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Abstract 15 

The Prestwick library was screened for antibacterial activity or ‘antibiotic-resistance breaking’ (ARB) 16 

potential against four species of Gram-negative pathogens. Discounting known antibacterials, the 17 

screen identified very few ARB hits, which were strain/drug specific. These ARB hits included 18 

antimetabolites (zidovudine, floxuridine, didanosine, gemcitabine), anthracyclines (daunorubicin, 19 

mitoxantrone, epirubicin) and psychoactive drugs (gabapentin, fluspirilene, oxethazaine). This 20 

suggests that there are few approved drugs which could be directly repositioned as adjunct-21 

antibacterials and these will need robust testing to validate efficacy.  22 

Main text 23 
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The need for new antibiotics is driven by the rapid spread of multidrug resistant (MDR) bacterial 24 

pathogens and the absence of new antibiotics in the clinical development pathway is significant 25 

cause for concern. The idea of repurposing existing drugs, which are currently used as treatments for 26 

other disease areas is attractive because, due to the known safety profile of approved drugs, the 27 

cost and time to clinic could be significantly lower than novel scaffolds 1. Examples of successful 28 

repurposing screens, outside of the antibacterial area, have produced candidates for Ebola, Zika 29 

virus and anti-cancer therapies 2-4. Recent studies for the identification of new antibacterial leads 30 

have focussed on two key areas; i) identification of direct antibacterial hits for one or more target 31 

bacteria 5, 6, and ii) screening for compounds which synergise with existing antibiotics, thereby 32 

restoring activity of the antibiotic against strains/species which are currently resistant to their use 7. 33 

Several previous studies identified antibacterial activities that are too weak to be effective on their 34 

own and would require exposures greater than the maximum concentration achievable with their 35 

primary pharmacology and recommended safe dosing 7, possibly because of the bacterial membrane 36 

barriers.  37 

 38 

The current study aimed to identify either direct-acting antibiotics, or compounds which sensitise 39 

resistant Gram-negative strains to one or more antibiotics, looking to identify ‘Antibiotic Resistance 40 

Breakers’ (ARBs).  41 

A high-throughput combination screen (HTCS) of potential ARBs and antibiotics was performed in 42 

384-well format from the Prestwick library of 1280 selected compounds in combination with five 43 

antibiotics or 0.1 % DMSO, in duplicate. Each replicate was from independent dilution plates by 44 

using independent inocula on two different days. The potential ARBs were tested at two 45 

concentrations, 20 µM and 7 µM, in combination with antibiotics at 0.125 x MIC. Concentrations 46 

were selected to balance the probability of achieving a significant number of hits with realistic 47 

concentrations which align with the likely Cmax for a typical drug.  Where the MIC was >128 mg/L, 48 

the antibiotic was tested at 16 mg/L. The MICs of test articles were determined in cation-adjusted 49 
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Mueller-Hinton broth (caMHB; Oxoid), using the Clinical and Laboratory Standards Institute (CLSI) 50 

guidelines M7-A10 & M100-S26.  51 

Clinical isolates of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and 52 

Acinetobacter baumannii which were recently highlighted by the World Health Organisation as 53 

priority pathogens for which new antibiotics are urgently required 8, were selected which were 54 

resistant to each antibiotic. In some species (K. pneumoniae and A. baumannii), this involved use of 55 

two strains to cover all resistance profiles, and some resistance profiles were not available (Table 56 

S1).  57 

During the HTCS, bacterial growth was determined by reading on a modal reader (Infinite 500, 58 

Tecan) at 600 nm after 24 h of incubation. For each plate, OD600 measurement was done at 2 59 

timepoints, T0 h (to determine the background signal related to the coloured compounds) and T24 h 60 

at the end of incubation. After blank substitution, calculated by subtracting OD600 at T0 h from 61 

