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In-memory caching of intermediate data and active combining of data in shuffle buffers have been shown to
be very effective in minimizing the re-computation and I/O cost in big data processing systems such as Spark
and Flink. However, it has also been widely reported that these techniques would create a large amount of
long-living data objects in the heap. These generated objects may quickly saturate the garbage collector,
especially when handling a large dataset, and hence, limit the scalability of the system. To eliminate this
problem, we propose a lifetime-based memory management framework, which, by automatically analyzing
the user-defined functions and data types, obtains the expected lifetime of the data objects, and then allo-
cates and releases memory space accordingly to minimize the garbage collection overhead. In particular, we
present Deca, a concrete implementation of our proposal on top of Spark, which transparently decomposes
and groups objects with similar lifetimes into byte arrays and releases their space altogether when their
lifetimes come to an end. When systems are processing very large data, Deca also provides field-oriented
memory pages to ensure high compression efficiency. Extensive experimental studies using both synthetic
and real datasets shows that, in comparing to Spark, Deca is able to 1) reduce the garbage collection time by
up to 99.9%, 2) reduce the memory consumption by up to 46.6% and the storage space by 23.4%, 3) achieve
1.2x-22.7x speedup in terms of execution time in cases without data spilling and 16x-41.6x speedup in cases
with data spilling, and 4) provide the similar performance comparing to domain specific systems.
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1. INTRODUCTION
The big data processing systems that emerge recently, such as Spark [Zaharia et al.
2012], can process huge volumes of data in a scale-out fashion. Unlike traditional
database systems using declarative query languages and relational (or multidimen-
sional) data models, these systems allow users to implement application logics through
User Defined Functions (UDFs) and User Defined Types (UDTs) using high-level im-
perative languages (such as Java, Scala and C# etc.), which can then be automatically
parallelized onto a large-scale cluster.

Existing researches in these systems mostly focus on scalability and fault-tolerance
issues in a distributed environment [Zaharia et al. 2008], [Zaharia et al. 2010], [Is-
ard et al. 2009], [Anantharayanan et al. 2010]. However some recent studies [Ander-
son and Tucek 2009], [McSherry et al. 2015] suggest that the execution efficiency of
individual tasks in these systems is low. A major reason is that both the execution
frameworks and user programs of these systems are implemented using high-level im-
perative languages running in managed runtime platforms (such as JVM, .NET CLR,
etc.). These managed runtime platforms commonly have built-in automatic memory
management, which brings significant memory and CPU overheads. For example, the
modern tracing-based garbage collectors (GC) may consume a large amount of CPU cy-
cles to trace living objects in the heap [Jones et al. 2011], [Bu et al. 2013], [Tungsten
2015].

Furthermore, to improve the performance of multi-stage and iterative computations,
recently developed systems support caching of intermediate data in the main mem-
ory [Power and Li 2010], [Shinnar et al. 2012], [Zhang et al. 2015] and exploit eager
combining and aggregating of data in the shuffling phases [Li et al. 2011], [Shi et al.
2015]. These techniques would generate massive long-living data objects in the heap,
which usually stay in the memory for a significant portion of the job execution time.
However, the unnecessary continuous tracing and marking of such large amount of
long-living objects by the GC would consume significant CPU cycles.

In this paper, we argue that the big data processing systems such as Spark should
employ a lifetime-based memory manager, which allocates and releases memory ac-
cording to the lifetimes of the data objects rather than relying on a conventional
tracing-based GC. To verify this concept, we present Deca, an automatic Spark op-
timizer, which adopts a lifetime-based memory management scheme for efficiently re-
claiming memory space. Deca automatically analyzes the lifetimes of objects in differ-
ent data containers in Spark, such as UDF variables, cached data blocks and shuffle
buffers, and then transparently decomposes and stores a massive number of objects
with similar lifetimes into a few number of memory pages, which are in the form of
byte arrays. These memory pages can be allocated either on or off the JVM heap. In
this way, the massive objects essentially bypass the continuous tracing of the GC and
the space that they occupy can be released by the destruction of the memory pages.

Last but not the least, Deca automatically transforms the user programs so that
the new memory layout is transparent to the users. By using the aforementioned tech-
niques, Deca significantly optimizes the efficiency of Spark’s memory management and
at the same time keeps the generality and expressibility provided in Spark’s program-
ming model.

In summary, the main contributions of this paper include:

— We propose a program optimization mechanism for in-memory big data processing
systems and implement a prototype, Deca, on top of Spark. Deca is able to auto-
matically remove the object encapsulation of UDT data objects for Spark programs,
thereby minimizing the GC overhead and eliminating the memory bloat problem.
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— We design a method that changes the in-memory representation of the object graph
of each data item by discarding all the reference values. In optimized programs, the
raw data of the fields of primitive types in the original object graph are compactly
stored as a byte sequence.

— We propose a data-object lifetime analysis method based on traditional static pro-
gram analysis techniques. In optimized programs, the byte sequences of data items
with the same lifetime are group into a few byte arrays, called memory pages,
thereby simplifying space reclamation. Deca also automatically validates the mem-
ory safety of data accessing based on the sophisticated analysis of memory usage of
UDT objects.

— We conduct extensive evaluation on various Spark programs using both synthetic
and real datasets. The experimental results demonstrate the superiority of our ap-
proach by comparing with existing methods.

2. OVERVIEW OF DECA
2.1. Java GC
In typical JVM implementations, a garbage collector (GC) attempts to reclaim memory
occupied by objects that will no longer be used. A tracing GC traces which objects are
reachable by a sequence of references from some root objects. The unreachable ones,
which are called garbage, can be reclaimed. Oracle’s Hotspot JVM implements three
GC algorithms. The default Parallel Scavenge (PS) algorithm suspends the application
and spawns several parallel GC threads to achieve high throughput. The other two
algorithms, namely Concurrent Mark-Sweep (CMS) and Garbage-First (G1), attempt
to reduce GC latency by spawning concurrent GC threads that run simultaneously
with the application thread.

All the above collectors are generational garbage collectors that segregate objects
into multiple generations: young generation containing recently-allocated objects, old
generation containing older objects, and permanent generation containing class meta-
data. Based on the weak generational hypothesis [Lieberman and Hewitt 1983], the
generational design assumes that most objects would soon become garbage, a minor
GC, which only attempts to reclaim garbage in the young generation, can be run to
reclaim enough memory space. However, if there are too many old objects, then a full
(or major) GC would be run to reclaim space occupied by the old objects. Usually, a full
GC is much more expensive than a minor GC.

There are also non-generational garbage collectors implemented in other language
runtime systems. For example, Go has a non-generational concurrent mark-and-sweep
garbage collector [GoGC 2015]. JikesRVM [Alpern et al. 1999], a research oriented
JVM implementation, provides a suite of various generational and non-generational
GC implementations [Blackburn et al. 2004]. Non-generational garbage collectors scan
more heap area than the generational minor GC does, and hence spend more CPU time
on GC if the workload follows the weak generational hypothesis.

2.2. Motivating Example
A major concept of Spark is Resilient Distributed Dataset (RDD), which is a fault-
tolerant dataset that can be processed in parallel by a set of UDF operations.

We use Logistic Regression (LR) as an example to motivate and illustrate the opti-
mization techniques adopted in Deca. It is a classifier that attempts to find an optimal
hyperplane that separates the data points in a multi-dimensional feature space into
two sets. Figure 1 shows the code of LR in Spark. The raw dataset is a text file with
each line containing one data point. Hence the first UDF is a map function, which ex-
tracts the data points and store them into a set of DenseVector objects (lines 12–16).
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1 class DenseVector[V](val data: Array[V],
2 val offset: Int,
3 val stride: Int,
4 val length: Int) extends Vector[V] {
5 def this(data: Array[V]) =
6 this(data, 0, 1, data.length)
7 ...
8 }
9 class LabeledPoint(var label: Double,

10 var features: Vector[Double])
11
12 val lines = sparkContext.textFile(inputPath)
13 val points = lines.map(line => {
14 val features = new Array[Double](D)
15 ...
16 new LabeledPoint(new DenseVector(features), label)
17 }).cache()
18 var weights =
19 DenseVector.fill(D){2 * rand.nextDouble - 1}
20 for (i <- 1 to ITERATIONS) {
21 val gradient = points.map { p =>
22 p.features * (1 / (1 +
23 exp(-p.label * weights.dot(p.features))) -
24 1) * p.label
25 }.reduce(_ + _)
26 weights -= gradient
27 }

Fig. 1. Demo Spark program of Scala Logistic Regression. It is an iterative machine learning application
which caches the train-set data in memory. The top-level UDT of cached data objects is LabeledPoint.

An additional LabeledPoint object is created for each data point to package its feature
vector and label value together.

To eliminate disk I/O for the subsequent iterative computation, LR uses the cache

operation to cache the resulting LabeledPoint objects in the memory. For a large input
dataset, this cache may contain a massive number of objects.

After generating a random separating plane (lines 18-19), it iteratively runs another
map function and a reduce function to calculate a new gradient (lines 20–26). Here each
call of this map function will create a new DenseVector object. These intermediate ob-
jects will not be used any more after executing the reduce function. Therefore, if the
aforementioned cached data leaves little space in the memory, then GC will be fre-
quently run to reclaim the space occupied by the intermediate objects and make space
for newly generated ones. Note that, after running a number of minor GCs, JVM would
run a full GC to reclaim spaces occupied by the old objects. However, such highly ex-
pensive full GCs would be nearly useless because most cached data objects should not
be removed from the memory.

We illustrate the impact of GC on Spark’s performance using the following simple
experiment. We run an LR application on Spark in local-mode. A local-mode Spark ap-
plication runs all the components in one JVM process, thereby eliminating the impact
of RPC messaging and data transferring on performance. The machine used in the ex-
periment has two Xeon-2670 CPUs, 64GB memory and a SAS disk. The input training
dataset contains 10GB of randomly-generated labeled feature vectors with 10 dimen-
sions. We measure the runtime spent on GC with different JVM heap sizes, ranging
from 20GB to 40GB. As shown in Figure 2, when the memory space is not sufficient
(i.e. in the cases of 20GB and 30GB), the system has significant GC overhead, such
that the GC time can be nearly 5x longer than the pure computation time. The main
reason is that the long-living in-memory data objects frequently causes the triggering
of major (or full) GCs. When the heap memory is sufficient (i.e. in the case of 40GB),
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Fig. 2. Total execution time and GC time of Spark LR with different JVM heap sizes, running in Spark local
mode (single JVM process). The input train-set data are 10GB randomly generated 10-dimension labeled
feature vectors.
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Fig. 3. The cached RDD data layout of Spark LR in both the original version and the Deca transformed
version. Each LabeledPoint object (with its contained objects) stores all raw data in one double field, three
int fields and a double array field. In the Deca version, the data of one LabeledPoint object occupy a
contiguous memory region that contains 20 + 8×D bytes.

the heap can contain all the objects, and hence there are only a few minor GCs, whose
cost is negligible.

2.3. Life-time based Memory Management
We implement the prototype of Deca based on Spark. In Deca, objects are stored in
three types of data containers: UDF variables, cached RDDs and Shuffle buffers. In
each data container, Deca allocates a number of fixed-sized byte arrays. By using the
points-to analysis [Lhoták and Hendren 2003], we map the UDT objects with their ap-
propriate containers. UDT objects are then stored in the byte arrays after eliminating
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1 def computeGradient() = {
2 val result = new Array[Double](D)
3 var offset = 0
4 while(offset < block.size) {
5 var factor = 0.0
6 val label = block.readDouble(offset)
7 offset += 8
8 for (i <- 0 to D) {
9 val feature = block.readDouble(offset)

10 factor += weights(i) * feature
11 offset += 8
12 }
13 factor = (1 / (1 + exp(-label * factor)) - 1) * label
14 offset -= 8 * D
15 for (i <- 0 to D) {
16 val value = block.readDouble(offset)
17 result(i) = result(i) + feature * factor
18 offset += 8
19 }
20 }
21 result
22 }

Fig. 4. A transformed source code fragment of Logistic Regression.

the unnecessary object headers and object references. This compact layout would not
only minimize the memory consumption of data objects but also dramatically reduce
the overhead of GC, because GC only needs to trace a few byte arrays instead of a
huge number of UDT objects. One can see that the size of each byte array should not
be too small or too large, otherwise it would incur high GC overheads or large unused
memory spaces.

As an example, the LabeledPoint objects in the LR program can be transformed into
byte arrays as shown in Figure 3. Here, all the reference variables (in orange color,
such as features and data), as well as the headers of all the objects are eliminated.
All the cached LabeledPoint objects are stored into byte arrays.

The challenge of employing such a compact layout is that the space allocated to each
object is fixed. Therefore, we have to ensure that the size of an object would not exceed
its allocated space during execution so that it will not damage the data layout. This is
easy for some types of fields, such as primitive types, but less obvious for others. Code
analysis is necessary to identify the change patterns of the objects’ sizes. Such an anal-
ysis may have a global scope. For example, a global code analysis may identify that the
features arrays of all the LabeledPoint objects (created in line 14 in Figure 1) actually
have the same fixed size D, which is a global constant. Furthermore, the features field
of a LabeledPoint object is only assigned in the LabeledPoint constructor. Therefore,
all the LabeledPoint objects actually have the same fixed size. Another interesting pat-
tern is that in Spark applications, objects in cached RDDs or shuffle buffers are often
generated sequentially and their sizes will not be changed once they are completely
generated. Identifying such useful patterns by a sophisticated code analysis is neces-
sary to ensure the safety of decomposing UDT objects and storing them compactly into
byte arrays.

As mentioned earlier, during the execution of programs in a system like Spark, the
lifetimes of data containers created by the framework can be pre-determined explicitly.
For example, the lifetimes of objects in a cached RDD is determined by the invocations
of cache() and unpersist() in the program. Recall that the UDT objects stored in the
compact byte arrays would bypass the GC. We put the UDT objects with the same
lifetime into the same container. For example, the cached LabeledPoint objects in LR
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have the same lifetime, so they are stored in the same container. The byte arrays can
be allocated on or off the JVM heap. When a container’s lifetime comes to an end, in the
on-heap implementation, we simply release all the references of the byte arrays in the
container, then the GC can reclaim the whole space occupied by the massive amount
of objects. In the off-the-heap implementation, the memory space of a container can
simply be released at the end of its lifetime.

Deca extracts information of programs by using intra-procedural analysis, decom-
poses the UDTs and then modifies the application programs by replacing the bytecodes
of object creation, field access and UDT methods with new codes that directly write and
read the byte arrays. Finally, the converted programs will be submitted to Spark for
execution.

