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ABSTRACT

Transfer learning uses knowledge learnt in a source domain to aid

predictions in a target domain. When both source and target do-

mains are online, each are susceptible to concept drift, which may

alter the mapping of knowledge between them. Drifts in online

domains can make additional information available, necessitating

knowledge transfer both from the source to the target and vice

versa. To address this we introduce the Bi-directional Online Trans-

fer Learning framework (BOTL), which uses knowledge learnt in

each online domain to aid predictions in others. We also introduce

two variants of BOTL that incorporate model culling to minimise

negative transfer in frameworks with large numbers of domains.We

provide a theoretical performance guarantee that indicates BOTL

achieves a loss no worse than the underlying local concept drift

detection algorithm. Empirical results are presented using two data

stream generators: the drifting hyperplane emulator and the smart

home heating simulator, and real-world data predicting Time To

Collision (TTC) from vehicle telemetry. The evaluation shows BOTL

and it’s variants outperform the existing state-of-the-art technique.
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1 INTRODUCTION

Online Learning (OL) and Transfer Learning (TL) have been exten-

sively studied within the machine learning community [6, 19, 24].

OL enables supervised learning to be conducted upon data streams

that are susceptible to concept drift [6]. Concept drift can cause

the distribution of data to change over time, modifying the un-

derlying concept, meaning predictive models must be updated or

discarded to maintain effective predictions. To build accurate mod-

els, many real-world applications require large amounts of training

data, which is often limited due to concept drifts [19].

TL enables models to be learnt in domains where training data is

readily available, and used where it is limited to build more effective

predictors [19]. TL has typically been conducted offline, limiting

its use in real-world online environments [30]. It may be desirable

to use on-device learning to personalise the functionalities of user

facing applications, but a rich history of data may not be available

locally due to memory limitations, and drifts may be encountered

frequently. Predictive performances could be enhanced using TL in

an online setting by using knowledge learnt from others to aid the

target predictor.

The Online Transfer Learning framework (OTL), developed by

Zhao et al. [30], was proposed to enable TL to be used within an

online setting. Current versions of OTL, such as [7, 9, 26], assume

the source is in an offline environment, ignoring the possibility of

concept drift occurring in the source domain.

In this paper, we propose the Bi-directional Online Transfer

Learning framework (BOTL)
1
, which considers both the source and

target to be online. This has three benefits over existing approaches.

Firstly, individual concepts are learnt, using concept drift detection

strategies, and transferred to improve performance in the target [6].

Secondly, additional knowledge is transferred as new concepts

are encountered in the source domain. Thirdly, knowledge can be

transferred bi-directionally, enabling more effective predictions to

be made in both domains. Specifically, we:

• introduce the BOTL framework, enabling each domain to

benefit from online TL in a regression setting,

• provide a theoretical performance guarantee showing pre-

dictions made by BOTL are no worse than the underlying

local concept drift detection algorithm, and

• show the performance of BOTL exceeds existing state-of-

the-art techniques using a variety of datasets.

1
Available here: https://github.com/hmckay/BOTL

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://github.com/hmckay/BOTL
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We evaluate BOTL in a regression setting using two synthetic

datasets and one real-world dataset containing both sudden and

gradual drifts. We compare BOTL with a state-of-the-art online TL

framework, the Generalised Online Transfer Learning framework

(GOTL), which assumes the source is offline [9].

The remainder of this paper is organised as follows. Section 2

outlines related work. Section 3 formulates the setting in which

BOTL is used. Section 4 presents the proposed framework, and

its theoretical performance guarantee is presented in Section 5.

Section 6 specifies the data used for results presented in Section 7.

Finally, Section 8 concludes the paper.

2 RELATEDWORK

Online TL combines OL and TL. The aim of TL is to use knowl-

edge learnt in one task, referred to as the source, to improve the

effectiveness of predictions in another, referred to as the target [18].

There are three distinct types of TL: inductive, transductive and

unsupervised [1, 3, 19]. Inductive TL is used when source and target

predictive tasks are different. Knowledge is transferred from the

source to induce a supervised predictive function in the target [3].

Typically, large amounts of labelled target data is required to create

a mapping between domains [19]. Unsupervised TL is applied in

a similar way, but to tasks such as clustering [19]. Transductive

TL is used when source and target tasks are the same, transferring

knowledge to improve predictive performances for a target where

no labelled data is available [1]. TL can be further categorised as

homogeneous, where the domains of source and target are the

same, or heterogeneous, where they differ [30]. In this paper we

consider a homogeneous setting, and use inductive TL to improve

the predictive performances within both source and target domains.

It is desirable, for many modern applications, such as smart

home heating systems, to predict future events from historical data.

However, applications are often limited by memory constraints,

preventing a complete history of data being retained [8]. Addition-

ally due to the dynamic and non-stationary environment of data

streams, the underlying concept may evolve or drift over time [13].

Concept drift is a change in the distribution of the observed data,

or a change in the mapping between observations and values to be

predicted [11]. If the underlying concept changes, the previously

built model may no longer make effective predictions, requiring

the model to be modified or re-learnt [6].

