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HOW DECISION MAKERS LEARN TO CHOOSE ORGANIZATIONAL  

PERFORMANCE MEASURES 

 

 

AnneMarie N. Hooge, PhD 

 

University of the Incarnate Word, 2016 

 

 

This study, framed by decision making, program theory, and performance measurement theory, 

explored the knowledge and experience that enable decision makers to identify organizational 

performance measures. It used a mixed method, exploratory sequential research design to 

discover the experience, knowledge, and skills (EKS) senior decision makers felt were important 

in learning to choose organizational performance measures. From the analyzed interviews, a 

survey was designed to measure the importance of the EKS characteristics.  

Qualitative analysis identified 55 life, work, or educational experience; knowledge; or 

skill characteristics and 23 effective measure characteristics. Regression analysis and PCA were 

used to extract 6 components. One-way ANOVA found no significant differences in these factors 

between gender groups, age groups, and process complexity levels, but found differences for 

decision-making tenure. MANOVA found no significant differences by the same dimensions. 

The limited sample size and high number of variables confounded component extraction. Further 

research with a suitable sample size is required before findings can be generalized.   
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Development of Decision Makers 

Leaders make situationally-sensitive decisions to run their businesses (Khatri & Ng, 

2000; Papenhausen, 2006; Tingling & Brydon, 2010) using evidence gathered and tested against 

their prior knowledge and experience (Franklin, 2012; Merriam, Caffarella, & Baumgartner, 

2007; Williams, 2012). How do organizational decision makers learn to identify, assess, select 

and implement the metrics that guide them in running their businesses effectively? I will explore 

theories of decision making, program theory, performance measurement, and strategy in this 

study to identify how decision makers acquire the skills and knowledge needed to choose metrics 

and to lay a foundation for the exploration of this question.  

Background 

An organizational leader’s ability to make decisions is impacted by the available 

information. Organizations may be collecting data redundantly, needlessly, or in such a way that 

the decision makers who need information are left unaware (Mendonça, Basili, Bhandari, & 

Dawson, 1998). Often, there is an abundance of data, but a lack of contextually relevant 

information for the decision maker to use for effective decision making (Kalantari, 2010; Neely, 

Gregory, & Platts, 2005) and what these decision makers consider useful is influenced by their 

experience (Baba & HakemZadeh, 2012). The ability to make decisions is an essential skill for 

managers and the way they frame a problem has a strong influence on how they approach 

problem solving (Franklin, 2013). That framing will also influence the decision maker’s ability 

to identify appropriate measures of organizational performance. 

Assessing a decision maker’s work experience is one way to explore how they learn to 

identify effective measures. Quinones, Ford, and Teachout (1995) developed a framework 

intended to guide work experience research based on two dimensions that describe work 
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experience: the measurement mode and the level of specificity. A person gains work experience 

while working in a specific field or occupation, whether paid or not. Some measures of work 

experience use job tenure, the number of times individual tasks are performed, as well as lateral 

and upward movement of employees within the organizational structure to measure job 

performance. Quinones et al. name three modes of measuring work experience: number of 

distinct tasks, the activity (number of times each task is performed), and the task type (difficulty 

or criticality of the task). The framework expresses the modes and task types in a three-by-three 

matrix (1995). 

Literature about decision making, program theory, and performance measurement calls 

out skills and knowledge found to be important, sometimes crucial in the achievement of an 

organization’s objectives. A decision maker can find guidance pointing to an overall model for 

connecting measures to the achievement of desired program outcomes in the literature 

surrounding individual decision making (Baba & HakemZadeh, 2012; Franklin, 2013; Matzler, 

Bailom, & Mooradian, 2007; Papenhausen, 2006; Steptoe-Warren, Howat, & Hume, 2011); the 

application of program theory (Brousselle & Champagne, 2011; Monroe et al., 2005; Rey, 

Brousselle & Dedobbeleer, 2012; Savaya & Waysman, 2005); and performance measurement 

(Basili & Weiss, 1984; Briand, Morasca, & Basili, 2002; Courty & Marschke, 2003; 

Franceschini, Galetto, & Turina, 2013; Hanson, McInyk, & Calantone, 2011; Kaplan & Norton, 

1996; Mendonça & Basili, 2000; Mendonça et al., 1998). 

Decision makers need to understand the purposes for measuring performance, as well as 

the pitfalls and errors in choosing, implementing, and interpreting measures in order to use them 

effectively. Halamachi (2011) writes that performance measurement is conducted in order to 

understand business activities and to control and improve them. Measures provide insight to the 
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combinations of activities and conditions that result in success and those that produce less-than-

desirable results. Measures also allow decision makers to manage costs, financial and non-

financial, and provide information to allow them to adjust their management choices accordingly 

(Halamachi, 2011).  

Leading an organization effectively in a competitive environment requires effective 

decision making, ideally influenced by organization performance measures (Baba & 

HakemZadeh, 2012). According to the Hawthorne effect, measuring drives both desirable and 

undesirable behavior in the organization. Conflicting, arbitrary, or poorly designed measures can 

drive costly undesirable impact, like rewarding bad behaviors (Buytendijk, 2007). Determining 

which organization performance measures to use in decision making can mean the difference 

between an organization’s success and failure (Baba & HakemZadeh, 2012). Even when 

measures are chosen carefully, it is important to review their relevance and effectiveness in the 

face of changing world, business, and organizational conditions and to remove measures that no 

longer speak to current objectives (Bazett, Bowde, Love, Street, & Wilson, 2005; Pun & White, 

2005).  

Hammer (2007) discusses the seven deadly sins of performance measurement: vanity, 

provincialism, narcissism, laziness, pettiness, inanity, and frivolity. These speak to issues, not of 

the measures themselves, rather to the decision maker’s mindset in choosing measures that do 

not satisfy the essential reason for measuring. Illustrating Hammer’s pettiness sin—measuring 

only a perspective or part of a larger condition or phenomenon, Behn (2003) writes of the folly 

of rewarding one behavior while hoping for another. This is echoed by Lengacher’s (2009) 

concern about another of the seven sins, frivolity—measuring for the sake of measuring, rather 
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than for the purpose of driving a particular action or decision. These examples speak to the need 

for decision makers to be aware of, understand, and guard against these measure mistakes. 

Decision makers need to understand how to approach problem solving and how to 

determine whether the measures they are considering are meaningful indicators of the problem 

and its intensity, to avoid delivering a plethora of insignificant and irrelevant measures 

(Lengacher, 2009; Sureshchandar & Leisten, 2006). One observed response to measurement is 

the tendency to ‘game the measures,’ that is, to do things that make the numbers look better, but 

are contrary to the performance intent of the measurement (Courty & Marschke, 2003; 

Lengacher, 2009; Sureshchandar & Leisten, 2006). Decision makers need to use care in choosing 

meaningful measures in order to avoid a potential organizational response to game the measures. 

Focusing on the alignment and linkage between the organization’s strategy and its 

measures is one way to facilitate selection of the right measures (Hanson et al., 2011). Neely, 

Mills, Platts, Gregory, and Richards (1994) hypothesized that “firms will attribute greatest 

importance to those performance measures which most closely match their firm’s manufacturing 

task” and found it to be true in those firms which did not compete on price (p. 142). Another 

point for the decision maker’s attention is the impact of the measurement activity and the 

outcomes, considering both expected and potential unexpected impacts (Franceschini et al., 

2013). In considering these aspects of measure selection, the decision maker increases the 

relevance of the measures for driving the organization’s strategy objectives. 

Problem Statement 

How do organizational leaders learn the skills and knowledge needed to make decisions, 

define program theory, and assess performance? When organizations do not design the programs 

to implement their strategies in a way that enables measurement of progress toward the 
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achievement of their objectives, it is difficult to evaluate their performance during and after 

implementation (Rossi, Lipsey, & Freeman, 2004). This omission makes it more difficult for the 

organization to know how well it is performing relative to its stated objectives or whether further 

investment in the implementation of the strategy is appropriate. Organizations expend significant 

effort in the implementation of new strategies and when they do not realize desired returns, 

reassessment of the strategies is appropriate (Bazett et al., 2005; Pun & White, 2005). Failing 

strategies should be abandoned or re-defined, necessitating reassessment of the chosen 

performance measures (Pun & White, 2005).  

Decision makers may discount the value of measures that are not clearly connected to the 

organization’s business objectives, while proper alignment would illuminate their usefulness 

(Humphreys & Trotman, 2011). Even careful implementation poses potential risk, as measuring 

may have unforeseen and undesirable consequences. Measuring business activity in one part of 

the organization may drive undesirable behaviors in other parts with competing objectives 

(Azevedo, Carvalho, & Cruz-Machado, 2013; Courty & Marschke, 2003; Richard, Devinney, 

Yip & Johnson, 2009). The decision maker needs to use foresight to consider the likely response 

of the organization to the chosen measures (Courty & Marschke, 2003). 

Purpose of the Study 

While the literature is verbose about the importance and impact of well-identified, 

soundly designed, and effectively deployed organizational performance measurement, it is less 

so regarding the development of decision makers in the knowledge and skills necessary to 

identify, design, and deploy such measures. Given the focal areas identified in the decision 

making, program theory, and performance measurement literature, the purpose of this study is to 

explore and understand the types of knowledge and experience that enable decision makers to 
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identify and select organizational performance measures, promoting the benefits and avoiding 

the risks described in the literature. 

Research Questions 

In the first phase of this study, I interviewed decision makers who are assigned as process 

owners in a Fortune 200 Financial Services company to understand the experiences, activities, 

and knowledge that contributed to their ability to select effective organizational performance 

measures. The interview protocol (Appendix B) includes questions for these decision makers 

about the types of life, work, and educational experiences they feel prepared them to select 

effective measures of organizational performance—as well as inviting them to share their 

perspective of what constitutes an effective measure. For the purpose of this work, the initial 

definition of an effective measure is one that enables the decision maker to understand, control, 

and improve business activities; that provide insight into the activities and combinations of 

activities that are beneficial or detrimental; and that allows the decision maker to adjust 

management choices and manage cost (Halamachi, 2011).  

I asked decision makers to focus on the experiences that enable them, in their own 

estimation, to choose effective, even if not optimal, measures. It is difficult to choose 

organizational measures because determining their value is a context dependent, subjective 

assessment--unlike time or magnitude (Mandić & Basili, 2010). Additionally, there are some 

aspects of business that may be deemed non-quantifiable, such as innovation and creativity. Care 

must be taken to distinguish aspects that are unmeasurable from those that are difficult to 

measure (Warren, 2000). Assessment of the goodness of selected measures includes 

consideration of generating an outcome that is good for customers, shareholders, stakeholders, 

and employees, as well as for the decision maker. In the second phase, I explored the degree to 
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which the experiences discovered in the interviews pervaded in the process engineering 

population in the company. 

To explore the question of the decision makers’ experiences, I used a basic qualitative 

interpretive approach, including interviews of successful decision makers in a Fortune 200 

Financial Services company (referred to hereafter as ‘the company’). I made a purposeful 

selection of interview participants based on recommendations from a company officer 

responsible for enterprise data and analytics functions, which is predominantly responsible for 

performance measurement in the company. For the second phase I designed a simple, cross-

sectional survey to explore the presence of these experiences among the population of process 

owners in the company, leveraging the common themes in the life, work, and educational 

experiences discovered through qualitative analysis of the interview encounters.  

The study’s research questions are, (1) what are the life, work, and educational 

experiences that contributed to the ability of the organization’s decision makers to choose 

effective organizational performance measures? (2) What constructs represent the important 

content of experience, knowledge and skill, and what constructs encapsulate the concept of the 

effective measures? (3) How are those constructs impacted by various dimensions within the 

respondent community. 

Foundational Theory 

To provide a framework within which to explore this question, I will look at theory 

involving individual decision making, program theory, and performance measurement. The 

purpose of generating and using organizational performance measures is to provide information 

with which to make decisions about the organization in order to achieve organizational 

objectives. The organizational objectives might be articulated using program theory and a way to 
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measure achievement of those objectives might be defined in a performance measurement 

framework. Decisions about how to manage the organization might then be executed in 

accordance with decision making paradigms. Each of these will be discussed in order to 

understand the knowledge and skills required to engaged in the practices,  

Decision making. Cabantous and Gond (2011) found that there are three common 

features that make rational decision making elusive. People assume rationality is possible; that 

they can know all information, identify all options, and identify all possible outcomes. Decision 

makers may not always have known objectives that can be articulated clearly enough to enable 

decision making to occur (Basili & Weiss, 1984; Choong, 2013; Frisk, Lindgren, & Mathiassen, 

2014) and as a result, rely on suboptimal information with constraints imposed, real or artificial, 

that limit the available options. 

Although decision makers deal with both tangible data and intangibles such as sentiment, 

the intangibles, known with less certainty, fall into bounded rationality (Frisk et al., 2014; 

Kalantari, 2010). Because all the options and consequences cannot be known, bounded 

rationality results in satisficing (Kalantari, 2010). In addition, the system of beliefs held by the 

decision maker may limit her field of vision and affect selective perception (Robbins & Judge, 

2011). Sometimes rationality and bounded rationality (data-driven decision making) is not 

appropriate. Intuition has been demonstrated to be more effective when making decisions on 

poorly structured problems or problems with a high degree of uncertainty or lack of information 

(Tingling & Brydon, 2010).  

Decision making processes are executed 1) to make a decision, 2) to inform a decision, or 

3) to support a decision that has already been made (Baba & HakemZadeh, 2012; Tingling & 

Brydon, 2010). For non-routine, strategic-level decision processes, characterized by vagueness, 
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intuition may be a more effective basis of decision making (Papenhausen, 2006; Williams, 

2012). Intuition is formed through the decision maker’s experiences, reflection, and 

internalization of those experiences (Khatri & Ng, 2000; Matzler et al., 2007; Robbins & Judge, 

2011; Weaver, 2014; Williams, 2012), whereas rational thinking tends to confirm established 

patterns (Weaver, 2014). 

Competency is defined as the “skill that an individual and thus the organization possesses 

that enables it to perform activities” (Steptoe-Warren et al., 2011, p. 241), suggesting that 

decision makers require certain competencies to make good decisions. Framing is one of the 

competencies required of a decision maker. The way a decision maker frames a problem has a 

significant impact on the solution, so a decision maker must have the ability to frame a decision 

objective in a way that clearly articulates the need (Franklin, 2013; Robbins & Judge, 2011). 

Decision makers typically have richer experiences and larger amounts of relevant knowledge not 

commonly available to less experienced people or to those lower in the organization (Khatri & 

Ng, 2000; Papenhausen, 2006; Simon, Kumar, Schoeman, Moffat, & Power, 2011; Weaver, 

2014) and they may also have more of this relevant knowledge in memory and related in more 

complex ways, allowing them to make connections not visible to others (Franklin, 2013; Steptoe-

Warren et al., 2011). This rich, interconnected knowledge is a strong source of competency in 

the decision maker.  

Decision makers collaborate to get the information they lack, to validate their own 

knowledge, to broaden their perspective of alternatives, to gain commitment, and to identify 

shortcomings (Schwarber, 2005; Steptoe-Warren et al., 2011). Communication of the measures, 

that is, quantified assessments of some important characteristic, and the relationships between 

the measures and the organizational objectives has been shown to be important (Humphreys & 
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Trotman, 2011; Kaplan & Norton, 1996; Kasperskaya & Tayles, 2013; Morard, Stancu, & 

Christophe, 2012; Olsson & Runeson, 2001; Theriou, Demitriades, & Chatzoglou, 2004; 

Wongrassamee, Gardiner, & Simmons, 2003; Wu, 2005). One way of effectively communicating 

the complex relationships between measures and objectives is using metaphors (Weaver, 2015; 

Zaltman, 1996).  

Program theory. Program theory explicitly describes the assumptions about resources 

and activities and how these are expected to lead to intended outcomes (McLaughlin & Jordan, 

2010; Rogers et al., 2000). By communicating program theory precisely in a logic model, 

program managers can identify and align the capabilities and expected outcomes of a program 

(Basili & Weiss, 1984; Monroe et al., 2005; Rogers, Petrosino, Huebner, & Hasci, 2000; Rossi, 

Lipsey, & Freeman, 2004). By articulating what they seek to accomplish, they can identify 

common components and simplify objectives—learning when to simplify and when to 

complicate (Rey et al., 2012; Rogers et al., 2000). Removing undesirable complexity enables 

them to measure more effectively and determine the degree to which they have achieved their 

objectives. Because program theory is organized as causal chains, the interdependencies among 

measures would also be visible (Rogers et al., 2000).  

A logic model is an illustration of program theory, showing how a program works in a 

given environment and under stated assumptions (McLaughlin & Jordan, 2010; Taylor-Powell & 

Henert, 2008). The program logic is about the connections among the components in the 

program's logic model. Those components include resources, activities, and outcomes/goals or 

objectives (Brousselle & Champagne, 2011; McLaughlin & Jordan, 2010; Rey et al., 2012; 

Rogers et al., 2000). The ability to design or assess the logic model influences the decision 
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maker’s ability to align measures to the program objectives (Savaya & Waysman, 2005; Steptoe-

Warren et al., 2011; Van der Stede, Chow, & Lin, 2006). 

There are some challenges for developing program theory. Practitioners cannot always 

say why the components of the program theory work or not. Their ability to see and comprehend 

cause and effect in the program may be limited and they may not have the knowledge or skill to 

develop appropriate measures to assess their outcomes (Monroe et al., 2005). They may not have 

the time or the tools necessary to collect data; develop analytical models; and deliver clear, 

actionable information for decision making (Rogers et al., 2000). 

Performance measurement. There are three general classes of criteria to assess 

candidate measures: acceptability, actionability, and usability (Hedge & Teachout, 2000). Bhatti, 

Abdullah, and Gencel (2009) identified seven measures selection criteria: feasibility, availability 

of personnel, availability of tools, disruptiveness of data collection, the personal preferences of 

the decision makers, and the ease of interpretation and presentation. These were grouped in five 

factors: 1) collection time, 2) cost, 3) value, 4) type, and 5) repetition (Bhatti, Abdullah, & 

Gencel, 2009). Gencel, Petersen, Mughal, and Iqbal (2013) call out two criteria for selecting 

metrics: the cost of producing the measure and the priority of achieving the goal. These metrics 

can then be selected and organized into a measurement framework. 

