
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/119885                        
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/217410435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/119885
mailto:wrap@warwick.ac.uk


1 
 

Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane 

Fluidity and Cholesterol 

 

 

 

 

Muhammad Hasan†, Dharmesh Patel†, Natalie Ellis‡, Steven P. Brown ‡, Józef R. Lewandowski†, 

and Ann M. Dixon†*  

 

 

 

Running Title: Modulation of Neu transmembrane dimer by cholesterol  

 

 

 

†Department of Chemistry and ‡Department of Physics, University of Warwick, Coventry, CV4 7AL, 

UK.     

 

*To whom correspondence should be addressed: Dr Ann Dixon, Department of Chemistry, University 

of Warwick, Coventry, CV4 7AL, UK, Telephone: +44 2476 150037; FAX: +44 2476 524112; email: 

ann.dixon@warwick.ac.uk, Orcid ID: https://orcid.org/0000-0002-5261-304X  

mailto:ann.dixon@warwick.ac.uk


2 
 

ABSTRACT. 

The activation mechanism of the ErbB family of receptors is of considerable medical 

interest as they are linked to a number of human cancers, including an aggressive form of breast 

cancer. In the rat analogue of the human ErbB2 receptor, referred to as Neu, a point mutation 

in the transmembrane domain (V664E) has been shown to trigger oncogenic transformation. 

While the structural impact of this mutation has been widely studied in the past to yield models 

for the active state of the Neu receptor, little is known about the impact of cholesterol on its 

structure. Given previous reports of the influence of cholesterol on other receptor tyrosine 

kinases (RTKs), as well as the modulation of lipid composition in cancer cells, we wished to 

investigate how cholesterol content impacts the structure of the Neu transmembrane domain. 

We utilised high-resolution magic angle spinning solid-state NMR to measure 13C-13C coupling 

of selectively-labelled probe residues in the Neu transmembrane domain in lipid bilayers 

containing cholesterol. We observe inter-helical coupling between residues that support helix-

helix interactions on both dimerization motifs reported in the literature (A661-XXX-G665 and 

I659-XXX-V663). We further explore how changes in cholesterol concentration alter 

transmembrane domain interactions and the properties and mechanics of the bilayer. We 

interpret our results in light of previous studies relating RTK activity to cholesterol enrichment 

and/or depletion, and propose a novel model to explain our data that includes the recognition 

and binding of cholesterol by the Neu transmembrane domain through a putative cholesterol 

recognition/interaction amino acid consensus sequence.   

 

 

KEYWORDS. Neu oncogene; receptor tyrosine kinase; cholesterol-recognition; solid-state 

NMR; membrane bilayers.  
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INTRODUCTION. 

The ErbB family of receptor tyrosine kinases (RTKs) play a vital role in cardiac, 

neurological and endocrine systems (Bublil and Yarden 2007). The activation mechanism of 

this family of receptors is of considerable medical interest because mutations and deletions that 

result in aberrant signalling have been identified in a number of human tumours (Holbro et al. 

2003; Lemmon and Schlessinger 2010). The constitutive activity of mutant forms of the 

ErbB2/Her2 receptor in particular have been implicated in a very aggressive form of breast 

cancer, which forms about 30% of all human breast cancers (Mitri et al. 2012), and in many 

other cancers such as ovarian, stomach, bladder, salivary, and lung carcinomas (Tan and Yu 

2007). RTKs are thought to be activated through dimerization of their intracellular tyrosine 

kinase domains following (a) ligand binding to the extracellular domain or (b) lateral 

interactions of the transmembrane domains (TMDs). One mutation in human ErbB2 known to 

lead to abnormal receptor activation is the V659E mutation in the TMD of the protein (Serra et 

al. 2013; Yamamoto et al. 2014; Wang et al. 2015), shown in Figure 1A. 

The sequence of the rat homologue of this receptor, often referred to as Neu, has a 

highly conserved sequence and undergoes oncogenic transformation following a V664E 

mutation in its TMD (to create the mutant known as Neu*, shown in Figure 1A) that leads to 

activation of its catalytic kinase domain (Bargmann et al. 1986; Bargmann and Weinberg 

1988a, b; Weiner et al. 1989). Extensive biochemical and biophysical investigation of Neu 

structure and interactions over the past thirty years have yielded two alternate models 

explaining the influence of the V664E substitution on receptor activity. The first is that the 

presence of a Glu residue modulates the helicity, oligomeric state, and/or insertion of the TMD 

in the membrane bilayer (Yarden and Schlessinger 1987; Schlessinger 2002; Endres et al. 

2013) thus impacting protein-protein and/or protein-lipid interactions that stabilize the active 

(dimeric) form of the receptor. The second model states that the presence of a Glu residue 



4 
 

modulates the ability of the oligomeric (e.g. dimeric) TMD to rotate between different “active” 

and “inactive” conformational states (Moriki et al. 2001; Tao and Maruyama 2008; Beevers et 

al. 2010; Maruyama 2015; Purba et al. 2017). There is strong and convincing evidence for both 

models, making it challenging to establish a consensus view on the molecular impact of the 

V664E mutation.  

The diverging results mentioned above may be explained if one considers that the 

membrane environment can exert a large influence over the structural features of the Neu TMD, 

leading to a variety of behaviours depending on the composition of the membrane in which it 

is studied. In fact, this was reported in 1998 by Jones and co-workers (Jones et al. 1998) for 

the Neu TMD in the absence and presence of the V664E mutation. This solid-state deuterium 

nuclear magnetic resonance (NMR) study introduced the idea that the Neu TMD may be 

sensitive to the presence of cholesterol in particular, reporting an enhancement in peptide 

immobilisation (which they linked to oligomer formation) in the presence of 33 mol% 

cholesterol. A molecular dynamics study of the closely related ErbB2 protein TMD also 

proposed a central role for cholesterol-protein interactions in a conformational switch from one 

dimeric packing arrangement to another (Prakash et al. 2011). The influence of cholesterol on 

kinase activity has been observed for other receptor tyrosine kinases, including the epidermal 

growth factor receptor (EGFR) (Ge et al. 2001; Pike and Casey 2002), the insulin receptor 

(Taghibiglou et al. 2009; Fox et al. 2011), and vascular endothelial growth factor receptor-2 