To maintain effective predictions, concept drift detection algo-

rithms are frequently used in OL. Concept drift detection algorithms

typically use a sliding window to maintain a subset of recent in-

stances, usually used to update or rebuild the model. Strategies

to update a model include ensemble learning approaches, where

the window of recent instances is used to create a new model and

combined with previously learnt models to improve the predictive

performance. Model predictions are aggregated, for example, DWM

uses a mean weighted by the models’ estimated performance [14].

Alternatively, concept drift detection algorithms such as ADWIN [2]

use the window of data to create a model that represents the current

concept independently of previous ones.

A challenge associated with these concept drift detection strate-

gies is that every time a concept is encountered, a new model

must be learnt, and data must be collected to build the model. Re-

Pro [27] uses an approach similar to ADWIN, but retains a history

of concepts and concept transitions to prevent learning recurring

concepts [28]. This prevents the need to collect new data each time

a recurring concept is encountered, however, data must still be

collected to build models for new concepts. For many real-world

applications, particularly those that are user facing, knowledge

obtained from other users could enhance predictions when new

concepts are encountered through the use of online TL.

Existing online TL frameworks aim to transfer knowledge learnt

from an offline source to an online target for classification tasks.

OTL [30], combines the offline source model with the online target

model using a weighting mechanism that is updated with respect

to the performance of the models on a sliding window of data in

the target domain. GOTL [9] extends the OTL weighting mecha-

nism such that online TL can be used for both classification and

regression. The weighting mechanism used by GOTL incrementally

updates in steps to obtain weightings for source and target models.

If the step size, δ , used to modify the weights is small enough, the

ensemble of source and target models approximates the optimal

weight combination [8]. However, if the step size is too small, it

may take substantial time for the weights to update to their desired

values, making predictions unreliable during this period.

The field of online TL relates to Online Multi-task Learning

(OMTL) [17, 20, 21], and Multistream Regression (MSR) [10]. MSR

can be seen as a special case, where the source and target data

streams are drawn from the same underlying distribution, and

concepts encountered in the target domain have previously been

encountered in the source [4]. This means the models transferred

from the source can be used to make predictions in the target

without requiring a target learner. This is unrealistic for many real-

world applications as although source and target domains may be

similar, it is unlikely the data streams are drawn from the same

distribution. The goal of OMTL is to minimise the cumulative global

loss across all domains [16], whereas online TL aims tominimise the

predictive losses within each individual domain. Considering loss

in this way is beneficial when applied to tasks such as application

personalisation, where each domain represents a different user, and

prediction errors should be minimised for that specific individual.

Although online TL has been actively studied [7, 9, 25, 26, 29, 30],

existing approaches assume the source is offline. We propose BOTL,

which considers both source and target in online environments, as

might be expected in real-world applications such as smart home

heating, or vehicle Adaptive Cruise Control (ACC), personalisations.

3 PROBLEM FORMULATION

Let domain D consist of a feature space χ, where xt ∈ R
m
is the

instance observed at time t such that xt = {xt1 , . . . ,xtm } ∈ χ. Given
domain D, a task consists of the target response variable, y ∈ Y ,
where y ∈ R, and a regression function, f : χ→ Y , which is learnt

to map observed data to the target concept [19]. The knowledge

learnt in a source domain, DS, can be transferred to the target

domain, DT , and used to enhance predictions [24].

Online TL aims to learn the target predictive function, f T , that

effectively predicts the response variable, yTt ∈ Y
T
, for each in-

stance, xTt ∈ χT, observed in the target data stream, such that
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Table 1: Notation

Definition

Dα
Domain α : target, T , or source, S

χα
Data stream α

Y α
Response variables of α

xt ∈χα
The t th observed instance in χα

yt ∈Y α
The response variable of instance xt

M Knowledge base of models

f αβ :χ
α→Y α

Model β learnt in domain α

FM :χT→Y T Meta-model of M

ŷt Prediction using FM (xt )

ŷ
′αβ
t Prediction using f αβ (xt )

W Sliding window of instances

Wmax Maximum window size

errt Predictive error of instance xt
errW Predictive error acrossW

λl Loss threshold

λd Drift threshold

λcper f Performance culling threshold

λcMI Mutual information culling threshold

ŷ
′Ti
t = f Ti (xTt ). Model transfer is used to enhance the target pre-

dictor by combining knowledge learnt in the local domain with

knowledge learnt from other domains. For example, if we consider

the scenario of application personalisation, where each domain

represents an individual user, each instance, xt , may describe the

user’s current environmental setting. If we wish to personalise ap-

plication functionality by predicting some unknown value, yt , we

may be able to utilise knowledge learnt from another user, f Sj , to

enhance the predictive performance of the target learner. Identify-

ing concept drift in the source allows models to be transferred, f Sj
where j = 1 . . .k , for each of the k concepts encountered.

BOTL aims to minimise the predictive error in the target domain

by combining knowledge learnt from the target data stream with

models previously learnt in a source domain. Focusing on minimis-

ing the loss with respect to the local, or target, domain makes BOTL

highly applicable to the task of application personalisation, where

predictions are made to benefit a specific individual. To achieve this,

if we have a source domain, DS, that has previously learnt models

f S
1
, . . . , f Sj , and a target domain, DT, that has previously learnt

models f T
1
, . . . , f Ti , at time t , then models f S

1
, . . . , f Sj , should be

made available to the target domain such that the target learner can

benefit from the knowledge learnt in the source domain, DS. As

both domains are online, and knowledge transfer is bi-directional,

the models f T
1
, . . . , f Ti should also be made available to the source

domain, DS, such that the source learner can benefit from the

knowledge learnt in the target domain, DT .