A measurement framework is a set of related metrics, data collection mechanisms, and 

data used to support a business (Mendonça, Basili, Bhandari, & Dawson, 1998). The desired 

qualities of a measurement framework are soundness, completeness, leanness, and consistency 

(Mendonça & Basili, 2000). An example of a measurement framework, the balanced scorecard 

(BSC), was developed by Kaplan and Norton in 1992 to provide new perspectives (customer, the 

business processes, and learning and growth) to address organizational capabilities and 
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intangible assets (Kaplan & Norton, 1996). The term balanced refers to the balance in 

consideration given to long- and short-term objectives, financial and nonfinancial measures, 

leading and lagging indicators, and external and internal perspectives (Deem, Barnes, Segal, & 

Preziosi, 2010). 

In its original form the BSC did not provide review, update, and assurance of continued 

relevance of each measure. Decision makers assume causality, when it may not exist 

(Akkermans & van Oorschot, 2005), however, causality is assumed in the BSC (Kaplan & 

Norton, 1996). The dynamics of the real world have a direct impact on the metrics we choose to 

measure performance within our organization (Bazett et al., 2005), whether in the BSC or other 

measurement frameworks. One benefit of the effective use of a measurement framework is to 

facilitate organizational learning. Organizational learning, including learning that may enable 

decision makers to identify, assess, and select the right organizational performance measures, 

occurs during BSC development (Kaplan & Norton, 1996; Kasperskaya & Tayles, 2013). Kaplan 

and Norton (1996) stresses the importance of the feedback loop. This feedback enables 

organizational learning and strategic learning (Kaplan & Norton, 1996; Senge, 1990; 

Wongrassamee et al., 2003; Wu, 2005). 

Organizations may fail to realize metric return on investment (ROI) by having too many 

measures or relying on too few, or continuing to rely on historical financial data rather the BSC 

(Deem et al., 2010). In addition, organizational culture plays a significant role in the 

effectiveness of adopting and using the BSC effectively, perhaps because understanding the 

insight delivered by a performance measurement framework is difficult (Deem et al., 2010). 

Schalken and van Vliet (2007) suggest the use of an iterative qualitative/quantitative cycle to 

assess and explain the usefulness of the measures. Bhatti et al. (2009) found that expert judgment 
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is required to identify the right metrics, to avoid the temptation to use too many metrics, or to 

rely heavily on too few. Lack of this expert judgment in organizations is one of the problems that 

cause performance measurement to give poor return for the investment.  

Münch, Fagerhold, Kettunen, Pagels, and Partanen (2013) discuss the need to identify 

and link organizational objectives and strategies across an entire organization. Kaplan and 

Norton (1996) describe a strategic management system assuming that we have the explicit 

linkages between measures and objectives. The finding of the common measures bias related to 

the effectiveness of the balanced scorecard demonstrates the importance of explicit linkages 

between measures and strategy. Incomplete strategy-measure linkage (or failure to deliver 

information about the strategy) may lead to common measures bias, resulting in diminished 

decision-making quality (Humphreys & Trotman, 2011). When the strategy is not communicated 

clearly and effectively to the organization the scorecard itself is not as effective as it might be 

otherwise (Kaplan & Norton, 1996). 

For another performance measurement framework, the goal question metric (GQM) 

approach, one difficulty is that decision makers may not know the specific goals or objectives 

required by the approach (Boyd, 2005; Markovic & Kowalkiewicz, 2008). When the objectives 

are known, the GQM is a model that provides a clear line of sight between the goals and 

measures in a technical environment. Two types of measures that can be articulated using the 

GQM are process measures and outcome measures. These measures might address tangible 

things or intangible characteristics, which may be difficult to identify and quantify. It is in the 

intersection of the concepts of performance measurement systems that one begins to see the end-

to-end connection between the business objectives in the key performance measures of the 

balanced scored card and in the data necessary to derive the measures in the GQM model. One of 
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the strengths of GQM is that it seeks to identify what the decision maker needs to know—not 

what measure to use, but what a measure should enable the decision maker to understand (Boyd, 

2005).  

Significance of the Study 

A possible application of this research is in the formation of a development program—

activities, work assignments, and educational experiences—to establish and hone decision 

makers’ skills in identification, selection, and long-term management of organizational 

performance measures (Matzler et al., 2007; Schwarber, 2005; Weaver, 2014; Williams, 2012). 

This curriculum could also be used in leadership and management mentoring programs, enabling 

emerging leaders to learn to assess performance in a focused, efficient approach. 

This study has potential to produce learning that may be used to direct the development 

of mentoring and training materials to help emerging decision makers and other process 

engineering practitioners develop. They may be aided in understanding the life, work, and 

educational experiences that are likely to facilitate their development in the identification, 

assessment, selection, deployment, and interpretation of organizational performance measures. 

Beyond the objectives of the study, the opportunity for the interview participants to reflect on the 

types of experiences that formed their abilities may be of personal value. It may be that this 

cognition, thinking about how they think (Merriam et al., 2007), may provide immediate benefit 

to their day-to-day decision making. 

Role of the Researcher 

I have participated in the identification and definition of measures in various data 

implementation projects for over 30 years, most often in a data technologist’s role and more 

recently in a business information owner’s role. In various roles in data projects, I have provided 
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information about the meaning and derivation of selected organizational performance measures. I 

conducted interviews and analyzed the results, seeking to understand the participants’ 

experiences, that is, how they learned to identify and select effective process measures. Then, I 

designed, piloted, and administered a survey and provided descriptive statistics for the responses 

to discover the occurrence of the discovered experiences across the population. In addition, I 

conducted a confirmatory factor analysis of the survey results. 

In formulating this research approach, I made the following assumptions: (1) that the 

participants have the knowledge and heuristics, possibly tacit, for identifying and choosing the 

measures for their processes, (2) that, through the interview process, they would be willing to 

articulate those, and (3) that the information to be obtained from the participants would be 

sufficient to answer the primary research question. The interview participants are decision 

makers and leaders. They will be referred to by all three terms throughout this study. The survey 

respondents will be referred to as respondents, but not as participants for clarity. The interview 

process will allow the participants to step back from their leadership and management activities 

to consciously consider their decision processes (Merriam et al., 2007), providing them with 

opportunity for reflection and reflexivity. With this motivation and interest in mind, the 

following literature review is presented to provide a framework of the knowledge and skill 

required in selecting performance measures for decision making and performance management.  
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Literature Review 

This literature review will focus on research that shows the importance of decision 

making and measuring organizational performance in achieving leadership objectives, in leading 

and managing the organization’s people, and in leading change in organizations based on the 

insight generated from the things the organization chooses to measure. Literature was selected 

based on searches of several databases, including ABI Complete, EBSCO, ERIC, and ProQuest. 

The search terms were program theory, logic model, performance measure/metric/measurement, 

individual decision making, rational decision making, intuition, bounded theory, goal question 

metric (GQM), GQM+Strategies, metaphor, and strategic business objective. Subsequent 

searches looked for allegory and metaphor. Although the focus was on articles from the most 

recent decade, older foundational articles were also included. 

The organization of this literature review begins with an introduction of each of the 

building blocks to choosing performance measures. These primary concepts are individual 

decision making, program theory, and performance measurement. This approach was designed to 

address the purpose of the study, which is to understand experiences the organizational decision 

makers considered important in shaping their skill in identifying and selecting organizational 

performance measures. In the literature review, I built a foundation for the knowledge, skill, and 

insight decision makers require to identify and implement effective organizational performance 

measures (Matzler et al., 2007).  

Individual Decision Making 

Leaders and managers in organizations make decisions in order to run their businesses. 

These decisions may take on different natures, depending on the situation at hand (Khatri & Ng, 

2000; Papenhausen, 2006; Tingling & Brydon, 2010). The organization may go through a 
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decision making process to make, inform, or support a decision. To inform, evidence is gathered 

and tested against the prior knowledge and experience of the decision maker (Franklin, 2012; 

Merriam et al., 2007; Williams, 2012). Algorithmic approaches, generally based on data 

(evidence), may be used to make decisions. These approaches are most useful for highly 

structured problems (Khatri & Ng, 2000). 

Rationality. Rational decision making requires the decision maker to know all relevant 

information on the situation or problem, have the ability to identify all possible alternatives, and 

to understand all the possible consequences of each alternatives. Cabantous and Gond (2011) 

found that there are three common features that make rationality elusive. People often assume 

that rationality is possible, that is, that one can know all the information, conceive of all the 

possible options, and know all the possible outcomes of those choices. There is a misconception 

that the various schools of thought on decision making are in opposition; often they are 

tangential or complementary. The romantic ideals of decision making sometimes get in the way 

of the practice of decision making in reality in organizations (Cabantous & Gond, 2011). Other 

misconceptions interfere with this ideal. Decision makers do not always have known objectives 

that can be articulated clearly enough to enable decision making to occur (Basili & Weiss, 1984; 

Choong, 2013; Frisk et al., 2014). They rely on suboptimal information with constraints 

imposed, real or artificial, that limit the available options. 

By gathering different perspectives and involving others in the decision process, they can 

mitigate the lack of information, lack of options, and limited visibility into the likely 

consequences (Frisk et al., 2014). Even outside rational decision making, a decision maker can 

be deliberate and disciplined by collecting relevant information, generating alternatives, 

examining consequences, and choosing optimal alternatives (Kalantari, 2010). Schwarber (2005) 
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also includes identification of the risks and mitigation as part of the rational decision making 

process. 

Bounded rationality. Frisk, Lindgren, and Mathiassen (2014) seek to understand how 

information technology managers can evaluate alternatives in their space by looking at both 

tangible data and intangibles such as sentiment. They describe decision making as a “process by 

which conflicts are resolved among individuals with competing interests” (p. 444). These 

intangibles fall into bounded rationality (Kalantari, 2010). Because all the options and 

consequences cannot be known, bounded rationality results in satisficing (that is, making the best 

decision one can with the available information). When required to satisfice, a decision maker 

must either adjust his objectives or his alternatives (Kalantari, 2010). The knowledge and skill of 

a decision maker is critical in determining when and how to make such adjustments. 

Another factor that influences bounded reality decision making is the system of beliefs 

held by the decision maker. These values may limit the decision maker’s field of vision and 

affect selective perception (Robbins & Judge, 2011), influencing his interpretation of data 

(evidence) and impacting his choices. In this case, it may not be the availability of information, 

options, or knowledge of consequences, but the decision maker’s ability to perceive them 

through the lenses of his values (Steptoe-Warren et al., 2011). Awareness of his system of belief 

is essential to his perception. 

Intuition and data-driven decision making. Intuition has been demonstrated to be more 

effective when making decisions on poorly structured problems or problems with a high degree 

of uncertainty or lack of information (Tingling & Brydon, 2010). There are some instances 

where the decision making process is executed not to make the decision, but to support a 

decision that has already been made. In this supporting situation, the purpose of going through 
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the process may be to use evidence to lend legitimacy to a decision that has already been made 

(Baba & HakemZadeh, 2012; Tingling & Brydon, 2010). For routine decisions, data and 

evidence are effective (Franklin, 2013; Papenhausen, 2006); however, for non-routine, strategic-

level decision processes, characterized by “novelty, complexity, and open-endedness…and only 

a vague idea of what that solution might be” (Papenhausen, 2006, p. 158; Williams, 2012), 

intuition may be a more effective basis of decision making. 

The use of the term irrational decision making, that is, intuition, does not refer to illogic 

or lack of sanity. Rather, it refers to a decision made without all relevant data and based on 

judgment and personal knowledge/experience, sub-consciously, rather than on looking at data or 

following the rational decision process. Non-rational is not the same as irrational (Kalantari, 

2010). The use of intuition is important when exhaustive information is not available or when 

there is a “need for quick decisions, … to cope with demands created by complex market forces, 

and [provide] the assumed benefits of applying deeply held knowledge” (Weaver, 2014, p. 113). 

Rational thinking leverages established patterns, whereas experience and intuition breed 

creativity (Weaver, 2014). Matzler, Bailom, and Mooradian (2007) define intuition as “a highly 

complex and highly developed form of reasoning that is based on years of experience and 

learning, and on facts, patterns, concepts, procedures, and abstractions stored in one’s head” 

(p. 14). Robbins and Judge (2011) define intuition as “an unconscious process created from 

distilled experience” (p. 178), while Williams (2012) defines it as an “inductive skill, seeing the 

big picture, and looking at the whole problem rather than its discrete parts” (pp. 48-49). In highly 

volatile, complex, unstable situations, intuition synthesis is useful. In stable or mildly unstable 

situations, caution (in using intuition) should be used—implying data-driven decisions tend to be 

a better choice (Khatri & Ng, 2000). The common theme in these various definitions is that 
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intuition is formed through the decision maker’s experiences, reflection and internalization of 

those experiences such that they become a tacit part of the decision maker’s thought processes. 

Decision models. A decision model is a structured approach to follow when making a 

decision. One example is the rational decision-making model (Robbins & Judge, 2011). It guides 

a decision maker to articulate the problem; identify alternatives, specifying measurement criteria 

for each, and evaluate the likelihood of each alternative happening; compare alternatives and 

select the one with the highest expected value; and implement it (Cabantous & Gond, 2011; 

Franklin, 2013). The rational decision-making process is assumed to be sequential and non-

iterative, but in reality iterative execution of the various steps may be required as new 

information is made available. Rational decision making assumes all required information is 

available at the point when each step is executed and that the decision maker understands clearly 

the consequences stemming from each step in the process and from the alternatives being 

considered. It also assumes the decision maker has a clear, well-articulated, well-understood 

objective for the decision being made. Any of these assumptions are likely to be false and 

undermine the decision process (Franklin, 2013). Franklin proposes the model as a five-pointed 

decision star, which allows each point in the process to be revisited iteratively, as needed 

(Franklin, 2013). The ability to revisit the steps in the process can be used to mitigate the 

weaknesses in the assumptions in the traditional rational decision making process. 

Skills and competencies of the decision maker. Competency is defined as the “skill that 

an individual and thus the organization possesses that enables it to perform activities” (Steptoe-

Warren, Howat, & Hume, 2011, p. 241), suggesting that decision makers require certain 

competencies to make good decisions. The authors identify the following core competencies for 

strategic thinking and decision making: technical, business, knowledge management, leadership, 
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social, and intrapersonal competencies. The decision maker may exercise these competencies 

within a frame. 

A frame is a way of understanding that guides reasoning and enables one to use a simpler 

information model for problem solving in complex situations (Franklin, 2013). The way a 

decision maker frames a problem has a significant impact on the solution, so a decision maker 

must have the ability to frame a decision objective, either for himself or a team, in a way that 

clearly articulates the need. How individuals frame decision situations will reflect their mental 

models and reflect the ways they find most effective to understanding the environment (Robbins 

& Judge, 2011).  

Decision makers are typically organizational leaders who have richer experiences and 

amounts of relevant knowledge not commonly available to less experienced people—or those 

lower in the organization (Khatri & Ng, 2000; Papenhausen, 2006; Simon, Kumar, Schoeman, 

Moffat, & Power, 2011; Weaver, 2014). These decisions makers may also have more of this 

relevant knowledge in memory and related in more complex ways, allowing them to make 

connections not visible to others (Franklin, 2013; Steptoe-Warren et al., 2011). This rich, 

interconnected knowledge is a strong source of competency in the decision maker. A key 

component of strategic thinking seems related to this rich, complex knowledge base. Strategic 

thinking requires “absorptive capacity or the ability to recognize relevant new information and 

patterns in order to synthesize that information toward useful results” (Weaver, 2014, p. 112). 

Shared experiences are also a source of building rich, interconnected memories and knowledge. 

The types of shared experiences common among those who share generational demographics 

also influences strategic decisions (Papenhausen, 2006). 
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Papenhausen (2006) also discusses personality and traits as influencing a decision 

maker’s processes. Another trait these decision makers often display is that of being boundary 

spanners. Steptoe-Warren et al. (2011) define the boundary spanner as one who "perform[s] roles 

involving management, suppliers, and customers [with] access to relevant external information 

that may aid decision making" (p. 240). 

Decision makers need to collaborate to get the information they lack, to validate their 

own knowledge, to broaden their perspective of alternatives, to gain commitment, and to identify 

shortcomings (Schwarber, 2005). Collaboration also has the benefit of being a means of training 

future decision makers. Emerging leaders learn these skills and others to grow into strategic 

thinkers. Steptoe-Warren et al. (2011) describe the strategic thinkers and strategic decision 

makers as the “people at the top of the organization who have overall responsibility for 

managing the organization and making decisions as to the strategic direction of the organization” 

(p. 238). They describe this type of thinking as novel and flexible in a way that allows them to 

deal with ambiguity. Weaver (2014) describes strategic thinking as a skill that develops over 

time by experiencing it, by doing it; rather than being a skill one can learn by hearing about it. 

This relates to the generational perspective offered by Papenhausen (2006).  

Communicating decisions. Communication of the measures and the relationships 

between the measures and the organizational objectives has been shown to be important 

(Humphreys & Trotman, 2011; Kaplan & Norton, 1996; Kasperskaya & Tayles, 2013; Morard et 

al., 2012; Olsson & Runeson, 2001; Theriou et al., 2004; Wongrassamee et al., 2003; Wu, 2005). 

One way of effectively communicating this complexity is using metaphors. In business, 

metaphors are often used to effectively communicate complex concepts, enabling leaders to gain 

insight from analysis of measures for decision making (Weaver, 2015). 
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Zaltman (1996) developed a technique for eliciting the metaphors latent in an 

organization. A metaphor is a representation of one thing, generally a complex concept, in terms 

of another simpler concept. Like models, metaphors hide complexity that may be unnecessary 

when seeking to understand and make decisions. They are frequently expressed visually rather 

than verbally and it is important to understand their implied meanings (Zaltman, 1996). This 

study reports on the experiences of the interview participants showing the impact of this 

communication skill on choosing effective measures. 

Program Theory 

Program theory provides the next building block: the logic model. By articulating 

program theory precisely in a logic model, a program manager can identify the capabilities and 

expected outcomes of a program (Rossi et al., 2004). This makes outcome information available 

to build the goals in the goal question metric (GQM) paradigm (described below) and align the 

goals to the outcomes (objectives) in the program theory (Basili & Weiss, 1984). Although the 

words theory and logic are generally used in their essential forms, the terms have interesting 

connotations in the discussion of program theory and program logic (Monroe et al., 2005). They 

define them as, “theory refers to the practitioners’ knowledge and intuition of what works,” 

while “logic refers to the logical connections among the program's [components]” (p. 61, 

emphasis theirs). 