In Figure 4, we illustrate the optimized code corresponding to the gradient com-
putation code in lines 21–24 of Figure 1. While the codes produced by Deca are JVM
bytecodes, we provide the equivalent Scala code here to illustrate the logic of the trans-
formed LR code.

2.4. Technical scope of Deca
So far, we only implemented the prototype of Deca on Spark Core. However, the opti-
mization techniques of Deca can also be used in other big data processing frameworks
as long as they satisfy the assumption of Deca. Roughly speaking, we assume that most
long-living objects of a job can be placed into containers, which have pre-determined
lifetimes. Some other open-source frameworks also fulfill this assumption, like Hadoop,
Storm, and GraphX, hence they can also be modified to benefit from Deca’s design. Fur-
ther discussions of this issue can be found in Section 9.

3. UDT CLASSIFICATION ANALYSIS
3.1. Data-size and Size-type of Objects
To allocate enough memory space for objects, we have to compute the object sizes and
their change patterns during runtime. Due to the complexity of object models, to accu-
rately compute the size of a UDT, we have to dynamically traverse the runtime object
reference graph of each target object and compute the total memory consumption. Such
a dynamic analysis is too costly at runtime, especially with a large number of objects.
Therefore we opt for static analysis which only uses static object reference graphs and
would not incur any runtime overhead. We define the data-size of an object to be the
sum of the sizes of the primitive-type fields in its static object reference graph. An ob-
ject’s data-size is only an upper bound of the actual memory consumption of its raw
data, if one considers the cases with object sharing.

To see if UDT objects can be safely decomposed into byte sequences, we should ex-
amine how their data-sizes change during runtime. There are two types of UDTs that
can meet the safety requirement: 1) the data-sizes of all the instances of the UDT are
identical and do not change during runtime; or 2) the data-sizes of all the instances
of the UDT do not change during runtime. We call these two kinds of UDTs as Static
Fixed-Sized Type (SFST) and Runtime Fixed-Sized Type (RFST) respectively.

In addition, we call UDTs that have type-dependency cycles in their type definition
graphs as Recursively-Defined Type. Even without object sharing, the instances
of these types can have reference cycles in their object graphs. Therefore, they can-
not be safely decomposed. Furthermore, any UDT that does not belong to any of the
aforementioned types is called a Variable-Sized Type (VST). Once a VST object is
constructed, its data-size may change due to field assignments and method invocations
during runtime.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.
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The objective of the UDT classification analysis is to generate the Size-Type of each
target UDT according to the above definitions. As demonstrated in Figure 3, Deca
decomposes a set of objects into primitive values and store them contiguously into
compact byte sequences in a byte array. A safe decomposition requires that the original
UDT objects are either of an SFST or an RFST. Otherwise the operations that expand
the byte sequences occupied by an object may overwrite the data of the subsequent
objects in the same byte array. Furthermore, as we will discuss later, an SFST can
be safely decomposed in more cases than an RFST. On the other hand, most objects
that do not belong to an SFST or an RFST will not be decomposed into byte sequences
in Deca. In Section 5, we will discuss the objects which belong to VST, but can still
be decomposed subject to some restrictions. Apparently, to maximize the effect of our
approach, we should avoid overestimating the variability of the data-size of the UDTs,
which is the design goal of our following algorithms.

3.2. Local Classification Analysis
The local classification algorithm analyzes an UDT by recursively traversing its type
dependency graph. For example, Figure 5 illustrates the type dependency graph of
LabeledPoint. The size-type of LabeledPoint can be determined based on the size-type
of each of its fields.

Algorithm 1 shows the procedure of the local classification analysis. The input of the
algorithm is an annotated type that contains the information of fields and methods of
the target UDT. Because the objects referenced by a field can be of any subtype of its
declared type, we use a type-set to store all the possible runtime types of each field.
The type-set of each field is obtained in a pre-processing phase of Deca by using the
points-to analysis [Lhoták and Hendren 2003] (see Section 6).

In lines 1–2, the algorithm first determines whether the target UDT is a recursively-
defined type. It builds the type dependent graph and searches for cycles in the graph.
If a cycle is found, the algorithm immediately returns recursively-defined type as the
final result.

Two indirect-recursive functions, AnalyzeType (lines 4–22) and AnalyzeField (lines
23–34), are used to further determine the size-type of the target UDT. The stop condi-
tion of the recursion is when the current type is a primitive type (line 5). We treat each
array type as having a length field and an element field. Since different instances of
an array type can have different lengths, arrays with static fixed-sized elements will
be considered as an RFST (lines 8–9).

We define a total ordering of the variability of the size-types (except the recursively-
defined type) as follows: SFST < RFST < V ST . Based on this order, the size-type
of each UDT is determined by its field that has the highest variability (lines 12–20).
Furthermore, each field’s final size-type is determined by the type with the highest
variability in its type-set. But a non-final field of an RFST will be finally classified as
VST, because the same field can possibly point to objects with different data-sizes (lines
28-29). Consider that whenever we find a VST field, the top-level UDT must also be
classified as a VST. In this case, the function can immediately returns without further
traversing the graph.

We take the type LabeledPoint in Figure 1 as a running example. In Figure 5, every
field has a type-set with a single element and the declared type of each filed is equal
to its corresponding runtime type except that the features field has a declared type
(Vector), while its runtime type is DenseVector. Moreover, for a more sophisticated
implementation of logistic regression with high-dimensional data sets, the features

field can have both DenseVector and SparseVector in its type-set.
Since there is no cycle in the type dependency graph, LabeledPoint is not a

recursively-defined type. As shown in Figure 5, LabeledPoint contains a primitive

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.
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ALGORITHM 1: Local classification analysis.
Input : The top-level annotated type T ;
Output: The size-type of T ;

1 build the type dependency graph G for T ;
2 if G contains the circle path then return RecurDef;
3 else return AnalyzeType(T);
4 Function AnalyzeType(targ)
5 if targ is a primitive type then return StaticFixed;
6 else if targ is an array type then
7 fe ← array element field of targ;
8 if AnalyzeField(fe) = StaticFixed then
9 return RuntimeFixed;

10 else return Variable;
11 else
12 result← StaticFixed;
13 foreach field f of type targ do
14 tmp← AnalyzeField(f);
15 if tmp = Variable then return Variable;
16 else if tmp = RuntimeFixed then
17 result← RuntimeFixed;
18 end
19 end
20 return result;
21 end
22 end
23 Function AnalyzeField(farg)
24 result← StaticFixed;
25 foreach runtime type t in farg.getTypeSet do
26 tmp← AnalyzeType(t);
27 if tmp = Variable then return Variable;
28 else if tmp = RuntimeFixed then
29 if farg is not final then return Variable;
30 else result← RuntimeFixed;
31 end
32 end
33 return result;
34 end

field (i.e. label) and a field of the Vector type ( i.e. features). Therefore, the size-
type of LabeledPoint is determined by the size-type of features, i.e. the size-type of
DenseVector. It contains four fields: one of the array type and other three of the prim-
itive type. The data field will be classified as an RFST but not a VST due to its final

modifier (val in Scala). Furthermore, the DenseVector objects assigned to features can
have different data-size values because they may contain different arrays. Therefore,
both features and LabeledPoint belong to VST.

3.3. Global Classification Analysis
The local classification algorithm is easy to implement and has negligible computa-
tional overhead. But it is conservative and often overestimates the variability of the
target UDT. For example, the local classifier conservatively assumes that the features

field of a LabeledPoint object may be assigned with DenseVector objects with different
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Fig. 5. An example of the local classification. LabeledPoint in Spark LR is classified as Variable-Sized
Type.

data-size values. Therefore it mistakenly classifies it as a VST, which can not be safely
decomposed.

Furthermore, the local classifier assumes that the DenseVector objects contain ar-
rays (features.data) with different lengths. Even if we change the modifier of features
from var to val, i.e, only allowing it to be assigned once, the local classifier still consid-
ers it as an RFST rather than an SFST.

For UDTs that are categorized as RFST or VST, we further propose an algorithm to
refine the classification results via global code analysis on the relevant methods of the
UDTs. To break the assumptions of the local classifier, the global one uses code anal-
ysis to identify init-only fields and fixed-length array type according to the following
definitions.

Init-only field. A field of a non-primitive type T is init-only, if, for each object, this field
will only be assigned once during the program execution. 1

Fixed-length array types. An array type A contained in the type-set of field f is a fixed-
length array type w.r.t. f if all the A objects assigned to f are constructed with iden-
tical length values within a well-defined scope, such as a single Spark job stage or
a specific cached RDD. An example of symbolized constant propagation is shown
in Figure 6. Here, array is constructed with the same length for whatever foo()
returns. The fixed-length array types with its element fields being SFST (or RFST)
can be refined to SFST (or RFST).

1 val a = input.readString().toInt() // a == Symbol(1)
2 val b = 2 + a - 1 // b == Symbol(1) + 1
3 val c = a + 1 // c == Symbol(1) + 1
4 if (foo()) array = new Array[Int](b)
5 else array = new Array[Int](c)
6 // array.length == Symbol(1) + 1

Fig. 6. An example of the symbolized constant propagation. Symbol(1) is the int value read from the
external data source at line 1. After symbolized constant propagation, Deca can determine that all int
array instances created at line 4 and 5 have the same length (Symbol(1) + 1).

1We always treat the array element fields as non init-only, otherwise the analysis needs to trace the element
index value in each assignment statement, which is not feasible in static code analysis.
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ALGORITHM 2: Global classification analysis.
Input : The top-level non-primitive type T ; The locally-classified size-type Slocal; Call

graph of the current analysis scope Gcall;
Output: The refined size-type of T ;

1 if SRefine(T,Gcall) then return StaticFixed;
2 else if Slocal = RuntimeFixed or RRefine(T,Gcall) then
3 return RuntimeFixed;
4 else return Variable;

ALGORITHM 3: Static fixed-sized type refinement: SRefine(targ, garg)
1 Function SRefine(targ, garg)

Input : A non-primitive type targ; A call graph garg;
Output: true or false that targ ’s size-type can be refined to StaticFixed;

2 foreach field f of type targ do
3 foreach runtime type t in f.getTypeSet do
4 if t is not a primitive type and not SRefine(t, garg) then return false;
5 end
6 end
7 if targ is an array type and targ is not Fixed-Length in call graph garg then return

false ;
8 else return true;
9 end

In Figure 1, the features field is only assigned in the constructor of LabeledPoint
(lines 1–8), and the length of features.data is a global constant value D (lines 14-16).
Thus, the size-class of LabeledPoint can be refined to SFST.

Algorithm 2 shows the procedure of the global classification. The input of the algo-
rithm is the target UDT and the call graph of the current analysis scope. The refine-
ment is done based on the following lemmas.

LEMMA 3.1 (SFST REFINEMENT). An array type that is an RFST or a VST can be
refined to an SFST if and only if for every array type in the type dependent graph, the
followings are true:

(1) it is a fixed-length array type; and
(2) every type in the type-set of its element field is an SFST.

LEMMA 3.2 (RFST REFINEMENT). An array type that is a VST can be refined to an
RFST if and only if:

(1) every type in the type-sets of its fields is either an SFST or an RFST; and
(2) each field with an RFST in its type-set is init-only.

The call graph used for the analysis is built in the pre-processing phase (Section 6).
The entry node of the call graph is the main method of the current analysis scope,
usually a Spark job stage, while all the reachable methods from the entry node as well
as their corresponding calling sequences are stored in the graph.

In line 7 of Algorithm 3, we use the following steps to identify the fixed-length array
types. (1) Perform the copy/constant propagation in the call graph. The values passed
from the outside of the call graph or returned by the I/O operations will be represented
by symbols considered as constant values. (2) For a field f and an array type A, find
all the allocation sites of the A objects that are assigned to f (i.e. the methods where
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ALGORITHM 4: Runtime fixed-sized type refinement: RRefine(targ, garg)
1 Function RRefine(targ, garg)

Input : A non-primitive type targ; A call graph garg;
Output: true or false that targ ’s size-type can be refined to RuntimeFixed;

2 foreach field f of type targ do
3 analyze field← false;
4 foreach runtime type t in f.getTypeSet do
5 if t is not a primitive type and not SRefine(t, garg) then
6 if RRefine(t, garg) then
7 analyze field← true;
8 else return false;
9 end

10 end
11 if analyze field and f is not Init-Only in call graph garg then return false;
12 end
13 return true;
14 end

these objects are created). If all the length values used in all these allocation sites are
equivalent, A is of fixed-length w.r.t. f.

In line 11 of Algorithm 4, we use the following rules to identify init-only or non-init-
only fields: 1) a final field is init-only; 2) an array element field is not init-only; 3) in
addition, a field is init-only if it will not be assigned in any method in the call graph
other than the constructors of its containing type, and it will only be assigned once in
any constructor calling sequence.

3.4. Phased Refinement
In a typical data parallel programming framework, such as Spark, each job can be
divided into one or more execution phases, each consisting of three steps: (1) reading
data from materialized (on-disk or in-memory) data collectors, such as cached RDD,
(2) applying an UDF on each data object, and (3) emitting the resulting data into
a new materialized data collector. Figure 7 shows the framework of a job in Spark.
It consists one or more top-level computation loops, each reads data object from its
source, and writes the results into the sink. Every two successive loops are bridged by
a data collector, such as an RDD or a shuffle buffer.

We observe that the data-sizes of object types may have different levels of variability
at different phases. For example, in an early phase, data would be grouped together by
their keys and their values would be concatenated into an array whose type is a VST
at this phase. However, once the resulting objects are emitted to a data collector, e.g.
a cached RDD, the subsequent phases might not reassign the array fields of these ob-
jects. Therefore, the array types can be considered as RFSTs in the subsequent phases.
We exploit this phenomenon to refine a data type’s size-class in each particular phase
of a job, which is called phased refinement. This can be achieved by running the global
classification algorithm for the VSTs on each phase of the job.

4. LIFETIME-BASED MEMORY MANAGEMENT
4.1. The Spark Programming Framework
Spark provides a functional programming API, through which users can process Re-
silient Distributed Datasets (RDDs), the logical data collections partitioned across a
cluster. An important feature is that RDDs can be explicitly cached in the memory to
avoid re-computation or disk I/O overhead.
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1 // The first loop is the input loop.
2 var source = stage.getInput()
3 var sink = stage.nextCollection()
4 while (source.hasNext()) {
5 val dataIn = source.next()
6 ...
7 val dataOut = ...
8 sink.write(dataOut)
9 }

10 // Optional inner loops
11 source = sink
12 sink = stage.nextCollection()
13 while (source.hasNext()) {...}
14 ...
15 // The last loop is the output loop
16 source = sink
17 sink = stage.getOutput()
18 while (source.hasNext()) {...}

Fig. 7. A typical task template of the Spark job stage. It consists one or more top-level computation loops,
each reads data object from its source, and writes the results into the sink. Every two successive loops are
bridged by a data collector, such as an in-memory RDD block or a shuffle buffer.