(VEGFR-2) (Labrecque et al. 2003). In these examples, depletion of cholesterol has largely 

been shown to lead to enhanced receptor activation and increased kinase activity through 

proposed disruption of lipid rafts in vivo. Taken together, these studies suggest an intriguing 

link between RTK TMDs, RTK activity, and cholesterol, but a molecular level description of 

these interactions is still lacking. 
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In this work, we have utilised high-resolution magic angle spinning (MAS) NMR 

spectroscopy to understand the nature of the Neu* TMD structure in the presence and absence 

of cholesterol in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers. Solid-state 

NMR facilitates collection of atomic-resolution structural information for peptides and proteins 

residing in lipid bilayers, as opposed to detergent micelles, detergent/lipid mixtures (bicelles) 

or organic solvents.  Using selective isotopic labels, we have observed inter-helical coupling 

between residues that support the occupation of both structural models proposed in DMPC 

bilayers containing 5% cholesterol – suggesting that in synthetic membranes, the V664E 

mutation is not preventing access to one interaction mode as previously proposed. To our 

knowledge, this is the first time this has been demonstrated in a synthetic bilayer containing 

cholesterol for this RTK. We further explore the effect of cholesterol concentration on 

transmembrane domain interactions in Neu*, and how cholesterol and bilayer fluidity / phase 

may disrupt key protein-protein contacts, lateral mobility and dynamics of bilayer constituents. 

We interpret our results in light of previous studies relating RTK activity to cholesterol 

enrichment and/or depletion, and propose a novel model to explain our data that includes the 

recognition and binding of cholesterol by the Neu* TMD through a putative cholesterol 

recognition sequence.   

 

MATERIALS AND METHODS. 

Peptide Synthesis and Purification. 

Four peptides corresponding to the transmembrane domain of the oncogenic rat Neu* 

receptor with the sequence RASWVTFIIATVEGVLLFLILVVVVGILIKRRR were 

synthesised using solid phase 9-fluorenylmethyl carbamate (FMOC) chemistry at the Yale 

University W.M. KECK Facility (New Haven, CT, USA). Each peptide contained a different 

uniformly 13C and 15N-labelled amino acid as summarized in Table 1. The N-terminus of each 
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peptide was acetylated and the C-terminus amidated to mimic the peptide bonds found in the 

parent sequence. Peptides were purified using reverse-phase high-performance liquid 

chromatography (HPLC) equipped with a semi-preparative Jupiter C4 5µm (300 Å, 250 × 10.0 

mm) reverse-phase HPLC column (Phenomenex, Macclesfield, Cheshire, UK) connected to a 

purpose built two pump HPLC system (Jasco UK, Great Dunmow, Essex, UK) at a flow rate 

of 1.5 mL/min. A linear gradient constituting water and isopropanol (30 to 100% IPA) was 

employed. The presence and purity of the peptide of interest was determined using a Bruker 

micrOTOF mass spectrometer. Spectra were recorded in positive ion mode, measuring between 

500 and 3000 m/z (mass/charge) for an average of 1.5 minutes. The spectra collected over this 

time were averaged and deconvoluted using DataAnalysis v.3.3 by Bruker Daltonics, UK. Pure 

fractions were identified, pooled and lyophilised until required. 

 

Vesicle Preparation. 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, ~20-25 mg) was dissolved in 

trifluoroethanol (TFE) and combined with chloroform-solubilized cholesterol in a round-

bottomed flask to yield samples that contained cholesterol at 0%, 5%, 15%, and 30% of the 

total lipid by weight (w/w), or cholesterol:total lipid molar percentages of 0%, 8%, 24% and 

48% respectively. The resulting solution was allowed to mix by rotation on a rotary evaporator 

at ambient pressure prior to removal of TFE and chloroform under vacuum to form a thin film 

along the sides of the flask. The film was hydrated in 3 mL of 50 mM sodium phosphate buffer 

(pH 7.4), and vesicles formed via multiple freeze/thaw/sonication cycles. The resulting vesicle 

suspensions were transferred to 1.5 mL ultracentrifuge tubes (Beckman Coulter, High 

Wycombe, UK). This was followed by ultracentrifugation at 70,000 rpm (267,000 × g) at 4 °C 

for 15 minutes in an OptimaTMTLX ultracentrifuge (Beckman Coulter, UK). Any supernatant 

was removed with the aid of a filter paper. This step was repeated and the sample stored in a 
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fridge at 4 °C. Prior to the NMR experiments, this sample was funnelled into a 3.2 mm or 4 

mm Magic Angle Spinning (MAS) rotor through centrifugation. For samples containing 

peptides, the peptides (approximately 5 mg in each, for a total of between 8-10 mg peptide per 

sample to yield a peptide:lipid molar ratio of approximately 1:15) were solubilized in TFE and 

mixed with TFE-solubilized DMPC and chloroform-solubilized cholesterol in a round-

bottomed flask. The resulting solution was then treated as described above.   

 

Circular Dichroism. 

CD experiments were carried out at room temperature (~25 °C) using a Jasco J-815 

spectropolarimeter (Jasco UK, Great Dunmow, Essex, UK) and 1 mm path-length quartz 

cuvettes (Starna, Optiglass Ltd., Hainault, UK) requiring a sample volume of 200 μL. Spectra 

were recorded in the far UV region between 190 and 260 nm, with a data pitch of 0.2 nm, a 1 

nm bandwidth, 50 nm/min scanning speed and a response time of 2 seconds. CD experiments 

were performed on samples containing 0.1 mg/mL Neu* peptide reconstituted into a vesicle 

composed of DMPC and 5% (w/w) cholesterol. The sample was prepared in a 20 mM sodium 

phosphate buffer (pH 7.4). The final spectrum was obtained by averaging 32 individual spectra 

and subtracting a blank spectrum, which was exactly the same as the sample of interest but 

without peptide. 

 

Solid-state NMR. 

Solid-state magic angle spinning (MAS) NMR experiments were conducted on either a 

500 MHz Bruker Avance III or 600 MHz Bruker Avance II+ solid-state NMR spectrometer 

(Bruker, Karlsruhe, Germany). All spectrometers were equipped with 4 mm and 3.2 mm MAS 

probes (Bruker) capable of running in double or triple resonance modes. Samples were cooled 

to required temperatures using a Bruker BCU Xtreme cooling unit, and all stated temperatures 
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are for the input gases. Spinning frequency was maintained by a Bruker MAS II controller unit. 