Program theory has been called by different names over the course of a discussion of 

program evaluation that started in the early 1960s. Terms like outcomes hierarchies, theory-of-

action, theory-based evaluation, and program logic are also used in the literature (Rogers, 

Petrosino, Huebner, & Hacsi, 2000). Although the terms are different, the concepts are not 

notably distinct and usage tends to be based on the communities in which the discussions occur. 
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Benefits. One promise of program theory is to enable understanding of whether programs 

do or do not work. A program theory does not explain why a program works or does not, but will 

contribute to the ability of organizational leaders to clearly state planned actions and intended 

outcomes. In this way, they articulate what they seek to accomplish and can measure more 

effectively to determine the degree to which they have achieved it (Rogers et al., 2000). The 

ability to attribute certain outcomes to the program in a causal relationship is another promise. 

Drawing out the program theory allows the organization to articulate what is being done, identify 

and perhaps quantify the expected outcomes, and establish measurement that will demonstrate 

the degree to which the outcomes are achieved. Because the program theory is organized as 

causal chains, the interdependencies among measures would also be visible (Rogers et al., 2000). 

The program theory describes what is delivered by the program, who is impacted, and the 

desired or actual outcomes (Brousselle & Champagne, 2011). It explicitly describes the 

assumptions about resources and activities and how these are expected to lead to intended 

outcomes (McLaughlin & Jordan, 2010; Rogers et al., 2000) and allows the decision maker to 

clearly identify the driving relationships in the program. One benefit of articulating program 

theory centers on the idea of complexity. Another benefit of articulating an organization’s 

program theory is that the staff are able to construct shared knowledge about the program and to 

make the tacit explicit. This may enable them to identify the common components of their work 

and simplify them through common understanding (Rogers et al., 2000).  

Skill and experience come into play when a decision maker is faced with a need to either 

simplify or drive to more complexity. Knowing when to choose either option is described as an 

art (Rey et al., 2012). This illustrates the importance of understanding the program intent, 
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considering complexity, and simplifying or digging for more details to clearly articulate the 

program. 

Rey et al. (2012) cite another seminal researcher in their discussion of complexity. 

According to Patton, “in [the] face of complexity, the first task is to identify clear, specific and 

measurable goals … Everything seems complex until you do a logic model” (Patton, 2011, p. 6, 

as cited by Rey et al., 2012, p. 81). This highlights the importance of learning to draw logic 

models with a keen understanding of the level of precision required for the intended purpose. 

Rey et al. (2012) describe the benefits of doing so as a direct benefit to stakeholders, enabling 

explicit understanding of their actions and intent, and allowing greater visibility into the 

strengths and weaknesses of the program. Identifying the program components that are under the 

stakeholder’s control and those that are not is another important benefit to the organization. A 

final benefit is that, by explicitly identifying the actions and the interactions, the organization has 

an opportunity to refine and simplify its processes. 

Creation of program theory. Articulating the theory and challenging assumptions also 

enables the modeler to clarify the connections among the components (Monroe et al., 2005). 

Acquiring information from the program’s practitioners allows the modeler to probe for both 

explicit and implicit objectives, ensuring that the theory captures all of what they want to 

accomplish (Brousselle & Champagne, 2011; Rey et al., 2012; Rossi et al., 2004). When 

evaluators create or articulate the theory, it is often necessary for them to unpack the information 

the practitioners provide and to articulate and challenge the assumptions inherent in what they 

find. Analyzing actual practice against existing program theory allows evaluators and 

practitioners to highlight the ways theory and practice differ and to make corrections. 
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Whether capturing information during the development of a program or documenting a 

program already in place, there are key things the modeler needs to do and essential questions to 

ask (Monroe et al., 2005). These include identifying the essential goals; articulating the inputs, 

actions, and desired outcomes; and explicating the connections. The actions might be considered 

its organizational capabilities. These are “a firm's capacity to deploy resources, usually in 

combination, using organizational processes…that are firm-specific and are developed over 

time” (Warren, 2000, p. 52). They describe what the organization is doing (Brousselle & 

Champagne, 2011) and why.  

How is the program expected to achieve that objective (Rey et al., 2012)? Why does the 

organization believe that the inputs and actions are likely to enable them to achieve their 

objectives? Theriou et al. (2004) stress the importance of the linkage between the strategy and 

the measures. A strategy map, associating the actions required to deliver a defined measure, is 

used to visualize the linkages between the strategy and the measures (Wongrassamee et al., 

2013), providing managers with a clear understanding of the relationships between strategy and 

the measures being generated in the organization. This linkage is an important factor in effective 

use of the measures.  

How will they monitor and measure the health of the program (Savaya & Waysman, 

2005)? There is ample opportunity for measurement of the connections among the various 

inputs, actions, and outcomes (Monroe et al., 2005). Discussions below of the balanced scorecard 

(BSC) and the relationships drawn between strategy and the performance measurement system 

used in an organization address this question. 

Logic models. McLaughlin and Jordan (2010) describe the logic model as a tool that 

acknowledges the assumptions and environment in which a program operates and describes how 
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the program will work within that context. Taylor-Powell and Henert describe the logic model as 

a “graphic representation of a program showing the intended relationships between investments 

and results” (2008, p. 4). Under either definition, a logic model documenting the program theory 

can be used as part of the development of a program, to implement a program, or to provide 

after-the-fact understanding of what is being done. It is common to document the logic model in 

preparation for a program evaluation activity (Rogers et al., 2000; Rossi et al., 2004). Regardless, 

the logic model should be acquired or documented as a first step in program evaluation activities.  

The model might be created by the organization’s practitioners or by a professional 

program evaluator. Information informing the creation of the logic model may be drawn from 

literature, from interviews with key informants in the organization, from the causal mechanism 

(perhaps from reverse engineering a system used to deliver the program), from program 

documentation, and from the modeler’s observations of program activities (Rogers et al., 2000). 

The program logic is about the connections among the components in the program’s logic 

model. Those components are inputs (also called resources), activities (associated specifically 

with outputs), and outcomes (also called goals or objectives; Brousselle & Champagne, 2011; 

Rey et al., 2012; Rogers et al., 2000). Resources may be human or material: financial means, 

equipment, and skilled personnel, including alliances or partnerships with other organizations, 

for example (McLaughlin & Jordan, 2010).  

Activities, perhaps expressed as organizational capabilities (Warren, 2000), are the things 

the organization does that produce value or impact (the outputs). Rey et al. (2012) included a 

table in their case study to show influencing factors, both external and internal. Of the internal 

factors, they identified organizational factors and other factors that have particular impact, which 

might represent risk or opportunity, on the interventions (activities) being defined. McLaughlin 
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and Jordan (2010) name these types of factors ‘mediating factors;’ they influence the production 

of the outputs and may emerge over time. The modeler might identify these as risks and 

determine appropriate mitigation strategies to deal with them, should they occur. Understanding 

the components of a logic model represents key knowledge for a decision maker. The ability to 

design or assess the logic model influences the decision maker’s ability to align measures to the 

program objectives (Savaya & Waysman, 2005; Steptoe-Warren et al., 2011; Van der Stede, 

Chow, & Lin, 2006). 

The outputs themselves are the product or service provided by the program, whether the 

recipient is internal or an ultimate customer of the program. From these outputs, it is expected 

that the desired outcomes will result (Brousselle & Champagne, 2011; Monroe et al., 2005; Rey 

et al., 2012). The outcomes are the desired objectives of the program. They might be short-, 

intermediate-, or long-term and may occur in close proximity in time to the delivery of the 

program or be a delayed outcome (McLaughlin & Jordan, 2010; Rossi et al., 2004; Taylor-

Powell & Henert, 2008).  

The intended outcomes may ‘fan in,’ where more than one short-term outcome may 

culminate in one mid-term; and multiple mid-term outcomes may culminate in one long-term 

outcome (Rogers et al., 2000). Outcomes may be such things as gaining awareness or 

knowledge, acquisition of a skill or ability to do something, or a transformational change in 

behaviors and practices. The outcomes may be intended or unintended (which would not be 

documented, presumably). Taylor-Powell and Henert (2008) also describe the ultimate, long-

term outcome as the ‘impact’ of the program. McLaughlin and Jordan (2010) provide steps to 

build a logic model, as do Taylor-Power and Henert (2008), whose work is a teaching 

curriculum. Understanding the component parts and interrelationships allows decision makers to 
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align their measures to their organizational objectives with clear causal linkage (Monroe et al., 

2005). 

Logic analysis. Logic analysis is an evaluation of program theory. This evaluation 

depends upon the knowledge of the program practitioners and the evaluator (or modeler) and 

uses the literature and other scientific knowledge to test the rationality of the program theory. 

Additionally, this analysis enables the modeler to identify possible alternative actions to achieve 

the stated objectives (Brousselle & Champagne, 2011; Rey et al., 2012; Rossi et al., 2004). 

Direct logic analysis assesses whether the design of the intervention (action) is feasible 

and likely to achieve its purpose (Brousselle & Champagne, 2011). Reverse logic analysis is 

used to assess which interventions (actions) are most likely to achieve the stated purpose. Its 

focus is to identify alternatives, increasing the likelihood of a successful achievement of the 

desired outcome. The steps in the process of conducting logic analysis are to build the logic 

model, to develop conceptual framework (direct or reverse), and to evaluate the program theory, 

for which a participative approach is recommended (Brousselle & Champagne, 2011). 

Logic analysis allows the modeler to test a program's theory before entering more deeply 

into the evaluation process. If there is an existing documented logic model, a modeler may find 

that what is documented in the logic model is not what is being done. Perhaps the program’s 

practitioners deviated inadvertently or determined that the design was flawed and made 

corrections in practice (Brousselle & Champagne, 2011). Logic analysis is useful as described 

above for reverse logic analysis to test whether the designed intervention is a practicable way to 

achieve the desired result. Rey et al. (2012), put it this way, 

The aim of logic analysis is to identify the best ways to get where we want to go, that is, 

to achieve the desired effects. Logic analysis will identify (a) the important 

characteristics the interventions must have to achieve the effects and (b) the critical 

conditions required to facilitate the implementation and produce the effects. (p. 63) 
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Challenges. There are challenges associated with program theory and an organization’s 

ability to realize the promised value. For the practitioners, it “is not that they lack understanding 

of the program’s details but that they do not easily articulate why the dissected elements of the 

program achieve the program’s goals” (Monroe et al., 2005, p. 57). The practitioners’ ability to 

see and comprehend the impact of the cause and effect of the program may be limited. 

Additionally, the program practitioners may not have the knowledge or skill to develop 

appropriate measures to assess their outcomes. Even when they are able to identify and develop 

useful measures, those executing the program may not have the time or the tools necessary to 

collect data, develop analytical models, and deliver clear, actionable information for decision 

making (Rogers et al., 2000). 

Jääskeläinen and Laihonen (2013) discuss the challenges of measuring performance in 

knowledge intensive environments. Performance measurement has been studied extensively in 

the manufacturing and information technology spaces, but the ability to apply quantitative 

measures of value to information and knowledge work and performance is less well-studied. It is, 

in part, this dearth of study that prompts the subject study of this paper. 

Performance Measurement 

While there are some approaches and frameworks within which to build measures for 

assessing organizational performance, they do not appear to be widely used in practical 

application (Hedge & Teachout, 2000). Performance measures should be reliable and consistent. 

They should accurately reflect the reality that they measure. They should make sense to both the 

analysts who produce them and the decision-makers who consume and use them. Inasmuch as 

the reality that they measure is predictable, the measures themselves should be predictable 

(Hedge & Teachout, 2000). 
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The optimum measure set decision (OMSD) model was designed to enable managers to 

select an optimum set of measures for their purpose (Bhatti et al., 2009). To measure, you 

identify what is to be measured and the interesting attributes to measure. Both internal and 

external attributes can be defined as measures. Internal attributes are characteristics of something 

that are inherently about that thing, while external attributes are about the relationships between 

that thing and the surrounding environment (Bhatti et al., 2009). The OMSD model may provide 

an approach to evaluate candidate measures for their usefulness in an overall performance 

measurement framework. Other criteria may also be used for organizing candidate measures. 

Three general classes of criteria might be used to organize candidate measures: those 

measuring the acceptability of the measures to the analysts and decision-makers, those dealing 

with the ability of the organization to take action based on the measures, and those applying to 

the willingness of decision-makers to use them in the decision process (Hedge & Teachout, 

2000). Discussions about the BSC and the many extensions and augmentations applied to it by 

various researchers have included analysis of the relationship between the various components of 

these models (Humphreys & Trotman, 2011; Kaplan & Norton, 1996; Wongrassamee et al., 

2003). In another perspective, Hedge and Teachout (2000) suggest that the acceptability of 

measures and the practicality of applying them in the organization be assessed in addition to the 

theoretical and mechanical correctness of the measures. 

With the criteria to organize measures, other criteria are available to select from within 

that organizing structure. Bhatti et al. (2009) identified seven criteria used to select measures 

from a candidate pool: feasibility, availability of personnel, availability of tools, disruptiveness 

of data collection, the personal preferences of the decision makers, and the ease of interpretation 

and presentation. They grouped these criteria into five factors: collection time, cost, value, type, 
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and repetition (Bhatti et al., 2009). Gencel, Petersen, Mughal, and Iqbal (2013) call out two 

criteria for selecting measures: the cost of producing the measure and the priority of achieving 

the goal. Considering the measures from the perspective of these criteria provides decision 

makers with additional richness from which to make informed metric selection decisions. 

One example of a performance measurement framework that facilitates a reflection of 

reality and acceptability of measures is the GQM model (Basili & Weiss, 1984; Mendonça & 

Basili, 2000; Mendonça et al., 1998). Another is the BSC (Humphreys & Trotman, 2011; Kaplan 

& Norton, 1996; Wongrassamee et al., 2003). Both models allow the decision maker to assign 

measures within the context of the objectives they address. 

Measurement frameworks. Mendonça, Basili, Bhandari, and Dawson (1998) define a 

measurement framework as “a set of related metrics, data collection mechanisms, and data uses 

inside a software organization” (p. 484). To serve the purpose of this study, this definition is 

modified slightly to apply the concept not only to a software organization, but also to the 

business organization supported by a software organization. Thus modified, a measurement 

framework is a set of related measures, data collection mechanisms, and data used to support a 

business. The qualities of a measurement framework as defined by Mendonça and Basili (2000) 

are soundness, completeness, leanness, and consistency. These qualities speak to the relationship 

of the measures in the framework to their ability to enable users to achieve their business 

objectives effectively and efficiently. Decision makers may not use the term measurement 

framework but might be more likely to know or refer to the concept as a performance 

measurement system. 

All three focus areas—decision making, program theory, and performance 

measurement—intersect in the need to have and produce appropriate information to enable 
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leadership decisions. This information is often expressed in the form of measures. There does not 

appear to be a consistent usage of the terms metric and measure in the literature. Choong (2013) 

writes that a measure is “a whole number, expressed either in monetary (financial) form... 

dimension form...or unit form” (p. 113), while a “metric is more precise than a measure because 

the former is based on a standard unit of measurement...the metric must be specially developed 

based on a performance objective that is relevant to the stakeholders” (p. 113). Hanson et al. 

define a metric as “a verifiable measure that is stated in quantitative terms and forms the basis of 

a feedback loop” (2011, p. 1091). The term measure will be used in this study to mean a defined 

unit, either quantitative or qualitative, used to express the size, amount, or degree of something, 

while metric will be used to express the standard of measurement. In the formulation of a 

performance measurement system, the use of SMART objectives is desirable.  

The balanced scorecard. The balanced scorecard (BSC) is a concept developed by 

Kaplan and Norton in 1992 (Kaplan & Norton, 1996). It was intended to provide additional 

richness, beyond financial measures, for organizations to measure performance. The new 

perspectives were those of the customer, the business processes, and organizational learning and 

growth. Measures in these perspectives are intended to address organizational capabilities and 

intangible assets (Kaplan & Norton, 1996). 

In the context of the balanced scorecard, the term balanced refers to the consideration 

given to both long- and short-term objectives, financial and nonfinancial measures, leading and 

lagging indicators, and external and internal performance perspectives (Deem et al., 2010). 

Perlman (2013) found a direct relationship between measures of organizational learning and 

growth and financial measures. This supports the idea of the relationship between learning, 

production efficiency, and quality. Perlman found additional relationships among various factors 
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such as customer service and profit, growth in sales by using path analysis on the various 

performance measures and the balanced scorecard. 

The leading indicators of the BSC, those measures that hint at likely longer-term results, 

are considered to be organizational learning, customer satisfaction, and the internal business 

processes. The lagging indicators (the longer-term results) are those measuring financial 

performance (Wongrassamee et al., 2003). The original relationships in the BSC were such that 

organizational learning and growth influenced process measures and process measures 

influenced customer satisfaction. Customer satisfaction then impacted the financial measures 

(Morard et al., 2012). More recently, Perlman's (2013) research found causal relationships from 

learning and growth to all three of the others: internal processes, customer satisfaction, and 

financials. Internal processes were also shown to influence financials and customer satisfaction 

directly. Finally, customer satisfaction was shown to directly influence financials. All of these 

relationships show the importance of identifying the right measures for each of the BSC factors, 

because they have either direct or indirect implications on customer satisfaction and financial 

performance.  

Introducing another lens through which to view the BSC, Wu (2005) asks questions about 

intellectual capital management from the perspectives of human capital, organizational capital, 

and customer capital. Wu asserts that, “the strategic objectives of BSC not only lead to the 

creation and formation of strategic intellectual capital, but also affect the content of 

measurement, valuation, management, and reporting of strategic intellectual capital, and 

eventually create the maximized value for companies” (Wu, 2005, pp. 269-270). This speaks to 

the importance of ensuring that the measures in the BSC are validly linked to the business 

objectives.  
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The increasing importance of intangible assets to an organization's success (Theriou et 

al., 2004) impacted by intellectual capital, suggests relationships organizational leaders may need 

to measure. It is in acquisition and development of intellectual capital that organizational 

learning is manifested. “This capacity for enabling organizational learning at the executive 

level—strategic learning—is what distinguishes the balanced scorecard, making it invaluable for 

those who wish to create a strategic management system” (Kaplan & Norton, 1996, p. 85). 

BSC weaknesses. Akkermans and van Oorschot (2005) point out weaknesses in the 

balanced scorecard approach. In its original form it did not provide a way to review and update 

the measures to assure continued relevance of each measure. It provides no guidance to enable a 

decision-maker to distinguish between what can be measured and what should be measured. In 

addition, decision-makers often make assumptions about causality that may not, in fact, bear out. 