OD600 at T24 h, a normalization step was carried out between OD600 values obtained in wells 62 

containing the compounds compared to those obtained in control wells (DMSO wells – maximal 63 

growth). Data analysis for each run was performed with Genedata Screener software. The workflow 64 

from the raw data associated to plate-map up to the normalization step was fully automated 65 

allowing for complete tracking of all data.  The Z’ factor and assay window were determined for each 66 

plate, between the positive control in presence of antibiotic at 0.125 x MIC and the negative control 67 

9. The Z’ factor for each combination of strain and antibiotic was between 0.5 – 0.8, plates displaying 68 

a Z’ factor < 0.5 were automatically retested.  69 

After statistical analysis, hits were defined as data points with an activity > hit threshold based on 70 

the Sigma method (mean + 3 standard deviations), unless otherwise stated. Results were expressed 71 

as percentage of growth inhibition compared to that in untreated controls (exposed to 0.1% DMSO 72 

only), assessed by optical density.  73 
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Firstly, compounds from the library were tested for direct antimicrobial activity at two 74 

concentrations, 7 M and 20 M, in the presence of 0.1 % DMSO (Figure S1 and S2). The number of 75 

direct hits at either concentration varied considerably between species, with 29 for E. coli, 16 for P. 76 

aeruginosa, 85 for the two A. baumannii strains combined and 53 for the two K. pneumoniae strains 77 

(discounting overlapping hits between the two strains of the same species and between the two 78 

concentrations tested) (Table S2). As might be expected we saw three scenarios with respect to dose 79 

response, i) compounds which were equally effective at both concentrations, ii) compounds which 80 

were effective at 20 M which were not effective as either direct antibacterials or ARBs at 7 M and 81 

iii) compounds which were ARBs at 7 M but which were directly antibacterial at 20 M.  82 

Compounds at 7 M or 20 M were also tested in combination with antibiotics at concentrations of 83 

0.125 x MIC. There were few hits which overlapped between species (Figure 1). Most of the 84 

compounds which did overlap were known antimicrobials or antiseptics (Tables S5-S10). A number 85 

of compounds showed interesting potentiation, and these are discussed further below and in the 86 

supplementary file.    87 

Three anthracycline-related molecules, daunorubicin, mitoxantrone and epirubicin showed 88 

potentiation with one or more combination of drug and species (Table 1). The pattern of activity 89 

differed between the three molecules tested, with no evidence of direct antibacterial activity, but 90 

differing levels of potentiation for other antibiotics.  91 

Several nucleotide/nucleoside analogues, identified as antimetabolites and/or antiviral agents, also 92 

showed potentiation with one or more antibiotic (Table 1). Whilst simplistically such molecules 93 

might be expected to have similar effects, via interference with DNA/RNA metabolism in the cell, 94 

there were clear differences in the spectrum of activity between the compounds.  95 

Two psychoactive compounds, fluspirilene and oxethazaine were also found to act as ARBs with 96 

colistin and merited further investigation, given the possibility that their mode of action might be 97 
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different to cationic compounds identified previously as able to potentiate colistin (for example 98 

pentamidine 10, which was not found to potentiate colistin activity in this study, and cysteamine, 99 

which was not included in this study 11). The MIC of colistin alone, and in combination with set 100 

concentrations of fluspirilene and oxethazaine was determined as above, but in non-cation adjusted 101 

Mueller-Hinton broth (Oxoid) and polypropylene plates, incubated for 20 hours at 37°C 12.  102 

Colistin potentiation by fluspirilene and oxethazaine in a wider panel of colistin-resistant strains of K. 103 

pneumoniae and a smaller number of other Gram-negative pathogens was tested as examples of 104 

compounds which were clear ARBs with very little direct antimicrobial activity (Table S3). The studies 105 

were designed as a fixed concentration synergy experiment, looking for ARB activity. Initially, MICs 106 

and growth curves were used to analyse direct effects of the two compounds. In most cases the MIC 107 

was >160 μM for Klebsiella spp. and P. aeruginosa isolates. For E. coli, all strains had an MIC of 160 108 