Chemical shift referencing was done externally for the carbonyl peak of natural abundance 

alanine (177.8 ppm) with respect to tetramethylsilane (TMS). All data acquisition and 

processing was performed using Topspin 2.1, Topspin 3.0 and SPARKY (Goddard and Kneller 

2004). 

2D 13C–13C dipolar-assisted rotational recoupling (DARR) NMR experiments  

(Takegoshi et al. 2000) were initiated with 1 ms 1H-13C cross-polarisation using a (50–100%) 

ramped proton pulse with average radio frequency (RF) nutation frequencies of 90 kHz and a 

constant amplitude carbon pulse with field strength of 80 kHz (Metz et al. 1994). SPINAL-64 

(Fung et al. 2000) was employed for proton decoupling. Experiments were conducted at either 

short (30 ms) or long (400 ms) DARR mixing times in order to probe spin interactions over 

short as well as long distances. Data were collected at an input gas temperature of 15°C, as 

indicated by the thermocouple, using 1994 complex data points in t2, 336 increments in t1, a 

recycle delay of 3s and 64 co-added transients. Apodization with an exponential multiplication 

(EM) window function (LB 150 Hz) was applied in all dimensions with zero-filling of 1k and 

4k in F1 and F2 respectively. Automated baseline correction was carried out in both dimensions.    

Static wideline 1D 31P spectra were referenced externally to the phosphorous peak of 

adenosine di-hydrogen phosphate (ADP) at 0.9 ppm on the DSS scale. 1D 1H MAS spectra 

obtained at 5 kHz ± 5 spinning frequency were referenced externally to the Hα of natural 

abundance alanine at 4.2 ppm. For 1D 31P experiments, a standard Hahn Echo pulse sequence 

(Rance and Byrd 1983) was used with an echo delay of 50 μs, an 80 kHz two pulse-phase 

modulated (TPPM, Bennett et al. 1995) proton decoupling during the 40 ms acquisition, and a 

recycle delay of 5 seconds for 256 co-added transients. Spectra were acquired using a π/2 (90º) 

pulse for excitation of 1H and 31P of 2.5 μs and 4 μs, respectively. 31P spectra were acquired 

with 8k complex data points and with a spectral window of 412 ppm, and data were Fourier 



9 
 

transformed into 16k complex data points. 1D 1H spectra were recorded with 20k complex data 

points using a single 90 proton pulse for 128 co-added transients with a 3 sec recycle delay 

and a spectral window of 834 ppm; data were Fourier transformed into 65k complex data points 

and EM line broadening of 1.0 Hz was applied during processing. Spectra were recorded at 

input gas temperatures ranging from 20°C to 25°C as indicated by the thermocouple. 

 

RESULTS. 

The highly -helical secondary structure and dimeric nature of the Neu and Neu* 

TMDs is well-established in the literature (Smith et al. 2002; Houliston et al. 2004; 

Khemtémourian et al. 2007; Beevers et al. 2010, 2012).  NMR and infrared spectroscopy have 

been used to probe the identity of residues that pack at the binding interface of the helical TMD 

dimer of Neu and the related ErbB2 receptor (Smith et al. 2002; Beevers and Kukol 2006; 

Bocharov et al. 2008).  These results suggest that oligomerization of Neu* is stabilised by one 

of two highly conserved motifs located on opposite sides of the helix (Figure 1B). The first 

motif, known as the Sternberg-Gullick motif (Sternberg and Gullick 1990) consists of residues 

A661 and G665. This motif is similar to the well-known G-XXX-G motif observed in many 

transmembrane -helical oligomers (Russ and Engelman 2000). The second motif consists of 

TMD residues I659 and V663, and dimerization on this helical face has been proposed to form 

part of a “molecular switch” between active and inactive states (Beevers et al. 2010).   

 To allow for both possible modes of oligomer formation in this study, pairs of synthetic 

peptides derived from the TMD region of Neu* were designed to be used together in order to 

clearly distinguish intra-helical interactions from inter-helical interactions. The peptide pairs 

are summarized in Table 1. For each of the peptides within a particular pair, an amino acid at 

or very near the reported dimeric interface was uniformly 15N- and 13C-labelled. Residues were 

selected such that (a) short inter-helical distances of < 5 Å were predicted between the pair of 
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labelled amino acids within the dimer, and (b) the average 1H and 13C chemical shifts of the 

amino acids were as different as possible to minimize overlap of peaks in the NMR spectrum. 

This becomes all the more important when conducting the experiments at low temperatures 

where the line-broadening observed due to conformational inhomogeneity is introduced by 

quenching of motions upon freezing (Linden et al. 2011).  

The first pair of peptides was designed to detect inter-helical magnetisation transfer 

across the A661-XXX-G665 dimeric interface.  Using published structural data for Neu* in 

POPC:POPS bilayers obtained from solid-state NMR (Smith et al. 2002) as well as the 

published solution structure for the ErbB2 helical TMD dimer in DHPC/DMPC bicelles (PDB 

ID: 2JWA, Bocharov et al. 2008), in which the analogous S-XXX-G motif packs at the 

homodimer interface, inter-helical distances of < 5 Å were predicted between carbon atoms in 

G665 and L668. These residues were also predicted to contain more chemical shift dispersion 

than the G665/A661 pair. In light of this, two peptides were designed: one containing [U-15N, 

13C]-G665 as the only isotopically labelled amino acid in the sequence, and one containing [U-

15N, 13C]-L668.  In equimolar mixtures of these two peptides, any observed coupling between 

the two labelled “probe” residues would arise solely from inter-helical interactions.  A 

schematic illustrating this approach is shown in Figure 1C. A second pair of peptides was 

designed to report oligomerization on the helical face containing I659-XXX-V663. While there 

is currently no experimentally-derived structural data available for this dimer conformation, 

molecular dynamics simulation has yielded models that suggest this interface is flexible and 

may undergo small rotation in the bilayer (Beevers et al. 2012). Given the highly similar 

chemical shifts for Ile and Val residues, which would be unfavourable for this study, isotopic 

labels were placed at I659 and T662 in the pair of peptides.  T662 is in close proximity to the 

helical face defined by I659-XXX-V663, is less than 1 helical turn from I659, and is predicted to 

have very different chemical shifts.   
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All peptides were synthesized, purified and reconstituted into lipid vesicles as described 

in the Materials and Methods.  Circular dichroism was used to confirm the high degree of 

helicity of the Neu* TMD in bilayers composed of DMPC and 5% (w/w) cholesterol (Figure 