While Spark supports many operators, the ones most relevant for memory man-
agement are some key-based operators, including reduceByKey, groupByKey, join and
sortByKey (analogues of GroupBy-Aggregation, GroupBy, Inner-Join and OrderBy in
SQL). These operators process data in the form of Key-Value pairs. For example,
reduceByKey and groupByKey are used for: 1) aggregating all Values with the same Key
into a single Value; 2) building a complete Value list for each Key for further processing.

Furthermore, these operators are implemented using data shuffling. The shuffle
buffer stores the combined value of each Key. For example, for the case of reduceByKey,
it stores a partial aggregate value for each Key, and for the case of groupByKey, it stores
a partial list of Value objects for each Key. When a new Key-Value pair is put into the
shuffle buffer, eager combining is performed to merge the new Value with the combined
value.

For each Spark application, a driver program negotiates with the cluster resource
manager (e.g. YARN [Vavilapalli et al. 2013]), which launches executors (each with
fixed amount of CPU and memory resource) on worker machines. An application can
submit multiple jobs. Each job has several stages separated by data shuffles and each
stage consists of a set of tasks that perform the same computation. Each executor
occupies a JVM process and executes the allocated tasks concurrently in a number of
threads.

4.2. Lifetimes of Data Containers in Spark
In Spark, all objects are allocated in the running executors’ JVM heaps, and their ref-
erences are stored in three kinds of data containers described below. A key challenge
for Deca is deciding when and how to reclaim the allocated space. In the lifetime anal-
ysis, we focus on the end points of the lifetime of the object references. The lifetime of
an object ends once all its references are dead.

UDF variables. Each task creates function objects according to its task descriptor.
UDF variables include objects assigned to the fields of the function objects and the
local variables of their methods. The lifetimes of the function object end when the
running tasks complete. In addition, as long-living objects are recommended to be
stored in cached RDDs, in most applications, local variables are dead after each
method invocation. Therefore, we treat all the data objects referenced only by the
local variables as short-living temporal objects.
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Cache blocks. In Spark, each RDD has an object that records its data source and the
computation function. Only the cached RDDs will be materialized and retained in
memory. A cached RDD consists of a number of cache blocks, each being an array of
objects. The lifetimes of cached RDDs are explicitly determined by the invocations
of cache() and unpersist() in the applications. Whenever a cached RDD has been
“unpersisted”, all of its cache blocks will be released immediately. For non-cached
RDDs, the objects only appear as local variables of the corresponding computation
functions and hence are also short-living.

Shuffle buffers. A shuffle buffer is accessed by two successive phases in a job: one cre-
ates the shuffle buffer and puts data objects into it, while the other reads out the
data for further processing. Once the second phase is completed, the shuffle buffer
will be released.
With regard to the lifetimes of the object references stored in a shuffle buffer, there
are three situations. (1) In a sort-based shuffle buffer, objects are stored in an in-
place sorting buffer sorted by the Key. Once object references are put into the buffer,
they will not be removed by the subsequent sorting operations. Therefore, their
lifetimes end when the shuffle buffer is released. (2) In a hash-based shuffle buffer
with a reduceByKey operator, the Key-Value pairs are stored in an open hash table
with the Key object as the hash key. Each aggregate operation will create a new
Value object while keeping the Key objects intact. Therefore a Value object reference
dies upon an aggregate operation over its corresponding Key. (3) In a hash-based
shuffle buffer with a groupByKey operator, a hash table stores a set of Key objects
and an array of Value objects for each Key. The combining function will only append
Value objects to the corresponding array and will not remove any object reference.
Hence, the references will die at the same time as the shuffle buffer. Note that these
situations cover all the key-based operators in Spark. For example, aggregateByKey
and join are similar to reduceByKey and groupByKey respectively. Other key-based
operators are just extensions of the above basic operators and hence can be handled
accordingly.

4.3. Data Containers in Deca
As discussed above, object references’ lifetimes can be bound with the lifetimes of their
containers. Deca builds a data dependent graph for each job stage by points-to analy-
sis [Lhoták and Hendren 2003] to produce the mapping relationships between all the
objects and their containers. Objects are identified by either their creation statements
if they are created in the current stage, or their source cached blocks if they are read
from cached blocks created by the previous stage.

However, an object can be assigned to multiple data containers. For example, if ob-
jects are copies between two different cached RDDs, then they can be bound to the
cached blocks of both RDDs. In such cases, we assign a sole primary container as the
owner of each data object. Other containers are treated as secondary containers. The
object ownership is determined based on the following rules:

(1) Cached RDDs and shuffle buffers have higher priority of data ownership than UDF
variables, simply due to their longer expected lifetimes.

(2) If there are objects assigned to multiple high-priority containers in the same job
stage, the container created first in the stage execution will own these objects.

In the rest of this subsection, we present how data are organized within the primary
and secondary containers under various situations.

4.3.1. Memory Pages in Deca. Deca uses unified byte arrays with a common fixed size as
logical memory pages to store the decomposed data objects. A page can be logically split
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Fig. 8. Memory layouts of primary containers in Deca’s memory manager.

into consecutive byte segments, one for each top-layer object. Each of such segment
can be further split into multiple segments, one for each lower-layer object, and so on.
The page size is chosen to ensure that there is only a moderate number of pages in
each executor’s JVM heap so that the GC overhead is negligible. On the other hand,
the page size should not be too large either, so that there would not be a significant
unused space in the last page of a container.

For each data container, a group of pages are allocated to store the objects it owns.
Deca uses a page-info structure to maintain the metadata of each page group. The
page-info of each page graph contains: 1) pages, a page array storing the references
of all the allocated pages of this page group; 2) endOffset, an integer storing the start
offset of the unused part of the last page in this group; 3) curPage and curOffset, two
integer values that store the progress of sequentially scanning, or appending to, this
page group.

4.3.2. Primary Container. The way how Deca stores objects in their primary container
depends on the type of the container:

UDF variables. Deca does not decompose objects owned by UDF variables. These ob-
jects do not incur significant GC overheads, because: (1) the objects only referenced
by local variables are short-living objects and they belong to the young generation,
which will be reclaimed by the cheap minor GCs; (2) the objects referenced by the
function object fields may be promoted to the part of old generation, but the total
number of these objects in a task is relatively small in comparing to the big input
dataset.

Cache blocks. Deca always decomposes the SFST or RFST objects and stores their raw
data bytes in the page group of a cache block. While cache blocks are designed to be
immutable for the purpose of fault tolerance, VST objects can also be decomposed
based on the type-set of fields. Figure 8(a) shows the structure of a cache block of a
cached RDD, which contains decomposed objects.
A task can read objects from a decomposed cache block created in a previous phase.
If this task changes the data-sizes of these objects, Deca has to re-construct the
objects and release the original page group. To avoid thrashing, when such re-
construction happens, Deca will not re-decompose these objects again even if they
can be safely decomposed in the subsequent phases.

Shuffle buffers. Figure 8(b) shows the structure of a shuffle buffer. Similar to cache
blocks, data of an RFST or an SFST in a shuffle buffer will be decomposed into the
shuffle buffer’s page group. However, unlike cached RDD, where data are accessed
in a sequential manner, data in a shuffle buffer will be randomly accessed to per-
form sorting or hashing operations. Therefore, as illustrated on the left-hand side
of Figure 8(b), we use an array to store the pointers to the keys and values within
a page. The hashing and sorting operations are performed on the pointer arrays.
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However, the pointer array can be avoided for a hash-based shuffle buffer with both
the Key and the Value being of primitive types or SFSTs. This is because we can
deduce the offsets of the data within the page statically.
As we discussed in Section 4.2, for a hash-based shuffle buffer with a GroupBy-
Aggregation computation, a combining operation would kill the old Value object
and create a new one. Therefore, Value objects are not long-living and frequent GC
of these objects are generally unavoidable. However, if the Value object is of an
SFST, then we can still decompose it and whenever a new object is generated by the
combining operation, we can just reuse the page segment occupied by the old object,
because the old and the new objects are of the same size. Doing this would save the
frequent GC caused by these temporary Value objects.

When the working set size is larger than the available memory space of an executor,
Spark moves part of its data out of the memory. For cached RDDs, Spark uses the
LRU strategy to select the cache blocks for eviction. The evicted data will be directly
discarded or swapped to the local disk according to the user-specified storage-level. For
shuffles, Spark always spills the partial data into temporary files, and merges them
into final files at the end of task executions.

For cached RDDs, Deca modifies the original LRU strategy to evict page groups
rather than cache blocks. Accessing in-page data through either page-infos or point-
ers will refresh the corresponding page group’s recently-used counter. Spark serializes
cache block data before write them into disk files, or transfer them through network
for non-local accesses. In Deca, the decomposed data bytes can be directly used for disk
and network I/O.

For shuffles, like Spark, Deca sorts the pointers before spilling, and writes the spilled
data into files according to the order of the pointers. If a shuffle buffer has only pointers
that reference page segments, Deca does not spill these pointers because normally they
only occupy a small memory space. It pauses the shuffling and triggers the cache block
eviction to make enough room. Deca uses a small memory space (normally only one
page) to merge sorted spilled files. Once the merging space is fully filled, the merged
data will be flushed to the final output file.

4.3.3. Secondary Container. There are common patterns of multiple data containers
sharing the same data objects in Spark programs, such as: 1) manipulating data ob-
jects in cache blocks or shuffle buffers through UDF variables; 2) copying objects be-
tween cached RDDs; 3) immediately caching the output objects of shuffling; 4) imme-
diately shuffling the objects of a cached RDD.

If a secondary container is UDF variables, it will be assigned pointers to page seg-
ments in the page group of the objects’ primary container. Otherwise, Deca stores data
in the secondary container according to the following two different scenarios: (i) fully
decomposable, where the objects can be safely decomposed in all the containers, and
(ii) partially decomposable, where the objects cannot be decomposed in one or more
containers.

Fully decomposable. This scenario is illustrated in Figure 9(a). To avoid copy-by-
value, a secondary container only stores the pointers to the page group owned by the
primary, one for each object. Furthermore, we add an extra field, depPages, to the page-
info of the secondary container to store the page-info(s) of the primary container(s).

Deca further performs optimizations for a special case, where a secondary container
stores the same set of objects as the primary and does not require a specific data or-
dering. In such a case, Deca only generates a copy of the page-info of the page group
owned by the primary container, and stores it in the secondary container. In this way,
both containers actually share the same page group. The memory manager uses a
reference-counting method to reclaim memory space. Creating a new page-info of a

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.



Deca: a garbage collection optimizer for in-memory data processing 1:17

···

page 0

···

page 1

Primary Secondary

···

page 2

depPage

page-infopage-info

···

page 0

page 1

···

(a) Fully Decomp.

j

2i 2i+1 

Key

Shuffle 
Buffer

Array[AnyRef]

value

ArrayBuffer

Value Array[Integer]

value

...
Cache 
Block

Array[byte]

lengthcount
values ...

(b) Partially Decomp.
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decomposed in its primary container (shuffle buffer) but are decomposable in its secondary container (cache
block).

page group increments its reference counter by one, while destroying a container (and
its page-info) does the opposite. Once the reference counter becomes zero, the space of
the page group can be reclaimed.

Partially decomposable. In general, if the objects cannot be safely decomposed
in one of the containers, then we cannot decompose them into a common page group
shared by all the containers. However, if the objects are immutable or the modifications
of objects in one container does not need to be propagated to the others, then we can
decompose the objects in some containers and store the data in their object form in the
non-decomposable containers. This is beneficial if the decomposable containers have
long lifetimes.

Figure 9(b) depicts a representative example, where the output of a groupByKey op-
erator, implemented via a hash-based shuffle buffer, is immediately cached in a RDD.
Here, groupByKey creates an array of Value objects in the hash-based shuffle buffer (see
the middle of Figure 9(b)), and then the output is copied to the cache blocks. The Value
array is of a VST and hence cannot be decomposed in the shuffle buffer. However, in
this case, the shuffle buffers would die after the data are copied to the cache blocks,
and the subsequent modifications of the objects in the cache blocks do not need to
be propagated back to the shuffle buffers. Therefore, as shown in Figure 9(b), we can
safely decompose the data in the cache blocks, which have a long lifetime, and hence
significantly reduce the GC overhead.

5. DECOMPOSITION OF VST AND FIELD-ORIENTED MEMORY PAGES
5.1. Decomposition of VST
In the previous sections and also in paper [Lu et al. 2016], only decomposing of SFST
and RFST objects are considered. The key reason we do not decompose a VST object is
that the memory manager cannot safely allocate a fixed space for it due to its variable
size. Over-allocating space to account for the maximum possible size of a VST object
would incur prohibitive waste of memory space, especially when the sizes of the objects
of the same VST vary a lot.

Fortunately, in JVM, the runtime change of the actual size of an object is usually
implemented by creating a new object with a new size. In other words, the size of any
object is actually of fixed size during its lifetime. For example, Figure 10 shows the
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Fig. 10. The memory layout of data containers for VST decomposition

typical VST used in a groupByKey operator. As mentioned in Section 4.3.1, groupByKey
creates an array of Value objects in a hash-based shuffle buffer (see the middle of
Figure 10). The Value objects whose keys have the same hash values are put into
Values, which is an array. When the current array is full, a new array object with a
larger size is created and used to replace the old one.

This means that JVM actually creates several fixed-size objects during the lifetime
of a VST object. Deca makes use of this property, and decomposes each of such fixed-
size objects. If we store these objects in the heap, it would result in frequent (but
light-weight) GCs. To avoid this overhead, Deca stores a decomposed VST object in the
off-heap space by using sun.misc.Unsafe to allocate the necessary space. We maintain
a pointer in the memory page to store the address of the decomposed object in the
off-heap space. When JVM creates a new object caused by a size change of the VST
object, Deca frees the off-heap space of the old object via Unsafe and allocates the
necessary off-heap space for the new one. The address in the memory page would be
updated accordingly. Note that to replace the old object with a new one, if the original
program contains the copy statements, such as the array mentioned above, we copy the
original bytes to new space additionally. This technique works only if the VST object is
appropriately encapsulated as stated in the following lemma.

LEMMA 5.1 (SAFE VST). The object of a VST can be safely decomposed if and only
if all the following conditions hold:

(1) it is a private field;
(2) the new object reassigned to the field cannot be built outside of the class; and
(3) the reference cannot be assigned to other fields.

