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Abstract

More voters than ever get political news from their friends on social media platforms. Is

this bad for democracy? Using context-neutral laboratory experiments, we find that biased

(mis)information shared on social networks affects the quality of collective decisions relatively

more than does segregation by political preferences on social media. Two features of subject

behavior underlie this finding: 1) they share news signals selectively, revealing signals favorable

to their candidates more often than unfavorable signals; 2) they näıvely take signals at face value

and account for neither the selection in the shared signals nor the differential informativeness

of news signals across different sources.
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1 Introduction

Twitter, Facebook and other social media have become a primary source of news and a forum

for political discourse for an increasing share of voters.1 This may have dramatic consequences as

social media platforms, faced with abundant shared information, filter content so that users only

see news and advertising related to what they or their friends have responded to. As one’s friends

tend to be similar to oneself, social media users may only encounter viewpoints similar to their own,

inside their personal “filter bubble”, reinforcing a limited view. As one media observer colorfully

puts it, “personalization filters serve up a kind of invisible autopropaganda, indoctrinating us with

our own ideas” (Pariser, 2011).

How does social media affect voting behavior? A key channel concerns news and information

sharing via the underlying social networks. We construct an artificial, context-neutral social media

environment in the laboratory, where we control the most important and subtle factors of the

process: voters’ preferences, social networks, and media bias. This approach overcomes a key

challenge faced by field studies: the unobservability of voters’ information sets arising from exposure

to news across platforms and media sources. We study a voting game in which partisan players

have the opportunity to share their news signals with other players on a small social network

prior to voting. In this setting, we examine how the combination of media bias in individual

signals and the limited communication possibilities in social networks distorts news sharing and

influences electoral outcomes. By opting for a context-neutral rather than context-heavy political

environment, we expect our experimental results to provide conservative estimates of the treatment

effects, as well as an objective efficiency benchmark for the quality of collective choices.

We study elections with two candidates and two states of the world. While voters share common

interests, in the sense that their payoffs are maximized when the elected candidate is the “correct”

choice for the realized state, they are also partisans, and the electorate is split up into two groups

supporting different candidates ex ante. Voters receive private signals about the state (“news”)

and vote for one of the two candidates, and the election is decided by a simple majority of votes.

We extend this basic setting by introducing media bias in voters’ private signals and a novel social

network component that restricts signal sharing across groups. Specifically, prior to voting, voters

decide whether or not to share their private signals with their neighbors on a social network,

mimicking the news sharing protocol on social media platforms. We investigate, theoretically

and experimentally, two network treatments: polarized network, in which each candidate’s ex

ante supporters are put together in a separate network component with no links in between (a

variant of a “filter bubble”) and complete network, in which everyone is connected to everyone else,

relative to the benchmark of the empty network, which does not permit news sharing. We also

vary the degree of media bias, which determines the accuracy of individual signals: from unbiased

informative signals to moderately biased but still informative signals, with partisans more likely

to receive signals favoring their candidate, to extremely biased uninformative signals (a variant of

1The June 2015 Pew Research Center report shows that 61% of Americans aged 18–33 get political news from
Facebook in a given week, compared to 39% of Baby Boomers (journalism.org/2015/06/01/millennials-political-news).
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“fake news”).

The theoretical analysis of our model casts some doubt on the “filter bubble” story and high-

lights the positive role of moderate media bias. The filter bubble narrative suggests that “piercing”

the bubble should be necessarily improving collective decisions by enabling more informative voting.

We show that with media bias, the overall picture is more complicated, and the above conclusion

may not hold. If voters are sufficiently sophisticated Bayesians, they should be able to extract

information from verifiable signals shared with them, even when the signals are biased by partisan

media sources and subject to filtering on social networks. Network filtering is helpful since it makes

voters’ incentives aligned to share all signal realizations, including those unfavorable to their ex ante

preferred candidate. Media bias is helpful since biased signal realizations can align voter behind

the “correct” candidate despite differences in partisan preferences. For instance, an endorsement of

a left-wing candidate by a right-wing newspaper can be viewed as a very informative signal. When

there is no network filtering, extracting information is more challenging under media bias, as it

requires accounting for the differential informativeness of the signals across news sources. So while

increased news sharing opportunities in larger networks may result in more informative voting, for

the benefits to realize voters need to be sophisticated enough to be able to account for the signal

sources in their Bayesian posteriors.

Our empirical results indicate that by and large, voter behavior is not sophisticated enough

to be consistent with the complicated Bayesian equilibrium calculus. Rather, voters exhibit two

behavioral features. First, they consistently engage in “selective” news sharing in social network

treatments, whereby they share news that favors their partisan candidate more often than news

that is unfavorable to their candidate. So we clearly reject a model of communication in which

voters näıvely reveal all information that comes their way: their news sharing behavior is at least

somewhat sophisticated. Second, in their voting behavior, subjects more or less take signals at

face value. As a result, in treatments where signals are informative albeit biased, voters do not

fully account for the bias. In treatments where, by design, signals are completely uninformative,

voters näıvely attribute information value to them, treating uninformative signals (“fake news”) as

real news, and reacting to them in their voting decisions. In sum, subjects’ news sharing behavior

indicates little, if any, regard for how the signals are subsequently acted upon – they behave as if

they derive intrinsic (dis-)utility from sharing (un-)favorable signals; and subjects’ voting behavior

indicates failure to discount biased signal sources even when the bias makes signals completely

uninformative.

The under-sophistication on the part of voters results in novel efficiency trade-offs between

filtering and bias in social networks. We find that the effects of news sharing on voting depend

crucially on the underlying quality of the news: Without media bias, social networks raise collective

decision making efficiency, as the news shared by sufficiently many voters is sufficiently accurate

about the realized state of the world even when shared selectively. The complete network is more

efficient than the polarized one, which filters voters according to partisanship. As news quality

deteriorates under media bias, however, the complete social network becomes less efficient while

the polarized social network remains similarly efficient. So we find that filtering does not reduce
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efficiency under media bias, but the information benefits of news sharing in the complete network

are not realized. These results are consistent with unrestricted social networks imposing high

cognitive costs on voters in the presence of media bias, and indicate that sharing bad information

on social networks is a bigger threat to information aggregation by voting than are filter bubbles

created by social media.

The remainder of the paper is organized as follows. Subsection 1.1 provides a brief overview

of the related literature. Section 2 describes the model primitives, the mapping of the primitives

into experimental treatments (Subsections 2.1–2.2), and the experimental design and procedures

(Subsection 2.3). Section 3 derives benchmark equilibrium predictions for each treatment. Section

4 presents the main results and their interpretation. As a robustness check, we supplement our

lab experimental results with survey evidence from Pakistan in Section 5. The survey results are

broadly consistent with our experimental findings. Section 6 concludes. Appendix A presents

additional detail of the experimental setup and data analyses. Appendix B contains proofs of the

theoretical propositions. Appendix C contains experimental instructions.

1.1 Related literature

Methodologically, our paper is related to several theoretical and experimental studies of information

aggregation by voting discussed below, which share some similarities with some of our experimental

treatments but differ in several important ways. First, almost all the studies we are aware of did

not allow for media bias in the voters’ signals, which plays an important role in assessing the effects

of social networks on voting. Second, previous studies (with a few exceptions) largely considered

voters with homogeneous payoffs i.e. with no conflict in the preferences. Third, previous studies

either did not allow for network-restricted deliberation (as in our polarized network), or modelled

it as cheap talk. As a result, pertinent features of news sharing on social networks were not fully

captured by the extant literature. With these caveats in mind, the two most closely related papers

are Goeree and Yariv (2011) and Jackson and Tan (2013).

The benchmark case of the empty network and no bias has been studied in many papers on Con-

dorcet jury voting, starting with Austen-Smith and Banks (1996). One difference in our treatments

is the possibility of “no-signal” outcomes, which creates an endogenous group of “uninformed” vot-

ers, which can matter for decision making efficiency (see Austen-Smith and Feddersen (2005),

Oliveros and Várdy (2015), and Elbittar et al. (2017)).

Our treatments with non-empty networks feature network-restricted deliberation among voters,

where voters’ signals are verifiable (“hard” evidence). A version of our treatment with no bias

and complete network was analyzed theoretically in Schulte (2010) and Coughlan (2000). These

papers, as well as Hagenbach, Koessler and Perez-Richet (2014) only focussed on full information

revelation equilibria, which do not exist in our setting, so we provide a characterization of all semi-

pooling equilibria. Jackson and Tan (2013) is the only other paper that studied such equilibria in

a comparable deliberation game with many senders and receivers and hard evidence, but in their

model voters were distinct from “experts” who obtain signals. In our model, in contrast, both roles

4



are combined. Our complete social network treatment shares some features with other theoretical

and experimental papers studying communication in a voting setting.2 Unlike those papers, we

use verifiable signals rather than versions of cheap talk. Kawamura and Vlaseros (2017) studied

information aggregation in the presence of public “expert” signals; in our setting public signals are

generated endogenously via voters revealing their private signals.3

More broadly, our paper is related to the strands of the empirical literature in media economics

studying media bias and social networks. These two issues have generally been treated separately

in the existing literature, and a key contribution of this study is to consider their joint effects.

Media bias at the source can directly affect electoral outcomes. This is the gist of the “Fox

news effect” documented in DellaVigna and Kaplan (2007) and Martin and Yurukoglu (2017),

whereby television viewers who were exposed to the right-leaning Fox News stations tended to

vote more for Republican candidates. Similarly, Enikolopov, Petrova and Zhuravskaya (2011)

found that viewers exposed to an independent TV channel in Russia decreased their support for

the government. Measuring media bias using observational data is challenging (e.g. Chiang and

Knight (2011), Groeling (2013)), and evaluating the overall effects requires careful accounting for

news consumption across different platforms (e.g. Kennedy and Prat (2017)). Using experimental

data allows us to avoid these challenges: in our experiments we fix the media bias exogenously and

make the subjects aware of the news-generating information structure.4

Social networks may amplify the Fox News effect if a biased news piece becomes more promi-

nent as it is shared by a larger number of like-minded people. At the same time, newsfeed filtering

by social networks may dilute the Fox News effect due to increased political polarization. Bak-

shy, Messing and Adamic (2015) found that Facebook users who indicate their ideology in their

profiles tend to maintain relationships with ideologically similar friends, and that content-sharing

is well-aligned with ideology. However Gentzkow and Shapiro (2011) found relatively little online

segregation by ideology, and Boxell, Gentzkow and Shapiro (2017) questioned the hypothesis that

social media is a primary driver of increasing polarization in the U.S. Our experimental findings

lend support to this interpretation of news sharing on social media, as our subjects by and large

take signals at face value and fail to take into account the sources of their signals in their voting

behavior. This partly mitigates concerns about social networks increasing polarization, but also

means that when there is media bias, complete networks do not improve over polarized ones despite

enabling access to a larger number of signals.

2See in particular, Guarnaschelli, McKelvey and Palfrey (2000), Austen-Smith and Feddersen (2006), Gerardi and
Yariv (2007), Meirowitz (2007), Goeree and Yariv (2011), Le Quement and Marcin (2016), Buechel and Mechtenberg
(2016), Bouton, Llorente-Saguer and Malherbe (2017), and Breitmoser and Valasek (2018). See Martinelli and Palfrey
(2017) for a comprehensive survey of experimental results in collective decision games.

3Several papers also studied heterogeneous voters partitioned into groups like in our polarized network treatment
(Maug and Yilmaz (2002), Mengel and Rivas (2017)) but did not allow for communication. Related theoretical studies
with elements of communication between voters include Galeotti and Mattozzi (2011), Le Quement and Yokeeswaran
(2015), and Battaglini (2017). Empirical papers on deliberation and voting include Iaryczower, Shi and Shum (2018).

4Media outlets in our paper are not modelled as strategic players but rather as a device delivering news signals to
consumers. This contrasts with several theoretical studies where media bias arises endogenously (e.g. Mullainathan
and Shleifer (2005), Gentzkow and Shapiro (2006), Bernhardt, Krasa and Polborn (2008), Duggan and Martinelli
(2011), Anderson and McLaren (2012), and Piolatto and Schuett (2015)).
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On Facebook, news is largely shared by “liking”; such semantics may accentuate the tendency

of users to share only news that is congruent with their preferences, consistent with our finding

of selective signal sharing in our experiments. Selective news sharing has also been documented

in the field (e.g. An, Quercia and Crowcroft (2014), Garz, Sörensen and Stone (2018)) and in

the lab (e.g. in sender-receiver disclosure experiments, Jin, Luca and Martin (2017) report that

senders disclose more favorable information more often), suggesting robustness of the finding across

contexts. However, our results also show clearly that the negative effects of social media on collective

outcomes only arise in conjunction with media bias: with unbiased news, news sharing on social

networks actually leads to better electoral outcomes, by increasing the information that voters have

at their disposal.

2 The Model and Experimental Design

A substantive contribution of this paper is to study a model that integrates news sharing via social

networks with a voting framework in a controlled laboratory setting. We extend the standard model

of information aggregation by committee voting (Austen-Smith and Banks (1996), Feddersen and

Pesendorfer (1997, 1998)) to allow for news sharing on a social network prior to voting. In this

model, two candidates, Ca and Cb, compete in an election. There are n voters, split evenly into

two partisan groups supporting candidates Ca and Cb, respectively. There are two equally likely

states of the world, a and b, with θ ∈ {a, b} the realized state, which can be interpreted as the

identity of the “correct” candidate to elect. The voting rule is simple majority, with ties broken

randomly. Communication among voters consists of sharing private signals about the state and

is network-restricted according to exogenous social network configurations, described below. This

creates a variant of network-restricted deliberation among voters.

Preferences. We model voters as weak partisans who are biased toward a particular candidate

but still care about choosing the correct candidate for the state, i.e. are responsive to information

and can be persuaded to change their mind. Voters’ utilities are identical within their respective

groups and depend on the realized state of the world, θ, and the elected candidate, C. The utility

function of each weak Cj-partisan, j ∈ {a, b}, is uj(θ, C), normalized as follows.

uj(j, Cj) = 1.5, uj(−j, C−j) = 0.5, uj(j, C−j) = uj(−j, Cj) = 0.15 (1)

Here, −j = {a, b} \ j. By default, a Cj-partisan prefers to have Cj elected, but she will vote for

C−j if sufficiently sure that the realized state makes C−j the correct candidate.

Information. Voter preferences over candidates are common knowledge. Each voter may receive

a private conditionally independent signal s about the realized state of the world (a “news” item)

from a media source, or receive no signal. We let s ∈ {sa, sb, s∅} to cover both cases. When signals

are informative, a signal sa indicating that state a is more likely to have occurred is favorable to

Ca-partisans, since Ca is more likely to be the “correct” choice, translating into a higher expected

payoff of Ca-partisans, but it is unfavorable to Cb-partisans, since Cb is less likely to be the correct
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choice for the state, translating into a lower expected payoff of Cb-partisans, and vice versa for

an sb signal. There are two different media sources that distribute the signals, and each group of

supporters listens to a different source. We do not explicitly model media as strategic players but

we vary the informativeness of the signals as discussed in detail below.

Timing and actions. We consider a game with the following timeline:

1. State θ ∈ {a, b} is realized (voters do not observe it).

2. News signals are drawn from distributions that vary across the media bias treatments, as

described below, and voters privately observe their signals.

3. Each voter who has received a non-empty signal s 6= s∅ decides whether or not to share s with

her neighbors on the network. She cannot selectively choose who to share the signal with:

either the signal is shared with everyone in her network or with no one. She also cannot lie

about her signal if she decides to share it (no cheap talk). After everyone’s signal sharing

choice is carried out, voters observe signals shared with them, if any.

4. Voters vote for one of the candidates Ca or Cb.
5

5. The candidate supported by the majority of votes is elected, and payoffs are realized. Ties

are resolved by a random coin flip.