2). Two minima at 210 nm and 223 nm and a maximum at 197 nm were observed and are 

characteristic of an -helical structure in membranes (Wallace 2003).  These values are slightly 

shifted from those observed in soluble proteins (e.g. 208 and 222 nm), and this is thought to be 

due to the low dielectric constant of the bilayer environment which can affect the relative 

ground and excited states of the electronic transitions of the protein backbone (Cascio and 

Wallace 1995; Chen and Wallace 1997). 

 

Modulation of Helix-Helix Interactions in Neu* TMD by Cholesterol  

The respective pairs of Neu* TMD peptides were reconstituted, in equimolar amounts, 

into bilayers of varying cholesterol concentration at a peptide:lipid molar ratio of 

approximately 1:15 in order to investigate the impact of cholesterol on the chemical 

environment, secondary structure, and protein-protein interactions. Specifically, DMPC 

bilayers were prepared containing 5% and 16% (w/w) cholesterol (corresponding to molar 

percentages of 8% and 25%).  Reconstitution was carried out above the phase transition 

temperature of DMPC to ensure that bilayers were in the liquid-disordered (fluid) phase, L. 

Long-range through-space coupling was measured between 13C nuclei using the dipolar-

assisted rotational resonance (DARR) experiment (Takegoshi and Terao 2002) at a MAS 

frequency of 10 kHz.  A temperature of -15 C was chosen to conduct all MAS solid-state 

NMR (ssNMR) experiments. At this temperature, it was expected that the bilayer would move 

from fluid phase to the gel phase (L) (Needham et al. 1988).  The rationale behind the low 

temperature was that this would lead to reduction of internal motions within the protein and 

their averaging effects on dipolar coupling, which would allow observation of dipolar coupling 
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based long distance correlations (Abdine et al. 2010).  However, reduced temperatures can also 

lead to line-broadening (Hiller et al. 2005; Frericks et al. 2006; Cady et al. 2009). Since only a 

single amino acid was labelled per peptide, spectral crowding due to broadening wasn't a major 

concern and the benefits of performing experiments at low temperatures were capitalised upon.  

Figures 3A (red spectrum) and S1 show the resulting 13C-13C DARR MAS spectrum of 

the [U–15N, 13C]-G665/L668 labelled peptide pair in DMPC vesicles containing 5% (w/w) 

cholesterol at a DARR mixing time of 400 ms. The analogous spectrum for the [U–15N, 13C]-

I659/T662 labelled peptide pair is given in Figures 3B (red spectrum) and S2. The resonances 

observed in each spectrum were compared with published chemical shift values for glycine, 

leucine, isoleucine and threonine found in the Biological Magnetic Resonance Databank 

(BMRB) (http://www.bmrb.wisc.edu/) (Markley et al. 2008). Since only one amino acid was 

labelled per peptide, and because the labelling of amino acids was designed such that the 

average chemical shift of each resonance was as different as possible, peaks were reasonably 

well-resolved in both the carbonyl and aliphatic regions. All peaks corresponding to side chain 

carbons of the 13C-labelled amino acids in both pairs of Neu* peptides were successfully 

assigned, and the assignments are given in Table 2.   

13C-13C intra-residue dipolar coupling was observed within each labelled amino acid 

probe, and these correlations are labelled in Figures 3, S1 and S2. In the presence of 5% w/w 

cholesterol, inter-residue dipolar coupling between 13C-labelled probes was also observed for 

both of the [U–15N, 13C]-peptide pairs (labels are shown in boxes in Figures 3A-B), 

demonstrating clear inter-helical contacts on the helical faces defined by both proposed 

interaction motifs (i.e. A661-XXX-G665 and I659-XXX-V663).    

Another feature of the DARR spectra acquired in bilayers containing 5% w/w 

cholesterol is the presence of multiple chemical environments for selected 13C nuclei. In the 

[U–15N, 13C]-G665/L668 sample, this was observed for both carbon atoms in G665, where two CO 
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environments and three C environments were observed (individual spectra are given in Figure 

S1 for ease of interpretation). All three C species show weak but readily observable inter-

helical cross peaks to L668, and the predominant H species shows a strong inter-helical 

coupling to L668 CO. Interestingly, we observed cross-peaks between the two minor G665 C 

species (boxed in Figure 3A), indicating exchange between species.  In spectra of the [U–15N, 

13C]-I659/T662 labelled pair, two signals are observed for C, C, and C1 of I659 and these 

assignments are most easily seen in Figure S2.  Given that both residues which display 

(predominantly) two sets of signals, namely G665 and I659, reside in the known dimer interaction 

sites in Neu*, it is very tempting to suggest that these additional signals arise due to a monomer-

dimer equilibrium.  Such behaviour was reported in the solid-state NMR investigation of 

mitochondrial translocator protein TSPO, where duplication of NMR signals was directly 

linked to dimer formation (Jaipuria et al. 2017). However, that study utilized a fully-labelled 

protein in which all residues were assigned, thus providing multiple reporters of a given 

molecular interaction with high confidence.  The results from the selectively labelled samples 

used here must be interpreted with caution, but may indicate a monomer-dimer equilibrium 

(which is well-reported for the Neu and Neu* TMDs) and conformational dynamics of the 

TMD in the bilayer. 