While causality is assumed between strategic objectives and BSC measures (Kaplan & Norton, 

1996), establishing causal models in for a BSC in a complex business environment can be 

problematic. 

Kasperskaya and Tayles (2013) found that causal models may be more difficult to 

develop in more dynamic environments. The more complex and uncertain the environment is, 

the more difficult it is to identify all the variables impacting the situation. However, imperfect 

causal models can still provide valuable information to support organizational learning and 

enable improvements to be made in organizational performance measurement. Even with the 

difficulties of creating complete causal maps from a mathematical and statistical perspective, 

they are still useful for communicating understanding through the organization. They enable 

leaders to communicate the connections between the measures and the objectives the 

organization seeks to achieve to managers and practitioners (Kasperskaya & Tayles, 2013). 
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Kasperskaya and Tayles (2013) found that the complexity in the causal relationships 

among the measures and business objectives is also volatile. Time, environmental conditions, 

and the variables involved in assumptions in play for any given strategy add to this volatility and 

complexity. Measures may be established that seem to them to be related and causal, but are not, 

after statistical analysis is conducted, found to be correlated. Along with the complexity in the 

causal relationships themselves, the feedback loops also have such complexity and, when 

unrecognized, may confound predictability. One aspect of the volatility of the time dimension 

with respect to causality is that of delay between business action and outcome, further 

contributing to unpredictability (Kasperskaya & Tayles, 2013). Thus, measures, even when 

carefully selected, must be statistically tested to ensure they give meaningful, reliable 

information. 

The ability to bridge between financial and nonfinancial fields extends to the idea of 

bridging between the highest levels of the organization and the lowest levels of the organization. 

The accumulation of lower level measures to produce the higher level measures introduces 

another aspect of complexity that is difficult to manage. Akkermans and van Oorschot mention 

another weakness of the BSC. While the balanced scorecard illuminates how the organization is 

doing in terms of the four primary measurement areas, it does not provide information to help the 

decision maker understand what competitors are doing. This weakness illustrates additional 

knowledge and skill decision makers need to assess and select organizational performance 

measures (2005). 

The dynamics of the real world have a direct impact on how we choose to measure 

performance within our organization. Price variability and function are being eclipsed by matters 

of service and other intangible contributors to revenue (Bazett et al., 2005). Kaplan and Norton 
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(1996) stress the importance of the feedback loop. In order to understand the various 

relationships among the contributing measures and for the organization to learn, this feedback 

loop must be effectively in place (Senge, 1990). The feedback is intended to address the 

unpredicted and unintended consequences of the strategy and the measurement of the strategy, as 

well as to enable the organization to review and correct assumptions that may have been made in 

the formulation of the strategy. This feedback and organizational learning, strategic learning, is 

believed to be important, in the current study, to the notion of how organizational decision-

makers learn what measures are effective. 

Organizational learning of any kind involves reassessing assumptions. The explicit 

statement of assumptions and review using the information gained from a feedback loop is one 

way in which this kind of organizational learning can be influenced (Kaplan & Norton, 1996; 

Senge, 1990). If a strategy’s assumptions have internal contradictions, then the strategy will also 

(Senge, 1990). Organizational process execution measures, together with business results and 

customer satisfaction feedback, are all considered during the review and adjustment of the 

business improvement strategy (Wongrassamee et al., 2003). But, it is not only in the operational 

execution of the business strategy that organizational learning occurs. 

Organizational learning also occurs during the development of a balanced scorecard 

framework (Kaplan & Norton, 1996). When the relationships between the strategy (the actions 

the organization takes) and the outcome measures are discussed, there is potential for strategic 

learning (Kasperskaya & Tayles, 2013). Thus, care should be taken, for when assumptions are 

made about the relationships between strategy and outcome measures, the discussions necessary 

for strategic learning may not happen. 
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Although many organizations attempt to apply the balanced scorecard for performance 

measurement, the actions that are assumed to drive certain aspects of performance may not 

always exist in a causal relationship (Akkermans & van Oorschot, 2005; Kasperskaya & Tayles, 

2013). It is desirable to validate the causality of the chosen measures with respect to the desired 

outcomes. The formulation of strategy and the measurement of the execution of that strategy, 

when based on data that lacks sufficient context, may produce a rigid strategy. Enabling 

organizational learning with good feedback and analysis of performance measures promotes the 

development of a strategy that is flexible and which can respond to environmental conditions and 

validation or correction of assumptions in a timely, fluid way. A rigid strategy does not have this 

characteristic (Kasperskaya & Tayles, 2013). To address this and other shortcomings of the BSC 

models, various extensions have been offered. 

BSC + analytical hierarchy process. The analytic hierarchy process (AHP) is an analysis 

process used in complex decision making. The AHP approach is used to compare the interactions 

of the measures with each other in a pairwise comparison. The purpose of this pairwise 

comparison is to identify the consistency of the measures with respect to each other and to 

identify to a decision-maker where measures are inconsistent (Theriou et al., 2004). 

Theriou et al. (2004) juxtapose BSC with AHP to create a framework to facilitate the 

organization’s ability to define measurable linkages between its strategies and its measures. 

These linkages are important input for strategic planning and performance measurement. This 

suggests that an understanding of the AHP would be beneficial to decision-makers in defining 

the linkages which are so critical to successful implementation of BSC. The advantages of using 

the analytic hierarchy process as a tool for implementing the balanced scorecard include its 

ability to deal with both quantitative and qualitative assessments, multiple inputs, and 
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subjectivity. In addition, it enables improved consistency and judgment, performance 

assessment, and results in a single composite performance measure (Theriou et al., 2004). 

BSC + EFQM excellence model. The European foundation for quality management 

(EFQM) excellence model is intended to enable performance management by providing 

understanding of an organization’s leadership, resources, and process capabilities as well as a 

perspective of customer, employee, and societal satisfaction and business results (Wongrassamee 

et al., 2003). Wongrassamee et al. identified weaknesses in the balanced scorecard the EFQM 

excellence model is expected to address. These include identification of key objectives for the 

organization’s success, strategies and plans to achieve that success, level of performance 

required for those plans, rewards (or penalties) for achieving these plans, and the information 

necessary to enable achievement and learning. Because of its focus on resources, people, 

customers, and society, this model can help managers identify change and growth opportunities 

to maximize the satisfaction of their stakeholders (Wongrassamee et al., 2003). 

BSC + structural equation modeling. Structural equation modeling (SEM) is a statistical 

modeling technique using several statistical methods to fit data to known constructs. Morard, 

Stancu, and Christophe (2012) developed a framework to allow them to bridge the balanced 

scorecard with SEM. The resulting framework improves integration and communication. It 

highlights certain measures, frames organizational information in a way that is conducive to 

understanding and formulating strategy, and makes explicit the relationship between the strategy 

and results visible in the organization. This BSC extension might allow an organization to see 

how unrecognized combinations of measures can be explained or framed in unexpected ways to 

produce insight. 
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BSC + strategic intellectual capital. Use of the balanced scorecard can, as found in a 

study by Wu (2005), lead to increased strategic intellectual capital (SIC). SIC is the intellectual 

capital of the organization that is driven by the objectives of the BSC. It is composed of the 

intellectual capital derived from customers, processes, innovation, humans, IT, and 

organizational culture. The perspectives of the balanced scorecard were found to strengthen the 

management of intellectual capital. Wu defined SIC as a model and found that the BSC and SIC 

models are complementary (2005). The concept of SIC, in particular the human intellectual 

capital, speaks to the knowledge of decision makers. This study, in exploring the experiences of 

the decision makers, may illuminate how this intellectual capital is developed, perhaps driven by 

the measures of the BSC. 

BSC extensions summary. These extensions to the BSC—the AHP, EFQM excellence 

model, the SEM, and the SIC—are an indication that the BSC itself is a sound foundation on 

which to build, but that the design for the fully architected building is not yet complete. I’ve 

selected and provided the literature on each of these models to provide glimpses into the 

additional richness for measuring organizational performance. Exploring each of these is 

expected to provide a foundation from which to hear the insight and experience of the study 

participants. 

BSC ROI. In addition to having too many measures or relying on too few, many 

companies have failed to realize the benefits desired from the balanced scorecard because they 

have continued to rely only on historical financial data rather than making the transition to a 

balanced scorecard (Deem et al., 2010). Organizational culture plays a significant role in the 

effectiveness of adopting and using the balanced scorecard effectively. In Deem’s et al. study, 

organizational culture is described in terms of how the people in an organization behave, how 



41 

they teach this belief system to new employees and others who interact with the organization, 

and how they interact with their environment given the assumptions in play at any given time 

(2010). Perhaps understanding the organizational culture and how it impacts measurement and 

the organization’s response to measurement is another skill needed by an adept decision maker to 

choose organizational performance measures. 

Schalken and van Vliet (2007) suggest the use of an iterative qualitative/quantitative 

cycle to assess and explain the usefulness of measures. Bhatti et al. (2009) found that expert 

judgment is required to identify the right measures, to avoid the temptation to use too many, or to 

rely heavily on too few. Lack of this expert judgment in organizations is one of the problems that 

cause performance measurement to give poor return for the investment. The term metric ROI is 

used by Gencel et al. (2013) to refer to “the contribution of metrics in fulfilling the information 

needs of the stakeholders” (p. 2). The V-GQM validation method (discussed below) was 

developed to help ensure that measures developed using the GQM method achieve their intended 

purpose (Olsson & Runeson, 2001). The V-GQM process includes steps to state the goals, define 

questions that need to be answered in order to achieve the goals, derive measures (information) 

needed to answer the questions, gather data to generate the measures and assess the outcomes. 

Then, based on the outcome analysis, the validity of the measures and the questions is assessed. 

Answering the question, are they useful for the intended purpose? The goals are also refined 

based on the insight gained from the outcome analysis (Olsson & Runeson, 2001). 

While it represents a complex environment, the balanced scorecard itself has the benefit 

of simplicity. The basic premise is easy to understand and the BSC enables decision-makers to 

bridge between financial and nonfinancial measures. However, the simplicity may be misleading. 

At the highest level of the organization, there may be very few measures, but the difficulty lies in 
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identifying the right set of measures and how to derive them (Akkermans & van Oorschot, 

2005). Common measures bias is the inappropriate preference or importance assigned to 

measures that are common between organizations to the detriment of other measures which are 

unique within different areas of the organization. Avoiding the common measures bias is a 

challenge when selecting the right measures at the highest levels of the organization. When 

attempting to assess the organization across disparate business areas, the measures that are 

unique within the disparate areas are difficult to derive in an aggregate measure at a higher level 

(Humphreys & Trotman, 2011). 

One aid to choosing the right measures is to consider the coherence among the measures. 

Do they align or contradict each other? It is not just the question of what to measure, but the 

target values the organization desires to achieve and in what timeframe that matters (Akkermans 

& van Oorschot, 2005). Akkermans and van Oorschot (2005) advocate use of causal modeling to 

assess the relationships horizontal and hierarchical among the measures on the BSC to explain 

the level of complexity visible in the measures. Based on their study findings, they suggest the 

use of system dynamics is beneficial in assessing the validity and usefulness of the BSC. This 

speaks directly to the basic question of the current study. Studying the system dynamics 

associated with the BSC measures may be one way in which organizational decision makers 

learn what works and what does not work with respect to measurement. 

A particular difficulty lies in measuring intangible assets like intellectual capital. There is 

a distinction to be made between an attribute of something being undetectable versus being 

unmeasurable. Indirect resources are those that “capture a perception or attitude of key players in 

the team that is not directly amenable to management influence” and, like motivation or 

creativity, are difficult to measure, but they are detectable (Warren, 2000, p. 51). Morale and 



43 

reputation, for example, can be assessed using staff surveys or qualitative methods, which might 

produce results that can be coded and quantified. Special resources may be necessary to bring 

this type of assessment skill into greater prominence in the organization. Even when such 

indirect resources are detected and measured, those are just the first steps in enabling an 

organization to manage them. Intangible resources, Warren (2000) asserts, are effectively 

managed using leadership skills, while direct resources are better managed with typical 

management skill. 

Linkages. Münch et al. (2013) discuss the need to identify and link organizational 

objectives and strategies across an entire organization, as opposed to having isolated strategies 

and objectives in silos within an organization. The relationships between the goals of the 

organization and the measures used to determine progress toward those objectives need to be 

clearly articulated (Münch, Fagerhold, Kettunen, Pagels, & Partanen, 2013). The finding of the 

common measures bias related to the effectiveness of the balanced scorecard demonstrates the 

importance of explicit linkages between measures and strategy (Humphreys & Trotman, 2011).  

Absence of these linkages may result in diminished decision-making quality. Kaplan and 

Norton (1996) describes a strategic management system assuming that we have the explicit (and 

causal) linkages between measures and objectives. As part of managing the strategy, the 

organizational leaders are expected to communicate the strategy to the organization. However, a 

criticism of the balanced scorecard is that when the strategy is not communicated clearly and 

effectively to the organization the scorecard itself is not as effective as it might be otherwise 

(Kaplan & Norton, 1996). 

Common measures bias, a simplifying strategy, is a risk when there is incomplete 

information and these strategy-measure relationships are not fully understood and 
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communicated. Basically, the Humphreys and Trotman study found that both incomplete 

information about the linkages between strategy and measures, as well as failure to deliver 

information about the strategy, result in the common measures bias. They sought to understand 

what factors impacted or even eliminated the common measures bias: providing strategy 

information, how much, and with what linkage to the measures. Managers who do not have 

sufficient information relating the measures to the strategy are likely to use them incorrectly or 

ineffectively (Humphreys & Trotman, 2011). That is not to say that the measures are, in 

themselves, ineffective; rather that they may not be used to best effect.  

The goal question metric paradigm. The goal question metric (GQM) paradigm is “a 

mechanism for defining measurement in a purposeful way” (Mendonça et al., 1998). This model 

that provides a clear line of sight between the goals and measures in a technical environment, 

perhaps providing a way to make the effective application of the measures more explicit. The 

GQM paradigm was developed in the early 1980s as an approach for the structured development 

of measures of performance measurement, enabling the identification and implementation of 

measures in the information technology space (Basili & Weiss, 1984).  

GQM has been applied in a limited way in the business environment (Becker & 

Bostelman, 1999). Building upon GQM and the work of Becker and Bostelman, further 

development of a model to apply those concepts to measurement of business strategy success 

may enable more effective organizational performance measurement. Additional application in 

the business environment has been in the development and use of the GQM+Strategies model, 

discussed below. One of the difficulties with the GQM approach is that decision makers may not 

know what their goals or objectives are, or may not know them at a level that can be articulated 

in a SMART (specific, measurable, achievable, relevant, and time-bound) way (Boyd, 2005; 
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Markovic & Kowalkiewicz, 2008). SMART objectives, as defined by Peter F. Drucker (1954), 

are “specific, measurable, achievable, relevant, and time bound” (as cited by Markovic & 

Kowalkiewicz, 2008, p. 332). In such cases, collaborative teamwork can be used to articulate the 

goals. 

Shull, Seaman, and Zelkowitz (2006) review Basili’s work in an essay—glossing over 

how goals in the GQM model are identified, while illustrating the difficulty of describing 

precisely how the things we need to measure should be identified and how the measures should 

be defined. Shull et al. echo the exploration visible in the work by Mashiko and Basili (1997) 

and Mendonça et al., (1998) of application of the GQM in IT software development, but not in 

business meaning or outcome measurement from the business perspective. Becker and 

Bostelman (1999) discuss the intersection of the balanced scorecard and the GQM model. It is in 

the intersection of the concepts of performance measurement systems that one begins to see the 

end-to-end connection between the business objectives in the key performance measures of the 

balanced scored card and in the data necessary to derive the measures in the GQM model. 

One of the strengths of GQM is that it seeks to identify what the decision maker needs to 

know—not what measure to use, but what a measure should make understood to the decision 

maker (Boyd, 2005). Analyzing these measures in a bottom-up approach and connecting them 

within a GQM model ensures that the existing measures are considered and their usefulness is 

understood. This enables the practitioners to account for the current state of their environment 

and to determine whether all the existing measures are still required, explicitly connecting them 

to the organization objectives to ensure value (Boyd, 2005). In other usage, when they are 

already using measures, practitioners may elect to apply the GQM in a top-down approach. 

While this allows them to look at the organization from a more strategic perspective, such an 
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approach may result in missing important insight to be gained by examining existing measures 

(Boyd, 2005).  

Either a bottom-up or top-down approach, carefully applied, will allow the organization 

to cull measures that are no longer useful in the face of changing organizational objectives, 

environmental conditions, or technical capabilities (Boyd, 2005). Regardless of the method used 

to identify desired measures, one study found that organizations that found success often started 

with a more modest set of rigorously defined measures. Proving the value of the initial set, these 

organizations empowered their people to both act on and provide feedback to improve the 

measures (Boyd, 2005). Perhaps an adept decision maker requires an understanding of a tool 

such as the GQM as a means to maintain a parsimonious (minimal, but sufficient) set of 

measures.  

GQM-decision support framework for metric selection. The GQM-DSFMS is an 

extension to the GQM by Gencel, Petersen, Mughal, and Iqbal (2013). A primary value of the 

GQM-DSFMS is to enable practitioners to identify and select appropriate measures with 

traceability between the measure and the organizational objectives they address (Gencel, 

Petersen, Mughal, & Iqbal, 2013). This model calls for a parsimonious set of measures to 

provide a clear line of sight for decision makers to both the cost and the value of the measures. 

GQM+strategies. The original GQM+Strategies method concept was published in 2007 

as a white paper by Basili, Heindrich, Lindvall, Münch, Regardie, Rombach et al. (Mandić & 

Basili, 2010). The GQM+Strategies approach enables traceability not only between measures 

and the organizational objectives they support, but extends the linkage to include the strategies 

used to achieve those objectives (Münch et al., 2013). By bringing the strategy into clear view, 

this method enables clarification, harmonization, alignment of the goals and strategies, as well as 
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the ability to monitor the strategy’s deployment in the organization. It communicates information 

about the strategy to the organization as well as enabling feedback from the organization. 

GQM+Strategies is a concept which “integrates goal-oriented measurement in the alignment 

process and therefore allows to manage, control, analyze, and change goals and strategies based 

on data” (Münch et al., 2013, p. 2). As with any organizational strategy, the artifacts developed 

using the GQM+ Strategies approach will continually evolve with the business strategy. Periodic 

review and update enable this evolution (Münch et al., 2013). 

