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ON CHOOSING MIXTURE COMPONENTS VIA NON-LOCAL
PRIORS

JAIRO FÚQUENE, MARK STEEL, DAVID ROSSELL

Abstract

Choosing the number of mixture components remains an elusive challenge. Model se-
lection criteria can be either overly liberal or conservative and return poorly-separated
components of limited practical use. We formalize non-local priors (NLPs) for mixtures
and show how they lead to well-separated components with non-negligible weight, inter-
pretable as distinct subpopulations. We also propose an estimator for posterior model
probabilities under local and non-local priors, showing that Bayes factors are ratios of
posterior to prior empty-cluster probabilities. The estimator is widely applicable and
helps set thresholds to drop unoccupied components in overfitted mixtures. We suggest
default prior parameters based on multi-modality for Normal/T mixtures and minimal
informativeness for categorical outcomes. We characterise theoretically the NLP-induced
sparsity, derive tractable expressions and algorithms. We fully develop Normal, Binomial
and product Binomial mixtures but the theory, computation and principles hold more
generally. We observed a serious lack of sensitivity of the Bayesian information crite-
rion (BIC), insufficient parsimony of the AIC and a local prior, and a mixed behavior
of the singular BIC. We also considered overfitted mixtures, their performance was com-
petitive but depended on tuning parameters. Under our default prior elicitation NLPs
offered a good compromise between sparsity and power to detect meaningfully-separated
components.

Keywords: Mixture models, Non-local priors, Model selection, Bayes factor.

1. Introduction

Mixture models have many applications, e.g. in human genetics (Schork et al., 1996),
false discovery rate control (Efron, 2008), signal deconvolution (West and Turner, 1994),
density estimation (Escobar and West, 1995) and cluster analysis (Fraley and Raftery,
2002; Baudry et al., 2012). See Frühwirth-Schnatter (2006) and Mengersen et al. (2011)
for an extensive treatment. Despite having such a fundamental role, their irregular na-
ture (multi-modal and unbounded likelihood, non-identifiability) creates difficulties in
choosing the number of components both in the Bayesian and frequentist paradigms. As
discussed below, although existing formal criteria may achieve model selection consistency
as the sample size grows to infinity (Gassiat and Handel, 2013), in practice they often
lead to too many or too few components and require the data analyst to perform some
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ad-hoc post-processing. Our main contributions are proposing the use of non-local priors
(NLPs) to select the number of components, characterizing the properties of the associ-
ated inference (improved sparsity) and proposing computationally tractable algorithms.
This includes the ECP algorithm, a new strategy to obtain posterior model probabili-
ties applicable both to local and non-local priors. We also emphasise prior elicitation to
obtain default prior parameters and illustrate the framework in popular families that in-
clude Normal, Student-t (T), Binomial and product Binomial mixtures. Our formulation,
theory and computational algorithms hold more generally, however.

Consider a sample y = (y1, ...,yn) of independent observations from a finite mixture
where yi ∈ Rp arises from the density

p(yi | ϑk,Mk) =
k∑
j=1

ηjp(yi | θj).(1.1)

The component densities p(y | θj) are indexed by a parameter θj ∈ Θ, η = (η1, ..., ηk) ∈
Ek denotes the weights, Ek the unit simplex andMk the model with k components. Our
main goal is to infer k. For simplicity we assume that there is an upper bound K such
that k ∈ {1, . . . , K}, e.g. given by subject-matter considerations, but our framework
remains valid for a prior distribution on k with support on the natural numbers. The
whole parameter is ϑk = (θ,η) ∈ Θk = Θk × Ek where θ = (θ1, ...,θk). As an example,
in Normal mixtures p(y | θj) = N(y;µj,Σj) and θj = (µj,Σj) where µj ∈ Rp is the
mean and Σj the covariance matrix of component j. One may also consider heavy-tailed
alternatives such as T densities p(y | θj) = T(y;µj,Σj, υj), where θj = (µj,Σj, υj)
and υj is the degrees of freedom parameter. Another class illustrated here are product

Binomial mixtures with mass function p(yi | θj) =
∏p

f=1

(
Lif

yif

)
θ
yif
jf (1 − θjf )Lif−yif , where

yi = (yi1, . . . , yip) are the number of successes for individual i across p outcomes, Lif the
number of trials and θjf the success probability for outcome f under component j, and
θj = (θj1, . . . , θjp). The case p = 1 corresponds to a Binomial mixture. Throughout, we
assume that y are generated by p(y | ϑ∗k∗ ,Mk∗) for some k∗ ∈ {1, . . . , K}, ϑ∗k∗ ∈ Θk∗ .

Mixtures suffer from a lack of identifiability that plays a fundamental role both in esti-
mation and model selection. This issue can be caused by the invariance of the likelihood
to relabeling the components or by posing overfitted models that could be equivalently
defined with k′ < k components, e.g. setting ηj = 0 or θi = θj for some i 6= j. Re-
labeling (also known as label switching) is due to there being k! ways of rearranging
the components that give the same p(y | ϑk,Mk). Although relabelling creates some
technical difficulties, it does not seriously hamper inference. For instance, if k = k∗

then the maximum likelihood estimator (MLE) is consistent and asymptotically Normal
as n → ∞ in the quotient topology (Redner, 1981), and from a Bayesian perspective
the integrated likelihood behaves asymptotically as in regular models (Crawford, 1994).
Non-identifiability due to overfitting has more serious consequences, e.g. estimates for
p(y | ϑk,Mk) are consistent under mild conditions (Ghosal and der Vaart, 2001) but
the MLE and posterior mode of ϑk can behave erratically (Leroux, 1992; Rousseau and
Mengersen, 2011; Ho and Nguyen, 2016). In addition, as we now discuss, frequentist and
Bayesian methods to choose Mk can behave unsatisfactorily.
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The literature on criteria to choose k is too large to cover here, the reader is referred
to Richardson and Green (1997), Fraley and Raftery (2002), Baudry et al. (2012) and
Gassiat and Handel (2013). We review a few model-based criteria, as these are most
closely related to our proposal and can be applied to any probability model. From a
frequentist perspective the likelihood ratio test between Mk and Mk+1 may diverge
as n → ∞ when data truly arise from Mk unless restrictions on the parameters or
likelihood penalties are imposed (Ghosh and Sen (1985); Liu and Shao (2004); Chen and
Li (2009)). As an alternative one may consider criteria such as the Bayesian information
criterion (BIC), Akaike’s information criterion (AIC), the integrated complete likelihood
(Biernacki et al., 2000) or the singular BIC (Drton and Plummer (2017), sBIC). Although
the BIC justification as an approximation to the Bayesian evidence (Schwarz, 1978) is
not valid for overfitted mixtures, it is often adopted as a useful criterion (Fraley and
Raftery, 2002). One issue is that the BIC ignores that p(y | ϑk,Mk) has k! maxima,
causing a loss of sensitivity to detect truly present components. More importantly, the
dimensionality penalty pk = dim(Θk) used by the BIC is too large for overfitted mixtures
(Watanabe, 2013), again decreasing power. These theoretical observations align with
the empirical results we present here. The sBIC builds on Watanabe (2009, 2013) to
improve the BIC’s asymptotic approximation of the integrated likelihood. In our results
the sBIC over-penalized model complexity in some examples (albeit less so than the BIC)
but under-penalized in others, where it gave similar results to the AIC.

From a Bayesian perspective, model selection is often based on the posterior probability
P (Mk | y) = p(y | Mk)P (Mk)/p(y), where P (Mk) is the prior probability,

(1.2) p(y | Mk) =

∫
Θk

p(y | ϑk,Mk)p(ϑk | Mk)dϑk

the integrated (or marginal) likelihood and p(ϑk | Mk) a prior distribution under Mk.
One may also use Bayes factors Bk′,k(y) = p(y | Mk′)/p(y | Mk) to compare any
pair Mk′ ,Mk. A common argument for (1.2) is that it automatically penalizes overly
complex models, however this parsimony is not as strong as one would ideally wish. To
gain intuition, for regular models with fixed pk one obtains

log p(y | Mk) = log p(y | ϑ̂k,Mk)−
pk
2

log(Op(n)) +Op(1)(1.3)

as n→∞ (Dawid, 1999). This implies that Bk∗,k(y) grows exponentially as n→∞ when
Mk∗ 6⊂ Mk but is only Op(n

−(pk−pk∗ )/2) when Mk∗ ⊂ Mk. That is, overfitted models
are only penalized at a slow polynomial rate. Key to the current manuscript, Johnson
and Rossell (2010) showed that either faster polynomial or quasi-exponential rates are
obtained by letting p(ϑk | Mk) be a NLP (defined below). Expression (1.3) remains
valid for many mixtures with k ≤ k∗ (including Normal mixtures, Crawford (1994)),
however this is no longer the case for k > k∗. Using algebraic statistics, Watanabe (2009,
2013) gave expressions analogous to (1.3) for k > k∗ where pk/2 is replaced by a rational
number λ ∈ [pk∗/2, pk/2] called the real canonical threshold and the remainder term is
Op(log log n) instead of Op(1). The exact value of λ is complicated but the implication
is that pk in (1.3) imposes an overly stringent penalty that can decrease the sensitivity
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of the BIC, and also that the Bayes factor to penalize overfitted k > k∗ mixtures is
Bk,k∗(y) = Op(n

−(λ−pk∗/2)). That is, akin to regular models, k > k∗ is penalized only
at a slow polynomial rate. These results align with those in Chambaz and Rousseau
(2008). Denoting by k̂ = arg maxk P (Mk | y), these authors found that the frequentist

probability Pϑ∗
k∗

(k̂ < k∗) = O(e−an) but in contrast Pϑ∗(k̂ > k∗) = O((logn)b/
√
n) for

some constants a, b > 0, again implying that spurious components are not sufficiently
penalized. We emphasize that these results apply to a wide class of priors but not to
the NLP class proposed in this paper, for which faster rates are attained. Note also that
the BIC and related likelihood penalties attain consistency as n → ∞ for fairly general
mixtures (Gassiat and Handel, 2013), as long as log(n) is replaced by a rate strictly
between log log(n) and n, but as illustrated here for finite (potentially quite large) n the
BIC can lack sensitivity.

An interesting alternative to considering k ∈ {1, . . . , K} is to set a single large k and
subsequently discard unoccupied components, a strategy often referred to as overfitted
mixtures. Rousseau and Mengersen (2011) showed that the prior on the weights p(η | Mk)
strongly influences posterior inference when k > k∗. Under p(η | Mk) = Dir(η; q1, ..., qk)
with maxjqj < d/2 where d = dim(Θ) the posterior of η collapses to 0 for redundant
components, but if minj qj > d/2 then it collapses on a solution where at least two
components i 6= j have identical parameters θi = θj and non-zero weights ηi > 0, ηj > 0.
That is, the posterior shrinkage induced by qj < d/2 helps discard spurious components.
Gelman et al. (2013) set q1 = ... = qk = 1/k, but Havre et al. (2015) argued that this
leads to insufficient shrinkage and proposed smaller qj. Petralia et al. (2012) argued that
faster shrinkage may be obtained via overfitted repulsive priors, i.e. assigning vanishing
density to θi = θj for i 6= j. Affandi et al. (2013) and Xu et al. (2016) gave related
determinantal point process frameworks, and Xie and Xu (2019) proposed extensions to
non-parametric Gaussian mixtures. A recent approach by Malsiner-Walli et al. (2017)
resembling repulsive mixtures is to encourage nearby components merging into groups at
a first hierarchical level and to then enforce between-group separation at the second level.
Interestingly, repulsive mixtures are a shrinkage counterpart to our framework, but, as
we shall see, NLPs penalize not only θi = θj but also small weights.

In spite of their usefulness, overfitted mixtures (whether repulsive or not) also bear
limitations. On the practical side one can study the number of components but can-
not address more general model selection questions, say choosing equal versus different
component-specific covariances. Also inference may be sensitive to the chosen qj, k, or
the threshold to discard unoccupied components (Section 4.6). In terms of interpreta-
tion, cluster occupancy probabilities given by overfitted mixtures are different from model
probabilities p(Mk | y). In Section 3 we show that Bayes factors, and hence p(Mk | y),
are given by ratios of posterior to prior empty cluster probabilities. This result motivates
a novel empty cluster probability (ECP) estimator to obtain p(Mk | y) from standard
MCMC output that is computationally convenient and applicable to very general mix-
tures, both under local and non-local priors. We remark that estimating p(Mk | y)
requires one to consider multiple k, relative to overfitted mixtures where one sets a single
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large k, however this is an easily parallelized problem. Building upon Johnson and Rossell
(2010, 2012), we formally define NLPs in the context of mixtures.

Definition 1. Let Mk be the k-component mixture in (1.1). A continuous prior density
p(ϑk | Mk) is a NLP iff

lim
ϑk→t

p(ϑk | Mk) = 0

for any t ∈ Θk such that p(y | t,Mk) = p(y | ϑk′ ,Mk′) for some ϑk′ ∈ Θk′, k
′ < k.

A local prior (LP) is any p(ϑk | Mk) not satisfying Definition 1. Intuitively for nested
Mk′ ⊂ Mk a NLP p(ϑk | Mk) penalizes any ϑk that would be consistent with Mk′ ,
in our setting any k-mixture with redundant components. For instance an NLP under
M2 must assign p(ϑ2 | M2) = 0 whenever p(y | ϑ2,M2) reduces to a one-component
mixture, e.g. θ1 = θ2 or η1 ∈ {0, 1}. That is one must penalize situations where two
components have the same parameters (as in a repulsive mixture) and also when there
are zero-weight components. This intuition is made precise in Section 2 for the wide class
of generically identifiable mixtures.

Beyond their philosophical appeal in separating probabilistically the models under
consideration, Johnson and Rossell (2010) showed that for asymptotically Normal models
NLPs penalize spurious parameters at a faster rate than (1.3). Johnson and Rossell
(2012) found that NLPs are necessary and sufficient to achieve posterior consistency

P (Mk∗ | y)
P−→ 1 in certain high-dimensional linear regression with o(n) predictors,

whereas Shin et al. (2018) showed a similar result with o(en) predictors. These authors
also observed model selection gains relative to popular penalized likelihood methods.

Here we investigate theoretical, computational and practical issues to enable the use
of NLPs in mixtures. In Section 2 we formulate a general NLP class, show how it leads
to stronger parsimony than LPs, and propose a particular choice leading to tractable
expressions. Importantly we consider a natural elicitation for prior parameters, a key
issue that defines what separation between components is deemed practically relevant.
Section 3 outlines computational schemes for model selection and parameter estimation,
including a novel ECP estimator of interest both for local and non-local priors. In Section
4 we illustrate the performance of the BIC, AIC, sBIC, overfitted mixtures, repulsive
overfitted mixtures, LPs and NLPs in synthetic and real examples. Conclusions are
presented in Section 5. All proofs and further results are in the Supplementary material.
Our methodology is implemented in R packages mombf and NLPmix available at CRAN
and www.warwick.ac.uk/go/msteel/steel_homepage/software.

2. Prior formulation and parsimony properties

A NLP under Mk assigns vanishing density to any ϑk such that (1.1) is equivalent to
a mixture with k′ < k components. A necessary condition is to avoid vanishing (ηj = 0)
and overlapping components (θi = θj) but for this to also be a sufficient condition we
need generic identifiability. Definition 2 is adapted from Leroux (1992).

Definition 2. Let p(y | ϑk,Mk) =
∑k

j=1 ηjp(y | θj) and p(y | ϑ̃k̃,Mk̃) =
∑k̃

j=1 η̃jp(y |
θ̃j) be two mixtures as in (1.1). Assume that ηj > 0, η̃j > 0 for all j and that θj 6= θj′,

www.warwick.ac.uk/go/msteel/steel_homepage/software
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θ̃j 6= θ̃j′ for all j 6= j′. The class p(y | θ) defines a generically identifiable mixture if

p(y | ϑk,Mk) = p(y | ϑ̃k̃,Mk̃) for almost every y implies that k = k̃ and ϑk = ϑ̃Ψ(k̃) for

some permutation Ψ(k̃) of the component labels in Mk̃.

That is, assuming that all components have non-zero weights and distinct parameters
the mixture is uniquely identified by its parameters up to label permutations. Teicher
(1963) showed that mixtures of univariate Normal, Exponential and Gamma distributions
are generically identifiable. Yakowitz and Spragins (1968) extended the result to several
multivariate distributions, including the Normal case. See also Grün and Leisch (2008)
for a study of generic identifiability for mixtures of GLMs and Allman et al. (2009) for
multivariate Bernoulli mixtures, finite and infinite product Binomial mixtures, hidden
Markov Models and random graph mixture models. In particular Binomial mixtures are
generically identifiable if and only if the number of Binomial trials L ≥ 2k−1 (Grün and
Leisch (2008)), and product Binomial mixtures with p ≥ 3 are generically identifiable
when L is above a small threshold (Allman et al. (2009), Theorem 4), e.g. when the
number of trials Lif = L for all (i, f) then it suffices that 3Lp/3 > 2(k + 1). Throughout
we assume p(y | ϑk,Mk) to be generically identifiable. Then p(ϑk | Mk) defines a NLP
if and only if lim p(ϑk | Mk) = 0 as either (i) ηj → 0 for any j = 1, ..., k or (ii) θi → θj
for any i 6= j. Let dϑ(ϑk) be a continuous penalty function converging to 0 under (i) or
(ii), then a general NLP class is defined by

(2.1) p(ϑk | Mk) = dϑ(ϑk)p
L(ϑk | Mk),

where pL(ϑk | Mk) is an arbitrary LP with the restriction that p(ϑk | Mk) is proper.
We consider pL(ϑk | Mk) = pL(θ | Mk)p

L(η | Mk) and dϑ(ϑk) = dθ(θ)dη(η), where

(2.2) dθ(θ) =
1

Ck

( ∏
1≤i<j≤k

d(θi,θj)

)
,

is a repulsive force between components akin to Petralia et al. (2012), Ck =
∫
pL(θ |

Mk)
∏

1≤i<j≤k d(θi,θj)dθ a prior normalization constant and dη(η) ∝
∏k

i=1 η
r
j with r > 0.