Increasing the cholesterol content in these samples to 16% (w/w) had little impact on 

the overall 13C chemical shifts (Table 2), but a pronounced impact on the number of species 

observed.  In both the G665/L668 and I659/T662 peptide pairs, addition of cholesterol led to 

moderate broadening of the peaks and the disappearance of the multiple G665 and I659 species 

(Figures 3A-B, S1 and S2).  Increased cholesterol also led to the disappearance of all inter-

helical cross peaks (Figure 3).  Taken together, these results indicate significantly reduced 

dynamics in samples with elevated cholesterol, resulting in little to no conformational exchange 

and elimination of all observable inter-helical interactions.  
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Impact of Cholesterol on DMPC Bilayer Dynamics at Sub-Zero Temperatures 

The variation in conformational exchange and inter-helical interactions observed in the 

Neu* TMD suggests significant changes in membrane fluidity and dynamics across the 

cholesterol concentrations used here.  The impact of cholesterol on membrane fluidity was 

demonstrated over 40 years ago when it was shown that, in general, fluidity decreases as 

membrane cholesterol increases (Feinstein et al. 1975; Cooper 1978).  Increases in membrane 

cholesterol are also associated with increased bilayer thickness, via packing against and 

restricting the motion of the acyl chains (Kučerka et al. 2007; Boughter et al. 2016), formation 

of lipid domains (or “rafts”) (Simons 2000), and alteration of the lateral pressure profile across 

the bilayer (de Kruijff 1997; Epand 1998; Bezrukov 2000). Most of the studies to date have 

been carried out at or near physiological temperatures to yield the most biologically-relevant 

results.  The present study, however, was carried out at greatly reduced temperatures for 

reasons explained above.  To investigate the membranes across the cholesterol concentrations 

and temperatures used here, static 31P and 1H MAS solid-state NMR experiments were 

performed on DMPC lipid vesicles containing 0%, 5%, 15%, and 30% (w/w) cholesterol, 

prepared in the same manner as the vesicles containing the Neu* peptides discussed above, at 

a range of temperatures.    

31P NMR is commonly used in NMR studies of lipid membranes to monitor the 

phosphate moiety in the polar head group of phospholipids. Static 31P NMR spectra were 

recorded in order to gain information about the morphology of the lipid bilayer and can be used 

to determine the phase of lipid structures formed in bilayers of varying composition with 

relatively simple two-pulse/decoupling experiments. Figure 4 shows the static wide line 31P 

ssNMR spectra recorded at a range of temperatures, starting at 25 ºC, just above the phase 

transition temperature (Tm) for DMPC, through to −20 ºC, which was near the temperature at 

which our DARR spectra for Neu* were recorded (Figure 3). We saw typical wide line spectra, 
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which are dominated by a large chemical shift anisotropy (CSA) range that showed 

characteristic broad axially symmetric 31P line shape arising from the phosphate head group of 

DMPC.  A high field peak and a low field shoulder (50 ppm in width) were indicative of 

lamellar bilayer structure, with rapid axial rotation in the bilayer resulting in such patterns. As 

such, all DMPC lipid samples were deemed to be forming lamellar lipid bilayers, both in the 

absence and presence of cholesterol.  

At 25 ºC, all lipid samples yielded similar 31P line shapes, with a sharp high field 

component suggesting that at this temperature all DMPC samples were in the liquid-crystalline 

phase (Lα). In the liquid–crystalline phase, there is low conformational order within the acyl 

chains and low translational order within the membrane and as such this phase is also referred 

to as the liquid disordered phase (Ld).  As the temperature was decreased below the Tm of 

DMPC, the broadness due to the CSA steadily increased (Figure S3). This was interpreted as 

formation of what is known as the liquid-ordered phase (Lo), a solid-like phase in which lateral 

motion is maintained to some degree.  Samples of pure DMPC (Figure 4A) and DMPC with 

5% cholesterol (Figure 4B) appear to enter the gel phase (L) by the time they reach −10 ºC, 

as evidenced by the considerable broadening and loss of signal intensity indicative of a high 

degree of hydrocarbon chain order (all-trans) and a high degree of translational order 

preventing diffusion within the bilayer.   

 In contrast, addition of higher cholesterol concentrations (15-30%) appeared to 

modulate DMPC membrane fluidity and prevent formation of the gel phase at all temperatures 

tested, by preventing tight packing of lipid head groups, leading to formation of liquid-ordered 

phase (Lo) membrane at temperatures of  −10 ºC.  This is in close agreement with previous 

reports that incorporation of cholesterol into sphingomyelin (SM) lipids gradually disrupted 

bilayers in the Lphase, and even eliminated the L phase (as was observed here) when the 

molar concentration of cholesterol was above 15% (Lund-Katz et al. 1988). The width of the 
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CSA pattern is also a probe of motion, and larger amplitude motions should lead to better 

averaging (narrowing) of CSA. Figure 4E shows a plot of the percentage decrease in CSA 

(compared to that observed in pure DMPC) at each cholesterol concentration across the entire 

range of temperatures used, and clearly shows narrowing of the CSA pattern (and increased 

fluidity) as cholesterol concentration is increased.   

The effect of cholesterol on the lipid acyl chains was investigated in the above samples 

using 1H MAS ssNMR between 25 ºC and −20 ºC (Figure 5). Proton resonances arising from 

the hydrocarbon tails and the polar head group were assigned (as shown in Figure 5) based 

upon previously reported DMPC 1H chemical shifts (Schuh et al. 1982; Nomura et al. 2011) 

and were in very good agreement.  At 25 ºC, the pure DMPC spectra produced the largest 

number of resonances, with sharp signals from both the hydrocarbon tails (H2-14) and the polar 

head group (H, , and ) indicating rapid internal motion in the Lα phase. Addition of 

cholesterol led to broadening and a reduction in the intensity of acyl chain peaks suggesting a 

reduction in motion of the lipid tails, as cholesterol molecules intercalate between the acyl 

chains and reduce internal motions in the membrane core.  Resonances from the polar head 

group also showed broadening, albeit to a lesser degree.  While these data confirm the increased 

ordering of the acyl chains upon addition of cholesterol, and thus a significant change in the 

lateral pressure profile across the bilayer, this ordering did not scale with the cholesterol 

concentration.  Instead, a significant broadening of the acyl chain 1H peaks was observed at the 

lowest cholesterol concentration, followed by a steady sharpening of these peaks at elevated 

concentrations.  Reduction of the temperature down to 20 ºC led to eventual disappearance of 

all signals from the lipid tails, however the temperature at which this occurred was dependent 

upon cholesterol concentration.  In samples with elevated cholesterol (i.e. 15-30% w/w), acyl 

chain protons H4-H14 were still observable at 10 ºC suggesting a reduction in Tm. The H 

resonance from the PC head group remained visible in all cases. 
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Neu TMD Contains a Putative Cholesterol Recognition Motif 

The differences in bilayer fluidity and phase at low and high cholesterol concentration 

described above may explain the increased level of conformational dynamics and inter-helical 

interactions observed in Neu* at low cholesterol concentrations (5% w/w), as compared to the 

single species (either monomeric, or an undetectable dimeric / oligomeric species that does not 

utilize the labelled “probe” residues) observed at high cholesterol concentrations (16% w/w). 