The objective of Sarcia’s (2010) research study was to identify the assumptions necessary 

to apply the GQM+Strategies approach, the extent to which it is exportable to other domains, 

whether non-software development personnel can easily apply it, and whether it is convenient to 

apply it to non-software development domains. Sarcia found that familiarity with the basic GQM 

approach is important when applying the GQM+Strategies approach and that application in 

domains other than software development, such as the Italian Air Force in this study, is difficult 

when practitioners do not have prior GQM knowledge or experience (Sarcia, 2010). Sarcia’s 

research may identify another area of knowledge that the adept decision maker needs to identify 

and select performance measures, as it explicates concerns about the applicability of the 

GQM+Strategies approach to different environments. 

Literature Summary 

Leaders make situationally-sensitive decisions to run their businesses (Khatri & Ng, 

2000; Papenhausen, 2006; Tingling & Brydon, 2010) using evidence gathered and tested against 

their prior knowledge and experience (Franklin, 2012; Merriam et al., 2007; Williams, 2012). 

Cabantous and Gond (2011) found three common features that make rational decision making 

elusive. People assume rationality is possible—that they can know all information, identify all 
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options, and identify all possible outcomes. In addition to lacking some of this knowledge, 

decision makers do not always have objectives that can be articulated clearly enough to enable 

decision making (Basili & Weiss, 1984; Choong, 2013; Frisk, Lindgren, & Mathiassen, 2014) 

and they rely on suboptimal information with constraints imposed, real or artificial, that limit the 

available options. 

Owing to the difficulty in describing or quantifying intangibles, decision making 

surrounding them falls more readily into bounded rationality (Frisk, Lindgren, & Mathiassen, 

2014; Kalantari, 2010). Because all the options and consequences cannot be known, bounded 

rationality results in satisficing (Kalantari, 2010). In addition, the decision maker’s system of 

beliefs may limit her field of vision and affect selective perception (Robbins & Judge, 2011). 

Sometimes rationality and bounded rationality (data-driven decision making) is not appropriate. 

Intuition has been demonstrated to be more effective when making decisions on poorly 

structured problems or those lacking information or involving high degrees of uncertainty 

(Tingling & Brydon, 2010).  

Decision making processes are executed to make a decision, to inform a decision, or to 

support a decision that has already been made (Baba & HakemZadeh, 2012; Tingling & Brydon, 

2010). Intuition is formed by the decision maker’s experiences, reflection, and internalization of 

those experiences (Khatri & Ng, 2000, Matzler et al., 2007; Robbins & Judge, 2011; Weaver, 

2014; Williams, 2012), whereas rational thinking tends to confirm established patterns (Weaver, 

2014). For non-routine, strategic decisions characterized by vagueness, intuition may be a more 

effective basis of decision making (Papenhausen, 2006; Williams, 2012). Such intuition assumes 

certain competencies. 
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Competency is defined as “skill that an individual and thus the organization possesses 

that enables it to perform activities” (Steptoe-Warren et al., 2011, p. 241). Framing is one of the 

competencies required of a decision maker. The way a decision maker frames a problem impacts 

the solution, requiring him to have the ability to frame a decision objective in a way that clearly 

articulates the need (Franklin, 2013; Robbins & Judge, 2011). Decision makers typically have 

richer experiences and larger amounts of relevant knowledge not commonly available to less 

experienced people—or those lower in the organization (Khatri & Ng, 2000; Papenhausen, 2006; 

Simon, Kumar, Schoeman, Moffat, & Power, 2011; Weaver, 2014). They may also have more of 

this relevant knowledge in memory and related in more complex ways, allowing them to make 

connections not visible to others (Franklin, 2013; Steptoe-Warren et al., 2011). This rich, 

interconnected knowledge is a strong source of competency in the decision maker.  

Decision makers need to collaborate to get information they lack, to validate knowledge, 

to broaden their perspective of alternatives, to gain commitment, and to identify shortcomings 

(Schwarber, 2005; Steptoe-Warren et al., 2011). Communication of measures and the 

relationships between the measures and objectives has been shown to be important (Humphreys 

& Trotman, 2011; Kaplan & Norton, 1996; Kasperskaya & Tayles, 2013; Morard et al., 2012; 

Olsson & Runeson, 2001; Theriou et al., 2004; Wongrassamee et al., 2003; Wu, 2005).  

By communicating program theory precisely in a logic model, a program manager 

identifies and aligns the capabilities and expected outcomes of a program (Basili & Weiss, 1984; 

Monroe et al., 2005; Rogers et al., 2000; Rossi et al., 2004). By articulating what they seek to 

accomplish, they can identify common components and simplify objectives—learning when to 

simplify and when to add complexity (Rey et al., 2012; Rogers et al., 2000)—to measure their 

achievements more effectively. Because the program theory is organized as causal chains, the 
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interdependencies among measures would also be visible (Rogers et al., 2000). It explicitly 

describes the assumptions about resources and activities and how these are expected to lead to 

intended outcomes (McLaughlin & Jordan, 2010; Rogers et al., 2000).  

A logic model is an illustration of program theory, showing how a program works under 

a given environment and assumptions (McLaughlin & Jordan, 2010; Taylor-Powell & Henert, 

2008). The program logic is about the connections among the program's components. Those 

components include resources, activities, and outcomes/goals or objectives (Brousselle & 

Champagne, 2011; McLaughlin & Jordan, 2010; Rey et al., 2012; Rogers et al., 2000). The 

ability to design or assess the logic model influences the decision maker’s ability to align 

measures to the program objectives (Savaya & Waysman, 2005; Steptoe-Warren et al., 2011; 

Van der Stede, Chow, & Lin, 2006). 

There are some challenges for developing program theory. Practitioners cannot always 

say why the components of the program theory work or do not work. Their ability to see and 

comprehend cause and effect in the program may be limited and they may not have the 

knowledge or skill to develop appropriate measures to assess their outcomes (Monroe et al., 

2005). They may not have the time or the tools necessary to collect data; develop analytical 

models; and deliver clear, actionable information for decision making (Rogers et al., 2000). 

Hedge and Teachout (2000) identified three classes of criteria to assess candidate 

measures: acceptability, actionability, and usability. Bhatti et al. (2009) identified seven measure 

selection criteria: feasibility, availability of personnel, availability of tools, disruptiveness of data 

collection, the personal preferences of the decision makers, and the ease of interpretation and 

presentation grouped into five factors: collection time, cost, value, type, and repetition. Gencel et 
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al. (2013) call out two criteria for selecting measures: the cost of producing the measure and the 

priority of achieving the goal. 

A measurement framework is a set of related measures, data collection mechanisms, and 

data used to support a business (Mendonça et al., 1998). The desired qualities of a measurement 

framework are soundness, completeness, leanness, and consistency (Mendonça & Basili, 2000). 

One example of a measurement framework, the BSC, was developed by Kaplan and Norton in 

1992 to provide new perspectives (customer, the business processes, and learning and growth) to 

address organizational capabilities and intangible assets (Kaplan & Norton, 1996).  

In its original form the BSC did not provide review, update, and assurance of continued 

relevance of each measure (Akkermans & van Oorschot, 2005). Decision makers assume 

causality, when it may not exist (Akkermans & van Oorschot, 2005). However, causality is 

assumed in the BSC (Kaplan & Norton, 1996). The dynamics of the real world have a direct 

impact on how we measure performance (Bazett et al., 2005), whether in the BSC, GQM, or 

other measurement frameworks. One benefit of effective measurement framework use is to 

facilitate organizational learning. Such learning occurs during BSC development (Kaplan & 

Norton, 1996; Kasperskaya & Tayles, 2013) and Kaplan and Norton (1996) stress the importance 

feedback to enable this organizational, strategic learning (Kaplan & Norton, 1996; Senge, 1990; 

Wongrassamee et al., 2003; Wu, 2005). 

Metric ROI is used by Gencel et al. to refer to “the contribution of metrics in fulfilling the 

information needs of the stakeholders” (2013, p. 2). Organizations may fail to realize ROI 

because of having too many measures or relying on too few, or continuing to rely only on 

historical financial data rather the BSC (Deem et al., 2010). Organizational culture plays a 

significant role in the effectiveness of adopting and using the balanced scorecard effectively 



52 

(Deem et al., 2010). Understanding the insight delivered by a performance measurement 

framework is another challenge. Schalken and van Vliet (2007) suggest the use of an iterative 

qualitative/quantitative cycle to assess and explain the usefulness of the measures. Bhatti et al. 

(2009) found that expert judgment is required to identify the right measures, to avoid the 

temptation to use too many, or to rely heavily on too few. Lack of this expert judgment in 

organizations is one of the problems that cause performance measurement to give poor return for 

the investment.  

V-GQM validation helps practitioners using the GQM method develop measures that 

achieve their intended purpose (Olsson & Runeson, 2001). Avoiding common measures bias is a 

challenge to selecting the right measures (Humphreys & Trotman, 2011). One aid to choosing 

the right measures is considering coherence among the measures (Akkermans & van Oorschot, 

2005). They advocate use of causal modeling to assess the relationships horizontal and 

hierarchical among the BSC measures the findings of their study suggest that the use of system 

dynamics is beneficial in assessing the validity and usefulness of the BSC. 

Münch et al. (2013) discuss the need to identify and link organizational objectives and 

strategies across an entire organization. Kaplan and Norton (1996) describe a strategic 

management system assuming explicit linkages between measures and objectives. The discovery 

of the common measures bias related to the effectiveness of the BSC demonstrates the 

importance of explicit strategy – measure linkages. Incomplete strategy - measure linkage 

information (or failure to deliver information about the strategy) both result in the common 

measures bias, resulting in diminished decision-making quality (Humphreys & Trotman, 2011). 

When the strategy is not communicated clearly and effectively to the organization the scorecard 

itself is not as effective as it might be otherwise (Kaplan & Norton, 1996). 
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GQM is “a mechanism for defining measurement in a purposeful way” (Mendonça et al., 

1998). One difficulty with GQM is that decision makers may not know what their goals or 

objectives are (Boyd, 2005; Markovic & Kowalkiewicz, 2008). When the objectives are known, 

the GQM provides a clear line of sight between the goals and measures in a technical 

environment. Two types of measures that may be generated using the GQM are process and 

product measures. It is in the intersection of the concepts of performance measurement systems 

that one begins to see the end-to-end connection between the business objectives in the key 

performance measures of the balanced scored card and in the data necessary to derive the 

measures in the GQM model. One of the strengths of GQM is that it seeks to identify the insight 

a measure provides to the decision maker (Boyd, 2005).  

The original GQM+Strategies method concept was published in 2007 (Mandić & Basili, 

2010). This approach enables traceability not only between measures and the organizational 

objectives they support, but extends the linkage to include the strategies used to achieve those 

objectives (Münch et al., 2013). Sarcia (2010) found that familiarity with the basic GQM 

approach is important when applying the approach and that application in domains other than 

software development is difficult when practitioners do not have prior GQM knowledge or 

experience. 

Leaders make decisions to run their businesses (Khatri & Ng, 2000; Papenhausen, 2006; 

Tingling & Brydon, 2010). They formulate strategy (Humphreys & Trotman, 2011; Kaplan & 

Norton, 1996). They design plans to deliver value and consider the outcomes they seek (Basili & 

Weiss, 1984; Monroe et al., 2005; Rogers et al., 2000; Rossi et al., 2004). They measure their 

progress in achieving their business objectives (Mendonça et al., 1998). They make decisions 

about continuing or changing their business programs and practices (Kaplan & Norton, 1996; 
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Senge, 1990; Wongrassamee et al., 2003; Wu, 2005). In all of these activities, their prior 

experience comes into play. This study will build on the body of knowledge presented in this 

literature review and extend it by exploring the experiences that form decision makers, enabling 

them to do these things. 
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Methodology 

Mixed methods research (MMR) is defined as “research in which the investigator 

collects, analyzes, mixes, and draws inferences from both quantitative and qualitative data in a 

single study or program of inquiry” (Cameron, 2011, p. 96). The premise of MMR is that the 

combination of the qualitative and quantitative approaches is essential to understanding the 

research question under consideration. MMR designs allow the researcher to combine qualitative 

and quantitative analysis techniques, collecting and analyzing both qualitative and quantitative 

data to deliver a more comprehensive exploration of the phenomenon under study (Cameron, 

2011; Creswell, 2012).  

This study used a mixed method, exploratory sequential research design (Creswell, 

2012). Qualitative and quantitative approaches are not mutually exclusive and opposed. They 

exist on a continuum rather than as opposing concepts (Cameron, 2011; Creswell, 2014). 

Cameron (2011) asserts that qualitative data can be analyzed quantitatively and quantitative data 

can be analyzed qualitatively. Exploratory sequential design, in particular, is an MMR design in 

which a qualitative study is conducted to identify themes present in the phenomenon under 

study. 

Those themes are then used to direct the development of the next phase of study during 

which a quantitative measure of understanding is sought (Creswell, 2012). Saldaña writes about 

coding in mixed methods studies, saying, “major codes or even significant quotes from 

participant interviews might serve as stimuli for writing specific survey instrument items” (2013, 

p. 63). In the research design of this study, triangulation of the findings (Creswell, 2014) of the 

literature review, the interview findings, and the survey findings were used to integrate the data 

and report the nature and degree of the life, work, and educational experiences that contribute to 
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the formation of decision makers who identify and select what they consider to be effective 

organizational performance measures. 

The study research questions are being examined using an MMR approach for two 

reasons. First, the business and academic values of the research are equally important to the 

researcher. Conducting qualitative research to develop understanding of the life, work, and 

educational experiences from which decision makers learn to choose organizational performance 

measures has inherent value in both perspectives. Adding the quantitative assessment provides 

information that is expected to be actionable in a business perspective (Miles, Huberman, & 

Saldana, 2014). Second, the exploration of the development of knowledge or skill 

(epistemology) with the qualitative study followed by the analysis of the occurrences of such 

knowledge and skill within a business environment provides a more complete picture of the 

ontology (Cameron, 2011). The quantitative portion of the study was expected to enrich the 

qualitative findings, whether by supporting or contradicting them (Miles et al., 2014). 

This method allowed me to explore both the stories of the participants’ experiences in the 

formation of their individual decision making and ability to identify and select organizational 

performance measures, as well as to explore the degree to which those experiences are shared 

among the population of process engineering community at the company. The findings from both 

studies have been assessed in the context of the skill and knowledge suggested in the literature.  

The essential research question in the qualitative phase is, what are the life, work, and 

educational experiences that contributed to the ability of the organization’s decision makers to 

choose effective organizational performance measures. In the quantitative phase, the research 

questions sought to identify and quantify the importance of the constructs represented within the 
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qualitative data and to understand how those constructs are impacted by various dimensions 

within the respondent community. 

Design of the Qualitative Phase 

I conducted a basic qualitative interpretive study (Lichtman, 2013) using one-on-one 

interviews of purposefully-selected (Creswell, 2012; Creswell, 2014; Miles et al., 2014) 

organizational decision makers to explore the life, work, and educational experiences that have 

enabled them to identify effective measures of organizational performance to aid their decision 

making. The decision makers were expected to “articulate [and] share ideas comfortably” 

(Creswell, 2012, p. 218), and to share rich, meaningful experiences (Patton, 1990) that have 

contributed to their success. I explored the research question by interviewing eleven executive 

process owners, using semi-structured (guided) interviews. The executives were selected based 

on the roles they play with respect to organizational business processes. 

Several strengths of the basic qualitative design made it useful for this study. Using 

interview questions that allowed the participant to discuss and elaborate on answers and that 

allowed me to probe for meaning enabled the collection of more focused data. The stories the 

participants shared provided rich understanding and direction for analysis. Lichtman (2013) 

discusses the use of a basis qualitative design when the researcher wants to understand the 

participants’ perspective of a phenomenon—in this case, the phenomenon is the learning 

experience of the participant. At the same time, the analysis of the interview findings required 

disciplined documentation of the steps and analytical thought processes. The purpose of 

understanding the formation of these decision makers makes the basic qualitative design 

appropriate to the research task. 
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Ethics. Neither interview participants nor survey respondents received incentives for 

their involvement in this study. The nature of the information I sought was not sensitive, nor was 

any information of a sensitive nature encountered or reported. While it was possible that a 

participant’s life, work, and educational experiences could have involved personal stories beyond 

the scope of the information sought (unexpected richness), this was encountered only in ways 

that did not pose an information-sensitivity or identity risk for the participants. Information in the 

participant stories was de-identified for analysis and reporting (Davis, 2003). 

Proper handling and destruction of interview audio recordings is assured following the 

publication of the initial research, that is, this dissertation study. A study disclosure statement, 

including the ethical behavior to be practiced, was included in the interview protocol, as well as 

in the preface to the online survey. Participants were drawn from one particular company and the 

research questions and interview protocol did not seek company intellectual property. None was 

encountered and no sensitive intellectual property was disclosed, either in the conduct or analysis 

of the research or in is published study (Creswell, 2012; Lichtman, 2013). The targeted subject 

matter is not sensitive and participants are not a protected or vulnerable population, so the 

Institutional Review Board (IRB) proceedings were conducted as an expedited review. 

Interview protocol. In individual interviews, participants were invited to share the life, 

work, and educational experiences they felt shaped their ability to choose organizational 

performance measures. The IRB approved the interview protocol, which included primary topics 

of interest to spur conversation (Creswell, 2012; Lichtman, 2013; Miles et al., 2014), such as 

process complexity, organizational performance, and past experience with well- or poorly-

chosen measures. See the IRB documents in Appendix A and the interview protocol in Appendix 

B. It includes guiding questions with clarifying questions to prompt further conversation if 
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needed. Basic opening questions sought to elicit conversation about the participant’s 

background; to introduce the researcher, establish rapport, and tell why the interview and study 

may matter to the participant; to find out about the actual experience of the participant; and to 

ask what advice the participant might give a protégé or emerging leader regarding selection of 

measures.  

Interview perspective. Roulston (2010) discusses the neo-positivist perspective, 

describing an interview in which the interviewer is in a more neutral role and takes care not to 

introduce bias in the questions or conversation. Although the focus of this study was to 

understand the stories of the participants, rather than to develop an understanding together, my 

perspective and involvement were not conducive to such a perspective. Therefore, I approached 

the interviews from a constructivist perspective, where the interviewer and the participant 

together construct meaning during the interview process (Brinkman & Kvale, 2015; Creswell, 

2012). In order to select participants with whom to construct this understanding, I focused 

selection on aspects of process complexity. Literature describing process complexity is presented 

here, to provide clarity into my participant-selection criteria and perspective. 

