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ABSTRACT 

Music and imagery have been used for working emotions such as awareness, 

arousal, enhancement, reflection and transformation of emotions in therapeutic 

relationship; these are crucial processes in music psychotherapy. To illuminate the 

empirical adequacy of concepts of theory in guided imagery and music (GIM) as one of 

music psychotherapeutic methods, the present study investigated the neural bases of 

arousal and emotional processing in response to recall and re-experience of personal 

negative emotional episodes via GIM and the efficacy of GIM for arousal and emotional 

processing via functional magnetic resonance imaging (fMRI) data. 

For this study, classical music and verbal stimuli were presented to 24 right-

handed healthy participants, to measure the blood oxygen level dependent (BOLD) signal 

changes during arousal and emotional processing through GIM. Volume analyses for the 

contrast of GIM to guided imagery (GI) or music and region of interest (ROI) analysis for 

the difference of three conditions - GIM, music, and GI – were conducted in the regions 

of bilateral amygdala, insula, and anterior cingulate gyrus. Results included that in the 

contrast of GIM to music, 11 neural regions (left anterior cingulate gyrus, left amygdala, 

left thalamus, left claustrum, left insula, bilateral precentral gyrus, left superior temporal 

gyrus, bilateral middle temporal gyrus, left inferior parietal lobule, right cuneus, and 

bilateral culmen) were activated, whereas there was no activated neural regions in the 

contrast of music to GIM. In the contrast of GIM to GI, 9 neural regions (right posterior 

cingulate gyrus, bilateral parahippocampal gyrus, bilateral precentral gyrus, left superior 

frontal gyrus, left middle frontal gyrus, bilateral middle occipital gyrus, bilateral cuneus, 

right lingual gyrus, and inferior parietal lobule) were activated, whereas 3 neural regions 
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(right superior temporal gyrus, bilateral middle temporal gyrus, and left inferior parietal 

lobule) were activated in the contrast of GI to GIM. The ROI analysis revealed 

statistically significant differences among three conditions in bilateral amygdala, insula, 

and anterior cingulate gyrus.  

 Findings suggest that guided imagery and music as multimodal stimuli are 

effective approach in emotional work with personal episodic memories, indicating 

activation of various neural regions functioning in emotions, various kinds of sensory 

modalities, integration of cross-modal sensory, episodic memory, empathy, and out-of-

body experience.  
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CHAPTER 1 

Introduction 

 

Awareness, arousal, enhancement, reflection, and transformation of emotions in 

therapeutic relationship are approaches in several psychotherapeutic philosophies 

(Greenberg & Pascual-Leone, 2006). Thus, a number of studies have been conducted to 

corroborate the therapeutic effectiveness of emotional processing (Coombs, Coleman, & 

Jones, 2002; Greenberg et al., 2006). Traditionally, for emotional processing, talk has 

been used in therapy and counseling. However, to work effectively with clients, each of 

whom has a different expressive style, various artistic modalities using an expressive form 

for communication have been used (Malchiodi, 2007). One of these modalities is music.  

 Music arouses, evokes, and expresses emotions and human personality traits 

such as grief, aggression, tenderness, and calmness (Robinson, 1994), so that music is 

described as the language of emotions (Gfeller, 2008; Langer, 1942; Winner, 1982). 

According to Goldberg (1992), music has emotional elements crucial in consciously 

generating and in unconsciously generating emotions. This being so, music has long been 

used as a healing tool for attaining harmony and balance between body and mind. Also, 

music can induce imagery, which reflects human emotions and personalities and has 

symbolic meanings. However, imagery has been ignored by experimental psychologists 

who considered that mental imagery had no functional significance and that it is difficult 

to provide controllable material for empirical work (Deese, 1965; Sheikh & Panagiotou, 

1975). Since the late 1960s, as researchers emphasized scientific inquiry and provided 

image theories for elucidating phenomena as behavioral expressions (Greenwald, 1970; 

King, 1973, Lang, 1979; Sheikh et al., 1975), the use of mental imagery in psychotherapy 
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became important (Ahsen, 1972; Gendlin & Olsen, 1970; Sheikh et al., 1975; Shapiro, 

1970). Thus, many researchers examined the advantages of mental images for therapeutic 

interaction (Sheikh et al., 1975) such as relationship between images and emotional 

reactions, the power of images as stimuli (Lazarus, 1971; Sheikh & Panagiotou, 1975), 

images as intuitive mediators (Ahsen, 1972), and images producing perceptual clarity 

(Bugelski, 1968). Moreover, the importance of imagery in psychotherapy still has been 

acknowledged in many aspects such as emotional imagery related to fear and anxiety 

(MeNeil, Vrana, Melamed, Cuthbert, & Lang, 1993; Vrana, Cuthbert, & Lang, 2007) and 

memory reflected on imagery (Edwards, 2007; Hackmann & Holmes, 2004). Thus, these 

aspects have been influential in developing therapeutic techniques and theories.  

In particular, the representative music-centered psychotherapy method focusing 

on music and imagery is the Bonny Method of Guided Imagery and Music (BMGIM). It 

uses specifically-sequenced classical music programs to stimulate and sustain an 

individual’s inner journey, and to positively transform emotions through imagery (Bonny, 

1978a; McKinney, Antoni, Kumar, Tims, & McCabe, 1997; Reid, 1989). In other words, 

music is a catalyst in inducing imagery and evoking and intensifying emotions in imagery 

(McKinney, et al., 1997). Moreover, emotional responses to music and imagery change 

physiological and psychological aspects. Therefore, music and imagery are crucial factors 

in the BMGIM method.  

Accordingly, studies in various fields - including in neuroscience - have been 

conducted about the function of music and imagery for verifying the effectiveness for 

therapeutic techniques and theories. However, in neuroscience in particular, it has been 

intensively and scientifically studied for only about the last 20 years. During this period, 

music and imagery have been studied in neural networks pertinent to emotional 
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recognition. Currently, neuroimaging techniques including positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI) demonstrate the activations of 

cortical and subcortical structures represented as responses to specific tasks or stimuli 

related to music and imagery. Demonstrating such neural dynamics can locate and 

highlight the relationship between activated neural regions and tasks or stimuli related to 

music and imagery; this helps to develop new treatments and to predict treatment 

outcomes. Particularly, BMGIM achieves therapeutic goals as accessing and reintegrating 

memories in traumatic imagery which recur as direct sensory and emotional experiences 

with distortion (Körlin, 2002). Accordingly, research based on neuroscience can support 

the rationale for clinical use of music and imagery, and contributes to development of the 

BMGIM method.  

The present study’s purpose was to investigate the neural basis of arousal and 

emotional processing as responses to guided imagery and music with personal emotional 

episodes and the effectiveness of guided imagery and music with personal emotional 

episodes for arousal and emotional processing as providing fMRI data. For this, neural 

activations by guided imagery and music, guided imagery, and music, were examined 

with the following research questions:   

1. Which neural regions will be activated by guided imagery and music, compared 
to music? 
 

2. Which neural regions will be activated by guided imagery and music, compared 
to guided imagery? 

 
3. Are there significant differences of the blood oxygen level dependent (BOLD) 

signal changes among three conditions – guided imagery and music, guided 
imagery, and music - in neural regions associated with negative emotional 
processing? 
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CHAPTER 2 

Literature Review 

 

This chapter supports arguments for research about the psychotherapeutic 

potential of music and imagery, reviewing literature on music and imagery from the 

neuropsychological viewpoint. It comprises four sections: the first presents literature on 

music and imagery as psychotherapeutic tools; the second presents literature on neural 

activation by emotional processing, especially negative emotions; the third presents 

literature on neural activation related to emotions as responses to musical stimuli; the 

fourth presents literature on neural activation as responses to imagery.  

 

Music and Imagery as Psychotherapeutic Tools 

Music long has been related to emotional expression. It often has been 

considered as the language of emotions (Gfeller, 2008; Langer, 1942; Meyer, 1956; 

Trainor & Schmidt, 2003; Winner, 1982). Music expresses not only emotions, but also 

human personality characteristics such as aggression, tenderness, and calmness (Robinson, 

1994). According to Goldberg (1992), music has emotional elements such as mode, 

rhythm, and tempo which generate conscious as well as unconscious emotions. Also, 

Orleans (1991), who developed a musical projective technique, mentioned musical 

elements reflecting human emotions. According to him, anxious or depressed individuals 

projected their feelings into all music selections, and feelings are reflected by musical 

tempo, melody, and rhythm. Since antiquity, music has been used as a healing tool, to 

attain harmony between body and mind. Also, music can induce imagery. Osborne (1981) 

investigated human responses while listening to music in a relaxed state. Via two 
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experiments, he categorized types of responses to music as thoughts, emotions, sensations, 

and images. The study indicated that imagery was a principal response to music as image 

responses were significantly greater than other response types.  

As noted above, music and imagery reflect human emotions and personality. In 

particular, imagery has symbolic meanings associated with inner issues. Music could 

accompany imagery with specific moods. This implies that music and imagery can be 

used as crucial psychotherapeutic tools, for instance as relaxation techniques (Bonny, 

1989; Browning, 2001; Clark, McCorkel, & Williams, 1981; Colwell, 1997; Daveson, 

1999; Edwards, 1998; Fratianne, Prensner, Huston, Super, Yowler, & Standley, 2001; 

Good, Stanton-Hicks, Grass, Anderson, Lai, Roykulcharoen, & Adler, 2001; Scartelli, 

1984; Sahler, Hunter, & Liesveld, 2003; Standley, 2000; Tan, Yowler, Super, & Fratianne, 

2008). Further, the effects of relaxation such as reducing anxiety or fear, and to treat 

painful emotions relative to psychological issues, have contributed to music being 

developed as a psychotherapy method (Codley, 1987; Pelletier, 2004; Robb, Nichol, 

Rutan, Bishop, & Parker, 1995; Standley, 1986, 2000). 

The Bonny method of guided imagery and music (BMGIM) developed by Helen 

Bonny in the early 1970s is a representative music-centered psychotherapy that 

intentionally integrates music with imagery in therapeutic intervention (Band, Quilter, & 

Miller, 2001-2002). It uses specifically-sequenced classical music programs to stimulate 

and sustain inner journeys through imagery. Music as a catalyst in such holistic processes 

(McKinney et al., 1997) evokes emotions, memories, and all types of sensory and 

cognitive imagery via interaction (Bonny, 1978a). This method helps positive transfer of 

emotions in finding and resolving inner issues with painful emotions, by exposing and 

exploring them (Bonny, 1978b; McKinney et al., 1997; Reid, 1989). That is to say, 
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emotional responses to music and imagery change physiological and psychological 

aspects. Thus, it can be said that, in the BMGIM method, music and imagery are crucial 

elements. Many practitioners and researchers have described the effects of music and 

imagery as psychotherapeutic elements explaining the therapeutic process of BMGIM in 

individual subjective experiences. 

Since the 1990s, researchers have been interested in musical processing for 

internal body systems, including the autonomic nervous system (Hodges, 1996; Thaut, 

2002). Researchers have demonstrated the effect of music and imagery as evidence-based 

research (Jacobi, 1994; McDonald, 1990; McKinney et al., 1997; McKinney & Tims, 

1995; McKinney, Tims, Kumar, & Kumar, 1997; Wrangsjö & Körlin, 1995). As the study 

related the effect of reducing stress and changing mood, McKinney et al. (1997) 

investigated the effects of guided imagery and music (GIM) on mood changes including 

depression, fatigue, total mood disturbance (TMD) and cortisol level associated with a 

number of harmful effects on health in stressed individuals as a steroid hormone. Twenty-

eight healthy adults with experiences of GIM, hypnosis, and psychosynthesis sessions 

were randomly assigned to an experimental group (n=14) and a control group (n=14). 

They were provided six GIM sessions biweekly by a professional GIM therapist. Profile 

of Mood States (POMS) was used to measure mood change (every 2 weeks before each 

session), and blood sampling measured changes in cortisol levels (a week before the first 

session, a week after the last session, and 6 weeks later). Results showed that the scores of 

depression, fatigue, TMD, and cortisol levels of the experimental group were significantly 

reduced, as compared with the control group. Moreover, there was significant correlation 

between decreases in cortisol levels and mood disturbance. In addition, these effects 
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remained at 12 weeks after the first session. This study indicates that GIM affects mood 

change and reduces cortisol levels. 

To demonstrate the physiological effect of classical music and imagery, 

McKinney, Tims, Kumar, and Kumar (1997) demonstrated the effect of classical music 

and imagery on decreasing plasma β-endorphin with healthy adults. Seventy-eight 

participants chosen via eight health and psychological criteria were assigned randomly to 

one of four groups: Music Imaging (MI), Silent Imagery (SI), Music Listening (ML), and 

control group. The same classical music piece, as a musical intervention, was provided to 

the MI and the ML groups. Also, induction for relaxation was provided to MI and SI, but 

absent any instruction for imaging. To remove influence due to differing time period of 

interventions applied to each group, quiet free time was provided to the ML group instead 

of time for relaxation induction applied to the MI and SI groups. Quiet free time also was 

provided to the control group during interventions applied to other groups. The level of 

plasma β-endorphin in the MI group was significantly more reduced than in the other 

groups. The SI groups also showed decreased levels of plasma β-endorphin. This result 

indicates that music and imagery is effective in relaxation.  

Wrangsjö and Körlin (1995) demonstrated the effects of BMGIM for 

applicability in psychiatry as a psychotherapy method. Fourteen participants with 

psychiatric symptoms such as depression or crisis reactions, and inner issues such as 

interpersonal relationships, but without any psychotic symptoms, participated, and were 

treated by therapists trained in BMGIM. Participants received individual sessions for 90-

120 minutes; six participants received fewer than 10 sessions, while six received 10-20 

sessions. Unexpectedly, two left after 15 sessions. The experimental design was a pre-post 

repeated measures design. For measurement, the Hopkins Symptom Check List (HSCVL-
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90), the Inventory of Interpersonal Problems (IIP), and the Sense of Coherence Scale (SC) 

were used. Results were that psychiatric symptoms were decreased significantly by GIM 

therapy sessions. Especially, perception of life experiences as meaningful and manageable, 

as measured by the SC scale, was increased significantly. These results indicated that 

GIM helped improve psychiatric symptoms, and helped resolve interpersonal issues. It is 

meaningful that this study applied music and imagery to participants for reducing their 

psychotic symptoms, but not for relaxing. 

Recent study of music and imagery in the field of neuroscience is interesting. 