Clear differences in the lateral pressure and phase of the membrane were evident, and the 

mechanical coupling of Neu* dimerization and bilayer fluidity would be a plausible conclusion. 

It has been shown for other receptor tyrosine kinases (such as the epidermal growth factor 

receptor, EGFR) that a decreased membrane fluidity reduces kinase activity (Ge et al. 2001) 

potentially by destabilization of the active form of the EGFR dimer. The data we have obtained 

for Neu* would follow this same trend.  

However, the inhibition of helix-helix interactions we observe in the Neu* TMD at 

increased cholesterol concentrations may also be due to direct interactions between the 

polypeptide chain and cholesterol molecules themselves. In 1998, a sequence motif called the 

Cholesterol Recognition/interaction Amino acid Consensus sequence (CRAC) was introduced 

as a short linear motif that directs the interaction of cholesterol and proteins (Li and 

Papadopoulos 1998). The CRAC motif takes the form (L/V)-X1−5-(Y)-X1−5-(K/R), in the N-C-

terminal direction, where X can be a stretch of 1 to 5 of any type of amino acid. This very 

loosely defined motif has been found in both the transmembrane and juxtamembrane domains 

of several membrane proteins known to bind and/or transport cholesterol, including receptors 

(Sengupta and Chattopadhyay 2012), proteases (Paschkowsky et al. 2018), and transporters 

(Dergunov et al. 2019), and point mutations within the CRAC motif have been shown to inhibit 

interaction with cholesterol (Epand 2006). As summarised in an excellent review (Fantini and 

Barrantes 2013), other cholesterol-recognition motifs have been revealed since the CRAC 
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motif was first proposed. One such motif is the “inverted CRAC” domain (Baier et al. 2011), 

or CARC, which inverts the order of the residues in the CRAC motif to take the form (K/R)-

X1−5-(Y/F)-X1−5-(L/V).  This motif also has no strict requirement for Tyr in the central position, 

but instead accommodates both Tyr and Phe. The basic residue at the N-terminus of the motif 

orients CARC at the polar/apolar interface of a TMD via “snorkelling”, as described previously 

(Strandberg and Killian 2003), and the apolar residues in the remainder of the motif necessitate 

that the CARC motif is found only within the TMD of a protein. 

Analysis of the Neu* TMD sequence reveals the presence of a putative CARC motif at 

the N-terminus of the TMD (see Figure 6A). The Arg residue (R652) in CARC is not required 

to interact directly with cholesterol but, as mentioned above, may play a role in directing the 

topology of this motif to a TMD via “snorkelling”. Current topology prediction for Neu* places 

R652 just outside the N-terminus of the predicted TMD, which would prevent snorkelling of a 

partially buried Arg toward the membrane surface.  However, the boundaries of the Neu* TMD 

are currently unknown and it cannot be ruled out at this stage that R652 is part of the TMD itself.  

The interaction with cholesterol via the CARC motif is mediated largely through CH-

 stacking interactions between the aromatic ring of the central Phe/Tyr (F658) and the sterane 

rings of cholesterol (Fantini and Barrantes 2013). The terminal Leu/Val residue (V663) 

stabilizes the interaction via numerous van der Waals contacts with cholesterol. Taking these 

interactions into account, a hypothetical arrangement of the residues in the CARC motif is 

shown in Figure 6B. If one assumes that the TMD residues in Neu* are present in a helical 

arrangement, which has been clearly demonstrated in the past (Beevers et al. 2010, 2012), the 

CARC motif does not map to a single helical face. Instead, the residues appear on opposite 

helical faces.  This would prevent a single Neu* TMD from stabilizing an interaction with a 

cholesterol molecule.  However, a pair of TMD helices could create a CARC motif at their 

interface, as shown in Figure 6B.  In this arrangement, cholesterol would bind between TMDs 
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and necessarily block formation of dimers via either the A661-XXX-G665 or I659-XXX-V663 

binding sites (shown in Figure 6B).  This direct interaction of cholesterol and the Neu* TMD 

would explain why, in our ssNMR data, we observe the inhibition of any detectable helix-helix 

interactions at elevated cholesterol concentrations.  Of course, this does not exclude the 

formation of undetectable oligomers that do not impact the sites we have isotopically labelled.     

 

DISCUSSION.  

In pure DMPC bilayers, it has been shown previously that the Neu* TMD is highly -

helical, inserts spontaneously across the membrane, and participates in helix-helix interactions 

most likely represented as a dimer (Smith et al. 1996; Beevers et al. 2010).  The aim of this 

work was to investigate the impact of cholesterol on transmembrane helix-helix interactions in 

the Neu* TMD using 13C-enriched “probe” residues that would directly report inter-helical 

coupling of labelled sites via the DARR experiment.  Our labelling scheme was based upon 

previous studies demonstrating that helix-helix interactions in the Neu* TMD are stabilized by 

either the A661-XXX-G665 or I659-XXX-V663 sequence motifs.  In membranes with low (5% 

w/w) cholesterol concentrations, we observed 13C-13C inter-helical coupling of residues on the 

helical faces defined by both motifs. These results do not implicate a single helical face in 

stabilizing TMD interactions in the presence of the V664E mutation in Neu*, as we and others 

have hypothesized in the past, but instead reveal that both previously reported motifs are 

accessible for interaction under these conditions. The doubling of several signals for residues 

residing in the interaction motifs is in keeping with a monomer-dimer equilibrium in both cases, 

reflecting the biologically-relevant form of the protein.  These interactions appear to be 

conformationally flexible, resulting in multiple species in dynamic equilibrium.  This supports 

previous Neu/RTK studies that suggest a degree of rotational freedom within the interaction 

interface is required for RTK activity (Bell et al. 2000; Dell’Era Dosch and Ballmer-Hofer 
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2010).  It should be mentioned that one important difference between this work and the RTK 

in the native state is the fact that the TMDs here are incorporated in a random direction across 

the membrane. This would facilitate antiparallel interactions which are not expected in a 

cellular context.  We maintain that the data shown here are only reporting parallel dimers, as 

the labelled Gly and Ile residues (which participate in the majority of inter-helical contacts) 

would be too far apart from another labelled residue in an antiparallel arrangement to yield 

measurable DARR crosspeaks.  The only residue which would be in range in an antiparallel 

dimer is L668, and no L668-L668 inter-helical crosspeaks were observed.  So while antiparallel 

dimers were not prevented from forming, they were undetectable using the peptide design here.   