Evaluating Ck may require numerical approximations (e.g. Monte Carlo) but below we
give closed expressions for specific dθ(θ) and pL(θ | Mk). Regarding the weights, we set
the symmetric Dirichlet p(η | Mk) = Dir(η; q) ∝ dη(η)Dir(η; q − r), where importantly
one must set q > 1 to satisfy (i) above and r ∈ [q − 1, q). Summarising, we set

p(ϑk | Mk) = dθ(θ)pL(θ | Mk)Dir(η; q),(2.3)

where q > 1 and dθ(θ) is as in (2.2).
The specific form of d(θi,θj) depends on the model under consideration. For instance

consider θi = (µi,Σi) for a location parameter µi and scale matrix Σi. Then one may
adapt earlier proposals for variable selection and define MOM penalties (Johnson and
Rossell, 2010) d(θi,θj) = (µi − µj)

′
A−1(µi − µj)/g where A is a symmetric positive-

definite matrix and g is a prior dispersion parameter, or alternatively eMOM penalties
(Rossell et al., 2013) d(θi,θj) = exp{−g/(µi − µj)

′
A−1(µi − µj)}, also adopted by

Petralia et al. (2012) for repulsive mixtures. Note that Ck is guaranteed to be finite for



ON CHOOSING MIXTURE COMPONENTS VIA NON-LOCAL PRIORS 7

eMOM penalties as d(θi,θj) ≤ 1. The main difference between MOM and eMOM is that
the latter induce a stronger model separation that give faster sparsity rates. However,
empirical results in Johnson and Rossell (2010, 2012) and Rossell and Telesca (2017)
suggest that by setting g adequately both MOM and eMOM are often equally satisfactory.
We now offer theoretical results for both penalties, but in our implementations we focus
on the MOM for the practical reasons that Ck has closed form and leads to simple prior
elicitation. Both MOM and eMOM remain applicable when θi is a vector of probabilities,
as we illustrate for Binomial and product Binomial mixtures. More generally d(θi,θj)
can be based on any distance or divergence between probability measures, see Section
2.2. We defer discussion of prior elicitation to Section 2.3.

2.1. Parsimony enforcement. We show that NLPs induce extra parsimony via the
penalty term dϑ(ϑk), which specifically affects overfitted mixtures. We first lay out
technical conditions for the result to hold. Recall that k∗ is the true number of compo-
nents and ϑ∗k∗ the true parameter value. Let p∗k(y) be the density minimising Kullback-
Leibler (KL) divergence between the data-generating p(y | ϑ∗k∗ ,Mk∗) and the class
{p(y | ϑk,Mk),ϑk ∈ Θk}. When k ≤ k∗ for generically identifiable mixtures p∗k(y)
is defined by a unique parameter ϑ∗k ∈ Θk (up to label permutations). When k > k∗

there are multiple minimizers giving p∗k(y) = p(y | ϑ∗k∗ ,Mk∗). p
L(ϑk | Mk) denotes a LP

and p(ϑk | Mk) a NLP as in (2.1). PL(· | y,Mk) and EL(· | y,Mk) are the posterior
probability and expectation under pL(ϑk | y,Mk).

NLP parsimony conditions

B1 L1 consistency. For all fixed ε > 0 as n→∞

PL

(∫
|p(z | ϑk,Mk)− p∗k(z)| dz > ε | y,Mk

)
→ 0

in probability with respect to p(y | ϑ∗k∗ ,Mk∗).
B2 Continuity. p(y | ϑk,Mk) is a continuous function in ϑk.
B3 Penalty boundedness. There is a constant ck such that dϑ(ϑk) ≤ ck for all ϑk.

Alternatively, if p(ϑk | Mk) involves the MOM-IW prior (2.4) and k > k∗ then there
exist finite ε, U > 0 such that

lim
n→∞

P

(
EL

[
exp

{
1

2g

k∑
j=1

µ′jA
−1µj

ε

1 + ε

}
| y,Mk

]
< U

)
= 1.

Condition B1 amounts to posterior L1 consistency of p(y | ϑk,Mk) to the data-
generating truth when k ≥ k∗ and to the KL-optimal density when k < k∗. Note that
B1 is assumed under the underlying local pL and hence follows from standard theory.
Specifically, B1 is a milder version of Condition A1 in Rousseau and Mengersen (2011)
where rather than fixed ε one has ε =

√
log n/

√
n. See the discussion therein and Ghosal

and der Vaart (2001) for results on finite Normal mixtures, Rousseau (2007) for Beta
mixtures and Ghosal and Van Der Vaart (2007) for infinite Normal mixtures. For strictly
positive pL(ϑk | Mk) > 0 Condition B1 is intimately connected to MLE consistency
(Ghosal, 2002), proven for fairly general mixtures by Redner (1981) for k ≤ k∗ and by
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Leroux (1992) for k > k∗. The L1 consistency results above focus on the case where
the data-generating truth lies in the assumed family, but see Ramamoorthi et al. (2015)
(Theorem 2) for posterior concentration results under model misspecification for inde-
pendent and identically distributed data. Condition B2 holds when the kernel p(y | θ) is
continuous in θ, as in the vast majority of common models. B3 is trivially satisfied when
NLPs are defined using bounded penalties (e.g. eMOM or MOM-Beta priors in Section
2.2). For the MOM-IW (Section 2.2) we require the technical condition that the posterior
exponential moment in B3 is bounded in probability when k > k∗. To gain intuition, B3
requires that under the posterior distribution pL(µ | Mk,y) none of the elements in µ
diverges to infinity, and in particular is satisfied if µ is restricted to a compact support.

Theorem 1 below states that dϑ(ϑk) imposes a complexity penalty concentrating on 0
when k > k∗ and on a constant when k ≤ k∗. Part (i) applies to any model, Part (ii)
only requires B1-B3 and Part (iii) holds under the mild conditions A1-A4 in Rousseau
and Mengersen (2011) (Supplementary Section S1), hence the result applies to an ample
class of mixtures. The proof of Part(iii) only requires posterior contraction of the sum
of redundant weights at a n−1/2 rate, and can be trivially adjusted when this rate is
slower. Rousseau and Mengersen (2011) showed that the n−1/2 rate is achieved under
Conditions A1-A3 and a strong identifiability condition A4. Interestingly, Ho and Nguyen
(2016) showed that strong identifiability can be expressed in terms of partial differential
equations involving the kernel p(y | θ) and its first and second derivatives. In particular
location-scale Gaussian and Gamma mixtures are not strongly identifiable for certain
problematic ϑk. When the data-generating ϑ∗k is one of those problematic values then

the MLE of the component parameters θ̂ is slower than n−1/2, however remarkably the
MLE of the mixing weights η̂ does still contract at the n−1/2 rate required by Part(iii).

Theorem 1. Let p(y | ϑk,Mk) be a generically identifiable mixture, p(y | Mk) and
pL(y | Mk) the integrated likelihoods under p(ϑk | Mk) and pL(ϑk | Mk). Then

(i) p(y | Mk) = pL(y | Mk)E
L (dϑ(ϑk) | y) , where

EL (dϑ(ϑk | y)) =

∫
dϑ(ϑk)p

L(ϑk | y,Mk)dϑk.

(ii) If B1-B2 are satisfied then as n→∞

PL (|dϑ(ϑk)− d∗k| > ε | y,Mk)→ 0

where d∗k = 0 for k > k∗ and d∗k = dϑ(ϑ∗k) for k ≤ k∗.

If B3 also holds then EL (dϑ(ϑk) | y)
P−→ d∗k.

(iii) Let k > k∗ and p(ϑk | Mk) ∝ dθ(θ)pL(θ | Mk)Dir(η; q), where q > 1. If B3 and
A1-A4 in Rousseau and Mengersen (2011) hold for pL(θ | Mk) then for all ε > 0
and all δ ∈ (0, dim(Θ)/2) there exists a finite c̃k > 0 such that

PL
(
dϑ(ϑk) > c̃kn

− k−k∗
2

(q−δ)+ε | y,Mk

)
→ 0

in probability as n→∞.
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Part (i) extends Theorem 1 in Rossell and Telesca (2017) to mixtures and shows that
p(y | Mk) differs from pL(y | Mk) by a term EL (dϑ(ϑk) | y) that intuitively should
converge to 0 for overfitted models. Part (i) also eases computation as EL(dϑ(ϑk) | y) can
be estimated from standard MCMC output from pL(ϑk | y,Mk), as we exploit in Section
3. Part (ii) confirms that the posterior of dϑ(ϑk) under pL(ϑk | y,Mk) concentrates
around 0 for overfitted models and a finite constant otherwise, and that its expectation
also converges. Part (iii) states that for overfitted models this concentration rate is
essentially n−(k−k∗)q/2, leading to an accelerated sparsity-inducing Bayes factor Bk,k∗(y) =
EL(Op(n

−(k−k∗)q/2))BL
k,k∗(y). Recall that the LP-based BL

k,k∗(y) = Op(n
−(λ−pk∗/2)) for

some λ ∈ [pk∗/2, pk/2] under the conditions in Watanabe (2013). For instance, one might
set q such that (k − k∗)q/2 = λ− pk∗/2 so that Bk,k∗(y) converges to 0 at twice the rate
for BL

k,k∗(y). As λ is unknown in general one could conservatively take its upper bound
λ = pk/2, then q = (pk − pk∗)/(k − k∗) is the number of parameters per component. See
Section 2.3 for further discussion on prior elicitation.

2.2. Choice of penalty function. Although our theory holds for fairly general d(θi,θj)
in (2.2), we now propose choices that simplify interpretation and obtaining Ck. Consider
first the case where θi = (µi,Σi), µi is a location parameter and Σi a positive-definite
matrix, as in Normal or T mixtures. Then in (2.3) we may set the MOM-Inverse Wishart
(MOM-IW) prior p(θ | Mk) =

dθ(θ)pL(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

k∏
j=1

N (µj | 0, gAΣ) IW(Σj | ν, S),

(2.4)

where A−1
Σ is a symmetric positive-definite matrix and (g, ν, S) are fixed prior hyperpa-

rameters. A trivial choice is A−1
Σ = I but it has the inconvenience of not being invariant

to changes in scale of y. Instead we use A−1
Σ = 1

k

∑k
j=1 Σ−1

j , which is symmetric, positive-
definite and is related to the L2 distance between Normal distributions. In the particular
case where Σ1 = . . . = Σk = Σ, a parsimonious model sometimes considered to borrow
information across components, clearly AΣ = Σ. In our model-fitting algorithms and
examples we consider both the equal and unequal covariance cases. We remark that
for unequal covariances the NLP in (2.4) penalizes µi = µj even when Σi 6= Σj. We
do not view this as problematic, given that in most applications the interest is to iden-
tify components with well-separated locations. However, if one is interested in detecting
components that differ only in Σi 6= Σj then d(θi,θj) should be adjusted, e.g. d(θi,θj)
could be any measure of distance or divergence between probability distributions. As
illustration, consider the squared Hellinger distance between Normal distributions

dθ(θ) =
1

Ck

∏
1≤i<j≤k

1− det(Σi)
1/4 det(Σj)

1/4

det ((Σi + Σj)/2)1/2
exp

{
−1

8

(µi − µj)
′
2(Σi + Σj)

−1(µi − µj)
g

,

}
.

(2.5)

For this choice dθ(θ) = 0 if and only if µi = µj and Σi = Σj.
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We now consider binary data, specifically for product Binomial mixtures (Binomial
mixtures are the particular case where p = 1). We define the MOM-Beta prior

p(θ | Mk) =
1

Ck

∏
1≤i<j≤k

(θi − θj)′(θi − θj)
k∏
j=1

p∏
f=1

Beta(θjf ; ag, (1− a)g),(2.6)

where θjf > 0 is the success probability for outcome f in component j and a > 0,
g > 0 are known prior parameters. In our parameterization a > 0 is the prior mean
and g > 0 the prior sample size for the underlying Beta prior. In (2.6) g determines the
prior separation in the binomial success probabilities across components and the prior
informativeness. As discussed in Section 2.3 large g leads to informative priors with little
separation across components, and there is a range of g values that can be interpreted as
being minimally informative in a fairly robust manner across k. See also Consonni et al.
(2013) for strategies to set MOM prior parameters when comparing Binomial probabilities
and Collazo and Smith (2016) for their use in Chain Event Graphs.

An issue in (2.4) and (2.6) is the computation of the normalising constant Ck, a non-
trivial expectation of a product of quadratic forms. Lemma 1 (supplementary material)
gives a recursive formula for Ck for any prior with the generic form

p(ζ | Mk) =
1

Ck

∏
1≤i<j≤k

(ζi − ζj)′(ζi − ζj)
k∏
j=1

p∏
f=1

pL(ζjf )(2.7)

where ζ = (ζ1, . . . , ζk) ∈ Rpk. Note that (2.4) is the particular case where ζi =
(gAΣ)−1/2µi and that (2.6) corresponds to ζi = θi. An interesting alternative to (2.6) sug-
gested by a referee is to consider a MOM-Normal prior on the Binomial logit-probabilities,
which can be achieved by setting ζjf = log(θjf/(1 − θjf )). We focus on the MOM-Beta
for its simplicity and easy prior elicitation (Section 2.3), but we note that a logit pa-
rameterization would be particularly natural in settings where one wishes to regress θjf
on covariates. When pL is a Normal prior Lemma 1 can be simplified, see Corollary 1.
Further simplifications are possible when p = 1 or k = 2, these are given for Normal and
product Binomial mixtures in Corollaries 2 and 3 respectively.

Corollary 1. MOM-IW, general (p, k). The normalization constant in (2.4) is

Ck =
1

s!

1∑
υ(1,2)=0

...
1∑

υ(k−1,k)=0

(−1)

s∑
i,j
υ(i,j)
Qs(Bυ),(2.8)

where v(i,j) ∈ {0, 1}, s =
(
k
2

)
, Qs(Bυ) = s!2sds(Bυ), ds(Bυ) = 1

2s

∑s
i=1 tr(B

i
υ)ds−i(Bυ),

d0(Bυ) = 1 and Bυ is a pk × pk matrix with element (l,m) given by
bll =

1

2
(k − 1)−

∑
i<j υ(i,j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1

2
+
∑

i<j υ(i,j), (l,m) = (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)

where i 6= j, i = 1, . . . , k, j = 1, . . . , k and blm = 0 otherwise.

Corollary 2. MOM-IW, univariate or two-component mixtures. Let Ck be as in (2.4)
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(i) If p = 1, then Ck =
∏k

j=1 Γ(j + 1).

(ii) If k = 2, then Ck = 2p.

Corollary 3. MOM-Beta, univariate or two-component mixtures. Let Ck be as in (2.6)

(i) If p = 1, then

Ck =

(
Γ(g)

Γ(ag)Γ((1− a)g)

)k k∏
j=1

Γ(ag + k − j)Γ((1− a)g + k − j)Γ(j + 1)

Γ(g + 2k − j − 1)
.

(ii) If k = 2, then Ck = 2pa(1− a)/(g + 1).

Despite having closed-form Ck its evaluation for general (p, k) can be cumbersome,
e.g. Sk in Lemma 1 is the set of partitions of k(k − 1)/2 and has size exponential in
k (Andrews, 1998). The sum in (2.8) is simpler but contains k(k − 1)/2 terms, still
prohibitive for large k. A practical option for large k is to evaluate Ck via Monte Carlo
as the prior mean of dk(θ) under pL and tabulate it upfront, prior to data analysis. This
is particularly convenient in Corollary 1 where Ck does not depend on the prior parameter
g. To facilitate implementation Tables S2-S3 provide Ck for (2.4) and (2.6) (respectively)
and various (p, k). Ck is also implemented in the R package mombf, function bfnormmix.

2.3. Prior elicitation. A critical aspect in a NLP is its induced separation between
components, driven by g and q in (2.3). We propose defaults that can be used in the
absence of a priori knowledge, whenever the latter is available we naturally recommend
to include it in the prior. To facilitate use these defaults are included in the R package
mombf.

We start by discussing g, first for Normal and T mixtures and subsequently for Binomial
and product Binomial mixtures. The main idea for Normal and T mixtures is that
we wish to find clearly-separated components, so we can interpret the data-generating
process in terms of distinct sub-populations. We thus set g such that there is small prior
probability that any two components are poorly-separated, i.e. give rise to a unimodal
density. In Normal mixtures the number of modes depends on non-trivial parameter
combinations (Ray and Lindsay, 2005), but when η1 = η2 = 0.5 and Σ1 = Σ2 the
mixture is bimodal if and only if κ = (µ1 − µ2)

′
Σ−1(µ1 − µ2) > 4. Thus we set g

such that P (κ < 4 | M2) = 0.05. This is trivial, the prior on κ implied by (2.4) is
p(κ | M2) = Gamma(κ; p/2 + 1, 1/(4g)). For instance in a univariate Normal mixture
g = 5.68, Figure 1 (left) portrays the associated prior. For comparison the right panel
shows a Normal prior with gL = 11.56, which also assigns PL(κ < 4 | M2) = 0.05.
To assess sensitivity we considered g such that P (κ < 4 | M2) = 0.1, finding that
P (κ < 4 | M2) = 0.05 is slightly preferable for balancing parsimony vs. sensitivity
(Supplementary Section S12).

For T mixtures Došlá (2009) showed that a univariate mixture with two components
and equal degrees of freedom υ is bimodal if κ > 4υ/(υ+2). For multivariate T mixtures,
again with η1 = η2 = 0.5 and Σ1 = Σ2, it is easy to develop the arguments in Ray and
Lindsay (2005) (Theorem 1 and Remark 4) to show that the mixture is bimodal if and
only if κ > 4υ/(υ + p + 1). This matches the result from Došlá (2009) for p = 1 and
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Figure 1. Default MOM-IW p(µ1, µ2 | σ2 = 1, g = 5.68,M2) (left) and
Normal-IW pL(µ1, µ2 | σ2 = 1, gL = 11.56,M2) (right)

for Normal mixtures in Ray and Lindsay (2005) as υ → ∞. Summarising, we set g
such that P (κ < 4υ/(υ + p + 1) | υ,Mk) = 0.05, where we recall that p(κ | υ,M2) =
Gamma(κ; p/2 + 1, 1/(4g)).

Consider now the MOM-Beta prior (2.6). In contrast to continuous mixtures here one
cannot use multi-modality to set the prior parameters (a, g). Instead we set (a, g) such
that the amount of prior information (measured by the variance) is comparable to that
in

pL(θ | Mk) =
k∏
j=1

p∏
f=1

Beta(θjf ; gLaL, gL(1− aL)),(2.9)

where aL = 0.5 and gL = 2 are typically viewed as minimally informative. Specifically
we recommend a = 0.5 and g as listed in Table S1 for p ∈ [1, 20], and g = 2 for p > 20.
We briefly outline the reasoning, further details are in Supplementary Section S3. Simple
algebra shows that the variance under pL is

VarpL(θjf − θj′f | Mk) = 2

[
aL(gLaL + 1)

gL + 1
− a2

L

]
,

and for (aL, gL) = (0.5, 2) this variance is 1/6. We seek g such that the variance under
the MOM-Beta prior Varp(θjf − θj′f | Mk) = 1/6. Although such g depends on (k, p)
the dependence on k is mild (in fact for large k the variance grows less sensitive to g,
Figure S2) and one can focus on the k = 2 case. See Supplementary Section S3 for the
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variance under general (a, g) and k = 2. Interestingly as p grows one may simply set
(a, g) = (0.5, 2), since then

Varp(θjf − θj′f | M2) =
1

p

(
2

5
+
p− 1

6

)
,

which converges to 1/6 as p→∞, thus for large p one may simply set g = 2. Figure S1
displays the default MOM-Beta and Beta(1,1) priors for k = 2. See also Section S6 for
an illustration of the sensitivity of results to various g in an application.