In this paper, the source and target domains are considered to

be homogeneous, such that they share the same underlying feature

space, χS = χT, and Y S = Y T . Although the domains are homo-

geneous, the underlying concepts to be learnt within source and

target domains may not be equivalent, therefore models from a

source domain may not be relevant to the current target concept.

Algorithm 1 Adapted RePro for regression.

Input:Wmax , λl , λd , χT, HT =∅ (historical concepts), MT =∅ (tran-

sition matrix).

Learn f T
1
using x1 ...xWmax , add to HT

for t=Wmax+1,Wmax+2, ... do

Receive xt and predict ŷ
′

t=f
T
i (xt )

Receive yt , add ⟨xt ,ŷ
′

t ,yt ⟩ toW

if f Ti is new and stable then

Add f Ti to HT and f Ti−1→f Ti to MT

if R2 (f Ti ,W ) < λd then

f Ti+1 = SelectModel(HT ,MT ,W ) or learn new model overW

else if |W | ≥Wmax then

Remove x (t−|W |) fromW

while |f Ti (x (t−|W |) )−y(t−|W |) | ≤λl do

Remove x (t−|W |) fromW

BOTL provides a mechanism to combine models and maximise the

impact of transferred models on the target. In presenting BOTL we

use the notation detailed in Table 1.

4 BI-DIRECTIONAL ONLINE TRANSFER

LEARNING (BOTL)

To utilise knowledge of distinct concepts, BOTL hinges upon a

sliding window based concept drift detection algorithm. In this

paper we use an adaptation of RePro [28] for regression as the

underlying drift detector, however, other concept drift detection

algorithms could be used. Although RePro requires some domain

expertise to select appropriate parameter values, such as window

size and drift threshold, it has been selected as the foundation of

BOTL as it provides two unique benefits that outweigh this limita-

tion. Firstly, RePro aims to select a single model that represents the

current concept rather than using an ensemble of models to make

predictions [27]. If instead an ensemble-based detection algorithm

was used, such as DWM [14], the knowledge learnt to represent

a single source concept is encompassed across multiple models in

the ensemble, therefore all models would need to be transferred.

Limiting the number of models needing to be transferred to the

target domain reduces the communication and computational over-

head of combining knowledge. Secondly, RePro retains a history of

previously encountered concepts, preventing the need to re-learn

models for recurring concepts [28]. RePro uses a sliding window of

data,W , in the target domain to identify if a previously learnt model

represents the current concept. If the concept has not previously

been encountered a new model is created.

RePro was initially developed specifically for classification, there-

fore modifications are required for regression tasks, highlighted in

Algorithm 1. The original RePro algorithm detects drifts by measur-

ing the target model’s classification accuracy acrossW . To apply

RePro to regression, we instead use the R2 performance of the tar-

get model, f Ti , acrossW . A concept drift is said to have occurred

if the R2 performance drops below a predefined drift threshold,

λd . RePro traditionally maintains a sliding window of data with

a maximum size ofWmax by discarding one incorrectly classified

instance, and all subsequent correctly classified instances when the

window is full. In order to encapsulate this behaviour we introduce
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Algorithm 2 BOTL: transferring models.

Input:Wmax , λl , λd , χT, M.

for t=1,2, ... do

if f Sj+1 available then

Receive f Sj+1 from source, add to M

Receive xt
Select f Ti and detect drifts using Alg. 1, add to M

xt ′=⟨f S
1
(xt ), ...,f Sk (xt ),f

T
i (xt )⟩

ŷt=FM (xt ′) (see Eq. 1)

Receive yt
if f Ti is a new stable model then

Send f Ti to all other domains in framework

ϵ-insensitivity through a loss threshold, λl , that allows instance
x (t−|W |) to be discarded from the window if the predicted value,

ŷ
′

(t−|W |) , satisfies

|ŷ
′

(t−|W |) − y(t−|W |) | ≤ λl .

Concept drift detection in BOTL is conducted solely using the

locally learnt model. Drift detection should be conducted indepen-

dently of any knowledge transfer as transfer may enhance the

predictive performance across the current window of target data,

as such, hindering drift detection.

RePro uses a transition matrix to determine the likelihood of

encountering recurring concepts. To prevent the reuse of unstable

models that make poor predictions, only those that have been used

to make predictions over a predefined number of instances, without

causing a drift to be detected, are considered to be stable and added

to the transition matrix.

BOTL adopts this notion of a stable model to reduce negative

transfer, which occurs when an ineffective model is transferred

to the target domain [19]. Unstable models are not transferred,

preventing them from negatively impacting the target predictor.

A stable model is defined in BOTL to be one that has been used

across 2|W | instances, while maintaining a performance above the

drift threshold, λd . Once a model is deemed to be stable, it can be

transferred to other domains to aid their respective predictors, as

shown in Algorithm 2. This means that model transfer is limited to

those that RePro considers to have successfully learnt a concept in

their local domain.