Hunt (2011) investigated BMGIM therapeutic effect of using the neurophenomenology 

approach which combines participants’ descriptions of music and imagery experience, 

and brain data. Four participants experienced six different kinds of individual sessions 

using pre-recorded music and verbal instructions for collecting both data. 

Phenomenological interviews including modality and stability of imagery, awareness of 

guiding, music, and altered state of consciousness (ASC) and electroencephalography 

(EEG) data were collected. Cross-case comparisons integrating both data for each 

participant determined patterns of individual experience and brain activity. Results 

showed that ASC involves constant imagery experience with physical relaxation; there are 

patterns of neural regions activated by imagery with similar real life processes, and beta 

and gamma frequencies are crucial in maintaining an ASC during imagery experience. 

Thus, this study indicated that GIM manifests internal subjective experience in biological 

phenomena, and that GIM is a unique, powerful therapeutic tool for engaging body and 

mind.  

As mentioned above, music and imagery effectively reveal various psychological 

and physiological needs. Prior research focusing on individual subjective experiences 
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explained the effect. And since the 1990s, evidence-based research indicates effectiveness 

as combined therapeutic tools. In particular, as Hunt (2011) investigated the effectiveness 

in neurophenomenology, music and imagery were strongly supported as powerful 

psychotherapeutic tools. 

 

Neural Activation and Emotions 

 Emotion as an important aspect of human experience (Vytal & Hamann, 2010) is 

a complicated theoretical concept in human nature (Ekman & Davidson, 1994; LeDoux, 

1995). Also, as a powerful motivator, emotion generates actions and organizes behaviors 

for prominent goals (Davidson & Irwin, 1999; Leknes & Tracey, 2008). That is to say, 

emotion triggers specific behavior by certain stimuli such as an objects or situation, and is 

used to regulate homeostasis of the human organism such as avoiding danger or using 

benefits for humans (Damasio, 2011). Thus, working emotions such as awareness, arousal, 

regulation, active reflection, and transformation of emotions are crucial processes in 

psychotherapy. In particular, awareness of distressing emotions - via approach and 

exploration - is the first step towards feeling better (Greenberg et al., 2006). Thus, 

emotions have been studied variously as aspects of psychology, such as emotion in 

cognitive processing, conscious and unconscious emotional processing, physiological 

signals via emotions, and so on (Ekman & Davidson, 1994)  

 As neuroscience has been developed with neuroimaging techniques such as 

positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) 

since the early 1990s, researchers have been interested in neural activation by emotions, 

and studies in affective neuroscience have increased (LeDoux, 2000; Lindquist, Wager, 

Kober, Bliss-Moreau, & Barrett, 2012) including focus on the fear mechanism in 
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amygdala, which suggests the importance of interactions between cognitive and emotional 

processes for understanding mind and brain (LeDoux, 2000).  

Morris, Frith, Perrett, Rowland, Young, Calder, and Dolan (1996) investigated 

differences between neural responses in amygdala to facial expressions of fear and 

happiness. While five healthy participants were viewing fearful or happy faces in various 

intensities using photographs, PET measured neural activities. Neural responses to fearful 

expression compared to happiness were activated significantly in the left amygdala, left 

periamygdaloid cortex, left cerebellum, right superior frontal gyrus, and left cingulated 

gyrus, whereas happiness expression, compared to fearful, activated in the right medial 

temporal gyrus, right putamen, left superior parietal lobule, left calcarine sulcus (p < .001, 

uncorrected). Results thus showed neural responses to fearful expression were involved in 

amygdala. Moreover, in responses significantly interacting with the emotional intensity 

indicated by behavioral tests, including rating and discrimination tests, neural activity 

results coincided with cognitive behavioral perceptions. 

Recently, studies supported that basic emotional processing (anger, fear, disgust, 

happiness, and sadness), including changes of expressions, memories, imagery, and other 

cognitive activities, have consistent and specific neural correlates in limbic, paralimbic, 

and cortical neural regions (Davidson, Putnarn, & Larson, 2000; Davidson & Slagter, 

2000; Lee, Meador, Loring, Allison, Brown, Paul, Pillai, & Lavin, 2004). To examine this 

assumption, studies used functional neuroimaging techniques, such as fMRI or PET, 

which measure blood oxygen level dependent (BOLD) signals or regional cerebral blood 

flow (rCBF) (Phan, Wager, Taylor, & Liberzon, 2002). Thus, showing changes in the 

BOLD signals or rCBF, the studies demonstrated the relationship between emotions and 

the activated neural regions. 
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Lee et al. (2004) examined brain circuitry in terms of emotional experiences and 

differences of the activation of the cerebral hemispheres between positive and negative 

emotional experience. Through this study, they supported the theory about regular neural 

patterns represented by the type of emotions. Participants were 10 healthy individuals 

without a history of, or current facts indicating, neurological or psychiatric illness or of 

alcohol or substance abuse. To demonstrate relationships between emotions and neural 

activations, 20 positive, 20 negative, 20 neutral, and 20 non-sense drawings were 

provided, presenting negative and positive emotional images. For measurement, 

functional MRI was used. Results showed that emotional processing and affective 

experience by emotional pictures significantly increased blood flow in the mesial frontal 

gyrus, anterior cingulate gyrus, dorsolateral frontal gyrus, amygdala, anterior temporal 

regions, and cerebellum bilaterally. In addition, positive pictures activated the left 

hemisphere, whereas negative pictures activated the right hemisphere. Results supported 

theories about the importance of circuitry linking mesial temporal-, anterior cingulate-, 

and frontal- gyri with subcortical structures in positive and negative emotional processing 

and affective experience.  

In many studies conducted on supporting neural correlates with emotions, some 

research strongly supports the correlation between brain regions and emotional processing, 

showing overall neural correlates with emotions through meta-analysis across previous 

studies (Barrett & Wager, 2006; Kober, Barrett, Joseph, Bliss-Moreaw, Lndquist, & 

Wager, 2008; Lindquist et al., 2012; Murphy, Nimmo-Smith, & Lawrence, 2003; Phan et 

al., 2002; Vytal et al., 2010). Moreover, these meta-analyses were conducted focusing on 

two approaches: locationist approaches, in which basic emotion categories consistently 

and specifically map on to neural regions; and psychological constructionist approaches, 
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in which various emotional operations including emotion, perception, and cognition 

consistently occur across various neural regions and emotional categories (Lindquist et al., 

2012).  

As the first meta-analysis, Phan et al. (2002) examined common or segregated 

patterns of neural activations by various emotional tasks via a meta-analysis across studies 

in functional neuroanatomy of emotion with functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET). Between 1993 and 2000, this study 

compiled 55 studies, i.e., 43 PET and 12 fMRI, investigating emotions in healthy 

participants. They classified the brain as 20 non-overlapping regions, and characterized 

each region according to responses by individual emotions (fear, sadness, anger, etc), 

induction method (visual, auditory, autobiographical recall/ imagery), and presence and 

absence of cognitive demand. Results showed that emotional processing activates in the 

medial prefrontal cortex; fear is associated with activation of amygdala; sadness 

contributes to activation of the subcallosal cingulate; the occipital cortex and amygdala 

activate by emotional induction via visual stimuli; emotional recall/imagery activates in 

the anterior cingulate and insula; and emotional tasks with cognitive demand involve the 

anterior cingulate and insula. This study identified patterns and regions that are crucial 

components of the neuroanatomy of emotion. Thus, it is meaningful that this study 

powerfully supported the theory about regular neural patterns about specific emotions as 

synthesizing related previous quantitative research. 

The latest meta-analysis was by Lindquist et al. (2012) who reviewed 91 PET 

and fMRI studies with induction for eliciting emotional experience and perception of fear, 

sadness, disgust, anger and happiness published between 1990 and 2007. They supported 

the meta-analysis by Kober et al. (2008) who determined consistent neural patterns during 
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emotional processing and perception across 162 studies. Moreover, this study was 

characterized as comparing locationist approaches with psychological constructionist 

approaches. As a result, there were consistent and selective activated regions for 

emotional experience or perception, but there was no region with psychological 

constructionist approaches. Thus, the authors proposed that regions such as amygdala, 

anterior insula, and orbitofrontal cortex contribute to basic feelings including pleasure and 

displeasure. For example, motivationally significant external information or novel or 

uncertainty stimuli activate in amygdala, emotional awareness in anterior insula, and 

integrating sensory information in orbitofrontal cortex. Besides, closely-related regions 

for basic feeling are anterior cingulate for attention and motor response, dorsolateral 

prefrontal cortex for attention, dorsomedial prefrontal cortex and hippocampus for 

simulating past experience such as knowledge and memory, and ventrolateral prefrontal 

cortex for language.  

As reviewed above, many studies supported that there are consistency and 

specificity of regions activated by emotional categories such as fear, anger, happiness, 

disgust, and sadness (Dalgleish, 2004; Davidson & Sutton, 1995; Ledoux, 1995). 

Representative regions activated by emotional categories are amygdala, prefrontal cortex, 

anterior cingulate, ventral striatum, insula, and cerebellum (Dalgleish, 2004). Amygdala is 

a crucial region for producing emotions, in particular negative emotion, especially fear 

(Ledoux, 1995). According to Davidson et al. (1995), the function of the prefrontal cortex 

is maintaining emotions and organizing behaviors for particular goals with the important 

role for regulating emotions and behavior. Beside, much research investigated the 

functions of anterior cingulate related to attention, subjective emotional awareness, and 

the launch of motivated behaviors; ventral striatum activated by positive emotions; insula 
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activated by body experiences of emotions, especially disgust; and cerebellum for 

emotional regulations. 

Studies reveal that various neural regions are activated according to emotional 

categories. However, there are the cognitive aspects such as memory, attention, 

perception, and mental imagery other than affective factor, for emotional arousal 

(Cacioppo & Gardner, 1999; Kober et al., 2008; Lindquist et al., 2012). Thus, studies 

have been conducted on emotional and non-emotional processes (Davidson, 2000). 

Studying emotional processes by episodic memories, Damasio, Grabowski, 

Bechara, Damasio, Ponto, Parvizi and Hichwa (2000) investigated the neural basis of four 

target emotions and feelings: sadness, happiness, anger, and fear induced by recalled and 

re-experienced personal life episodes. Thirty-nine participants, without neurological or 

psychiatric disorder and not taking any medication, participated in a PET experiment, 

during which participants were requested to recall, re-experience and re-enact personal 

emotional episodes with the four emotions, and to recall a specific same episode that was 

emotionally neutral. Results showed that the four emotions activated in structures such as 

the insular cortex, secondary somatosensory cortex, cingulate cortex, and nuclei in 

brainstem tegmentum and hypothalamus, which are related to the representation and/or 

regulation of the organism state. In addition, some regions mentioned above, such as some 

brainstem nuclei, hypothalamus, and subsectors of insula and cingulated, produce 

regulative signals indispensable to conserve homeostasis, indicating the close anatomical 

and physiological relationship between emotion and homeostasis. Thus, the result 

supports that the feeling state of emotions is based on specific neural patterns, which are 

continuously changed by emotional state.  
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Hamann (2001) reviewed current research findings about cognitive and neural 

mechanisms implicated in encoding, consolidating, and retrieving explicit emotional 

memory. Hamann’s review used data from neuroimaging studies with normal participants, 

which used positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI) as measurements. According to this review, both positive and negative 

emotional stimuli create memory representation, and the processes of encoding and post-

encoding of events with emotional stimuli influence memory representation. Moreover, 

consolidation processes - i.e., processes of post encoding - activate the amygdala. It was 

also noted that the amygdala constantly relates to negative emotions and emotional 

memory for negative stimuli. However, recent research demonstrates amygdala activation 

for positive stimuli. Thus, this argument, in addition to previous research, notes that 

emotional arousal and associated amygdala activation appear to be primary factors 

modulating memory for emotional stimuli, regardless of kinds of stimuli (Hamann, 

Timothy, Scott, & Clinton, 1999; Cahill & McGaugh, 1998). Accordingly, many 

neuroimaging research studies consistently have found the amygdala and associated 

limbic areas to be involved in encoding, consolidating, and retrieving of emotional 

explicit memory for negative- as well as for positive- emotional stimuli.  

Neural patterns of emotional stimuli are still being studied, so this matter is still 

being discussed and debated. However, as reviewed above, a number of studies support 

neural mechanisms with regular neural patterns activated by specific emotions. 

 

Neural Activation and Music in Emotions 

 Across cultures, various kinds of music evoke emotional responses (Peretz & 

Hebert, 2000; Trehub, 2003). They powerfully arouse, evoke, and express emotions and 
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human personality characteristics such as aggression, tenderness, and calmness (Robinson, 

1994). Moreover, emotional states are intensified and transformed by music (Juslin & 

Västfjäll, 2008). According to Krumhansl (1997), music is a stimulus for strongly evoking 

emotions with positive and negative emotional valence. Thus, music enhances emotional 

experience as an intriguing stimulus (Baumgartner, Lutz, Schmidt, & Jäncke, 2006). 

Philosophers long have been, and neuroscientists recently have become, interested in 

music (Andrade & Bhattacharya, 2003). However, only over the last decade have such 

neuroscientific studies become intensified and systematic (Peretz & Zatorre, 2005). 

During that period, music, as a human characteristic, was studied in neural networks 

involved in aspects of perception, memory, and emotional recognition and, currently, 

electrophysiology and imaging techniques, such as positron emission tomography (PET) 

or functional magnetic resonance imaging (fMRI), demonstrate cortical and subcortical 

structures activated by music (Andrade et al., 2003; Peretz et al., 2005). Neuroimaging 

studies have investigated musical stimuli inducing emotions (Koelsch, Fritz, Yves, 

Cramon, Müller, & Friederici, 2006), and some studies have emphasized significant facts 

about music and emotions in the brain (Peretz et al., 2005).  

Blood, Zatorre, Bermudez, and Evan (1999) addressed that well-done studies 

have been done of aspects of relations between neural correlates and emotional responses 

to music, between neural correlates and musical perception, and between neural correlates 

and other forms of emotions. They also investigated the coincidence of emotional process 

in the brain by music and general stimuli, demonstrating neural activities with consonant 

and dissonant musical stimuli using positron emission tomography (PET) scanning 

examining cerebral blood flow. A new melody made as consonant and dissonant sound 

having harmonic structure was used as a determinant via a pilot study. The melody 
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activated specific paralimbic and neocortical regions which were congruent with regions 

activated by emotional processing results in previous non-music studies including right 

parahippocampal gyrus, right precuneus, bilateral orbitofrontal, medial subcallosal 

cingulate, and right frontal polar regions. Moreover, consonance presented differently 

from dissonance vis-a-vis positive and negative feelings, rather than happy and sad.  