The conditions of the lemma are consistent with encapsulation rules in object-
oriented languages. A class with good encapsulation designs should protect the im-
portant fields from being changed outside of the class. When the VST field satisfies
Lemma 5.1, the invocations of the method that reassigns the field means the end of
the current object’s lifetime. On the contrary, without good encapsulation, the VST ob-
ject can be assigned anywhere in the code, therefore it is computationally infeasible to
analyze its lifetime.
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Lastly, in Spark, cached RDDs are designed to be immutable to provide resiliency.
In other words, objects stored in a cache container would never be updated, including
their sizes, and hence can always be safely decomposed. Therefore, we only need to use
the method introduced here to decompose the VST objects stored in shuffle buffers,
which are mutable.

5.2. Field-oriented memory page
In the aforementioned design of memory pages, the UDT objects are stored one by one
in a contiguous region. We call them object-oriented memory pages. When the data
processing system caches a large number of intermediate objects, it is often desirable
to compress the in-memory cached objects in order to maximize the usage of memory
space and avoid swapping data to secondary disks. As the byte sequence of one UDT
object contains different types of fields, its information entropy is high, which would
have poor compression rates [Ziv and Lempel 1977], [Zhao et al. 2016].

To enhance the compression performance, we adopt field-oriented memory pages,
which have a lower information entropy. A filed-oriented memory page only stores one
field of a UDT. In other words, a UDT data object may be split and stored in a few
memory pages. A mapping table is needed to manage the map from a field to the cor-
responding memory pages. The mapping table can be produced by Algorithm 1 in local
classification (Section 3). The algorithm runs recursively until it reaches a primitive
type or an array type with primitive elements. We then allocate one page group to
each of these fields. The name of this field and the address of the first allocated mem-
ory page are put into the mapping table. Based on the mapping table, the structure of
a field-oriented memory page is designed as follows.

Cache blocks. With the mapping table, the UDT objects are decomposed into several
pages, as shown in Figure 11(a).

Shuffle buffers. Figure 11(b) shows the structure of a shuffle buffer. Besides the map-
ping table, a pointer array is used for sorting or hashing operations, which is similar
to the object-oriented memory pages. As the values of all the fields in a UDT have
the same offset in their memory pages, the pointer array only needs to point to the
first memory page. If the sorting operations compare other fields, they can also be
accessed by the same offset.

Note that we treat a field of an array type as two fields: a length field storing the
length of the array and an element field being of the same type as the array elements.
Thus, if the array is a decomposable VST, Deca allocates two memory pages to the
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array type with the memory pages of the element field storing the addresses of the
actual off-heap spaces allocated to the arrays. If the array type is of SFST or RFST,
we simply store the length field and the element field together into one memory page
group instead of two, which will have little effect on the compression rate, but can
simplify the operations on the arrays.

6. IMPLEMENTATION
We implement Deca based on Spark in roughly 12800 lines of Scala code. It consists of
an optimizer used in the driver, and a memory manager used in every executor. The
memory manager allocates and reclaims memory pages. It works together with the
Spark cache manager and shuffle manager, which manage the un-decomposed data
objects.

6.1. Optimizer in Deca
The optimizer analyzes and transforms the code of each job when it is submitted in the
driver. Intuitively, Deca can be implemented as a standalone tool that transforms the
compiled jar files of a Spark program before its execution. However, a Spark driver pro-
gram may execute many jobs, each consisting of several stages separated by shuffles.
The job submission will be implicitly triggered by an action, such as reduce, which re-
turns a value to the driver after running a UDF on a dataset. According to the results
returned by the current job, the driver decides how to submit the next job.

A driver program can freely use the control statements (if/for/while) to control the
computation. Therefore, it may submit different jobs with different input datasets and
configuration parameters. A static optimization has to enumerate and process all the
possible jobs by exhaustively exploring a large number of possible execution paths of
the program, which is the well-known path explosion problem [Raychev et al. 2015].
This is infeasible especially when the program has loop structures, which render the
number of execution paths unbounded.

To address these challenges, we implement Deca in a hybrid way, which contains a
static analyzer and a runtime optimizer. The static analyzer extracts a priori knowl-
edge about the UDFs and UDTs of the target programs, which can be used to reduce
the runtime optimization overheads. The runtime optimizer intercepts the submitted
jobs at runtime, and optimizes each job before actually submitting it to the Spark plat-
form. With this approach, Deca only optimizes the actually submitted jobs, and thereby
completely eliminates the need for exploring all the execution paths.

6.2. Implementation of Optimizer
The Deca optimizer uses the Soot framework [Soot 2016] to analyze and manipulate
the Java bytecode. The Soot framework provides a rich set of utilities that implement
the classical program analysis and optimization methods.

In the pre-processing phase, Deca uses iterator fusion [Murray et al. 2011] to bun-
dle the iterative and isolated invocations of UDFs into larger, hopefully optimizable
code regions to avoid the complex and costly inter-procedural analysis. The per-stage
call graphs and per-field type-sets are also built using Soot in this phase. Building
per-phase call graphs will be delayed to the analysis phase if a phased refinement is
necessary. In the analysis phase, Deca uses the methods described in Section 3 and
Section 4 to determine whether and how to decompose particular data objects in their
containers.

Based on the obtained decomposability information, in each stage, for the data ob-
jects of the UDT that can be safely decomposed, Deca transforms the corresponding
code and leaves the non-optimizable part unchanged. The transformation phase can
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be further split into two sub-phases, decomposition and linking, which are described
below.

6.2.1. Preprocessing. In this phase, Deca mainly performs iterator fusion to avoid
inter-procedural analysis, which simplifies the analysis of Spark codes. Firstly, for the
code of a Spark job, Deca builds a DAG based on RDD’s lineage graph. We make use
of the implementation of DAGScheduler in Spark to divide the DAG built above into
several stages according to the shuffle operations in the job. Each stage is represented
as a stage-DAG. Secondly, Deca determines the hierarchical structure of the loop body,
and uses Soot to generate the corresponding loop code. If cached RDDs exist in a stage,
Deca generates new loop bodies to manage data objects in the cache buffer. Thirdly,
we need to extract the UDFs to fill the loop body. By comprehending the semantic of
the RDD and the operators like filter, flatMap and mapValues, Deca uses Java reflec-
tion to extract UDFs, and then inlines these UDFs in the loop body. Here, we need to
guarantee the consistency between the return type of the previous UDF and next pa-
rameter type of the next UDF. Finally, Deca generates a Stage-Function-Class, which
is similar to the class structure of UDF, and puts the loop body into this class. The
detailed structure of Stage-Function-Class is displayed in Appendix A. Moreover, as
for closures in UDF, they are created at the driver, and we choose to inject them into
the final UDF object we have transformed.

6.2.2. Analysis. In this phase, in order to provide the important information of
UDTs for code transformation, Deca uses Soot to perform points-to analysis in
Stage-Function-Class, and then analyses the results of points-to analysis to guide
UDT classification. Firstly, since the Stage-Function-Class after performing iterator
fusion is an independent class, which cannot be analyzed by soot-SPARK, a built-
in points-to analysis tool in Soot. To address the problem, Deca generates an entry
method and an entry class linking to the Stage-Function-Class temporarily to make
soot-SPARK applicable. We modify the implementation of soot-SPARK to realize full-
context sensitivity, field sensitivity and object sensitivity. It is worth noting that soot-
SPARK needs to load classes integrally, but the Stage-Function-Class may get in-
volved in many irrelevant classes. So it is time-wasting to load all these classes. In our
modification of soot-SPARK, we load classes, fields and methods incrementally dur-
ing building the call graph on the fly, hence the time overhead of UDT decomposition
and code transformation can be reduced significantly. Thirdly, based on the result of
points-to analysis, Deca invokes both local and global analysis to determine the types
of UDTs in shuffle buffer and cache buffer. If we cannot decompose the UDT safely,
Deca will simply terminate subsequent optimization.

For the safety of transformation, Deca also determines whether there is object shar-
ing in the target stage program. There are three possible object sharing cases: inter-
container sharing, intra-container sharing, and intra-top-level-object sharing. Inter-
container sharing is detected by the object-container mapping analysis described in
Section 4.3. The pointer-based memory layout for this case is also described in Sec-
tion 4.3.

Based on the information from points-to analysis, Deca applies escape analysis over
the loop body to detect intra-container sharing. If the program assigns any local ob-
jects of a sub-stage loop-body to a UDF variable, or a (nested/non-nested) field of the
object contained in a UDF variable, Deca conservatively assumes there would be object
sharing at runtime. For intra-top-level-object sharing, if there is any object assigned
to different (nested/non-nested) fields of a top-level data object, Deca assumes there
should be object sharing. Whenever intra-container sharing or intra-top-level-object
sharing is detected, Deca gives up performing program transformation.
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6.2.3. Decomposition. In this phase, for the UDTs that can be decomposed safely, Deca
transforms the UDT methods to directly accessing the bytes in the memory pages. Deca
generates a synthesized class for each target UDT (called SUDT). Logically, the this

reference of a decomposed UDT object is transformed to the start offset (the index of
the first byte of its raw data) of its containing memory page. All the bytecode accessing
the fields of this object are transformed to access the memory pages based on the ab-
solute field offset (object start offset + relative field offset), the fields also include
each field defined in the parent classes of the UDT. The offset computation depends on
the raw data size of each UDT instance. In each SUDT, Deca synthesizes some static

fields or methods to obtain the values of the data sizes of all the UDT fields. While
the data sizes of the primitive type fields are defined in the official JVM specification,
the sizes of fields of non-primitive types can be recursively obtained from the corre-
sponding SUDTs. If a field’s data size can be determined statically, then it is stored as
a global constant value in a static field in the corresponding SUDT. Otherwise, Deca
synthesizes a static method of the SUDT to compute the data size at runtime. Sim-
ilarly, for each UDT, Deca synthesizes some static fields or methods to provide the
relative offsets of all the UDT fields in the SUDT. The relative offsets can be computed
based on the data sizes and the ordering of the fields in the UDT definition. As an
optimization technique, we reorder the UDT fields by putting the fields with statically
determinable sizes in the front, and hence enable more fields’ offsets to be determined
statically.

After doing the above on all the fields, Deca transforms the methods of the UDT into
its SUDT. During the transformation, all the field accessing code in the methods are
replaced with the array accessing code. At this point, transforming the UDT fields and
UDT methods to the array accessing codes is similar to Facade [Nguyen et al. 2015].
What distinguishes Deca from Facade is that we flatten all the fields of a UDT in the
synthesized class to realize a flat memory layout, and remove the references structure
in UDT, which still exists in the transformed classes in Facade, so that the offset of
each UDT instance or a field of the UDT instance can be computed accurately and
statically.

The memory pages storing the decomposed objects can be stored in two ways in Deca:
on-heap and off-heap. We can allocate the memory space for each page by creating an
object on the heap. At the end of the lifetime of all the objects in the page, we simply
discard the references to the page and rely on the GC to manage the space reclamation.
The advantage of this method is its ease of implementation. It is convenient to define
the memory page class with all the necessary data access methods and the allocation
of memory space can be simply performed by instantiating the page objects. Further-
more, as the number of memory pages are most likely to be relatively small, the GC
overhead will be low.

The off-heap memory can be completely managed with Unsafe, which contains op-
erations such as allocate(), put(), release(), etc. As managing the off-heap memory
space will not incur any GC overhead, it is expected that using this approach in Deca
has the lowest GC cost.

Another important thing to take into account is sharing information among the
stages in a job. Some stages may need synthesized classes generated by previous stages
to transform their own bytecode. So we cache the synthesized classes of all transformed
stages if necessary.

6.2.4. Linking. In this phase, Deca will try to ensure the new RDD and the job that
contains the synthesized classes can be executed on Spark successfully. Deca processes
the code of the Stage-Function-Class of each stage and the other involved classes that
uses the synthesized classes generated in decomposition phase. Deca traverses the
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Stage-Function-Class and detect which statement and reachable method referenced
uses the synthesized classes, then traces the new site of the each synthesized class. If
the new site of the synthesized class is included in the results provided by points-to
analysis, it means that the objects of the synthesized class exist in a data container
(shuffle buffer or cache buffer), or objects are only temporary. As for the temporary ob-
jects of the synthesized classes, Deca creates temporary memory pages to store them.
Since these temporary objects are only referenced by local variables and will be re-
claimed by minor GCs, Deca creates and reclaim such temporary pages at the start
and the end of a loop body respectively.

In Spark, every task processes data objects sequentially in each UDT object array in
a loop. Since Deca allocates byte arrays for data caching and shuffling instead of object
arrays as in vanilla Spark, we have to calculate the array index values in the loop
based on the raw data sizes of each object in the optimized code. In fact, the array index
variable stores the value of the start offset of the data object currently being processed.
Base on these new array index values, Deca changes the code of Stage-Function-Class
and other involved classes that uses the synthesized classes with the following steps:
1) remove the invocations of the UDT object constructors and directly write the initial
values of the constructor parameters into the byte arrays based on the absolute field
offset; 2) replace all the field accessing codes with the array accessing code; 3) replace
each invocation of a UDT method with the corresponding SUDT method, and add the
byte array and the start offset as the additional parameters of the invocation.

Finally, when the transformation of all the stages of a job finishes, Deca compresses
Stage-Function-Class and all classes involved into a jar file, and transfers the jar
file to each executor to ensure the job runs effectively. Then Deca creates a new RDD,
injects a function object created by Stage-Function-Class into a new RDD for each
stage, and resubmit the job that contains the DAG formed by the new RDDs.

Since executing an iterative application may involve submitting a massive amount
of jobs to Spark, it is time consuming (and wasting) to repeat the aforementioned op-
timization for every submitted job. To solve the problem, Deca stores in memory the
RDD-DAG structure, the UDFs of each stage in the very first job, and the synthetic
Stage-Function-Class of each stage. Before optimizing a stage, if Deca detects an
equivalent stage (by comparing their RDD-DAG structure and UDFs) has already been
optimized, it can simply reuse the Stage-Function-Class stored in memory.

We present the optimized code corresponding to the Stage-Function-Class of LR in
Figure 20, which illustrates more details of Deca’s optimization.

7. EVALUATION
We use five nodes in the experiments, with one node as the master and the rest as
workers. Each node is equipped with two eight-core Xeon-2670 CPUs, 64GB memory
and one SAS disk, running RedHat Enterprise Linux 5 (kernel 2.6.18) and JDK 1.7.0
(with default GC parameters). We compare the performance of Deca with Spark 1.6.
For serializing cached data in Spark, we use Kryo, which is a very efficient serializa-
tion framework. All the experiments are repeated 5 times and we report the average
execution time, garbage collection time and their standard deviation (SD).