Regarding q, as discussed earlier q > 1 is required for (2.3) to define a NLP. One option

is to set q = 3 so that p(η | Mk) ∝
∏k

j=1 η
2
j induces a quadratic penalty comparable to

the MOM prior on µ given in (2.4). Alternatively from the discussion after Proposition
1 setting q = (pk − pk∗)/(k − k∗), the number of parameters per component, seeks to
(at least) double the Bayes factor sparsity rate of the underlying LP. For instance, for
Normal mixtures with common covariances this leads to q = p + 1, and under unequal
covariances to q = p+ 0.5p(p+ 1) + 1. These are the values we used in our examples with
p = 1 or p = 2 (Section 4), but we remark that for larger p such q may lead to an overly
informative prior on η. In our experience q ∈ [2, 4] (Supplementary Section S12) gives
fairly robust results and satisfactory sparsity, thus larger values do not seem warranted.

The prior distribution on the remaining parameters, which may be thought of as nui-
sance parameters, will typically reduce to a standard form for which defaults are available.
For example, for location-scale mixtures we set p(Σ1, . . . ,Σk | Mk) =

∏k
j=1 IW(Σj; ν, S).

We follow the recommendation in Hathaway (1985) that eigenvalues of ΣiΣ
−1
j for any

i 6= j should be bounded away from 0 to prevent the posterior from becoming unbounded,
which is achieved if ν ≥ p + 4 (Frühwirth-Schnatter, 2006, Ch. 6). We assume that the
data are standardized to have mean 0 and variance 1 and set a default S = (p + 4)−1I
and ν = p+ 4, so that E(Σ−1

j ) = I. For T mixtures, we also consider a prior the degrees
of freedom υ. We refer to Rossell and Steel (2018) for a review of popular options.

3. Computational algorithms

Computation for mixtures is challenging, and potentially more so when embarking upon
non-standard formulations such as ours. Fortunately, Theorem 1(i) allows estimating
the integrated likelihood p(y | Mk) for arbitrary mixtures through direct extensions
of existing algorithms. Intuitively, one can use any algorithm to estimate a local prior
integrated likelihood p̃(y | Mk) and the mean of dϑ(ϑk) under the local posterior. In
Section 3.1 we outline the main idea. Section 3.2 gives two algorithms to estimate p̃(y |
Mk) from MCMC output. The first one was proposed by Marin and Robert (2008) and,
while we found it to be reasonably accurate, it is limited to conjugate models and requires
an MCMC post-processing step that can have non-negligible cost. The second algorithm
is novel (to our knowledge), applicable to non-conjugate models and only requires cluster
probabilities readily available as an MCMC by-product. This algorithm is based on a
novel result connecting Bayes factors with the ratio of posterior to prior empty cluster
probabilities, i.e. a type of Savage-Dickey ratio, hence we named it the empty cluster
probability (ECP) estimator. We found that in some situations the ECP estimator can
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increase precision by an order of magnitude relative to that in Marin and Robert (2008)
(Supplementary Section S7, Figures S4-S5) using the same number of MCMC iterations.
Further, as explained below the ECP estimator can have a substantially smaller per-
iteration cost. We remark that the result has interest beyond purely computational
purposes, e.g. to set thresholds on empty cluster probabilities in overfitted mixtures.
Also note that computations are easily done in parallel, e.g. to consider multiple k or
process MCMC output in batches. See Section 4.1 for further discussion and empirical
results on the run time required by our algorithms. Although our main interest is to infer
k, in Section 3.3 we discuss posterior mode parameter estimates via an Expectation-
Maximimation (EM) algorithm (Dempster et al. (1977)). Relative to local priors the EM
algorithm only requires an extra gradient evaluation, which typically has negligible cost.

3.1. Approximation of p(y | Mk). Theorem 1(i) suggests the estimator

p̂(y | Mk) = p̃(y | Mk)
1

T

T∑
t=1

ω(ϑ
(t)
k ),(3.1)

where ω(ϑk) = p(ϑk | Mk)/p̃(ϑk | Mk) and p̃(ϑk | Mk) is an arbitrary LP conveniently

chosen so that MCMC algorithms to sample ϑ
(t)
k ∼ p̃(ϑk | y,Mk) ∝ p(y | ϑk,Mk)p̃(ϑk |

Mk) are readily available. See Supplementary Section S9 for standard Gibbs algorithms
for Normal and product Binomial mixtures. For the MOM-IW in (2.4) we used

p̃(ϑk | Mk) = Dir(η; q)
k∏
j=1

N (µj | 0, gΣj) IW(Σj | ν, S),

with q > 1, which gives

ω(ϑk) =
1

Ck

∏
1≤i<j≤k

(µi − µj)
′
A−1

Σ (µi − µj)
g

k∏
j=1

N(µj | 0, gAΣ)

N(µj | 0, gΣj)
.

For the MOM-Beta in (2.6) we used p̃(ϑk | Mk) = Dir(η; q)
∏k

j=1

∏p
f=1 Beta(θjf ; ag, (1−

a)g), hence

ω(ϑk) =
1

Ck

∏
1≤i<j≤k

(θi − θj)′(θi − θj).

Our strategy is admittedly simple but has convenient advantages. After obtaining
p̃(y | Mk) one need only compute a posterior average. Furthermore, only posterior
sampling under p̃(ϑk | y,Mk) is required. As a caveat the posterior variance of ω(ϑk)
has an effect on p̂(y | Mk), specifically when the local and non-local posteriors differ
substantially this variance can potentially be large. However from Theorem 1 these
posteriors differ mainly in overfitted mixtures (k > k∗), and only the numerator but not
the denominator in ω(ϑk) may vanish (provided p̃ is positive over its domain, as is the
case), hence in practice we found (3.1) to be quite stable (Supplementary Section S8).
We remark that ω(ϑk) is not a reweighting to convert samples from p̃(ϑk | y,Mk) into
samples from p(ϑk | y,Mk), but a direct approximation to the posterior mean of d(ϑk)
under p̃(ϑ | y,Mk). However, if interested in posterior samples from p(ϑk | y,Mk) one
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could clearly use such a reweighting. Alternatively one can devise a sampler directly
for the non-local p(ϑk | y,Mk), e.g. using slice sampling (Petralia et al., 2012), latent
truncations (Rossell and Telesca, 2017) or collapsed Gibbs (Xie and Xu, 2019), but we
do not pursue this as our main interest is model selection.

3.2. Approximation of p̃(y | Mk). There are a number of proposals to estimate
p̃(y | Mk) in the literature, e.g. trans-dimensional MCMC (Richardson and Green,
1997), Bridge sampling (Frühwirth-Schnatter, 2004), dual importance sampling (Lee and
Robert, 2016) and collapsed Gibbs sampling (Xie and Xu, 2019). Each of these has its
own set of advantages and limitations, but ultimately obtaining p̃(y | Mk) in a truly
scalable fashion remains an open problem.

We focus on two algorithms that are simple to implement and we found to attain
a good cost versus precision tradeoff. We denote by zi ∈ {1, . . . , k} the latent cluster
indicators, i.e. zi = j if observation i is assigned to component j, z = (z1, . . . , zn) and
nj =

∑n
i=1 I(zi = j) is the number of individuals in cluster j. The first algorithm is a

refinement proposed by Marin and Robert (2008) of an algorithm by Chib (1995). The
strategy uses the identity

(3.2) p̃(y | Mk) =
p(y | ϑ̂k,Mk)p̃(ϑ̂k | Mk)

p̃(ϑ̂k | y,Mk)
=

p(y | ϑ̂k,Mk)p̃(ϑ̂k | Mk)∑
ψ ∈ N(k) p̃(ψ(ϑ̂k) | y,Mk)/(k!)

,

where ϑ̂k is the posterior mode and N(k) the set of k! possible permutations of {1, ..., k}.
The right-hand side holds for exchangeable p̃(ϑk | Mk), as then the posterior is invariant
to label-switching. The numerator in (3.2) simply requires evaluating the likelihood and

prior at ϑ̂k. Marin and Robert (2008) propose estimating the denominator by

(3.3)
1

Tk!

∑
ψ ∈ N(k)

T∑
t=1

p̃(ψ(ϑ̂k) | y, z(t),Mk),

where z(t) = (z
(t)
1 , . . . , z

(t)
n ) are samples from p̃(z,ϑk | y,Mk). The estimator (3.2)-(3.3)

can be applied as long as the posterior density p̃(ψ(ϑ̂k) | y, z(t),Mk) has closed-form,
e.g. in conjugate models. Specifically for Normal mixtures

p̃(ψ(ϑ̂k) | y, z(t),Mk) =
k∏
j=1

N

(
ψ(µ̂j);

gn
(t)
j ȳ

(t)
j

1 + gn
(t)
j

,
g

1 + gn
(t)
j

Σ
(t)
j

)
IW
(
ψ(Σ̂j); ν + n

(t)
j , S

(t)
j

)
×Dir(ψ(η̂); q + n

(t)
1 , ..., q + n

(t)
k ),

and for product Binomial mixtures

p̃(ψ(ϑ̂k) | y, z(t),Mk) =
k∏
j=1

p∏
f=1

Beta

ψ(θ̂jf ); ag +
∑
z
(t)
i =j

yif , (1− a)g +
∑
z
(t)
i =j

(Lif − yif )


×Dir(ψ(η̂); q + n

(t)
1 , ..., q + n

(t)
k ).
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We now outline our ECP algorithm, which relies on Proposition 1 below expressing
Bayes factors as a ratio of posterior to prior empty cluster probabilities. This represen-
tation can be viewed as a Savage-Dickey probability ratio, a natural extension of the
familiar density ratio. The result applies to any mixture and prior satisfying the minimal
conditions C1-C4 below. In the remainder of this section p(ϑk | Mk) denotes an arbitrary
prior for which one wants to obtain posterior model probabilities, e.g. in our examples
this is the local prior p̃(ϑk | Mk) and then non-local posterior probabilities are obtained
from (3.1).

C1 Conditional independence. p(y | z,ϑk,Mk) =
∏k

j=1

∏
zi=j

p(yi | θj,Mk)

C2 Invariance to label permutations. p(y | ϑk) = p(y | ψ(ϑk)) and p(z | Mk) = p(%(z) |
Mk) for any permutation of component parameters ψ and component indexes %.

C3 Coherence of prior on cluster allocations. p(z | nk = 0,Mk) = p(z | Mk−1)
C4 Coherence of prior on parameters. For any θ1, . . . ,θk−1 and any z such that nk = 0,

it holds that

p(θ1, . . . ,θk−1 | z,Mk−1) =

∫
p(θ1, . . . ,θk, | z,Mk)dθk

Conditions C1-C2 hold for the vast majority of mixtures, including mixtures of re-
gressions and most hidden Markov models. Conditions C3-C4 hold for most common
priors. For instance C3 holds when p(η | Mk) and p(η | Mk−1) are both symmet-
ric Dir(q) distributions and C4 is satisfied by priors that factor across components, e.g.

p(ϑk | Mk) = Dir(η; q)
∏k

j=1 p(θj | Mk).

Proposition 1. Suppose that C1-C4 hold. Then the Bayes factor for Mk−1 versus Mk

is

Bk−1,k(y) =

∑k
j=1 P (nj = 0 | y,Mk)/k

P (nj = 0 | Mk)
.

Once Bk−1,k(y) for k ∈ {2, . . . , K} are available then P (Mk | y) are obtained as usual.
Proposition 1 is easy to implement, e.g. if p(η |Mj) = Dir(η; q) for all j then

P (nj = 0 | Mk) =
Γ(kq)Γ(n+ (k − 1)q)

Γ((k − 1)q)Γ(n+ kq)
.

Further, given draws ϑ
(t)
k ∼ p(ϑk | y,Mk) one can obtain Rao-Blackwellised estimates

P̂ (nj = 0 | y,Mk) =
1

T

T∑
t=1

P (nj = 0 | y,ϑ(t)
k ,Mk) =

1

T

T∑
t=1

n∏
i=1

P (zi 6= j | y,ϑ(t)
k ,Mk).

(3.4)

That is, the Bayes factor under local priors B̃k−1,k(y) is obtained dividing (3.4) by P (nj =

0 | Mk). To estimate Bayes factors under NLPs B̂k−1,k(y) we use the estimator in 3.1

B̂k−1,k(y) = B̃k−1,k(y)

∑T
t=1 ω(ϑ

(t)
k−1)∑T

t=1 ω(ϑ
(t)
k )

,
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Note that ECP only requires cluster probabilities, hence it remains valid for non-conjugate
models.

Proposition 1 is of independent interest to help discard unoccupied clusters in overfitted
mixtures. It suggests that the threshold on posterior empty cluster probabilities should
depend on the corresponding prior empty cluster probabilities. The latter are a function
of n, k and q, hence using fixed thresholds may be suboptimal. Note also that Proposition
1 can be used to compare structurally different models. For instance let Bk1 be the Bayes
factor between a k-component unequal-covariance Normal mixture vs. a one-component
Normal, and Bc

k1 that for a k-component common-covariance Normal mixture vs. a one-
component Normal. Then Bk1/B

c
k1 is the Bayes factor comparing k components with

unequal vs. equal covariances. Similarly one could combine the Bayes factor between a
one-component Normal vs. a one-component T (which is easy to compute) with Propo-
sition 1 to obtain Bayes factors between any k-component Normal vs. T mixture. That
is, the ECP estimator is connected to empty cluster probabilities but really is a tool to
obtain P (Mk | y) and hence remains applicable in more general settings.

3.3. Posterior modes. The EM algorithm provides a fast way to obtain posterior modes
ϑ̂k = arg maxϑk

p(ϑk | y,Mk) or cluster assigments ẑi = arg maxj∈{1,...,K} p(zi = j |
y, ϑ̂k,Mk). This optimization problem is conceptually related to maximizing a penalized
likelihood, e.g. setting fused LASSO penalties on the separation between means (Heinzl
and Tutz, 2014), although we remark that the latter shrink components closer to each
other rather than pushing them apart as is the case for non-local priors.

We briefly describe our algorithm, which is derived in Supplementary Sections S10 and
S11. At iteration t the E-step computes

z̄
(t)
ij = P (zi = j | yi,ϑ(t−1)

j ) = η
(t−1)
j p(yi | θ(t−1)

j )/
k∑
j=1

η
(t−1)
j p(yi | θ(t−1)

j )

and is trivial to implement. The M-step requires updating ϑ
(t)
k in a manner that increases

the expected complete log-posterior, which we denote by ξ(ϑk), but under our prior
p(ϑk | Mk) = dϑ(ϑk)p̃(ϑk | Mk) this cannot be done in closed-form. A key observation

is that if p̃(ϑk | Mk) leads to closed-form updates, the corresponding target ξ̃(ϑk) only
differs from ξ(ϑk) by a term dϑ(ϑk), thus one may approximate ξ(ϑk) via a first order
Taylor expansion of dϑ(ϑk). These approximate updates need not lead to an increase in
ξ(ϑk) (although they typically do since dϑ(ϑk) has a mild influence for moderately large
n), and whenever this happens we use gradient algorithm updates. Algorithms 1 and S4
detail the steps for Normal and product Binomial mixtures (extensions to other models
follow similar lines), for simplicity outlining the approximate updates (see Supplementary

Section S10 for the gradient algorithm). In our implementation we initialize ϑ
(0)
k to the

MLE and stop when the increase in ξ(ϑk) is below a tolerance ε∗ = 0.0001 or a maximum
number of iterations T = 10, 000 is reached. For ease of notation in Algorithm 1 we define
dij = (µi − µj)′A−1

Σ (µi − µj) evaluated at the current value of µ1, . . . ,µk,Σ1, . . . ,Σk.
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Algorithm 1: EM under MOM-IW-Dir priors.

Set t = 1. while ζ > ε∗ and t < T do
for t ≥ 1 and j = 1, ..., k do

E-step. Let z̄
(t)
ij =

η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

and n
(t)
j =

∑n
i=1 z̄

(t)
ij .

M-step. Let ȳ
(t)
j =

∑n
i=1 z̄

(t)
ij yi/n

(t)
j . Update

µ
(t)
j =

(Σ−1
j

)(t−1)
n

(t)
j +A−1

Σ(t−1)

1

g
+
∑
i 6=j

2

dij

−1

×

Σ−1(t−1)n
(t)
j ȳ

(t)
j +A−1

Σ(t−1)

∑
i 6=j

µ
(t−1)
j − (µ

(t−1)
i − µ(t−1)

j )

dij

 ,

Update (ν − p+ n
(t)
j )Σ

(t)
j =

S−1 +
µ

(t)
j (µ

(t)
j )′

kg
+

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )
′ − 1

k

∑
i 6=j

2(µ
(t)
j − µ

(t)
k )(µ

(t)
j − µ

(t)
k )
′

dij
.

Update η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
.

end

Compute ζ = |ξ(ϑ(t)
k )− ξ(ϑ(t−1)

k )| and set t = t+ 1.
end

4. Empirical Results

We compared our MOM-IW-Dir and MOM-Beta-Dir priors with default parameters
(Section 2.3) to their local counterparts, Normal-IW-Dir and Beta(1,1)-Dir respectively.
As described in Section 2.3 the Normal-IW-Dir prior parameter gL was set to match
the 95% percentile for the separation parameter κ. Throughout we use uniform model
priors P (Mj) = 1/K, j = 1 . . . , K. Unless otherwise stated we estimated the integrated
likelihoods using Algorithm S1 and S2 based on 5,000 MCMC draws after a 2,500 burn-
in. We also considered the BIC, AIC, sBIC, overfitted mixtures and repulsive overfitted
mixtures. We only found an sBIC implementation for Normal mixture with Σi 6= Σj.
For Normal mixtures we used the function GaussianMixtures and for Binomial mixtures
we used the function BinomialMixtures from the R package sBIC (Weihs and Plummer,
2016). In GaussianMixtures we used the default real canonical threshold value given by
λ ≤ 1

2
(jd+ j − 1 + (k− j)ϕ) with ϕ chosen in relation to a prior on mixture weights and

we denote this by sBIC. In BinomialMixtures we tried two sBIC versions, named sBIC
and sBIC05 corresponding to setting the real canonical threshold to λ ≤ 1

2
(k+ j− 1) and

λ ≤ 1
4
(j + 3k)− 1

2
respectively.
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In Sections 4.1-4.6 we use Normal mixtures. Section 4.1 presents a simulation study for
univariate and bivariate Normal mixtures. Section 4.2 explores model misspecification
by simulating data from T mixtures. In Sections 4.3-4.5 we analyse several datasets,
including a flow cytometry experiment and Fisher’s Iris data for which there is a known
ground truth. Section 4.6 offers a comparison to applying overfitted mixtures to these
datasets. Section 4.7 reproduces a Binomial mixture example used by Drton and Plummer
(2017) to illustrate the sBIC, and Section 4.8 analyses a US political blog dataset via
product Binomial mixtures. We used R package NLPmix for the EM algorithm and the
estimate p̂(y | Mk) from Marin and Robert (2008), and for our ECP estimator we used
bfnormmix from R package mombf. As illustration, the code for a simulation in Section 4.1
is provided in Supplementary Section S14 and that for Section 4.2 in a supplementary file.
See also Supplementary Section S15 for a simulation experiment for product Binomial
mixtures to illustrate the usage of diagnostics for multiple EM and MCMC runs.