Aligned with the above study demonstrating different neural activations between 

pleasant and unpleasant music, Koelsch, et al. (2006) investigated the influence of 

pleasant (consonant) and unpleasant (dissonant) music on emotional processing in the 

brain. Eleven individuals without special musical experience participated, and pleasant 

and unpleasant music excerpts (mean duration 55 seconds per excerpt) were provided 

twice in turn. The blood oxygenation level dependent (BOLD) signal was measured by 

fMRI to measure activation of neural areas by musical stimuli, and a five-point emotional 

state rating was reported during intervals between music excerpts, to measure the degree 

of (un)pleasantness. Results showed significant difference between pleasant and 

unpleasant music ratings (p < .001). The BOLD signal significantly increased with 

unpleasant music and strongly decreased with pleasant music in amygdala, hippocampus, 

parahippocampal gyrus, and temporal poles. This indicates that the cerebral network in 

these structures can be activated by emotional processing via unpleasant music 

(dissonant). Additionally, activations with pleasant music were presented in inferior 

frontal gyrus (IFG) related to processes of musical syntactic analysis and working 

memory operations, the anterior superior insula, the ventral striatum, and the Rolandic 

operculum related to a motor-related circuitry for forming pre-motor representations, and 

Heschl’s gyrus. Also, they reported Rolandic operculum related to the function of the 

mirror system. This study indicated the effect of music stimulus for emotional processing.  
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Studying the functions of music for pleasure and reward, Blood and Zatorre 

(2001) investigated how neural mechanisms are activated by highly positive emotional 

responses to music, to assess the relationship between brain circuitry through regional 

cerebral blood flow (rCBF) changes measured by PET and emotional intensity rating. Ten 

musicians listened to participant-selected music for intense pleasant emotional responses, 

and to other participant-selected music for neutral emotional responses as control music 

whose emotional intensity was rated by participants (rating was less than 3 on a scale of 0 

to 10). Also, two baseline conditions existed: noise and silence. PET results showed that 

rCBF activations increased in left ventral striatum, dorsomedial midbrain, bilateral insula, 

right OFC, thalamus, anterior cingulate cortex, supplementary motor area and bilateral 

cerebellum during participant-selected music. In particular, the activations of rCBF 

decreased in right amygdala, left hippocampus/amygdala, and ventral medial prefrontal 

cortex. This is similar to neural patterns observed in other neural imaging studies about 

pleasant emotion and euphoria.  

Mitterschiffthaler, Fu, Dalton, Andrew, and Williams (2007) demonstrated the 

influence of classical music on neural correlates of temporary mood changes for 

investigating activations in specific cortical and subcortical regions with neural regular 

patterns by emotional processes as responses to happy and sad music stimuli. To select 

the happy and sad music stimuli, a pilot study was conducted in which 20 classical music 

pieces were selected by 53 healthy volunteers via a visual analogue scale. Sixteen healthy 

individuals listened to 20 musical stimuli comprising 5 happy, 5 sad, and 10 neutral music 

pieces. Participants were assigned to two order groups: 5 happy – 5 neutral – 5 sad, and 5 

sad – 5 neutral – 5 happy. The blood oxygenation level dependent (BOLD) signal was 

measured in brain responses to the mood state induced by those stimuli. Mood state 
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ratings were reported by a visual analogue scale during the functional scan. Results 

showed that the BOLD signal increased with happy music in the ventral and dorsal 

striatum relative to reward experience and movement, anterior cingulate relative to 

targeting attention, parahippocampal gyrus, and auditory association areas, and with sad 

music in the hippocampus/amygdala and auditory association areas relative to the 

appraisal and musical processing. Neutral music increased the BOLD signal in the insula 

and auditory association areas. In addition, mood state rating showed interaction between 

music stimulus and order, indicating higher affect ratings for happy music first, lower 

affect ratings for sad music first, and medium affect ratings for neutral music first (p 

= .05). As shown above, the study indicates emotional processing is induced by happy 

music stimuli involved in reward, movement, and targeting attention, and by sad music 

stimuli involved in appraisal and emotions. This study supported previous studies in that 

there are regular neural patterns about happy and sad stimuli. 

As factors of emotional recognition in music, mode and tempo can express the 

happy-sad dissimilarity (Peretz et al., 2005). Khalfa, Schon, Anton, and Liégeois-Chauvel 

(2005) conducted studies of neural mechanisms of musical emotions by mode and tempo. 

They demonstrated the lateralization of neural regions relative to recognition of negative 

and positive emotions according to musical mode and tempo. Thirteen healthy 

participants were tested with 24 classical instrumental music excerpts, 12 happy (fast 

tempo), and 12 sad (slow tempo) in 12 major and 12 minor modes, of 10 seconds duration 

per excerpt. The 24 musical excerpts, generating intended emotion, were selected by 8 

volunteers via a rating on a 5 point scale. Two lists of musical stimuli included 12 fast and 

12 slow with 12 silent periods. Participants were presented with half of the excerpts in 

pseudo-randomized order in one of two sessions. After each 10-second period, 
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participants were measured by fMRI according to tempo effect, mode effect, and 

interaction between tempo and mode. In addition, a 5-point scale measured judging 

emotions by music. Results revealed that the minor mode significantly activated in the left 

medial and superior frontal gyrus and in the bilateral posterior cingulum gyri, but the 

major mode did not activate in any area. Besides, tempo-mode interaction condition 

significantly activated in the left medial frontal gyrus, the right middle frontal gyrus, and 

the right anterior cingulate gyrus. However, there was no significant effect by tempo. 

Findings indicate that mode and tempo in music emotional discrimination affect 

activations of the orbitofrontal and cingulate cortices, which are involved in emotional 

processing.  

In addition, to show the effect of combination with visual and auditory stimuli, 

Baumgartner, Esslen, and Jäncke (2006) examined emotional processing in the brain 

evoked by pictures and classical music using Electroencephalogram (EEG). Pictures of 

the international Affective Pictures System (IAPS) and classical music excerpts for strong 

arousal emotions (happiness, sadness, and fear) were provided to 24 right-handed 

participants as three kinds of stimuli such as picture and music, picture, and music. In 

addition, psychophysiological and psychometrical measurements were used. Results 

showed that presented emotions induced by combined stimuli were most accurate, then 

next most accurate by visual stimulus, then next-next most accurate by auditory stimulus. 

Moreover, ratings of both psychophysiological and psychometrical measurements 

increased significantly in the combined stimuli, next classical music, then picture. This 

indicates that intense neural activations were generated by combined stimuli in emotional 

and arousal regions such as frontal, temporal, parietal, and occipital neural structures. The 
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finding showed the impact of music on enhancing emotional experience. Moreover, this 

study showed that combined stimuli are more powerful for evoking emotions. 

Many studies on music and the brain indicate a close relationship between music 

and emotions, and consistent neural patterns on musical stimuli. Therefore, the studies 

provide neural basis of emotional processing induced by music. 

 

Neural Activation and Imagery in Emotions 

 Mental imagery occurs when information is perceived from memories of past 

events and daydreams of future events via the mind’s eye or ear (Holmes, Geddes, Colom, 

& Goodwin, 2008; Holmes & Mathews, 2010). It is represented as various sensory 

modalities such as visual-, auditory-, and motor- imagery, which activate their associated 

regions in the brain (Kosslyn, Ganis, & Thompson, 2001). It long has been recognized 

that imagery generates emotions, which occur differently in various emotions (Holmes et 

al., 2010; Lyman & Waters, 1989). In particular, distressing mental images related to past 

or future from the depths of the mind are more affective (Holmes et al., 2008). Through 

their review of previous research, Holmes et al. (2010) theorized why image impacts on 

emotion. According to them, imagery directly influences the emotional neural network 

which responds to various sensory signals; these are perceived as real emotional events, 

and as contacts with emotional episodic memories in the past. 

 As developing neuroimaging techniques, a number of neuroimaging studies 

demonstrate mental imagery, illustrating that such imagery has identical neural 

mechanism of perception in identical modalities and can activate in regions related to 

emotion, memory, and motor control (Kosslyn et al., 2001). Furthermore, reporting 

imagery as stimuli for evoking emotions (Lazarus, 1971; Sheikh et al., 1975), in particular 
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imagery-related episodic memory (Damasio et al., 2000; Holmes & Hackmann, 2004), 

has increased the importance of using images in psychotherapy (Ahsen, 1972; Gendlin et 

al., 1970; Sheikh et al., 1975; Shapiro, 1970). Thus, imagery has been used in 

psychotherapy (Singer & Pope, 1978) and in a medical-healing program (Achterberg, 

1985). In particular, evoking fear imagery has been effective in psychotherapy for treating 

phobias and anxiety (Lang, 1977). Accordingly, in the neuropsychological view, 

understanding how the brain causes one to experience one’s inner world, including 

thoughts and feelings, is crucial.  

According to previous studies, nucleus accumbens (NAc) and medial prefrontal 

cortex (mPFC), engaged by appetitive signals, and amygdala, modulated by emotional 

intensity of appetitive and aversive signals, are related to emotional perception and 

learning. Costa, Lang, Sabatinelli, Versace, and Bradley (2010), based on previous 

research, also demonstrated patterns of neural activation and connectivity among these 

regions with 29 participants. After entering the fMRI scanner, participants were asked to 

read narratives with visual presentation related to pleasant-, neutral-, and unpleasant- 

scenes through a monitor, then to imagine each described event. Results were that the 

NAc and the mPFC were activated by pleasant imagery, and the amygdala was activated 

by pleasant and unpleasant imagery. It showed the obvious functional connectivity of both 

the NAc and the mPFC during imaging pleasant events. In addition, activation of the 

amygdala with the NAc and the mPFC was correlated only while imagining pleasant 

scenes. Thus, motivational circuits for pleasant imagery differ from those for unpleasant 

imagery; the former engages appetitive, the latter aversive. Results indicate that narrative 

imagery is useful for clinical use. Also, it shows the existence of neural patterns of 

responses to imagery related to specific emotions. 
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Schienle, Schäfer, Pignanelli, and Vaitl (2009) demonstrated neural activations 

on negative imagery measured by fMRI and the relationship between neural correlates 

and worry tendencies measured by the Penn State Worry Questionnaires (PSWQ) with 19 

healthy and non-mediated females. Two categories of pictures with worry- and happiness- 

related contents were provided for imagery. Through cue words such as watch or imagine, 

participants watched a picture, then rated the experience. Afterwards, they imagined the 

picture, then rated imagery vividness. Regions of the precuneus, the middle temporal 

gyrus, and the postcentral gyrus were activated by negative imagery compared to negative 

perception, and the insula and the parietal cortex were revealed by regions of interest in 

the (ROI) analysis (p < .005). The positive imagery compared to positive perception 

activated in the regions of the precuneus, the inferior parietal gyrus, and the superior 

temporal gyrus, and the insula and inferior parietal cortex were represented by ROI 

analysis (p < .005). In addition, there were positive correlations between the experience of 

vividness of pleasant and unpleasant pictures, and activations of the regions for emotional 

regulation, imagery vividness, and recovery of memory, whereas there were negative 

correlations between worry tendencies and neural activations in the ACC, the prefrontal 

cortex, the parietal cortex, and insula. It indicates that high PSWQ scorers disengaged 

from negative imagery.  

Besides, Kreiman, Koch, and Fried (2000) demonstrated the relationship between 

neural activations and visual imagery with nine patients. While participants imagined after 

viewing images, the activity of 427 neurons in the brain was recorded to demonstrate the 

importance of hippocampus, amygdala, entorhinal cortex, and hippocampal gyrus as 

regions for the representation and recognition of visual images. The result showed neural 

activations in these brain structures during the formation of mental images from pictures 
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as visual stimuli. In particular, it showed that amygdala was activated during emotions of 

fear and anger. This study indicates that vivid visual images can be evoked in minds 

without visual input.  

As mentioned above, many studies have investigated that neural activations of 

imagery are represented according to various types of imagery such as visual-, auditory-, 

and motor- imagery. Kosslyn et al. (2001) reviewed the previous studies. According to 

them, mental imagery draws on brain mechanisms used in other activity processes such as 

perception and action. For example, visual imagery activates in the earliest visual cortex 

and affects mechanisms related to controlling physiological processes, such as heart rate 

and breathing with effects similar to those occurring with perceptual stimuli. Moreover, 

imagery related to emotional events activates the autonomic nervous system (ANS) and 

the amygdala. Also, mental imagery from negative emotional stimuli activates the anterior 

insula, which is the primary cortical region of feedback from ANS.  

In studies on emotional mental imagery, memory is a special topic, and 

especially, intrusive imagery related to autobiographical memory has been considered to 

carry more emotion (Holmes et al., 2004). Also, some studies investigated the influences 

of mental imagery as emotional stimuli on the emotional neural network which responds 

to various sensory signals, in particular, imagery related to emotional episodic memory. 

According to Hamann (2001), encoding processes for initial represented memory and 

post-encoding processes for consolidating memory are to enhance emotional arousal. 

Amygdala, as a primary region for both processes is a crucial mechanism for 

enhancement of emotional stimuli. Thus, emotional arousal and related amygdala 

activations are crucial in modulating memory for emotional stimuli.  
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Many studies of mental imagery related to memory in the neuroscience view 

have been conducted focusing on posttraumatic stress disorder (PTSD). Britton, Phan, 

Taylor, Fig, and Liberzon (2005) demonstrated neural patterns during script-driven 

imagery-related past experiences in posttraumatic stress disorder (PTSD) patients (PTSD 

patients: PP), combat veterans without PTSD (combat control participants: CC), and 

normal control participants (normal control participants: NC). There were 45 participants 

in the three groups for this study. Stimuli were narratives recorded from personal past 

experiences such as neutral daily events, negative and traumatic experiences, or common 

extremely stressful events which were replayed during PET scanning. Results revealed 

that amygdala activation and ventral medial prefrontal cortex (vmPFC) deactivation were 

showed in NC, vmPFC and amygdala deactivations in CC. In PP, there was no amygdala 

activation or deactivation, whereas vmPFC and rostal anterior cingulate cortex (rACC) 

deactivations were represented. In addition, there was insula activation in all three groups, 

but more left insula activation in NC, and right insula activation in CC, than in PP. This 

study indicates that negative autobiographical memory was associated with vmPFC 

deactivation and insula activation, and amygdala activation was related to negative 

experiences.  