2.1 Social network treatments

The existing literature on communication within social networks has emphasized how learning

and information efficiency of social networks varies depending on their structure.6 We study the

following network treatments in our experiments:

SN0: Empty network. This is the default setting for the Condorcet Jury Theorem without delib-

eration among jurors. In this treatment, there is no communication stage – after observing

their private signals, all players go to the voting stage.

SN1: Polarized network. The social network consists of two separate and fully-connected compo-

nents (which we will also refer to as “parties” below), where each one contains only supporters

of one candidate. During the communication stage, voters can only share signals publicly with

everyone in their party. SN1 captures the idea that in an extremely polarized society political

support is concentrated at opposite ends of the spectrum, and communication is predomi-

nantly between like-minded people.

SN2: Complete network. Every voter is connected to everyone else so there is a channel for

electorate-wide communication, and voters can share signals publicly with everyone including

supporters of the opposing candidate.

5Abstention is not allowed here to keep the design simple, but remains an important future extension.
6Homophily in social networks has received a lot of attention since McPherson, Smith-Lovin and Cook (2001).

Recent studies include, e.g. Golub and Jackson (2012), Baccara and Yariv (2013), Halberstam and Knight (2016).
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The crucial feature in SN1 and SN2, dictated by our focus on news sharing, is that unlike previous

studies, shared signals are not cheap talk but “hard” evidence, i.e. they are verifiable and should

be always believed. The idea is to capture the setting in which a voter comes across a news article

on the Internet, and decides whether or not to Facebook “like” it. If “liked”, the article is publicly

shared with her Facebook friends, however if not “liked”, she can always plausibly pretend she has

not been aware of that article in the first place (perhaps to avoid questions about why she did not

share it).

2.2 Media bias treatments

Given the popular and policy debates on the bias and reliability of news circulated in real-world

social networks, we study media bias treatments that vary the quality of the private news signals

that subjects in our experiments receive:

MB0: No media bias. Signals are unbiased and informative.

MB1: Moderate partisan bias. Each voter receives the signal from the media source biased towards

her ex ante preferred candidate. The interpretation is that biased media highlight good news

for their candidate, and dampen good news for the opponent.7 While “favorable” signals are

more likely to be reported in both states than “unfavorable” signals, there is a difference in

probabilities that depends on the realized state. Thus, signals are informative, and more so

if they are “unfavorable”.

MB2: Extreme partisan bias (“fake news”). As in MB1, favorable signals are more likely to be

reported in both states. However the probability of getting a favorable signal is the same

in both states – the signals are uninformative (not correlated with the realized state). This

signal structure partially resembles “fake” news.

In all MB treatments, there is no news (empty signal) with probability r, with r = 0.2 for most

of our treatments. The positive probability of an empty signal is crucial – if each voter receives

a signal with probability one, then her decision not to share her signal would be “unraveled” by

other voters as an attempt to suppress information unfavorable to her candidate. In order to see

whether voters take these strategic considerations into account, we experimentally check this case

below, by setting r = 0 for two sessions.

The signal accuracy details for all MB treatments are described in Table 1, computed using the

actual experimental parameters.

7We do not consider a possibility of negative campaigning in addition to the good news bias, but it is straightfor-
ward to re-arrange the signals to get a model of negative campaigning instead of the positive one. See also Morton,
Piovesan and Tyran (2019) who investigate effects of low-accuracy (but still unbiased) signals on voting efficiency
using a very different experimental design.
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Table 1: Signal Structure

No bias, MB0 Moderate bias, MB1 Extreme bias, MB2
possible signals possible signals possible signals

State sj s−j s∅ sj s−j s∅ sj s−j s∅
j q(1− r) (1− q)(1− r) r qjj (1− r) (1− qjj )(1− r) r q(1− r) (1− q)(1− r) r

0.56 0.24 0.2 0.72 0.08 0.2 0.56 0.24 0.2

−j (1− q)(1− r) q(1− r) r (1− q−jj )(1− r) q−jj (1− r) r q(1− r) (1− q)(1− r) r

0.24 0.56 0.2 0.48 0.32 0.2 0.56 0.24 0.2

Notes: Conditional probability that a Cj-partisan, j ∈ {a, b}, receives each of the three possible private signals, sj , s−j , or s∅,
conditional on each of the two possible state realizations, j,−j ≡ {a, b}\ j, for each MB treatment. First line: formal expressions
using our notation. Second line: actual values computed using experimental parameters q = 0.7, r = 0.2, qjj = 0.9, q−jj = 0.4.

2.3 Experimental procedures

Our experiment combines three social network treatments and three media bias treatments, and

two additional treatments with no-signal probability r = 0 and a non-empty network. We ran 17

sessions at the Warwick Business School in June, July, and October 2016, and further 6 sessions in

May 2018. Sessions lasted between 50 and 80 minutes. In total, 590 subjects participated.8

For each session, we recruited two to three ten-person groups (i.e. the electorate size n = 10),

each group split into two equal-sized subgroups of Ca- and Cb-partisans. We kept the media bias

fixed during a session, and varied the network, with the first 16 rounds of one network treatment,

and the last 16 rounds of another, and counter-balancing the order of the treatments. We paid two

random rounds from each network treatment, with GBP payoffs for each player specified in Eq (1).

Table 1 lists signal accuracies in each media bias treatment. Benchmark equilibrium predictions

for our parameters are described in Section 3 below. Within a session, subjects’ member IDs

and the composition of the party groups changed randomly every round. With two to three ten-

person electorates deciding simultaneously and independently each round, this design mitigates

repeated play considerations. More details of the experimental setup, including a screenshot of

subject computer screen and summary statistics for the sessions and subject payoffs, are contained

in Appendix A.

3 Equilibrium Predictions

In this section we derive equilibrium predictions for each experimental treatment when voters are

fully rational; the proofs and more detailed derivations for each case are presented in Appendix B.

While the analysis techniques described below are quite general, we focus on deriving equilibrium

predictions specific to the parameters of the experiment, which are taken as a primitive by all

formal statements.

We start by describing behavior at the voting stage, common to all treatments. Let pi denote

voter i’s posterior belief that the realized state is a, conditional on all her available information

8All our analyses except the subject summary characteristics in Table 8 use the data from 530 subjects. We did
not use the data from the 60 subjects who had participated in the two 2016 sessions that we later had to discard, as
described in Table 7 in Appendix A.
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including her payoff type, her private signal, equilibrium messages received from others, and piv-

otality.9 Then i prefers to have Ca elected if and only if this maximizes her expected utility:

piui(a,Ca) + (1− pi)ui(b, Ca) > (1− pi)ui(b, Cb) + piui(a,Cb) (2)

For the utility specification in (1), inequality (2) holds for Ca-partisans if and only if pi > ta and

for Cb-partisans if and only if pi > tb, where

ta = 7/34 ≈ 0.206, tb = 1− 7/34 ≈ 0.794. (3)

A sincere Bayesian voting strategy in which players vote for the candidate who maximizes their

expected utility, is as follows: Ca-partisans vote for Ca whenever pi > ta, Cb-partisans vote for

Ca whenever pi > tb. This voting strategy is always a best response at the voting stage and,

moreover, a unique best response if players are pivotal with positive probability.10 With these

preliminaries at hand, we characterize type-symmetric Bayesian equilibria for each combination of

media bias and social network treatments.11 To aid the reader, we have summarized the main

empirical implications for each treatment combination in Table 2.

Equilibrium analysis (described in more detail below, with formal statements in Appendix B)

reveals two main trade-offs between the network structure and informative voting. First, moderate

media bias can improve informative voting compared to no bias. The reason is that in the presence

of moderate bias, rational voters put different weights on favorable and unfavorable signals in their

posteriors depending on the partisan bias of the signal source. As a result, the posteriors are updated

asymmetrically: a favorable signal coming from the source biased towards own party does not move

the posterior far from the prior, but an unfavorable signal coming from the same source moves it

quite a lot from the prior. This improves incentives to vote in line with one’s information compared

to the no bias case. Second, having all voters grouped in a polarized network by party affiliation

can be welfare-improving relative to a complete network. The reason is that in a complete network

full information revelation fails – when the audience for messages has heterogeneous preferences,

partisans have incentives to hide unfavorable signals – which is not the case in the homogeneous

polarized network. Of course, it is an empirical question (explored in Section 4 below) whether the

subjects are sophisticated enough to follow the equilibrium logic.

3.1 Equilibria without informative communication

We begin with the empty network treatments (third column in Table 2), where no communication

is permitted among voters. Each voter can condition only on her own signal and the equilibrium

9Voter i can be pivotal in two senses: at the voting stage, if her vote changes the outcome, and at the signalling
stage, if her message moves the posterior belief of others enough to change their vote.

10If players correctly update their beliefs about the state given all available signals but are not fully strategic, they
should still be playing sincere Bayesian voting strategies.

11There are other equilibria, e.g. those in which everyone always votes for the same candidate so no single vote can
change the outcome; but such equilibria are in weakly dominated strategies or they exhibit large asymmetry between
voters of the same extended type. Following the literature, we do not consider them in the analysis.
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Table 2: Brief Summary of Equilibrium Predictions for each Treatment

Social network
Media bias Prediction type Empty (SN0) Polarized (SN1) Complete (SN2)

Unbiased (MB0) News sharing n/a All Selective
Informative voting No Partial Partial

(Result 1) (Result 2) (Result 2)

Moderate (MB1) News sharing n/a All Selective
Informative voting Partial Partial Partial

(Result 1) (Result 2) (Result 2)

Extreme (MB2) News sharing Irrelevant (anything goes)
Informative voting No

(Result 3)

Notes: All predictions are derived using experimental parameters. “Results” refer to state-
ments in Subections 3.1 and 3.2. The corresponding formal statements are provided in Propo-
sitions 1 – 6 in Appendix B. ‘Selective news sharing’ means always sharing favorable sig-
nals and sharing unfavorable ones with a small enough probability specified in the respective
propositions. ‘Informative voting’ indicates whether voters respond to their information in
equilibrium. No informative voting means that each voter votes for her partisan candidate,
regardless of their information. Partial informative voting means that voters vote according
to their information under some combinations of news signals shared with them.

play in determining how to vote.

With unbiased media, signals are symmetrically informative ex ante about the realized state:

with parameters specified in Table 1, player i’s posterior conditional on observing sa is pi(θ =

a|sa) = 1/(1+(1−q)/q) = 0.7 and conditional on observing sb it is pi(θ = a|sb) = 1/(1+q/(1−q)) =

0.3. So both posteriors are equidistant from the prior of 1/2 and stay within the interval between

belief thresholds, [ta, tb], in which the unique best response for each voter is to vote for their ex

ante preferred candidate. So an equilibrium obtains in which voters base their vote on their prior

rather than on their signals.12

With moderately biased media, however, signals become asymmetrically informative ex ante

about the realized state. For instance, for a Ca-partisan, the posterior about the “favorable” state

θ = a conditional on observing a “favorable” signal sa is pi(θ = a|sa) = 1/
(
1 +

(
1− qba

)
/qaa
)

= 0.6,

but conditional on an “unfavorable” signal sb it is pi(θ = a|sb) = 1/
(
1 + qba/ (1− qaa)

)
= 0.2 < ta.

So an unfavorable signal provides more information than a favorable signal, as it moves the posterior

farther from 1/2 and out of the interval between belief thresholds, [ta, tb], making it a best response

for each partisan to vote according to their signal, i.e. an unfavorable signal strongly indicates to

this voter that her partisan candidate is the wrong choice for the state.13 Accordingly, moderate

bias might be helpful for information aggregation – sincere voting becomes informative, unlike in

12When all other players use sincere Bayesian voting strategies, a unique best response for a Ca-partisan is to
vote for Ca after either signal, as pi(θ = a|·) ≥ 0.3 > ta, and for a Cb-partisan to vote for Cb after either signal,
as pi(θ = a|·) ≤ 0.7 < tb. Conditioning on pivotality in addition to own signal does not alter best responses in our
setting.

13 When all other players use sincere Bayesian voting strategies, a best response for a Cj-partisan i is to vote for
Cj after signal sj , and vote for C−j after signal s−j , as now pi(θ = j|s−j) < tj . Hence moderate bias may play a
similarly beneficial role for information aggregation as correlation neglect (e.g. Levy and Razin (2015)). This also
resembles the classical result in Calvert (1985) for a single decision maker faced with the choice between a neutral
and a biased expert (which however arises from a different mechanism).
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the no bias case:

Result 1. In the empty network treatments, equilibrium voting is at best partially informative.

With unbiased media, all players vote for their partisan candidate regardless of their signal. With

moderately biased media, players vote according to their signal (and vote for their partisan candidate

if they get no signal) so voting becomes partially informative.

This result summarizes the equilibrium predictions of Propositions 1 and 4 in Appendix B.

3.2 Equilibria with informative communication via social networks

Next, we consider social networks, in which voters have opportunities to exchange signals with

others during the communication stage prior to voting. In our social network treatments (the

last two columns in Table 2), voters decide whether or not to share their signals with all of their

neighbors on the network, that is all other voters (under complete network) or like-minded partisans

only (under polarized network).

Since signals are “hard” evidence, sharing informative signals on social networks should improve

voting outcomes relative to the empty network. However, to properly interpret the extra signals re-

ceived via social networks requires some sophistication on the part of voters: the Bayesian posterior

depends not only on the reported signals but also on the non-reported ones: if some voter i did not

reveal a signal during the communication stage, other voters must consider whether i received an

empty signal or, alternatively, might have received a non-empty signal and withheld it strategically.

In fact, in the complete network, since signals are shared with everyone including the supporters

of the other candidate, voters have incentives to hide signals that are unfavorable to their partisan

candidate.14 In the polarized network, voters can share signals only with members of their own

party. In this case, they cannot directly affect beliefs in the other party – their signals can only

be pivotal for the posteriors held in their own party – so that it becomes incentive compatible for

voters to share even unfavorable signals, resulting in more informative voting.

Result 2. In polarized networks, there is a fully revealing equilibrium in which all players with

non-empty signals reveal them at the communication stage and believe with probability one that

non-revealing players are uninformed. So both favorable and unfavorable signals are revealed with

probability one. In contrast, in complete networks, there is no fully revealing equilibrium. Rather,

there are semi-pooling equilibria in which players engage in selective news sharing, revealing favor-

able signals with probability one, but hiding unfavorable signals with high probability (> 0.92 under

no media bias, > 0.86 under moderate media bias).

This result summarizes the equilibrium predictions of Propositions 2 and 3 (no bias) and Propo-

sitions 5 and 6 (moderate bias) in Appendix B. For moderately biased media treatments, as dis-

cussed in Subsection 3.1, favorable and unfavorable signals enter the Bayesian posteriors with

different weights that depend on signal sources. This creates important trade-offs between voter

14Similar logic arises in two-member committees with conflict in members’ preferences (Li, Rosen and Suen, 2001).
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sophistication and signal information when media bias and social networks co-exist: Complete net-

works may provide more information than polarized ones but require more voter sophistication

(accounting for the sources of the reported and the strategically hidden signals). Polarized net-

works may provide less information than complete ones but also require less voter sophistication

(all signals should be shared and come from the same source). In all cases, moderate media bias

requires voters to treat favorable and unfavorable signals differently in their posteriors.

A different kind of voter sophistication is required in treatments with extreme media bias (the

bottom row in Table 2). In those treatments, voters are more likely to receive signals favoring their

partisan candidates but signals are uncorrelated with the state, no matter the source. The Bayesian

posterior never moves away from the prior of 1/2 and in the unique sincere Bayesian equilibrium

everyone votes (non-informatively) for their partisan candidate.

Result 3. In the extreme bias treatments, signals are biased but completely uninformative. All

players vote for their partisan candidate regardless of their own signal and/or any reported signals.