Process complexity. Assessing the complexity of the processes used in a business is an 

important part of an organization’s ability to manage its processes. Process complexity may be 

described in terms of the degree to which people involved in the process can understand or 

explain their process to others (Cardoso, 2008). Complexity measures are used to assess the 

difficulty to be expected in understanding the process (Laue & Gruhn, 2006). Complexity may 

vary based on how much routine, variety, and interdependence there is among the tasks involved 

in the process (Schäfermeyer, Rosenkranz, & Holten, 2012). The objectives these business 

processes deliver and the environments in which they are executed are often complex, making it 
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difficult to reduce or eliminate that complexity in the process measures. The processes must be 

designed to address this complexity (Schäfermeyer et al., 2012), which results in implications for 

the decision maker. More information and perhaps more decision-making experience may be 

required for making decisions about the process. 

Process complexity impacts the organization’s ability to standardize processes. The more 

complex the process, the more effort is required to standardize it, while at the same time, the less 

amenable to standardization it is (Schäfermeyer et al., 2012) and the more likely it is to generate 

error (Cheng & Prabhu, 2008). As part of measuring complexity, both Laue and Gruhn (2006) 

and Cheng and Prabhu (2008) consider the cognitive weight of the process to be a factor of its 

complexity. By analyzing the structures in the process as patterns and assigning cognitive 

weights to the individual patterns, the organization can assess the understandability of the 

patterns by themselves, then as a whole. 

Factors or dimensions of complexity describing these patterns include the number of 

activities, control-flow complexity, and nesting depth. Nesting depth is a measure of the decision 

points in a process (Laue & Gruhn, 2006). Cardoso (2008) seems to express all these concepts as 

simplicity, then adds consistency, automation, and the notions that measures must be additive 

and interoperable. Rather than using the term cognitive weight, Cheng and Prabhu (2008) use 

understandability, then call out maintainability (which is impacted by simplicity) and size (which 

is, at least in part, number of activities). The number of factors or dimensions suggested by 

various research supports Cordoso’s (2008) position that process complexity is not practically 

summed up in a single measure. He focused on control-flow complexity, which was also 

mentioned by Laue and Gruhn (2006), but identified three other perspectives to consider: activity 
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complexity, data-flow complexity, and resource complexity. All of these attributes of complexity 

influence the measures that a process owner might select. 

The levels of detail discussed by Cheng and Prabhu (2008), Laue and Gruhn (2006), and 

Schäfermeyer et al. (2012), are more precise than is required for the purpose of this study. To 

select the study participants, process complexity will be assessed based most nearly on 

Cordoso’s (2008) perspectives. The organization in which the study will be conducted uses 

common industry terms for addressing dimensionality: people, process, technology, and 

information. These align roughly to the resource complexity, activity complexity, data-flow 

complexity, and control-flow complexity, respectively (although an argument might be made to 

align aspects of resource complexity and data-flow complexity to technology also). 

Based on this review of process complexity literature, the criteria for selecting qualitative 

phase participants are as follows. The ideal participant is the owner of a process which spans two 

or more organizational business units, involves eleven or more people and three or more 

automated systems, and consists of eleven or more significant activities, as defined by the APQC 

Process Classification Framework (American Productivity & Quality Center [APQC], 2015). 

Participant selection will be facilitated through recommendations made by a leader in the 

company’s data and analytics office. 

Participants. Considering a proposed set of candidate decision makers, as well as his 

own knowledge of the company and the study’s purpose, the company leader recommended 

fourteen participants for consideration for the qualitative phase of this study. This is reflective of 

a purposive reputational case selection (Miles et al., 2014). The criteria for selecting the 

participants was twofold: their willingness to participate in the study and their responsibility as 

the owner of a process of moderate to complex nature. Willing participants were selected on the 
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condition that they are the owners of processes that meet moderate or complex level complexity 

criteria: 1) Number of resources involved in the process (0-10 within a single organization, 

simple; 11-20 in a single or no more than two organizational units, moderate; and 21 or more 

spanning 2 or more organizational units, complex). 2) Number of activities executed in the 

process (0-10, simple; 11-20, moderate; and 21 or more, complex). 3) Number of systems 

involved in the process (0-2, simple; 3-5, moderate; and 6 or more, complex).  

Although I did not have direct knowledge of the quality or complexity of each potential 

participant’s knowledge or experience with regard to decision making and identification and 

selection of organizational performance measures, all eleven participants were owners of 

complex processes, spanning 21 or more resources, 21 or more activities, and 6 or more systems. 

This selection approach assumed that the participants in positions of process ownership for 

moderate or complex processes exhibited characteristics necessary to the skill and knowledge of 

interest for this study. For the purpose of this research design, a business process owner, 

informally referred to as simply process owner, is defined as the organizational executive who is 

accountable for the functioning of the process and delivery of the product or service provided by 

the business process.  

Each participant was assigned an identifier, P_01 through P_11, in no particular order. 

Some participants represented more than one business area, with representation from each of the 

following business areas: banking, insurance, investment management, marketing, human 

resources, information technology, data and analytics, and cross-functional areas. It was 

desirable to have more than one participant from each major business area to observe whether 

there were similar experiences by area.  
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I had access to the participants and permission to request their participation (Creswell, 

2012), and each was free to participate or not as they choose, without pressure of any kind. 

Although contingency plans were made to deal with an insufficient number of participants by 

using snowball sampling, it was not necessary. Eleven of the fourteen individuals originally 

invited agreed to participate in the study and were able to complete the interview. Of the three 

who did not participate, two did not respond to the invitation and the last was interested, but had 

no available schedule time open for an interview appointment. 

Data collection. I performed the transcription and analytical activity during transcription 

(Brinkmann & Kvale, 2015; Miles et al., 2014). The source of the data was audio recordings and 

written notes from one-on-one interviews of participants identified in a purposeful sample of 

owners of moderate to complex business processes. The participants were interviewed 

individually for two reasons: scheduling simplicity and logistics. The process owners have 

significant demands on their time and are located in various parts of the company campus. The 

likelihood of arranging timely interviews was increased and confidentiality was assured by 

conducting individual conversations.  

Additionally, the convenience to the participant was increased by individual interviews 

conducted at the location of their choice. In each case, the interview was conducted in the office 

of the participant. Two of the interviews (P_02 and P_04) were conducted in informal, 

conversational settings. In the other nine interviews, I sat with the participant over a table in each 

of their offices. I attempted to arrange the seating so that we were at angles to each other, rather 

than facing directly across the tables; however, in several cases, the participants invited me to sit 

first and then selected the placement they preferred. Because I was interviewing in a setting 

where I had established credibility, there was little or no awkwardness in the engagements. 
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Data capture. Transcription for the purpose of qualitative analysis requires transparency 

into the researcher’s paradigms and theoretical foundation. The correctness and understandability 

of the interview transcript are impacted by the decisions made by the researcher during 

transcription (Brinkmann & Kvale, 2015; Miles et al., 2014; Skukauskaite, 2012). I chose to 

transcribe verbatim, allowing for omission of repeated words and verbal pauses. The interview 

transcription was influenced by my perspectives and experience. Where I recognized these, I 

explicitly disclosure them for transparency. In addition to my perspective, I also examined any 

assumptions I was making, and validated or corrected these assumptions if possible. 

(Skukauskaite, 2014). Given my combined business and academic perspectives, I approached the 

interviews in this study as co-constructions rather than being positioned with the interviewees as 

strictly a providers of information. 

Along with their other stated perspectives and assumptions, during the process of 

analyzing and interview interaction, my theoretical grounding shaped my transcription decisions 

(Skukauskaite, 2014). Because the act of transcribing required me to understand theory and my 

own perspectives and assumptions, and apply that foundational knowledge as I made 

transcription decisions, the transcription itself was an analytical activity (Skukauskaite, 2014). 

As a result, there was more to transcribing the interviews for the purpose of conducting 

qualitative analysis than just recording the verbal interaction of the interviews in written form. 

The analysis of the interviews did not begin with reading the transcript. 

I performed analysis in the production of the transcript itself. As the act of doing 

transcription was inherently an analysis activity, I produced the interview transcripts myself. I 

captured the conversation of each interview in a distinct audio recording as well as in typed and 

handwritten interviewer notes. Taking the notes did not seem to impede the meaningful exchange 
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of information or make the interview participants uncomfortable during those interviews where I 

used it. However, it quickly became apparent that the richness available from the audio 

recordings was not significantly increased by the typed notes and I discontinued them completely 

after the sixth interview. I transcribed the interview audio recordings using distinct fonts to 

indicate the different voices of the interviewer and participant (Miles et al., 2014; Skukauskaite, 

2012). 

Transcription verbatim rather than by inference was important because trying to force the 

interview dialog into a grammatically correct sentence would have hidden signs, signals, and 

evidence of nonverbal components of the interaction and the possibly altered meanings they may 

indicate. For example, the use of air quotes or a sarcastic or clearly self-deprecating tone can 

invert the meaning of the spoken word. When nonverbal communication such as repeated words, 

verbal pauses, and other elements of the interaction are not captured, the resulting transcript may 

be misleading (Skukauskaite, 2012). Initial transcriptions were as close to verbatim as I was able 

to make them, however, I did go back and remove repeated words, verbal pauses to aid my 

continued analysis. There were a few instances where I inserted comments inline in the transcript 

to indicate that the participant took a long pause before responding to a question or probe. Most 

notably, this occurred when I asked about what education, in hindsight, they would have 

benefitted from and when I asked about their definition of an effective measure.  

For the purpose of this study, unexpected richness refers to information provided by the 

interviewee, but not explicitly sought with the designed interview protocol. Unexpected richness 

encountered during the interview interaction is hoped-for, but not expected because of the guided 

nature of the interview protocol. However, such unexpected richness was included in the analysis 

wherever possible (Skukauskaite, 2014). There were several responses provided in the interviews 
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that strayed beyond the specific information I sought. One such conversation led into the 

decisions made based on effective and non-effective measures. Another led into employee 

behaviors in response to effective and non-effective measures. The discussion of those findings 

is not included in this study, except as a call for potential future research. 

It is also appropriate to show the nonlinear nature of the conversation in an interview 

transcript. There may be times when an interview participant returns and revisits a previously 

discussed question, adding richness in detail or making corrections for that matter. Such 

nonlinear behavior in the conversation is interesting and important in analyzing the interview 

(Skukauskaite, 2012). There were two significant instances of nonlinear response. In both cases, 

after the discussion appeared to be concluded and I asked if the interview participant had any 

questions for me, two of the participants circled back to items of particular interest to them. In 

one case, it was to focus on the importance of reflection (P_06) and in the other, on the 

importance of organizational complexity in measurement (P_09). In both cases, the follow-on 

discussion was extensive and clearly of strong significance to the participants. 

Reflection and reflexivity. After each interview, I recorded observations, thoughts, and 

impressions and reflected on them while conducting transcription. I included my recorded 

content when I did the initial coding to begin the analysis and seek meaningful codes. I sought 

meaning and made connections in these reflections, by considering the basic interrogative 

questions surrounding each thought expressed in the interview—who, what, when, where, and 

why (Saldaña, 2013). By taking the time to do this with each interview, I was able to build a 

clearer picture of the participants’ stories and of things that mattered to them—especially across 

disparate business interests. This activity was directly useful in the qualitative data preparation 
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and analysis, and in the formulation and articulation of the findings and conclusions (Brinkmann 

& Kvale, 2015; Miles et al., 2014; Saldaña, 2013). 

Data preparation. As I conducted the interviews, I iteratively analyzed and coded the 

transcripts and interview notes for each interview. “Coding is a heuristic – a method of discovery 

that hopefully stimulates your thinking about the data” (Saldaña, 2013, pp. 39-40, emphasis his). 

Thus inspired and using reference material and initial coding, I generated a coding frame within 

which to understand the information I collected in the interview process and I identified themes 

and concepts as the collected content matured. I used provisional coding based on literature and 

my prior knowledge and amended it as analysis continued (Saldaña, 2013).  

Modes of work experience can be measured in three ways: using time-based measures, 

using amount based measures, and using type measures. These three task modes and 

measurement modes compose a framework depicted in a three-by-three matrix where the rows 

signify the task mode and the columns represent the measurement modes (Quinones et al., 1995). 

I assessed the interview data to determine the fitness of the work experience framework for 

analysis of the participants’ work experience. The focus of the interview questions was on the 

experiences of the participants in learning to choose measures, but none of the interviews 

touched on the nature and type of measures that were selected. Although I was prepared to do 

analysis on the work experience through this lens, it was not relevant in the executed experience.  

While the primary focus was on identifying the experiences important to the participants’ 

formation in choosing effective measures, the individual stories they told were paramount. As I 

focused on the identification of codes, themes, and concepts, I was also alert to the holistic sense 

of these stories (Lichtman, 2013). I used these codes, themes, and concepts to construct the 

coding frame. 
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A coding frame is the guiding conceptual scheme for a research study…it contains the 

definitions of concepts and categories that mediate the translation of raw data…[and] the 

rules used to single out the observations associated with them [the concepts] in raw data. 

(Benaquisto, 2008, p. 89) 

Use of a common coding scheme between this future research as well as this current research 

will enable findings to be compared meaningfully (Benaquisto, 2008).  

Creswell (2012) presents a model of the coding process through which one builds a 

coding frame. It includes the following steps, which will be used to construct the coding frame 

for this study:  

1) Begin with the raw text of the transcript, which may be comprised of many pages of text. 

Start by reading the textual data. 

2) Divide the text into logical segments of information, narrowing down many pages into 

segments. In alignment with Creswell's segments, analyze the transcribed interview 

interactions using the concept of message units. Along with the message units 

specifically focused on the words used, pay special attention to nonverbal communication 

which may indicate emphasis, inversion of meaning, or deeper richness in meaning 

(Skukauskaite, 2012).  

3) Label the segments of information with codes. The target is 30 to 40 codes. I attempted to 

use the framework established by Hedge and Teachout (2000) as an initial coding scheme 

for work experience. I took care to remain open to work experience that did not map 

cleanly into the framework, to avoid inappropriate adherence. It quickly became apparent 

that the framework was not well aligned the study participants’ experiences. Once I 

determined this, I inductively derived the coding for the interview analysis to develop the 

questionnaire for the survey (Benaquisto, 2008). 

4) Reduce the overlap and redundancy of the codes-to about 20 codes; and  
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5) Collapse the codes into themes-ideally 5 to 7 themes. The coding process allowed me to 

organize the data by categorizing according to a reduced set of labels (Creswell, 2014). 

Coding used terms in the vernacular of the participants, with standardization to common 

data and analytic terminology from the various colloquial language of the participants. 

(Creswell, 2014). I found 48 meaningful codes, aligned to 5 themes. 

Data analysis. Although analysis actually began with the creation of the interview 

transcripts, it continued through coding and into an iterative process concurrent with the 

interview process. I did conventional textual analysis of the transcribed interviews (Lichtman, 

2013) using a spreadsheet to record the coding process for each interview transcript. No 

electronic or automated means of coding or identification of themes or concepts (Basit, 2003) 

was used. As the set of interviews grew, I analyzed the text, discovered and showed relationships 

among the codes, and built a coding frame to illustrate these relationships. Although 

categorization based on the main themes identified in the literature review and the concepts of 

work, life, and educational experience was used as a starting point, the coding frame was 

constructed from the contents of the interviews. 

Using the concept map, I reflected on the codes, identified themes, and discussed them in 

the context of the findings of relevant literature in decision making, program theory, and 

organizational performance measurement. Additionally, I consulted with my dissertation 

committee for guidance and to ensure a rational analysis. In this way, I articulated how the 

information discovered in the interviews related to the theoretical foundation presented in the 

literature review. As part of the process of coding, identifying themes, and drawing connections, 

I explicitly showed my work, exhibiting the connections in written form as they were developed. 
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Methods of verification/trustworthiness. I transcribed the interview audio recordings 

and, after coding and identifying themes and concepts, verified the accuracy of the findings with 

reflection, by associating the findings from the research to the relevant literature, and by member 

checking (Lichtman, 2013) with the original interview participants. In addition to the research 

approach described with transparency to this point, trustworthiness was tested by collaborating 

with another analyst to independently review the data and analysis documentation, and 

discussing the rationality of the findings. Note that this review was conducted using data that had 

been de-identified for the privacy of the participants. 

The interview findings were related back to the framework of literature presented in the 

literature review. In this way, the findings are anchored to individual decision making, program 

theory, and performance measurement concepts and provide a foundation upon which the 

reliability of the findings may be trusted (Lichtman, 2013). The outcomes of this qualitative 

research informed the creation of a survey instrument to collect data about how many 

practitioners in the company’s process engineering community shared the same types of 

experiences. 

Guidelines for the qualitative phase of the study. The AERA standards were used to 

guide the development, execution, analysis, and presentation of the qualitative analysis and 

findings of this study. Inasmuch as was useful, I provided rich description when describing the 

interactions with the interview participants and the findings (AERA, 2006). In addition to the 

AERA standards, I leveraged insight from the 5Ps framework in the formation and execution of 

this study. 

Cameron (2011) presents the 5Ps framework, a starter kit for mixed methods researchers, 

by identifying the 5Ps: paradigms, pragmatism, praxis, proficiency, and publishing. A paradigm 
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is “a way of looking at the world” (p. 100). Pragmatism refers to the likelihood of successfully 

applying the findings in practical terms, while praxis refers to “the practical application of 

theory” (p. 102). In this research study, I have approached the interview conversations from a 

business perspective (pragmatic, paradigm). While the interview protocol and data collection 

rigor adheres to an academic standard (praxis), much of the conversation is guided by business 

experience (proficiency).  

I followed this qualitative research and analysis with a quantitative study to determine the 

nature of the occurrences of the experiences discovered in the qualitative study. This survey 

approach is appropriate to describe the trends of experience in the population. The survey was 

developed, informed by the themes in experience that were identified in the qualitative study. A 

simple cross-sectional survey design was employed to examine the experiences of the process 

owners at a single point in time (Creswell, 2012). The IRB reviewed and approved the survey 

design in an amendment to the original expedited review conducted for the qualitative phase. 

Design of the Quantitative Phase 

The qualitative findings, codes and themes, were used to inform the initial development 

of the survey instrument of the quantitative phase of the study. Subsequent refinement of the 

instrument resulted in reorganization of the items and provided a basis upon which the answers 

to the quantitative research questions may be answered. The research questions for this phase of 

the study are 

(1) What constructs represent the important content of experience, knowledge and skill, 

and what constructs encapsulate the concept of the effective measures?  