In bilayers containing elevated (16% w/w) cholesterol, no inter-helical coupling via 

either of the motifs above is observed, indicating a strong correlation between the mechanical 

properties of the membrane and the organization of the TMDs with respect to one another.     

Our 1H and 31P ssNMR spectra compare well with previously published studies (in the 0-25°C 

range) on the effects of cholesterol in phosphocholine bilayers. The ordering effects of 

cholesterol on the lipid acyl chains at temperatures above the Tm have been previously noted, 

as has the increase in membrane fluidity with higher cholesterol concentrations at low 

temperatures due to the lack of a gel phase (Vist and Davis 1990; De Meyer et al. 2010). In the 

present study, much lower temperatures were accessed in order to obtain a more accurate 

representation of the membrane fluidity at experimental temperatures and cholesterol 

concentrations used to study Neu*. Our results highlight some possible differences in the 

membrane properties for Neu* samples prepared with low (0-5%) and high (15-30%) 

cholesterol. At temperatures above the Tm (at which the peptides were reconstituted into the 

bilayer), the degree of order in the acyl chains is clearly different between the two sets of 

conditions, and suggests that the lateral pressure profiles of the membrane bilayers are also 

different.  Alteration of the lateral pressure profile in a membrane bilayer has been shown to 



21 
 

significantly affect membrane protein folding and assembly. For example, transmembrane 

helix-helix interactions in Glycophorin A were strongly inhibited upon addition of an 

anaesthetic which increased bilayer fluidity (Anbazhagan et al. 2010).  Conversely, enhanced 

lipid dynamics and membrane fluidity have been shown to drive membrane protein folding for 

beta-barrel membrane proteins (Maurya et al. 2013). At temperatures -15ºC used here, 

increasing the cholesterol concentration led to a change of phase from the highly ordered L 

phase to the less ordered Lo phase.  Such changes in phase can change bilayer thickness, which 

in turn can lead to changes in the tilt angle (and downstream interactions or oligomerization / 

aggregation) of transmembrane helices as they try to compensate for any developing 

hydrophobic mismatch (Sperotto and Mouritsen 1988; Killian 1998). In membranes with 

elevated cholesterol, our NMR data suggest that the conformations of the Neu* TMD helices 

are more rigid (less flexible) and this may be due to a change in the tilt angles of the helices 

with respect to one another and the membrane normal. It follows that, upon this change, the 

“active” dimeric forms of the TMDs (which we take here to be those forms that interact either 

via the A661-XXX-G665 or I659-XXX-V663 sequence motifs) may become inaccessible in more 

cholesterol-enriched environments.  This theory supports previous in vivo studies that report 

the suppression of RTK activity upon localization to (cholesterol-enriched) lipid rafts (Pike 

and Casey 2002). However, our data here contradict conclusions drawn from a previous 2H 

NMR study of Neu and Neu* TMDs in POPC bilayers enriched with 6% and 33 mol% 

cholesterol (Jones et al. 1998). Results from this study demonstrated increased 

“immobilization” (which the authors associated with formation of dimers / oligomers) of the 

Neu* TMD in cholesterol-enriched membranes.   

The effect we see may also be explained, at least in part, by the direct binding of 

cholesterol to a cholesterol-recognition motif in the Neu* TMD. While several studies have 

reported a link between cholesterol concentration and kinase activity in other RTKs (as 
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discussed earlier), we have not found explicit mention of a CRAC or CARC motif in an RTK 

reported thus far. We propose a model for how cholesterol-binding could disrupt active TMD 

dimers by competing for helix-helix interactions sites (Figure 6B), since the putative CARC 

motif directly overlaps with both the A661-XXX-G665 or I659-XXX-V663 sequence motifs.  The 

model is at this stage highly speculative, and does not rule out formation of dimers / oligomers 

that don’t utilize our labelled “probe” residues and are thus undetectable by the methods 

employed here.  These alternative dimer / oligomer configurations may be able to maintain 

protein-protein and protein-cholesterol interactions simultaneously.  However, analogous 

disruption of dimerization by cholesterol has been reported recently for the mammalian 

translocator protein TSPO (Jaipuria et al. 2017), a helical integral membrane protein.  In this 

work, Jaipuria and coworkers clearly linked cholesterol binding to a CRAC motif in TMD 5.  

They also structurally linked the CRAC motif to the dimerization interface in TSPO, and 

proposed a model of allosteric regulation of the protein via binding of cholesterol.  We suggest 

this may also occur with Neu*, but more work is needed to identify the structural features of 

the TMD in cholesterol-rich and cholesterol-depleted environments through more extensive 

labelling strategies or other approaches.  This work would be valuable in light of the role Neu* 

plays in cancer, and the documented link between plasma membrane fluidity and cancer 

malignancy (Shinitzky 1984; Taraboletti et al. 1989). As mentioned earlier, introduction of the 

V664E substitution is thought to either (a) increase the strength of dimerization or (b) 

preferentially stabilize a specific dimer conformation (from a population of pre-formed dimers) 

consistent with the activated form of the RTK. Under the conditions studied here, our data 

indicate the presence of a population of dimers even in the presence of the substitution but 

cannot speak to the relative populations of each.  The data do show that the Neu* TMD 

sequence is sensitive to the presence of cholesterol. Although some tumor cell membranes 

display enhanced fluidity due to depletion of cholesterol and sphingomyelin (Johnson and 
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Robinson 1979; Taraboletti et al. 1989; Escriba et al. 2011), while others show the opposite 

trend (Galeotti et al. 1986), it is well-accepted that the lipid composition can be altered 

significantly by malignant transformation of a cell (Chandra et al. 2013; Alves et al. 2016) and 

thus should be considered as an integral part of structural studies of Neu*.  
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TABLES.  