Overall, Results 1 – 3 indicate that the joint effect of media bias and social networks on voting

outcomes substantively depends on how sophisticated the majority of the voters are in sharing

news, interpreting news received from others, and accounting for their information in their voting

decisions. How these factors interact is an empirical question we turn to next.

4 Experimental Findings

In this section we discuss the main results from our experiments. In interpreting the results we focus

on key theoretical predictions from the previous section, that (i) voters may share news selectively,

passing along favorable signals and suppressing unfavorable ones; (ii) voters behave in line with

sincere Bayesian voting strategies, conditional on all available information and the equilibrium

behavior. In addition, (iii) we compute decision-making efficiency for each treatment and check

whether polarized networks may be more efficient than complete networks, and whether media bias

may lead to more informative voting. We examine these issues in turn.

4.1 News-sharing patterns

We first look at the news-sharing patterns, focusing on the selective news sharing prediction from

the semi-pooling equilibria (cf. Result 2), whereby voters should communicate favorable signals

but suppress unfavorable ones. Subjects’ signal-sharing activity is summarized in Table 3.

In the polarized network, all subjects in the same subnetwork have fully aligned interests, so

in theory, there should be full signal revelation (Propositions 3 and 6 in Appendix B). Table 3

shows clearly that most of the time, subjects do share their signals – roughly 83–90% of all signals

(conditional on getting a non-empty signal). However, in all treatments, subjects share significantly

less than 100% of the signals that they receive, so full signal revelation is not supported in our data.

Distinguishing the signals shared by their type we see from the “Fav. signals” and “Unfav.

signals” columns of Table 3 that subjects are selective in the signals they share: in all treatments,
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Table 3: Signal Sharing Patterns by Treatment

Network Pr(No sig.) Bias N All signals N Fav. signals N Unfav. signals Fav − Unfav

Polarized 20% No 120 .869 (.019) 120 .936 (.017) 120 .803 (.029) .133∗∗∗

Complete – – 110 .825 (.021) 110 .906 (.021) 110 .738 (.032) .168∗∗∗

Polarized 0% – 60 .861 (.026) 60 .936 (.023) 60 .782 (.042) .154∗∗∗

Complete – – 60 .854 (.025) 60 .938 (.026) 60 .774 (.042) .164∗∗∗

Polarized 20% Moderate 90 .897 (.015) 90 .923 (.016) 87 .814 (.031) .109∗∗∗

Complete – – 90 .881 (.016) 90 .913 (.016) 88 .780 (.034) .133∗∗∗

Polarized – Extreme 90 .827 (.021) 90 .891 (.019) 89 .678 (.039) .213∗∗∗

Complete – – 120 .825 (.016) 120 .888 (.018) 119 .673 (.034) .215∗∗∗

Notes: N = number of subjects, standard errors in parentheses are clustered by subject. All rates are conditional on
getting a non-empty signal. Significance codes: ∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1

favorable signals are shared 89–94% of the time but unfavorable signals are shared only 68–81% of

the time. These differences (in the last column) are significant (in all cases, p ≤ 0.002) and robust

to subsamples, e.g. using only the first halves of all sessions. The dynamics of signal sharing across

experimental rounds (within network treatment condition) are illustrated in Figures 1–2. Except

for the first few initial rounds (expiring around round 4), the average sharing rates do not vary

much over time, thus providing no evidence of learning. Unfavorable signals in treatments with

media bias are naturally less likely to occur so sharing rates of those exhibit a higher variance over

time than the sharing rates of favorable signals.

At first glance, such selective news sharing behavior is consistent with the predictions of the

semi-pooling equilibria, in which favorable signals are always revealed and unfavorable signals are

hidden with a positive probability (Result 2). However, the sharing rates of unfavorable signals –

67.8% or higher in all treatments – far outstrip the maximum of about 8% (about 14% under the

moderate bias) predicted in the semi-pooling equilibria.

Could selective news sharing be a best response by sophisticated senders to “näıve” receivers

who take reported signals at face value? This possibility seems strained: since each sender is

also a receiver, a sophisticated sender should not, at the same time, be a näıve receiver. As an

indirect test of sender sophistication, however, in rows 3–4 of Table 3 we present the unbiased

treatments in which the probability of obtaining an empty signal is zero: in these cases, subjects

who don’t share a signal cannot hide under the guise of being uninformed. Interestingly, in those

treatments, average signal sharing rates are virtually the same as in the treatments discussed above,

where the probability of an empty signal was set to 20% (see also Figures 2(a) and 2(c)). This

suggests that senders are not sophisticated enough as to be guided by backward-induction reasoning

about how their (non-)reports will affect others’ posterior beliefs and votes, as in the semi-pooling

equilibrium. Rather, signals are shared (or not) with seemingly little regard for how the signals will

be interpreted or acted upon, and there appears to be a behavioral disinclination towards sharing

unfavorable signals.
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(a) SN1, MB0 (b) SN1, MB2

(c) SN2, MB0 (d) SN2, MB2

Figure 1: Average signal sharing rates across rounds: No bias and Extreme bias.

4.2 Assessing Bayesian voting

In this section we consider more formally whether subjects account for their information in their

vote, in a way that is consistent with the theoretical predictions.

Sincere Bayesian voting by subject. To estimate how often subjects followed sincere Bayesian

voting strategies, we start by computing, for each subject, the fraction of her votes that is consistent

with the sincere Bayesian strategy. This histogram of this measure, across all subjects, is presented

in Figure 3(a). Here, we see that a substantial proportion of subjects use voting strategies that

seem consistent with sincere Bayesian voting 60% of the time or more.

This rather rosy picture, however, is incomplete as illustrated in Figure 3(b), which plots the

histogram only for the subsample in which the sincere Bayesian strategy counsels voting against

a subject’s partisan candidate (i.e. each point in this histogram tabulates the frequency that a

subject voted in line with her information when it contradicts her partisan bias.) A comparison of

Figures 3(a) and 3(b) suggests that the high consistency in Figure 3(a) is somewhat spurious, as it
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(a) SN1, MB0, r=0 (b) SN1, MB1

(c) SN2, MB0, r=0 (d) SN2, MB1

Figure 2: Average signal sharing rates across rounds: No bias with r = 0 and Moderate bias.

arises when the Bayesian strategy coincides with voting for one’s partisan candidate.15 If we look

exclusively at those cases in which the sincere Bayesian strategy prescribes voting against one’s

partisan candidate (in panel (b)), the consistency rate is markedly lower, and more than half the

subjects fail to vote against their partisan candidate when doing so is prescribed by the Bayesian

strategy. Moreover, it is precisely those subjects who score highly in panel (b) who also score highly

in panel (a), as illustrated in Figure 3(c), which depicts consistency with sincere Bayesian strategies

only for those subjects who score more than 60% correct in Figure 3(b).

Sincere Bayesian voting by treatment. Next, we check how consistency with sincere Bayesian

strategies varies by treatment. We classified each subject’s vote decision in each round as “correct”

if it was consistent with the sincere Bayesian strategy given their theoretical posterior (as in Figure

15Figure 3(b) by construction excludes the extreme bias treatments, since in those the Bayesian posterior never
counsels a player to vote against their partisan candidate. To ensure comparability, we also excluded the extreme
bias treatments from Figure 3(a). Figure 8 in Appendix A has the extreme bias treatments included.
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(c) N = 172 subjects

Figure 3: Do subjects vote consistently with sincere Bayesian voting? Panel (a): using all votes;
Panel (b): using only votes against partisan candidate; Panel (c): using all votes by only those
subjects who scored more than 60% in Panel (b). y-axis: percent of subjects; x-axis: share of each

subject’s votes (out of 32 decisions per subject) consistent with sincere Bayesian voting strategies.

3(a)). We also investigated consistency with the sincere Bayesian strategy using the subject’s

empirical posterior estimated from the data.16 In Table 4, we report the frequency of subjects’

votes which are consistent with sincere Bayesian voting, using both the theoretical (columns 4–

5) and the empirical (columns 6–7) posteriors. Thus columns 4–5 of Table 4 display individual

subject Bayesian consistency scores from Figure 3(a) averaged across each treatment combination.

In addition, Table 4 displays consistency with extreme bias treatments (not included in Figure 3),

for which the sincere strategy prescribes always voting for the default partisan choice.

16We estimated the empirical frequency of state a conditional on voter’s own signal (sa, sb, or s∅), and for network
treatments, conditional on the difference in the number of sa and sb signals revealed by others (ignoring signal sources
and empty signals). Since the difference in the number of signals can vary between −9 and 9 (in complete networks),
to improve estimation we collapsed values of −9 and −8 into a single “< −7” category, and values of 8 and 9 into a
single “> 7” category. In the complete network treatment data, the number of revealed signals is between −6 and 6
for about 94.4% of the time (no bias) to 98.89% of the time (moderate bias) to 99.76% of the time (extreme bias).
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Table 4: Sincere Bayesian Voting by Treatment

Network Bias N Consistent vote share Consistent vote share
(theoretical posterior) (empirical posterior)

Empty No 110 .645 (.016) .645 (.016)
Polarized – 180 .807 (.011) .779 (.010)
Complete – 170 .861 (.010) .870 (.011)

Empty Moderate 100 .835 (.015) .770 (.016)
Polarized – 90 .810 (.014) .740 (.017)
Complete – 90 .742 (.014) .787 (.012)

Empty Extreme 70 .777 (.018) .777 (.018)
Polarized – 90 .738 (.018) .728 (.019)
Complete – 120 .673 (.014) .669 (.014)

Notes: N = number of subjects, std errors in parentheses are clustered by subject.
No bias, non-empty network treatments with r = 0 and r = 0.2 are pooled together.

Both of our consistency measures (based on empirical and theoretical posteriors) tell the same

story. Without bias, the complete network is more consistent than the polarized than the empty

one. Under extreme bias (rows 7–9), when signals are uninformative by design, the complete

network is less consistent than the polarized than the empty one (although the latter difference

is not significant). Thus while sincere Bayesian strategies simply dictate voting for one’s partisan

candidate regardless of any signals, subjects actually vote against their partisan candidate with

non-negligible probability, i.e. they are influenced by the signals from others’ in their network.

Essentially, they treat fake news as real news.

Under moderate bias (rows 4–6), the observed voting behavior in the empty and polarized

networks appears more consistent than in the complete network using the theoretical posteriors,

while consistency is highest for complete network using the empirical posteriors. This difference

arises from accounting for signal sources in the theoretical posterior under the moderate bias and

non-empty networks (while ignoring signal sources and empty signals in the empirical posterior),

which we investigate more below.

Do voters account for the sources of the signals? Given limited consistency with sincere

Bayesian voting, we next examine how the signals received by voters affect their voting decisions.

We estimate a binary logit model of individual vote where the dependent variable is an indicator for

whether a subject votes for her partisan candidate. We include voter’s private signal, the number of

favorable and unfavorable signals (with respect to the voter’s partisanship) shared by other voters,

and their interactions, controlling for the realized state (which is unobserverd by voters but is

correlated with realized signals in all but extreme bias treatments). The average marginal effects

for the complete network case are reported in Table 5.

Table 5 contains two important observations. First, an extra favorable signal, regardless of

source, significantly increases the likelihood of voting for the partisan candidate, while an extra

unfavorable signal significantly decreases this likelihood, in all media bias treatments. Second, there

are no significant differences in the average marginal effects of signals of the same kind (favorable
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Table 5: Voting for partisan candidate, complete network

No bias Extreme Moderate

Fav. Signal Yes .093∗∗∗ .108∗∗∗ .164∗∗∗

(.024) (.025) (.028)
No −.110∗∗∗ −.214∗∗∗ −.169∗∗∗

(.024) (.029) (.040)
# Fav, co-partisans .073∗∗∗ .077∗∗∗ .074∗∗∗

(.007) (.008) (.012)
# Unfav, co-partisans −.063∗∗∗ −.095∗∗∗ −.092∗∗∗

(.008) (.012) (.017)
# Fav, anti-partisans .071∗∗∗ .086∗∗∗ .055∗∗∗

(.007) (.013) (.017)
# Unfav, anti-partisans −.053∗∗∗ −.071∗∗∗ −.091∗∗∗

(.007) (.009) (.010)

Realized state X X X
N 2,550 2,400 1,350
% correctly classified 87.69 76.46 82.67

Notes: N = number of individual decisions (first round observations
are dropped). The numbers represent average marginal effects on
Prob (Vote for Partisan Candidate).

or unfavorable) revealed by co-partisans vs. anti-partisans.17 A rational Bayesian would recognize

that signals which are not aligned with partisanship – favorable signals from anti-partisans, and

unfavorable signals from co-partisans – are very informative (under moderate media bias), and

should therefore carry a larger weight in the voting decision. At the same time, under extreme

bias, all signals are uninformative, and should not affect voting decisions. However, the estimated

coefficients indicate that subjects take all signals more or less at face value; their voting decisions

reflect signal labels rather than signal informativeness. Complete social networks in the presence

of media bias make it very hard for the voters to correctly interpret their information.

4.3 Collective decision-making efficiency

The individual voter behavior discussed and analyzed above underlies the overall collective decision

efficiency across the various treatments, which we turn to now. For assessing efficiency, we use a

Bayesian efficiency measure, which conditions on the realized signals in the experiments.18 Each

round, in each subgroup we check if the majority decision within the subgroup agrees with the

choice a benevolent Bayesian social planner would have made for this subgroup, had she observed

voters’ private signals realized in that round in both subgroups (for the empty and complete network

treatments) or in only one partisan subgroup (for the polarized network treatments). This way the

measure accounts for signal sharing constraints in the polarized network treatments, enabling a

fair efficiency comparison between polarized and complete networks; otherwise, polarized networks,

17For revealed favorable signals, Wald p = .828 (no bias), p = .674 (moderate bias), and p = .879 (extreme bias);
for revealed unfavorable signals, Wald p = .913 (no bias), p = .788 (moderate bias), and p = .341 (extreme bias).

18This measure differs from group success rates – how often the elected candidate matches the realized state –
which does not consider the possibility that due to sampling and media bias, the realized signals may not reflect
the true state sufficiently for voters to reach the correct decision. Group success rates are reported in Table 9 in
Appendix A and results are qualitatively similar.
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which prevent signals from being shared across subgroups, would mechanically yield lower efficiency

relative to complete networks, in which signals can be shared with all voters.19 This binary mea-

sure, averaged across all subgroups and rounds for each treatment, is reported in Table 6. In the

discussion, we focus on the more conservative statistics reported in the “Last 12” columns of Table

6, which exclude the first four rounds, to look at more experienced decisions.