(2) How are those constructs impacted by various dimensions within the respondent 

community. 
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To answer the first question, principal components analysis was used to extract 

components (constructs) from the 55 EKS variables and the 23 measure variables. The factor 

means were compared to determine the relative importance of the EKS factors. For the second 

quantitative research question, one-way ANOVA (for the individual importance of the 

constructs) and MANOVA (for the collective importance) was used to determine how the group 

means vary. 

The effective measure data was collected, primarily to provide context in which to 

understand the EKS data. In asking what experience, knowledge, and skill are important to the 

respondents in learning to choose effective measures, an assumption was made that the 

respondents knew what an effective measure was. This information was collected to provide a 

basis for composing a comprehensive definition and description of effective measures. Although 

it may appear that there is a relationship of some kind between them, the hypothesis was tested 

using linear regression to determine whether there was, in fact, a linear relationship between the 

EKS constructs and the measure constructs. 

It was hypothesized that constructs might be found in the data as outlined in Appendix D: 

for the EKS items, Collaboration, Knowledge Development, Experience with Measures, 

Mentors, and Technique; for the measure items, Effective Measures and Good Measure 

Definition (H1). Further, it is hypothesized that the EKS and measure constructs will not be 

directly related (H2). The nature of the relationship is thought to be between the condition that a 

practitioner possesses the EKS characteristics and produces effective measures. However, this 

study is not examining or assessing actual measures for effectiveness, rather, it is exploring what 

an effective measure means. No relationship is hypothesized between EKS constructs and 
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measure constructs. See descriptions of the EKS and measure items in the code book in 

Appendix E. 

Finally, it was hypothesized that the importance levels of the constructs will not vary 

across the dimensional attributes by which they are analyzed (H3): age groups, gender, process 

complexity groups, and decision-making longevity groups. This is expected to bear out in 

individual analysis for each construct as well as multivariate analysis across the whole set of 

EKS constructs.  

Population. The quantitative study population was comprised of the process engineering 

community at the company. There were 188 practitioners of process engineering in the 

population. The survey was applied to the entire population. The process engineering community 

population is responsible for processes of simple, moderate, and complex natures as described 

for interview participant selection. The study population exists in an organization that typically 

employs college graduates in the practitioner roles. This level of education was anticipated, but 

not assumed. 

Data collection. Data collection for the quantitative phase of the study was conducted 

using a questionnaire. The questionnaire was administered using Survey Monkey following 

introduction of the study in a group meeting of the process engineering community. I included 

basic classifying questions to analyze the results by the complexity of the process for which they 

were responsible; number of years as a decision maker; age range and gender of the respondent. 

Survey instrument. I developed an original instrument for a cross-sectional survey design 

(see Appendix C). This design was useful to explore the cross-sectional perspective of the survey 

respondents at a single point in time (Creswell, 2012). It was an appropriate tool to query 

practitioners about the current state of their life, work, and educational experiences and the 
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degree to which those experiences appear in the organization. Analysis of the resulting data 

produced a description of the rates of incidence across the population of the various kinds of 

experiences that complex-process owners (in the qualitative phase) found important for the 

development of their ability to choose effective measures. 

Reliability and validity. I created, piloted, and tested the survey instrument. In the pilot, 

the statements were assessed by members of the population for clarity, singularity, conciseness, 

neutrality, absence of jargon or language inappropriate to the population, mutually exclusive 

responses, balanced responses, alignment of questions and responses, and applicability of the 

questions to the population (Creswell, 2012). Then, the survey was administered to the 

population.  

The survey was composed two sets of statements. In section one, each EKS survey item 

named a potential characteristic of the respondent. These items consisted of characteristics a 

respondent might consider important about their experience, knowledge, or skill in learning to 

choose effective performance measures. For this set of items, respondents were asked to apply a 

Likert rating, indicating the level of importance of the item in influencing the respondent’s 

ability to identify and use performance measures.  

In section two, each survey item named a potential characteristic of an effective measure. 

These items consisted of characteristics the respondents might consider to describe what an 

effective measure is to one extent or another. For this set, the Likert ratings indicated, from the 

respondent’s perspective, the extent to which each statement describes an effective measure.  

The two sections of the survey were tested for reliability. Cronbach’s alpha ranges from 

zero to one, with values closer to one being very good (Cronk, 2012). Reliability analysis values 

demonstrate the internal consistency of the items analyzed, that is, that they make logical sense 
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as a set. The Cronbach’s alpha for the first set, survey questions 1-55, was .947. for the second 

set, effective measures, Cronbach’s alpha was .820. Running reliability analysis on the 

comprehensive set of 78 items returned a Cronbach’s alpha of .949.  

Data analysis. The research questions in the quantitative portion of the study address the 

constructs represented in the data (EKS and measure), the relationship among them, and the 

variation in importance of the constructs across the dimensional groups. To determine the 

constructs that are represented in the data, principal component analysis (PCA) was conducted. 

PCA will be used to determine if correlations among variables are consistent with the 

hypothesized components and to determine the underlying experiences, knowledge, and skill 

associated to them. To address the relationships among the constructs, linear regression was 

conducted on the EKS components (as independent variables) with respect to the measure 

components (as the dependent variables). For the final question, regarding the relative 

importance of the components across groups, one-way ANOVA was used for the independent 

assessment and MANOVA used for the collective assessment. 

Descriptive analysis. I assessed the distribution of the responses for each of the survey 

variables, including mean, median, and mode; range, standard deviation, and variance. I 

identified the characteristics that were, on average, deemed very important and compared those 

to the characteristics the interview participants identified, based on the number of responses, as 

important. As part of the analysis, I examined the correlations among the experience variables as 

well as among the measure variables. In particular, I looked for correlations among the 

experience characteristics identified as candidate variables for each candidate independent factor: 

those focused around concepts of collaboration, experience with measures, mentors/mentoring, 

knowledge and development, and analysis technique. 
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I looked for correlations among the measure characteristics identified as candidate 

variables for each candidate dependent factor: effective measure and good measure definition. 

Then, I examined the patterns in the data. I ran PCA on the candidate factors to show whether the 

proposed patterns of the independent variable characteristics behave, collectively, in a 

meaningful way (Tabachnick & Fidell, 2013).  

Exploratory factor analysis is used to develop a theory about latent processes. Variables 

are carefully and specifically analyzed to reveal underlying processes. Among other things, it is 

used to summarize patterns of correlations among several variables and to provide an operational 

definition for an underlying process (Tabachnick & Fidell, 2013). Focusing on my research 

questions, this would enable me to see how I might identify someone who will choose good 

measures, based on their experience, knowledge, and skill or develop those skills in emerging 

decision makers. 

The data was examined by groups. Both MANOVA and one-way ANOVA were used to 

determine whether there were differences in the importance of the discovered factors between 

gender groups (male, female, declined), age groups (30s, 40s, 50s, 60+), process complexity 

groups (simple, moderate, or complex), and decision-making tenure. The following hypotheses 

were tested for each viable factor. 

H1: the importance of the factor does not vary based on the respondent’s gender group. 

H2: the importance of the factor does not vary based on the complexity of the process in 

which the respondent is involved. 

H3: the importance of the factor does not vary based on the age group of the respondent. 

H4: the importance of the factor does not vary based on the decision-making tenure group 

of the respondent. 
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The initial research question from the qualitative phase was, what are the life, work, and 

educational experiences that influenced the decision maker’s ability to choose effective 

performance measures? Next in my analysis of the quantitative survey results, I looked at 

correlations among the survey variables and the responses related to the original research 

question of how leaders learn to choose organizational performance measures.  

Assumptions 

It was assumed that the identification of the 188 members of the process engineering 

community was accurate. The list was provided by the community leaders. It was further 

assumed that all members of the community had roles that involved performance measurement 

to some degree. Finally, it was assumed that, as requested in the invitation, the survey 

respondents did not forward the survey to others outside the identified population or take the 

survey multiple times. As the survey was anonymous, there was no way to verify this. 

  



78 

Qualitative Findings 

After conducting interviews of eleven executive process owners at the company, I 

extracted the concepts from the transcribed conversations and organized them around five major 

themes (Creswell, 2012; Saldaña, 2013) life experience, education experience, work experience, 

skills and knowledge, and effective measures. Within each section there was a rich collection of 

concepts from which to draw a robust picture of the experiences that enabled these process 

owners to learn to choose organizational performance measures. As the interviews progressed, it 

became apparent that there is no single or common understanding among the participants of what 

an organizational performance measure is, whether it includes employee performance measures 

or whether those are something distinct. Therefore, for the purposes of this study, the term 

organizational performance measure has been used in a more general capacity, intended to 

include any of the performance measures relevant to the process owners. 

In order to make sense of much of the interview content, an understanding of the 

company’s organizational structure, in general terms, is necessary. I’ll use the terms company, 

organization, and business area as follows: (1) the company is composed of organizations, (2) an 

organization is composed of business areas, and (3) process owners are assigned in a particular 

business area. Each of these terms, company, organization, and business area refer to a common 

way to group people and activities necessary to do specific portions of the company’s business. 

The interview participants were selected from the population of process owners at the company. 

With the advocacy of a member of the company’s leadership team, I selected participants from 

the following organizations: banking, data and analytics, financial planning, investments, IT 

operations, life insurance, marketing, process engineering, property and casualty insurance, 

research, and vendor management.  
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Because of organizational complexity, there were some participants who represented 

multiple business areas. For example, one was in data and analytics for the property and casualty 

business area, and so, represented experience for both areas. Processes owned in the banking, 

property and casualty insurance, life insurance, and investments organizations are primarily 

focused around providing products and services to the company’s customers. I’ll refer to their 

activities and groups as product-focused processes and product-focused organizations. Other 

organizations such as marketing, research, data and analytics, IT operations, process engineering, 

and vendor management support the product-delivery organizations. I’ll refer to their activities 

and groups as support processes and support organizations. 

The findings are organized using five themes that were influenced by the questions asked 

during the interviews. I interviewed the participants separately, for scheduling convenience and 

identity protection. I asked each participant to describe his or her current role, the path (life, 

education, and career choices and experiences) that led them to the current position, and the 

formal education he or she had and the impact he or she felt it had on developing their skill and 

knowledge in choosing performance measures. Probe questions were guided by the responses the 

participants gave to these questions. I probed more deeply to understand the participant’s direct 

involvement in identifying measure, as distinguished from being a project sponsor responding to 

measures identified by a team. I also probed more deeply about education that the participant, in 

hindsight, felt would have benefited them in identifying and using organizational performance 

measures. The probing question about desired education, in particular, generated lively 

conversation in almost every interview. 

As a result of the general form of the semi-structured interview, the themes around which 

I analyzed and will discuss the findings align to the following high-level topics: life experience, 
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educational experience, work experiences, knowledge and skill, and effective measure definition. 

I will call out concepts that were common among the participants and highlight interesting, 

unique experiences that impacted some of the participants. After discussing the concepts within 

each of the five themes, I will re-introduce the major theories explored in the literature review, 

highlight the skills implied or expressed as necessary to put those theories to practical use in an 

organization, and then compare the experiences, skill, and knowledge of my study participants 

with the skills necessary for the foundational theory. 

Finally, because the meaningfulness of the study is predicated on the assumption that the 

participants understand what an ‘effective measure’ is, I asked each participant what they 

considered this concept to encompass. As a group, the composite definition and description they 

provided for an effective measure aligned well to assumptions about knowledge and skill 

required in the various foundational theories discussed earlier in the paper. Following from my 

participants’ experiences, skill, and knowledge, as well as the theory, I will discuss the ideas 

raised by my participants about the composition of effective measures and descriptive 

information they deemed needful. I will align this to theory about decision making, program 

theory, and performance measurement frameworks to provide a context in which the effective 

measure content may rest. 

Life Experiences 

My objective in asking the participants about their life experiences was to draw out those 

things that, for many, are foundational in their personalities, in their approach to life and to the 

experiences they have, and that influence their attitudes toward learning. My thought was that 

understanding these types of experiences might illuminate distinguishing marks of an individual 

who would be more likely to develop the ability to choose organizational performance measures 
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well. I will illustrate each item in this section by providing insight directly from the participants’ 

interviews, whether to illustrate commonly held experiences or illuminate unique experiences. 

Organizational culture. The first set of experiences revolve around the organizational 

culture of the various groups the participants have been involved in over time. Some experiences 

are from the company and others are past involvements in the participant’s experience. All of 

these were thought, by the participant, to have influenced the development of their performance 

measurement knowledge and abilities. 

Having background in command and control environments as well as open 

collaboration environments. Participant P_06 spoke of the difficulty of developing more open 

collaboration among the people involved in developing data and analytic capabilities, including 

measures. This participant encouraged and actively mentored people reporting directly in the 

collaborative art. 

At first it was uncomfortable for them because the [company] culture is a command-and-

control. … If you’re looking for me to have all the answers, we failed, because I don’t 

have all the answers. I give you intent. I give you what I know. We can test it, but I need 

you guys to bring your experience, your skill sets to the table and help us solve to this 

and then go out to other resources that you know are doing this already and figure out 

what it is that they have done, both what worked well and what didn’t work well and 

bring that back in. (P_06) 

Other participants mentioned collaboration skills as necessary, but did not discuss them 

in particular connection to the development of the analytic capabilities. 

Having experience in organizations with a strong learning culture. Learning 

organizations are described in Senge’s “The Fifth Discipline” (1990). He states, “we learn best 

from experience but we never directly experience the consequences of many of our most 

important decisions” (p. 23) which may limit our ability to learn in full context from our 

experiences. An experience one participant had in an organization with a learning culture was 

gaining an explicit understanding of the practice of failing, failing fast, learning fast, and moving 
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on. In that organization, this participant had an experience that puts the best face on Senge’s 

learning statement above, by ensuring that the participant took time to reflect on what caused the 

failure and learn from it, so as not to repeat the failure. 

So, it was just a nurturing, learning culture and they always said, you’re always going to 

make mistakes, but make certain…it’s only a mistake if you don’t learn something from 

it and you don’t apply it. Because [you] can learn something but then go to the same 

thing over and over and continue to fail. It’s not a mistake if you learn from it and you 

applied and you shared it. The big thing was share, share, share so others can learn from 

your challenges and opportunities. (P_06) 

Another participant stressed the importance of organizational learning related to 

individual learning. This participant shared that, “I spent my career building new things.… In 

most cases, there’s not a defined measurement system around what you should measure. So 

you’re creating a vision of what you want to accomplish” (P_10). The message from that was 

that as an individual learns by doing, propagation of that learning to the others in the 

organization is not optional if the organization as a whole is to create and innovate.  

The participant continued, a 

company [might speak] Greek and you speak Latin…and so, you come as a new thing 

and you’re trying to talk in a different way…. You have to figure out how you measure 

things in a way that people can understand, while also making sure that, hey, what I 

really intend to measure is something different, because this is different. But if I can’t get 

folks to agree on this, I’ll never get them here. (P_10) 

It’s the leader’s responsibility to articulate the vision (Northouse, 2013) and propagate 

that vision throughout the organization. P_10 echoes this, saying that helping the organization 

understand the measures, what they’re called, what they mean, and how they should be used to 

impact organizational behavior is part of that.  

Human behavior. The next set of experiences revolve around human behavior in 

general. These things happen in work environment, in homes, churches, and schools. Sometimes, 
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they even happen in personal relationships among friends. I’ll briefly discuss how these 

experiences influenced some of the study’s interview participants. 

Being able to control for ‘gaming’ behavior when designing metrics. Gaming behavior 

is described by one participant as driving behaviors that are different than those intended—or 

even wrong behaviors that do not. P_03 described it this way, “we want to make sure that we 

have measures that balance out each other so that we are not driving the wrong behaviors.” Once 

we discover these different or wrong behaviors, typically during a review of the measures, we 

would then take those measures off the table or change them to mitigate the undesirable 

behaviors. Another participant considered the possibility of gaming the measures as part of the 

selection process.  

P_11 had the perspective that an effective measure, 

has to be a measure that can’t be ‘gamed,’ for lack of a better way to say it. So I’ve seen 

measures that measured things that then drives a human behavior to do things that make 

the measure green [that is, ‘good’] all the time. And I don’t like measures that can be 

gamed….and I’m not trying to say they’re dishonest. (P_11) 

This participant felt that in most instances, the people were just striving to meet 

expectations, rather than to mislead. In this perspective, it is important to design measures that 

are detected in system performance and captured in business activities in a way that people do 

not have the ability to impact, except by exhibiting the desired behaviors.  

Being able to predict unexpected consequences of measuring. Once participant had an 

experience early in his work career in which he was expected to assess multiple employee 

measurement systems in order to design a single, consolidated performance measurement 

framework through which all the organization’s information needs could be delivered. This 

participant found that managers using the different existing systems had inconsistent 

understandings of the measures used in their systems. In attempting to bring the existing systems 
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into alignment, he also needed to understand the behaviors being driven by those different ways 

of understanding the measures.  

Learning what consequences were being driven by the different ways of understanding 

and, in effect, retraining those managers to a common understanding of the measures and their 

meanings was an important part of being successful at his assigned task. Some managers’ 

understandings and usage of the measures drove negative behaviors in their employees, while 

other managers’ understandings drove desirable behaviors. This was a strong source of learning 

for this participant. 

“Sometimes it was just the number of metrics is overwhelming, because then, [they have] 

too many metrics, they’re trying to meet them all. And they can’t. They don’t understand the 

trade-offs” (P_03). Sometimes, what might look like gaming was just someone trying to do the 

right thing, but not really knowing how, it was perception rather than intention. And there were 

also times when 

metrics that were driving conflicting behavior… depending on the manager, on what goal 

they were to meet, or what’s important to their management chain, right, it could be 

driving them toward one particular behavior that is not necessary balanced by different 

behavior. (P_03) 

Considering the behavior that we intend to drive in the organization by taking certain 

actions, P_10 expressed the position that we tend to expect people to behave in a certain way. 

For example, say you have a rule or guideline that tells you,  

If I know A, then do B. Most people won’t do B. Most people know A. Like [the concept 

that people should] save more for retirement. You’d probably be hard-pressed to find 

anyone who says, hey, I’m totally not saving for, I don’t want to save more for 

retirement. That’s where everyone knows what they should do, but most people don’t do 

anything about it. And there’s a whole range of reasons why. So if you go in there and 

say I’m going to measure this. If you’re going to measure people who do B—those 

people are actually doing something. The folks you really need to touch are the folks who 

aren’t and understanding why they’re not. So understanding your actual way of 

measuring in a pure quantitative way will drive wrong behaviors if you’re not careful. 