Knowledge transfer is achieved in BOTL by communicating mod-

els across domains. When model f Sj is received, it is added to the set

of transferred models,M, and combined with the target predictor,

f Ti , to enhance the overall predictive performance. Our instan-

tiation of BOTL uses an Ordinary Least Squares (OLS) regressor

as a meta learner to combine the available models such that the

squared error of the predicted values, ŷ , acrossW is minimised.

Other regression learners could be used in place of OLS.

Each transferred model, f Sj ∈ M, and the current target model,

f Ti , are used to generate a new window of data. Each sample

xt
′
in the newly generated window of data is of the form xt

′ =

{ŷ
′S1
t , . . . , ŷ

′Sk
t , ŷ

′Ti
t }, where ŷ

′Sj
t for all j = 1, . . . ,k is the predicted

values of source model f Sj on instance xt from the original window

of target data, and ŷ
′Ti
t is the predicted value of the locally learnt

Algorithm 3 BOTL-C.II: model culling.

Input:W , λcper f , λcMI , M, f Ti
for f Sj ∈M do

if R2 (f Sj ,W )≤λcper f then

Remove f Sj from M

for f Sk ∈M do

if MutualInformation(f Sj ,f
S
k ,W )≥λcMI then

if R2 (f Sj ,W )≥R2 (f Sk ,W ) then

Remove f Sk from M

else

Remove f Sj from M

target model, f Ti , selected by RePro for the current concept, ci . This
window of model predictions is used by the OLS meta learner to

obtain the overarching predictive function,

ŷt = FM (xt
′)

= w0 +
*.
,

k∑
j=1

w j f
S
j (xt )

+/
-
+w (k+1) f

T
i (xt ).

(1)

4.1 Bi-directional Transfer

BOTL considers the scenario where all domains are online, there-

fore distinctions between source and target can be disregarded. In

this paper, BOTL conducts peer-to-peer model transfer, allowing

knowledge transfer to enhance the predictive performances of all

domains. When a newly learnt model is stable, it is transferred to

all other domains in the framework, and each domain updates it’s

model set,M, when a concept drift is encountered.

Real-world applications, such as smart home heating system

personalisations, may be comprised of a large number of domains,

rapidly increasing the number of models to be transferred as the

number of domains grow. Such applications can suffer in predictive

performance due to the curse of dimensionality, where the number

of input features to the OLS meta learner becomes large in compar-

ison to the window size [5]. To combat this, we introduce culling

to BOTL, referred to as BOTL-C.

4.2 Model Culling

Culling transferred models from the model set,M, helps to prevent

the OLS meta learner overfitting when a large number of models

have been transferred and only a small window of data is available.

We introduce two variants of BOTL-C. Firstly BOTL-C.I reduces the

number of models available to the OLS meta learner by temporarily

removing transferred models from the model set,M, when their

R2 performance across the current window of data drops below a

threshold, λcper f . These models are re-added toM when a concept

drift is encountered to enhance predictions of future concepts in

the target domain. Although this method of culling is naïve, it can

reduce the impact of negative transfer.

In scenarios with high volumes of model transfer, BOTL-C.I re-

quires a high R2 threshold to sufficiently reduce the number of

models to prevent the OLS meta learner overfitting. This can be

detrimental as a high proportion of the transferred models contain-

ing useful information are culled and no longer available to enhance
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the predictive performance of the target learner. To overcome this,

BOTL-C.II, outlined in Algorithm 3, evaluates transferred models

based on both performance and diversity, metrics commonly used

in ensemble pruning literature [31]. Initially, BOTL-C.II reduces the

impact of negative transfer by culling models that achieve an R2

performance less than λcper f , onW . A low λcper f value is preferred,

ensuring transferred models containing some useful information

are retained. Using a low threshold may not sufficiently reduce the

model set,M, to prevent overfitting, therefore a second round of

culling is performed based on model diversity. BOTL-C.II measures

the diversity between transferred models using mutual informa-

tion when making predictions on the local window of data. If two

transferred models have a mutual information greater than λcMI ,

BOTL-C.II culls the model that performs worse. A high λcMI should

be selected as the window of locally available data is often small,

therefore if a complex concept is to be learnt, the target learner may

benefit from utilising knowledge transferred from similar concepts.

However, if this threshold is too high the model set,M, will not be

reduced sufficiently to prevent overfitting.

4.3 Initialisation

The underlying adaptation of RePro requires an initial window of

data,W , to create the first predictive model, f T
1
. Prior to obtaining

this data no predictions can be made using RePro. BOTL allows

models transferred from other domains to be used to make predic-

tions during this period. Models transferred are initially weighted

equally to obtain,

ŷt =
1

|M|

|M |∑
j=1

f Sj (xt ). (2)

Before the first target model, f T
1
, has been learnt, and only a small

amount of data has been observed, the OLS regressor can create a

model, FM , using only source models, f Sj . This approach is prone

to overfitting due to the small amount of data available but may be

preferred over making no predictions or using Equation 2 over the

entire initial window of data.

The BOTL-C variants help to reduce overfitting within this ini-

tial period, however, as the amount of available data is small, all

transferred models may have R2 performances below the culling

threshold. In this scenario, both BOTL-C variants select the best

three transferred models, regardless of the culling threshold.