 

Table 1. Labelling strategy and peptide pairs utilized in this work to probe both the A661-XXX-

G665 and I659-XXX-V663 interaction sites.   

Residues at 

dimer interface 

Non-identical residues 

in close proximity  

Labelled amino 

acids in peptide  

Peptide 

name 

Sample 

name  

     

A661-XXX-G665 G665-XX-L668 U-13C/15N  G665 Neu*G Neu* G/L 

  U-13C/15N  L668 Neu*L  

     

I659-XXX-V663 I659-XX-T662 U-13C/15N  I659 Neu*I Neu* I/T 

  U-13C/15N  T662 Neu*T  
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Table 2. 13C chemical shift assignments (in units of ppm) for the isotopically-enriched residues 

in the Neu* TMD peptide. In cases where more than one resonance is observed for a given 

residue, the chemical shift of the most populated species is indicated with an asterisk. 

 

Labelled Residue 13C Atom DMPC 

5% (w/w) Chol. 

DMPC 

16% (w/w) Chol. 

    

G665 CO 171.7*, 167.6 172.2 

 C 43.9*, 42.1, 50.2 44.9 

    

L668 CO 174.9 175.5 

 Cα 54.6 55.2 

 Cβ  37.9 38.1 

 Cγ 23.5 23.2 

 Cδ 20.3 19.5 

    

I659 CO 175.4 174.2 

 Cα 64.2*, 62.6 63.2 

 Cβ  35.8*, 33.9 34.3 

 Cγ1 27.6*, 26.8 27.1 

 Cγ2 15.6 14.6 

 Cδ 12.5 10.6 

    

T662 CO 173.7 172.9 

 Cα 57.2 64.5 

 C 65.5 64.5 

 Cγ 19.6 17.7 
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FIGURE CAPTIONS. 

Figure 1. A. Sequence of the rat Neu transmembrane domain (putative transmembrane residues 

underlined) containing the oncogenic V664E mutation, to yield the Neu* protein. Residues 

proposed to make up two different helix-helix interaction sites (A661XXXG665 and 

I659XXXV663) are indicated by dots.  Comparison with the homologous region in human ErbB2, 

containing a similar V659E mutation, demonstrates a high degree of conservation of both 

interaction sites.   B. Helical wheel diagram of italicized residues in (A) showing the spatial 

arrangement of the A661XXXG665 and I659XXXV663 in an -helix. The location of isotopically-

enriched amino acids are indicated by an asterisk (*). C. Schematic illustrating the selective-

labelling approach used in this work.   

Figure 2. Circular dichroism spectrum of the Neu* TMD (0.1 mg/mL) reconstituted into 

vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing 5% 

(w/w) cholesterol (as described in Materials and Methods).  Data are given in units of mean 

residue ellipticity (MRE, mdeg cm2 dmol-1).  

Figure 3. 2D MAS solid-state NMR 13C–13C DARR correlation spectra of A. [U–15N, 13C]-

G665/L668 labelled Neu* and B. [U–15N, 13C]-I659/T662 labelled Neu*.  Samples were prepared 

with peptide:lipid molar ratio of approximately 1:15.  Both panels contain an overlay of spectra 

collected in DMPC vesicles containing 5% (w/w) cholesterol (red) and 16% (w/w) cholesterol 

(blue).  Both spectra were collected at a 1H Larmor frequency of 600 MHz, with a 10 kHz 

spinning frequency and a mixing time of 400 ms.  13C magnetization was prepared via CP from 

1H with a ramped contact time of 1 ms. Measurements were performed with a sample 

temperature of 15C. Inter-helical cross peaks and cross peaks between two different 

environments for the same nucleus are indicated by boxes.  
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Figure 4. Static wide line 31P ssNMR spectra of PC head groups in (A) pure DMPC vesicles, 

as well as DMPC vesicles containing B. 5%, C. 15% and D. 30% (w/w) cholesterol.  Spectra 

were recorded at a 1H Larmor frequency of 600 MHz at temperatures ranging from 25C to 

20C. A Hahn Echo pulse sequence was used with a 31P 90 pulse length of 4 μs, an echo 

delay of 50 μs, 80 kHz SPINAL64 proton decoupling and a 5 second recycle delay with 256 

co-added transients.  The phase of the bilayer (L, L, L) is indicated in select spectra. E. A 

plot of the percentage decrease in chemical shift anisotropy (as compared to pure DMPC) at 

cholesterol concentrations of 5% (pale gray), 15% (dark gray), and 30% (black) across the 

entire range of temperatures tested here.  

Figure 5. A. Structure of DMPC lipid, with identity of protons indicated throughout. 1H MAS 

ssNMR spectra of acyl chains in B. pure DMPC vesicles, as well as DMPC vesicles containing 

C. 5%, D. 15% and E. 30% (w/w) cholesterol.  Spectra were recorded at 600 MHz at 

temperatures ranging from 25C to 20C.  A proton one-pulse program was used with a 90 

pulse length of 2.5 μsec, a 3 second recycle delay and individual spectra acquired from 128 co-

added transients. Assignments are given in spectra collected at 25C. 

Figure 6. A. Sequence of the Neu* TMD (underlined) and the location of a putative CARC 

cholesterol-recognition motif at the N-terminal edge of the TMD.  B. Schematic showing the 

spatial arrangement of residues in the CARC motif (linked via a dashed line for clarity) as well 

as the A661-XXX-G665 and I659-XXX-V663 helix-helix interaction sites proposed thus far for 

Neu*.  In this model, CARC residues in two separate helices could support binding of 

cholesterol, which would in turn block access to both interaction sites.  This model would 

explain the decrease in observable helix-helix interactions at elevated cholesterol 

concentrations we report here.   
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Figure 1. 

 

 

 

  



39 
 

Figure 2. 

  



40 
 

Figure 3. 

 

  



41 
 

Figure 4. 
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Figure 6. 

 

 