4.1. Simulation study with Normal mixtures. We consider choosing amongst the
three competing models

M1 : N(yi;µ,Σ),

M2 : η1N(yi;µ1,Σ) + (1− η1)N(yi;µ2,Σ)

M3 : η1N(yi;µ1,Σ) + η2N(yi;µ2,Σ) + (1− η1 − η2)N(yi;µ3,Σ),

where independence is assumed across i = 1, . . . , n. We simulated 100 datasets under
each of the 8 data-generating truths with Normal components depicted in Figure S9
for univariate (Cases 1-4) and bivariate outcomes (Cases 5-8). Case 1 corresponds to
k∗ = 1 components, Cases 2-3 to k∗ = 2 moderately and strongly-separated components
respectively, and Case 4 to k∗ = 3 with two strongly overlapping components and a third
component with smaller weight. Cases 5-8 are analogous for the bivariate outcome.

Figure 2 shows the average posterior probability assigned to the data-generating model
P (Mk∗ | y) as a function of n under NLP and LP. To compare frequentist and Bayesian
methods Figure 3 reports the (frequentist) proportion of correct model selections, i.e.

the proportion of simulated datasets in which k̂ = k∗, where k̂ is the selected number of
components by any given method (for Bayesian methods k̂ = arg maxk p(Mk | y)).

Figures S10-S12 show the corresponding posterior expected model size E(k | y) and

average k̂. For E(k | y) we set q = p + 1 as the default prior specification of q and
we perform a sensitivity prior analysis (Subsection 2.3) with another q suggested in
Frühwirth-Schnatter (2006). Figure S13 plots P (Mk∗ | y) setting g so that P (κ <
4 | Mk) = 0.1 instead of 0.05. Overall a similar behavior is observed in the univariate
and bivariate cases. The BIC adequately favoured sparse solutions (Cases 1,3,5,7) but
showed an important lack of sensitivity to detect some truly present components (Cases
2,4,6,8). AIC was suboptimal in almost all scenarios. As seen in Figure 2, the Normal-
IW led to substantially less posterior concentration of P (Mk∗ | y) than our MOM-
IW in all cases except the non-sparse Cases 4 and 8, where results were practically
indistinguisable. As predicted by theory, the LP put too much posterior mass on overfitted
models. Interestingly, Cases 2 and 6 illustrate that additionally to enforcing parsimony
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Figure 2. Simulation study. P (Mk∗ | y) versus n for the MOM-IW (solid
line) and Normal-IW (dashed line).

MOM-IW-Dir Normal-IW-Dir
n k=1 k=2 k=3 k=1 k=2 k=3 CPU time

Case 1 200 0.860 0.061 0.079 0.701 0.190 0.109 1.8 sec.
1000 0.989 0.010 0.001 0.893 0.089 0.018 8.3 sec.

Case 3 200 0.000 0.727 0.273 0.000 0.592 0.408 1.8 sec.
1000 0.000 0.933 0.067 0.000 0.776 0.224 8.4 sec.

Case 5 200 0.937 0.060 0.003 0.871 0.110 0.019 2.7 sec.
1000 0.994 0.006 0.000 0.925 0.070 0.006 12.9 sec.

Case 7 200 0.611 0.343 0.046 0.675 0.277 0.048 2.7 sec.
1000 0.000 0.955 0.045 0.000 0.879 0.121 13.3 sec.

Table 1. Simulation study. Mean P (Mk | y) for k ∈ {1, 2, 3} and Cases
1, 3, 5 and 7 under MOM-IW-Dir and Normal-IW-Dir priors. Median CPU
time (seconds) to compute P (Mk | y) for both priors and all k

NLPs can sometimes also increase sensitivity to detect moderately-separated components.
This is due to assigning a prior p(ϑk | Mk) with that degree of separation between the
component parameters. Figures S10 and S13 show similar results, but P (κ < 4 | Mk) =
0.05 led to slightly better parsimony than P (κ < 4 | Mk) = 0.10.
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Figure 3. Simulation study. Proportion of correct k̂ = k vs. n for MOM-
IW (solid black), Normal-IW (dashed black), AIC (dashed gray) and BIC
(solid gray)

We extended the study to the case where the model (wrongly) assumes unequal co-
variances. Here we used the ECP estimator in Proposition 1 (9,000 iterations after a
1,000 burnin), to study its precision and scalability. We generated 50 simulations under

Cases 1, 3, 5 and 7 for n ∈ {200, 1000}, and for each dataset we obtained P̂ (Mk | y)
for k ∈ {1, 2, 3}, under MOM-IW-Dir and Normal-IW-Dir priors. Table 1 reports the
average P (Mk | y) and computing time on a laptop running OS X 10.11.6 with 1.6 GHz

processor and 8Gb 1600MHz DDR3. This is the total time of obtaining P̂ (Mk | y) for
all k and both priors, using function bfnormmix in R package mombf, and no parallel
processing. It ranged from 1.8 seconds for Case 1 where n = 200 and p = 1 to 13.3
seconds for Case 7, where n = 1000 and p = 2. Analogously to the earlier results we
observed a higher posterior concentration around k∗ for the MOM-IW-Dir than for the
Normal-IW-Dir prior.

We conducted further experiments to assess the computational scalability of the ECP
estimator as a function of n, p and the upper bound K on the number of clusters. We
simulated data for n ∈ {200, 1000}, p ∈ {1, 2, 5} and K = {2, 5, 10} under a single-
component multivariate Normal with zero mean and identity covariance matrix. Figure
S8 shows the median run times. The time increased linearly with n and slightly supra-
linearly in k and p. It is easy to show that the per-iteration computational complexity
of the Gibbs sampler is linear in n, whereas to sample the covariance matrix (via a
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Cholesky decomposition) it is cubic in p. Regarding k the Gibbs per-iteration complexity
under a Normal-IWishart prior grows linearly with k (hence so does obtaining ECP-based
posterior model probabilities), however the post-processing step in (3.1) to evaluate the
MOM-IW penalty contains k(k − 1)/2 terms. Despite such supra-linear complexity our
results show that for moderately large (k, p) computations remain feasible. We reported
total times for k = 1, . . . , K; one could use parallel computing or stop at the smallest k
such that P (Mk | y) < P (Mk−1 | y) which typically happens well before reaching K
(Chambaz and Rousseau, 2008).

4.2. Inference under a misspecified model. In practice the data-generating density
may present non-negligible departures from the assumed class. An important case we
investigate here is the presence of heavy tails, which under an assumed Normal mixture
likelihood may affect both the chosen k and the parameter estimates. We generated
n = 600 observations from k∗ = 3 bivariate T components with 4 degrees of freedom,
means µ1 = (−1, 1)′, µ2 = −µ1, µ3 = (6, 6)′, a common scale matrix with elements
σ11 = σ22 = 2 and σ12 = σ21 = −1 and η1 = η2 = η3 = 1/3. We considered up to K = 6
components with either homogeneous Σ1 = . . . = Σk or heterogeneous covariances, giving
a total of 11 models.

Table S4 summarises the results. BIC and sBIC strongly favoured k̂ = 4 components
with unequal covariances, AIC chose k̂ = 6 components with unequal covariances, and
the Normal-IW prior placed most posterior probability on k ∈ {5, 6} with common co-
variances. In contrast, our MOM-IW assigned posterior probability 1 (up to rounding) to
k = 3 with equal covariances. To provide further insight Figure 4 shows the component
contours for k̂ under each method, estimating ϑ̂k̂ via maximum likelihood (AIC, BIC,
sBIC) or posterior modes (Normal-IW, MOM-IW). The means of the three MOM-IW
components matched those of the true T components. The BIC and sBIC approximated
the two mildly-separated components with two normals centered roughly at (0,0), whereas
the AIC split the components even further. The two extra components in the Normal-IW
solution essentially account for heavy tails. This example illustrates how by penalizing
poorly-separated or low-weight components NLPs may induce a form of robustness to
model misspecification, although we remark that this is a finite-sample effect and would
eventually vanish as n→∞.

4.3. Cytometry data. We analysed the Graf-versus-Host flow cytometry data in Brinkman
et al. (2007), an experiment used for cell counting, e.g. to diagnose diseases. The data
contain p = 4 variables called CD3, CD4, CD8b and CD8. The study goal was to find
cell subpopulations with positive CD3, CD4 and CD8b (CD3+/CD4+/CD8b+), i.e. high
values in the first three variables. Interestingly, the authors created a control sample de-
signed not to contain any CD4+/CD8b+ cells. Following the analysis in Baudry et al.
(2012), we selected the n = 1, 126 cells in the control sample for which CD3 > 280.

Figure 5 plots (CD4,CD8b) values and the solution chosen by BIC, AIC, sBIC, Normal-
IW and MOM-IW. The first four methods identified a CD4+/CD8b+ subpopulation that,
as discussed, is not there by design, whereas it was not present in the MOM-IW solution.
Intuitively, the spurious CD4+/CD8b+ cluster contains a few outlying observations, and
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Figure 4. Misspecified model. Estimated contours for BIC and sBIC (top
left), AIC (top right), Normal-IW (bottom left) and MOM-IW (bottom
right). Points indicate the simulated data.

our MOM-IW penalises such a low-weight component. These results illustrate the benefits
of jointly penalising small weights and overlapping components. See Table S5 for further
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Figure 5. Projection of the variables CD4 and CD8b for the Cytometry
data-set, classification of observations and contours using EM algorithm
for BIC and AIC/sBIC (top), and under Normal-IW and MOM-IW (bot-
tom).

details, e.g. the Normal-IW and MOM-IW chose k = 3 with 0.928 and 0.995 posterior
probability, respectively.



ON CHOOSING MIXTURE COMPONENTS VIA NON-LOCAL PRIORS 25

4.4. Old Faithful. We briefly describe this classical example to illustrate potential issues
with poorly-separated components. The results are in Table S6 and Figure S14. The Old
Faithful is a cone-type geyser in the Yellowstone National Park. We seek clusters in
a dataset with n = 272 eruptions recording their duration and the time to the next
eruption (dataset faithful in R). We considered up to K = 6 Normal components either
with equal or unequal covariance matrices. Our MOM-IW selected k = 3 equal-covariance
components with 0.967 posterior probability. The Normal-IW chose k = 4 with 0.473
posterior probability, this resulted from splitting an MOM-IW component in the lower-
left corner into two. The sBIC and BIC chose k̂ = 3 components with roughly the
similar location as the MOM-IW, though their shapes were slightly different, whereas
AIC returned k̂ = 4.

4.5. Fisher’s Iris data. We present another classical dataset by Fisher (1936) for the
practical reason that there is a ground truth for the underlying number of subpopulations.
The data contain four variables (p = 4) measuring the dimensions of n = 150 iris flowers.
The plants are known to belong to k∗ = 3 species, setosa, versicolor and virginica, each
with 50 observations. We compare the ability of the various methods to recover these
three species in an unsupervised fashion. We considered up to K = 6 Normal components
with either equal or unequal covariances.

Table S7 provides posterior model probabilities. The BIC and sBIC supported k̂ = 2
and k̂ = 4 components with unequal covariances, respectively. Upon inspection the BIC
solution merged the versicolor and virginica species into a single component, akin to its
lack of sensitivity observed in Section 4.1, whereas the sBIC split the versicolor species
into two components. The AIC supported k̂ = 6 with unequal covariances. Both the
Normal-IW and our MOM-IW chose k̂ = 3, but the evidence under the former was
weaker (PL(M3 | y) = 0.81 and P (M3 | y) = 1 respectively). Figure S15 shows the
MOM-IW solution contours for the first two principal components (accounting for 96.0%
of the variance), which closely resemble the three species.

4.6. Comparison to overfitted mixtures. Table 2 and Table S8 summarise the results
from analysing the datasets from Sections 4.2-4.5 with overfitted mixtures and repulsive
overfitted mixtures (respectively). Here repulsion was induced by a pMOM penalty where
g is set to its default in Section 2.3. We set k = 6 and report the posterior distribution
of the number of empty components (with no assigned observations) from the MCMC
output. Note that k = 6 implies overfitted mixtures as our analyses in Sections 4.2-
4.5 suggested less than 6 components. To assess sensitivity we tested prior parameter
values q = 1 (no shrinkage), q = 0.01 (satisfying Rousseau and Mengersen (2011) and
Gelman et al. (2013)) and 3× 10−8 (proposed by Havre et al. (2015)). We observed little
differences between overfitted and repulsive overfitted mixtures. As expected, in general
smaller q led to less occupied components in the posterior, except in the cytometry data
where the posterior focused on 6 components for all q. Note that q = 3× 10−8 recovered
the true k∗ = 3 in the misspecified example from Section 4.2, whereas this was not the
case in the Iris and Cytometry data that truly contain 3 subpopulations. The results for
the faithful data matched those of the MOM-IW.
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Table 2. Posterior distribution on the number of non-empty components
m =

∑k
j=1 I(nj > 0) in overfitted mixtures with common Σj = Σ. The

Misspecified, Faithful, Iris and Cytometry data.

P̂ (m | y,M6)
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

q = 1

Misspecified 0.00 0.00 0.00 0.00 0.07 0.93
Faithful 0.00 0.00 0.00 0.01 0.15 0.85

Fisher’s Iris 0.00 0.99 0.01 0.00 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 0.01

Misspecified 0.00 0.00 0.03 0.35 0.56 0.06
Faithful 0.00 0.00 0.63 0.31 0.04 0.02

Fisher’s Iris 0.00 1.00 0.00 0.00 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 3.10−8

Misspecified 0.00 0.00 0.95 0.00 0.00 0.05
Faithful 0.00 0.00 0.96 0.00 0.01 0.03

Fisher’s Iris 0.00 1.00 0.00 0.00 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

4.7. Simulation with Binomial mixtures. To assess the performance of MOM-Beta
(default a = 1/2, g = 7.11) and Beta(1,1) priors as well as the BIC and sBIC, we repro-
duced the Binomial mixture example used by Drton and Plummer (2017) to illustrate
the sBIC. We generated 200 data sets of sample sizes n = 50, 200 and 500 from a k∗ = 4
component Binomial mixture with Lif = 30 trials for all i = 1, . . . , n, equal component
weights ηj = 1/4 and component-specific success probabilities θj = j/5 for j = 1, . . . , 4.
We computed the two sBIC versions sBIC and sBIC05.

Figure 6 shows the results. The two sBIC versions ameliorated the BIC’s overpenal-
ization as reported in Drton and Plummer (2017), whereas the Beta prior often returned
too many components. The proportion of correct model selections was generally high-
est for the MOM-Beta, particularly for smaller n (roughly 50% of the simulations when
n = 50, relative to 25% for sBIC05). To assess sensitivity Figure S3 shows the results for
alternative prior parameter settings g = 16.09 and g = 29.99 discussed in Supplementary
Section S6. These larger g values result in more informative priors that adversely affect
inference, reinforcing our recommendation for g = 7.11.

4.8. Political blog data. We illustrate product Binomial mixtures using a dataset on
n = 773 USA political blogs from 2008 (Chang, 2015). Each blog provides word counts
(how many times a given word was used). To facilitate interpretation we combined
similar words (e.g. america, american and americans, see Table S9) and selected the
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p = 234 words with overall frequency above 100. We fitted a product Binomial mixture
yif | zi = j, θjf ∼ Bin(θjf , Li), where Li is the total number of words in blog i = 1, ..., 773.
We considered MOM-Beta and Beta priors, the BIC and AIC. The MOM-Beta parameters
were set to the default (a, g) = (0.5, 2) whereas as a local prior we chose the Beta(1, 1)
(Section 2.3).

The MOM-Beta and Beta selected k̂ = 2 and k̂ = 4 both with posterior probability
one (up to rounding), whereas BIC and AIC chose k̂ = 3 and k̂ = 6 respectively (Table
S10). To assess the inferred components, these data contain an independent labeling
that classifies blogs either as liberal or conservative. Figure S16 displays the estimated
cluster probabilities (Algorithm S4) for liberal and conservative blogs. Interestingly under
the MOM-Beta prior conservative blogs fell mostly in Component 1. Figure 7 shows
the most characteristic words for each MOM-Beta component (χ2 residual> 2 when
cross-tabulating word count versus assigned component). For instance, “war, iraq, tax,
government” are representative of Component 1 whereas “polls, votes, percent, delegates”
are representative of Component 2. In contrast, under the Beta prior Components 2 and
4 showed a similar distribution for liberal and conservative blogs and the clusters returned
by the AIC did not show appreciable differences between conservative or liberal blogs.

5. Conclusions

The use of NLPs for selecting mixture components leads to solutions that balance
parsimony and sensitivity, and also facilitates interpretation in terms of well-separated
subpopulations. From a theoretical standpoint the formulation asymptotically enforces
parsimony under the wide class of generically identifiable mixtures, which we confirmed
in finite n examples. As another practical issue defining prior dispersion is often re-
garded as an inconvenience, here we showed how it can be advantageously calibrated to
detect well-separated components resulting in multimodality. We also showed that the
computations required to implement NLPs are comparable to those for standard local
priors and, although not exploited here, they can easily be parallelized for multiple k. In
particular the ECP estimator provides a convenient strategy to estimate posterior model
probabilities for non-local and local priors, by utilizing readily available MCMC output.

Our examples showed that BIC may pathologically miss components, in some instances
even with large n. The AIC and local priors tended to add spurious components in sim-
ulations and in datasets with known subgroup structure. The sBIC showed a mixed
behavior that was similar to the BIC in some instances and to local priors or the AIC
in others. Overfitted and repulsive overfitted mixtures proved useful in several examples,
but prior parameters and the choice of k need to be carefully calibrated. Our framework
can also be sensitive to prior specification, but as we illustrated there are natural de-
faults based on multi-modality and minimal informativeness that result in competitive
behaviour. Despite the resemblance between NLPs and repulsive overfitted mixtures we
emphasise that the former require not only a repulsive force but also penalising low-
weight components, and that this was found to improve inference in our examples. A
related intriguing observation was that, by penalizing poorly-separated and low-weight
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components, NLPs showed robustness to model misspecification in an example. It would
be interesting to study the combined effect of NLPs and robust likelihoods.