5 PERFORMANCE GUARANTEE

Theorem. Assuming an i.i.d data generating process, BOTL has a
loss less than or equal to the model learnt locally using RePro with no
knowledge transfer,

L ( f Ti ) ≥ L (FM ), (3)

where L ( f Ti ) denotes the loss of the local model, f Ti , created using
RePro, and L (FM ) is the loss of the OLS meta learner, FM , created
using the set of k models transferred from the source, { f S

1
, . . . , f Sk }

and the current target model, f Ti .

Proof. Wemeasure loss over the local window of data,W , using

the mean squared error of predictions,

L (·) =
1

|W |

|W |∑
t=1

(yt − ŷt )
2 , (4)

where yt is the response variable for instance xt , and ŷt is the

predicted value. If no transfer is used, the local model, f Ti , is used

to predict ŷt for each instance xt such that ŷt = f T (xt ).

BOTL uses the set of models,M, to obtain predictions ŷ
′Ti
t and

all ŷ
′Sj
t for instance xt , using the locally learnt model, f Ti , and

each of the j transferred model, f Sj ∈ { f
S
1
, . . . , f Sk }, respectively.

Predictions are used to create a meta instance, xt
′
, which the OLS

meta learner, FM , uses to obtain an overarching prediction,

ŷt = FM (xt
′)

= FM
(
⟨f S
1
(xt ), . . . , f

S
k (xt ), f

T
i (xt )⟩

)
= FM

(
⟨ŷ
′S1
t , . . . , ŷ

′Sk
t , ŷ

′Ti
t ⟩
)
,

(5)

where

FM
(
xt
′) = w0 +

j=k∑
j=1

w jŷ
′Sj
t +w (k+1)ŷ

′Ti
t . (6)

Weights w0, . . . ,w (k+1) are assigned to each prediction, ŷ
′n
t , for

each model n inM, where |M| = (k + 1), to obtain an ensemble

prediction, ŷt , for instance xt by solving the optimisation problem

that minimises the squared error of FM :

min

w0, ...,w (k+1)

|W |∑
t=1

*.
,
yt −

*.
,
w0 +

j=k∑
j=1

w jŷ
′Sj
t +w (k+1)ŷ

′Ti
t

+/
-

+/
-

2

. (7)

FM is used to make predictions, ŷt , for instance xt , using Equa-

tion 6. Using Equation 4, we can rewrite the loss of FM as,

L (FM ) =
1

|W |

|W |∑
t=1

*.
,
yt −

*.
,
w0 +

j=k∑
j=1

w jŷ
′Sj
t +w (k+1)ŷ

′Ti
t

+/
-

+/
-

2

. (8)

If we constrain the optimisation problem in Equation 7 to obtain the

meta learner FM
∗
by fixing the weights,wa , such that the weight

associated with the locally learnt model f Ti is 1, while all others

are 0, we obtain a meta model of the form,

FM
∗ (

xt
′) = *.

,
0 +

j=k∑
j=1

0ŷ
′Sj
t + 1ŷ

′Ti
t

+/
-
, (9)

giving the loss function

L (FM
∗
) =

1

|W |

|W |∑
t=1

(
yt − ŷ

′T
t
)
2

, (10)

equivalent to only using the locally learntmodel,L (FM
∗
) = L ( f Ti ).

As the optimisation problem in Equation 7 is convex,

L (FM
∗
) ≥ L (FM ). (11)

Finally, as the constrained optimisation problem in Equation 9 is

equivalent to using only the locally learnt model, f Ti , the loss of

BOTL is less than or equal to the loss of the locally learnt model. □



KDD BigMine-19, August 2019, Anchorage, AK McKay, et al.

6 EXPERIMENTAL SET-UP

Many benchmark datasets have been created to evaluate concept

drift detection algorithms [12, 22, 23], however, most are categor-

ically labelled. In order to evaluate BOTL in a regression setting,

we present a modification to the benchmark drifting hyperplane

dataset [15]. Additionally, a simulation of a smart home heating

system was created using data from a UK weather station to derive

desired heating temperatures for a user. The use of such data en-

ables BOTL to be evaluated on data streams containing drifts that

are more typical within real-world environments. Finally we evalu-

ate the performance of BOTL using a following distance dataset
2
,

created from vehicular data, and used to predict the time to the

vehicle it is following.

6.1 Drifting Hyperplane

For this benchmark data generator, an instance at time t , xt , is a
vector, xt = {xt1 ,xt2 , . . . ,xtn }, containing n randomly generated,

uniformly distributed, variables, xtn ∈ [0, 1]. For each instance,

xt , a response variable, yt ∈ [0, 1], is created using the function

yt = (xtp + xtq + xtr )/3, where p, q, and r reference three of the n
variables of instance xt . This function represents the underlying

concept, ca to be learnt and predicted. Concept drifts are introduced

by modifying which features are used to create y . For example,

an alternative concept, cb , may be represented by function yt =
(xtu +xtv +xtw )/3, where {p,q, r } , {u,v,w } such that ca , cb . We

introduce uniform noise, ±0.1, by modifying yt for each instance

xt with probability 0.1.

