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ABSTRACT
Quantum programs are difficult for humans to develop due to their
complex semantics that are rooted in quantum physics. It is there-
fore preferable to write specifications and then use techniques such
as genetic programming (GP) to generate quantum programs in-
stead. We present a new genetic programming system for quantum
circuits which can evolve solutions to the full-adder and quantum
Fourier transform problems in fewer generations than previous
work, despite using a general set of gates. This means that it is no
longer required to have any previous knowledge of the solution
and choose a specialised gate set based on it.

CCS CONCEPTS
• Software and its engineering → Genetic programming; •
Computer systems organization → Quantum computing;

KEYWORDS
genetic programming, quantum computing

ACM Reference Format:
Kenton M. Barnes and Michael B. Gale. 2019. Meta-Genetic Programming
For Static Quantum Circuits. In Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech
Republic. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3319619.3326907

1 INTRODUCTION
Quantum programs are programs that, to our best knowledge, can
only be run in linear time complexity on a quantum computer.
They take advantage of quantum mechanics to achieve exponential
speed-ups compared to classical computers in some areas.

The semantics of quantum programs can be defined in terms of
quantum mechanical principles such as superposition and entan-
glement. However, these principles are alien to us because they are
unparalleled in our everyday lives. While this makes the program-
ming of quantum computers a hard task for humans, the syntax of
quantum programs remains surprisingly simple. For example, in the
circuit model for quantum computation, programs are expressed
as an arrangement of unitary transformations acting on quantum
bits (qubits), called quantum circuits. A quantum program could,
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therefore, exist as a list of small data structures defining a unitary
transformation, the qubits to act on, and any other parameters
required for the transformation’s construction. We refer to these
small data structures gates. Such a representation is shown below:

H (Qubit 0)
UP (Qubit 0) (Angle pi/4)
CNOT (Qubit 0) (Qubit 1)

The unitary transformations for each of the gates used can be
found in Appendix A. The qubits the gates act on are provided by
an argument, and other parameters like the angle ϕ needed for the
UP gate are also given. This syntactic simplicity suggests that some
methods previously used to automatically generate programs for
classical computers could be just as applicable in the domain of
generating quantum circuits.

One such method is genetic programming (GP), which is the use
of genetic algorithms to manipulate and create programs. Systems
that use GP are largely unaware of the semantic meaning of the
program elements they manipulate. Instead, for a given input, they
calculate a fitness value by comparing a candidate program’s output
with the desired output.

These GP systems can be augmented usingmeta-genetic program-
ming, which is where some parts of the genetic algorithm itself
are able to evolve and change alongside the candidate solutions.
The aim of this is to remove the need for a human to optimise the
genetic algorithm for each problem they want to solve, and instead
have the genetic algorithm optimise its own methods. The way
this is achieved varies from having the whole genetic algorithm
written in a language that can be genetically manipulated, or just
having a few parameters that are optimised during the running of
the genetic algorithm.

In this paper, we continue efforts to use GP for producing quan-
tum programs. Concretely, our contribution is a meta-genetic pro-
gramming system which combines the following techniques to
allow us to evolve quantum circuits without prior knowledge about
a particular problem’s solution:

• To determine how likely it is that a particular type of quan-
tum gate is added to a candidate solution duringmutation, we
assign probabilities to each type of gate. Our system allows
for these probabilities to also be mutated on the meta-level
when evolving a problem solution.

• We present a general gate set comprised of quantum gates
and higher-order gates that can be used to evolve quantum
programs successfully, without the need for the manual op-
timisation of this gate set.

• We compare our system to previous work and show that, for
a given problem, it can evolve a solution in fewer genera-
tions even whilst using a general set of gates rather than a
specialised one.
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2 BACKGROUND AND PREVIOUS WORK
Koza [1] pioneered the use of genetic algorithms for automatic
program generation for classical computers. Spector et al. [7] then
applied this method to quantum programs and set out several tech-
niques for representing populations of quantum programs for use
in GP systems. The technique that this paper focuses on is referred
to as the static method, which generates abstract representations of
quantum circuits. The qubits that the circuits act on are first set to
an input state, the circuit is then run, and then the resultant states
of the qubits are measured. As these quantum circuits have a fixed
number of qubits, the number of qubits required to represent the
input could be larger than the number of qubits available. Thus,
this method is not scalable, and there will always be some size of
input that a static circuit cannot deal with.