Table 6: Bayesian Efficiency by Treatment

Network No media bias
N [ All ] N [ Last 12 ]

Empty 176 .716 (.021) 132 .727 (.024)
Polarized 288 .866 (.015) 216 .877 (.016)
Complete 272 .936 (.010) 204 .939 (.012)

Polarized − Complete −.069∗∗∗ (.018) −.061∗∗∗ (.020)

Moderate Media Bias
N [ All ] N [ Last 12 ]

Empty 160 .700 (.021) 120 .708 (.025)
Polarized 144 .872 (.018) 108 .875 (.021)
Complete 144 .868 (.019) 108 .857 (.023)

Polarized − Complete .004 (.026) .019 (.031)
Complete w/bias − Complete w/o bias −.068∗∗∗ (.022) −.082∗∗∗ (.026)

Extreme Media Bias
N [ All ] N [ Last 12 ]

Empty 112 .915 (.018) 84 .905 (.022)
Polarized 144 .833 (.023) 108 .843 (.026)
Complete 256 .713 (.017) 192 .721 (.018)

Polarized − Complete .120∗∗∗ (.029) .121∗∗∗ (.032)
Complete w/bias − Complete w/o bias −.223∗∗∗ (.020) −.217∗∗∗ (.022)

Notes: N = number of group decision observations. Standard errors are in parentheses. Averages and standard errors
based on all data are reported in columns labeled “All”, those that exclude the first four rounds in “Last 12”. No-bias
non-empty network treatments with no signal probability r = 0.2 are pooled together with those in which r = 0. “Polarized
− Complete” is the difference in efficiency between the polarized and complete network, for each bias treatment (a measure
of the “filter bubble” effect). “Complete w/bias − Complete w/o bias” is the difference in efficiency between the complete
network under the respective bias treatment and under no bias (a measure of the “media bias” effect). Significance codes:
∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1

When signals are informative, as in the “No media bias” and “Moderate media bias” treatments

in the top two panels of Table 6, social networks improve efficiency relative to the empty network, as

they provide the opportunities for sharing informative news. For instance, under unbiased media,

efficiency in the polarized network is higher by 0.877 − 0.727 = 15 percentage points (p = 0.000)

relative to the empty network, and by 21.1 p. p. (p = 0.000) in the complete network. However,

the benefits of complete networks diminish under moderate media bias: despite allowing access to

a larger number of signals, the complete network is no longer more efficient than the polarized one.

As discussed in Subsection 4.2, this is because under media bias, the extra information revealed

in the complete networks requires some voter sophistication to interpret correctly, yet voters take

signals at face value and fail to account for the sources. Overall, the Bayesian efficiency patterns

largely follow the average consistency with sincere Bayesian voting reported in Table 4.

19Of course, using the standard efficiency measure is perfectly fine to compare the empty network with a non-
empty one. All of our efficiency comparisons are robust to the modified efficiency measure, as Table 10 in Appendix
A demonstrates.
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These numbers also allow us to compare the effects of segregation on social networks with those

arising from media bias. The efficiency comparison between polarized and complete networks (fixing

media bias) estimates the effect of restricted news sharing on voting (a “filter bubble” effect). We

find that while these effects are negative under no bias, implying that the polarized networks are

less efficient than the complete ones (87.73% vs. 93.87%, p = 0.002), this is no longer the case under

moderate bias (87.50% vs. 85.65%, p = 0.551) or extreme bias (84.26% vs. 72.14%, p = 0.000).

Importantly, the efficiency of polarized networks does not vary much across treatments so these

results are largely driven by changes in the efficiency of complete networks.

On the other hand, the media bias effect can be estimated by the efficiency comparison between

complete networks with media bias and complete networks without bias. These effects are always

negative (the complete network has the highest efficiency without media bias), and affect the

efficiency relatively more than does partisan-restricted news sharing imposed by the polarized

network: While the network restrictions reduce efficiency by at most −6.1 p.p., the media bias

reduces efficiency by at least −8.2 p.p. (under moderate bias), and the negative “fake” news effect

(under extreme bias) reaches −21.7 p.p. These results are consistent with information benefits of

complete networks being offset by additional cognitive costs they impose on voters in treatments

with media bias, where signals should not be taken at face value.

The “Extreme media bias” results, in the bottom panel of Table 6, strengthen these interpre-

tations. Under extreme media bias, signals are uninformative, so a Bayesian decision-maker would

discard all signals and simply vote for the partisan candidate in each subgroup. Hence the effi-

ciency measure here essentially tallies how often subjects voted for their partisan candidate. We

see clearly that social networks lead to lower efficiency, with both complete and polarized networks

being less efficient than the empty network: apparently, sharing of uninformative signals leads

subjects to vote against their partisan candidate. The loss in efficiency from social networks in

this setting does not imply a lack of information aggregation as, by design, there is no information

to be aggregated in this treatment. Rather, it indicates that subjects are treating uninformative

signals as informative, and acting upon them. Such behavior is consistent with the “fake news”

interpretation of the extreme bias treatments.20

In summary, news sharing via social networks per se, does not appear to harmfully impact

collective decisions despite pronounced lack of voter sophistication; rather the culprit is media

bias. When media bias is present in social networks, more voter sophistication is required to

extract the information from the shared news. When signals are informative, social networks allow

for better information aggregation, leading to more efficient collective decisions compared to the

empty network.

20In Table 10 in Appendix A we report the linear regression results (clustering standard errors at the treatment
level) that confirm our efficiency findings and mitigate concerns about multiple hypothesis testing.
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5 Corroborating Evidence from the Field: a Pakistani Survey

Our experimental treatments focused on stylized and extreme cases of social networks (empty,

polarized, and complete) and media bias in voters’ private signals (no bias, moderate, and extreme).

While we expect our results to provide lower bounds on voting behavior in a more realistic setting,

a host of additional factors could be relevant for social media studies in the field. As a robustness

check to see how our results – obtained in a laboratory setting – translate to a real-world setting,

in this section we present survey evidence that we collected via Gallup Pakistan. The goal was to

check whether, like in our main findings, subjects selectively share information that is favorable to

their party more often than the unfavorable information, and how likely they are to revise their

beliefs in the presence of unfavorable information.

(a) How likely to share “unfavorable” news (corruption); N = 1, 173. (b) How likely to share “favorable” news (hospital); N = 1, 166.

(c) How likely to revise opinion if Facebook friend shared “unfavorable”
news; N = 1, 161.

Figure 4: Distribution of survey responses. All figures exclude those who said they did not use
social media. Scale: 1=Not at all likely, 10=Extremely likely.

We introduced five questions on social media into a standard questionnaire administered by

Gallup interviewers to a panel of the Pakistani population, representative with respect to the

province level and urban/rural split, during January 16th–20th, 2017. In the survey questions
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(a) Get news about politics & gov’t from social media (b) How trustworthy is information from social media?
Scale 1=not at all, 10=extremely trustworthy

Figure 5: Distribution of survey responses about social media as a source of news (left panel) and
degree of trust (right panel); N = 1, 803.

we asked how likely a respondent was to share a “favorable” news (that their favorite political

candidate was a major force behind building a new hospital), to share an “unfavorable” news

(that their favorite political candidate was accused of corruption), and to revise their opinion after

an “unfavorable” news item shared by a Facebook friend. We also asked how often respondents

received news about politics and government from social media, and how trustworthy they thought

the information from social media was.

Figures 4–5 present the survey responses graphically.21 Comparing Figures 4(a) and 4(b), we

see that amongst the social media users, favorable news is shared more often than unfavorable.

Collapsing categories 1 to 5 into “not likely”, and 6 to 10 into “likely”, we see that “unfavorable”

news about the favorite candidate is “likely” to be shared by about 34.7% of social media users.

In contrast, “favorable” news about the favorite candidate is “likely” to be shared by about 44.9%

of social media users. Furthermore, about 45.8% of social media users are “likely” to revise their

opinion after a Facebook friend shared a “unfavorable” news article. Both of these findings are

consistent with the experimental results described earlier.

Almost half (48.1%) of respondents regularly get the news about politics and government from

social media (see Figure 5(a)). These numbers look strikingly similar to the figures for American

voters from the September 2017 Pew Research Center report on news use across social media

platforms.22 According to Figure 5(b), in the full sample including those who do not use social

media, about 44.5% view the information from social media as “trustworthy”, and the average media

trustworthiness on the 10-point scale is 4.89, very similar to the average media trust reported in

the experiments (4.72). The histogram of trustworthiness features a peak at the lower tail, which

consists primarily of those subjects who don’t use social media (answered “Never” in Figure 5(a)).

21The exact survey questions along with response frequencies are available in Table 12 in Appendix A. The ques-
tionnaire was administered in an Urdu translation. The main demographic characteristics of the survey respondents
are in Table 11 in Appendix A.

22See journalism.org/2017/09/07/news-use-across-social-media-platforms-2017.
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6 Concluding Remarks

The proliferation of news and information filtering via social media has raised concerns that a

voting populace obtaining a growing share of its information about competing electoral candidates

from social networks may become more polarized, as information filtering and targeting makes it

less likely that voters will hear points of views contrary to their preferred positions. Complementing

other recent studies that document and measure the extent of polarization in social networks, in

this paper we use laboratory experiments to explore the joint effects of social networks and media

bias on voter behavior.

Overall, our results show that the quality of information shared via social networks affects

collective decisions relatively more than do the partisan-based information sharing restrictions.

While such restrictions limit the amount of information available to voters – reducing efficiency when

there is no media bias – the unrestricted networks impose high cognitive costs on voters whenever

media bias is present. Consequently, voters ignore signal sources and take their information largely

at face value. In line with majority of voters having limited sophistication, they display a behavioral

bias towards selective news sharing, and publicly share signals favorable to their party more often

than signals unfavorable to their party in all of our network treatments. These findings suggest that

improving the quality of information shared on social networks is of first order policy importance.

Our results that voters selectively share signals favorable to their party are different from

findings in the “confirmation bias” and “information avoidance” literatures23 – subjects in our

experiment cannot choose which kind of news to receive, but rather can only decide which kind of

news to relay to others. In real-world social networks this could be due to social preferences (e.g. I

don’t tell you bad news to keep you happy), but could also reflect far-sighted individual preferences

(e.g. if I only share with you the news you don’t like, you may unfriend me on Facebook) or

selective recall (e.g. see a recent study by Zimmermann (2019)). In ongoing work, we are exploring

how to enrich our experimental setting to allow for these types of effects.
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Appendix A Additional details and results

Experimental setup and procedures. To highlight biased signals in the media bias treatments, we used
two-sector “roulette” wheels to deliver signals. The idea is illustrated by the initial interface screen in Figure
6. Wheel sectors have different colors, corresponding to sa and sb (blue and green in the actual interface).
There are two possible wheel sector compositions that depend on which state has been selected, represented
by the two wheels at the top, called Blue Wheel and Green Wheel. When ready to receive a signal, subjects
are shown a covered wheel, which corresponds to the selected wheel in the no bias treatments, and to the
wheel displayed directly below the selected wheel in the bias treatments (e.g. one of the two Greenish Wheels
in Figure 6). To receive a signal, subjects spin the covered wheel, and their signal (if any) is the color of a
randomly selected sector strip of the covered wheel. In case of an empty signal, they see a text saying “No
signal”. As specified in the experimental instructions in Appendix C, we intended to keep subject “party”

Figure 6: User Interface (MB1+SN2 Treatment, initial screen for a Green partisan).

affiliation fixed for all rounds, to make subjects more attached to their party identity. However, a software
parameter issue discovered during the 2018 sessions resulted in subjects’ party being randomly re-assigned
every round. Since in every round and every interface screen each subject’s current party identity was always
correctly and clearly indicated as Figure 6 illustrates, we do not consider this deviation from our original
design an issue for our analyses.
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Table 7: Session summary

Session Date/Time Bias Pr.(No Signal) Network # Subjects Avg. payoff, £
First 16 rounds Last 16 rounds

1 6/17/16, 11:00 Extreme 20% Complete Complete 20 11.00
2 6/17/16, 13:30 No – Complete None 20 14.13
3 6/17/16, 15:30 No – None Complete 30 14.42
4 6/17/16, 17:30 Extreme – Complete Complete 20 11.93
5 6/24/16, 09:00 No – Polarized None 30 13.17
6 6/24/16, 11:00 Extreme – Polarized Complete 20 14.00
7 6/24/16, 13:30 No – Polarized Complete 30 12.75
8 6/24/16, 15:30 Extreme – None Polarized 20 12.13
9 6/24/16, 17:30 Extreme – Polarized None 20 12.13

10 7/1/16, 09:00 No – None Polarized 30 12.32
11 7/1/16, 11:00 Extreme – Complete Polarized 30 11.88
12 7/1/16, 13:30 No – Complete Polarized 30 13.58
13 7/1/16, 15:30 Extreme – None Complete 30 11.50
14 10/18/16, 09:00 No 0% Complete Polarized 30 13.58
15 10/18/16, 11:00 Moderate 20% Polarized Complete 30 11.08
16 10/18/16, 13:30 Moderate 20% Complete Polarized 30 11.50
17 10/18/16, 15:30 No 0% Polarized Complete 30 14.00
18 5/17/18, 09:00 Moderate 20% None Complete 20 12.13
19 5/17/18, 11:00 Moderate – Complete None 30 11.50
20 5/17/18, 13:30 Moderate – None Polarized 30 12.33
21 5/17/18, 15:30 Moderate – Polarized None 20 11.50
22 5/21/18, 10:00 Moderate – Polarized Complete 20 12.13
23 5/21/18, 13:00 Moderate – Complete Polarized 20 12.75

Notes: “None”, “Complete”, and “Polarized” refer to the network treatment for each half of each session. In each round we
had two to three independent ten-person groups of subjects. “Extreme” refers to the media bias treatment with uninformative
signals. “Moderate” refers to the media bias treatment with probabilities of receiving a favorable signal (conditional on getting
any signal) being 0.9 in the favorable state and 0.6 in the unfavorable state. In sessions 1 and 4 we could not have varied the
network treatment due to minor software issues with the polarized network display and decided to keep the complete network
treatment throughout those sessions. In sessions 15 and 16 a typo in the parameter file produced incorrect signal accuracies for
green partisans. We decided not to use the data from those sessions in the analysis and repeated the respective treatments in
sessions 22 and 23.

Table 8: Summary of lab participant characteristics

Trait N Mean Std. Dev.

Age, years 589 21.99 4.49
Male, % 590 39.32 49.58
English native, % 589 49.58 50.04
Previous experiments, # 589 6.32 8.68
Deception experiments, # 573 1.62 2.77
More quantitative, % 589 68.42 46.52
Media trust 589 4.72 1.77

Notes: We had 590 subjects total. One subject accidentally quit the
software before finishing the post-treatment questionnaire, so for most
characteristics N = 589. All characteristics are self-reported. “De-
ception experiments” is the average number of experiments involving
deception (as perceived by the subject) amongst those who partici-
pated in at least one such experiment. “More quantitative” refers to
the question whether a subject considers themselves as a more or less
quantitative person. “Media trust” is about how trustworthy they
think the information from social media is, on a scale from 1 (“Not
at all trustworthy”) to 10 (“Completely trustworthy”).
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Table 9: Group Success Rates By Treatment

Network No media bias
N [ All ] N [ Last 12 ]

Empty 176 .744 (.029) 132 .769 (.032)
Polarized 288 .816 (.020) 216 .806 (.023)
Complete 272 .862 (.020) 204 .873 (.023)

Moderate Media Bias
N [ All ] N [ Last 12 ]

Empty 160 .663 (.031) 120 .667 (.036)
Polarized 144 .767 (.030) 108 .773 (.035)
Complete 144 .809 (.031) 108 .815 (.035)

Extreme Media Bias
N [ All ] N [ Last 12 ]

Empty 112 .415 (.038) 84 .429 (.046)
Polarized 144 .493 (.035) 108 .482 (.041)
Complete 256 .502 (.030) 192 .477 (.034)

Notes: The group decision success is coded as 1 if the
elected candidate matches the realized state, 1/2 if there
is a tie, and 0 in all remaining cases, and the group success
rate is computed by averaging group decision success across
all group decisions in a given treatment. N = number of
group decision observations. Standard errors are in paren-
theses. Averages and standard errors based on all data are
reported in columns labeled “All”, those that exclude the
first four rounds in “Last 12”. No-bias non-empty network
treatments with no signal probability r = 0.2 are pooled
together with those in which r = 0.