A variety of drift types have been synthesised in this generator

including sudden drift, gradual drift and recurring drifts. A sudden

drift from concept ca to concept cb is encountered immediately

between time steps t and (t+1) by changing the underlying function
used to create yt and y(t+1) . A gradual drift from concept ca to cb
occurs between time steps t and (t +m), wherem instances of data

are observed during the drift. Instances of data created between t
and (t+m) use one of the underlying concept functions to determine

their response variable. The probability of an instance belonging

to concept ca decreases proportionally to the number of instances

seen after time t while the probability of it belonging to cb increases

as we approach (t+m). Recurring drifts are created by introducing a
concept cc that reuses the underlying function defined by a previous
concept, ca , such that we achieve conceptual equivalence, cc = ca .

6.2 Heating Simulation

A simulation of a smart home heating system was created, deriving

the desired room temperature of a user. Heating temperatures were

derived using weather data collected from a weather station in

Birmingham, UK, from 2014 to 2016. This dataset contained rainfall,

temperature and sunrise patterns, which were combined with a

schedule, obtained from sampling an individual’s pattern of life,

to determine when the heating system should be engaged. The

schedule was synthesised to vary desired temperatures based on

time of day, day of week, and external weather conditions, creating

complex concepts. To create multiple domains, weather data was

sampled from overlapping time periods and used as input to the

2
Data generators, sample vehicle data, and reproducibility documentation are available

at: https://github.com/hmckay/BOTL

synthesised schedule to determine the desired heating temperatures.

Due to the dependencies on weather data, each stream was subject

to large amounts of noise. Concept drifts were introduced manually

by changing the schedule, however, drifts also occurred naturally

due to changingweather conditions. By samplingweather data from

overlapping time periods, and due to the seasonality of weather,

data streams follow similar trends, ensuring predictive performance

can benefit from knowledge transfer. By using complex concepts,

dependent on noisy data, the evaluation of BOTL on this data is

more indicative of what is achievable when used in real-world

environments.

6.3 Following Distance

This dataset uses a vehicle’s following distance and speed to calcu-

late TTC when following a vehicle. Vehicle telemetry data such as

speed, gear position, brake pressure, throttle position and indicator

status, alongside sensory data that infer external conditions, such

as temperature, headlight status, and windscreen wiper status, were

recorded at a sample rate of 1Hz. Additionally, some signals such as

vehicle speed, brake pressure and throttle position were averaged

over a window of 5 seconds to capture a recent history of vehicle

state. Vehicle telemetry and environmental data can be used to

predict TTC and used to personalise vehicle functionalities such

as ACC by identifying the preferred following distance, reflecting

current driving conditions. Data was collected from 4 drivers for

17 journeys which varied in duration, collection time and route.

Each journey is considered to be an independent domain and BOTL

enables knowledge to be learnt and transferred across journeys and

between drivers. Each data stream is subject to concept drifts that

occur naturally due to changes in the surrounding environment

such as road types and traffic conditions.

7 EXPERIMENTAL RESULTS

We compared BOTL against existing algorithms designed to make

predictions in online data streams, namely RePro [27] and GOTL [9],

using the drifting hyperplane, heating simulation and following dis-

tance datasets. BOTL is model agnostic, however, in order to make

comparisons between BOTL and existing techniques, all implemen-

tations used an ϵ-insensitive Support Vector Regressor (SVR).
RePro is used to determine a baseline performance threshold,

obtained when no knowledge is transferred [27]. The RePro im-

plementation defines parameters including the maximum window

size,Wmax , loss threshold, λl , and drift threshold, λd , dependant
upon the data stream and complexity of concepts.

GOTL was designed to learn from an offline source, however, as

we are considering the implications of both domains being online,

we used RePro to detect individual concepts in the source. This

is necessary as many online applications cannot retain an entire

history of data, preventing a single model from being learnt. We

used RePro to identify the model that had been used in the source

for the largest proportion of the data stream so is considered the

most stable. GOTL transferred this model from the source domain

to the target to enhance the effectiveness of the target predictor. A

small step-size, δ = 0.025, was chosen, as suggested by Grubinger et
al. [8], which slowly modified the weights used to combine source

and target models.

https://github.com/hmckay/BOTL
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Table 2: Drifting Hyperplanes: predictions using RePro,

GOTL, BOTL and BOTL-C variants for five sudden and five

gradual drifting domains, where * indicates p < 0.01 in com-

parison to RePro and GOTL, and bold indicates the highest

R2 performance.

Sudden Drift Gradual Drift

R2 RMSE R2 RMSE

RePro 0.950 (±0.001) 0.058 0.855 (±0.001) 0.070

GOTL 0.928 (±0.001) 0.069 0.825 (±0.001) 0.076

BOTL *0.958 (±0.001) 0.053 *0.893 (±0.001) 0.060

BOTL-C.I *0.957 (±0.001) 0.054 *0.886 (±0.003) 0.062

BOTL-C.II *0.956 (±0.001) 0.054 *0.889 (±0.004) 0.061

BOTL combines knowledge via the OLS meta learner therefore

no additional parameters are required, however the BOTL-C culling

parameters must be defined. We set λcper f = 0 for BOTL-C.I, thereby

discarding models that performed worse than the average predictor

(R2 < 0). For BOTL-C.II, we used λcper f = 0.2, such that poorly

performing models were culled more aggressively, and λcMI= 0.95,

such that two models with extremely high mutual information were

not both retained by the meta learner. This parameter value was

high to ensure knowledge of similar concepts were retained when

predicting complex concepts.