Five typical benchmark applications in Spark are evaluated in these experiments:
WordCount (WC), LogisticRegression (LR), KMeans, PageRank (PR), ConnectedCom-
ponent (CC). As shown in Table I they exhibit different characteristics and hence can
verify the system’s performance in various different situations. For WC, we use the
datasets produced by Hadoop RandomWriter with different unique key numbers (10M
and 100M) and sizes (50GB, 100GB and 150GB). LR and KMeans use: 4096-dimension
feature vectors (40GB and 80GB) extracted from Amazon image dataset [McAuley
et al. 2015], and randomly generated 10-dimension vectors (ranging from 40GB to
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Table I. Applications used in the experiments

Application Stages Jobs Cache Shuffle
WC two single non aggregated
LR single multiple static non
KMeans two multiple static aggregated
PR/CC multiple multiple static grouped/aggregated
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Fig. 12. Comparison of performance for the shuffle-only WordCount application of Spark and Deca.

200GB). For PR and CC, we use three real graphs: LiveJournal social network [Back-
strom et al. 2006] (2GB), webbase-2001 [Boldi and Vigna 2004] (30GB) and a 60GB
graph generated by HiBench [HiBench 2016]. The maximum JVM heap size of each
executor is set to be 30GB for the applications with only data caching or data shuffling,
and 20GB for those with both caching and shuffling.

7.1. Impact of Shuffling
WC is a two-stage MapReduce application with data shuffling between the “map” and
“reduce” stages. We examine the lifetimes of data objects in the shuffle buffers with the
smallest dataset. We periodically record the alive number of objects and the GC time
with JProfiler 9.0. The result is shown in Figure 12(a). WC uses a hash-based shuffle
buffer to perform eager aggregation, which is implemented in Tuple2. The number
of Tuple2 objects, which fluctuates during the execution, can indicate the number of
objects in shuffle buffers. While the number of Tuple2 are also large in ”map” stage but
decrease in shuffle in Deca. GCs are triggered frequently to release the space occupied
by the temporary objects in the shuffle buffers.

To avoid such frequent GC operations, Deca reuses the space occupied by the
partially-aggregated Value for each Key in the shuffle buffer. Figure 12(b) compare
the execution times of Deca and Spark. In all cases, Deca can reduce the execution
time by 10%–58%. One could also see that the performance improvement increases
with more number of keys. This is because the size of a hash-based shuffle buffer with
eager aggregation mainly depends on the number of keys. The reduction of GC over-
head would become more prominent with a larger number of keys. Furthermore, since
Deca stores the objects in the shuffle buffer as byte arrays, it also saves the cost of data
(de-)serialization by directly outputting the raw bytes.
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Fig. 13. Comparison of performance for the caching-only LogisticRegression and KMeans applications of
Spark and Deca.

7.2. Impact of Caching
LR and KMeans are representative machine learning applications that perform itera-
tive computations. Both of them first load and cache the training dataset into memory,
then iteratively update the model until the pre-defined convergence condition is met.
In our experiments, we only run 30 iterations. We do not account for the time to load
the training dataset, because the iterative computation dominates the execution time,
especially consider that these applications can run up to hundreds of iterations in
a production environment. We set 90% of the available memory to be used for data
caching.

We first examine the lifetimes of data objects in cache RDDs for LogisticRegression
(LR) using the 40GB dataset. The result is shown in Figure 13(a). We find that the
number of objects is rather stable throughout the execution in Spark, but full GCs
have been triggered several times in vain (the peaks of the GC time curve). This is
because most objects are long-living and hence their space cannot be reclaimed. While
these objects are less in Deca because they are transformed to bytes after being read
from the HDFS. Some objects still live in old generation of JVM heap because no full
gc is active.
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By grouping massive objects with the same lifetime into a few byte arrays, Deca can
effectively eliminate the GC problem of repeatedly scanning alive data objects for their
liveness. Figure 13(b) and Figure 13(c) show the execution times of LR and KMeans
for both Deca and Spark. Here we also examine the cases using Kryo to serialize the
cached data in Spark, which is denoted as “SparkSer” in the figures.

For the 40GB and 60GB datasets, the improvement is moderate and can be mainly
attributed to the elimination of object creation and minor GCs. In these cases, the
memory is sufficient to store the temporary objects, and hence full GC is rarely trig-
gered. Furthermore, serializing the cached data also helps reducing the GC time.
Therefore, with the 40GB dataset, SparkSer outperforms Spark by reducing the GC
overhead. However, for larger datasets, the overhead of data (de-)serialization cannot
pay off the reduced GC overhead. Therefore, simply serializing the cached data is not
a robust solution.

For the three larger datasets the improvement is more significant. The speedups of
Deca are ranging from 16x to 41.6x. In these datasets, the long-living objects consume
almost all available memory space, and therefore full GCs are frequently triggered,
which just repeatedly and unavailingly trace the cached data objects in the old gen-
eration of the JVM heap. With the 100GB and 200GB datasets, the additional disk
I/O costs of cache swapping also prolong the execution times of Spark. Deca keeps a
smaller memory footprint of cached data and swap smaller portion of data to the disks.

We also conduct the experiments on a real dataset, Amazon image dataset with
4096 dimensions. Figure 13(d) shows the speedups achieved by Deca are ranging from
1.2x to 5.3x. With such a high dimensional dataset, the size of object headers becomes
negligible and therefore, the sizes of the cached data of Spark and Deca are nearly
identical.

7.3. Impact of Mixed Shuffling and Caching

Table II. Graph datasets used in PageRank and ConnectedComponent

Graph LiveJournal (LJ) WebBase (WB) HiBench (HB)
Vertices 4.8M 118M 602M
Edges 68M 1B 2B
Data Size 2GB 30GB 60GB

PageRank (PR) and ConnectedComponent (CC) are representative iterative graph
computations. Both of them use groupByKey to transform the edge list to the adjacency
lists, and then cache the resulting data. We use three datasets with different edge
numbers and vertex numbers as shown in Table II. We set 40% and 100% of the avail-
able heap space for caching and shuffling respectively. Edges will be cached during
all iterations, and shuffling is used in every iteration to aggregate messages for each
target vertex. We run 10 iterations in all the experiments.

Figure 14(a) and Figure 14(b) show the execution times of iterative computation
without the time to load the dataset, and we only run 10 iterations for PR and CC of
both Spark and Deca. The data-loading phase uses the groupByKey operator for trans-
forming the input edge-list data to the adjacency-list data which are cached in memory.
The speedups of Deca are ranging from 1.1x to 6.4x, which again can be attributed to
the reduction of GC overhead and shuffle serialization overhead. However, it is less
dramatic than the previous experiment. This is because each iteration of these appli-
cations creates new shuffle buffers and releases the old ones. Then GC may be trig-
gered to reclaim the memory occupied by the shuffle buffers that are no longer in use.
This reduces the memory stress of Spark. We also see that SparkSer, which simply
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Fig. 14. Comparison of performance for the mixed-shuffling and caching PageRank and ConnectedCompo-
nent applications of Spark and Deca.

Table III. Comparison of GC time reductions for five applications of Deca

App Spark Deca
exec.(s) SD(s) GC(s) SD(s) ratio GC(s) SD(s) reduction

WC: 150GB 4885 250 2001.3 136.8 40.1% 11.8 0.9 99.4%
LR: 80GB 2899 158 2032.8 139.2 70.1% 2.1 0.23 99.9%
KMeans: 80GB 5546 290 4392.7 240.1 79.2% 7.5 0.42 99.8%
PR: 30GB 5432 278 3512.6 180.1 64.7% 23.2 1.6 99.3%
CC: 30GB 2136 118 1498.7 83.8 70.1% 38.6 2.4 97.4%

serialize the cache in Spark, has little impact on the performance. The additional (de-
)serialization overhead offsets the reduction of GC overhead.

7.4. GC improvement
Table III shows the times to run GC and the ratios of the GC time to the entire job exe-
cution time (the entire time of 10 iterations for PR and CC) for the seven applications.
For each application, we only present the case where the input dataset is the largest
subject to the condition that there is no data swapping or spitting, in order to avoid the
impact of disk I/O operations on the execution time. For each case, the GC time listed
in the table in the average of the GC times by all executors. The result demonstrates
the effect of GC elimination implemented by Deca, and how it improves the overall
application performance.

As shown in the result, the GC running times of LR and KMeans, which are 70.1%
and 79.2% respectively, occupy the largest portion of the total execution time among
all cases. With the 80GB input dataset, the cached data objects consume almost all the
memory space of the old generation of the JVM heap. Deca reduces the GC running
time in two ways: 1) smaller cache datasets trigger much less full GCs; 2) once a full
GC is triggered, the overhead of tracing objects is significantly reduced.

Since all the other applications have the shuffle phases in their executions, the disk
and network I/O time accounts for a certain portion of the total execution time. Fur-
thermore, a consequence of reserving the memory space for the shuffle buffers is the
long-living cached objects occupy no more than 60% of the total available memory.
Therefore, in these cases, the GC running time ranges from 40.1% to 79.2%. This ex-
plains the reason why different types of application reported above demonstrate dif-
ferent improvement ratios.
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Table IV. Comparison of performance improvements of Spark LR/PR with different GC tuning configurations. Deca
performance with the default GC setting is used as the baseline

App Storage Fraction GC algorithm
frac. exec.(s) SD(s) GC(s) SD(s) algo. exec.(s) SD(s) GC(s) SD(s)

LR: 80GB 0.8:0.2 2432 148 1901 117 PS 3216 172 2308 136
Deca:152s/ 0.6:0.4 448 26 31 1.9 CMS 405 23 50 2.7
1.6s 0.4:0.6 616 34 20 3 G1 348 21 22 1.3
PR:30GB 0.4:1.0 5498 312 3601 203 PS 5533 292 3518 192
Deca:828s/ 0.1:1.0 3688 205 1498 83 CMS 6523 342 3598 195
21.7s 0.0:1.0 3756 196 1455 81 G1 7408 392 2042 128

Table V. Comparison of performance for LR and PR with different executor memory sizes

App system executor memory(GB) cache Rate execute time(s) SD(s) GC time(s) SD(s)

LR

Spark 30 70% 2432 201 2149 198

Deca 30 37.5% 218.3 10 2.92 0.3
16 70% 295.4 14 98.12 6

off-heap Deca 30 37.5% 178 9.3 4.2 0.4
16 70% 188 11 73.39 4

PR

Spark 20 23% 5498 278 3602 197

Deca 20 9.1% 661 32 50.8 3
8 23% 893.67 51.1 261 14

off-heap Deca 20 9.1% 658 38 33.21 1.98
8 23% 702 39 115.69 6.2

Next, we compare Deca with the GC tuning methods. The Spark document [SparkGC
2016] states that it is an effective GC tuning method to adjust the ratio of the memory
allocated to cache blocks to the memory allocated to shuffle blocks. Furthermore, we
also compare with two GC algorithms available in Hotspot JVM, i.e., CMS and G1.
Table IV shows the results. LR is very sensitive to GC tuning. By setting the ratios
between the memory allocations for cache and shuffle buffers to be 0.6 and 0.4 (which
are the optimal settings based on our experiments) respectively, or replacing PS with
CMS or G1 with tuned parameters, Deca can significantly improve the performance
of LR. However, PR is much less sensitive to GC tunings, which is consistent with the
experiments reported previously [Databricks 2015]. However, we cannot achieve the
same performance gain by setting a higher number of concurrent GC threads in G1 as
reported in [Databricks 2015]. We conjecture that it may be because of the difference
between the machine configurations, which is not stated in [Databricks 2015]. This
experiment result indicates that GC tuning is an effective way to improve the GC
performance for some applications. However it is a cumbersome process and is highly
dependent on the applications and the system environment.

Although GC tuning can reduce the cost of GC, the best advantage of Deca is the
elimination of data objects. However, the memory pages are also accessed as the data
objects in JVM. Thus, what would happen if the size of caching data objects reach the
same percent.

The above experiments show that Deca can reduce the memory consumption of the
long-living cached data and hence the system has a lower memory pressure during
execution. In other words, Deca has a lower GC overhead not only because it has fewer
long-living objects but also the system has less need to perform GC. In the next exper-
iment, we investigate how the Deca optimizer performs under the memory pressure
similar to the vanilla Spark. In the experiment, we set less memory space for Deca,
so that the long-living cached data consumes the same percentage of memory (70%) as
Spark. The result is shown in Table V. Even under the above memory settings, Deca
still outperforms Spark significantly although there is a slight increase of GC time
and execution time when comparing with the case with the larger memory space. The
increase in GC time is due to the fact that there is a higher demand for GC and Deca
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Fig. 15. Comparison of performance for PR and CC of Deca with and without VST decomposition.

creates a number of long-living memory pages as objects on the JVM heap, which is
subject to full (or major) GC from time to time.

7.5. Impact of VST Decomposition
Both LR and CC use the groupByKey operator. The VST objects produced in both these
cases meet the requirements mentioned in Section 5.1, so these objects can be decom-
posed safely. We first examine the lifetime of the data objects and the GC overhead
of the two major stages in PR. The results are shown in Figure 15(a) and 15(b). In
stage 2, PR runs groupByKey and caches the output into memory. In this stage, the UDT
data objects in the shuffle buffer are of a VST, because the value in scala.Tuple2 of
groupByKey is of a VST. We decompose such objects using the VST decomposition ap-
proach and store the data off heap. To put the objects into the cached block, we have to
create some temporary objects. This is the reason that the number of objects in Deca
fluctuates a bit, which incurs quite some GC overheads. On the other hand, in Spark,
the number of cached data objects keeps increasing along with the execution, which
incurs more GC overhead later in this stage. However, in general, the GC overhead in
this stage is low in comparing to the next stage.

In stage 3 and the subsequent ones, PR performs iterative computation over the
cached data. In this stage, the UDT data objects in the shuffle buffer are of an SFST,
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Fig. 16. Comparison of performance for PScoreReducer of Deca with and without VST decomposition.

and the value in the scala.Tuple2 of reduceByKey is of a primitive type. Deca can decom-
pose the objects into memory pages and the memory pages can be shared between the
cached blocks and the shuffle buffer. Therefore, Deca does not need to create temporary
objects in this stage to convert data from shuffle buffers to cached blocks. On the other
hand, the cache container in Spark contains a massive amount of long-living objects,
which incurs a very high GC cost.