Acknowledgments

David Rossell was partially funded by the NIH grant R01 CA158113-01, EPSRC First
Grant EP/N011317/1 and RyC-2015-18544, Plan Estatal PGC2018-101643-B-I00, and
Ayudas Fundación BBVA a equipos de investigación cient́ıfica 2017.

References

R. H. Affandi, E. B. Fox, and B. Taskar. Approximate inference in continuous deter-
minantal processes. In Advances in Neural Information Processing Systems, pages
1430–1438, 2013.

E. S. Allman, C. Matias, and J. A. Rhodes. Identifiability of parameters in latent structure
models with many observed variables. The Annals of Statistics, 37(6):3099–3132, 2009.

G. E. Andrews. The theory of partitions. Number 2 in 1. Cambridge university press,
1998.

J. P. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture
components for clustering. Journal of Computational and Graphical Statistics, 2012.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE transactions on pattern analysis and
machine intelligence, 22(7):719–725, 2000.

R. R. Brinkman, M. Gasparetto, J. Lee, A. J. Ribickas, J. Perkins, W. Janssen, R. Smiley,
and C. Smith. High-content flow cytometry and temporal data analysis for defining
a cellular signature of graft-versus-host disease. Biology of Blood and Marrow Trans-
plantation, 13(6):691–700, 2007.

A. Chambaz and J. Rousseau. Bounds for Bayesian order identification with application
to mixtures. The Annals of Statistics, 36:928–962, 2008.

J. Chang. lda: Collapsed Gibbs Sampling Methods for Topic Models, 2015. URL https:

//CRAN.R-project.org/package=lda. R package version 1.4.2.
J. Chen and P. Li. Hypothesis test for Normal mixture models: The EM approach. The

Annals of Statistics, 37:2523–2542, 2009.
S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical

Association, 90:1313–1321, 1995.
R.A. Collazo and J.Q. Smith. A new family of non-local priors for chain event graph

model selection. Bayesian Analysis, 11(4):1165–1201, 2016.
G. Consonni, J.J. Forster, and L. La Rocca. The whetstone and the alum block: Balanced

objective bayesian comparison of nested models for discrete data. Statistical Science,
28(3):398–423, 2013.

S.L. Crawford. An application of the Laplace method to finite mixture distributions.
Journal of the American Statistical Association, 89:259–267, 1994.

A.P. Dawid. The trouble with Bayes factors. Technical report, University College London,
1999.

https://CRAN.R-project.org/package=lda
https://CRAN.R-project.org/package=lda


ON CHOOSING MIXTURE COMPONENTS VIA NON-LOCAL PRIORS 29

A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, B, 39-1:1–38,
1977.
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Silvia Frühwirth-Schnatter. Estimating marginal likelihoods for mixture and Markov
switching models using bridge sampling techniques. Mixtures: Estimation and Appli-
cations, pages 213–239, 2004.

E. Gassiat and R. Van Handel. Consistent order estimation and minimal penalties. IEEE
Transactions on Information Theory, 59(2):1115–1128, 2013.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian Data Analysis, Third Edition. Boca Raton: Chapman and Hall/CRC, 2013.

S. Ghosal. A review of consistency and convergence of posterior distribution. In Division
of theoretical statistics and mathematics, pages 1–10, Indian Statistical Institute, 2002.

S. Ghosal and A. V. der Vaart. Entropies and rates of convergence for maximum likelihood
and bayes estimation for mixture of normal densities. Annals of Statistics, 29:1233–
1263, 2001.

S. Ghosal and A. Van Der Vaart. Posterior convergence rates of dirichlet mixtures at
smooth densities. The Annals of Statistics, 35:697–723, 2007.

J. K. Ghosh and P. K. Sen. On the asymptotic performance of the log-likelihood ratio
statistic for the mixture model and related results. In Le Cam, L. M., Olshen, R. A.
(Eds.), Proceedings of the Berkeley conference in Honor of Jerzy Neyman and Jack
Kiefer, volume II, pages 789–806, Wadsworth, Monterey, 1985.

B. Grün and F. Leisch. Finite mixtures of generalized linear regression models. In Shalabh
and C. Heumann, editors, Recent advances in linear models and related areas, pages
205–230. Springer, 2008.

R. J. Hathaway. A constrained formulation of maximum-likelihood estimation for Normal
mixture distributions. Annals of Statistics, 13:795–800, 1985.

Z. V. Havre, N. White, J. Rousseau, and K. Mengersen. Overfitting bayesian mixture
models with and unknown number of components. PLoS ONE, 10 (7):1–27, 2015.
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Figure 6. Binomial mixture. Frequencies of k̂ for BIC, sBIC, sBIC05,
Beta and MOM-Beta. Results from 200 data sets with n = 50, 200 and
500, L = 30 and k∗ = 4
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Supplementary material

S1. Conditions A1-A4 in Rousseau and Mengersen (2011)

For convenience we reproduce verbatim Conditions A1-A4 in Rousseau and Mengersen
(2011), adjusted to the notation we used in this paper. Their Condition A5 is trivially
satisfied by our η ∼ Dir(q) prior, hence is not reproduced here. Recall that we defined
p∗k∗(y) = p(y | ϑ∗k∗ ,Mk∗) to be the data-generating truth.

We denote Θ∗k = {ϑk ∈ Θk; p(y | ϑk,Mk) = p∗k∗(y)} and let log(p(y | ϑk,Mk)) be the
log-likelihood calculated at ϑk. Denote F0(g) =

∫
p(y | ϑ∗k∗ ,Mk∗)g(y)dy where g(·) is a

probability density function, denote by Leb(A) the Lebesgue measure of a set A and let
∇p(y | θ) be the vector of derivatives of p(y | θ) with respect to θ, and ∇2p(y | θ) be
the second derivatives with respect to θ. Define for ε ≥ 0

p̄(y | θ) = sup
|θl−θ|≤ε

p(y | θl), p(y | θ) = inf
|θl−θ|≤ε

p(y | θl)

We now introduce some notation that is useful to characterize Θ∗k, following Rousseau
and Mengersen (2011). Let w = (wi)

k∗
i=0 with 0 = w0 < w1 < ... < wk∗ ≤ k be a partition

of {1, ..., k}. For all ϑk ∈ Θk such that p(y | ϑk,Mk) = p∗k(y) there exists w as defined
above such that, up to a permutation of the labels,

∀i = 1, ..., k∗, θwi−1+1 = ... = θwi
= θ∗i , η(i) =

wi∑
j=wi−1+1

ηj = η∗i , ηwk∗+1
= ... = ηk = 0.

In other words, Ii = {wi−1 + 1, ..., wi} represents the cluster of components in {1, ..., k}
having the same parameter as θ∗i . Then define the following parameterisation of ϑk ∈ Θk

(up to permutation)

ιw =
(

(θj)
wk∗
j=1, (ri)

k∗−1
i=1 , (ηj)

k
j=wk∗+1

)
∈ Rpwk∗+k∗+k−wk∗−1, ri = η(i)− η∗i , i = 1, ..., k∗,

and

$w =
(
(fj)

wk∗
j=1,θwk∗+1, ...,θk

)
, fj =

ηj
η(i)

, when j ∈ Ii = {wi−1 + 1, ..., wi},

note that for p(y | ϑ∗k∗ ,Mk∗)

ι∗w = (θ∗1, ...,θ
∗
1,θ

∗
2, ...,θ

∗
2, ...,θ

∗
k∗ , ...,θ

∗
k∗ , 0...0...0)

where θ∗i is repeated wi − wi−1 times in the above vector for any $w. Then we
parameterize (ιw,$w), so that p(y | ϑk,Mk) = p(y | (ιw,$w),Mk) and we denote
∇p(y | (ι∗w,$w),Mk) and ∇2p(y | (ι∗w,$w),Mk) the first and second derivatives

of p(y | (ιw,$w),Mk) with respect to ιw and computed at ϑ∗k∗ = (ι∗w,$w). We also
denote by PL(· | y,Mk) the posterior distribution using a LP.
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Conditions

A1 L1 consistency. For all ε = (log n)e/
√
n with e ≥ 0 as n→∞

PL

(∫
|p(z | ϑk,Mk)− p∗k(z)| dz > ε | y,Mk

)
→ 0

in probability with respect to p(y | ϑ∗k∗ ,Mk∗).
A2 Regularity. The component density p(y | θ) indexed by a parameter θ ∈ Θ is three

times differentiable and regular in the sense that for all θ ∈ Θ the Fisher information
matrix associated with p(y | θ) is positive definite at θ. Denote ∇3p(y | θ) the array
whose components are

∂3p(y | θ)

∂θi1∂θi2∂θi3
For all i ≤ k∗, there exists ε > 0 such that

F0

(
p̄(y | θ∗i )3

p(y | θ∗i )3

)
<∞, F0

(
sup|θ−θ∗|≤ε |∇p(y|θ)|3

p(y | θ∗i )3

)
<∞, F0

(
|p(y|θ∗i )|4

(p(y | ϑ∗k∗ ,Mk∗))4

)
<∞,

F0

(
sup|θ−θ∗|≤ε |∇2p(y | θ)|2

p(y | θ∗i )2

)
<∞, F0

(
sup|θ−θ∗|≤ε |∇3p(y | θ)|2

p(y | θ∗i )

)
<∞.

Assume also that for all i = 1, ..., k∗, θ∗i ∈ int(Θk) the interior of Θk.
A3 Integrability. There exists Θk∗ ⊂ Θk satisfying Leb(Θk∗) > 0 and for all i ≤ k∗

d(θ∗i ,Θ
k∗) = inf

θ∈Θk∗
|θ − θ∗i | > 0

and such that for all θ ∈ Θk∗ ,

F0

(
p(y | θ)4

(p(y | ϑ∗k∗ ,Mk∗))4

)
<∞, F0

(
p(y | θ)3

p(y | θ∗i )3

)
<∞, ∀i ≤ k∗.

A4 Stronger identifiability.
For all w partitions of {1, ..., k} as defined above, let ϑk ∈ Θk and write ϑk as

(ιw,$w); then

(ιw − ι∗w)
′∇p(y | (ι∗w,$w),Mk) +

1

2
(ιw − ι∗w)

′∇2p(y | (ι∗w,$w),Mk)(ιw − ι∗w) = 0⇔

∀i ≤ k∗, ri = 0 and ∀j ∈ Ii fj(θj − θ∗j ) = 0, ∀i ≥ wk∗ + 1, pi = 0.

Assuming also that if θ /∈ {θ1, ...,θk} then for all functions hθ which are linear com-
binations of derivatives of p(y | θ) of order less than or equal to 2 with respect to θ,
and all functions h1 which are also linear combinations of derivatives of the p(y | θj)’s
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j = 1, 2, .., k and its derivatives of order less or equal to 2, then αhθ + βh1 = 0 if and
only if αhθ = βh1 = 0.

Extension to non compact spaces: If ⊂ Θk is not compact then we also assume that for
all sequences θn converging to a point in ∂Θk the frontier of Θk, considered as a subset
of < ∪ {−∞,∞}p, p(y | θn) converges pointwise either to a degenerate function or to
a proper density p(·) such that p(·) is linearly independent of any null combinations of
p∗(y | θi), ∇p∗(y | θi) and ∇2p∗(y | θi), i = 1, ..., k∗.

S2. Prior normalization constant for MOM priors

Lemma 1. Let p(ζ | Mk) be as in (2.7). Then

Ck =
∑
s∈Sk

(
pk∏
l=1

κs

)
1∑

v(1,2)=0

. . .
1∑

v(k−1,k)=0

(−1)
∑

i<j v(i,j)

(
pk∏
l=1

pk∏
m=1

b
sl,m
lm (v)

sl,m!

)

where κs = EL(θ
∑pk

m=1 slm+sml

11 ), Sk =
{

(s1,1, s1,2, . . . , spk,pk) :
∑pk

l=1

∑pk
m=1 sl,m = k(k − 1)/2

}
with non-negative integers 0 ≤ sl,m ≤ k(k − 1)/2, and blm(v) is the (l,m) element of the
pk × pk matrix Bv given by{

bll = 1
2
(k − 1)−

∑
i<j v(i, j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1
2

+
∑

i<j v(i, j), (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)
.

We remark that Lemma 1 holds for any pL(ζ) composed by independent and identically-
distributed pL(ζjf ) and that κs requires raw moments up to order k(k − 1)/2, which can
be pre-computed. Specifically, for the MOM-Beta prior in (2.6)

κs =

(
Γ(g)

Γ(ag)

)pk Γ
(
ag +

∑pk
m=1 slm + sml

)
Γ
(
g +

∑pk
m=1 slm + sml

) .
For certain common settings with MOM-IW and MOM-Beta priors, Lemma 1 can be
simplified, see Corollaries 1-3.

S3. Prior variance under MOM-Beta priors

Let p(θ | Mk) be the MOM-Beta prior in (2.6) and pL(θ | Mk) be the Beta prior in
(2.9) with parameters (aL, gL) = (0.5, 2). Our suggested defaults are setting a = 0.5 and
g (2.6) such that

Varp(θjf − θj′f | Mk) = VarpL(θjf − θjf ′ | Mk) =
1

6
.
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Var(θjf − θj′f | M2)
p Default g Default g g = 2
1 7.11 1/6 0.400
2 4.39 1/6 0.283
3 3.54 1/6 0.244
4 3.13 1/6 0.225
5 2.89 1/6 0.213
6 2.74 1/6 0.206
7 2.63 1/6 0.200
8 2.55 1/6 0.196
9 2.48 1/6 0.193
10 2.43 1/6 0.190
11 2.39 1/6 0.188
12 2.36 1/6 0.186
13 2.33 1/6 0.185
14 2.31 1/6 0.183
15 2.29 1/6 0.182
16 2.27 1/6 0.181
17 2.25 1/6 0.180
18 2.24 1/6 0.180
19 2.23 1/6 0.179
20 2.21 1/6 0.178

Table S1. Default g in MOM-Beta(0.5g, 0.5g) prior giving Var(θjf−θj′f |
M2) = 1/6 as a function of p, and variance for g = 2. For p > 20 we
recommend the default g = 2

It is in principle possible to find such g by noting that, due to (θjf , θjf ′) being exchangeable
a priori we have Ep(θjf − θj′f | Mk) = 0. Hence Varp(θjf − θj′f | Mk) =∫

(θjf − θj′f )2

Ck

∏
1≤i<j≤k

∑
f

(θif − θjf )2

k∏
j=1

p∏
f=1

Beta(θjf ; ag, (1− a)g)dθ

and one may expand the product within the integral as a sum involving products of
polynomials. As illustration for p = 1 and a = 0.5 simple algebra shows

Varp(θj1 − θj′1 | M2) = 1.5
2 + g

(1 + g)(3 + g)

Varp(θj1 − θj′1 | M3) = 2
4 + g

(3 + g)(5 + g)

and so on for larger k. For instance if k = 2 then the desired defaults are (a, g) =
(0.5, 7.11), and for k = 3 they would be (a, g) = (0.5, 8.08). This strategy grows tedious
for larger k as the expressions become less manageable and even evaluating Ck becomes
non-trivial for general p.
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We adopt the simpler alternative strategy of focusing on the k = 2 case, this is anal-
ogous to the approach to set the MOM-Normal prior dispersion in continuous mixtures
and in practice we observed that the target prior variance becomes more robust to g as
k grows (Figure S2). That is, our strategy is

1

6
= Varp(θjf − θj′f | M2) = 2

[
Ep(θ

2
11 | M2)− Ep(θ11θ21 | M2)

]
,

where the right-hand side follows from exchangeability. We first state the result and
subsequently outline its derivation.

Ep(θ
2
11 | M2) =

ag + 1

2p(1− a)

[
(ag + 2)(ag + 3)

(g + 2)(g + 3)
+
a(ag + 1) + 2(p− 1)a(1− a)

g + 1
− 2a(ag + 2)

g + 2

]
Ep(θ11θ21 | M2) =

a

p(1− a)

[
(ag + 1)(ag + 2)

g + 2
− (ag + 1)2

(g + 1)
+ (p− 1)a(1− a)

]
For the particular case (a, g) = (0.5, 2) one obtains

Varp(θjf − θj′f | M2) =
1

p

(
2

5
+
p− 1

6

)
,

which clearly converges to 1/6 as p→∞. Table S1 lists the default g giving Varp(θjf −
θj′f | M2) = 1/6 for various p. For p = 20 setting g = 2 already gives Varp(θjf − θj′f |
M2) = 0.178 and thus for p > 20 we recommend (a, g) = (0.5, 2).

The remainder of this section outlines the derivation of Ep(θ
2
11 | M2) and Ep(θ11θ21 |

M2).

Ep(θ
2
11 | M2) =

∫
θ2

11(θ11 − θ21)2

C2

2∏
j=1

Beta(θj1; ag, (1− a)g)dθj1

+

∫
θ2

11

C2

p∑
f=2

(θ1f − θ2f )
2

2∏
j=1

p∏
f=1

Beta(θjf ; ag, (1− a)g)dθ

=
a(ag + 1)

C2(g + 1)

[
(ag + 2)(ag + 3)

(g + 2)(g + 3)
+
a(ag + 1)

g + 1
− 2a(ag + 2)

(g + 2)

]
− a(ag + 1)C̃2

C2(g + 1)
,

where the right-hand side follows from the moments of a Beta distribution and C̃2 is the
prior normalization constant for p− 1 variables. Using that C2 = 2pa(1− a)/(g+ 1) and
C̃2 = 2(p− 1)a(1− a)/(g + 1) gives the desired expression for Ep(θ

2
11 | M2). Similarly,

Ep(θ11θ21 | M2) =

∫
θ11θ21(θ2

11 + θ2
21 − 2θ11θ21)

C2

2∏
j=1

Beta(θj1; ag, (1− a)g)dθj1

+

∫
θ11θ21

C2

p∑
f=2

(θ1f − θ2f )
2

2∏
j=1

p∏
f=1

Beta(θjf ; ag, (1− a)g)dθjf

2a2(ag + 1)

C2(g + 1)

[
ag + 2

g + 2
− ag + 1

g + 1

]
− a2C̃2

C2

.
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The result is obtained by plugging in C2 = 2pa(1−a)/(g+1), C̃2 = 2(p−1)a(1−a)/(g+1)
and rearranging terms.

S4. Proofs

S4.1. Auxiliary lemmas to prove Theorem 1. We state and prove two auxiliary
lemmas that will be used in the proof of Theorem 1.

Lemma 2. Let p(ϑk | Mk) = dθ(θ)pL(θ | Mk)p(η | Mk) be the MOM prior in (2.4).

Then p(ϑk | Mk) = d̃θ(θ)p̃L(θ | Mk)p(η | Mk), where d̃θ(θ) ≤ ck for some finite ck,

p̃L(ϑk | Mk) =
k∏
j=1

N (µj; 0, (1 + ε)gAΣ) ,

and ε ∈ (0, 1) is an arbitrary constant.