As reviewed above, mental imagery affects human emotion biologically and 

neurologically. Many research studies have reported associations between neural 

activations and emotional responses to imagery. Moreover, demonstrating regions of 

neural activation by imagery, research supports the rationale for clinical use of imagery.  
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CHAPTER 3 

Method 

 

 Twenty-four healthy volunteers participated in this experiment. Stimuli consisted 

of 4 minutes of classical music and verbal instructions provided during fMRI scanning. 

To investigate the neural basis of arousal and emotional process through guided imagery 

and music (GIM) with personal emotional episodic memories and effectiveness of GIM, 

Volume analysis and Regions of Interest (ROI) analysis were conducted. Volume analysis 

was conducted to demonstrate functional neuroanatomy of arousal and emotional 

processing induced by guided imagery and music with personal episodic memory 

compared to music or guided imagery. ROI analysis was conducted to demonstrate 

differences of neural activations among three conditions-guided imagery and music, 

guided imagery, and music.   

Accordingly, this chapter describes research design and methodology in detail 

including characteristics and screening processing about participants, stimuli, 

experimental procedures, data acquisition, and data analysis. 

 

Participants 

Twenty-seven right-handed participants (13 males and 14 females) were recruited 

from undergraduate students at the Korean Advanced Institute of Science and Technology 

(KAIST), Daejoen, Korea. The fMRI data from 3 participants (3 females) of the 27 were 

excluded because of the problem of the structural images due to excessive head 

movement and drowsiness. Thus, data from the remaining 24 participants (13 males and 

11 females) were used for this study. This study was reviewed and approved by the 
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Institutional Review Board of Lesley University, and informed consent forms were 

obtained from all participants. 

Before fMRI tasks, participants completed a background questionnaire for 

screening to select those with normal hearing ability, no history of past or current 

neurological and psychiatric disorder, claustrophobia, medical and chronic disease, and 

surgery with metallic supplements, no past or current drug and alcoholic abuse and 

dependence, and no experiences of imagery or hypnosis therapies. Also, right-handedness 

by Edinburgh Handedness Inventory (Right Handed: R > +40, EHI; Oldfield, 1971), and 

anxiety, depression and alexithymia by the State-Trait Anxiety Inventory (STAI; 

Spielberger, Gorssuch, & Lushene, 1970), the Self Rating Depression Scale (SDS; Zung, 

1965), and the Toronto-Alexithymia Scale (TAS; Taylor, Ryan, Super, & Bagby, 1985) 

were assessed. Assessment tools translated into Korean were used in this study, so that the 

standards for anxiety, depression, and alexithymia were also based on translated 

assessment tools. Cut-off scores of the state and trait anxiety in STAI for normal 

condition are each under 42.5 and 44.5 (Kim, 1978), and that of SDS for normal condition 

is under 47 (Lee & Song, 1991); also, that of TAS for normal condition is under 51 (Lee, 

Lim, & Lee, 1996). Participants were screened by cut-off scores of those assessments.  

Thus, results of the background questionnaires and those assessments indicated 

that participants were aged 19-26, and their EHI scores were between 50 and 100. In 

addition, ranges of scores of state anxiety were between 20 and 44, of trait anxiety 

between 23 and 49, SDS between 21 and 45, and TAS between 21 and 51 (see Table 1). 

This indicates that all participants were right-handed as presenting above 40 in the scores 

of the EHI. Also, as scores of those STAI, SDS, and TAS of all participants presented 

below the cut-off scores, all participants passed the screening via those assessment 
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standards. Thus, they all participated in the functional MRI experiments.  

 

Table 1  
Mean and Range of Ages, Scores of Assessments about Right-handedness, 
Anxiety, Depression, and Alexithymia in Participants 

 

All (n=24) Male (n=13) Female (n=11) 

M (SD) 
Range 

M (SD) 
Range 

M (SD) 
Range 

Age 
21.5 (1.96) 
19 - 26 

21.14 (1.68) 
20 - 26 

21.9 (2.26) 
19 - 26 

EHI 94.10 (12.03) 
50 - 100 

91.19 ( 15.25) 
50 - 100 

97.55 (5.47) 
86 - 100 

STAI 

State 36.5 (8.38) 
20 - 49 

36.31 (8.01) 
22 - 49 

36.73 (9.19) 
20 - 49 

Trait 35.75 (7.67) 
23 - 49 

36.54 (6.49) 
27 - 49 

34.82 (9.12) 
23 - 49 

SDS 32.79 (7.34) 
21 - 45 

33.15 (7.20) 
23 - 45 

32.36 (7.83) 
21 - 44 

TAS 40.67 (8.07) 
21 - 51 

41.46 (7.75) 
21 - 51 

39.73 (8.71) 
25 - 51 

Note. EHI, Edinburgh Handedness Inventory; STAI, State-Trait Anxiety Inventory; SDS, 
Self-rating Depression Scale; TAS, Toronto-Alexithymia Scale. Cut-off score for screening of 
EHI > 40; STAI, State > 42.5 & Trait > 44.5; SDS > 47; TAS > 51. 

 

 

Stimuli 

Two kinds of stimuli were used for arousal and emotional processing: music and 

verbal instructions. The musical stimulus, “Mars” in Bringer of War from the Planets by 

Gustav Holst, was provided in music and guided imagery and music (GIM) conditions. 

The music has been shown to be able to evoke negative emotions such as anger or fear 
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from the literature (Baumgartner, Esslen et al., 2006; Bush, Borling, & Stokes-Stearns, 

2009; Krumhansl, 1997; Peretz, Gagnon, & Bouchard, 1998). Four minutes of the musical 

selection were used. Verbal instructions were used for recall and re-experience of 

personal negative emotional episodes as the condition of guided imagery. Verbal 

instructions with contents of personal episodic memories were used to evoke various 

kinds of sensory imagery focusing on active imagination for arousal and negative 

emotional processing such as anger and fear. Both music and verbal instructions were pre-

recorded for the experimental paradigm. 

 

Procedure 

First, participants were asked to recall and re-experience negative episodes that 

evoked emotions of fear and anger. They were asked to do this to perform tasks in the 

fMRI scanning. These negative episodes were about conflicts with others and conflicts 

within themselves. Participants were encouraged to recall these episodes using detailed 

images within their minds, and to evoke a higher degree of emotion. Afterwards, in the 

fMRI scanning, they were asked to lie down, and soft pads were placed about their heads 

to prevent or minimize movement from disturbing the measurements.  

For the fMRI scanning, two successive, different sessions were conducted, using 

music, verbal instructions, and an inter-stimulus interval of silence. The inter-stimulus 

interval was provided to avoid previous stimuli influencing the next. Each participant had 

two sessions for definitely distinguishing the effects by three conditions-guided imagery 

and music (music in the session 2), guided imagery (verbal instructions in the session 2), 

and music (music in the session 1). In particular, this was for distinguishing the effects by 

both music and guided imagery and music conditions. Because the intention of given 
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music in the session 1 and 2 was different even though given music was same for both 

conditions, two different sessions were provided. However, participants had two sessions 

successively for avoiding participants to have both sessions in different experimental 

environment. 

Figure 1 shows this experimental paradigm. In session 1, 60 seconds of music 

excerpts were presented four times, and 30 seconds of inter-stimulus intervals were 

presented between each music stimulus. Thus, total time for the first session was 5 

minutes 30 seconds conducting the condition of just music. In session 2, music excerpts 

and verbal instructions were presented alternately four times. Also, inter-stimulus 

intervals were presented before verbal instructions. To achieve the condition of guided 

imagery and music, the excerpt was provided immediately after the verbal instructions. 

The same length as in the first session was used for music excerpts and inter-stimuli 

intervals, but the length of verbal instructions varied thus: 60 seconds, 30 seconds, 30 

seconds, and 30 seconds, in that order. The first verbal instruction was longer than the 

other, to prepare participants to concentrate on their inner selves and on emotions for 

evoking personal episodes. All verbal instructions were used to recall and re-experience 

personal, negative, emotional episodes. Thus, total time for the second session was 8 

minutes conducting the conditions of guided imagery and guided imagery and music. 

During the conditions, fMRI scanning was performed. 
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Session 1 

 
 

Session 2 

 
 

Figure 1. Experimental Paradigm: In each trial, length of music was 60 seconds, of GI 
(guided imagery) 30 seconds except for the first GI (60s), of GIM (guided imagery and 
music) 60 seconds, and of + (inter-stimulus interval) 30 seconds. A stimulus in the 
condition of music was music alone, of GI verbal instructions, of GIM music as soon as 
providing verbal instructions as a stimulus for GI, and of + (inter-stimulus interval) 
silence. 

Total time 8 min. 

60s 

30s 

60s 

60s 

30s 

30s 

30s 

30s 
60s 

30s 
60s 

GI 
GIM 

+ 

GI 
GIM 

+ 

GI 

GIM 
+ 

GI 
GIM 

Total time 5 min. 30 sec. 

+ 

Music 

60s 

60s 

30s 

30s 

30s 

60s 

60s 

Music 

+ 

 

 

 

 

 

 

 

 

Music 

+ 

Music 

+ 

Music 



42 
 

Image Acquisition 

The fMRI Experiments were conducted at the KAIST fMRI center. Functional 

magnetic resonance imaging (fMRI) was performed on a 3T MRI system (SIEMENS 

Magnetom Verio, Germany) with a quadrature head coil, for inhibiting head movement 

throughout fMRI scanning to promote neuroimaging efficiency (KAIST-BSRC, 2012). To 

measure blood-oxygen-level dependent (BOLD) effects, a gradient-echo echo planar 

imaging (EPI) sequence was used with the following imaging parameters: no. of slices = 

36; slice thickness = 3 mm; no gap between slices; field of view (FOV) = 192 × 192 mm; 

matrix size = 64 × 64; TR/TE = 2000 / 30 ms; flip angle = 90; voxel size 3 mm × 3 mm × 

3 mm. T2-weighted anatomical images were acquired using a three-dimensional 

magnetization-prepared rapid acquisition gradient-echo (3D-MPRAGE) sequence with 

TR = 1800ms; TE = 2.52 ms; matrix size 256 × 256 × 128.  

Auditory stimuli were provided through NordicNeuroLab (NNL) audio system 

specialized in MRI research, which helped to minimize disturbance due to MRI scanner 

noise as well as auditory masking effects. The flat frequency response of headphones was 

8Hz-35Hz, and passive noise attenuation was 30dB (Korea University Brain Imaging 

Center, KUBIC, 2011). In addition, to observe whether participants actively performed 

experiment tasks, the Arrington Research Inc. eye tracking system was used (Arrington 

Research Inc., 2012). 

 

Data Analysis 

Functional image preprocessing and subsequent analyses were conducted using 

the Statistical Parametric Mapping software package (Ver.: SPM99, SPM2, Wellcome 

Trust Centre for Neuroimaging, London) on a Matlab (The MathWorks, Natick, MA) 
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platform. After realignment of image sequences, coregistration was performed followed 

by spatial smoothing using an 8-mm Gaussian kernel filter with full width half maximum 

(FWHM). Participant effects, namely the blood oxygen level dependent (BOLD) signal 

changes, were estimated using a general linear model (GLM). Analyzed functional data 

were mapped onto anatomical images. Contrast images were generated for each 

participant for contrast of interest (contrast of guided imagery and music to music or 

guided imagery). An independent samples t-test was used to determine whether there was 

a significant effect of guided imagery and music compared to music or guided imagery at 

p < 0.001, uncorrected, and the size of cluster, which is activated region, larger than or 

equal to 30 voxels. 

Region of interest (ROI) analysis was conducted for 3 regions - bilateral amygdala, 

bilateral insula, and bilateral anterior cingulate gyrus - utilizing MarsBar ROI toolbox 

(Brett, Anton, Valabregue, & Poline, 2002) and small volume correction (SVC) of SPM. 

The 3 regions were derived from a standard set of automated anatomical labeling (AAL) 

archives (Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, 

& Joliot, 2002) in the Montreal Neurological Institute (MNI) template (Collins, Zijdenbos, 

Kollokian, Sled, Kabani, Holmes, & Evans, 1998). Regions were selected based on 

examination of cluster locations, induced by the conditions of guided imagery and music, 

music, and guided imagery, and deviated from a baseline, and previous studies including 

the meta-analytic review by Lindquist et al. (2012) of which regions activated as 

responses to negative emotions. Those regions from Average BOLD activity were 

extracted from a sphere 6 x 6 x 6 mm within those significant peak activations (p < 0.05, 

uncorrected). 
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Neural activation for each ROI analysis (amygdala, insula, and anterior cingulate 

gyrus) for 3 conditions: guided imagery and music, guided imagery, and music was 

compared using a one-way analysis of variance (ANOVA) in IBM SPSS statistics 20. 

When ROI analyses yielded statistically significant differences of neural activations, post-

hoc pair-wise comparisons were conducted to determine specific significant differences 

between stimuli. 
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CHAPTER 4 

Results 

 

This study investigated the neural basis of arousal and emotional processing as 

responses to recall and re-experience of personal negative emotional episodic memories 

through guided imagery and music and the effectiveness of guided imagery and music 

with personal episodes for generating arousal and emotional processing. To do this, both 

volume analysis and ROI analysis of functional MRI data were conducted with 24 healthy 

participants (13 males and 11 females). In the volume analysis, comparing functional 

neuroanatomy of arousal and emotional processing induced by guided imagery and music 

to that of guided imagery or music, it was revealed that guided imagery and music 

activated neural regions having various functions much more than guided imagery or 

music alone. In the ROI analysis, activation maps from participants revealed significant 

differences in blood oxygen-level dependency (BOLD) signal changes among the 

conditions of guided imagery and music, guided imagery, and music. Of those conditions 

in the experimental paradigm, music provided for the condition of guided imagery and 

music, same music as the condition of guided imagery and music provided for the 

condition of music, and verbal instructions provided for the condition of guided imagery.  

Therefore, this chapter describes neural regions activated by guided imagery and 

music compared to those activated by music alone, or guided imagery alone. Second, 

differences of BOLD signal changes among conditions of guided imagery and music, 

guided imagery, and music are described.  

 

 



46 
 

Volume Analysis 

Comparison between Guided Imagery and Music and Music Effects  

 This comparison between the neural regions activated by the conditions of guided 

imagery and music, and music was conducted via independent samples t-test in the SPM 

software package. The result of the contrast of guided imagery and music to music was 

revealed by subtracting neural regions activated by music from those by guided imagery 

and music (guided imagery and music > music), and that of contrast of music to guided 

imagery and music was revealed by subtracting neural regions activated by guided 

imagery and music from music (music > guided imagery and music).  