Because of Deca’s effective optimization, even without VST decomposition, the
cached data of PR and CC occupy a small memory space, so the remaining memory
is sufficient for groupByKey with the memory configuration mentioned above. This is
why effects of VST decomposition in stage 2 are not observable. To further examine
the effect of VST decomposition, we adjust the heap size of each executor to 10GB for
both caching and shuffling, and examine the runtime of stage 2 with and without VST
decomposition respectively. As is shown in Figure 15(c) and Figure 15(d), with VST
decomposition can reduce the execution time by nearly 30% for both PR and CC with
the 60GB dataset, mainly due to the reduced number of long-living objects in stage 2.

Although VST decomposition definitely reduce the execution time and GC time of
stage 2, it does not have significant impact on the whole job of PR and CC, mainly
because the other parts dominate the total execution time. We further examine the
effective of VST decomposition using another real-world application, named PScoreRe-
ducer [Guo et al. 2012], where the stage involving VST objects is more significant in
terms of execution time. Similar to PR and CC, this application has two stages and uses
groupByKey to aggregate data. We conduct a similar experiment on this application to
compare the cases with and without VST decomposition. We randomly generate three
datasets (2GB, 30GB, 60GB), set the maximum JVM heap size of each executor to be
10GB for data shuffling, while guaranteeing no spilling of the shuffle buffer for all the
datasets. Figure 16 shows the execution time and GC time of the entire job of PScor-
eReducer. VST-Deca can reduce the entire execution time by 47.8% and GC time by
97.1% with the 60GB dataset, where there is limited memory space for data shuffling.
This further confirms the effectiveness of VST decomposition.

7.6. Impact of Off-Heap Memory
The last experiment shows that Deca still incurs some GC overheads if we use the
on-heap memory pages. As explained in Section 6, Deca can also use off-heap memory
pages to avoid creating the long-living objects. In doing so, the GC overhead can be
further reduced. In this section, we run the experiments using off-heap memory pages
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Fig. 17. Breakdown of the task execution time for LR and PR of Spark, SparkSer, and Deca.

Table VI. Comparison of performance for the single-node Microbenchmark of Spark, Deca, and SparkSer

App JVM heap Time Spark(s) SD(s) Deca(s) SD(s) SparkSer(s) SD(s)

LR
1.1GB exec. 162.8 8.9 9.2 0.5 81.8 5.3

GC 138.8 6.8 0.1 0.02 6.0 0.4

20GB exec. 10.9 0.6 9.5 0.3 44.6 2.1
GC 0.03 0.01 0.16 0.08 0.035 0.01

PR
2GB exec. 353.2 19.3 27.8 1.52 806.8 45.3

GC 104.6 6.3 0.16 0.02 503.2 26.9

30GB exec. 231.8 12.9 23.5 1.51 263.8 14.3
GC 12.8 0.67 0.04 0.01 2.1 0.15

Avg. time to serialize one object - - 3.7ms - 3.9ms -
Avg. time to de-serialize one object - - - - 27ms -

and present the results in Table V. As can be observed in the table, when the memory
consumption of cached data increases to the same amount as in Spark, Deca incurs
much smaller GC overhead than using on-heap memory pages. This is because the
long-living memory pages are allocated off-heap and therefore the system only needs
to run minor GC to reclaim the space occupied by the temporary objects.

7.7. Microbenchmark
To make a closer comparison, we attempt to break down the running time of a single
task in LR and PR in Figure 17. We use the optimized memory fractions obtained in the
previous subsection. Note that tasks run concurrently in the system and we present
the slowest tasks in the respective approaches, which somehow indicate the system
bottleneck. In the LR-40G job, there is minimum GC overhead for all approaches, but
the deserialization overhead of SparkSer is obvious. For the LR-100G job, SparkSer
can also minimize GC overhead, but it needs to deserialize data into temporary objects
and hence still have some GC overhead. This shows the advantage of Deca’ code mod-
ification over serialization. Furthermore, for PR-60G, there is high shuffling overhead
in both Spark and SparkSer. This is because the disk swapping of the input cached
RDD slows down the shuffle I/O. Due to the smaller footprint, Deca does not suffer
from this problem. Note that GC and shuffle I/O can run in parallel and shuffling is
the bottleneck in this setup.

To further analyze the CPU overhead, we run LR and PR within a controlled envi-
ronment to eliminate the impact of memory footprint and other non-CPU factors, such
as the Spark’s task scheduling delay and shuffling I/O. This is done by using a multi-
threaded Java program in a single machine to emulate the workflow of Spark without
task scheduling and shuffling I/O.

In the LR job, we use 8 million randomly-generated 10-dimensional labelled feature
vectors as the input dataset. The input is first partitioned and cached in object arrays
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(Spark) or byte arrays (SparkSer and Deca). The cached partitions are then evenly
dispatched to computing threads. The number of iterations is set to 50. The results
in Table VI show that, when the heap is large enough (20 GB) and hence there is
negligible GC overheads, Deca is almost identical to Spark but SparkSer has a poor
performance due to the high deserialization overhead. Furthermore, when the JVM
heap size is relatively small (1.1 GB), Spark suffers from high GC overheads while both
SparkSer and Deca can keep the GC overheads low. Again, Deca outperforms SparkSer
because it does not require de-serialization and has a lower GC overhead. We also
measure the average time for Deca and Kryo to serialize and de-serialize each object.
The results are reported at the bottom of Table VI. We can see that Deca has a similar
serialization cost as Kryo, while Deca does not involve a significant de-serialization
overhead as Kryo does.

A similar experiment is done on PR, which uses both cache and shuffle buffers. The
Pokec graph [SNAP 2016] with 1.6M vertices and 30M edges is used as the input. Note
that Spark does not support in-memory serialization for shuffle buffers, so SparkSer
only serializes the cached data. As shown in Table VI, when the GC overhead is neg-
ligible with a large heap, SparkSer again suffers from high de-serialization overhead,
while Deca runs significantly faster than Spark. This is because Spark needs to access
auto-boxed objects in generic-type containers in the shuffle buffers, while Deca directly
operates on the primitive values (note that this is not the case for LR, because LR does
not involve shuffling.). When the GC overhead is high with a smaller heap, SparkSer
works worse than Spark because of the join operation in PR. During the join oper-
ation, SparkSer de-serializes the cached data and stores the resulting objects in the
shuffle buffers. On the other hand, Spark just stores references of the cached objects in
the shuffle buffers. Thus, SparkSer suffers from even higher GC overheads than Spark
does. Here, Deca’s superiority is attributed to its ability to decompose not only cache
blocks but also shuffle buffers.

In summary, Deca has lower GC overhead, smaller footprint, no data deserialization,
and no data boxing and un-boxing. All these factors can be important to job execution
time, and their significance depends on the actual scenarios.

7.8. Comparing with Spark SQL
In this experiment, we compare Deca with Spark SQL, which is optimized for SQL-
like queries. Spark SQL uses a serialized column-oriented format to store in-memory
tables. Moreover, with the project Tungsten, the shuffled data of certain (built-in or
user-defined) aggregation functions, such as AVG and SUM, are also stored in mem-
ory with a serialized form. The serialization can be either auto-generated or manually
written by users. In the experiment, we use the uservisits table from the Common
Crawl document corpus [Benchmark 2014], the size of which is 111GB. We use the
table schemas and the following SQL queries provided in Spark’s benchmark [Bench-
mark 2014], which is a typical GroupBy aggregate query. We then write a semantically
identical Spark program using RDDs. The input tables are entirely cached in memory
before being queried. Spark serializes and compresses the in-memory data with build-
in mechanism.

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM uservisits
GROUP BY SUBSTR(sourceIP, 1, 7);

To examine the case with a smaller dataset, where compression is not recommended
due to its extra overhead, we randomly sampled 44GB of data from the complete
dataset. The results of this experiment are shown in Table VII. Deca and Spark SQL
significantly outperform Spark mainly thanks to their much lower GC overhead.
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Table VII. Execution time of the exploratory SQL query. The number in
parenthesis is the amount of cached data swapped to disk

App exec.(s) SD(s) GC(s) SD(s) cache(GB)
Spark 394 18 192.4 11.2 97.9(23.1)
Spark SQL 180 5.1 3.0 0.2 47.1
Deca 192 6.2 4.2 0.2 55.6
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Fig. 18. Comparison of performance for the SQL query with in-memory compression of Spark, Spark SQL
, Deca with and without the field-oriented memory layout.

With a larger dataset, compression of cached data may be beneficial since it can avoid
intensive disk I/O. Deca-field and Deca-object refer to the cases using field-oriented
and object-oriented memory pages, respectively. The results of the experiment with
data compression are shown in Figure 18. As the cost of disk I/O vary in different runs
of the application, we run each application 7 times and draw the error bars in the
figure. Also, we allocate as much memory space as possible and set a low fraction for
caching, so that the shuffle and other operations cause few GCs, but cached data are
spilled to disk instead. Thus the size of the compressed data determines the cost of
disk I/O and the job execution time. The result shows that Spark has a larger data size
after compression and hence more data are swapped to disk. Another reason is that
the estimation of runtime size of a large number of objects is inaccurate, which causes
Spark to swap cached data to the disk unnecessarily early. Deca-object can reduce
the size of swapped data due to more accurate estimation of size of the byte sequences.
However, it suffers from the low compression performance. On the contrary, both Deca-
field and Spark SQL can achieve higher compression rate and accurate size estimation.
Deca-field can achieve a similar performance as Spark SQL.

7.9. Cost and Applicability of Deca
In this experiment, we aims to explore the cost and applicability of the Deca optimizer,
by examining a large number of applications selected from MLlib, an open-source dis-
tributed machine learning library based on Spark. The applications cover almost all
kinds of machine learning algorithms, such as classification, regression, decision-tree
and rule mining etc. We report the optimization time of the first iteration because the
subsequent iterations can reuse the optimized code (see Section 6.2.4). Table VIII and
Table IX show the time overhead of the three optimization phases, namely prepro-
cessing, analysis and transforming that includes decomposing, writing the classes and
job packaging. For all the applications, the overall time overhead of Deca optimizer
is often negligible compared to the execution time of the job submitted. We note that
the time of points-to analysis in LR and KMeans is longer than that of other appli-
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Table VIII. Comparison of optimization overheads for different applications (set-a)

App Stage Reachable
Methods

Preprocess
time(ms) SD(ms) Analysis

time(ms) SD(ms) Transform
time(ms) SD(ms) Generate

(classes/methods)
WC Job0-0 46 510 24 2338 122 428 16 6 / 31

Job0-1 21 133 4 1426 58 48 3 1 / 3

PR
Job0-0 547 568 25 3196 128 269 7 2 / 15
Job0-1 956 243 6 3468 175 209 8 3 / 29
Job0-2 23 176 4 1367 39 128 7 1 / 4

CC
Job0-0 547 548 22 3162 124 240 6 2 / 15
Job0-1 103 195 6 1435 58 165 5 2 / 13
Job0-2 126 166 8 2635 106 161 6 2 / 15
Job0-3 21 118 5 1293 47 42 3 1 / 3

LR Job0-0 5164 668 31 24836 1005 767 31 7 / 116

KMeans
Job0-0 3489 587 26 21447 982 223 18 3 / 28
Job1-0 1894 183 8 8350 340 536 31 7/ 129
Job1-1 969 155 7 5498 225 46 3 1 / 4

ChiSq-
Selector

Job0-0 1213 568 27 6708 288 412 10 5 / 90
Job1-0 1228 208 7 6108 208 231 9 5 / 93
Job2-0(Iter) 1239 218 6 4535 201 201 6 5 / 93
Job2-1(Iter) 210 117 6 1643 40 43 3 1 / 3
Job3-0 1247 209 8 4592 108 268 11 4 / 30

Elementwise-
Product

Job0-0 853 588 26 3288 137 229 12 2 / 9
Job1-0 984 169 9 3592 167 202 8 2 / 9

FPGrowth

Job(0 1)-0 901 370 13 3473 118 244 11 3 / 51
Job2-0 1354 168 5 2930 98 201 9 3 / 51
Job2-1 240 133 4 1622 67 53 2 1 / 3
Job3-0(Iter) 1241 186 7 3967 162 322 11 6 / 148
Job3-1(Iter) 640 163 7 3998 129 148 6 1 / 3

Gaussian-
Mixture

Job(0 2)-0 908 376 10 2018 98 185 9 3 / 20
Job3-0(Iter) 1225 238 8 4498 188 283 13 3 / 24

KDEExample Job0-0 554 609 31 2954 90 73 3 1 / 3

LBFGS

Job0-0 1213 647 23 5778 188 456 11 5 / 90
Job1-0 1211 218 6 4535 179 456 18 5 / 93
Job2-0(Iter) 1228 246 9 4487 159 554 22 12 / 152
Job2-1(Iter) 692 158 6 2581 101 46 2 1 / 5
Job3-0 1282 186 8 4562 203 308 13 5 / 93

LinearRegres-
sionWithSGD

Job(0 1)-0 908 419 12 3489 147 337 14 4 / 29
Job2-0(Iter) 1080 203 9 4956 225 309 14 9 / 141
Job2-1(Iter) 470 176 8 1757 63 53 2 1 / 4
Job3-0 928 198 9 4685 199 267 12 4 / 31

Normalizer Job0-0 1213 629 21 5248 218 421 19 5 / 90
Job1-0 1227 206 11 4487 200 243 11 4 / 30

Summary-
Stat

Job0-0 1053 799 37 4852 240 438 23 8 / 174
Job0-1 230 169 9 2230 107 208 13 1 / 4

cations. This is because the points-to analysis involves the breeze package and causes
more reachable methods to analyze. We also report the number of generated classes
and methods to illustrate Deca’s overhead from another perspective. The generated
classes include the synthesized classes in the decomposition phase and linking phase
(Stage-Function-Class).

As for the applicability of Deca, we also discover that, in several stages in the ap-
plications that use decision-tree algorithms terminate, such as DecisionTreeRegression
and RandomForestClassification, the optimization terminates at the analysis phase. In
those stages, the UDT objects in the data containers contain Map objects that belong
to Recursively-Defined Type, therefore Deca cannot decompose these UDT objects
or optimize the jobs at all.