Table 10: Regressing Bayesian Efficiency on Treatment Dummies and Controls

(1) (2)

Constant .726∗∗∗ (.034) .723∗∗∗ (.033)
Network Polarized .053∗ (.031) .150∗∗∗ (.030)

Complete .212∗∗∗ (.027) .212∗∗∗ (.027)
Bias Moderate −.019 (.030) −.019 (.030)

Extreme .178∗∗∗ (.026) .178∗∗∗ (.026)
Network × Bias Polarized × Moderate .049 (.035) .017 (.036)

Polarized × Extreme −.115∗∗ (.046) −.212∗∗∗ (.046)
Complete × Moderate −.063∗ (.033) −.063∗ (.033)
Complete × Extreme −.395∗∗∗ (.035) −.395∗∗∗ (.035)

Round X X
N 12,720 12,720

# clusters 42 42

Notes: OLS with standard errors clustered at half-session (treatment level, more
conservative) in parentheses, using the last 12 rounds. Dependent variable: (1)
Bayesian efficiency based on signals realized in all groups, (2) Bayesian efficiency
based on signals realized in subgroups only (for polarized network treatments) and
in all groups (for all other treatments). Network is relative to empty network, Bias
is relative to no bias. Significance codes: ∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1
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Table 11: Summary characteristics of the Gallup Pakistan survey respondents

Variable Label Values Percent

ur Location type
Rural 69.99
Urban 30.01

d1 Gender
Male 50.14
Female 49.86

d2 1 Age (years)
< 29 34.00
30− 50 53.13
51− 65 12.76
> 65 0.11

d3 Education
Illiterate 11.37
Literate but no formal 9.76
Up to Primary 14.37
Middle school 16.53
Matric 19.69
Intermediate 10.65
Graduate 13.98
Postgraduate 2.66
Professional/Doctor 0.33
No response 0.67

d4 1 Monthly household income
≤ 7, 000 Rs. 18.19
7, 001− 10, 000 Rs. 14.48
10, 001− 15, 000 Rs. 24.35
15, 001− 30, 000 Rs. 32.50
≥ 30, 001 Rs. 10.48

d5 Native tongue
Urdu 20.58
Punjabi 52.19
Sindhi 9.10
Pashto 11.54
Balochi 1.05
Saraekee 3.44
Others + No response 2.11

d6 Religion
Muslim 97.28
Christian 1.72
Hindu 0.33
No response 0.67

zPR Province
Punjab 61.12
Sindh 25.07
KPK 6.49
Balochistan 7.32

Notes: Survey administered by Gallup Pakistan between 1/16/2017 and
1/20/2017 to a panel of size N = 1, 803.
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Table 12: Responses to questions about social media

Question Options Percent

How often do you get the news about politics and government from social All the time 11.76
media (e.g., Facebook, Twitter, and the like)? Often 17.69

Sometimes 18.64
Hardly ever 12.20
Never 39.71

Consider a hypothetical situation in which you have come across a news 1=not at all likely 11.20
article that says that your favorite political candidate has been accused of 2 6.93
corruption. How likely are you to share this article on social media like 3 8.43
Facebook and Twitter? 4 9.04

5 6.88
6 6.60
7 5.21
8 4.71
9 2.72
10=extremely likely 3.33
Don’t use social media 34.94

Consider a hypothetical situation in which you have come across a news 1=not at all likely 9.43
article that says that your favorite political candidate has been a major force 2 3.44
behind building a new hospital. How likely are you to share this article on 3 5.60
social media like Facebook and Twitter? 4 8.37

5 8.82
6 9.60
7 6.66
8 6.16
9 2.77
10=extremely likely 3.83
Don’t use social media 35.33

Consider a hypothetical situation in which your Facebook friend has shared 1=not at all likely 8.60
a news article that says that your favorite political candidate has been accused 2 2.66
of corruption. How likely are you to revise your opinion about the candidate? 3 3.99

4 7.65
5 11.98
6 10.87
7 6.71
8 4.88
9 3.94
10=extremely likely 3.11
Don’t use social media 35.61

In your opinion, how trustworthy is the information that you get from 1=not at all 19.25
social media? 2 8.15

3 6.05
4 9.10
5 12.76
6 13.37
7 11.92
8 7.76
9 4.38
10=extremely trustworthy 6.82
No response 0.44

Notes: Survey administered by Gallup Pakistan between 1/16/2017 and 1/20/2017 to a panel of size N = 1, 803.
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Figure 7: Lab subject responses (N = 589). Scale: 1=not at all trustworthy, 10=extremely
trustworthy.
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Figure 8: Are subjects consistent with sincere Bayesian voting? Using all votes and all treatments
including MB2, 530 subjects. y-axis: percent of subjects; x-axis: share of each subject’s votes (out of 32

decisions per subject) consistent with sincere Bayesian voting strategies.
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Appendix B Proofs and additional theoretical results

An (extended) player type specifies party preference (Ca or Cb) as well as observed private signal realization
(sa, sb, s∅). A (pure) message strategy µ (applicable in treatments other than SN0) is a mapping from the set
of types into the message space. Given our restrictions on communication protocols, the messages allowed
are either truthful signal revelation or silence: µ : {Ca, Cb} × {sa, sb, s∅} → {sa, sb, s∅}, µ(·, s∅) = s∅, and
µ(·, sj) 6= s−j for j ∈ {a, b}. That is, signals are “hard” evidence: those with empty signals cannot pretend
they got a non-empty one, and those with non-empty signals cannot pretend they got a signal different from
the one they have. We will also consider mixed message strategies of a special kind, called semi-pooling,
in which players always reveal signals that match their party preference, but if they receive a signal that
does not match their preference, then with some probability they hide it by reporting an empty signal, as if
they are uninformed. A (mixed) voting strategy σ is a mapping from the set of types into the unit interval,
representing the probability of voting for candidate Ca.

B.1 The case of no media bias

Lemma 1. Under no communication and no media bias, there is no equilibrium where all voters vote
informatively.

Proof. Since there is no abstention and each voter is independently uninformed with probability r = 0.2,
a fully informative equilibrium is not possible – the uninformed also have to vote. The “best” informative
equilibrium one could hope for is the one in which all the informed voters vote their signals and the uninformed
voters either mix or vote their bias. To keep things simple, let us assume first that everyone is always
informed. Suppose everyone but i ∈ Ca votes their signal and si = sb. In a Bayesian Nash equilibrium,
players should take into account that their vote only matters when they are pivotal (and form correct beliefs
about how others vote). With our parameters and under the assumed voting strategy of others, i is pivotal
in two cases: (i) when five other voters voted for Ca and four for Cb, or (ii) four other voters voted for Ca
and five for Cb. Together with i’s signal, this means that in (i), there are 5 signals sa and 5 signals sb,
and in (ii), there are 4 signals sa and 6 signals sb. Conditioning on pivotality (i.e. either of the two cases
happening)

pi(θ = a|sb,piv) =
Pr(θ = a, 5sa, 5sb) + Pr(θ = a, 4sa, 6sb)

Pr(θ = a, 5sa, 5sb) + Pr(θ = a, 4sa, 6sb) + Pr(θ = b, 5sa, 5sb) + Pr(θ = b, 4sa, 6sb)

=
1
2 (1− q) 9!

5!4!q
5(1− q)4 + 1

2 (1− q) 9!
4!5!q

4(1− q)5
1
2 (1− q) 9!

5!4!q
5(1− q)4 + 1

2 (1− q) 9!
4!5!q

4(1− q)5 + 1
2q

9!
4!5!q

4(1− q)5 + 1
2q

9!
5!4!q

5(1− q)4

=
q5(1− q)5 + q4(1− q)6

q5(1− q)5 + q4(1− q)6 + q5(1− q)5 + q6(1− q)4
// divide by q4(1− q)4 6= 0

=
q(1− q) + (1− q)2

q(1− q) + (1− q)2 + q(1− q) + q2
=

1− q
1

= 0.3 > ta

Hence even though state b is more likely, i still prefers to vote for Ca, i.e. not to vote informatively.
Now, if some voters may be uninformed, the posterior calculations become more complicated and
require taking the expectation over each combination of uninformed and informed votes. However,
since the empty signals are iid across voters, not correlated with the state, and there is no commu-
nication that could reveal the partisanship of the uninformed, the overall conclusion continues to
hold, and there is no informative voting.

Proposition 1. [Unbiased media and empty network] Under MB0+SN0, voting is not informative: In
the unique sincere voting equilibrium, all players vote for their partisan candidate, regardless of their signal,
and the election results in a tie (since partisan groups have equal sizes).

Proof of Proposition 1. Follows from Lemma 1 (see also the discussion in Subsection 3.1).

Lemma 2. Under complete network and no media bias, there is no full information revelation equilibrium.
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Proof. Let k := #sa −#sb, k ∈ {−n, . . . , n} be the realization of the difference in the number of revealed
sa and sb signals, and suppose k−i is the reported difference in the number of sa and sb signals by players
other than i. For each player i, k ≡ k−i + 1sa − 1sb is the difference in the number of sa and sb signals with
i’s signal included, which i will use to form her posterior belief that θ = a. Conditional on k−i this posterior
is

pi(θ = a|k−i) =

denote as X︷ ︸︸ ︷
((1− r)q)#−i(sa)((1− r)(1− q))#−i(sb)rn−1−#−i(sa)−#−i(sb)

X + ((1− r)(1− q))#−i(sa)((1− r)q)#−i(sb)rn−1−#−i(sa)−#−i(sb)

=
1

1 + q−k−i(1− q)k−i
=

1

1 +
(

1−q
q

)k−i
(4)

where on the first line, #−i(sj) is the total number of signals sj , j ∈ {a, b} revealed by players other than i.
Suppose i got an sa signal. Assuming that others always reveal their signals and believe that non-revelation
means no signal with probability 1, and use sincere Bayesian voting strategies at the voting stage, i’s message
is pivotal with our parameters when k−i = 1: If i withholds her signal, other voters would believe that i
got no signal with probability 1 and have posterior ta < p−i(θ = a|1) = 0.7 < tb. So all Ca-partisans
would favor voting for Ca, and all Cb-partisan would favor voting for Cb, creating a tie. But if i reveals
sa, p−i(θ = a|2) ≈ .845 > tb > ta so everyone would favor voting for Ca. In this case, both partisans
prefer to reveal sa. i’s message is also pivotal when k−i = −2, because in this case, if i withholds her
signal, other voters would believe that i got no signal with probability 1 and favor voting for Cb, since
p−i(θ = a| − 2) ≈ .156 < ta < tb, whereas if i reveals sa, ta < p−i(θ = a| − 1) = .3 < tb and so all Ca-
partisans, would favor voting for Ca, and all Cb-partisan would favor voting for Cb, creating a tie. Thus if i
is Ca-partisan, she prefers to reveal signal sa. However, if i is Cb-partisan, she prefers to keep silent because
her own posterior is below tb so she’d rather have the majority voting for Cb. Similarly, if i got an sb signal,
and assuming that others always reveal their signals and believe that non-revelation means no signal with
probability 1, i’s message would be pivotal for k−i = −1, pushing the posterior below ta and breaking the
tie in favor of Cb. In this case, both partisans prefer to reveal sb. i’s message is also pivotal when k−i = 2: if
i withholds her signal, the majority would vote for Ca, whereas if i reveals sb, ta < p−i(θ = a|+ 1) = .7 < tb
and so all Ca-partisans would vote for Ca and Cb-partisans for Cb, creating a tie. If i is Cb-partisan, she
prefers to reveal signal sb. However, if i is Ca-partisan, she prefers to keep silent because her own posterior
remains above ta so she’d rather have the majority voting for Ca. Therefore, a fully revealing message
strategy is not incentive compatible under complete network.24

Proposition 2. [Unbiased media and complete network] Under MB0+SN2, there is no full information
revelation equilibrium. However, there is a range of semi-pooling equilibria, in which all Cj-partisans, j ∈
{a, b}, with favorable signals sj reveal them truthfully at the communication stage, and hide the unfavorable
signals s−j, with a commonly known equilibrium probability ν∗. At the voting stage, each player i has a
potentially different posterior pi, which depends on the difference between the number of sa and sb signals.25

Given these posteriors, Ca-partisans vote for Ca as long as pi > ta, and otherwise vote Cb. Cb-partisans
vote for Cb as long as pi < tb, and otherwise vote Ca. Each such equilibrium is characterized by fixing any
ν∗ ∈ (.922, 1].

Proof of Proposition 2. Suppose players use a (possibly mixed) semi-pooling message strategy, according
to which they always reveal favorable signals and hide unfavorable signals with some state-independent
probability 0 < ν ≤ 1. Belief consistency requires that upon receiving an empty signal, denoted s̃j∅, from a
Cj-partisan, all other players believe that this signal is actually an unfavorable signal to Cj (rather than a

24Schulte (2010, Proposition 2) gives a necessary and sufficient condition on individual preference heterogeneity for
a full revelation equilibrium to exist in this setting.

25See Eq (7) where k−i, the difference in the number of revealed sa and sb signals is supplemented by i’s private
signal.
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true empty signal s∅) with probability

µ−j(s̃
j
∅, ν) ≡ Pr(s = s−j |s̃j∅) =

1
2 (1− r)(1− q)ν + 1

2 (1− r)qν
1
2 (1− r)(1− q)ν + 1

2 (1− r)qν + r
=

1
2 (1− r)ν

1
2 (1− r)ν + r

(5)

Of course, if they receive a non-empty signal, they believe it, since signals are hard evidence. Note also that
1−µ−j(s̃j∅, ν) ≡ Pr(s = s∅|s̃j∅).

26 Due to symmetry, µa(s̃b∅, ·) = µb(s̃
a
∅, ·), thus we can omit the subscript and

simply write µ = µ(ν), where µ is an increasing function of ν.
Fix player i and consider a mixed semi-pooling message strategy, described above. Let #−i(s̃

j
∅) be the

number of empty signals reported by Cj-partisans other than i, and #−i(sj) the total number of signals sj
revealed by players other than i, j ∈ {a, b}. The expected number of signals s−j hidden by Cj-partisans,
being the expectation of a binomial random variable, is

h−j(#−i(s̃
j
∅)) =

#−i(s̃
j
∅)∑

`=0

`

(
#−i(s̃

j
∅)

`

)
(µ)`(1− µ)#−i(s̃

j
∅)−` ≡ µ ·#−i(s̃j∅) (6)

Let k−i = #−i(sa) −#−i(sb), k−i(s̃∅) = #−i(s̃
b
∅) −#−i(s̃

a
∅), and π−i(s̃∅) := ha(#−i(s̃

b
∅)) − hb(#−i(s̃

a
∅)) ≡

µ · k−i(s̃∅). i’s posterior that θ = a conditional on signals revealed (and non-revealed) by others is

pi(θ = a|k−i, π−i(s̃∅)) =

=

denote as X︷ ︸︸ ︷
((1− r)q)#−i(sa)+ha(#−i(s̃

b
∅))((1− r)(1− q))#−i(sb)+hb(#−i(s̃

a
∅))rn−1−hb(#−i(s̃

a
∅))−ha(#−i(s̃

b
∅))

X + ((1− r)(1− q))#−i(sa)+ha(#−i(s̃b∅))((1− r)q)#−i(sb)+hb(#−i(s̃a∅))rn−1−hb(#−i(s̃a∅))−ha(#−i(s̃b∅))

=
1

1 +
(

1−q
q

)#−i(sa)+ha(#−i(s̃b∅))−#−i(sb)−hb(#−i(s̃a∅))
=

1

1 +
(

1−q
q

)k−i+π−i(s̃∅)

=
1

1 +
(

1−q
q

)k−i+µk−i(s̃∅)
(7)

Note that since q = 0.7 > 0.5, pi is increasing in µ for k−i(s̃∅) > 0 and decreasing in µ for k−i(s̃∅) < 0.
This implies the same dynamics for pi as a function of equilibrium probability ν, since µ is increasing in ν,
as follows from (5). i’s decision whether or not to reveal her signal is going to affect the posterior held by
others, p−i(θ = a|k′, π′(s̃∅)), through a change in one of the numbers that they observe and condition upon:
k′ or π′(s̃∅). Namely, if i reveals her signal, k′ will be updated; if i hides her signal, π′(s̃∅) will be updated.