 Result of the contrast of guided imagery and music to music revealed 11 

significant neural regions at p < .001, uncorrected and the size of cluster, which is the 

activation region, is larger than or equal to 30 voxels. As indicated in Table 2 and Figure 

2, significant BOLD signal changes for the contrast of guided imagery and music to music 

were found in the left anterior cingulate gyrus (lACG - BA32), the left amygdala, the left 

thalamus, the left claustrum, the left insula, the bilateral precentral gyrus (BA 6), the left 

superior temporal gyrus (lSTG - BA 22), the bilateral middle temporal gyrus (bMTG - BA 

21), the left inferior parietal lobule (lIPL - BA 39), the right cuneus (BA 18), and the 

bilateral culmen. In contrast, no neural regions having significant BOLD signal changes 

were found for the contrast of music to guided imagery and music (p < .001, uncorrected 

& number of voxels ≥ 30). 

 

Comparison between Guided Imagery and Music and Guided Imagery Effects  

 This comparison between the neural regions activated by the conditions of guided 

imagery and music, and guided imagery was conducted via independent samples t-test in 
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the SPM software package. Thus, the result of the contrast of guided imagery and music 

to guided imagery was revealed as subtracting neural regions activated by guided imagery 

from those activated by guided imagery and music (guided imagery and music > guided 

imagery), and the contrast of guided imagery to guided imagery and music was revealed 

by subtracting neural regions activated by guided imagery and music from guided 

imagery (guided imagery > guided imagery and music). Neural regions having significant 

BOLD signal changes for the contrast of guided imagery and music to guided imagery 

and that of guided imagery to guided imagery and music are reported in Table 3. 

Significant activated clusters were surpassed at the uncorrected threshold of p < .001 and 

the cluster’s size which was larger than or equal to 30 voxels.  

 The BOLD signal changes for the contrast of guided imagery and music to guided 

imagery were significantly greater than those for the contrast of guided imagery to guided 

imagery and music in 9 neural regions including the right posterior cingulate gyrus (rPCG 

– BA 23), the bilateral parahippocampal gyrus (BA 30/19), the bilateral precentral gyrus 

(BA 4/6), the left superior frontal gyrus (lSFG – BA 6), the left middle frontal gyrus 

(lMFG – BA 6), the bilateral middle occipital gyrus (bMOG - BA 18/19), the bilateral 

cuneus (BA 18/30), the right lingual gyrus (BA 19), and the inferior parietal lobule. 

Contrarily, the BOLD signal changes for the contrast of guided imagery to guided 

imagery and music were significantly greater than those for the contrast of guided 

imagery and music to guided imagery in three neural regions including the right superior 

temporal gyrus (rSTG – BA 22), the bMTG (BA 21), and the left inferior parietal lobule 

(lIPL – BA40).  

  Figure 3 indicates neural activation maps for guided imagery and music 

compared to guided imagery (guided imagery and music > guided imagery), and Figure 4 
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for guided imagery compared to guided imagery and music (guided imagery > guided 

imagery and music). Figure 5 indicates the comparison between guided imagery and 

music and guided imagery.  
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Table 2  
List of Peak Coordinates for Comparison between Guided Imagery and Music and 
Music Effects (p < .001 uncorrected & number of voxels ≥ 30) 
 

Peak coordinate 
regions Side Brodmann 

Area 
Number 

of  
Voxels 

Peak 
Intensity  

(t) 

Peak MNI 
Coordinate  

(x, y, z) 

 

Guided Imagery and Music > Music 

Limbic lobe          

Anterior cingulate gyrus L 32  34 4.2969  -8, 12, 46 

Insula  L n/a  34 5.1146  -44, -26, 22 
Sub-cortical gray nuclei          

Amygdala L n/a  34 4.8008  -32, 4, -16 

Thalamus L n/a  323 6.8295  -4, 28, -6 

Claustrum L n/a  83 5.7096  -34, -8, -6 

  n/a  71 5.2302  -30, 6, 16 
Cerebellum          

Culmen L n/a  181 4.3238  -12, -42, -8 

 R n/a  62 4.9265  20, -42, -16 
Frontal lobe          

Precentral gyrus L 6  204 5.7504  -56, 0, 18 

 R 6  34 4.6142  60, 4, 4 

Temporal lobe          

Superior temporal gyrus L 22  75 5.4628  -58, -48, 16 

Middle temporal gyrus L 21  34 5.4368  -52, 4, -22 

 R 21  52 5.3363  48, 2, -22 
Occipital lobe          

Cuneus R 18  2177 6.339  4, -78, 26 

Parietal lobe          
  Inferior parietal lobule L 39  34 4.1407  -46, -70, 22 

Music > Guided Imagery and Music 

No region          

Note. MNI, Montreal Neurological Institute. L, Left; R, right. Peak intensity (t), scores of BOLD 
signal changes. 
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Table 3 
List of Peak Coordinates for Comparisons between Guided Imagery and Music 
and Guided Imagery Effects (p < .001 uncorrected & number of voxels ≥ 30 ) 

Peak coordinate  
regions Side 

 
Brodmann 

Area 
 

Number 
of  

Voxels 

Peak 
Intensity  

(t) 

Peak MNI 
Coordinat

e 
(x, y, z) 

Guided Imagery and Music > Guided Imagery 
 

Limbic lobe        
Posterior cingulate gyrus R 23 249 4.7846   4,  -64, 16 
Parahippocampal gyrus L 30 110 5.4024 -24,  -46, -2 
 R 19 37 3.7177 30,  -48, -6 

Frontal lobe        
Precentral gyrus L 4 46 4.6198 -64,  -8, 22 
 R 6 79 5.0164   8,  -20, 66 

  6 67 4.8338 52,  -8, 24 
  4 52 4.4226  46,  -18, 34 

Superior frontal gyrus L 6 189 4.9450  -6,  4, 68 
Middle frontal gyrus L 6 34 4.5198 -38,  -8, 44 

Occipital lobe        
Middle occipital gyrus L 18 92 4.5653 -14,  -90, 10 

  19 43 4.9582 -34,  78, -2 
 R 18 174 4.4576  34,  -84, -6 
Cuneus L 30 75 4.1697 -20,  -72, 10 
 R 18 37 5.1211 24,  -82, -14 
Lingual gyrus R 19 31 4.1895  32,  -62, -2 

Parietal lobe        
  Inferior parietal lobule L 39 58 4.5653 -50,  -72, 12 

Guided Imagery > Guided Imagery and Music 

Temporal lobe        

 Superior temporal gyrus R 22 176 4.5637 54,  -32, -2 
  Middle temporal gyrus L 21 1704 7.8628 -58,  -34, -2 
 R 21 270 5.4395 64,  -14, -10 
Parietal lobe        

  Inferior parietal lobule L 40 33 3.8301 -44,  -52, 52 
Note. MNI, Montreal Neurological Institute. L, Left; R, right. Peak intensity (t), scores of BOLD  
signal changes. 
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Figure 2. Brain Contrast Maps for Guided Imagery and Music > Music: Clusters 
surpassing a corrected cluster-threshold of p<0.001 and the larger or equal size of 
cluster than 30 voxels. (A) Map of clusters projected on a standard rendered 
template brain. (B) Corresponding axial slices from z -32 to 56 in 8mm increments. 

Guided Imagery and Music > Music (N = 24) 

-32 -24 -16 -8 0 8 

16 24 32 40 48 56 

Left Posterior Dorsal Right 
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Figure 3. Brain Contrast Maps for Guided Imagery and Music > Guided Imagery: 
Clusters surpassing a corrected cluster-threshold of p<0.001 and the larger or equal 
size of cluster than 30 voxels. (A) Map of clusters projected on a standard rendered 
template brain. (B) Corresponding axial slices from z -16 to 72 in 8mm 
increments. 

Guided Imagery and Music > Guided Imagery (N = 24) 
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Figure 4. Brain Contrast Maps for Guided Imagery > Guided Imagery and Music: 
Clusters surpassing a corrected cluster-threshold of p<0.001 and the larger or 
equal size of cluster than 30 voxels. (A) Map of clusters projected on a standard 
rendered template brain. (B) Corresponding axial slices from z -16 to 72 in 8mm 
increments. 

Guided Imagery > Guided Imagery and Music (N = 24) 
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Figure 5. Comparison between Brain Contrast maps for Guided Imagery and 
Music > Guided Imagery and Guided Imagery > Guided Imagery and Music: 
Clusters surpassing a corrected cluster-threshold of p<0.001 and the larger or 
equal size of cluster than 30 voxels. (A) Three foci of slice cluster maps (B) 
Corresponding axial slices from z -16 to 72 in 8mm increments 

Guided Imagery and Music > Guided Imagery 
vs. Guided Imagery > Guided Imagery and Music  

   

-16 -8 0 8 16 24 

32 40 48 56 64 72 

Sagittal focus Transverse focus Coronal focus 

Guided Imagery and Music > Guided Imagery 
Guided Imagery > Guided Imagery and Music 
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Regions of Interests (ROI) Analysis 

Based on examination of individual activation maps of functional MRI generated 

by three stimuli including guided imagery and music, guided imagery, and music, and 

deviated from baseline which is not compared to any other stimulus (see Figure 6), and 

also neural regions associated with negative emotional processing presented by previous 

studies, neural regions – namely the bilateral amygdala, the bilateral insula, the bilateral 

anterior cingulate gyrus - were selected for ROI analysis from AAL archives (Tzourio-

Mazoyer, et. al., 2002) in MNI template (Collins, et. al., 1998) (See Table 4 and Figure 7).

  

 

 

 

 

Table 4 
Region of Interest (ROI) Characteristics 

Anatomical 
Region 

side 
Peak MNI 
Coordinate 
(x,  y,  z) 

Brodmann  
area 

Amygdala  
L -20, -2, -18          n/a 

R 28, -6, -16          n/a 

Insula 
L -34 -30, 16  13 

R 46, 18, 2  13 

Anterior cingulate 
gyrus 

L -2, 4, -8  25 

R 10, 18, 28  24 

 Note. Cluster p < .05. L, left; R, right.   
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Figure 6. Whole Neural Regions for Regions of Interest (ROI) Analysis (N = 24): 
Clusters corresponding to results from the examination of individual activation 
maps of fMRI induced by guided imagery and music, guided imagery, and music 
deviated from baseline (p < .05). (A) Three foci of slice cluster maps (B) 
Corresponding axial slices from z -30 to 60 in 10 mm increments 
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 Figure 7. Three Neural Regions for Regions of Interest (ROI) Analysis (N = 24). 
GIM, Guided imagery music; GI, Guided imagery. 
 

A. Amygdala 

x = -20 
y = - 2 
z = -18 
 
Left 

x = 28 
y = - 6 
z = -16 
 
Right 

x = -34 
y = -30 
z = 16 
 
Left 

x = 46 
y = -18 
z = 2 
 
Right 

B. Insula 

C. Anterior cingulate gyrus 

x = - 2 
y = 4 
z = - 8 
 
Left 

x = 10 
y = 18 
z = 28 
 
Right 

     GIM           GI          Music 



58 
 

Averages of the BOLD signal changes for three conditions processing in selected 

regions (p < .05) were yielded in the ROI analysis (see Table 5 and Figure 8). The highest 

average of BOLD signal changes in the bilateral amygdala, insula, and anterior cingulate 

gyrus were presented during guided imagery and music processing compared to guided 

imagery or music processing. Also, averages of BOLD signal changes during guided 

imagery in three regions were higher than those during music processing. Besides, 

averages of BOLD signal changes during music processing in those regions were lower 

than guided imagery and music and guided imagery processing.  

One-way analysis of variance (ANOVA) revealed statistically significantly 

different effects among three conditions including guided imagery and music, guided 

imagery, and music in the left amygdala (F(2, 69) = .660, p = .022), the right amygdala (F(2, 

69) = 1.579, p = .008), the left insula (F(2, 69) = .167, p = .035), the right insula (F(2, 69) 

= .589, p = .023), the left anterior cingulate gyrus (F(2, 69) = .181, p = .035), the right 

anterior cingulate gyrus (F(2, 69) = .660, p = .010) (see Table 6). Following up on this, post-

hoc pair-wise comparisons were performed to understand quadratic effects of stimuli. In 

these multiple comparisons, participants had significant BOLD signal changes in the 

bilateral three neural regions for guided imagery and music greater than guided imagery 

or than music. Also, significant neural activation for guided imagery was greater than for 

music in those regions.  
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Figure 8. Differences of BOLD Signals Changes of Anatomical Regions for ROI 
Analysis: Bilateral Amygdala (AMYG), Bilateral Insula, and  Bilateral Anterior 
Cingulate Gyrus (ACG). L, left; R, right. GIM, guided imagery and music; GI, 
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Table 5  
Neural Activation T during Processing of Three Conditions: GIM, GI, Music 

Anatomical 
Region side 

T (SD) 

GIM GI Music 

Amygdala 
L .7783  (1.49) .5914  (1.65) .3154  (.99) 

R .3684  ( .84) .3185  (.82) .0086  (.60) 

Insula 
L .5264  ( .73) .5168  (.99) .3899  (1.00) 

R .5740  ( .86) .5529  (1.14) .3124  (.73) 

Anterior cingulate 
gyrus 

L .4481  ( .97) .3317  (1.10) .2735  (1.00) 

R .2880  (.61) .1508  (.62) .0036   (.55) 

  Note. T, beta activation measure - average BOLD signal changes in the 3 regions (p < 0.05,    
 uncorrected). SD, standard deviation. L, left; R, right. GIM, guided imagery and music; GI, guided  
 imagery. 
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Summary of Results on Research Questions 

 Research question 1 was: Which neural regions will be activated by guided 

imagery and music, compared to music? The contrast of guided imagery and music to 

music revealed significant activation in 11 neural regions including the left anterior 

cingulate gyrus, the left insula, the left amygdala, the left thalamus, the left claustrum, the 

bilateral culmen, the bilateral precentral gyrus, and the left superior temporal gyrus, the 

bilateral middle temporal gyrus, the right cuneus, and the left inferior parietal lobule. In 

contrast, there was no significant activation in any neural region for the contrast of music 

to guided imagery and music.  