A common weakness of previous work using this representation
is that the collection of gates (the gate set) that the quantum circuits
are to be made up of is manually selected. GP system designers
often use information about an optimal solution for the problem
they wish to solve in order to inform the selection of their gate set.
For example Massey et al. consistently improve the gate set used
by their system by hand in order to achieve better results [2–4]. In
particular they choose to add gates they know helps them evolve a
circuit that implements the quantum Fourier transform (QFT).

While a chosen gate set may represent some circuits very suc-
cinctly, it may also make others very complicated. It is likely to
not be very useful for evolving solutions to problems other than
the ones it is optimised for. A natural solution to trying to create a
more “generic” gate set that can be used to solve many problems
is to make it larger, which is more likely to be able to succinctly
represent more circuits. However, this has the cost of slowing evo-
lution down as there are more gates that can be added to a circuit
during mutation, and therefore it is less likely that the optimal gate
would be placed. In this paper, we are addressing this issue through
the use of meta-genetic programming.

3 METHOD
In our system, we focus on improving the static approach of evolv-
ing abstract representations of quantum programs. The resulting
programs can then be scaled up by hand, which we believe is signif-
icantly less difficult than developing a solution without assistance
from an automatic programming system in the first place. Specifi-
cally, we use stackless linear genetic programming [7], which creates
circuits of the form seen in the Introduction. The complete list of
gates, along with their unitary transformations, defined for use in
our language can be found in Appendix A. We use tournament selec-
tion to pick candidate solutions (individuals) to form the parents of
the next generation: to select a single individual using this method
we select, at random, a specific number of individuals, called the
tournament. We then select the fittest circuit in this tournament
to be included in the pool of parents for the next generation with
a given probability. If the fittest was not selected then we select
the next fittest with the same probability, until an individual is
chosen. The system also has elitism: the automatic preservation
of a given percentage of the fittest individuals. Our system uses
the fitness function, genetic mutation, and genetic crossover meth-
ods described by Spector [6]. Genetic mutation was influenced by

Potoček et al. [5]: it can use 3 of their proposed 12 genetic opera-
tors. Initialisation of circuits is ramped: a maximum size is defined
and then the size of the randomly produced circuits is distributed
uniformly between 1 and the maximum size.

3.1 Probabilities of adding gates
When mutating candidate solutions, new genetic material is often
added. In our case, this comes in the form of new gates that are
added to the circuit. The gate that is chosen comes from the gate
set which is specified as an input to the genetic algorithm. While in
previous work this gate set is an optimised collection of gates for
solving the problem at hand, our work removes the requirement to
optimise this gate set. Instead, we give the system a comparatively
large gate set and expect it to optimise this down to the gates that
are found to be useful during evolution.

Each individual has, in addition to its quantum circuit representa-
tion, a probability distribution of gates. When a candidate solution
is undergoing a mutation that requires new genetic material, the
gate is chosen probabilistically according to that individual’s gate
distribution. At the start of evolution the distributions are uniform:
each gate has an equal chance of being produced during a mutation.

During evolution, the distributions can undergo genetic crossover
or mutation. These operations are applied with a given probability
and are independent of the mutation and crossover of the quantum
circuits. The crossover operation will produce a distribution that is
the average of the two given distributions. The mutation operation
can decrease or increase the probability of a specific gate being
produced. There are two possible methods for the selection of the
gate to change the probability of, which we explore: it could be
uniformly at random or the chance of increasing the probability
a given gate occurs could be proportional to the amount of times
the gate appears in the circuit of the individual. In either case,
mutation works such that all gates are never completely removed
from the distribution, but instead can just have an arbitrarily small
probability of occurrence. This feature is in place to allow gates to
“come back” and occur more commonly again if they become more
relevant in future generations, though the ability of the genetic
algorithm to do this is limited as it takes many generations for this
to occur. However, the minimum probability that all gates can be
assigned is configurable: setting a larger value for this minimum
makes it easier for gates to come back later in the process, but also
reduces the effectiveness of the distribution as it reduces the ability
for it to remove useless gates from the system.