μM or above for oxethazaine, but two strains (LEC001 and 319238/UR) had MICs of 80 μM for 109 

fluspirilene. The notable exception to the high MIC values identified, were the A. baumannii strains, 110 

which showed an MIC of 20 μM for both oxethazaine and fluspirilene in both colistin-resistant 111 

strains (Table S4).  112 

Despite being ARB hits with the original colistin-resistant K. pneumoniae strain used in the HTCS, 113 

within the broader panel of Klebsiella isolates, there were few examples of clear colistin potentiation 114 

with either compound. Only strains NCTC 13439 CST 2A (4-fold), MGH 78578 CST A (8-fold) and 115 

m109 CST 1B (32-fold) showed greater than 2-fold potentiation of colistin with fluspirilene (Figure 2, 116 

Table S3) and no strains showed this level of potentiation with oxethazaine.  117 

In contrast, fluspirilene showed potentiation of colistin in all of the other Gram-negative species 118 

tested, with levels ranging from 4-fold (A. baumannii W1 CST_R) to >128 fold (E. coli LEC001). The 119 

latter strain was also the only strain which showed potentiation with oxethazaine, again with 120 

increased susceptibility to colistin of >128 fold. Whether derivatives of fluspirilene merit further 121 

investigation as a stand-alone antibiotic or as an ARB, may depend on the novelty of its mechanism 122 

 on June 20, 2019 by guest
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


6 
 

of action. The developability is hampered by the relatively high concentration required to achieve 123 

potentiation of colistin, for example, around 20 µM against K. pneumoniae (equivalent to 9.5 mg/L) 124 

compared to the daily dose (10 mg i.m. per day).   125 

The current screen, in line with many other studies, suggests that there might be very few licensed 126 

drug compounds which could be simply repositioned, and which would have immediate benefit as 127 

adjunct therapies. This does not preclude future studies, looking at other antimicrobial strategies, 128 

such as, biofilm disruption 5, anti-virulence compounds 13 or efflux pump inhibition 14, but it does 129 

suggest that such studies must be carefully designed to generate useful information. The screening 130 

of existing approved drugs, while attractive from a regulatory standpoint and rapid route to market, 131 

does not directly address challenges of antimicrobial drug development, including the permeability 132 

issue which impacts on drug uptake into Gram-negative bacteria 15, nor the relatively limited 133 

chemical space inhabited by most classical drugs 16.  134 

 135 
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Table 1: Structures and antimicrobial profiles of interesting hits from the screen. Shaded boxes 215 

illustrate direct or ARB activities, in M, of compounds in combination with meropenem (MEM), 216 

ciprofloxacin (CIP), gentamicin (GEN), tigecycline (TGC) or colistin (CST) in the four Gram-negative 217 

species tested.  Where compounds had activity at both 20 M and 7 M, only 7 M is represented in 218 

the table.219 
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Figure 1: Few ARB hits show any conservation cross-species or with specific antibiotics. Heat map showing ARB hits by species and antibiotic potentiated, 221 

coloured according to the amount of growth inhibition they caused in each species in combination with each antibiotic. (grey is where the combination was 222 

not tested). 223 

 224 
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 225 

Figure 2: Colistin ARB potential of fluspirilene. A wider panel of colistin-resistant strains were tested 226 

in the presence of fluspirilene. Although the K. pneumoniae strain used in the HTCS showed colistin-227 

potentiation by fluspirilene, this was not reflected in a wider panel. However, fluspirilene did 228 

potentiate colistin in other Gram-negative species. Arrows on the K. pneumoniae panel indicate the 229 

change in MIC for two specific strains. This highlights an example where fluspirilene is antagonistic to 230 

colistin but where the MIC is in the same range as some strains where potentiation is observed.    231 
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