Table 6 
Results of One-way ANOVA: The Comparison for Mean of the BOLD Signals 
across Three Conditions (GIM (a), GI (b), & M (c)) 

Anatomical 
Regions side df F-value p-value Post-hoc  

Amygdala  
L 2 .660* .022 a > b, a > c, b > c 

R 2 1.579** .008 a > b, b > c, a > c 

Insula 
L 2 .167* .035 a > b, b > c, a > c 

R 2 .589* .023 a > b, b > c, a > c 

Anterior 
cingulate gyrus 

L 2 .181* .035 a > b, b > c, a > c 

R 2 1.380* .010 a > b, b > c, a > c 

Note. *p < .05, **p < .01. L, left; R, right; GIM, guided imagery and music; GI, guided 
imagery; M, music. 
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 Research question 2 was: Which neural regions will be activated by guided 

imagery and music, compared to guided imagery? The contrast of guided imagery and 

music to guided imagery revealed significant activation in nine neural regions including 

the right posterior cingulate gyrus, the bilateral parahippocampal gyrus, the bilateral 

precentral gyrus, the left superior frontal gyrus, the left middle frontal gyrus, the bilateral 

middle occipital gyrus, the bilateral cuneus, the right lingual gyrus, and the inferior 

parietal lobule. On the contrary, there were significant neural activation in three neural 

regions including the right superior temporal gyrus, the bMTG, and the left inferior 

parietal lobule.  

Research question 3 was: Are there significant differences of the blood oxygen 

level dependent (BOLD) signal changes among 3 conditions – guided imagery and music, 

guided imagery, and music - in neural regions associated with negative emotional 

processing? There were statistically significant differences in BOLD signal changes 

among 3 conditions including guided imagery and music, guided imagery, and music in 

the bilateral amygdala, insula, and anterior cingulate gyrus. In addition, participants had 

significant BOLD signal changes in the bilateral three neural regions for the condition of 

guided imagery and music greater than music alone or guided imagery. Also, there were 

significant BOLD signal changes for guided imagery greater than music alone in those 

regions.  
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CHAPTER 5 

Discussion 

 

 The ultimate aim of the present study was to investigate the effect of guided 

imagery and music on arousal and emotional processing with personal episodic memory 

through human brain-mapping data by functional magnetic resonance imaging. Thus, this 

study examined different effects of neural dynamics on arousal and emotional processing 

induced by three different kinds of auditory stimuli: music after verbal instructions for the 

condition of guided imagery and music, music for the condition of music, and verbal 

instructions for the condition of guided imagery. This study finding was intended to be 

presented by two kinds of analyses, namely Volume and Region of Interest (ROI) 

analyses. 

Thus, in more detail this chapter describes and illustrates this study’s findings. 

The first section summarizes results and implications. The second illuminates strengths, 

limitations, suggestions for further research, and conclusion. 

 

Summary of Results and Implications 

Volume analysis  

 Arousal and emotional processing induced and/or intensified by guided imagery 

and music, guided imagery, and music conditions, activated neural regions. Volume 

analysis identified specific neural regions activated by guided imagery and music 

compared to music, or to guided imagery. Eleven significant regions associated with the 

functions of emotional and visual processing, integration of cross-modal sensory 

processing, episodic memory, empathy, and out-of-body experience were revealed by 
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responses to guided imagery and music compared to music, but no region was associated 

with music compared to guided imagery and music. In the second comparison between 

guided imagery and music and guided imagery, nine neural regions associated with the 

functions of episodic memories, visual and motor processing, and empathy were revealed 

by guided imagery and music compared to guided imagery, whereas three regions 

associated with the functions of visual and language processing were revealed by guided 

imagery compared to guided imagery and music. 

 Thus, both comparisons between guided imagery and music and music or guided 

imagery presented the effectiveness of guided imagery and music for neural activations. 

That is, guided imagery and music engaged many neural regions associated with 

emotional and sensory processing as well as episodic memories, and also empathy greater 

than music or guided imagery. Moreover, the ROI analysis revealed the effectiveness of 

guided imagery and music intensifying arousal and emotional processing through mental 

imagery indicating that greater BOLD signal changes were found in neural regions 

associated with emotional processing for guided imagery and music than for music or 

guided imagery. Thus, the neural basis for arousal and emotional processing of guided 

imagery and music was provided comparing neural regions activated by guided imagery 

and music to those by music or guided imagery in volume analysis. 

 

 Comparison between guided imagery and music and music effects. In the 

contrast of guided imagery and music to music, eleven neural regions were activated 

including the left ACG, the left insula, the left amygdala, the left thalamus, the bilateral 

precentral gyrus, the lSTG, the bMTG, the lIPL, the right cuneus, the left claustrum, and 
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the bilateral culmen, whereas no activation occurred in neural regions in contrasting 

music to guided imagery and music.  

First, the ACG plays roles in diverse autonomic functions including regulating 

blood pressure or heart rate and cognitive functions including modulating attention, 

rewards anticipation, motivation, and emotional responses (Bush, Luu, & Posner, 2000; 

Decety & Jackson, 2004; Jackson, Brunet, Meltzoff, & Decety, 2006). In particular, BA 

32 known as the dorsal region of anterior cingulate gyrus (dACG) is associated with two 

emotional categories such as sadness and conflict (Lindquist et al., 2012) and helps 

generate and regulate emotions as one of the core affective regions (Kober et al., 2008) 

for discerning and guiding behavior when facing sensory inputs on conflicts (Botvinik, 

2007; Bush et al., 2000; Teasdale, Howard, Cox, Ha, Brammer, Williams, & Checkley, 

1999). Thus, it may be assumed that guided imagery and music induced negative 

emotions such as sadness and conflict through guided imagery.  

The insula also has been reported to play a significant role in emotional response, 

especially the perception of disgust. According to the meta-analysis study by Lindquist et 

al. (2012), the left insula has a role in anger experience, the right insula in disgust 

experience. It may be assumed that the provided musical stimulus played a role in 

evoking anger, which corresponds to the function of the left insula as reported by the 

study of meta-analysis by Lindquist, et al. As one of the other representative neural 

regions for emotional processing, the left amygdala activated. A number of previous 

neural studies have corroborated the amygdala role as a critical emotional processing 

region responding to fear and aversive conditioning (Adams Jr., Gordon, Baird, Ambady, 

& Kleck, 2003; Adolphs, Tranel, Hamann, Young, Calder, Phelps, Anderson, Lee, & 

Damasio, 1999; Costafreda, Brammer, David, & Fu, 2008; Kim & Hamann, 2007; 
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LeDoux, 2000; Morris et al., 1996). Moreover, according to Whalen, Rauch, Etcorff, 

Mclnerney, Lee, and Jenke (1998), the amygdala was activated by subliminally-presented 

facial expressions in normal participants. In particular, emotional processing of facial 

expressions of fear activated in the left amygdala has been reported by functional imaging 

studies (Morris et al., 1998). Thus, it may be assumed that participants had emotional 

experiences with their episodic memories including emotional arousal from facial 

expressions. Moreover, this result corresponded to the theme of their personal episodes 

which were conflict between or among people around them and themselves. This 

indicates that people with facial expressions existed in their imagery. Thus, guided 

imagery and music engaged emotional processing with personal episodes through imagery  

As a recently considerable region in emotional processing, the cerebellum, 

especially the bilateral culmen as the portion of anterior vermis, was activated. 

Traditionally, this region had been reported as a motor structure. However, studies 

indicate it is activated in various sensory and cognitive processing (Petacchi, Laird, Fox, 

& Bower, 2005). Moreover, it was reported that this region was activated by the 

perception and production of rhythm as the musical element (Penhune, Zatorre, & Evans, 

1998). However, in the last decade, much research data report the cerebellum to be 

involved in affective regulation, association between sensory stimuli and emotional 

behavior, and episodic memory, specifically fear (Strata, Scelefo, & Sacchetti, 2011). 

Liotti, Mayberg, Brannan, McGinnis, Jerabek, & Fox (2000) by functional neuroimaging 

study reported the activation of the cerebellum by anxiety and sad mood in healthy 

participants. Thus, the culmen activation in this study supports previous literature.  

The thalamus, activated as a subcortical region, plays a crucial role in receiving 

sensory signals and sending them to linked primary cortical regions (Sherman, 2006). In 
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particular, as it is related to spatial recall and spatial sensory data, it has a crucial function 

for episodic memory in humans (Aggleton, O'Mara, Vann, Wright, Tsanov, & Erichsen, 

2010; Burgess, Maguire, & O'Keefe, 2002). Thus, the result indicates that guided imagery 

and music intensified to remind participants of their personal emotional episodes.  

Also, activation of the precentral gyrus, especially BA 6 composed of the 

premotor cortex, was observed. This area has been suggested to be involved in planning 

and executing motor movement related to sensory guided movement (Elias, & Saucier, 

2006). Moreover, it has been reported that the function of the secondary motor cortex, 

including premotor cortex, activated as response to motor imagery (Decety et al., 1995; 

Jeannerod & Decety, 1995; Elias et al., 2006) and the premotor cortex triggered by 

external stimuli (Deiber, Passingham, Colebatch, Friston, Nizon, & Frackowiak, 1991). 

Guided imagery and music, it may be assumed, generated motor imagery. Which may 

indicate that this region could function as the mirror neuron system acting as the tool that 

reads actions and minds of others, empathizing with others, and language evolving gesture 

performance and understanding (Keysers, & Gazzola, 2006; Rizzolatti, & Craighero, 

2004). Thus, the premotor cortex activation in this study supports the previous studies 

indicating that participants experienced phenomena such as empathy, mind and body 

language understanding, and so on, related to conflict with others or self in episodic 

memories through mental imagery.  

The STG (BA22) is a significant region for speech processing (Bigler, Mortensen, 

Neeley, Ozonoff, Krasny, Johnson, Lu, Provencal, McMahon, & Lainhart, 2007). In 

particular, the left side of the STG observed in this study has been reported as the locale 

of understanding written and spoken language (Ryan, Nadel, Keil, Putnam, Schnyer, 

Trouard, & Moscovitch, 2001; Wernicke, 1995). Thus, it may be assumed that guided 
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imagery and music generated language processing in personal episodic memories through 

mental imagery, despite there being no stimulation for language processing during guided 

imagery and music. 

As responses to visual processing, the bilateral MTG, and the cuneus as an 

extrastraite visual cortex, were activated. Particularly, the MTG (BA 21) has been known 

to have an important role in the processing of visual motion. That is to say, this region is 

activated by moving visual stimuli (Dubner, & Zeki, 1971). Also, the cuneus in the 

occipital lobe has a role in receiving and interpreting visual images. Especially, the 

activation of BA 18 is modulated by visual and spatial attention and memory retrieval 

(Matsuka, Yamauchi, Hanson, & Hanson, 2005). Revealed as the activation of both 

regions, it can be assumed that although there were no direct verbal instructions for 

generating imagery related to episodic memories in guided imagery and music, music 

helped participants to concentrate on their episodic memories and to intensify visual 

mental imagery generated by verbal instructions. 

Besides, the inferior parietal lobule (BA 39) as portion of the junction of 

temporal, occipital, and parietal lobes and a part of mirror neurons, was activated. The 

region, namely angular area 39, is associated with processing of language, calculation, 

spatial cognition, memory retrieval, attention, and mind (Seghier, 2013) and integrating 

processing of different sensory modalities including auditory, visual, and somatosensory 

information (Bernstein, Auer Jr., Wagner, & Ponton, 2008; Clark, Egan, McFarlane, 

Morris, Weber, Sonkkilla, Marcina, & Tochon-Danguy, 2000; Joassin, Pesenti, Maurage, 

Verreckt, Bruyer, & Campanella, 2011). In particular, this region is associated with 

awareness of self’s intentional and resultant movement (Farrer, Frey, Van Horn, Tunik, 

Turk, Inati, & Grafton, 2008), and episodic memory (Seghier, 2013), Interestingly, recent 
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studies have demonstrated that the activation of BA 39 is due to out-of-body experience 

(Blanke, Landis, Spinelli, & Seeck, 2004). It may be assumed that music helped 

participants concentrate on imagery processing in episodic memories.  

Last, claustrum activation was observed, the function of which is controversial. 

However, Crick and Koch (2005) summed up the function of communication between 

both right and left hemispheres of the brain, through reviewing previous literature. That is, 

the claustrum works to integrate various sensory modalities for perceiving a single object. 

Thus, it may be assumed that guided imagery and music helped intensify arousal 

processing as integrating with various kinds of sensory information in imagery 

experiences.  

 Taken together, guided imagery and music engaged in the neural regions 

associated with the functions of the processing of emotions, especially negative, various 

kinds of sensory modalities, integration of cross-modal sensory, episodic memory, 

empathy, and out-of-body experience through imagery generated by verbal instructions 

for recalling episodic memory. Regions associated with emotional processing were the 

ACG, the insula, the amygdala and the culmen; especially, the ACG, the insula, and the 

amygdala were representative neural regions associated with basic negative emotional 

categories from the literatures. Also, the culmen and the thalamus have a role in sensory 

processing, and the amygdala is the region linked to emotional arousal by facial 

expression. Episodic memories activated in the culmen, the thalamus, the lIPL (BA 39), 

and visual processing engaged in the MTG (BA 21) and the cuneus. Regions that can be 

linked to motor imagery were the culmen and the precentral gyrus. In particular, the 

precentral gyrus, as the premotor cortex, was involved in processing related to human 

phenomena such as understanding actions and minds of others, and empathy as one of the 
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mirror neurons. Moreover, the claustrum and the lIPL were involved in the integration of 

various sensory modalities. Therefore, music provided in the condition of guided imagery 

and music not only intensified imagery processing evoked by verbal instructions, but also 

participated in various arousal processing related to personal emotional episodes, 

indicating that multimodal stimuli activated in various neural regions.  

 

 Comparison between guided imagery and music and guided imagery effects.  

In the contrast of guided imagery and music to guided imagery, nine neural regions were 

activated including the rPCG, the bilateral parahippocampal gyrus, the bilateral precenral 

gyrus, the lSFG, the lMFG, the left MTG, the bilateral MOG, the bilateral cuneus, and 

right lingual gyrus. In contrast, the rSTG, the bilateral MTG, and the lIPL were activated 

in the contrast of guided imagery to guided imagery and music.  