When evaluating BOTL and BOTL-C variants, all data streams for

a given experiment were used as source domains with bi-directional

transfer. Repeat experiments were conducted by randomising the or-

dering and interval between the commencement of learning in each

domain. For RePro, all data streams were learnt from independently

without knowledge transfer. When evaluating GOTL, experiments

were conducted such that each data stream was paired with ev-

ery other data stream as source and target domains respectively.

Due to only transferring the most stable model when using GOTL,

learning in the target domain only commenced once learning in

the source domain had completed such that the most stable source

model could be identified and transferred to the target domain.

7.1 Drifting Hyperplane

We considered the effectiveness of BOTL on synthetic data created

using the drifting hyperplane data generator containing two types

of drift: sudden and gradual. Five data streams of 10,000 instances

were created for each drift type with drifts encountered every 500

time steps. Sudden drifts occurred immediately, however, gradual

drifts occurred over a period of 100 time steps. Each data stream

shared at most three concepts with another domain, ensuring some

models transferred were useful to the target learner, while others

were not. Sudden and gradual drifting data streams were separated

such that transfer occurred only between domains of the same drift

type. RePro parametersWmax = 30, λl = 0.05, and λd = 0.6 were

used across all frameworks.

The results in Table 2 indicate that, although GOTL transferred

the most stable model, a performance increase was not achieved

over RePro. Although GOTL did not benefit from knowledge trans-

fer, BOTL was able to outperform both GOTL and RePro with

Figure 1: DriftingHyperplanes:R2 performance and number

of models used by BOTL and BOTL-C variants.

statistical t-tests achieving p-values < 0.01, highlighting the im-

portance of acknowledging the online nature of the source domain

when transferring knowledge.

The performance increase observed over GOTL can be attrib-

uted to the availability of all source models in the target domain.

Additionally, GOTL’s step-wise weighting mechanism prevents the

influence of a model changing drastically over a small period of

time. This means a large amount of data must be observed after

each drift to converge on an approximation of the optimal weights.

To overcome this, a larger step-size could be used, however, this

may prevent or hinder convergence. BOTL overcomes this by using

the OLSmeta learner to minimise the squared error of the combined

predictor with instantaneous effect.

The performances of BOTL-C variants were also significantly

better than RePro and GOTL, obtaining t-test values of p < 0.01,

however, they performed slightly worse than BOTL. Figure 1 high-

lights the aggressive nature of the culling techniques used by BOTL-

C.I and BOTL-C.II. It also shows BOTL used at least four times more

models than BOTL-C variants and highlights correlations between

the number of models used and performance. When the number

of models used was small, the predictive performance of BOTL-C

variants decreased. This performance decrease can be attributed to

the aggressive nature of these culling mechanisms. Culling based

on model performance alone prohibited the inclusion of a diverse

set of models, reducing the overarching predictive performance of

the meta learner. When BOTL-C variants retained a larger propor-

tion of the transferred models a performance similar to BOTL was

achieved.

We also considered the performance of BOTL on data streams

with varying concept durations, showing that BOTL is more effec-

tive than existing approaches, irrespective of the duration of each

concept. Additional data streams of 10,000 instances were created

with different time periods between drifts. Figures 2a and 2b show

the performance of BOTL, RePro and GOTL in these data streams.

Since BOTL variants are underpinned by RePro, their performance

dropped similarly as drifts occur more frequently. This is because

RePro must observe a local drop in performance over the sliding

window of data to identify drifts, therefore a higher proportion



KDD BigMine-19, August 2019, Anchorage, AK McKay, et al.

(a) Sudden concept drift. (b) Gradual concept drift, with drift durations of 100 time steps.

Figure 2: Drifting Hyperplanes: performance of RePro, GOTL and BOTL variants with sudden and gradual concept drifts

encountered at different frequencies.

Table 3: Heating Simulations: predicting desired heating

temperatures across five domains using RePro, GOTL, BOTL

and BOTL-C variants, where * indicates p < 0.01 in compar-

ison to RePro and GOTL, and bold indicates the highest R2

performance.

R2 RMSE

RePro 0.607 (±0.003) 2.601 (±0.015)

GOTL 0.709 (±0.003) 2.231 (±0.009)

BOTL *0.786 (±0.009) 1.914 (±0.042)

BOTL-C.I *0.779 (±0.010) 1.946 (±0.044)

BOTL-C.II *0.744 (±0.008) 2.102 (±0.036)

of the data stream has poor predictions as the number of concept

drifts increases. Despite the decrease in performance, BOTL with-

stood the impact of frequent drifts more readily than RePro and

GOTL as BOTL uses knowledge learnt in other domains to aid the

target predictor prior to a new model being learnt by RePro. While

GOTL also uses transferred knowledge, its weighting mechanism

prevented effective use of this knowledge at drift points.

7.2 Heating Simulation

We chose RePro parameters λl = 0.5, λd = 0.6, andWmax = 700,

creating a sliding window that encapsulated approximately two

weeks of heating and weather data, to analyse frameworks on this

data. These parameters meant that instances were removed from

the start of the sliding window when predictions were made within

±0.5◦C of the desired heating temperature, and drifts were detected

when the R2 performance of the target model on the current win-

dow of data dropped below 0.6. The concepts to be learnt in these

domains were more complex than those in the drifting hyperplane

data streams, causing lower R2 performances overall.