Deca optimizer is shown to be applicable to all the applications examined in this
subsection. But if some user-defined RDDs with unknown semantics appear in an ap-
plication and Deca cannot successfully complete iterator fusion, then the optimizer will
lose applicability. This is because the current iterator fusion is based on the built-in
RDD operators of Spark, and the Deca optimizer cannot extract the UDFs from those
RDDs in preprocessing phase. MLlib includes a small number of such applications.
There is an approach to solve the problem, which we plan to implement in the future.
Specifically, Spark processes data objects and computes the results after linking the
specific iterators in a specific type of RDD. Deca can handle the iterator fusion based
on these iterators in an RDD with fine granularity, therefore we can complete the it-
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Table IX. Comparison of optimization overheads for different applications (set-b)

App Stage Reachable
Methods

Preprocess
time(ms) SD(ms) Analysis

time(ms) SD(ms) Transform
time(ms) SD(ms) Generate

classes/methods

SVD
Job0-0 853 576 22 3728 148 185 9 2 / 9
Job1-0(Iter) 903 355 16 3228 142 257 11 6 / 110
Job1-1(Iter) 241 178 8 1368 58 47 2 1 / 4
Job2-0 855 189 8 2688 109 145 6 2 / 49

SVMWith-
SGD

Job0-0 1213 648 28 2587 98 396 18 5 / 84
Job(1 3)-0 1206 172 8 2442 101 302 13 5 / 89
Job4-0(Iter) 1240 208 10 1839 89 186 7 5 / 89
Job4-1(Iter) 472 168 7 1438 68 45 2 1 / 4
Job5-0 1223 173 8 4537 218 326 15 5 / 89

StandardScaler

Job0-0 1213 653 30 4762 212 452 21 5 / 90
Job(1 3)-0 1281 246 11 3698 169 698 29 14 / 301
Job4-0(Iter) 230 132 5 1473 55 203 10 4 / 14
Job4-1(Iter) 472 168 8 1757 83 47 2 1 / 92
Job5-0 1223 173 6 3678 158 319 14 12 / 92

TallSkinnySVD
Job0-0 887 566 21 3782 172 199 9 2 / 9
Job1-0(Iter) 937 347 16 3134 149 269 12 6 / 110
Job1-1(Iter) 240 193 9 1288 58 46 3 1 / 4

DecisionTree-
Regression

Job0-0 1213 732 32 5388 242 419 20 5 / 90
Job1-0 1246 225 11 3703 180 296 14 5 / 93
Job2-0 1245 194 7 4363 205 245 13 5 / 93
Job3-0 1270 188 5 3609 169 532 26 12 / 163
Job3-1 1074 162 7 3358 149 209 9 1 / 3
Job4-0(Iter) 1327 205 11 4589 223 / / /
Job4-1(Iter) 2156 235 11 5728 290 / / /
Job5-0 1215 162 8 3218 152 334 14 5 / 93

LogisitcRegres-
sionWithLBFGS

Job0-0 1213 538 22 4748 233 468 22 5 / 90
Job1-0 207 189 8 2568 124 278 14 5 / 93
Job2-0 1206 161 8 4308 188 223 11 5 / 93
Job3-0 1282 242 12 3539 177 648 30 14 / 301
Job3-1 230 138 6 1490 68 209 9 1 / 4
Job4-0 1224 169 7 4209 201 243 11 5 / 92
Job5-0(Iter) 241 218 10 1846 87 568 25 12 / 173
Job5-1(Iter) 692 149 7 2192 103 46 2 1 / 4
Job6-0 1282 167 8 4833 237 332 15 5 / 93

RandomForest-
Classification

Job0-0 1213 613 28 5314 249 405 20 5 / 90
Job1-0 1246 208 10 4592 220 318 14 5 / 93
Job2-0 1245 178 8 4204 205 265 12 5 / 3
Job3-0 1270 179 9 4478 212 492 24 12 / 163
Job3-1 1074 158 7 3296 143 218 11 1 / 3
Job4-0(Iter) 1326 238 9 4582 239 / / /
Job4-1(Iter) 2156 145 6 5899 284 / / /
Job5-0 1361 183 8 3287 138 379 18 5 / 93
Job6-0 1205 162 8 3264 152 220 10 5 / 93

PCA

Job0-0 905 638 31 3010 138 259 12 4 / 26
Job1-0 1891 248 11 6509 280 568 27 9 / 151
Job1-1 1449 176 8 4309 210 449 20 1 / 4
Job2-0(Iter) 2015 193 9 6294 292 255 12 9 / 141
Job2-1(Iter) 1462 172 8 4318 202 43 2 1 / 4
Job3-0 2140 208 9 6532 303 304 15 9 / 145
Job3-1 1862 172 8 6458 312 268 13 4 / 31
Job4-0 2101 196 10 6732 299 276 13 4 / 40

erator fusion successfully without knowing the RDD types. With this extension, the
applicability of Deca can be extended significantly.

8. RELATED WORK
The inefficiency of memory management in managed runtime platforms for big data
processing systems has been widely acknowledged. Existing efforts to minimize the
overhead of memory management can be categorized into the following directions.

8.1. In-Memory Serialization
Many distributed data processing systems, such as Hadoop, Spark and Flink, support
serializing in-memory data objects into byte arrays in order to reduce memory man-
agement overhead. ITask [Fang et al. 2015] adopts a novel programming abstraction,
namely interruptible tasks, for JVM-based big data processing frameworks. Frame-
work developers can implement the task execution engines by using ITask APIs. The
ITask library runtime monitors the heap usage of the task execution process. When-

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.



1:36 X. Shi et al.

ever the memory usage exceeds the pre-defined threshold value, ITask suspends se-
lected tasks and release in-memory buffers for their input, output, and intermediate
data. For large intermediate data that are costly to re-compute, ITask serializes the
data into memory buffers or disk files instead of discarding them. The suspended tasks
can be resumed when memory usage decreases. However, object serialization has long
been acknowledged as having a high overhead [Carpenter et al. 1999], [Welsh and
Culler 2000], [Miller et al. 2013].

8.2. GC Optimization
Most traditional GC tuning techniques are proposed for long-running latency sensitive
web servers. Some open source distributed NoSQL systems, such as Cassandra [Cas-
sandra 2010] and HBase [HBaseGC 2016], use these latency-centric methods to avoid
long GC pauses by replacing the Parallel GC with, e.g. CMS or G1 and tuning their
parameters.

Implementing better GC algorithms is another line of work. Taurus [Maas et al.
2016] is a holistic runtime system for distributed data processing that coordinates
the GC executions on all workers to improve the overall job performance. Later Nu-
maGiC [Gidra et al. 2015] is implemented as a NUMA-aware garbage collector for data
processing running on machines with a large memory space. A phenomenon is discov-
ered that big-data applications do not meet almost the weak generational hypothesis,
NG2C [Bruno et al. 2017] uses a dynamic N-Generational mechanism, as an extension
of 2-Generation of HotSpot GC, and contains a lifetime profiling tool in order to pre-
tenure objects into older generations. This design aims to avoid long GC pauses but
cannot increase application throughputs. These approaches’ requirements of modify-
ing JVMs prevent them being adopted on production environments.On the other hand,
Deca employs a non-intrusive approach and requires no JVM modification.

8.3. Region-based memory management (RBMM)
In RBMM [Tofte and Talpin 1997], all objects are grouped into a set of hierarchical
regions, which are the basic units for space reclamation. The reclamation of a region
automatically triggers the recursive reclamation of its sub-regions. This approach re-
quires the developers to explicitly define the mapping from objects to regions, as well
as the hierarchical structures of regions. Broom [Gog et al. 2015] uses RBMM for dis-
tributed data processing that runs on .NET CLR as an early work. However, the evalu-
ation is conducted using task emulation with manually implemented operators, while
the details about how to transparently integrate RBMM with user codes remain un-
clear.

Bloat-aware design [Bu et al. 2013] is based on an observation of the properties of
big data processing programs, most of which can be split into the control-path and the
data-path. In the data-path, each object represents a small fine-grained data item. The
memory bloat problem is caused by the huge amount of data objects created at runtime,
whose lifetimes show a clear staged pattern. In this method, users implement the
RBMM in the application programs by following an accessor-pattern design paradigm
for data objects. Homogeneous data objects with the same type and lifetime should be
”fused” to a large object storing all their raw data. At runtime, the modified program
uses a few accessors to get and set the data inside the large objects.

Similar designs have been adopted by some realistic open source big data processing
applications. In the Alternating Least Squares (ALS) matrix factorization application
of Spark MLlib, data items of input files are represented by Rating objects, which can
then be transformed into the matrix-tile form. ALS creates RatingBlock objects to store
the matrix-tile data. Each RatingBlock object has only three primitive-type arrays,
thereby significantly reducing the in-memory object number. Applications written for

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.



Deca: a garbage collection optimizer for in-memory data processing 1:37

GraphX [Gonzalez et al. 2014], an high-level graph-parallel framework built on top of
Spark, create one VertexPartition object and one EdgePartition object for each task
to store data of its assigned sub-graph.

RBMM programming designs are flexible enough for different object lifetime pat-
terns, but users have to directly control the physical memory layout of in-memory
data objects. Considering that, both of the big data processing framework (such as
Spark) and the user-defined programs can access the UDT data objects, application
and framework co-designs are necessary to implement RBMM. For example, manually
optimized programs like ALS often use low-level RDD operators such as mapPartitions,
zipPartitions, and partitionByKey, which requires deep knowledge about the Spark
framework implementation. These partition-parallel operators also break the origi-
nal data-parallel abstraction of RDD. Moreover, if, for example, a graph-computing
application uses non-primitive UDTs as the types of vertex/edge attributes, both the
application and GraphX per se have to be modified to implement RBMM for the vertex
and edge data objects.

FACADE [Nguyen et al. 2015] implements an approach that transforms user pro-
grams automatically and stores all the alive objects of user-annotated types in a single
region managed by a simplified version of RBMM, thereby bypassing the garbage col-
lection. The occupied space of data objects will be reclaimed at once at a user-annotated
reclamation point. This approach heavily depends on its assumption for data objects’
lifetime. It requires that computation process be periodical, so that it can allocate mem-
ory space for data objects at the beginning of a computation phase and release the
memory space allocated at once until the phase ends. For general frameworks, such
as Spark, the data objects are at least divided into temporary objects, medium-living
objects and long-living objects, therefore this approach is not applicable.

In order to support hierarchical computation phases, Yak [Nguyen et al. 2016] fur-
ther combines RBMM and JVM memory management. In Yak, data objects are firstly
created in the memory regions of the innermost computation phase. When the cur-
rent phase ends, the alive objects will be promoted to the memory regions of the
parent phase . This approach can divide the lifetime of long-living objects with fine
granularity, but still cannot handle the memory management of temporary objects.
Meanwhile, Yak needs to trace the reference relationship among cross-regional objects,
which would incur extra overhead.

Unlike FACADE and Yak, Deca is a framework-specific approach and is tightly cou-
pled with the underlying big data processing framework. It requires modifications
of the memory management module of the framework (such as ShuffleManager and
CacheBlockManager in Spark) in order to work with the memory layout of Deca. In
comparing to the aforementioned previous work, Deca has two strengths: (1) data ob-
jects of an optimized program can be divided into fine-grained lifetime types, therefore
it dose not have the implicit lifetime limitations of FACADE and Yak; (2) in compar-
ing to ITask and Yak, Deca can almost completely eliminate GC overheads, especially
when using off-heap memory pages.

8.4. Domain specific systems.
Some domain-specific data-parallel systems make use of its specific computation struc-
ture to realize more complex memory management. Since the early adoption of JVM
in implementing SQL-based data-intensive systems [Shah et al. 2001], efforts have
been devoted to making use of the well-defined semantics of SQL query operators to
improve the memory management performance in managed runtime platforms. Spark
SQL [Armbrust et al. 2015] transforms relational tables to serialized bytes in a main-
memory columnar storage. Tungsten [Tungsten 2015], a Spark sub-project, enables
the serialization of hash-based shuffle buffers for certain Spark SQL operators. Deca
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has a similar performance as Spark SQL for structured data processing, meanwhile
it provides more flexible computation and data models, which eases the implementa-
tion of advanced iterative applications such as machine learning and graph mining
algorithms.

8.5. Extension from our previous work
The preliminary results of this work have been published in VLDB2016 [Lu et al.
2016]. In addition to those results, this paper documents our further research for Deca
in the following aspects.

First, there are three types of UDT objects: SFST, RFST and VST. In the previous
work, we only consider the decomposition of SFST and RFST objects, not VST objects.
The decomposition of VST objects is more challenging. This is because the size of a
VST object is variable and therefore the memory manager cannot safely allocate a
fixed memory space for it. In this paper, we propose a novel method to decompose the
VST objects. This method allows Deca to decompose more UDT data objects. Hence,
this extension improves the applicability and performance of Deca, compared with the
earlier version. We conduct new experiments to verify the effectiveness of the new
method.

Second, in the memory page design in the VLDB version, the UDT objects are stored
in sequence in the contiguous memory region. We call this type of memory page the
object-oriented memory page. A data processing system may need to cache a large
number of intermediate objects when processing large scale applications. Under this
circumstance, it is desired to compress the objects cached in memory, which enables
Deca to cache more objects in memory and consequently minimize the need of swap-
ping data to secondary disks. In doing so, the performance of Deca can be further im-
proved when processing large-scale data. Our further research shows that the design
of the object-oriented memory page results in a poor compression rate. To address this
issue, we design the field-oriented memory page in this paper. We also conduct new
experiments and demonstrate in this paper that this new design of memory page is
very effective in data compression and significantly improves the performance of Deca
when processing large-scale datasets. The experiments we conducted include compar-
ing Deca with Spark SQL, which compress the in-memory table in a column-oriented
manner. The experiment results show that Deca manifests the similar performance as
Spark SQL in terms of both execution time and compression rate.

Finally, in previous work, Deca stores the decomposed objects in the heap. We found
that if we put the memory pages in the heap, it may cause frequent (but light) GCs.
To avoid this overhead, Deca in this work stores the decomposed VST objects in the
off-heap space. Moreover, we conduct the experiments in this paper to investigate the
impact of off-heap memory.

In addition to the above added technical improvement and related experimental
evaluation, this paper presents the implementation of Deca in detail, which is only
lightly touched in our previous work.

9. DISCUSSION
Deca’s design can be used in big data processing frameworks that have the following
two properties:

Fine-grained data-parallel task execution. Every job can be split into one or more
stages that are separated by synchronous data transferring. Each stage has a ho-
mogeneous set of parallel tasks which execute the same computation procedure.
Task programs can be divided into several execution phases. One execution phase
is a loop (can has nested loops) that sequentially reads data items from source data
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containers and writes the processed data items to the destination data containers.
Most data objects can only cross phase boundaries through data containers. As an
exception, tasks can have a small number of state objects in the global scope, while
their GC overheads are negligible. Data containers are either cached in memory or
persisted on secondary storages. Note that the code sizes and complexities of task
programs are not related to the task execution time. Stream-processing systems like
Storm can have long-running tasks processing unbounded data streams.