  First, in the contrast of guided imagery and music to guided imagery, activations 

occurred in the rPCG (BA 23) and the bilateral parahippocampal gyrus (BA 19). Both are 

associated with working memory. The PCG plays a significant role in pain and episodic 

memory (Nielsen, Balsley, and Hansen, 2005; Kozlovskiy, Vartanov, Nikonova, Pyasik, 

& Velichkovsky, 2012), and the parahippocampal gyrus plays a main role in memory 

from encoding and recognition of scenes, i.e., in imagining landscapes rather than objects 

or faces (Aquirre, Detre, Alsop, & D’Esposito, 1996; Ishai, 1996). It may be assumed that 

guided imagery and music worked as a stimulus for generating pain and episodic memory 

as well as intensifying the processing of mental imagery. Also, BA 30 as portions of the 

left cuneus and the left parahippocampal gyrus was observed, and is the retrospenial 

region in the posterior cingulate region, which plays a role in cognitive functions 

including episodic memory, navigation, imagination, and future planning (Vann, 
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Aggletion, & Maguire, 2009). In particular, the retrospenial region is activated in recalling 

past autobiographical experiences (Svoboda, Mckinnon, & Levine, 2006; Vann et al., 

2009). It can be assumed that guided imagery and music helped generate imagery with 

recalling episodic memories.  

As the motor cortex, the activations of the precentral gyrus, the lSFG and the 

lMFG in the frontal lobe, were observed. The activated precentral gyrus is located in BA 

4 and 6, and the activated lSFG and lMFG are located in the caudal portions of BA 6. 

Activated BA 4 as the primary motor cortex has a role in controlling coordinated activity 

of muscles based on sensory responses as interconnecting with the somatosensory cortex 

(Elias et al., 2006). Also, BA 6, as mentioned above, is not only is involved in planning 

and executing motor movement by sensory feedback, but also is implicated in 

understanding others, empathy, self-awareness and so forth, as a portion of mirror neurons. 

Considering this activation associated with the theme of personal episodes related to 

conflicts with others or self, it may be assumed that guided imagery and music helps 

participants work with their episodic memories as arousing and intensifying mental 

imagery with a multisensory stimulus. 

Activation of the lIPL (BA39) was also observed, which is the same as in the 

condition of guided imagery and music of the comparison between guided imagery and 

music and music. As mentioned above, previous literature has reported the function of 

this region as involved in the processing of language, numbers, spatial cognition, content 

and episodic memory, multimodal sensory processing, awareness of self’s intentional and 

resultant movement, and out-of-body experience. Thus, it can be assumed that guided 

imagery and music helped participants to be more immersed in imagery experiences in 
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episodic memory than in providing verbal instructions. Also, guided imagery and music 

engaged as a multimodal sensory stimulus. 

Visual imagery is common in imagery processing. This present study revealed 

that guided imagery and music engaged as the stimulus in evoking visual imagery as 

indicating visual cortex activations such as BA 18 including the bilateral MOG and the 

right cuneus and BA 19 including the lMOG and the right lingual gyrus as extrastriate 

cortical areas. As described above, BA 18 has roles in visual and spatial attention, 

memory retrieval, and interpretation of images. Also, the function of BA 19 is involved in 

tracking movement of objects in space (Galletti, Battaglini, & Fattori, 1990).  

In contrast, in the condition of guided imagery in this comparison, three regions 

were activated including the right superior temporal gyrus (rSTG), the bilateral MTG, and 

the left inferior parietal lobule (lIPL). The function of the rSTG is involved in auditory 

processing for distinguishing differences among melody, pitch, and sound intensity in 

language processing (Phillips & Sakai, 2005). The bilateral MTG is involved in visual 

motion processing. Also, the lIPL is functionally involved in emotional perception from 

facial stimuli (Radua, Phillips, Russell, Lawrence, Marshall, Kalidindi, El-Hage, 

McDonald, Giampietro, Brammer, David, & Surguladze, 2010). The lIPL, particularly the 

supramarginal gyrus, is implicated in the perception and processing of language 

(Gazzaniga, Ivry, & Mangun, 2009). Thus, those activated regions indicate that verbal 

instructions evoked visual imagery with the contents of their personal emotional episodes 

as auditory stimuli. Thus, it may be assumed that guided imagery directly worked as a 

verbal stimulus to induce scenes related to episodic memories compared to guided 

imagery and music.  
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Taken together, whereas guided imagery mainly engaged in neural regions 

associated with the functions of auditory and visual and language understanding 

processing including the rSTG, the bilateral MTG, and the lIPL, guided imagery and 

music engaged in neural regions associated with the functions of episodic memories, 

sensory processing such as motor and visual processing, functions of mirror neurons such 

as empathy, and so on. In contrasting guided imagery and music to guided imagery, 

regions involved in episodic memories were the rPCG, the bilateral parahippocampal 

gyrus, and the cuneus (BA 30). The activated precentral gyrus including BA 4 and BA 6 

associated with motor processing by sensory feedback. Also, as mirror neurons, regions 

associated with various functions related to understanding others, such as empathy with 

others, awareness of self’s intentional and resultant movement, and so on, were the 

premotor cortex (BA 6) including the precentral gyrus, the lSFG, the lMFG, and the lIPL. 

Last, activated regions involved in visual processing were the bilateral MOG, the right 

cuneus, and the right lingual gyrus. Thus, guided imagery and music, compared to guided 

imagery, more intensified mental imagery including motor and visual processing with 

episodic memories, and helped participants work with personal emotional episodes 

immersed in mental imagery. Therefore, music in the condition of guided imagery and 

music was more effective for arousal and emotional processing than was verbal 

instructions in the condition of guided imagery. 

 

Regions of Interest (ROI) Analysis  

  To determine whether differences existed among three conditions including 

guided imagery and music, guided imagery, and music on arousal and emotional 

processing through mental imagery with negative episodic memory, BOLD signal 
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changes in the bilateral amygdala, insula, and anterior cingulate gyrus ROIs were 

analyzed. Those have been reported as representative neural regions associated with 

feeling negative emotions such as fear, anger, and sadness. As shown in the results, 

significant differences emerged among three conditions in BOLD signal changes. 

 More important, the BOLD signal change in guided imagery and music was 

higher than in other conditions. The intermediate signal change was in the condition of 

guided imagery, and the lowest was in music. It may be assumed that guided imagery and 

music had a role in evoking arousal and emotional processing, as well as in intensifying 

arousal and emotional processing through mental imagery induced by verbal instructions 

in the guided imagery condition. On the other hand, guided imagery had a direct role in 

evoking arousal and emotional processing providing verbal instructions for recalling and 

re-experiencing personal emotional episodes, and music evoked arousal and emotional 

processing induced by music itself. In other words, guided imagery and music rendered 

more accurate and profound those emotions evoked by verbal instructions in the condition 

of guided imagery. The result revealed the effectiveness of guided imagery and music as 

multimodal stimuli on arousal and emotional processing for inducing personal negative 

episodes. Support for this interpretation comes from the study of Baumgartner, Esslen et 

al. (2006) which demonstrated that combined stimuli including pictures and classical 

music made the quality of emotional states the most accurate and effective for arousal and 

emotional processing, compared to each stimulus of pictures or music excerpts. Therefore, 

music noticeably enhances arousal and emotional experience through mental imagery 

evoked by verbal instructions for inducing personal negative episodic memory.  
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Strengths, Limitations, and Suggestions for Further Research 

The present study investigated the neural basis of guided imagery and music as 

showing the neural regions activated by arousal and emotional processing in mental 

imagery as responses to music and verbal instructions related to negative emotional 

episodic memory. For the arousal and emotional processing, multimodal stimuli including 

music and verbal instructions were used in this study, whereas most previous 

neuroimaging studies used visual stimuli rather than auditory stimuli, despite music 

having been considered as an emotional stimulus. According to Baumgartner, Esslen et al, 

(2006), although most emotional experiences in real life are evoked by combined stimuli 

with different modalities, most neuroimaging study of emotional processing has been 

conducted by visual stimuli, in particular by facial expressions or scenes. Thus, music as 

an emotional facilitator has not been as long and as widely studied in neuroimaging 

research. Therefore, of importance is that this study revealed neural dynamics of arousal 

and emotional processing from various kinds of sensory imagery generated by verbal 

instructions and music as auditory stimuli. Moreover, the findings support previous 

studies on the effectiveness of guided imagery and music as multimodal stimuli on 

arousal and emotional processing. As reported from previous studies, this study suggests 

that music not only evokes emotions and various kinds of sensory imagery as an auditory 

stimulus, but also noticeably enhances arousal and emotional processing through imagery 

evoked by verbal instructions. Therefore, it indicates the potential of fMRI study for 

corroborating the efficacy of guided imagery and music on arousal and emotional 

processing in the brain as a fundamental research. 

Another significance of the present study is that it is one of only a few 

neuroimaging studies to provide the neural basis of, and scientific evidences for, arousal 
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and emotional processing induced by guided imagery and music. Most previous research 

has been conducted to verify the efficacy of guided imagery and music by the paradigm of 

qualitative research, because phenomena in individual experiences cannot be accounted 

for in the same way as quantitative research can be. However, and important, visible data 

is necessary to corroborate arousal and emotional processing induced by guided imagery 

and music, and its effectiveness, as multiple stimuli. Thus, some research has been 

conducted as the paradigm of quantitative research providing data of physiological 

responses, neural regions activated by each element such as music or imagery or 

electroencephalography (EEG) data. Moreover, as developing neuroimaging techniques, 

researchers increasingly have been interested in the function of music or imagery in the 

neuropsychological view. However, there was no fMRI study for corroborating the neural 

basis of arousal and emotional processing by guided imagery and music, and 

demonstrating effectiveness. Thus, of significance is that this study tried to provide the 

neural basis of arousal and emotional processing from guided imagery and music, as well 

as to corroborate the efficacy of guided imagery and music for arousal and emotional 

processing.  

Despite these significant aspects, the present study has limitations, particularly in 

the aspect of musical stimulus. For that musical stimulus to be applied to the experimental 

paradigm, four one-minute whole-music parts were applied to each music condition for 

arousal and emotional processing. In general, one minute may be too short to induce 

emotions and imagery, although imagery processing already is in progress by verbal 

instructions. Thus, such short music inserts might make it difficult to be deeply immersed 

in imagery processing for evoking unconscious emotions. That is to say, longer interludes 

of music may be needed for participants to be fully immersed in emotional processing 
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with imagery. This is why the music programs, include more than a couple of music 

pieces allowing space and time for exploration, experience, intensification, and 

integration for the inner self to be explored. This is music psychotherapy, for example, the 

Bonny method of guided imagery and music (BMGIM).  

 Another aspect of limitation to consider in this study is one of the given three 

conditions: guided imagery and music. For this process of guided imagery and music, 

participants received only music stimulus, but it was expected that the verbal instructions 

given before music stimulus have a role in inducing various sensory types of imageries 

having successive effect on the next guided imagery and music condition. However, it 

could not entirely rule out the possibility of the effect of music itself on evoking emotions 

as well as various sensory types of imagery. Thus, there could be vagueness about 

whether it is the effectiveness of guided imagery and music or music itself, because this 

study did not provide music with verbal instructions in the condition of guided imagery 

and music. However, results from the comparison between guided imagery and music and 

music, showed that verbal instructions in the condition of guided imagery played a role as 

a successive stimulus for imagery processing to the next guided imagery and music 

condition indicating different neural activations between both of guided imagery and 

music and music.  

  Despite the significant results found in this study, further studies with various 

trials such as demonstrating neural activations with experimental paradigm for using full 

length of music, correlation between activated neural regions, different neural activations 

in specific neural regions according to kinds of stimuli, gender effect on arousal and 

emotional processing in the brain and so on are needed to increase the validity and 

reliability of the study. Particularly, further studies focusing on different neural activation 
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for the specific neural regions related to therapeutic goal of guided imagery and music 

may suggest the efficacy of guided imagery and music as a music psychotherapy method.  

      

Conclusions 

 Via neuroimaging data, the present study has demonstrated the neural basis and 

efficacy of guided imagery and music on arousal and emotional processing. Many factors 

in the condition of guided imagery and music contributed to various observed neural 

structures and functions more than did other conditions including guided imagery or 

music. In other words, in the condition of guided imagery and music, activations of neural 

regions associated with emotions as well as various sensory, memory processing and so 

forth, were observed, whereas only few activations of neural regions, or none, were 

observed in conditions of guided imagery or music. In addition, differences of the BOLD 

signal changes in neural regions associated with negative emotional processing were 

observed among three conditions. Moreover, the BOLD signal change in the condition of 

guided imagery and music was higher than in other conditions including guided imagery 

or music.  

 Therefore, results showed that when combined with another stimulus, music plays 

a more powerful role in inducing and enhancing arousal and emotional processing. Thus, 

it suggests that guided imagery and music as multimodal stimuli are effective as an 

approach in emotional work with personal episodic memories that is necessary for 

psychotherapy.  

Ultimately, this study suggested neural basis on arousal and emotional processing 

by guided imagery and music with personal emotional episodic memories for 
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understanding of the neural network including cortical and sub-cortical structures and 

functions, which will help develop music psychotherapy.  
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RESEARCH CONSENT FORM 
Study of Neural Activation on Music and Imagery: A Functional MRI Study 

 
Principal Investigator: Sang Eun Lee, co-researcher, Michele Forinash, Director of the PhD 
program in Expressive Therapies, Lesley University 

You are being asked to volunteer in this study to assist in my doctoral research on Neural 
Activation on guide imagery and music: A Functional MRI Study. The purpose of the study is to 
examine the effectiveness of guided imagery and music for evoking negative emotions related to 
personal inner issues. 

You will be initially interviewed and asked to fill in questionnaires about personal, background 
information that includes right-handedness, normal hearing ability, a history of neurological insult 
and psychiatric disorders, experiences of professional music education and imagery or hypnosis 
therapies, and personal emotional episodes in your life. For inducing negative emotions such as 
anger or fear, you will be asked to recall, re-experience, and re-enact your personal episode related 
to negative emotions before fMRI scanning. During fMRI scanning, you will be asked to listen to 
a piece of classical music in session 1 and to listen to a piece of classical music after instructions 
for guided imagery in session 2. The whole experiment will be total 45 minutes in length.  

You will be personally interacting with only me as the principal researcher. This research project 
is anticipated to be finished by approximately May 2013.  

I, ______________________________________, consent to participate in the experiment for this 
study 

I understand that: fill in below what you will be doing.  

• I am volunteering for fMRI experiment involving guided imagery and music, 
approximately 45 minutes in length. 

• My identity will be protected.  
• Personal, background information including right-handedness, normal hearing ability, a 

history of neurological insult and psychiatric disorders, experiences of professional 
music education and imagery or hypnosis therapies, and personal emotional episodes in 
your life, and your imagery and emotional experiences during fMRI will be kept 
confidential and used anonymously only, for purposes of presentation and/or publication.  

• The research data will be used only for the purpose of analyzing data, and will be kept in 
a locked computer in the investigator’s possession for possible future use.  

