ˆ
Ω

u · vξ′ +
ˆ T

0

ˆ
Ω

∇u : ∇vξ −
ˆ T

0

ˆ
Ω

[(u · ∇)v] · uξ

=

ˆ T

0

ˆ
Ω

f · vξ +

ˆ
Ω

u0 · vξ(0) (4.8)

for all v ∈ H1
per,σ(Ω) and ξ ∈ C∞0 [0, T ).
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In particular, since u ∈ L2(0, T ;H1
per,σ(Ω)) ∩ L∞(0, T ;Hσ) we can take

ξ ∈ C∞0 (0, T ) in (4.8) and deduce that ∂tu ∈ L2(0, T ; (H1
per,σ(Ω))′), whence

u satisfies

〈∂tu,v〉+

ˆ
Ω

∇u : ∇v +

ˆ
Ω

[(u · ∇)u] · v =

ˆ
Ω

f · v

for all v ∈ H1
per,σ(Ω).

It remains only to prove that u(0) = u0. To see this, multiply the previous
equality by ξ ∈ C∞0 [0, T ) and integrate in time, to obtain

−
ˆ T

0

ˆ
Ω

u · vξ′ +
ˆ T

0

ˆ
Ω

∇u : ∇vξ −
ˆ T

0

ˆ
Ω

[(u · ∇)v] · uξ

=

ˆ T

0

ˆ
Ω

f · vξ +

ˆ
Ω

u(0) · vξ(0)

for all v ∈ H1
per,σ(Ω) and ξ ∈ C∞0 [0, T ). Comparing with (4.8) we conclude

that u(0) = u0. Notice also that u ∈ C([0, T ];Hσ).

Since the limiting problem has a unique solution, it follows that all con-
vergent subsequences must have the same limit. As a consequence, the whole
original sequence converges toward u.

5. Conclusions

We have analysed three models in a simple but unusual geometry, the
‘punctured periodic domain’, showing that the influence of the obstacle Kr

evaporates in the limit as r → 0.

Some interesting open problems remain. While the lack of a bound on the
average of the solution ur over Ω (in both the Poisson and Stokes problems)
that is uniform in r appears initially to be only a mathematical curiosity,
such a bound is central to tackling the stationary Navier–Stokes problem in
this geometry.

The fact that there is no ‘uniform elliptic regularity’ for the Laplacian
or Stokes operator in this geometry means that the important ‘vanishing
tracer’ problem (cf. [3, 28]) also remains open. Recently, Lacave & Takahasi
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[19] obtained a partial result in the two-dimensional case assuming that the
density of the solid is independent of r. They employed some optimal Lp–Lq

decay estimates of the semigroup associated to the fluid-rigid body system.
Another recent result in the two-dimensional and three-dimensional cases
was given by He & Iftimie [7, 8] where was considered the diameter of the
rigid body going to zero, that the initial velocity has bounded energy, and
that the density of the rigid body goes to infinity.
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