Framework-managed in-memory data containers with pre-determined lifetimes.
Based on the knowledge of container lifetimes, the container space can be re-
claimed at a proper time point. RBMM is implemented through binding data
objects with their containers by Deca’s program analyzer. Frameworks still have
to control the container layouts by themselves. If they use the memory layouts
described in this paper, current Deca optimizer can be used to synthesize the data
accessor classes.

Some open-source frameworks are present below, which meet the two properties and
can be modified to benefit from Deca’s design:

Extended Hadoop. The main work of Hadoop task is iteratively reading data items
from input splits, invoking the map/reduce function for each item and writing the
generated data items to output splits. The only type of in-memory data contain-
ers in Hadoop is shuffle buffer. Currently Hadoop’s shuffler only uses a sort-based
grouping/combining mechanism. The output objects of map functions are first seri-
alized and then append to the shuffle buffer. Whenever data of the shuffle buffer
have to be written to the disk, data items are sorted by their keys in the serialized
form. After sorting, the original Value objects have to be de-serialized for combining.
The hash-based shuffling implementation is not only cheaper than a sort-based one,
but also enables more effective eager aggregation [Li et al. 2011]. With Deca’s ap-
proach, the data items in memory can be stored as byte arrays to minimize memory
consumption.
While Hadoop does not cache long lifetime objects in memory, some big data process-
ing frameworks implemented based on Hadoop adopt the in-memory data caching
design. M3R [Shinnar et al. 2012] caches key-value sequences in memory and
shares heap-states between jobs. User-programs can explicitly manage the cached
data with the provided APIs. Twister [Ekanayake et al. 2010] and PRIter [Zhang
et al. 2011] also cache data in memory for iterative applications. Similar to cached
RDDs in Spark, Deca optimizer can be extended to decompose the cached data ob-
jects to minimize GC overheads in these variants of Hadoop.

Storm. The Storm topology concept resembles the Spark job DAG, except that Storm
topology instances are long-running and different stages in one topology instance
can execute simultaneously. Tasks process data items by invoking user-defined
execute methods in sub-classes of the Bolt class. On top of the Bolt interface,
Storm also provides a high-level functional programming model, Trident, to fa-
cilitate the application development. Trident topologies split stream data records
into batches according to pre-defined strategies. Users can use aggregate() and
persistentAggregate() operators to perform GroupBy-Aggregation over each data
batch. Trident stores the aggregated values in memory Key-Value buffers. There-
fore, Deca can be extended to decompose the data objects stored in aggregation
buffers to byte arrays. Eliminating GC overheads is even more important for
latency-sensitive stream processing applications.

GraphX. GraphX provides a graph-parallel programming model that hides the under-
lying RDD model. The UDFs and UDTs of GraphX applications are only related
to the attribute data of vertices and edges. The physical layout of the graph struc-

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 2018.



1:40 X. Shi et al.

ture is managed by the GraphX framework. The sub-graph structure of each task
partition is stored in a few primitive-type arrays, therefore is not necessary to be
optimized for GC overheads. To decompose the vertex/edge attribute objects, we can
extend Deca to analyze and transform the graph-parallel UDFs and UDTs.

10. CONCLUSION
In this paper, we identify that GC overhead in distributed data processing systems is
unnecessarily high, especially with a large input dataset. By presenting Deca’s tech-
niques of analyzing the variability of object sizes and safely decomposing objects in dif-
ferent containers, we show that it is possible to develop a general and efficient lifetime-
based memory manager for distributed data processing systems to largely eliminate
the high GC overhead. The experiment results show that Deca can significantly reduce
Spark’s application running time for various cases without losing the generality of its
programming framework. Finally, to take advantage of Deca’s optimization, a user is
recommended not to create a massive number of long-living objects of a VST,or design
the VST based on the encapsulation rules in object-oriented languages if necessary.
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A. CODE TRANSFORMATION
We explain the implementation of Deca optimizer in Section 6 in detail, and now use
Logistic Regression (LR) as an example to illustrate all the optimization techniques of
Deca. Moreover, we simplify and present the code segments of LR after the decomposi-
tion or transformation to help readers comprehend the process more clearly. While the
code produced by Deca are JVM bytecodes, we provide the equivalent three-address
code to illustrate the logic of the transformed LR code. LR’s transformation is basically
performed in several sub-phases, which are described below.

Running the iterative LR program would submit massive repetitive jobs. Deca only
optimize the first submitted job and reuse the optimized code for the subsequent jobs.
The unique job that we need to analyze only contains one stage (ResultStage), which
have a cached RDD, but no shuffle operation. Deca generates two loop bodies: one for
producing data objects in the cache buffer (data container), and another for processing
data and computing the final results. Deca then extracts all the UDFs from the stage
into its loop bodies, mainly the UDFs in the map function (see Figure 1, line 13 and 21).

LR generates a LabeledPoint object for each text line in the input dataset, each
contains a DenseVector object and a double value. It then caches the resulting
LabeledPoint objects in the memory. Deca determines the specific type of the objects
written into the cache buffer via points-to analysis, and classifies the target UDT, i.e.
LabeledPoint in this case, as a RFST. Since LabeledPoint and its fields can be decom-
posed safely, Deca generates a synthesized class named DenseVector$Double$Deca for
DenseVector. In DenseVector$Double$Deca, there are some static fields and methods
to provide the relative offsets of all the fields as explained in Section 6.2.3, and all the
field-accessing code in each method are replaced with the array-accessing code, such
as the read and write operations over stride, a primitive field of DenseVector. Deca
also transforms the dot method in the original DenseVector into the new method, as
shown in lines 24-52 of Figure 19.

After all the UDTs in LR are decomposed successfully, Deca needs to link them to the
Stage-Function-Class, which is synthesized in the preprocessing phase. The details
of the transformation in Stage-Function-Class are explained in Section 6.2.4, which
mainly modifies the places where LabeledPoint’s fields and methods are accessed and
invoked. In Figure 20, we provide the three-address code of the apply method in the
final Stage-Function-Class. All the UDTs that need to be decomposed are represented
as synthetic classes, such as LabeledPoint and DenseVector (line17 and line19). In the
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1 public int get_stride() {
2 DenseVector$Double$Deca r0;
3 int $i0;
4 long $l0, $l1;
5 r0 := @this: DenseVector$Double$Deca;
6 $l0 = r0.<DenseVector$Double$Deca: long start_address>;
7 $l1 = $l0 + 4L;
8 $i0 = staticinvoke <Unsafe: int getInt(Object,long)>(null, $l1);
9 return $i0;

10 }
11
12 public void set_stride(int) {
13 DenseVector$Double$Deca r0;
14 int i0;
15 long $l0, $l1;
16 r0 := @this: DenseVector$Double$Deca;
17 i0 := @parameter0: int;
18 $l0 = r0.<DenseVector$Double$Deca: long start_address>;
19 $l1 = $l0 + 4L;
20 staticinvoke <Unsafe: void putInt(Object,long,int)>(null, $l1, i0);
21 return;
22 }
23
24 public final double dot(DenseVector$Double$Deca) {
25 DenseVector$Double$Deca r0, r1;
26 DoubleArray$Deca r4;
27 double $d2, d3, $d1, $d0;
28 int i1, $i2, i5, i0, i4, $i3;
29 r0 := @this: DenseVector$Double$Deca;
30 r1 := @parameter0: DenseVector$Double$Deca;
31
32 i0 = virtualinvoke r0.<DenseVector$Double$Deca: int get_length()>();
33 i1 = virtualinvoke r1.<DenseVector$Double$Deca: int get_length()>();
34 if i0 != i1 goto label3;
35 r4 = virtualinvoke r0.<DenseVector$Double$Deca: DoubleArray$Deca

get_data()>();
36 i4 = virtualinvoke r0.<DenseVector$Double$Deca: int get_offset()>();
37 d3 = 0.0;
38 i5 = 0;
39 label1:
40 $i2 = virtualinvoke r0.<DenseVector$Double$Deca: int get_length()>();
41 if i5 >= $i2 goto label2;
42 $d0 = virtualinvoke r4.<DoubleArray$Deca: double get(int)>(i4);
43 $d1 = virtualinvoke r1.<DenseVector$Double$Deca: double apply(int)>(i5);
44 $d2 = $d0 * $d1;
45 d3 = d3 + $d2;
46 $i3 = virtualinvoke r0.<DenseVector$Double$Deca: int get_stride()>();
47 i4 = i4 + $i3;
48 i5 = i5 + 1;
49 goto label1;
50 label2:
51 return d3;
52 }

Fig. 19. The dot method of DenseVector$Double$Deca.
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Deca: a garbage collection optimizer for in-memory data processing App–3

1 public final class StageFunc {
2 ...
3 public DenseVector$Double$Deca compute(DecaTaskContext, int, DataSourceIterator) {
4 ...
5 r0 := @this: StageFunc;
6 r3 := @parameter2: DataSourceIterator;
7 ...
8 z0 = staticinvoke <DecaBlockManager: boolean isContainBlock(String)>(blockId);
9 if z0 == 0 goto label2;

10 r14 = staticinvoke <DecaBlockManager: DecaCacheIterator
getIter(String)>(blockId);

11 label1:
12 z2 = virtualinvoke r14.<DecaCacheIterator: boolean hasNext()>();
13 if z2 == 0 goto label5;
14 r18 = virtualinvoke r14.<DecaCacheIterator: LabeledPoint$Deca next()>();
15 d0 = (double) 1;
16 d1 = (double) 1;
17 d2 = virtualinvoke r18.<LabeledPoint$Deca: double get_label()>();
18 d3 = neg d2;
19 r22 = r0.<StageFunc: DenseVector$Double$Deca w>;
20 r23 = virtualinvoke r18.<LabeledPoint$Deca: DenseVector$Double$Deca

get_features()>();
21 d4 = virtualinvoke r22.<DenseVector$Double$Deca: double

dot(DenseVector$Double$Deca)>(r23);
22 d5 = d3 * d4;
23 d6 = staticinvoke <math: double exp(double)>(d5);
24 d7 = d1 + d6;
25 d8 = d0 / d7;
26 d9 = (double) 1;
27 d10 = d8 - d9;
28 r31 = virtualinvoke r23.<DenseVector$Double$Deca: DenseVector$Double$Deca

times(double)>(d10);
29 r36 = virtualinvoke r31.<DenseVector$Double$Deca: DenseVector$Double$Deca

times(double)>(d2);
30 r37 = virtualinvoke r0.<StageFunc: DenseVector$Double$Deca

reduce(DenseVector$Double$Deca,DenseVector$Double$Deca)>(r37, r36);
31 goto label1;
32 label2:
33 staticinvoke <DecaBlockManager: void createBlock(String)>(blockId);
34 label3:
35 z3 = virtualinvoke r3.<DataSourceIterator: boolean hasNext()>();
36 if z3 == 0 goto label3;
37 r39 = virtualinvoke r3.<DataSourceIterator: String next()>();
38 virtualinvoke r0.<StageFunc: LabeledPoint$Deca parsePoint(String)>(r39);
39 goto label5
40 label4:
41 r44 = staticinvoke <DecaBlockManager: DecaCacheIterator

getIter(String)>(blockId);
42 label5:
43 z4 = virtualinvoke r44.<DecaCacheIterator: boolean hasNext()>();
44 ... //the same code with label1
45 label6:
46 return r37;
47 }
48 }

Fig. 20. The compute method of synthetic Stage-Function-Class.
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App–4 X. Shi et al.

1 public final class StageFunc {
2 static final int D = 10;
3 public LabeledPoint$Deca parsePoint(String) {
4 ...
5 r0 := @this: StageFunc;
6 r1 := @parameter0: java.lang.String;
7
8 $l0 = staticinvoke <DecaBlockManager: long getBlockOffset()>();
9 $i0 = r0.<StageFunc: int D>;

10 $l1 = (long) $i0;
11 $l2 = $l1 * 8L;
12 $l3 = $l2 + 24L;
13 $l4 = $l0 + $l3;
14 staticinvoke <DecaBlockManager: void setBlockOffset(long)>($l4);
15
16 $r4 = new StringTokenizer;
17 specialinvoke $r4.<StringTokenizer: void <init>(String,String)>(r1, " ");
18 r2 = $r4;
19 $r5 = new StringOps;
20 $r6 = <scala.Predef$: scala.Predef$ MODULE$>;
21 $r7 = virtualinvoke r2.<StringTokenizer: String nextToken()>();
22 $r8 = virtualinvoke $r6.<scala.Predef$: String augmentString(String)>($r7);
23 specialinvoke $r5.<StringOps: void <init>(String)>($r8);
24 d0 = virtualinvoke $r5.<StringOps: double toDouble()>();
25
26 r3 = new DoubleArray$Deca;
27 $l5 = $l0 + 12L;
28 specialinvoke r3.<DoubleArray$Deca: void <init>(long,int)>($l5, $i0);
29 i2 = 0;
30 label1:
31 if i2 >= $i0 goto label2;
32 $r11 = new StringOps;
33 $r12 = <scala.Predef$: scala.Predef$ MODULE$>;
34 $r13 = virtualinvoke r2.<StringTokenizer: String nextToken()>();
35 $r14 = virtualinvoke $r12.<scala.Predef$: String augmentString(String)>($r13);
36 specialinvoke $r11.<StringOps: void <init>(String)>($r14);
37 $d1 = virtualinvoke $r11.<StringOps: double toDouble()>();
38 virtualinvoke r3.<DoubleArray$Deca: void set(int,double)>(i2, $d1);
39 i2 = i2 + 1;
40 goto label1;
41 label2:
42 $r9 = new DenseVector$Double$Deca;
43 specialinvoke $r9.<DenseVector$Double$Deca: void <init>(long)>($l0);
44 $r10 = new LabeledPoint$Deca;
45 specialinvoke $r10.<LabeledPoint$Deca: void <init>(long,double)>($l0, d0);
46 return $r10;
47 }
48 ...
49 }

Fig. 21. The parsePoint method of synthetic Stage-Function-Class.

first code branch, the user program processes the data objects that are read either di-
rectly from the cache blocks if they exist in the cache buffer (line 10–31) or from the
data sources (line 32–39). In the latter case, the data will be cached in the buffer by
invoking the parsePoint method. Figure 21 presents the detail about the parsePoint

method and the process of creating LabeledPoint’s raw data. The parsePoint method
calculates the start offset and the end offset of the current LabeledPoint object, and
in a similar way calculates the offsets of the nested objects based on the start off-
set (such as line 27). Finally a new function object is created by this class, named
StageFunc(Stage-Function-Class), and then Deca injects the function into a new RDD
as mentioned in Section 6.2.4.
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