Proof. The MOM prior has an unbounded penalty

dθ(θ) =
1

Ck

∏
1≤i<j≤k

(
(µi − µj)

′
A−1

Σ (µi − µj)/g
)t
,

however we may rewrite dθ(θ)pL(θ | Mk)

=dθ(θ)
k∏
j=1

N (µj; 0, gAΣ)
N (µj; 0, (1 + ε)gAΣ)

N (µj; 0, (1 + ε)gAΣ)
,

=d̃θ(θ)
k∏
j=1

N (µj; 0, (1 + ε)gAΣ) ,(S1)

where ε ∈ (0, 1) is an arbitrary constant and d̃θ(θ) =

dθ(θ)
k∏
j=1

N (µj; 0, gAΣ)

N (µj; 0, (1 + ε)gAΣ)
= dθ(θ)

k∏
j=1

(1 + ε)1/2 exp

{
−1

2

εµ
′
jA
−1
Σ µj

(1 + ε)g

}
.

The fact that d̃θ(θ) is bounded follows from the fact that the product term is a Normal
kernel and hence bounded, whereas dθ(θ) can only become unbounded when µjA

−1
Σ µj →

∞ for some j, but this polynomial increase is countered by the exponential decrease in

exp

{
−1

2

εµ
′
jA
−1
Σ µj

(1 + ε)g

}
. �

Lemma 3. Let dϑ(ϑk) ∈ [0, ck] be a bounded continuous function in ϑk, where ck is a
finite constant. Let

gk(y) = EL(dϑ(ϑk) | y,Mk) =

∫
dϑ(ϑk)p

L(ϑk | y,Mk)dϑk.

If for any ε > 0 we have that PL(dϑ(ϑ) > ε | y,Mk)
P−→ 0 then gk(y)

P−→ 0. Alter-
natively, if there exists some d∗k > 0 such that for any ε > 0 PL(|dϑ(ϑk) − d∗k| > ε |
y,Mk)

P−→ 1, then gk(y)
P−→ d∗k.
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Proof. Consider the case PL(dϑ(ϑ) > ε | y,Mk)
P−→ 0, then gk(y) =∫

dϑ(ϑk)<ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk +

∫
dϑ(ϑk)>ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk

≤ εPL(dϑ(ϑk) < ε | y,Mk) + ckP
L(dϑ(ϑk) > ε | y,Mk)

≤ ε+ ckP
L(dϑ(ϑk) > ε | y,Mk)

P−→ ε,

where ε > 0 is arbitrarily small. Hence gk(y)
P−→ 0.

Next consider the case PL(|dϑ(ϑk)− d∗k| > ε | y,Mk)
P−→ 1. Then

gk(y) >

∫
dϑ(ϑk)>d∗k−ε

dϑ(ϑk)p
L(ϑk | y)dϑk

≥ (d∗k − ε)PL (dϑ(ϑk) > d∗k − ε | y,Mk)
P−→ d∗k − ε,

and analogously gk(y) =∫
dϑ(ϑk)<d∗k+ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk +

∫
dϑ(ϑk)>d∗k+ε

dϑ(ϑk)p
L(ϑk | y,Mk)dϑk

≤ (d∗k + ε) + ckP
L(dϑ(ϑk) > d∗k + ε | y,Mk)

P−→ d∗k + ε,

for any ε > 0 and hence gk(y)
P−→ d∗k. �

S4.2. Proof of Theorem 1. Part (i). The result is straightforward. Briefly, p(y | Mk) =∫
dϑ(ϑk)p(y | ϑk,Mk)p

L(ϑk | Mk)dϑk

=

∫
dϑ(ϑk)

p(y | ϑk,Mk)p
L(ϑk | Mk)

pL(y | Mk)
pL(y | Mk)dϑk

= pL(y | Mk)E
L(dϑ(ϑk) | y),

as desired.

Part (ii). Posterior concentration. We need to prove that

PL (|dϑ(ϑk)− d∗k| > ε | y,Mk)→ 0

where d∗k = 0 for k > k∗ and d∗k = dϑ(ϑ∗k) for k ≤ k∗. Intuitively, the result follows from
the fact that by the L1 posterior concentration assumption B1 the posterior concentrates
on the KL-optimal model p∗k(y), but for generically identifiable mixtures this corresponds
to parameter values satisfying d(ϑk) = 0 if k > k∗ and d(ϑk) > 0 if k ≤ k∗.

More formally, let Ak be the set of ϑk ∈ Θk defining p∗k(y), i.e. minimizing KL
divergence between the data-generating p(y | ϑ∗k∗ ,Mk∗) and p(y | ϑk,Mk). Consider
first the overfitted model case k > k∗, then generic identifiability gives that

Ak = {ϑk ∈ Θk : ηj = 0 for some j = 1, . . . , k or θi = θj for some i 6= j} .
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This implies that for all ϑk ∈ Ak we have that dϑ(ϑk) = 0 and also that the L1 distance

l(ϑk) =

∫
|p∗k(y)− p(y | ϑk,Mk)| dy = 0.

Thus dϑ(ϑk) > 0⇒ ϑk 6∈ Ak ⇒ l(ϑk) > 0. Given that by assumption p(y | ϑk,Mk) and
dϑ(ϑk) are continuous in ϑk, for all ε′ > 0 there is an ε > 0 such that dϑ(ϑk) > ε′ implies
l(ϑk) > ε and hence that the probability of the former event must be smaller. That is,

PL (dϑ(ϑk) > ε′ | y,Mk) ≤ PL(l(ϑk) > ε | y,Mk)

and the right hand side converges to 0 in probability for an arbitrary ε by Condition B1,
proving the result for the case k > k∗.

The proof for the k ≤ k∗ case proceeds analogously. Briefly, when k ≤ k∗ generic
identifiability gives that Ak = {ϑ∗k} is a singleton with positive weights η∗j > 0 for all
j = 1, . . . , k and θ∗i 6= θ∗j for i 6= j. Thus d∗k = dϑ(ϑ∗k) > 0. By continuity of p(y | ϑk,Mk)
and dϑ(ϑk) with respect to ϑk this implies that for all ε′ > 0 there exists an ε > 0 such
that |dϑ(ϑk)− d∗k| > ε′ ⇒ l(ϑk) > ε, and thus that

PL (|dϑ(ϑk)− d∗k| > ε′ | y,Mk) ≤ PL (l(ϑk) > ε | y,Mk) ,

where the right hand side converges to 1 in probability by Condition B1, proving the
result.

Part (ii). Convergence of EL(dϑ(ϑk) | y)

Consider first the case where dϑ(ϑk) ∈ [0, ck] is bounded below some finite constant ck.
Then Part (ii) above and Lemma 3 below give that

EL (dϑ(ϑ) | y,Mk)
P−→ 0, for k > k∗

EL (dϑ(ϑ) | y,Mk)
P−→ d∗k > 0, for k ≤ k∗(S2)

as we wished to prove. Next consider the MOM prior case dϑ(ϑ) =

dη(η)
1

Ck

∏
1≤i<j≤k

(
(µi − µj)′A−1

Σ (µi − µj)
)
,

where dη(η) is bounded by assumption. From Lemma 2

EL (dϑ(ϑ) | y,Mk) =

∫
d̃θ(θ)dη(η)

p(y | ϑk,Mk)p̃(ϑk | Mk)

pL(y | Mk)

p̃L(y | Mk)

p̃L(y | Mk)
dϑk

=
p̃L(y | Mk)

pL(y | Mk)

∫
d̃θ(θ)dη(η)p̃L(ϑk | y,Mk)dϑk,(S3)

where d̃θ(θ)dη(η) is bounded and hence by Part (ii) and Lemma 3 the integral in (S3)
converges to 0 in probability when k > k∗ and to a non-zero finite constant when k ≤ k∗.
Therefore it suffices to show that p̃L(y | Mk)/p

L(y | Mk) is bounded in probability, as
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this would then immediately imply the desired result (S2). From Lemma 2 p̃L(y | Mk) =

∫
p(y | ϑk,Mk)p̃

L(ϑk | Mk)dϑk =∫
p(y | ϑk,Mk)p

L(ϑk | Mk)
p̃L(ϑk | Mk)

pL(ϑk | Mk)
dϑk =∫

p(y | ϑk,Mk)p
L(ϑk | Mk)

k∏
j=1

N(µj; 0, (1 + ε)gΣj)

N(µj; 0, gΣj)
dϑk

∫
p(y | ϑk,Mk)p

L(ϑk | Mk)
1

(1 + ε)kp/2
exp

{
1

2g

k∑
j=1

µ′jA
−1
Σ µj

ε

1 + ε

}
dϑk

=
pL(y | Mk)

(1 + ε)kp/2
EL

(
exp

{
1

2g

k∑
j=1

µ′jA
−1
Σ µj

ε

1 + ε

}
| y,Mk

)

≥ pL(y | Mk)

(1 + ε)kp/2
,(S4)

thus p̃L(y | Mk)/p
L(y | Mk) ≥ 1

(1+ε)kp/2
. From (S3) this implies that when k ≤ k∗ we

obtain EL (dϑ(ϑ) | y,Mk)
P−→ d∗k > 0. Further, by Condition B3 the EL() term in (S4) is

bounded above in probability when k > k∗, implying that EL (dϑ(ϑ) | y,Mk)
P−→ 0. �

Part (iii).

By assumption p(η | Mk) = Dir(η; q) ∝ dη(η)Dir(η; q − r), where dη(η) =
∏k

j=1 η
r
j

and q > 1, q − r < 1. Consider the particular choice q − r < dim(Θ)/2 and without loss
of generality let k∗ + 1, . . . , k be the labels for the spurious components. Theorem 1 in
Rousseau and Mengersen (2011) showed that under the assumed A1-A4 and a further
condition A5 trivially satisfied by pL(η | Mk) = Dir(η; q−r) the corresponding posterior
distribution of the spurious weights concentrates around 0, specifically

PL

(
k∑

j=k∗+1

ηj > n−
1
2

+ε̃ | y,Mk

)
→ 0(S5)

in probability for all ε̃ > 0 as n→∞. Now, the fact that the geometric mean is smaller
than the arithmetic mean gives that

(k − k∗)

(
k∏

j=k∗+1

ηj

) 1
k−k∗

≤
k∑

j=k∗+1

ηj,
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and thus

PL

(
k∑

j=k∗+1

ηj > n−
1
2

+ε̃ | y,Mk

)
≥

PL

(k − k∗)

(
k∏

j=k∗+1

ηj

) 1
k−k∗

> n−
1
2

+ε̃ | y,Mk

 =

PL

(
k∏

j=k∗+1

ηrj >
1

(k − k∗)r
n−

r(k−k∗)
2

+ε | y,Mk

)
,(S6)

where ε = r(k − k∗)ε̃ is a constant. Thus (S5) implies that (S6) also converges to 0 in

probability. Finally, given that by assumption dϑ(ϑ) = dθ(θ)dη(η) ≤ ck
∏k

j=k∗+1 η
r
j we

obtain

PL
(
dϑ(ϑ) > n−

r(k−k∗)
2

+ε | y,Mk

)
≤ PL

(
k∏

j=k∗+1

ηrj >
1

ck
n−

r(k−k∗)
2

+ε | y,Mk

)
,(S7)

where the right hand side converges in probability to 0 given that (S6) converges to 0 in
probability and ck, k, k

∗, r are finite constants. As mentioned earlier this result holds for
any r > 0 satisfying q − r < dim(Θ)/2, in particular we may set q − r = δ < dim(Θ)/2
(where δ > 0 can be arbitrarily small) so that plugging r = q − δ into the left hand side
of (S7) gives the desired result. �

S4.3. Proof of Lemma 1. Let Dij be a pk × pk matrix where the ith and jth diagonal
blocks are equal to the p × p identity matrix, and the (i, j) off-diagonal block is minus
the identity matrix, so that (ζi − ζj)′(ζi − ζj) = ζ ′Dijζ. Then a direct application of
Lemma 1 in Kan (2006) gives that

dk(ζ) =
∏
i<j

(ζi − ζj)′(ζi − ζj) =
∏
i<j

θ′Dijζ =

=
1

[k(k − 1)/2]!

1∑
v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑

i<j v(i,j)

[
ζ ′

(∑
i<j

(
1

2
− v(i, j)

)
Dij

)
ζ

] k(k−1)
2

=
1

[k(k − 1)/2]!

1∑
v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑

i<j v(i,j) [ζ ′Bvζ]
k(k−1)

2(S8)

where Bv =
(∑

i<j

(
1
2
− v(i, j)

)
Dij

)
is a matrix with element (l,m) given by{

bll = 1
2
(k − 1)−

∑
i<j v(i, j), l = 1 + p(i− 1), . . . , pi

blm = bml = −1
2

+
∑

i<j v(i, j), (1 + p(i− 1), 1 + p(j − 1)), . . . , (pi, pj)
.
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Let ζl be the lth element in ζ, then following Expression (6.1) in (Mohsenipour, 2012)

[ζ ′Bvζ]
k(k−1)

2 =
∑
s∈Sk

[k(k − 1)/2]!

(
pk∏
l=1

pk∏
m=1

bslmlm
slm!

)
pk∏
l=1

ζ
∑pk

m=1 slm+sml

l(S9)

where s = (s1,1, s1,2, . . . , spk,pk) is a (pk)2 integer vector, Sk denotes the set of partitions of

k(k− 1)/2 such that
∑pk

l=1

∑pk
m=1 sl,m = k(k− 1)/2 with 0 ≤ sl,m ≤ k(k− 1)/2. Plugging

(S9) into (S8) gives that the prior normalization constant is

EL(dk(ζ)) =
1∑

v(1,2)=0

1∑
v(k−1,k)=0

(−1)
∑

i<j v(i,j)
∑
s∈Sk

(
pk∏
l=1

pk∏
m=1

bslmlm
slm!

)
pk∏
l=1

κs(S10)

where κs = EL(ζ
∑pk

m=1 slm+sml

jf ). �

S4.4. Proof of Corollary 1. In order to compute the normalization, Ck we need to find
the expectation:

Ck = E

( ∏
1≤i<j≤k

(
(µi − µj)

′
A−1

Σ (µi − µj)
g

))
.

with respect to (µ1, ...,µk ∼ N(0, AΣ). Moreover consider the Cholesky decomposition
AΣ = LL

′
where A−1

Σ = (L
′
)−1L−1, by setting

√
gLµ∗j = µj the jacobian of the trans-

formation is the determinant of the block diagonal matrix:

|J(µ∗1, ...,µ
∗
k)| =

∣∣∣∣∣∣
 √gL · · · 0

...
. . .

...
0 · · · √gL

∣∣∣∣∣∣ = gk/2(det(L))k,

where (det(L))k = (det(AΣ))k/2. The normalization constant Ck can be found by using
the following expectation

Ck = E

( ∏
1≤i<j≤k

((µ∗i − µ∗j)
′
(µ∗i − µ∗j))

)
,(S11)

where µ∗k ∼ Np (µ∗k; 0, Ip).
To obtain the result we apply the adapted Proposition 4 in Kan (2006) to the p × k

vector µ∗ = (µ∗1, ...,µ
∗
k), where k is the number of components and µ∗j ∈ Rp for j =

1, . . . , k, which for convenience we reproduce below as Proposition 1.

Proposition 1. Suppose µ∗ = (µ∗1, ..., µ
∗
k)
′ ∼ Nk(0, Ik), for symmetric matrices A(1,2), ..., A(k−1,k),

we have

E

( ∏
1≤i<j≤k

(µ∗
′
A(i,j)µ

∗)

)
=

1

s!

1∑
υ(1,2)=0

...
1∑

υ(k−1,k)=0

(−1)

(k
2)∑
i,j

υ(i,j)
Qs(Bυ),(S12)
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where s =
(
k
2

)
, Bυ = (1

2
− υ(1,2))A(1,2)+, ...,+(1

2
− υ(k−1,k))A(k−1,k) and Qs(Bυ) is given by

the recursive equation: Qs(Bυ) = s!2sds(Bυ) where ds(Bυ) = 1
2s

∑s
i=1 tr(B

i
υ)ds−i(Bυ) and

d0(Bυ) = 1 and A(i,j) is a pk × pk matrix (l,m) element all = 1, l = 1 + p(i− 1)...pi and l = 1 + p(j − 1)...pj.
alm = aml = −1, (l,m) = (1 + p(i− 1), 1 + p(j − 1))...(pi, pj).
alm = 0 otherwise.

We define now the A(1,2), ..., A(k−1,k) matrices with dimensions pk×pk. These matrices
can be found using p× p identity matrices in the diagonal blocks corresponding to the i
and j components minus the identity matrix in the “cross-blocks” corresponding to (i, j).
Finally using the A(i,j) matrices, Bυ can be expressed as a pk × pk matrix with element
(l,m) as follows

bll =
1

2
(k − 1)−

∑
i<j υ(i,j), l = 1 + p(i− 1)...pi and l = 1 + p(j − 1)...pj.

blm = bml = −1

2
+
∑

i<j υ(i,j), (l,m) = (1 + p(i− 1), 1 + p(j − 1))...(pi, pj).

�

S4.5. Proof of Corollary 2. Using Corollary 2.2 in Lu and Richards (1993), if z >
−1/n, then

(S13) (2π)−n/2
∫ ∞
−∞

...

∫ ∞
−∞

∏
1≤i<j≤n

(xi − xj)2z

n∏
j=1

exp{−x2
j/2}dxj =

n∏
j=1

Γ(jz + 1)

Γ(z + 1)
,

and using xi = (µi−m)/(
√
aσ2g) with i = 1, ..., k, we have that the normalization constant

for a Normal mixture (p = 1) is

(S14) Ck = Eµ1,...,µk | aσ2

( ∏
1≤i<j≤k

(
µi − µj√
aσ2g

)2t
)

=
k∏
j=1

Γ(jt+ 1)

Γ(t+ 1)
,

and for k = 2 is straightforward to show that Ck = E(µi − µj)′(µi − µj) = 2tr(Ip).
�

S4.6. Proof of Corollary 3. For p = 1 Ck is computed using (3.10) in Lu and Richards
(1993) and for k = 2 is straightforward to show that Ck = E(θi − θj)′(θi − θj) =
2
∑p

f=1 V (θjf ). �

S4.7. Proof of Proposition 1. We start by noting that

p(y | Mk) =
∑

z:nk=0

p(y | z,Mk)p(z | Mk) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk)(S15)
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From C1, for any z such that nk = 0 we have that p(y | z,Mk) =∫
p(y | ϑk, z,Mk)p(ϑk | z,Mk)dϑk =

∫ (k−1∏
j=1

∏
zi=j

p(yi | θj)

)
p(ϑk | z,Mk)dϑk =

∫ (k−1∏
j=1

∏
zi=j

p(yi | θj)

)
p(θ1, . . . ,θk−1 | z,Mk)dθ1 . . . dθk−1 =

∫ (k−1∏
j=1

∏
zi=j

p(yi | θj)

)
p(θ1, . . . ,θk−1 | z,Mk−1)dθ1 . . . dθk−1 = p(y | z,Mk−1)

(S16)

where the third line in (S16) follows from C4. Further, from Condition C3, for any z such
that nk = 0 we have

p(z | Mk−1) = p(z | nk = 0,Mk) =
p(z | Mk)

P (nk = 0 | Mk)
⇒ p(z | Mk) = p(z | Mk−1)P (nk = 0 | Mk).