Suppose i is a Cj-partisan. if i reveals, then instead of k′ = k−i, others will observe k′′ := k−i +
1{si=sa} − 1{si=sb}. Cj-partisans always reveal a favorable signal sj under our semi-pooling strategy. If
i receives an unfavorable signal s−j and hides it, this will affect π′(s̃∅) in the posterior of others: instead
of π′(s̃∅) = π−i(s̃∅), others will observe π′′(s̃∅) = xj(s̃∅), where xb(s̃∅) := π−i(s̃∅) + µ1{si=sa}, xa(s̃∅) :=
π−i(s̃∅)− µ1{si=sb}. Thus the effect of hiding an unfavorable signal on the others’ posterior depends on µ.
Exact posterior changes only matter around the two critical thresholds, ta and tb. Whatever i does with an
unfavorable signal, either k′ or π′(s̃∅) will be updated and observed by others; and revealing an unfavorable
signal has a larger effect (positive for sa, negative for sb) on the others’ posterior than hiding it:

p−i(θ = a|k−i − 1{si=sb}, π
′(s̃∅)) < p−i(θ = a|k−i, xa(s̃∅)) (8)

and
p−i(θ = a|k−i + 1{si=sa}, π

′(s̃∅)) > p−i(θ = a|k−i, xb(s̃∅)) (9)

(with weak inequalities for a pure semi-pooling strategy).
In equilibrium, it must be incentive compatible for i to use the semi-pooling strategy ν, if she believes

26Since favorable signals are fully revealed, in equilibrium, players put probability zero on the event that an empty
signal from a Cj-partisan is a hidden favorable signal sj .

36



that the others also use it at the messaging stage and use Bayesian sincere strategies at the voting stage.
Since revealing favorable signals is incentive compatible for any ν, the actual restrictions on equilibrium ν
come from comparing the effect of hiding vs. revealing an unfavorable signal when i is pivotal. Due to (8),
for i ∈ Ca the respective pivotality condition is i) p−i(θ = a|k′′, π′(s̃∅)) < tj < p−i(θ = a|k′, π′′(s̃∅)), and due
to (9), for i ∈ Cb it is ii) p−i(θ = a|k′′, π′(s̃∅)) > tj > p−i(θ = a|k′, π′′(s̃∅)). As long as ν < 1, there may be
one weak inequality in both cases. If tj = ta, then in case i), i ∈ Ca wants to reveal the unfavorable signal
sb, but in case ii), i ∈ Cb wants to hide the unfavorable signal sa. For any belief ν it is possible to affect
the vote by revealing the unfavorable signal, since signals are hard evidence, so case i) does not restrict ν.
However, for given k′ and k′(s̃∅) (note: the latter number determines π′(s̃∅) for a fixed µ), in case ii) there is
a range of ν for which hiding the signal will not work: The other players believe that an empty signal means
“unfavorable” signal with too high a probability, thereby “undoing” the hiding. If tj = tb, the situation is
reversed: in case i) i ∈ Ca prefers to to hide her signal, whereas in case ii), i ∈ Cb prefers to reveal her signal.
To ensure incentive compatibility, it is sufficient to consider these conditions i)–ii) only at the critical values
of µ at which the others’ posterior, computed using an appropriately modified Eq (7), equals threshold tj .

There are two critical values for each threshold: Either 1) p−i(θ = a|k′′, π′(s̃∅)) = tj or 2) p−i(θ =
a|k′, π′′(s̃∅)) = tj . For tj = ta, i ∈ Cb, and case ii), if k−i(s̃∅) > 0, it is condition 2) that defines the relevant
critical value of µ, and if k−i(s̃∅) < 0, it is condition 1) that defines the critical value of µ. For tj = tb,
i ∈ Ca, and case i), if k−i(s̃∅) > 0, it is condition 1) that defines the relevant critical value of µ, and if
k−i(s̃∅) < 0, it is condition 2) that defines the relevant critical value of µ.

So for fixed values of k−i and k−i(s̃∅), there are four possibilities, and the corresponding critical values
can be expressed via the following equations:

µ∗i)1)(sb, Ca) =
ln
(

1
tb
− 1
)
− (k−i − 1{si=sb}) ln 1−q

q

k−i(s̃∅) ln 1−q
q

(10)

µ∗i)2)(sb, Ca) =
ln
(

1
tb
− 1
)
− k−i ln 1−q

q

(k−i(s̃∅)− 1{si=sb}) ln 1−q
q

(11)

µ∗ii)1)(sa, Cb) =
ln
(

1
ta
− 1
)
− (k−i + 1{si=sa}) ln 1−q

q

k−i(s̃∅) ln 1−q
q

(12)

µ∗ii)2)(sa, Cb) =
ln
(

1
ta
− 1
)
− k−i ln 1−q

q

(k−i(s̃∅) + 1{si=sa}) ln 1−q
q

(13)

The critical values of ν, denoted ν∗ are obtained by reversing (5):

ν =
2µr

(1− µ)(1− r)
. (14)

It is straightforward to show that any ν ≥ ν∗ is also incentive compatible. Thus we obtain a series of critical
values ν∗ that depend on i’s partisanship, her signal, and different combinations of k−i and k−i(s̃∅), which
define a consistency range for ν. We directly compute the consistency range for each case. A semi-pooling
equilibrium probability ν must be in the intersection of these consistency ranges across all cases; direct
computation yields that this range of ν is (.922, 1].

At the voting stage, signals revealed and non-revealed become common knowledge, but individuals may
have different posteriors, since some may have hidden their private signals and others got no signals. Players
believe that each empty signal reported by a Cj-partisan is an unfavorable one with probability µ(ν∗), given
in (5). Since ν∗ is incentive-compatible for all possible communication outcomes, sincere Bayesian voting
based on each player’s equilibrium posterior remains a best response even conditional on vote pivotality.

Proposition 3. [Unbiased media and polarized network] Under MB0+SN1, there is a full information
revelation equilibrium, in which all voters with non-empty signals reveal them at the communication stage and
believe with probability one that non-revealing voters are uninformed. At the voting stage, each Cj-partisan
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has a common posterior pj, which depends on the difference between the number of sa and sb signals revealed
by Cj-partisans.27 Given these posteriors, Ca-partisans vote for Ca as long as pa > ta, and otherwise vote
Cb. Cb-partisans vote for Cb as long as pb < tb, and otherwise vote Ca.

Proof of Proposition 3. Fix player i, who is a Cj-partisan, and assume that all C−j-partisans use fully
revealing strategies. i’s posterior about the state should be conditional on k−i(Cj), the reported difference
in the number of sa and sb signals by Cj-partisans other than i (which i can observe), and it takes the
following form:

pi(θ = a|k−i(Cj)) =

denote as X︷ ︸︸ ︷
((1− r)q)#−i(sa(Cj))((1− r)(1− q))#−i(sb(Cj))r

n
2−1−#−i(sa(Cj))−#−i(sb(Cj))

X + ((1− r)(1− q))#−i(sa(Cj))((1− r)q)#−i(sb(Cj))r
n
2−1−#−i(sa(Cj))−#−i(sb(Cj))

=
1

1 + q−k−i(Cj)(1− q)k−i(Cj)
=

1

1 +
(

1−q
q

)k−i(Cj)
(15)

where on the first line, #−i(sj(Cj)) is the total number of signals sj , j ∈ {a, b} revealed by players other
than i in group Cj . A full equilibrium description also requires players to form beliefs about the signals
revealed in the other group conditional on their private signal as well as the signals revealed by others in
their group, i.e., on k(Cj) ≡ k−i(Cj) + 1si=sa − 1si=sb , to be used at the voting stage. Let

µ(k−i(C−j)|θ = a) =

n
2∑

α=0

n
2−α∑
β=0

(n2 )!(α− β)

α!β!(n2 − α− β)!
((1− r)q)α((1− r)(1− q))βr n

2−α−β

be the expected difference in the number of revealed signals sa and sb in group C−j , denoted k−i(C−j),
conditional on state θ = a, assuming C−j-partisans are using fully revealing strategies, and let

µ(k−i(C−j)|θ = b) =

n
2∑

α=0

n
2−α∑
β=0

(n2 )!(α− β)

α!β!(n2 − α− β)!
((1− r)(1− q))α((1− r)q)βr n

2−α−β

be the same quantity conditional on state θ = b. Since signals have the same accuracy in both states and
both groups have the same size n/2, µ(k−i(C−j)|θ = a) = −µ(k−i(C−j)|θ = b). Given beliefs µ and posterior
pi(θ = a|k(Cj)), player i expects group C−j to have a common posterior p−j(θ = a|k(Cj)):

p−j(θ = a|k(Cj)) =
pi(θ = a|k(Cj))

1 +
(

1−q
q

)µ(k−i(C−j)|θ=a)
+

1− pi(θ = a|k(Cj))

1 +
(

1−q
q

)µ(k−i(C−j)|θ=b)

=
pi(θ = a|k(Cj))

1 +
(

1−q
q

)µ(k−i(C−j)|θ=a)
+

1− pi(θ = a|k(Cj))

1 +
(

1−q
q

)−µ(k−i(C−j)|θ=a)

= pi(θ = a|k(Cj))

 1

1 +
(

1−q
q

)µ(k−i(C−j)|θ=a)
− 1

1 +
(

1−q
q

)−µ(k−i(C−j)|θ=a)


+

1

1 +
(

1−q
q

)−µ(k−i(C−j)|θ=a)

≈ 0.5901 · pi(θ = a|k(Cj)) + 0.2049 (16)

where the last line is obtained using our parameters (n = 10, q = 0.7, r = 0.2, which imply µ(k−i(C−j)|θ =
a) = 1.6). So if i is Ca-partisan, assuming all others are using fully revealing message strategies and sincere
Bayesian voting strategies, i’s signal of sa is pivotal when k−i(Ca) = −2, implying k(Ca) = −1. In this case,

27See Eq (17).
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as well as for k(Ca) ∈ {0, . . . , 5}, i’s vote for Ca is pivotal and i expects a tie. i’s signal of sb is pivotal when
k−i(Ca) = −1, however then k(Ca) = −2 and i’s vote is not pivotal because the majority is expected to vote
for Cb. In this case, i can vote either way, in particular, vote for Cb, as prescribed by a sincere informative
voting strategy. Similarly, if i is Cb-partisan, assuming all others are using fully revealing message strategies
and sincere Bayesian voting strategies, i’s signal of sb is pivotal when k−i(Cb) = 2, implying k(Cb) = 1.
In this case, as well as for k(Cb) ∈ {−5, . . . , 0}, i’s vote for Cb is pivotal and i expects a tie. i’s signal of
sa is pivotal when k−i(Cb) = 1, however then k(Cb) = 2 and i’s vote is not pivotal because the majority
is expected to vote for Ca. In this case, i can vote either way, in particular, vote for Ca, as prescribed by
a sincere informative voting strategy. Hence there is a fully revealing equilibrium in which all voters vote
sincerely and, sometimes, informatively – grouping voters by their preference biases enables information
aggregation within groups. Notice also that all Cj-partisans share a common posterior

pj(θ = a|k(Cj)) =
1

1 +
(

1−q
q

)k(Cj)
(17)

B.2 The case of moderate media bias

Proposition 4. [Moderate media bias and empty network] Under MB1+SN0, voting is partially
informative: In the sincere voting equilibrium, Cj-partisans, j ∈ {a, b}, vote according to their signal, and
vote for Cj if they get no signal.

Proof of Proposition 4. Suppose i is Cj-partisan. With parameters from Table 1, player i’s posterior condi-
tional on observing signals sj and s−j is given by

pi(θ = j|sj) =
(1− r)qjj

(1− r)qjj + (1− r)(1− q−jj )
=

1

1 +
1−q−j

j

qjj

= 0.6 (18)

pi(θ = j|s−j) =
(1− r)(1− qjj )

(1− r)(1− qjj ) + (1− r)q−jj
=

1

1 +
q−j
j

1−qjj

= 0.2 (19)

If players use sincere Bayesian voting strategies, then i would vote for Cj after signal sj , but would vote
for C−j after signal s−j since pi(θ = j|s−j) < tj (see (3)). After an empty signal, i just votes for Cj . If
everyone else is voting sincerely and informatively (with the exception of the uninformed28), i’s vote is pivotal
when the difference between the number of sa and sb signals amongst others, denoted k−i, takes values in
{−1, 0, 1}. This leaves the following five cases to consider: i) k−i = 1 (or −1) due to an extra signal sj from
a Cj-partisan; ii) k−i = 1 (or −1) due to an extra signal sj from a C−j-partisan; iii) k−i = 1 (or −1) due to
an extra signal s−j from a Cj-partisan; iv) k−i = 1 (or −1) due to an extra signal s−j from a C−j-partisan;
or v) k−i = 0 and there is no extra signal. if i got sj signal (recall that i is Cj-partisan) she should vote her
signal in all cases i)–v). If i got s−j signal, then in cases iii) – v) she should vote C−j . However, in cases i)
and ii), she should vote Cj . Since i does not observe which of i)–v) takes place due to no communication,
and conditional on observing s−j and pivotality, events iii)–iv) are more likely than events i)–ii), i’s voting
informatively remains incentive compatible.

Lemma 3. Under complete network and moderate media bias, there is no full information revelation equi-
librium.

28i’s vote may or may not be pivotal for the same value of k−i, depending on the partisanship and the realized
number of the uninformed voters, assumed to vote for their default choice. However, the empty signals are equally
likely in both partisan groups and are uncorrelated with the state, so in expectation, the uninformed voters do not
affect the pivotal calculations.
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Proof. Let #sj(Cj),#s−j(Cj) be the total number of sj and s−j signals reported by Cj-partisans, j ∈ {a, b}.
Fix player i, and let k−i(f) := #−i(sa(Ca))−#−i(sb(Cb)) be the difference in the number of reported favorable
signals sa by Ca-partisans other than i and reported favorable signals sb by Cb-partisans other than i. Let
k−i(uf) := #−i(sa(Cb))−#−i(sb(Ca)) be the difference in the number of reported unfavorable signals sa by
Cb-partisans other than i and reported unfavorable signals sb by Ca-partisans other than i. Consider a fully
revealing message strategy, according to which everyone is always sharing their non-empty signals during
the communication stage. i’s posterior that θ = a conditional on signals revealed by others is

pi(θ = a|k−i(f), k−i(uf)) =

denote as Z︷ ︸︸ ︷
(qaa)#−i(sa(Ca))(qab )#−i(sa(Cb))(1− qaa)#−i(sb(Ca))(1− qab )#−i(sb(Cb))

Z + (1− qba)#−i(sa(Ca))(1− qbb)#−i(sa(Cb))(qba)#−i(sb(Ca))(qbb)
#−i(sb(Cb))

=
1

1 +
(

1−qba
qaa

)#−i(sa(Ca)) ( 1−qbb
qab

)#−i(sa(Cb)) ( qba
1−qaa

)#−i(sb(Ca)) ( qbb
1−qab

)#−i(sb(Cb))

=
1

1 +
(
2
3

)#−i(sa(Ca)) ( 1
4

)#−i(sa(Cb)) ( 1
4

)−#−i(sb(Ca)) ( 2
3

)−#−i(sb(Cb))

=
1

1 +
(
2
3

)k−i(f) ( 1
4

)k−i(uf)
(20)

The transition from line 2 to line 3 follows by substituting qaa = qbb = 0.9 and qab = qba = 0.4 from our
parameters. Denote ka(sa) := k−i(f) + 1sa , ka(sb) := k−i(uf)− 1sb the reported difference in the number of
sa and sb signals with i’s signal included, if i is Ca-partisan; and kb(sa) := k−i(uf)+1sa , kb(sb) := k−i(f)−1sb
the reported difference in the number of sa and sb signals with i’s signal included, if i is Cb-partisan. Denote
k := (ka(sa), ka(sb), kb(sa), kb(sb)) the vector of decision-relevant revealed signal differences. i’s message is
pivotal for different values of k−i(f), k−i(uf), as described in Table 13 (by revealing her signal, i pushes the
others’ posterior over one of the two critical thresholds, ta and tb).