3.2 Higher-order gates
It is difficult for the designer of a GP system to know what gates
should be included in the gate set. It is even more difficult to create
a gate set that could be used to solve a wide array of problems. Most
designers go with one of two options to choose their gate set. Many
will create a gate set that has “generic” gates that are applicable
to a wide range of problems. This has the disadvantage that there
are often gates which will be better for the specific problem at
hand, compared to these commonly used gates. On the other hand,
many designers solely choose gates that are seen in the human-
designed algorithms that solve the problem at hand. While this
can mean the system is able to solve the problem quickly as it has
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Table 1: Results of evolving full-adder and quantum Fourier transform solutions.

Population Gate set Probability Manipulation Successful1 Mean Gens.

Fu
ll-
ad
de
r

100 General None 0% N/A
100 General + Higher None 98.2% 179 ± 8.7
100 General + Higher Random 97.8% 170 ± 7.3
100 General + Higher Frequency Proportionate 93.0% 210 ± 17.4
200 Massey Frequency Proportionate 99.2% 93 ± 6.5
200 Massey N/A N/A 9432

Q
ua
nt
um

Fo
ur
ie
r

1000 General + Higher None 99.8% 231 ± 13.9
1000 General + Higher Random 99.6% 208 ± 12.3
1000 Potoček None 91 108 ± 7.4
1000 Potoček N/A 98% 10533

the best gates available to do so, this process requires knowledge
about the solution to the problem. This may not be possible if we
want to apply GP to previously unsolved problems or want to use
the same system for a range of problems. Another disadvantage
of specialised gate sets is that it is often the case, and often the
aim, that GP produces solutions that solve problems in ways that
humans have not thought of. By limiting the system to the specialist
gates that the designer feels should be used to solve the problem we
reduce the ability of the system to solve the problem in new ways.

A compromise between these two approaches is through the use
of higher-order gates. These are functions that take other gates as
arguments, to produce more “complicated” gates. The intention is
to have a gate set consisting of several higher-order gates as well
as some “generic” gates, such that the genetic algorithm can now
produce, via the higher-order gates, a large array of more compli-
cated gates. This gives the genetic algorithm access to complicated
gates that may be the best to solve the problem in a way that does
not require knowledge about the problem at hand. This approach
works well with the meta-genetic approach of changing the proba-
bilities that different gates are added. This is because, if a specific
higher-order gate and generic gate pair produce a useful output,
then both these gates will become more likely to be added to a
circuit during a mutation. It is important to optimise the gate set in
this way to make sure mutations are using the more relevant and
useful gates. Otherwise many mutations would be wasted, as the
gate set for this approach is quite large and likely to contain many
gates that are redundant for the current problem.

4 RESULTS
To evaluate our system, we used it to evolve solutions for the full-
adder (FA) and quantum Fourier transform (QFT) problems using
different combinations of gate sets. Each experiment was repeated
500 times. We recorded the mean number of generations that was
required to arrive at a solution. The results of our experiments are
shown in Table 1 while the values used for the system’s parameters

1The process was stopped after 500 generations for the fuller-adder problem and 3000
for the quantum Fourier problem. If the fitness value was not within 0.1% of the optimal
fitness by that point, the attempt was deemed unsuccessful.
2This value is quoted from the work of Massey et al. [4].
3This value is quoted from the work of Potoček et al. [5].

Table 2: Hyper-parameters

Variable FA QFT

Mutation Rate 0.8 0.8
Crossover Rate 0.6 0.6
Elitism 0.05 0.05
Tournament Size 5 8
Max. Initial Circuit Size 10 20
Meta-Mutation Rate 0.4 0.025
Meta-Crossover Rate 0.1 0.01
Meta-Occurrence Rate 0.025 0.05

are shown in Table 2. The gate sets that we use are defined as:

General = {CNOT, PX, PY, PZ, UP, H, SWAP }
Higher = {Conditional, Anti-conditional, All, Inverse}
Massey = {PX, RX, RZ, RY, V, W, CNOT, CCNOT }
Potoček = {H, UP, CUP, CCUP, SWAP }

The Massey and Potoček sets are inspired by the works of Massey
et al. [4] and Potoček et al. [5] respectively, and are included to
compare our system to their work.

The General set contains common gates seen in a large variety
of quantum circuits. It is not specialised and we intend to use this
gate set for solving arbitrary problems. The higher-order gates
introduced in Section 3.2 are grouped into Higher. We use them to
enhance the General set as described in that section.