(S17)

Plugging (S16) and (S17) into (S15) gives that p(y | Mk) =

P (nk = 0 | Mk)
∑

z:nk=0

p(y | z,Mk−1)p(z | Mk−1) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk) =

P (nk = 0 | Mk)p(y | Mk−1) +
∑

z:nk>1

p(y | z,Mk)p(z | Mk)(S18)

That is, p(y | Mk) is a linear combination of p(y | Mk−1) and a sum of p(y, z | Mk) over
cluster configurations such that the last cluster k is occupied. This recursive relation is
an extension of Theorem 3.1 in Nobile (2004), who proved a similar result under more
restrictive conditions than our C1-C4. Dividing both sides of (S18) by p(y | Mk) and
rearranging terms gives

Bk−1,k(y) =
1

P (nk = 0 | Mk)

(
1−

∑
z:nk>1

p(y, z | Mk)

p(y | Mk)

)
=
P (nk = 0 | y,Mk)

P (nk = 0 | Mk)
.

Finally, from Condition C2 both the likelihood and prior are invariant to label permuta-
tions and thus P (nj = 0 | y,Mk) = P (nk = 0 | y,Mk) for any j 6= k, hence

Bk−1,k(y) =
1

kP (nk = 0 | Mk)

k∑
j=1

P (nj = 0 | y,Mk),

as we wished to prove.
For completeness we derive P (nk = 0 | Mk) when η ∼ Dir(q). From (S17), P (nk = 0 |
Mk) =

p(z | Mk)

p(z | Mk−1)
=

Γ(kq)
∏k

j=1 Γ(nj + q)

Γ(q)kΓ(n+ kq)

Γ(q)k−1Γ(n+ (k − 1)q)

Γ((k − 1)q)
∏k−1

j=1 Γ(nj + q)
=

Γ(kq)Γ(n+ (k − 1)q)

Γ(n+ kq)Γ((k − 1)q)
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S5. Monte Carlo estimation of the normalization constant

Table S2. Estimation of log(Ck) and associated standard error (se) via
Monte Carlo for the MOM-IW prior where k = 2, ..., 10 and p = 1, ..., 10.
Values for p = 1 and k = 2 are based on the exact formulas in Corollary 2

p

1 2 3 4 5
k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se
2 0.693 0 1.386 0 1.792 0 2.079 0 2.303 0
3 2.485 0 4.57 <0.01 5.70 <0.01 6.51 <0.01 7.14 <0.01
4 5.663 0 9.83 <0.01 11.98 <0.01 13.51 <0.01 14.70 <0.01
5 10.451 0 17.36 <0.01 20.83 <0.01 23.25 <0.01 25.16 <0.01
6 17.030 0 27.27 0.04 32.26 0.02 35.99 0.03 38.58 <0.01
7 25.555 0 38.81 0.07 46.33 0.04 51.11 0.02 55.01 0.02
8 36.160 0 53.01 0.10 62.05 0.05 69.70 0.07 74.51 0.04
9 48.961 0 66.46 0.08 80.73 0.11 89.83 0.08 96.35 0.05

10 64.066 0 82.71 0.10 100.43 0.08 111.81 0.09 120.87 0.10
p

6 7 8 9 10
k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se
2 2.485 0 2.639 0 2.773 0 2.890 0 2.996 0
3 7.66 <0.01 8.09 <0.01 8.48 <0.01 8.82 <0.01 9.12 <0.01
4 15.68 <0.01 16.51 <0.01 17.25 <0.01 17.90 <0.01 18.49 <0.01
5 26.72 <0.01 28.04 <0.01 29.23 <0.01 30.26 <0.01 31.22 <0.01
6 40.81 <0.01 42.78 0.01 44.47 <0.01 45.99 <0.01 47.35 <0.01
7 58.21 0.04 60.78 0.02 63.05 0.01 65.15 0.01 67.08 0.01
8 78.44 0.04 82.13 0.04 84.96 0.02 88.01 0.04 90.19 0.02
9 101.82 0.05 106.15 0.05 110.12 0.05 113.81 0.04 116.87 0.03

10 127.88 0.07 133.19 0.05 138.22 0.05 143.08 0.06 146.70 0.04

S6. Sensitivity of choosing g for MOM-Beta priors

Figure S3 reproduces the Binomial mixture simulations from Section 4.7. Additionally
to the default g = 7.11 for the MOM-Beta prior, we now considered larger (more infor-
mative) g = 16.09, 29.99. Under these larger g the performance remains competitive but
does suffer, suggesting that the default g = 7.11 is preferable. For a comparison to the
BIC, sBIC and Beta priors see Figure 6.

S7. Comparison of ECP with other alternatives

We simulated a single data set of n = 200 observations from Cases 1 and 3 in Section
4.1 and computed 50 times P̂ (Mk | y) under Normal-IW-Dir priors using the ECP
estimator and the Marin and Robert (2008) estimator given by (3.3). Figures S4-S5 show
that the medians of the ECP estimator and the Marin and Robert (2008) estimator with
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Table S3. Estimation of log(Ck) for k = 2, ..., 10, p = 1, ..., 10 via Monte
Carlo and its standard error (se) for the MOM-Beta prior with a = 0.5 and
default g in Table S1. Values for p = 1 and k = 2 are based on the exact
formulas in Corollary 3

p

1 2 3 4 5
k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se
2 -2.786 0 -1.685 0 -1.107 0 -0.725 0 -0.442 0
3 -8.305 0 -4.88 <0.01 -3.18 <0.01 -2.05 <0.01 -1.23 <0.01
4 -16.539 0 -9.47 <0.01 -6.09 <0.01 -3.89 <0.01 -2.26 <0.01
5 -27.481 0 -15.40 0.02 -9.75 0.02 -6.15 0.01 -3.48 <0.01
6 -41.130 0 -22.55 0.06 -14.15 0.04 -8.75 0.02 -4.82 0.02
7 -57.488 0 -31.45 0.11 -19.43 0.06 -11.74 0.05 -6.29 0.03
8 -76.556 0 -41.92 0.12 -25.40 0.13 -15.39 0.07 -7.90 0.05
9 -98.337 0 -54.12 0.20 -32.34 0.22 -19.11 0.16 -9.35 0.16

10 -122.834 0 -67.71 0.30 -40.06 0.29 -23.74 0.19 -11.81 0.17
p

6 7 8 9 10
k log(Ck) se log(Ck) se log(Ck) se log(Ck) se log(Ck) se
2 -0.220 0 -0.036 0 0.119 0 0.257 0 0.377 0
3 -0.57 <0.01 -0.03 <0.01 0.43 <0.01 0.83 <0.01 1.19 <0.01
4 -0.98 <0.01 0.07 <0.01 0.98 <0.01 1.78 <0.01 2.48 <0.01
4 -1.39 <0.01 0.36 <0.01 1.84 <0.01 3.15 <0.01 4.30 <0.01
6 -1.74 <0.01 0.84 <0.01 3.05 <0.01 4.99 <0.01 6.69 <0.01
7 -1.97 0.03 1.64 0.03 4.67 0.02 7.34 <0.01 9.70 <0.01
8 -2.20 0.06 2.66 0.06 6.59 0.04 10.24 0.03 13.34 0.03
9 -2.21 0.10 3.78 0.07 9.00 0.07 13.60 0.06 17.52 0.05

10 -2.45 0.15 5.22 0.11 11.61 0.09 17.41 0.10 22.31 0.07

k = {1, ..., 4} are similar, but that the ECP estimator produces higher precision estimates.

To compute P̂ (Mk | y) using the ECP estimator we implement the bfnormmix function
given in the R package mombf (Rossell et al., 2018).

S8. Precision of the Monte Carlo-estimated integrated likelihood

We compared empirically the precision of p̂(y | Mk) vs. the local prior-based p̃(y | Mk)
(Section 3.1) for univariate and bivariate Normal mixture and k = 2, 3 components
(if k = 1 then p(y | Mk) = p̃(y | Mk) has closed form). To inspect whether the
precision of p̂(y | Mk) suffers under overfitted mixtures we simulated a single data set
of n = 500 observations from a k∗ = 1 component mixture and computed 100 times
both p̂(y | Mk) and p̃(y | Mk). Figures S6 and S7 show the results for a univariate
and bivariate outcome respectively. The precision of p̂(y | Mk) was comparable to that
of p̃(y | Mk), in fact in some situations the former was more precise (this is due to
Var(log p̂) = Var(log p̃) + Var(log ω̂) + 2cov(log p̃, log ω̂) where the latter covariance may
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Figure S1. Default MOM-Beta (a = 0.5, g = 7.11) (left) and Beta(1,1) (right)
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Figure S2. Prior standard deviation SD(θ11 − θ21 | Mk) under a MOM-
Beta(0.5g, 0.5(1− g))

be negative). More importantly, posterior model probabilities p̂(Mk | y) (middle panels)
were more precise than p̃(Mk | y), as in our experience tends to be the case due to
p(Mk | y) having a higher concentration around 0 or 1 (Theorem 1). The lower panels
show that as k grows larger than k∗ the precision in ŵ tends to degrade, however as
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mentioned this is compensated by the fact that p(Mk | y) is small for large k (middle
panels), thus it does not appear to be a practical concern.

S9. Gibbs sampling algorithms

Algorithm S1 outlines a Gibbs sampling algorithm for Normal mixtures under the
Normal-IW-Dir prior

Dir(η; q)
∏
j

N(µj; 0, gΣj)IW(Σj; ν, S).

Analogously, Algorithm S2 outlines a Gibbs sampling algorithm for product Binomial
mixtures under the Beta-Dirichlet prior

Dir(η; q)
∏
jf

Beta (θjf ; ag, (1− a)g) .

Algorithm S 1: Gibbs sampling for Normal mixtures under a Normal-IW-Dir
prior.

1 Initialize ϑ
(0)
k = (θ

(0)
1 , ...,θ

(0)
k ,η(0)) with θ

(0)
j = (µ

(0)
j ,Σ

(0)
j ). for t = 1, ..., T do

2 Draw z
(t)
i = j with probability:

η
(t−1)
k N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

.

3 Let n
(t)
j =

∑n
i=1 I(z

(t)
i = j) and ȳ

(t)
j =

1

nj

∑
z
(t)
i =j

yi if n
(t)
j > 0, else ȳ

(t)
j = 0. Draw

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ).

4 Let Sj = S−1 +
∑

zi=j
(yi − ȳ

(t−1)
j )(yi − ȳ

(t−1)
j )

′
+
∑k

j=1

nj/g

nj + 1/g
ȳ

(t)
j ȳ

′(t)
j . Draw

5

Σ
(t)
j ∼ IW (ν + nj , Sj) ,

6 Draw

µ
(t)
j ∼ N

(
gn

(t)
j ȳ

(t)
j

1 + gn
(t)
j

,
g

1 + gn
(t)
j

Σ
(t)
j

)
,

7 end
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Algorithm S2: Gibbs sampling for product Binomial mixtures under the Beta-Dir
prior.

1 Initialize ϑ
(0)
k = (θ

(0)
1 , ...,θ

(0)
k ,η(0)) where θ

(0)
j = (θ

(0)
j1 , . . . , θ

(0)
jp ). for t = 1, ..., T do

2 Draw z
(t)
i = j with probability:

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

Draw

η(t) ∼ Dir(q + n
(t)
1 , ..., q + n

(t)
k ).

where n
(t)
j =

∑n
i=1 I(z

(t)
i = j). Draw

θ
(t)
jf ∼ Beta

ag +
∑
z
(t)
i =j

yif , (1− a)g +
∑
z
(t)
i =j

(Lif − yif )

 ,

3 end

S10. EM algorithm for multivariate Normal mixtures under
MOM-Wishart-Dirichlet priors

The complete-data posterior can be written as follows

p(ϑk | y, z,Mk) =
k∏
j=1

n∏
i=1

(ηjN(y;µj,Σj))
zijN (µj; 0, gAΣ) Wishart(Σ−1

j ; ν, S)Dir(η; q).

(S1)

The E-step at iteration t requires the expectation of log p(ϑk | y, z,Mk) with respect

to p(z | y,ϑ
(t−1)
k ,Mk), where ϑ

(t−1)
k = (η(t−1),µ

(t−1)
1 , ...,µ

(t−1)
k ,Σ

(t−1)
1 , ...,Σ

(t−1)
k ) are the

parameter values at iteration t− 1. Let

z̄
(t)
ij = p(zi = j | yi,ϑ(t−1)

k ) =
η

(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )∑k

j=1 η
(t−1)
j N(yi;µ

(t−1)
j ,Σ

(t−1)
j )

,(S2)

then the M-step seeks ϑ
(t)
k maximising

log(p(ϑk | y, z̄ij,Mk)) =
k∑
j=1

nj log(ηj) +
k∑
j=1

n∑
i=1

z̄ij log(N(yi;µj ,Σj)) +
k∑
j=1

log(N (µj; 0, gAΣ))

(S3)

+
∑

1≤i<j≤k

log((µi − µj)
′
A−1

Σ (µi − µj)) +
k∑
j=1

log(Wishart(Σ−1
j ; ν, S))

+ log(Dir(η; q))
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where n
(t)
j =

∑n
i=1 z̄

(t)
ij . We successively update η(t), µ

(t)
1 ,...,µ

(t)
k and Σ

(t)
1 , ...,Σ

(t)
k in a

fashion that guarantees that (S3) increases at each step. The update η
(t)
j is

η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
,(S4)

which maximizes (S3) with respect to η conditional on the current µ
(t−1)
1 ,...,µ

(t−1)
k and

Σ
(t−1)
1 , ...,Σ

(t−1)
k . To update µ

(t)
j we seek to maximize

ξ(µ
(t)
j ) =

∑
i 6=j

log(C
(t)′

ij A
−1
Σ(t−1)C

(t)
ij )− 1

2g
µ
′(t)
j A−1

Σ(t−1)µ
(t)
j −

1

2

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )
′
A−1

Σ(t−1)(yi − µ
(t)
j ),

where Cij = (µi − µj). The first derivative of ξ(µ
(t)
j ) is

∇ξ(µ(t)
j ) = −2

∑
i 6=j

A−1
Σ(t−1)C

(t)
ij

C
(t)′

ij A
−1
Σ(t−1)C

(t)
ij

− 1

g
(A−1

Σ(t−1)µ
(t)
j )−

n∑
i=1

z̄
(t)
ij (A−1

Σ(t−1)(yi − µ
(t)
j )).

Because an analytic solution of ∇ξ(µ(t)
j ) = 0 in terms of µ

(t)
j is not feasible we resort to

a first order Taylor’s approximation for −2
∑

i 6=j(A
−1
Σ(t−1)C

(t)
ij )/(C

(t)′

ij A
−1
Σ(t−1)C

(t)
ij ) around

µ
(t−1)
j . Finding the maximum of this Taylor approximation gives the candidate update

µ∗j =

(
Σ
−1(t−1)
j n

(t)
j + A−1

Σ(t−1)

(
1

g
+
∑
j 6=k

2

d
(t−1)
ij

))−1

(S5)

×

(
Σ−1(t−1)n

(t)
j ȳ

(t)
j + A−1

Σ(t−1)

(∑
i 6=j

µ
(t−1)
j − (µ

(t−1)
i − µ(t−1)

j )

d
(t−1)
ij

))
,

where d
(t−1)
ij = (µ

(t−1)
i − µ(t−1)

j )′A−1
Σ(t−1)(µ

(t−1)
i − µ(t−1)

j ). If ξ(µ∗j) > ξ(µ
(t−1)
j ) we set

µ
(t)
j = µ∗j , else take the gradient step in Algorithm S3.
Finally we describe updating Σj for j = 1, . . . , k. Redefine ξ(Σj) to now be (S3)

viewed as a function of Σj. Due to the terms
∑

i 6=j log(µ
(t)
i − µ

(t)
j )

′
A−1

Σ(t)(µ
(t)
i − µ

(t)
j ) and

−1
2

log(|A−1
Σ(t) |) an analytic solution of ∇ξ(Σj) = 0 is not available, hence we use the

Taylor expansion around Σ
(t−1)
j

∑
i 6=j

log(µ
(t)
i − µ

(t)
j )

′
A−1

Σ(t)(µ
(t)
i − µ

(t)
j )− 1

2
log(|A−1

Σ(t) |) ≈

∑
i 6=j

(µ
(t)
i − µ

(t)
j )

′
A−1

Σ(t)(µ
(t)
i − µ

(t)
j )

(µ
(t−1)
i − µ(t−1)

j )′A−1
Σ(t−1)(µ

(t−1)
i − µ(t−1)

j )
− 1

2
log(|Σ(t)

j |).
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Note that when a common Σ1 = . . . = Σk is assumed then AΣ(t) = Σ(t) we only need a
Taylor expansion of first term. Summarising, the candidate update is

(ν − p+ n
(t)
j )Σ∗j = S−1 +

µ
(t)
j (µ

(t)
j )′

kg
+

n∑
i=1

z̄
(t)
ij (yi − µ(t)

j )(yi − µ(t)
j )

′

−1

k

∑
i 6=j

2(µ
(t)
j − µ

(t)
k )(µ

(t)
j − µ

(t)
k )

′

d
(t−1)
ij

.

If ξ(Σ∗j) > ξ(Σ
(t−1)
j ) we set Σ

(t)
j = Σ∗j , else take a gradient step (Algorithm S3) with a

small enough step size to ensure that Σ
(t)
j remains positive-definite.

Algorithm S3: Gradient Ascend algorithm.

1 Initialization ζ = ζ∗, k̄ =

√
‖ζ∗ − ζ(t−1)‖
∇ξ(ζ(t−1))

and h = 0;

2 while (ξ(ζ(t−1)) > ξ(ζ∗)) do

3 ζ∗ = ζ(t−1) +
k̄

2h
∇ξ(ζ(t−1));

4 h = h+ 1

5 end

6 ζ(t) = ζ∗

S11. EM algorithm for product Binomial mixture under MOM-Beta
priors

The EM algorithm is derived analogously to that for Normal mixtures (Supplementary
Section S10), and is described in Algorithm S4.
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Algorithm S4: EM under MOM-Beta priors.

1 Set t = 1. while ζ > ε∗ and t < T do
2 for t ≥ 1 and j = 1, ..., k do

3 E-step. Let z̄
(t)
ij =

η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )∑k

j=1 η
(t−1)
j

∏p
f=1 Bin(yif ;Lif , θ

(t−1)
jf )

.