Similarly to the no bias case, Table 13 shows that both partisan types sometimes have incentives not to
reveal an unfavorable signal, so there is no full information revelation equilibrium.

Proposition 5. [Moderate media bias and complete network] Given our experimental parameters,
under MB1+SN2, there is no full information revelation equilibrium. However, there is a range of semi-
pooling equilibria, in which all Cj-partisans, j ∈ {a, b}, with favorable signals sj reveal them truthfully at the
communication stage, and hide the unfavorable signals s−j with a commonly known equilibrium probability
ν∗. At the voting stage, each player i has a potentially different posterior pi, which depends not only on the
number and type of signals but also their sources – whether the signal comes from a voter who favors their
candidate or the opposing candidate.29 Given these posteriors, Ca-partisans vote for Ca as long as pi > ta,
and otherwise vote Cb. Cb-partisans vote for Cb as long as pi < tb, and otherwise vote Ca. Each such
equilibrium is characterized by fixing any ν∗ ∈ (0.862, 1].

Proof of Proposition 5. Suppose players use a (possibly mixed) semi-pooling message strategy, in which
they always reveal favorable signals and hide unfavorable signals with some state-independent probability
0 < ν ≤ 1. Belief consistency requires that upon observing an empty signal, s̃j∅, reported by a Cj-partisan,
all other players believe that this signal is actually an unfavorable signal to Cj with probability

µ−j ≡ Pr(s = s−j |s̃j∅) =
1
2 (1− r)(1− qjj )ν + 1

2 (1− r)q−jj ν
1
2 (1− r)(1− qjj )ν + 1

2 (1− r)q−jj ν + r
=

1
2 (1− r)ν(1− qjj + q−jj )

1
2 (1− r)ν(1− qjj + q−jj ) + r

(21)

Due to symmetry, µa(s̃b∅) = µb(s̃
a
∅), thus we can omit the subscript and simply write µ. Fix player i and

denote #−i(s̃
j
∅) the number of empty signals reported by Cj-partisans other than i. The expected number of

unfavorable signals s−j hidden by Cj-partisans amongst #−i(s̃
j
∅) reported empty signals is h−j(#−i(s̃

j
∅)) =

29See Eq (23), in which either k−i(f), the difference in the number of revealed favorable signals sa and sb, or k−i(uf),
the difference in the number of revealed unfavorable signals sa and sb, is supplemented by i’s private signal.
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Table 13: Individual i’s Message Pivotality

IC Partisan Signal Others’ Others’ Others’ posterior Others’ posterior
type si 6= s∅ fav. diff. unfav. diff. if i hides si if i reveals si

k−i(f) k−i(uf) p−i(θ = a|k−i(f), k−i(uf)) p−i(θ = a|k)

∗ Ca sa −4 0 .165 .229
∗ – – −1 1 .727 .800
∗ – – 0 −1 .200 .273
∗ – – 3 0 .771 .835
∗ Ca sb −4 1 .441 .164
∗ – – −3 0 .229 .069

– – −3 2 .825 .542
∗ – – −2 0 .308 .100

– – −2 2 .877 .640
∗ – – −1 0 .400 .143

– – −1 2 .914 .727
∗ – – 0 0 .500 .200

– – 0 1 .800 .500
∗ – – 1 −1 .273 .086

– – 1 1 .857 .600
∗ – – 2 −1 .360 .123

– – 2 1 .900 .692
∗ – – 3 −1 .458 .174

– – 3 1 .931 .771
– – 4 0 .835 .558
Cb sa −4 0 .164 .441
– – −3 −1 .069 .229

∗ – – −3 1 .542 .826
– – −2 −1 .100 .308

∗ – – −2 1 .640 .877
– – −1 −1 .143 .400

∗ – – −1 1 .727 .914
– – 0 −1 .200 .500

∗ – – 0 0 .500 .800
– – 1 −2 .086 .272

∗ – – 1 0 .600 .857
– – 2 −2 .123 .360

∗ – – 2 0 .692 .900
– – 3 −2 .174 .458

∗ – – 3 0 .771 .931
∗ – – 4 −1 .558 .835
∗ Cb sb −3 0 .228 .165
∗ – – 0 1 .800 .727
∗ – – 1 −1 .273 .200
∗ – – 4 0 .835 .771

Notes: Critical thresholds on others’ posterior are ta = 7/34 for Ca members, and tb = 27/34 for Cb members.
“∗” in column IC denotes incentive-compatible revelation assuming everyone else is fully revealing and voting
sincerely.
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µ ·#−i(s̃j∅) (using (6)). Let k−i(s̃∅) := #−i(s̃
b
∅)−#−i(s̃

a
∅) be the difference in the number of empty signals

reported by Cb partisans and Ca partisans; with our parameters, k−i(s̃∅) ∈ {−51i∈Cb
,−4, . . . , 4, 51i∈Ca

}.30
Let π−i(s̃∅) := ha(#−i(s̃

b
∅)) − hb(#−i(s̃

a
∅)) = µ

(
#−i(s̃

b
∅)−#−i(s̃

a
∅)
)
≡ µk−i(s̃∅) be the expected difference

in the number of hidden unfavorable signals. Let k−i(f) := #−i(sa(Ca))−#−i(sb(Cb)) be the difference in
the number of reported favorable signals sa by Ca-partisans other than i and reported favorable signals sb
by Cb-partisans other than i; with our parameters, k−i(f) ∈ {−51i∈Ca

,−4, . . . , 4, 51i∈Cb
}. Let k−i(uf) :=

#−i(sa(Cb))−#−i(sb(Ca)) be the difference in the number of reported unfavorable signals sa by Cb-partisans
other than i and reported unfavorable signals sb by Ca-partisans other than i; with our parameters, k−i(uf) ∈
{−51i∈Cb

,−4, . . . , 4, 51i∈Ca}. By definition,

k−i(f)− k−i(uf) = k−i(s̃∅) + 1i∈Cb
− 1i∈Ca

(22)

Thus while we’ll keep using k−i(s̃∅) as a shorthand notation for the difference in the number of empty
signals, it is not an independent quantity and can be obtained from the respective differences in the number
of favorable and unfavorable signals. i’s posterior that θ = a conditional on signals revealed (and non-
revealed) by others becomes

pi(θ = a|k−i(f), k−i(uf), π−i(s̃∅)) =

=

denote as Z︷ ︸︸ ︷
(qaa)#−i(sa(Ca))(qab )#−i(sa(Cb))+ha(#−i(s̃

b
∅))(1− qaa)#−i(sb(Ca))+hb(#−i(s̃

a
∅))(1− qab )#−i(sb(Cb))

Z + (1− qba)#−i(sa(Ca))(1− qbb)
#−i(sa(Cb))+ha(#−i(s̃b∅))(qba)#−i(sb(Ca))+hb(#−i(s̃a∅))(qbb)

#−i(sb(Cb))

=
1

1 +
(

1−qba
qaa

)#−i(sa(Ca)) ( 1−qbb
qab

)#−i(sa(Cb))+ha(#−i(s̃b∅))
(

qba
1−qaa

)#−i(sb(Ca))+hb(#−i(s̃a∅))
(

qbb
1−qab

)#−i(sb(Cb))

=
1

1 +
(
2
3

)#−i(sa(Ca)) ( 1
4

)#−i(sa(Cb))+ha(#−i(s̃b∅))
(
1
4

)−#−i(sb(Ca))−hb(#−i(s̃a∅))
(
2
3

)−#−i(sb(Cb))

=
1

1 +
(
2
3

)k−i(f) ( 1
4

)k−i(uf)+π−i(s̃∅)
=

1

1 +
(
2
3

)k−i(f) ( 1
4

)k−i(uf)+µk−i(s̃∅)
(23)

The remaining equilibrium analysis is very similar to the case of no bias and complete network, with a few
extra complications, since pi now depends on k−i(f) and k−i(uf) separately – players have to distinguish
between signal sources. Note that the expression for player i’s posterior, obtained in (23), is increasing in
µ for k−i(s̃∅) > 0 and decreasing in µ for k−i(s̃∅) < 0. This implies the same dynamics for pi as a function
of equilibrium probability ν, since µ is increasing in ν, as follows from (21). i’s decision whether or not to
reveal her signal is going to affect the posterior held by others, p−i(θ = a|k′(f), k′(uf), π′(s̃∅)), through a
change in one of the numbers that they observe and condition upon: k′(f), k′(uf), or π′(s̃∅). Namely, if i
reveals her signal, k′(f) or k′(uf) will be updated; if i hides her signal, π′(s̃∅) will be updated.

Suppose i is a Cj-partisan. Cj-partisans always reveal a favorable signal sj , which affects k′(f) in the
posterior of others: if i reveals, then instead of k′(f) = k−i(f), others will observe k′′(f) = kj(sj), where
ka(sa) := k−i(f) + 1{si=sa}, and kb(sb) := k−i(f) − 1{si=sb}. If i receives an unfavorable signal s−j and
reveals it, this will affect k′(uf) in the posterior of others: if i reveals, then instead of k′(uf) = k−i(uf), others
will observe k′′(uf) = kj(s−j), where ka(sb) := k−i(uf) − 1{si=sb} and kb(sa) := k−i(uf) + 1{si=sa}. If i
receives an unfavorable signal s−j and hides it, this will affect π′(s̃∅) in the posterior of others: if i hides,
then instead of π′(s̃∅) = π−i(s̃∅), others will observe π′′(s̃∅) = xj(s̃∅), where xb(s̃∅) := π−i(s̃∅) + µ1{si=sa},
xa(s̃∅) := π−i(s̃∅)−µ1{si=sb}. Thus the effect of hiding an unfavorable signal on the others’ posterior depends
on µ. Exact posterior changes only matter around the two critical thresholds, ta and tb. Whatever i does
with an unfavorable signal, either k′′(uf) or π′′(s̃∅) will be updated and observed by others; and revealing an
unfavorable signal has a larger effect (positive for sa, negative for sb) on the others’ posterior than hiding it:

p−i(θ = a|k′(f), ka(sb), π
′(s̃∅)) < p−i(θ = a|k′(f), k′(uf), xa(s̃∅)) (24)

30The shorthand notation z1i∈Cj means that z should be only considered when i is a Cj-partisan, j ∈ {a, b} to
cover both possible cases.
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and
p−i(θ = a|k′(f), kb(sa), π′(s̃∅)) > p−i(θ = a|k′(f), k′(uf), xb(s̃∅)) (25)

(with weak inequalities for a pure semi-pooling strategy). In equilibrium, it must be incentive compatible
for i to use the semi-pooling strategy ν, if she believes that the others also use it at the messaging stage and
use Bayesian sincere strategies at the voting stage. Since revealing favorable signals is incentive compatible
for any ν, the actual restrictions on equilibrium ν come from comparing the effect of hiding vs. revealing
an unfavorable signal when i is pivotal. Due to (24), for i ∈ Ca the respective pivotality condition is i)
p−i(θ = a|k′(f), k′′(uf), π′(s̃∅)) < tj < p−i(θ = a|k′(f), k′(uf), π′′(s̃∅)), and due to (25), for i ∈ Cb it is ii)
p−i(θ = a|k′(f), k′′(uf), π′(s̃∅)) > tj > p−i(θ = a|k′(f), k′(uf), π′′(s̃∅)). As long as ν < 1, there may be one
weak inequality in both cases. If tj = ta, then in case i), i ∈ Ca wants to reveal the unfavorable signal sb,
but in case ii), i ∈ Cb wants to hide the unfavorable signal sa. For any belief ν it is possible to affect the
vote by revealing the unfavorable signal, since signals are verifiable, so case i) does not restrict ν. However,
for given k(f), k(uf), k(s̃∅), in case ii) there is a range of ν for which hiding the signal will not work: The
other players believe that an empty signal means “unfavorable” signal with too high a probability, thereby
“undoing” the hiding. If tj = tb, the situation is reversed: in case i) i ∈ Ca prefers to to hide her signal,
whereas in case ii), i ∈ Cb prefers to reveal her signal. To ensure incentive compatibility, it is sufficient to
consider these conditions i)–ii) only at the critical values of µ at which the others’ posterior, computed using
an appropriately modified Eq (23), equals threshold tj .

There are two critical values for each threshold: Either 1) p−i(θ = a|k′(f), k′′(uf), π′(s̃∅)) = tj or 2)
p−i(θ = a|k′(f), k′(uf), π′′(s̃∅)) = tj . For tj = ta, i ∈ Cb, and case ii), if k−i(s̃∅) > 0, it is condition 2) that
defines the relevant critical value of µ, and if k−i(s̃∅) < 0, it is condition 1) that defines the critical value of
µ. For tj = tb, i ∈ Ca, and case i), if k−i(s̃∅) > 0, it is condition 1) that defines the relevant critical value
of µ, and if k−i(s̃∅) < 0, it is condition 2) that defines the relevant critical value of µ. So for fixed k−i(f),
k−i(uf), there are four possibilities, and the corresponding critical values can be expressed via the following
equations:

µ∗i)1)(sb, Ca) =
ln
(

1
tb
− 1
)
− k−i(f) ln 2

3 − (k−i(uf)− 1{si=sb}) ln 1
4

k−i(s̃∅) ln 1
4

(26)

µ∗i)2)(sb, Ca) =
ln
(

1
tb
− 1
)
− k−i(f) ln 2

3 − k−i(uf) ln 1
4

(k−i(s̃∅)− 1{si=sb}) ln 1
4

(27)

µ∗ii)1)(sa, Cb) =
ln
(

1
ta
− 1
)
− k−i(f) ln 2

3 − (k−i(uf) + 1{si=sa}) ln 1
4

k−i(s̃∅) ln 1
4

(28)

µ∗ii)2)(sa, Cb) =
ln
(

1
ta
− 1
)
− k−i(f) ln 2

3 − k−i(uf) ln 1
4

(k−i(s̃∅) + 1{si=sa}) ln 1
4

(29)

The critical values of ν, denoted ν∗ are obtained by reversing (21):

ν =
2µr

(1− µ)(1− r)(1− qjj + q−jj )
, (30)

It is straightforward to show that any ν ≥ ν∗ is also incentive compatible. Thus we obtain a series of
critical values ν∗ that depend on i’s partisanship, her signal, and different combinations of k−i(f), k−i(uf),
and k−i(s̃∅), which define a consistency range for ν. We directly compute the consistency range for each
case. A semi-pooling equilibrium probability ν must be in the intersection of these consistency ranges across
all cases; direct computation yields that this range of ν is (.862, 1].

An important difference for belief updating in Proposition 5 compared to Proposition 2 is that in the
moderate bias case, the posterior beliefs depend not only on the number of revealed signals but also on their
sources: that is, a signal favoring Ca is interpreted differently depending on whether it is reported by a Ca-
or Cb-partisan – since revealed favorable signals carry less weight in the posterior than revealed unfavorable
signals.
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Proposition 6. [Moderate media bias and polarized network] Under MB1+SN1, there is a full in-
formation revelation equilibrium, in which all voters with non-empty signals reveal them truthfully at the
communication stage and believe with probability 1 that non-revealing agents are uninformed. At the voting
stage, all Cj-partisans, j ∈ {a, b}, have identical posterior beliefs, in which unfavorable signals receive more
weight relative to favorable signals.31 Ca-partisans vote for Ca as long as pi > ta, and otherwise vote Cb.
Cb-partisans vote for Cb as long as pi < tb, and otherwise vote Ca.