• Your participation in this study is voluntary; you have the right to withdraw at any point 
in the study, for any reason, and without any prejudice, and the personal, background 
information collected and records and reports written will be kept in strict confidence in 
locked file cabinet in the investigator’s possession for possible future use. However, this 
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information will not be used in any future study without my written consent.  
• The expected benefits associated with participation in this study are the opportunities to 

develop a music therapy method as providing scientific rationale for performing Bonny 
method of guided imagery and music (BMGIM), one of music psychotherapies. 

• I may choose to withdraw from the study at any time with no negative consequences. 
• At your written request, you will receive a copy of the final paper in English at the 

completion of the study.  
 
Confidentiality, Privacy and Anonymity: 

You have the right to remain anonymous. If you elect to remain anonymous, I will keep your 
records private and confidential to the extent allowed by law. I will use pseudonym identifiers 
rather than your name in on study records. Your name and other facts that might identify you will 
not appear when we present this study or publish its results.  

If you have any question about this study, you can contact my advisor, Dr. Michele Forinash 
at 1-617-349-8166 or forinash@lesley.edu; or Sang Eun Lee at 82-10-4606-2711 or 
slee20@lesley.edu with any additional questions.  

We will give you a copy of this consent form to keep. 
 
 

a) Investigator's Signature: 
 
__________ _______________________  _____________________ 
Date  Investigator's Signature   Print Name 
 

b) Subject’s Signature: 
I am 18 years of age or older. The nature and purpose of this research have been 

satisfactorily explained to me and I voluntarily agree to become a participant in the study as 
described above. I understand that I am free to discontinue participation at any time if I choose, 
and that the investigator will gladly answer any questions that arise during the course of the 
research. 
 
__________ ________________________     _____________________ 
Date  Investigator's Signature   Print Name 
 

There is a Standing Committee for Human Subjects in Research at Lesley University to 
which complaints or problems concerning any research project may, and should, be reported if 
they arise. Contact the Dean of Faculty or the Committee at Lesley University, 29 Everett Street, 
Cambridge Massachusetts, 02138, telephone: (617) 349-8517. 

mailto:forinash@lesley.edu
mailto:slee20@lesley.edu
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Healthy Volunteers Needed for a Brain Imaging Study 
Investigation of Neural Activation on Guided Imagery and Music 

: A functional MRI study 
 

 Purpose 
To examine the effectiveness of guided imagery and music on arousal and emotional processing 
related to inner issues  

 Detailed description 
Objective 
To see how different neural activations between the conditions of guided imagery and music, 
guided imagery, and music are 
 

Study population 
30 Right handed healthy adults 
 

Procedure  
Estimated duration: 40 - 50 minutes 
 
 Eligibility 
Inclusion criteria  
1. Aged over 18 years as undergraduate students in the Korean Advanced Institute of Science and 

Technology (KAIST) 
2. Right-hand dominant 
3. Have a normal neurological and psychological exam 
4. Have no metal in the body (dental fillings are OK) 
5. Have the capacity to give informed consent 

Exclusion criteria 
1. Pregnancy 
2. Any abnormal finding on neurological and psychiatric assessment 
3. Any finding that prevents undergoing an fMRI scan on the questionnaires 
4. Any history of any brain injury 
5. Presence of any neurological and psychiatric problems 
6. Presence of any medical illness 
7. Presence of claustrophobia or any other restriction for undergoing a imaging scanning 

 
 Study date: September 5 2013 

Estimate enrollment: 30 
 

 Contacts and locations 
Contact 
Dong Mi Im (042) 350 8494   dmim@kaist.ac.kr 
Sang Eun Lee (010) 4606 2711   slee20@lesley.edu 
 

Location 
N23, fMRI Lab, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701,  
Republic of Korea 
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Background Questionnaires  

Name ___________________________________________ 

Gender ____________________________   Age ____________________________ 
 

1. Have you ever experienced imagery and hypnosis therapies by professionals? 

Yes ______   No ______ 
 

2. Do you have any chronic disease? 

Yes ______   No ______ 
 

3. Do you have any history or current evidence of neurologic illness?  

Yes ______   No ______ 
 

4. Do you have any history or current evidence of psychiatric illness? 

Yes ______   No ______ 
 

5. Do you have any history or current evidence of alcohol or substance abuse? 

Yes ______   No ______ 

 

6. Do you have any history or current evidence of auditory illness? 

Yes ______   No ______ 
 

7. Do you have any history or current evidence of claustrophobia or any other restriction 
for preventing from undergoing fMRI scanning? 

Yes ______    No ______ 
 

8. Do you have any history or current use of psychotropic medication? 

Yes ______    No ______ 
 

9. Do you have any magnetically-activated implant or device such as cochlea implant? 

Yes ______    No ______ 
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EDINBURG HANDEDNESS INVENTORY 
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Edinburgh Handedness Inventory 

Your Initials:    

Please indicate with a check () your preference in using your left or right hand in the following 
tasks. 

Where the preference is so strong you would never use the other hand, unless absolutely forced to, 
put two checks ().  

If you are indifferent, put one check in each column ( | ). 

Some of the activities require both hands. In these cases, the part of the task or object for which 
hand preference is wanted is indicated in parentheses.  

     Task / Object Left Hand Right Hand 

1. Writing   

 2.  Drawing   

 3.  Throwing   

 4.  Scissors   

 5.  Toothbrush   

 6.  Knife (without fork)   

 7.  Spoon   

 8.  Broom (upper hand)   

 9.  Striking a Match (match)   

10.  Opening a Box (lid)   

Total checks: LH =  RH =  

Cumulative Total CT = LH + RH =  

Difference D = RH – LH =  

Result R = (D / CT) × 100 =  

Interpretation: 
(Left Handed: R < -40) 

(Ambidextrous: -40 ≤ R ≤ +40) 
(Right Handed: R > +40) 

 

     Adapted from Oldfield, R. C. (1971).  
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Appendix E 

STATE-TRAIT ANXIETY INVENTORY 
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State-Trait Anxiety Inventory (STAI) 

Participant’s initials                       Date of Assessment 

A number of statements which people have used to describe themselves are given below. 
Read each statement and then circle the appropriate number to the right of the statement to 
indicate how you feel right now, that is, at this moment. There is no right or wrong 
answers. Do not spend too much time on any one statement but give the answer which 
seems to describe your present feelings best. 

 Not at 
all Somewhat Moderately 

So 

Very 
much 

so 
1. I feel calm 1 2 3 4 

2. I feel secure 1 2 3 4 

3. I am tense 1 2 3 4 

4. I feel strained 1 2 3 4 

5. I feel at ease 1 2 3 4 

6. I feel upset 1 2 3 4 
7. I am presently worrying over 

possible misfortunes 
1 2 3 4 

8. I feel satisfied 1 2 3 4 

9. I feel frightened 1 2 3 4 

10. I feel comfortable 1 2 3 4 

11. I feel self-confident 1 2 3 4 

12. I feel nervous 1 2 3 4 

13. I am jittery 1 2 3 4 

14. I feel indecisive 1 2 3 4 

15. I am relaxed 1 2 3 4 

16. I feel content 1 2 3 4 

17. I am worried 1 2 3 4 

18. I feel confused 1 2 3 4 

19. I feel confused 1 2 3 4 

20. I feel pleasant 1 2 3 4 
Adapted from Spielberger et al. (1970)  
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A number of statements which people have used to describe themselves are given below. 
Read each statement and then circle the appropriate number to the right of the statement 
to indicate how you generally feel. There are no right or wrong answers. Do not spend too 
much time on any one statement but give the answer which seems to describe how you 
generally feel. 

 
Not at 

all 
Somewhat Moderately 

So 
Very 

much so 

21. I feel pleasant 1 2 3 4 

22. I feel nervous and restless 1 2 3 4 

23. I feel satisfied with myself 1 2 3 4 

24. I wish I could be as happy as 
others seem to be 1 2 3 4 

25. I feel like a failure 1 2 3 4 

26. I feel rested 1 2 3 4 

27. I am “calm, cool, and collected” 1 2 3 4 

28. I feel that difficulties are piling up 
so that I cannot overcome them 1 2 3 4 

29. I worry too much over something 
that really doesn’t matter 1 2 3 4 

30. I am happy 1 2 3 4 

31. I have disturbing thoughts 1 2 3 4 

32. I lack self-confidence 1 2 3 4 

33. I feel secure 1 2 3 4 

34. I make decisions easily 1 2 3 4 

35. I am inadequate 1 2 3 4 

36. I am content 1 2 3 4 

37. Some unimportant thought runs 
through my mind 1 2 3 4 

38. I take disappointments so keenly 
that I can’t put them out of my 
mind 

1 2 3 4 

39. I am a steady person 1 2 3 4 

40. I get in a state of tension or turmoil 
as I think over my recent concerns 
and interest 

1 2 3 4 

Adapted from Spielberger et al. (1970)  
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Appendix F 

ZUNG SELF-RATING DEPRESSION SCALE 
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Zung Self-rating Depression Scale 

Participant’s initials                       Date of Assessment 

Please read each statement and decide how much of the time the statement describes how 
you have been feeling during the past several days 

Make check circle in appropriate column. 
A little 
of the 
time 

Some of 
the time 

Good 
part of 
the time 

Most  
of the 
time 

1. I fell down-hearted and blue 1 2 3 4 

2. Morning is when I feel the best 1 2 3 4 

3. I have crying spells or feel like it 1 2 3 4 

4. I have trouble sleeping at night 1 2 3 4 

5. I eat as much as I used to 1 2 3 4 

6. I still enjoy sex 1 2 3 4 

7. I notice that I am losing weight 1 2 3 4 

8. I have trouble with constipation 1 2 3 4 

9. My heart beats faster than usual 1 2 3 4 

10. I get tired for no reason 1 2 3 4 

11. My mind is as clear as it used to be 1 2 3 4 

12. I find it easy to do the things I used to 1 2 3 4 

13. I am restless and can’t keep still 1 2 3 4 

14. I feel hopeful about the future 1 2 3 4 

15. I am more irritable than usual 1 2 3 4 

16. I find it easy to make decisions 1 2 3 4 

17. I feel that I am useful and needed 1 2 3 4 

18. My life is pretty full 1 2 3 4 

19. I fell that others would be better off  
 if I were dead 1 2 3 4 

20. I still enjoy the things I used to do 1 2 3 4 

Adapted from Zung (1965)  
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Appendix G 

THE TORONTO-ALEXITHYMIC SCALE 
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The Toronto-Alexithymia Scale (TAS-20) 

Participant’s initials                        Date of Assessment 
Using the scale provided as a guide, indicate how much you agree or disagree with each of 
the following statements by circling the corresponding number. Give only one answer for 
each statement. 

 Strongly 
Disagree 

 Moderately 
Disagree 

Neither 
Agree nor 

Disagree 

 Moderately 
Agree 

Strongly 
Agree 

1.  I am often confused about what emotion  
 I am feeling. 1 2 3 4 5 

2.  It is difficult for me to find the right words 
 for my feelings. 1 2 3 4 5 

3.  I have physical sensations that even  
doctors don’t understand. 1 2 3 4 5 

4.  I am able to describe my feelings easily. 1 2 3 4 5 
5.  I prefer to analyze problems rather than  

just describe them.  1 2 3 4 5 

6.  When I am upset, I don’t know if I am    
sad, frightened, or angry. 1 2 3 4 5 

7.  I am often puzzled by sensations in my  
body. 1 2 3 4 5 

8.  I prefer to just let things happen rather   
than to understand why they turned out that 
way. 

1 2 3 4 5 

9.  I have feelings that I can’t quite identify. 1 2 3 4 5 

10. Being in touch with emotions is essential. 1 2 3 4 5 
11. I find it hard to describe how I feel about 

people. 1 2 3 4 5 

12. People tell me to describe my feelings 
more. 1 2 3 4 5 

13. I don’t know what’s going on inside me. 1 2 3 4 5 
14. I often don’t know why I am angry. 1 2 3 4 5 
15. I prefer talking to people about their daily 

activities rather than their feelings. 1 2 3 4 5 

16. I prefer to watch “light” entertainment 
shows rather than psychological dramas. 1 2 3 4 5 

17. It is difficult for me to reveal my innermost 
feelings, even to close friends. 1 2 3 4 5 

18. I can feel close to someone, even in 
moments of silence. 1 2 3 4 5 

19. I find examination of my feelings useful in 
solving personal problems. 1 2 3 4 5 

20. Looking for hidden meaning in movies or 
plays distracts from their enjoyment. 1 2 3 4 5 

Adapted from Taylor et al. (1985) 
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Appendix H 

VERBAL INSTRUCTIONS CONTI 
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Verbal Instructions Conti 

1st Instruction (60 seconds) 

Focus on my breath.  

Inhale and exhale… Breathe deeply…and feel my body rhythm.  

Now, focus on my inner world.  

Everything that I hear in my external world is further and further from me.  

I can focus on my inner world. 

Now, I am going to recall the episode that I feel bad. 

The memory leads me to the bad emotions at that time. 

Trust what I feel.  

When music starts, I am in the memory with the emotion 

 

2nd Instruction (30 seconds) 

Negative emotions such as fear or anger… such emotions lead me to the memory. 

Feel me there. 

Trust and accept whatever happens to me.  

Music helps to be able to look at me in the memory with the bad emotions. 

 

3rd Instruction (30 seconds) 

Now, I feel the negative emotion more forcefully. 

What makes I feel it in the memory. 

Focus on my emotions and imagination. 

When music starts, my emotions in the memory is going to be clearer. 

 

4th Instruction (30 seconds) 

Now, the bad feeling in the memory is deeper and deeper. 

Look at me in the memory with the deep emotions. 

What do I do with full of negative emotions such as fear or anger. 

Music is with me. 
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Appendix I 

THE fMRI SYSTEM 
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The fMRI System (SIEMENS Verio - installed in 2012)  

 

Magnet (Oxford OR63) 

→ 3T + 70cm Open Bore, 173cm Bore Length 

→ Stray Field (0.5mT): 4.7m x 2.6m 

→ Gradient Power : 45mT/m 200mT/m/ms 

→ Trueform Magnet Design 

 

RF Coils 

→ 32 Rx Channels x 102 intergated Coil Elements  

→ 32ch Head Coil.Head/Neck/Spine/PA Matrix Coils 

→ 4ch Flex Large /Small Coils, Loop Coils 

 

Target Regions 

→ Whole Body with TimCT(Continuously Moving Table) 

→ Head, Cardiac, Spine,Abdomen,etc. 
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