5 DISCUSSION
We selected the FA and QFT problems in order to be able to com-
pare the results we obtained with our system to those obtained
in previous work. However, the novel methods discussed in this
paper are not the only variants when comparing results to previ-
ous work: genetic operators, hyper-parameters, and specifics of
the SLGP representation all slightly differ. The results shown in
Table 1 indicate that our system is able to evolve solutions in fewer
generations than Massey et al. [4] and Potoček et al. [5] for the FA
and QFT problems whilst using the same gate sets as them. We
hypothesise that this is due to better-tuned hyper-parameters and
a more effective genetic mutation operation. It continues to be able
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to surpass previous results with our General + Higher gate set, and
hence without prior knowledge of the problem solutions.

The full-addition problem can be solved quickly if an optimal
gate set is used. Using e.g. {CCNOT ,CNOT }, the optimal solution
requires only four gates. However, without knowledge of the solu-
tion we might not have the more obscure CCNOT (Toffoli) gate in
our gate set. Instead, we might use a more standard gate set such as
the General set, which does not include the Toffoli gate. In this case,
the optimal solution consists of around 30 gates which is larger and
therefore harder for a genetic algorithm to evolve. This can be seen
in the first result in Table 1, where the experiment that used the
Generic gate set failed to solve the problem in 500 generations.

Adding higher-order gates to the general gate set allows us to
successfully evolve the adder in 179 generations, only 1.9x slower
than using the optimised gate set. This can be attributed to the
Conditional higher-order gate, as it can create the equivalent of
the CCNOT gate while being more general. No manual gate set
optimisation or knowledge about a problem’s solution is required.
We improve on this further with the meta-genetic method (Sec-
tion 3.1) by an average of 9 generations using the random method.
When using the frequency proportionate method, the number of
generations increased, and thus the random method was used for
the remaining experiments.

The results for evolving QFT are similar. Using the General +
Higher gate set, we evolved solutions in roughly 1

4 as many gener-
ations as Potoček et al. [5] and only 2.1x slower than using their
optimised gate set in our system. When using the right hyper-
parameters for probability mutation and crossover rates, enabling
the meta-genetic feature slightly decreased the mean generations
to 208. This is only a factor of 1.9x off the same system being used
with a manually optimised gate set.

6 CONCLUSIONS AND FURTHERWORK
We presented a quantum programming system which can evolve
solutions to the FA and QFT problems in fewer generations than
previous work, but without needing prior knowledge about a solu-
tion. If given prior knowledge in the form of a manually optimised
gate set, our system is even more efficient.

Our main improvement is the addition of higher-order gates
which increase the effectiveness of a general gate set. Enhancing
this approach by dynamically evolving the probabilities that certain
types of gates are chosen in the mutation stage led to further, but
small, improvements. The combination of these two techniques
allows our system to reach solutions with this generalised approach
only about 2x slower than using a manually optimised gate set.

Our system also performs better than previous work when using
exactly the same gate sets that they used. For example, to solve the
QFT problem our system required 9.8x fewer generations than the
work of Potoček et al. [5]. We theorise that this improvement is
because of our more effective genetic mutation operation and the
use of well optimised hyper-parameters.

Our work paves the way to more general, genetic algorithms that
can evolve solutions to quantum programming problems which do
not depend on human guidance or previous knowledge of the solu-
tion. However, there is more room for improvement. Throughout
this work the system user has had to optimise hyper-parameters

such as the population size and mutation rate manually. More work
can be done on methods to tune these automatically. Also, as shown
in the results, our system is still more efficient with an optimal gate
set. Ideally, there would be no difference in the use of an optimal
gate set versus a general gate set. We envisage that further improve-
ments in this area could be achieved by exploring the addition of
new higher-order gates.

A GATE DEFINITIONS

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 CUP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ


H = 1√

2

[1 1
1 −1

]
UP =

[
1 0
0 eiϕ

]
V =

[1 0
0 i

]
W =

[1 0
0 −i

]
PX =

[0 1
1 0

]
PY =

[1 0
0 −1

]
PZ =

[0 −i
i 0

]
RZ =

[
e−iθ 0
0 eiθ

]
RX =

[
cos θ −i sin θ

−i sin θ cos θ

]
RY =

[
cos θ −sin θ
sin θ cos θ

]

CCUP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 eiϕ


CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


B HIGHER-ORDER GATES

• Conditional: a given operation is performed if a specified
qubit is 1.

• Anti-Conditional: a given operation is performed if a specified
qubit is 0.

• Inverse: the inverse of a given operation is performed.
• All: a given operation is applied to all possible qubits.
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