The addition of knowledge transfer, using GOTL and BOTL, pro-

vided a significant increase in performance in comparison to RePro

with no transfer, as shown in Table 3. GOTL, BOTL and BOTL-C

variants performed better than RePro with statistical t-test p-values

of p < 0.01. The ability to transfer knowledge was more advan-

tageous in comparison to the drifting hyperplane setting because

Table 4: Following Distances: predicting TTC across seven

domains using RePro, GOTL, BOTL and BOTL-C variants,

where * indicatesp < 0.01 in comparison to RePro andGOTL,

and bold indicates the highest R2 performance.

R2 RMSE

RePro 0.497 (±0.002) 0.636 (±0.002)

GOTL 0.619 (±0.001) 0.554 (±0.003)

BOTL 0.665 (±0.002) 0.524(±0.002)

BOTL-C.I 0.666 (±0.002) 0.523(±0.002)

BOTL-C.II *0.673 (±0.001) 0.518(±0.002)

concepts were more complex, preventing RePro from building ef-

fective models on the window of available data. This meant the

knowledge transferred helped boost the performance of the target

predictor, even when only a single model was transferred using

GOTL. Transferring multiple models provided a significant benefit

as BOTL performed better than GOTL with a t-test p-value < 0.01.

7.3 Following Distance

Finally we evaluated BOTL on real-world data using the following

distance dataset, where the task was to predict TTC. Due to the real-

world nature of this data, concept drifts occur frequently and data

is noisy. The RePro parameters λl = 0.1, λd = 0.5 andWmax = 80

were used, encapsulating 80 seconds of vehicle data. This meant

that instances were removed from the start of the sliding window

if predictions were made within ±0.1 seconds of the recorded TTC

value, and drifts were detected when the R2 performance of the

target model on the current window of data dropped below 0.6.

Table 4 shows the performance of RePro, GOTL and BOTL vari-

ants across seven data streams. These results highlight GOTL was

less suitable when the relationship between source and target con-

cepts were unknown. All variants of BOTL and BOTL-C performed

better than RePro and GOTL, with BOTL-C variants slightly out-

performing BOTL. BOTL-C.II achieved statistical t-test p-values of

p < 0.01 when compared to both RePro and GOTL. This can be

attributed to the number of domains in the framework, indicating
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Figure 3: Following Distances: performance (with standard

error) and number of models used by RePro, BOTL and

BOTL-C variants as the number of domains increase.

large numbers of transferred models caused the OLS meta learner

to overfit the local window of data.

To investigate scalability, Figure 3 displays the average R2 per-
formance per domain and number of models used for predictions

using RePro, BOTL and BOTL-C variants as the number of domains

increased. For settings with a small number of domains, BOTL and

BOTL-C variants performed similarly, both outperforming the base-

line RePro algorithm. As the number of domains expanded, and

the number of models transferred increased, the performance of

BOTL dropped below RePro. This can be attributed to the OLS meta

learner overfitting the small window of local data when the number

of models in the ensemble was large. Culling using the performance

of transferred models alone (BOTL-C.I) enabled a larger number

of domains to be used, however, cannot be considered scalable as

the performance of BOTL-C.I dropped below that of RePro when

more domains were added. BOTL-C.II culled more aggressively,

using diversity alongside performance, ensuring enough beneficial

knowledge was retained to enhance the target learner’s perfor-

mance, while minimising negative transfer and preventing the OLS

meta learner overfitting the small window of locally available data.

The results indicate that the ability to consider both source and

target domains to be online is beneficial. In doing so, the number of

transferred models greatly increases, requiring culling mechanisms,

particularly when used in noisy real-world data streams, to retain

the benefit of transferring knowledge between domains.

8 CONCLUSION

Online domains that must learn complex models often have limited

data availability, and are hindered by the presence of concept drift.

We have presented the BOTL framework, and two BOTL-C variants,

that enable knowledge to be transferred across online domains to

aid the target learner. By using RePro as the underlying concept

drift detection algorithm we ensured effective models were learnt

from the available data. We enhanced predictive performance by

combining knowledge transferred from other online domains using

an OLS meta learner, enabling additional knowledge to be used to

minimise the error of the overarching prediction.

In this paper, RePro was chosen as the underlying concept drift

detection algorithm. Although RePro requires some domain exper-

tise to identify appropriate parameter values, such as window size

and drift threshold, it’s ability to retain a history of models to pre-

vent relearning recurring concepts helped to reduce the number of

models transferred between domains and therefore allowed more

domains to be included in the framework before the OLS meta

learner suffered from overfitting. However, in real-world environ-

ments with many domains, the number of models transferred may

need to be reduced further. BOTL-C variants achieved this using

common ensemble pruning strategies. These pruning strategies

also required culling parameter values to be specified. To overcome

the need to specify these parameters we will investigate the use of

task relatedness to identify similar concepts across domains with-

out parameterised thresholds in future work. This will reduce the

dependency on domain expertise and will allow BOTL to be used

for applications that require scalability to larger numbers of do-

mains. Additionally, BOTL considers only the homogeneous setting,

therefore a natural extension is to incorporate domain adaptation

to enable knowledge transfer across heterogeneous domains using

the BOTL framework.
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