Proof of Proposition 6. The analysis mirrors the case of polarized network and no bias, with some modifi-
cations regarding the expressions for the posteriors. Namely, (15) becomes

pi(θ = a|#−i(sa(Ca)),#−i(sb(Ca))) =
1

1 +
(

qba
1−qaa

)#−i(sb(Ca)) ( 1−qba
qaa

)#−i(sa(Ca))
(31)

pi(θ = a|#−i(sa(Cb)),#−i(sb(Cb))) =
1

1 +
(

qbb
1−qab

)#−i(sb(Cb)) ( 1−qbb
qab

)#−i(sa(Cb))
(32)

for i ∈ Ca and i ∈ Cb, respectively. In the full revelation equilibrium, Cj-partisans have a common posterior
with i’s non-empty signal si added to #−i(si(Cj)) under the conditioning operator: Let #(sa(Cj)) :=
#−i(sa(Cj)) + 1{si=sa} and #(sb(Cj)) := #−i(sb(Cj)) − 1{si=sb}. Players form beliefs about the expected
number of revealed signals of each type in the other group.

Beliefs of Ca-partisans about the expected number of signals sa (first line) and sb (second line) revealed
in group Cb in state θ = a:

µCa
(#(sa(Cb))|θ = a) =

n
2∑

α=0

n
2−α∑
β=0

α(n2 )!

α!β!(n2 − α− β)!
((1− r)qab )α((1− r)(1− qab ))βr

n
2−α−β (33)

µCa
(#(sb(Cb))|θ = a) =

n
2∑

α=0

n
2−α∑
β=0

β(n2 )!

α!β!(n2 − α− β)!
((1− r)qab )α((1− r)(1− qab ))βr

n
2−α−β (34)

and in state θ = b:

µCa
(#(sa(Cb))|θ = b) =

n
2∑

α=0

n
2−α∑
β=0

α(n2 )!

α!β!(n2 − α− β)!
((1− r)(1− qbb))α((1− r)qbb)βr

n
2−α−β (35)

µCa(#(sb(Cb))|θ = b) =

n
2∑

α=0

n
2−α∑
β=0

β(n2 )!

α!β!(n2 − α− β)!
((1− r)(1− qbb))α((1− r)qbb)βr

n
2−α−β (36)

Similarly, beliefs of Cb-partisans about the expected number of signals sa (first line) and sb (second line)
revealed in group Ca in state θ = a:

µCb
(#(sa(Ca))|θ = a) =

n
2∑

α=0

n
2−α∑
β=0

α(n2 )!

α!β!(n2 − α− β)!
((1− r)qaa)α((1− r)(1− qaa))βr

n
2−α−β (37)

µCb
(#(sb(Ca))|θ = a) =

n
2∑

α=0

n
2−α∑
β=0

β(n2 )!

α!β!(n2 − α− β)!
((1− r)qaa)α((1− r)(1− qaa))βr

n
2−α−β (38)

31The posteriors are given by Eq (31) – (32), supplemented by i’s signal.
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and in state θ = b:

µCb
(#(sa(Ca))|θ = b) =

n
2∑

α=0

n
2−α∑
β=0

α(n2 )!

α!β!(n2 − α− β)!
((1− r)(1− qba))α((1− r)qba)βr

n
2−α−β (39)

µCb
(#(sb(Ca))|θ = b) =

n
2∑

α=0

n
2−α∑
β=0

β(n2 )!

α!β!(n2 − α− β)!
((1− r)(1− qba))α((1− r)qba)βr

n
2−α−β (40)

Due to group symmetry with respect to size, n/2, and signal accuracy in favorite and unfavorite states,

µCa
(#(sb(Cb))|θ = b) = µCb

(#(sa(Ca))|θ = a) µCa
(#(sa(Cb))|θ = b) = µCb

(#(sb(Ca))|θ = a)

µCa
(#(sa(Cb))|θ = a) = µCb

(#(sb(Ca))|θ = b) µCa
(#(sb(Cb))|θ = a) = µCb

(#(sa(Ca))|θ = b)

Let #(sa(Cj)) := #−i(sa(Cj)) + 1{si=sa} and #(sb(Cj)) := #−i(sb(Cj)) − 1{si=sb}. Given beliefs about
signal distributions in the other party, µCj

, and the posterior pi(θ = a|#(sa(Cj)),#(sb(Cj))), player i ∈ Cj
expects group C−j to have a common posterior p

Cj

−j(θ = a). Namely, for i ∈ Ca,

pCa

b (θ = a) =
pi(θ = a|#(sa(Ca)),#(sb(Ca)))

1 +
(

qbb
1−qab

)µCa (#(sb(Cb))|θ=a) ( 1−qbb
qab

)µCa (#(sa(Cb))|θ=a)

+
1− pi(θ = a|#(sa(Ca)),#(sb(Ca)))

1 +
(

qbb
1−qab

)µCa (#(sb(Cb))|θ=b) ( 1−qbb
qab

)µCa (#(sa(Cb))|θ=b)

≈ 0.488 · pi(θ = a|#(sa(Ca)),#(sb(Ca))) + 0.288 (41)

and for i ∈ Cb,

pCb
a (θ = a) =

pi(θ = a|#(sa(Ca)),#(sb(Ca)))

1 +
(

qba
1−qaa

)µCb
(#(sb(Ca))|θ=a) ( 1−qba

qaa

)µCb
(#(sa(Ca))|θ=a)

+
1− pi(θ = a|#(sa(Ca)),#(sb(Ca)))

1 +
(

qba
1−qaa

)µCb
(#(sb(Ca))|θ=b) ( 1−qba

qaa

)µCb
(#(sa(Ca))|θ=b)

≈ 0.488 · pi(θ = a|#(sa(Ca)),#(sb(Ca))) + 0.224 (42)

where the last lines are obtained using our parameters (n = 10, qjj = 0.9, q−jj = 0.4, r = 0.2). Players then
use sincere Bayesian voting strategies taking into account pivotality.

Appendix C Instructions (MB0 or MB1, sequence SN1-SN2)

Welcome. This is an experiment in decision making, and for your participation you will be paid in cash
at the end of the experiment. Different participants may earn different amounts. What you earn depends
partly on your decisions, partly on decisions of others, and partly on chance.

The entire experiment will take place through computers. It is important that you do not talk with
other participants and only use the computer software as instructed. We kindly ask you to turn off your
phones and other mobile devices. If you violate the rules, we may ask you to leave the experiment.

This experiment will take between 50 and 80 minutes. If for any reason you are unable to stay for the
entire duration of the experiment, please tell us now. In this experiment all interactions between participants
are via the computers. You will interact anonymously and your decisions will be recorded together with your
randomly assigned subject ID number. Neither your name, nor names of other participants will be ever
made public and will not be used for any research purpose, only for payments records.

We will now start with a brief instruction period. If you have any questions during this time, raise your
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hand and your question will be answered so everyone can hear. If any difficulties arise after the experiment
has begun, raise your hand, and an experimenter will come and assist you.

The experiment today has two parts. Each part consists of several procedurally identical rounds. At
the end of the experiment, four rounds total (two from each part) will be randomly selected as paid rounds.
The rounds that are not selected will not be paid out. Your total payoff consists of the points you will earn
in the selected rounds, converted to pounds, plus your show-up fee of £8. The conversion rate of points to
pounds is as follows: 100 points make £1.5. Every participant will be paid out in private so that no other
participant can see how much you have earned. There will be a practice round followed by two parts, with
16 rounds in each part. Let me now show you what will occur every round.

[Turn on the projector]
Once the experiment begins, you will be randomly assigned a type: Green or Blue. Each type is equally

likely. You will keep this type for all rounds. Every round, you will be randomly placed into one of three 10-
person groups, with 5 Green types and 5 Blue types in each group. All three groups are totally independent
and all interactions and payoffs in one group do not affect interactions and payoffs in any of the other groups.
Hence from now on I will focus on what’s going on within one 10-person group only. This is the screen you
will see at the beginning of every round in part 1.

[show the initial Green screen]
At the top of the screen there is information about the current round and your type. This screen is for

a Green type, and the screen for a Blue type looks very similar, as I’ll show in a moment.
[show the initial Blue screen]
Let me start by explaining the left-hand side of the screen. There are two possible states represented by

two wheels [MB1: at the top]: a Blue wheel, which has a larger area covered with Blue, and a Green wheel,
which has a larger area covered with Green.

In each round the computer randomly selects one of these wheels with equal chances. We will call the
selected wheel the “chosen” wheel. The identity of the chosen wheel is not revealed to anyone. However,
each participant has a chance at getting a hint (that we call a signal) about the chosen wheel.

[MB0 treatment]
Here is how signals work: Once you indicate that you are ready to receive your signal by clicking on the

OK button, the computer will cover the chosen wheel so that you won’t be able to see its colors, and let you
spin it. Here is how this will look like.

[show the screen with spin button]
Once you click the Spin button, the covered chosen wheel will be spun randomly, and after the rotation

stops, there will be one of the two possible outcomes: Your attempt to receive a signal will either be successful
or not. If it is successful, you will see a colored strip (Green or Blue) through a slit in the cover of the chosen
wheel.

[show the screen with successful finished spin]
Notice that as a result of a random spin, the Blue color is more likely to come up on the Blue wheel,

and the Green color is more likely to come up on the Green wheel, however there is also a possibility that
the Blue color comes up on the Green wheel and that the Green color comes up on the Blue wheel. If your
attempt to receive a signal is not successful, you will see a text saying “No signal”.

[show the no-signal screen]
There is a 20% chance that you will get a “No signal” outcome, regardless of which wheel was chosen.
[MB1 treatment]
Here is how signals work: Once you indicate that you are ready to receive your signal by clicking on the

OK button, the computer will take the wheel displayed directly below the chosen wheel (this wheel is called
Bluish if you are a Blue type, and Greenish if you are a Green type), cover it so that you won’t be able to
see its colors, and let you spin this covered wheel. Here is how this will look like.

[show the screen with spin button]
Once you click the Spin button, the covered wheel (Bluish or Greenish, depending on your type) will be

spun randomly, and after the rotation stops, there will be one of the two possible outcomes: Your attempt
to receive a signal will either be successful or not. If it is successful, you will see a colored strip (Green or
Blue) through a slit in the cover of the covered wheel.

[show the screen with finished spin]
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Notice that as a result of a random spin, the Blue color is more likely to come up on the Bluish wheel,
and the Green color is more likely to come up on the Greenish wheel, however there is also a possibility that
the Blue color comes up on the Greenish wheel and that the Green color comes up on the Bluish wheel, and
these likelihoods differ depending on which wheel has been chosen. If your attempt to receive a signal is not
successful, you will see a text saying “No signal”. There is a 20% chance that you will get a “No signal”,
regardless of which wheel is chosen.

[Continue for both MB treatments + SN]
Now that you have received a signal (or no signal), let’s look at the right hand side of the screen. At

the top of the screen there is a graph showing positions and connections of all participants in your group,
including yourself. If you did not receive a signal you are not required to do anything at this stage, just have
to wait for others. If you did receive a signal, you now have a choice of whether or not to send your signal
to all those participants connected to you in the network.

[For SN1 (polarized)]
Notice that all Blue types are connected to one another and all Green types are connected to one another,

so if you are a Blue type you can send your signal to four other Blue types, and if you are a Green type you
can send your signal to four other Green types. Correspondingly you cannot receive signals from subjects of
the other type, and their rows in the table are grayed out.

[For SN2 (complete)] Notice that everyone is connected to everyone else, so if you are a Blue type you
can send your signal to four other Blue types and five Green types, and if you are a Green type you can
send your signal to four other Green types and five Blue types. Correspondingly you can receive signals from
subjects of either type.

[Continue for both SN1+SN2]
Once everyone has decided about sending or not sending their signals, the table on the right will be

updated showing the signals sent.
[show screen with updated table]
[Continue for all, including SN0]
Now you will have to make a guess about the chosen wheel by clicking on the respective button – Green

or Blue. Once all individual guesses have been made, your group guess will be determined as follows: if more
subjects submitted a guess of Green than a guess of Blue, the group guess will be Green. If more subjects
submitted a guess of Blue than a guess of Green, the group guess will be Blue. If there is an equal number
of guesses for Blue and Green, the group guess about the chosen wheel will be decided by a coin flip, and
with equal chances will be either Blue or Green. Your potential payoff from the round, if it is selected as
a paid round, will depend on three things: (i) your type, (ii) the identity of the chosen wheel, (iii) and the
group guess.

If you are a Blue type:

• if the chosen wheel is Blue, and the group guess is Blue, you get 150 points.

[show screen with blue round outcome]

• If the chosen wheel is Green and the group guess is Green, you get 50 points.

[show screen with green round outcome]

• In all other cases (if the group guess does not match the chosen wheel color), you get 15 points.

[show screen with mismatched outcome]

If you are a Green type:

• If the chosen wheel is Green and the group guess is Green, you get 150 points.

[show screen with green round outcome]

• if the chosen wheel is Blue, and the group guess is Blue, you get 50 points.

[show screen with blue round outcome]

• In all other cases (if the group guess does not match the chosen wheel color), you get 15 points.

[show screen with mismatched outcome]
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In other words, you get 15 points if the group guess does not match the chosen wheel color, 50 points if the
group guess is correct and the chosen wheel color is not the same as your type, and 150 points if the group
guess is correct and the chosen wheel color is the same as your type.

This process will be repeated for 16 rounds. In every round you will be randomly assigned to one of the
three groups, the computer will randomly choose a new wheel in each group, and so on. Then will move to
part 2, and I will explain the details once part 1 is over.

After part 2, at the end of the experiment you will be also asked to answer a short questionnaire which
will not affect your payoff. Remember that two rounds from each part (four total) will be randomly selected
as paid rounds, and every round in either part, including the very first, and the very last, has the same
chance of being selected as a paid round. Are there any questions about the procedure?

[wait for response]
We will now start with one practice round. The practice round will not be paid. Is everyone ready?
[wait for response, start multi-stage server]
Now follow my instructions very carefully and do not do anything until I ask you to do so. Please locate

the ‘Client-Multistage’ icon on your desktop, and double click on it. The program will ask you to type in
your name. Don’t do this. Instead, please type in the number of your computer station.

[wait for subjects to connect to server]
We will now start the practice round. Do not hit any keys or click the mouse button until you are told

to do so. Please pull up the dividers between your cubicles.
[start first practice match]
This is the end of the practice round. Are there any questions?
[wait for response]
Now let’s start part 1 of the actual experiment. If there are any problems from this point on, raise your

hand and an experimenter will come and assist you.
[start part 1, turn off slides]
This was the last round of part 1. Before we move on to part 2, let me explain the differences from the

previous part.
[SN1-SN2]
Once you are ready to receive the signal
[show the spin screen]
and click on the spin button
[show the finished spin screen]
Notice that now everyone is connected to everyone else, so if you are a Blue type you can send your

signal to four other Blue types and five Green types, and if you are a Green type you can send your signal to
four other Green types and five Blue types. Correspondingly you can receive signals from subjects of either
type.

[are there any questions?]
[start part 2]
This was the last round. A small window showing your payoff in pounds has popped up. Your total

payoff will be the amount shown under “Total payoff”, rounded up to the nearest 50p plus the £8 show-up
fee. So it will be the amount you see on the screen plus £8.

All payoffs are recorded in the system so you don’t need to write down anything. Now I need you all
to click on the OK button in the small window so that you can proceed to filling out a short questionnaire
while I am preparing your payments. After you finish the questionnaire, please remain seated and do not
close any windows. You will be paid in a booth at the front row one at a time, you will be called in by
your station number. Please bring all your things with you when you go to the booth as you will then leave
the experiment. Please refrain from discussing this experiment while you are waiting to receive payment
so that privacy regarding individual choices and payoffs may be maintained. Thanks very much for your
participation.
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