M-step. Update

θ
(t)
j =

ag +
∑n

i=1 z̄
(t)
ij yi + `1(θ

(t)
j )

(1− a)g +
∑n

i=1 z̄
(t)
ij (Lif − yi) + 2`2(θ

(t)
j )

,

`1(θ
(t)
j ) =

θ
(t−1)
j − (θ

(t−1)
i − θ(t−1)

j )

(θ
(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
,

`2(θ
(t)
j ) =

[
(θ

(t−1)
i − θ(t−1)

j )′(θ
(t−1)
i − θ(t−1)

j )
]−1

. Update η
(t)
j =

n
(t)
j + q − 1

n+ k(q − 1)
.

4 end

5 Compute ζ = |ξ(ϑ(t)
k )− ξ(ϑ(t−1)

k )| and set t = t+ 1.

6 end

S12. Sensitivity to prior elicitation

We provide additional results for the simulation study in Section 4.1.
Regarding the univariate Normal mixtures in Cases 1-4, the four top panels in Figure

S10 show the posterior expected number of components given by E(k | y) = P (M1 |
y) + 2P (M2 | y) + 3P (M3 | y) for the alternative prior specification q = 2 and P (κ <
4) = 0.05. The four top panels in Figure S11 show analogous results for q = 4 and
P (κ < 4) = 0.05, showing that the findings are fairly robust to mild deviations from our
default q.

Regarding the bivariate Normal mixtures in Cases 5-8, the four bottom panels in Figure
S10 shows E(k | y) for q = 3 and P (κ < 4) = 0.05. The four bottom panels in Figure S11
show the same results for q = 16.5 (a value recommended in Frühwirth-Schnatter (2006)
and Mengersen et al. (2011), Chapter 10) and P (κ < 4) = 0.05, showing again that the
findings are fairly robust to mild deviations from our recommended prior setting.

Finally, to assess sensitivity to the prior elicitation of g, Figure S13 shows the average
posterior probability P (Mk∗ | y) for Cases 1-8 with P (κ < 4) = 0.1 and q set as in Figure
2. Although the results are largely similar to those in Figure 2, the benefits in parsimony
enforcement are somewhat reduced in some situations (e.g. Case 5), indicating that
P (κ < 4 | g,MK) = 0.05 may be slightly preferable to 0.1 to achieve a better balance
between parsimony and detection power.

S13. Supplementary results for the applications

Table S4 provides more detailed results for the misspecified Normal model (Section
4.2). It indicates the posterior probability of 11 models with k = 1, ..., 6 components, for
each k, considering either homogeneous (Σj = Σ) or heterogeneous (Σi 6= Σj) covariance
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matrices. The model with highest posterior, BIC and AIC is indicated in bold face. Table
S6 shows analogous results for the Faithful data (Section 4.4), Table S7 for the Iris data
(Section 4.5) and Table S5 for the Cytometry data (Section 4.3).

As an alternative to formal Bayesian model selection suppose one fits a model with a
large number of components (k = 6 in our examples) to successively discard those deemed
unnecessary. One strategy to discard components is to set a threshold on the estimated η̂,
which results in the addition of spurious components. An alternative illustrated in Table
2 and Table S8 is to describe the number m =

∑k
j=1 I(nj > 0) of non-empty components

(no allocated observations) at each MCMC iteration when obtaining posterior draws from
pL(z,ϑ | y,M6) and p(z,ϑ | y,M6) (respectively). For instance, for the misspecified
model roughly 95% of the MCMC iterations had 6 components with some allocated
observations, and similarly for other data sets, which naively suggest that at least k = 6
components are needed. This is in stark contrast with posterior model probabilities
P (Mk | y) in Tables S4-S5, which suggest more parsimonious models. This difference is
explained by the fact that P (m | y,M6) reported in Table 2 and Table S8 conditions on
the larger model whereas P (Mk | y) is a formal measure of uncertainty for each of the
models under consideration conditional on the observed data.

Table S4. Misspecified model. P (Mk | y) under Normal-IW-Dir and
MOM-IW-Dir priors, BIC, AIC and sBIC for k ∈ {1, . . . , 6} and homoge-
neous (Σj = Σ) or heterogeneous (Σi 6= Σj)

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -2992.820 -2981.828
Σj = Σ 2 0.000 0.000 -2549.767 -2532.179

3 0.003 1.000 -2548.774 -2524.591
4 0.062 0.000 -2556.581 -2525.803
5 0.469 0.000 -2566.122 -2528.748
6 0.465 0.000 -2574.371 -2530.402

Σi 6= Σj 2 0.000 0.000 -2545.129 -2520.946 -2548.942
3 0.000 0.000 -2529.037 -2491.663 -2534.729
4 0.000 0.000 -2522.954 -2472.389 -2527.448
5 0.000 0.000 -2535.703 -2471.948 -2528.207
6 0.000 0.000 -2546.878 -2469.931 -2529.068

S14. Sample R code

The R code below generates bivariate data from a single-component Normal mix-
ture and uses bfnormmix from R package mombf to obtain posterior probabilities for 1-3
components, both under MOM-IW-Dir and Normal-IW-Dir priors, under default prior
parameters. The obtained estimates are P (M1 | y) = 0.889 and 0.771 for MOM-IW-Dir
and Normal-IW-Dir priors, respectively.
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Table S5. Cytometry data. P (Mk | y) under Normal-IW-Dir and MOM-
IW-Dir priors, BIC, AIC and sBIC for k ∈ {1, . . . , 6} and homogeneous
(Σj = Σ) or heterogeneous (Σi 6= Σj)

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -28337.23 -28295.02
Σj = Σ 2 0.000 0.000 -27720.64 -27665.86

3 0.000 0.000 -27541.73 -27474.39
4 0.000 0.000 -27443.22 -27363.31
5 0.000 0.000 -27271.67 -27179.19
6 0.000 0.000 -27226.41 -27121.36

Σi 6= Σj 2 0.072 0.005 -27357.56 -27277.65 -37869.06
3 0.928 0.995 -27015.35 -26897.74 -36478.20
4 0.000 0.000 -27048.60 -26893.29 -35247.11
5 0.000 0.000 -27041.50 -26848.50 -34415.96
6 0.000 0.000 -27075.18 -26844.48 -33888.20

Table S6. Faithful data. P (Mk | y) under Normal-IW-Dir and MOM-
IW-Dir priors, BIC, AIC and sBIC for k ∈ {1, . . . , 6} and homogeneous
(Σj = Σ) or heterogeneous (Σi 6= Σj)

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -558.006 -548.992
Σj = Σ 2 0.000 0.000 -416.805 -402.382

3 0.132 0.967 -411.356 -391.524
4 0.473 0.000 -419.748 -394.507
5 0.353 0.000 -418.019 -387.369
6 0.042 0.000 -427.821 -391.763

Σi 6= Σj 2 0.000 0.000 -415.291 -395.459 -419.103
3 0.000 0.000 -422.609 -391.960 -415.938
4 0.000 0.000 -425.370 -383.903 -417.278
5 0.000 0.000 -439.754 -387.470 -420.569
6 0.000 0.000 -448.896 -385.795 -422.231

> library(mombf)

> set.seed(1)

> x <- matrix(rnorm(100*2),ncol=2)

> bfnormmix(x=x,k=1:3)

mixturebf object with 2 variables

Use draw() to obtain posterior samples. postProb() returns posterior probabilities as given below

k pp.momiw pp.niw logprobempty logbf.momiw logpen logbf.niw

1 1 0.88864310 0.77117451 -Inf 0.000000 0.0000000 0.000000

2 2 0.09992687 0.18573876 -3.191547 -2.185257 -0.7616836 -1.423573
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Table S7. Iris data. P (Mk | y) under Normal-IW-Dir and MOM-IW-Dir
priors, BIC, AIC and sBIC for k ∈ {1, . . . , 6} and homogeneous (Σj = Σ)
or heterogeneous (Σi 6= Σj)

Normal-IW-Dir MOM-IW-Dir BIC AIC sBIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -414.989 -393.915
Σj = Σ 2 0.000 0.000 -344.049 -315.448

3 0.809 1.000 -316.483 -280.355
4 0.029 0.000 -295.705 -252.051
5 0.132 0.000 -302.465 -251.284
6 0.030 0.000 -310.909 -252.201

Σi 6= Σj 2 0.000 0.000 -287.009 -243.355 -415.449
3 0.000 0.000 -290.420 -224.186 -410.122
4 0.000 0.000 -314.483 -225.669 -408.839
5 0.000 0.000 -341.910 -230.517 -414.190
6 0.000 0.000 -355.786 -221.813 -422.209

Table S8. Posterior distribution on non-empty components m =∑k
j=1 I(nj > 0) in repulsive overfitted mixtures under Σj = Σ. The Mis-

specified, Faithful, Iris and cytometry data considered in Section 4.

P̂ (m | y,M6)
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

q = 1

Misspecified 0.00 0.00 0.00 0.00 0.02 0.98
Faithful 0.00 0.00 0.00 0.00 0.26 0.74

Iris 0.00 0.99 0.00 0.01 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 0.01

Misspecified 0.00 0.00 0.00 0.35 0.63 0.02
Faithful 0.00 0.00 0.76 0.23 0.01 0.00

Iris 0.00 1.00 0.00 0.00 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

q = 3.10−8

Misspecified 0.00 0.00 0.83 0.00 0.00 0.17
Faithful 0.00 0.00 0.99 0.01 0.00 0.00

Iris 0.00 1.00 0.00 0.00 0.00 0.00
Cytometry 0.00 0.00 0.00 0.00 0.00 1.00

3 3 0.01143003 0.04308673 -2.470700 -4.353451 -1.4687516 -2.884700

model
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Table S9. Combined words in the political blogs data

clinton clintons
obama obamas barack

america american americans
candidate candidates

democratic democrats
new news

president presidential
senate senator

year years
vote voters

thing things

Table S10. Political blogs data. P (Mk | y) under a MOM-Beta and
Beta priors and k ∈ {1, . . . , 6}, BIC and BIC.

MOM-Beta Beta BIC AIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -257405.2 -256317.0
2 1.000 0.000 -255488.8 -253307.8
3 0.000 0.000 -255329.7 -252055.9
4 0.000 1.000 -255358.8 -250992.2
5 0.000 0.000 -255712.2 -250252.7
6 0.000 0.000 -256366.0 -249813.7

1 Normal, VVV

2 Normal, VVV

3 Normal, VVV

S15. An illustration for the computations for the product of Binomial
mixture under MOM-Beta priors

We illustrate some computational issues and diagnostics related to posterior multi-
modality, the EM and MCMC algorithms in product Binomial mixtures. We considered
a simulation with k∗ = 4 components, n = 500, p = 8 variables and equal component
weights η∗1 = η∗2 = η∗3 = η∗4 = 1/4. Each component had two large success probabilities
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θ∗jf = 0.32 whereas the remaining probabilities were small (0.04 and 0.08), specifically

θ =



0.32 0.04 0.04 0.04
0.32 0.08 0.08 0.08
0.04 0.32 0.04 0.04
0.08 0.32 0.08 0.08
0.04 0.04 0.32 0.04
0.08 0.08 0.32 0.08
0.04 0.04 0.04 0.32
0.08 0.08 0.08 0.32


.(S1)

The default MOM-Beta prior parameters are g = 2.6 and q = 2 (Section 2.3). Although
our EM algorithm is guaranteed to increase the log-posterior at each iteration, in practice
there are potential issues with slow convergence or reaching local maxima/saddlepoints.
To address this in our implementation we run the EM algorithm (Algorithm 4) from 30
different random starting values and keep the estimate achieving the highest log-posterior
value. The obtained estimates were fairly close to the simulation truth, specifically

η̂ = (0.28, 0.26, 0.24, 0.22); θ̂ =



0.34 0.05 0.04 0.04
0.28 0.07 0.08 0.07
0.04 0.31 0.04 0.05
0.08 0.31 0.08 0.08
0.05 0.05 0.35 0.06
0.09 0.08 0.31 0.08
0.03 0.04 0.04 0.33
0.09 0.09 0.07 0.30


(S2)

We also studied the ability of the BIC, AIC, and Beta and MOM-Beta priors to recover
k∗ = 4, finding that all except for the AIC returned the correct value (Table S11). Recall
that the posterior probabilities require estimating the integrated likelihood, for which in
turn we run an MCMC algorithm. To assess practical MCMC convergence we used trace
plots for 2,000 iterations targetting p(ϑ4 | y,M4) after a burn period of 1,000. The plots
did not reveal any issues with the chain’s mixing.

Table S11. Product Binomial simulation. P (Mk | y) for k ∈ {1, . . . , 6}
under Beta and MOM-Beta priors, BIC and AIC.

Beta MOM-Beta BIC AIC
k P (Mk | y) P (Mk | y)

1 0.000 0.000 -22702.00 -22668.29
2 0.000 0.000 -21569.65 -21498.00
3 0.000 0.000 -20782.58 -20673.00
4 1.000 1.000 -20051.63 -19904.11
5 0.000 0.000 -20074.65 -19889.21
6 0.000 0.000 -20099.17 -19875.80
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n=50

n=200

n=500

Figure S3. Binomial mixture. Frequencies of k̂ for MOM-Beta for g =
7.11, g = 16.09 and g = 29.99 with q = 2. Results from 200 data sets with
n = 50, n = 200 and n = 500, L = 30 and k∗ = 4
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Figure S4. Boxplots display 50 independent estimates based on separate
MCMC runs (T = 10, 000 iterations after a T/10 burn-in each). Precision

of P̂ (Mk | y) under Normal-IW-Dir using the Marin and Robert (2008)
estimator (gray) and ECP estimator (white) for n = 200 observations in

simulation Case 1. Dashed line indicate P̂ (Mk | y) under Normal-IW-Dir
obtained by simulating 1, 000, 000 values from the prior and averaging the
likelihood.
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Figure S5. Boxplots display 50 independent estimates based on separate
MCMC runs (T = 10, 000 iterations after a T/10 burn-in each). Precision

of P̂ (Mk | y) under Normal-IW-Dir using the Marin and Robert (2008)
estimator (gray) and ECP estimator (white) for n = 200 observations in

simulation Case 3. Dashed line indicate P̂ (Mk | y) under Normal-IW-Dir
obtained by simulating 1, 000, 000 values from the prior and averaging the
likelihood.
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Figure S6. Precision of p̂(y | Mk) in 100 univariate simulations, k∗ = 1.
Top: log p̂(y | Mk). Middle: p̂(Mk | y). Bottom: log p̃(y | Mk) vs.

log Ê(dϑ(ϑk) | y)
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Figure S7. Precision of p̂(y | Mk) in 100 bivariate simulations, k∗ = 1.
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k = 1, . . . , K via the ECP estimator (function bfnormmmix in R package
mombf). Data was generated from a one-component standard multivariate
Normal
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Figure S9. Simulation study data-generating truth. Case 1: k∗=1, µ1=0;
Case 2: k∗=2, µ1=-1, µ2=1, η = (0.5, 0.5); Case 3: k∗=2, µ1 = −2,µ2 = 2,
η=0.5; Case 4: k∗=3, µ1 = −1,µ2 = 1,µ3 = 4, η =(0.45,0.45,0.1); Case
5: k∗=1, µ = (0, 0)′; Case 6: k∗=2, µ1 = (−0.4,−0.6)′, µ2 = −µ1; Case 7:
k∗=2, µ1 = (−0.65,−0.85)′, µ2 = −µ1; Case 8: k∗=3, µ1 = (−0.65,−0.85)′,
µ2 = −µ1, µ3 = (3, 3)′, η=(0.35,0.35,0.3). Σ = 1 in Cases 1-4, σ2

11 = σ2
22 = 1

and σ2
12 = σ2

21 = −0.5 in Cases 5-8.



ON CHOOSING MIXTURE COMPONENTS VIA NON-LOCAL PRIORS 67

Case 1 (k∗ = 1, q=2) Case 2 (k∗ = 2, p=1, q=2)

500 1000 1500 2000 2500

1.
0

1.
5

2.
0

2.
5

3.
0

 

500 1000 1500 2000 2500

1.
0

1.
5

2.
0

2.
5

3.
0
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Figure S10. Simulation study. Posterior expected model size E(k | y)
versus n for q = p+1 for the MOM-IW-Dir (solid line) and Normal-IW-Dir
(dotted line).
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Case 3 (k∗ = 2, p=1, q=4) Case 4 (k∗ = 3, p=1, q=4)
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Case 5 (k∗ = 1, p=2, q=16.5) Case 6 (k∗ = 2, p=2, q=16.5)
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Case 7 (k∗ = 2, p=2, q=16.5) Case 8 (k∗ = 3, p=2, q=16.5)
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Figure S11. Simulation study. Posterior expected model size E(k | y)
versus n for q = 4 and q = 16.5 for univariate and bivariate Normal mix-
tures as recommended by Frühwirth-Schnatter (2006) for the MOM-IW-Dir
(solid line) and Normal-IW-Dir (dotted line).
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Case 3 (k∗ = 2, p=1, q=2) Case 4 (k∗ = 3, p=1, q=2)

500 1000 1500 2000 2500

1.
0

1.
5

2.
0

2.
5

3.
0

 

500 1000 1500 2000 2500

1.
0

1.
5

2.
0

2.
5

3.
0

 

Case 5 (k∗ = 1, p=2, q=3) Case 6 (k∗ = 2, p=2, q=3)
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Case 7 (k∗ = 2, p=2, q=3) Case 8 (k∗ = 3, p=2, q=3)
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Figure S12. Simulation study. Average k̂ versus n for MOM-IW-Dir
(solid black), Normal-IW-Dir (dotted black), AIC (dotted gray) and BIC
(solid gray).
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Case 3 (k∗ = 2, p=1, q=2) Case 4 (k∗ = 3, p=1, q=2)
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Case 5 (k∗ = 1, p=2, q=3) Case 6 (k∗ = 2, p=2, q=3)
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Case 7 (k∗ = 2, p=2, q=3) Case 8 (k∗ = 3, p=2, q=3)
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Figure S13. Simulation study. P (Mk∗ | y) versus n under P (κ < 4 |
Mk) = 0.1 for the MOM-IW-Dir (solid line) and Normal-IW-Dir (dotted
line).
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Figure S14. Faithful dataset. The x-axis portrays the eruption time
(minutes) and the y-axis the waiting time until the next eruption (minutes).
Contours for the model chosen by BIC/sBIC and AIC (top), Normal-IW
and MOM-IW (bottom), from left to right and the points indicate the data.
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Figure S15. Principal components for the Fisher’s Iris data-set, classifi-
cation of observations and contours using EM algorithm under MOM-IW.
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Figure S16. Estimated cluster probabilities p(zi = j|y,Mj) under BIC,
AIC, Beta and MOM-Beta for documents labelled as conservative or liberal
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