(P_10) 
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In recognizing situations where we are expecting certain behaviors, assuming people will 

respond in a rational way based on information provided, for example, we may be able to 

identify instances where undesirable consequences are likely from the measures we are 

considering. We can use both the understanding of the difference in understanding and complex 

interaction of the things we measure (P_03) as well as the unpredictable behavior of the person 

we are attempting to influence (P_10) as case studies to learn how to anticipate unexpected 

responses to measures and measuring. 

Relationships. Then next set of findings focused on the relationships among the decision 

makers, their other professional colleagues, and the wider supporting organization. Personal 

networks, understanding one’s value relative to the rest of the organization and being able to see 

one’s perspective relative to the others’ were all important concepts for the interview 

participants. 

Having strong personal networks among professional colleagues. Strong personal 

networks and the ability to find complementary knowledge and skill, and to collaborate 

effectively are considered an important part of learning to identify and use performance 

measures. One participant discussed reliance on others to augment personal skills, saying, “we 

involve a lot of people from [HR] to help us. I’m not a performance management expert, I’m a 

practitioner. I’ve practiced a lot, but I’m not schooled, necessarily … in developing performance 

processes, so I rely heavily on them” (P_04). The participant added that, in developing strong 

professional networks,  

you should work in such a way that people seek you out right, and how you do that work, 

you should have the kind of relationships that, if you need help, you know there are 

people you can call that will just say yes… They won’t ask what you need or why, they’ll 

just say yes. And you should know who would call you. On both sides of that 

relationship, you actually know who those people are. You’re actively building 

relationships that bring that. That’s sort of the unconditional help (P_04)  
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P_04 called this the person’s personal brand. P_09 also spoke of establishing this kind of 

reputation within a professional network, including the importance in maintaining personal and 

professional networks for having entrée to certain types of experience, “I had to work, … but 

through relationships, to even get back into this program.” The participant was part of a 

rotational training program that was interrupted by circumstances. Because of the strong 

professional and personal relationships this participant had with others in the organization, it was 

possible to resume the program and re-enter the development cycle. 

Other professional relationships were of a mentoring nature.  

I’ve had mentors along the way that groomed me who said, you need to look at other 

aspects of leadership qualities and things like that. … My mentor when I came out of 

college, he gave me enough rope to hang myself. Whatever I wanted to do, he would just 

direct me. …[another,] my boss for the last 8-9 years certainly mentored me a lot. And 

the softer skills, relationship building. so, I was a technologist. It was about technology, 

not about people. But ultimately, [he] supported me. (P_11) 

Knowing your own value/having a clear image of your own value. Along with the 

implications on personal and professional relationships and networking, P_04’s concept of 

personal brand plays into each individual’s self-image:  

if there’s a disconnect between what you think your brand is, what you want it to be, 

right? and what others think it is… if others don’t see you that way, right or wrong, fair 

or unfair, you can’t have it as part of your personal brand if others don’t believe it. (P_04) 

This self-image is important when working across organizational areas within a company. 

Another participant described it this way,  

[the] lesson I learned [was] to really stand up for what I believed in and not feel like I had 

to back down just because somebody was at a higher level than me. … I know what I 

bring to the table. I was hired for a certain expertise and I sure as heck expect to be used 

for that expertise. (P_05) 

This perspective allows the participant to identify and support the value of the measures to be 

used—as well as the insight derived from them and the decisions made based upon them. 
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Another participant, P_06 had experience in collaborative decision, standing in for his 

leader when his leader was unable to participate. The experience was a challenging growth 

experience, because it required the participant to demonstrate the courage of his knowledge in a 

way he had not been called to do before. He was required to “speak to the hierarchy” (Chaleff, 

2009). In working with a group, each member of which formally outranked him, he was in a 

position to respectfully disagree and explain the position. The remarkable part of the story, from 

my researcher’s perspective, was not that he had the experience, but what followed.  

After the difficult interaction of disagreeing with, basically, everyone else in the meeting, 

he cleared his calendar for the rest of the day and reflected on what had happened, what he had 

learned. In his words,  

I left the room, I called [my admin], and I said, ‘clear my schedule.’ Because this was 

like a $50 million investment, right? and because in that moment, you’re reading the 

audience, where is the audience going, what’s the political landscape, what’s the mood of 

the room, right? Why are they making this big, large decision? … and just trying to take 

all these dynamics in play and say, are you going to take the stand or not? 

And so, after that meeting, … I was worn out—completely, stressed about it. 

Turned out we did make that decision, but I went home for the day, collected my 

thoughts… what did I just learn in that moment? (P_06) 

In light of the other experience and insight this participant offered, it was, perhaps not so 

remarkable that he chose to reflect and understand the learning that happened as a result, but it 

illuminated a driving desire on his part to make sure that no experience, no learning possibility, 

was unexamined. 

Finally, P_11 has the perspective that learning is, “about how I become a better person.” 

This participant talked of a former company CEO who said something to the effect that, “the day 

you stop learning, you may as well quit.” For P_11, this became a key way of thinking. He 

continued, “And so, for me, it’s about how can I constantly learn and how can I constantly be of 



88 

more value. For me, just the academic part of certificates, diplomas, I don’t care. I’m just more 

about how can I get better as a person, right? And how do people see me?” (P_11). 

Being able/willing to see the other's point of view. As a final thought on relationships, 

our willingness and ability to look for and consider the other person’s point of view is considered 

to be important in how organizational performance measures might be designed and used. P_04 

described it this way, 

I have a point of view, but I understand yours, too. And I can understand it, and 

sometimes agree with that and sometimes disagree with it, but I understand why you 

think about it that way. I think that’s good. What I see sometimes, not just in business, 

but in life. Of people like, they refuse to accept that the way you see something could 

possibly be right. But, like it’s right for them. But you don’t have to agree with it. … one 

of my skills is that I’m able to see an issue from many different points of view. (P_04) 

This willingness may be an important aspect of developing well-designed, related 

measures. It seems that the development of measures, especially those that describe the health of 

connections between processes owned by different business areas, will be impacted when leaders 

have or do not have this perspective. 

Values. The next theme in the interview concepts centered on values, of importance, of 

ambiguity, of reflection, and of ethics. These were concepts that were deeply ingrained in the 

participants, rather than knowledge or skill they could learn or develop, these concepts 

represented more of who they were, as individuals. 

Being able to filter signal from noise; the important from the unimportant. P_01 

discussed the ability to differentiate important facts or concepts from those that were either not 

important or which were at a level of precision that was not relevant to a particular decision. 

Junior people, in particular, may have difficulty clearly delineating this importance. 

Additionally, the concept of importance may often be a value judgment, rather than a 

mathematical calculation. Experience in and exposure to decision making is important to 
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developing this skill. Even among those who have more experience to measures and have had 

responsibility for making decisions, the challenge of filtering signal from noise exists. Another 

participant, P_03, talked of the sheer number and complexity of the measures, saying  

they’re trying to meet them all and they can’t. They don’t understand the trade-offs. … 

engagement with leaders, okay, and understanding their priorities, what they’re focusing 

on, …helped me understand, because you can measure a lot of things, but what is it that 

is most important? (P_03) 

This participant felt that it was engagement with the leaders and learning their priorities 

that would enable the other, less experienced practitioners to learn to distinguish the important 

information. 

Being comfortable with ambiguity, uncertainty. Almost a sibling-concept to signal-to-

noise detection, P_01 discussed the leader’s comfort level with uncertainty and ambiguity. When 

determining what to measure, especially when proxies are required, the leader’s comfort with 

uncertainty is essential. This includes the ability to accept that a measure may not describe 

exactly what needs to be measured, but is “close enough,” in the absence of precisely the right 

measure. Another participant put it this way, “I think that part of what I think has made me 

successful at [the company] and just in general is, I’m not uncomfortable in unknown situations” 

(P_02). Outside of financial measures, the participants were in general agreement that the ability 

to accept ambiguity and uncertainty is a factor of maturity in leadership and decision making.  

Maybe it’s mileage or maturity or whatever you want to call it. I can very easily live in 

that dynamic tension that I can’t attempt to put everything that matters on a spreadsheet 

for you. I know for some people, that can be a little bit difficult. (P_04) 

Having a habit of reflection. Three participants spoke about specifically about reflection. 

“As a leader I spend a lot of time reflecting on … why am I the way I am? And being 

comfortable with myself so I can explain how I react to other folks” (P_02). This participant 

used reflection as a means to predict reactions, not only for [him/herself] but also the reactions of 
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others. Although the participant did not say it in so many words, it aligns with the concept of 

seeing from the other’s perspective. Another participant, focusing on teaching the skill across the 

business area, called it “the pause,” saying, “my biggest role is to make certain that from the 

leadership all the way through, we pause, we anticipate, we make certain that we have the right 

skills at the right time to work on the right things” (P_06). This particular habit was learned from 

life experience. 

My mom was just an amazing individual [with the ability] to break things down. So, as 

myself and my siblings were growing up, we would encounter things where, okay, people 

say stuff and we think we have a general understanding of what that meant, but she 

would always pause and take time. She’d say, do you really understand what that means? 

And … she’d give her interpretation or her viewpoint to help us break it down and digest 

it and understand it or she’d say here’s my understanding, but I want you to go get more 

information about this, this, and this to bring that back so you have an understanding. I 

think from watching her do that over and over and over for 17 years, that shaped my 

approach. (P_06) 

As a final thought on reflection, P_09 talked of reflection in discussing the selection of a 

formal education focus. In developing the focus of the Master’s degree work, P_09 spoke of 

reflecting on the energy and enjoyment of taking certain classes, even though the classes were 

not in the participant’s original educational focus area. It was this reflection that led to a 

significant change in disciplines for the degree program. Once again, engaging in reflection 

helped a participant make a decision that was proven, over time, to be sound.  

Having a strong work ethic. In our discussions about the path that brought each 

participant to their current position, there was not always specific mention of having a strong 

work ethic. When not specifically mentioned, it became apparent that it was an unspoken 

assumption. In addition, none of the participants said they had envisioned being in positions like 

the ones they are currently in. Each expressed openness to opportunity and tended to have 

mentors and people advising or directing them, but none expressed the ambition to be a complex 

process owner at a Fortune 200 Financial Services company, for example. 
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I’ll present just a few examples of the participants’ beliefs that a strong work ethic is 

essential. 

I never thought I’d be in the job like I have today. I certainly never aspired, necessarily, 

that I would have the level of responsibility that I have today. But, I always had a strong 

work ethic, probably instilled mostly by my mom. And I was a paper boy when I was in 

middle school and high school. I worked at McDonalds when I was eligible and was 

finally 16 and could get a real job. I always laugh, but I tell people that my work ethic 

was largely shaped by McDonald’s. (P_04) 

There are aspects of one’s educational and work experiences, in alignment with a strong 

work ethic, in the development of one’s ability to choose measures effectively. As part of 

education within the workplace, one participant discussed performance.  

We got ranked and after the first year of about 27 students, I got the highest bonus, I was 

ranked number one. But, it was because of my education and [because I] worked my tail 

off. But, I had a phenomenal toolkit. There’s no way I could have been that effective had 

I not had it. (P_09) 

Finally, looking at the work ethic in terms of willingness, ability, and knowledge, P_11 

said it this way.  

If I knew how to hire someone, to measure the ability of a person to logically think like 

technology works, they have a passion for this stuff and they have a high work ethic, I 

could guarantee you they’d be successful. (P_11) 

In this statement, the participant expresses an understanding of independent and dependent 

variables in an individual’s performance that may play into the idea of the leading and lagging 

performance indicators needed for organizational performance. 

Understanding ethical presentation of measures. The concept of ethical presentation of 

measures refers to the fact that statistics, while true, may be presented in an unethical way—a 

way that misleads the reader to make an inference or gain an incorrect understanding. Another 

perspective on having a strong ethical mooring is expressed by P_05. In doing a study while in a 

work-study job in college, this participant was told that the ‘purist’ perspective of reporting the 

statistics (ethical statistical reporting) was not, necessarily, practical in delivering study results to 
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some customers. The participant learned the ethical lesson of when and how to push back when 

people ask you to ‘spin’ measure results. The participant has applied this particularly strong 

experiential learning to presenting findings ever since. 

Two participants also stressed ‘remembering humility’ as a significant factor from their 

life experience in learning how to choose performance measures, particularly because it 

reminded them that they do not know all, and do not expect themselves to know all that must be 

known. It reminded them to seek out and collaborate with those who have knowledge and skill 

they lack (P_01, P_11). 

Education Experiences 

This section will include discussion about formal, informal, and non-formal educational 

experiences (Merriam et al., 2007). I will introduce concepts participants learned from their 

formal education, focusing especially on the idea of learning how to learn and how to think, 

which were topics that many of the participants dwelled on during the interviews. Another area 

of discussion during the interviews was desired education. Given the positions these participants 

are in now and the education, life, and work experience they have, I asked them about what 

education they would like to have had. This was useful in the study because it helped me realize 

that the idea of life-long learning was a necessary part of the conversation for learning to choose 

organizational performance measures. 

Formal education. “Formal education is highly institutionalized, bureaucratic, 

curriculum driven, and formally recognized with grades, diplomas, or certificates” (Merriam et 

al., 2007). The next set of findings are related to the formal education of the participants. 

Having formal education (all, bachelors). In several of the interview conversations, it 

was apparent that the subject matter of the participants’ undergraduate degrees was not 
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considered particularly relevant to the work they have done in their careers. At the same time, 

they acknowledged its importance in helping them learn to think in a helpful way. One 

participant said,  

the focus of my undergraduate education was really around teaching you to think and 

solve problems. …[the] intent wasn’t mine, but the school was very much focused on 

your thought process, because anyone can memorize facts, regurgitate facts, and answer 

you know, multiple choice questions and you walk out and forget it, but that doesn’t 

actually teach you how to think. (P_10) 

In this participant’s experience, a primary value of the formal, undergraduate education 

was not the subject matter, but the way of thinking. I asked another participant to talk to me a 

little bit more about gaining knowledge and the value the participant placed on it, regardless of 

the formality of the training. That participant responded,  

For me, it is, again, about how I become a better person. … it’s about how can I 

constantly learn and how can I constantly be of more value? For me, just the academic 

part of certificates, diplomas, I don’t care. I’m just more about how can I get better as a 

person, right? (P_11) 

Having master's level formal education. For the Master’s level, too, the participants 

were more about having learned a new way of thinking, of becoming a better learner, than they 

were about the subject matter they studied. “I think the biggest benefit was less about the specific 

things I learned in those classes or programs and more about being a learner and having learning 

agility over time (P_03). P_05 discussed master’s level education, the focus of which was on 

statistics. This provided a foundation for measuring and understanding what’s important to 

measure, in terms of relevance and significance, in particular. Although not a formal master’s 

program, P_06 was in a professional rotational program that provided master’s level education. 

In that program,  

every six months you did a different type of role in finance. You also took a class that 

you got graded on. So, in essence, 70% of your performance was how did you do on the 

job and 30% was how did you do in this class that you took. (P_06) 



94 

P_07’s MBA was in general management. In addition, this participant also engaged in rotational 

training at an early employer. That program 

was 2-1/2 years. Every six months you took a different job in finance, but somewhere in 

the company. … The class was taught in the evenings and as part of the class, it was just 

like any other graduate-level course, but it was just class. It wasn’t a full load. … in 

essence, think of it as a graduate school-level class where you did case studies. There 

would be homework to turn in, you took tests, you took exams, you got a grade. (P_07) 

One other participant discussed their master’s work and the impact it had on their holistic 

understanding. 

I completed an MBA, Masters of business administration and there was some 

measurement, right? And there was focus on operations measurement…. I did take quite 

a [few] financial and accounting classes that gave me a deeper understanding of 

financials and there was a good component of strategy. It was more of a strategic MBA 

program, so it gave me more understanding of strategic measures and strategic planning. 

(P_08) 

This participant felt that the strategic perspective was especially important in how [he] developed 

the knowledge and skill to identify and use performance measures. 

Having post-graduate formal education. Only one of the participants had engaged in 

post-graduate work. P_05 discussed the circumstances surrounding that experience. I drew two 

primary concepts from this discussion. First, this participant expressed a strong self-image, a 

clear sense of self and identify. The decisions the participant made about the post-graduate work 

was influenced greatly—or perhaps the sense of self was developed as part of those educational 

experiences. Certainly, there was learning going on that was not about the subject matter—again, 

the recurring theme when the participants discussed formal education—but about the ancillary 

lessons. Second, it requires great courage to break with the expectations of others to do the right 

thing, whatever one conceives that to be. This courage seemed to be the primary gift the 

participant received in the post-graduate formal education. 
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Nonformal/structured learning. Nonformal learning is often short term in comparison 

with few formal learning and does not generally have the structured, prerequisites. They do 

typically have a well-structured curriculum delivered in a controlled setting by a facilitator 

(Merriam et al., 2007). Nonformal education is also delivered in civic environments, as well as 

by churches and service organizations. This is the class of learning delivered by many business 

organizations. The next set of findings can be described as nonformal learning experiences. 

Having participated in rotational training opportunities. I’ve discussed professional 

rotational programs in previous sections, tangential to the points being developed. This section is 

focused specifically on the rotational program and its role in preparing an employee for the work 

at a particular organization. Such a program might be part of employee development. As such, a 

rotational training is periodic rotation from one business area or specialization to another in order 

to gain a range of knowledge and experience relevant to the employment experience.  

P_03 participated in rotations through several areas: actuary, claims, analytics, marketing, 

data management, and underwriting. Another participant was at a company with a strong 

learning culture.  

When you came in, [it was like an] intern program … You have the technical, you get the 

framework, the policies, but you’re able to practice that and fail and fail fast, learn fast, 

and move on. And so they were nurturing in that way. And when you did make a mistake, 

they would say, ok. Well, that was an expensive college course. What did you learn from 

this? … What would you do differently? And how [would] you share that information 

with your peers so they won’t make the same mistake as you did doing that process? 

(P_06) 

Another participant talked about experience in a retail industry, where it was important 

for all the employees to share a common understanding of the business, its practices, and be able 

to communicate those effectively to others. “I went through a management rotational program, 

management trainee program. Ultimately, they were preparing you to go out and be a district 

manager” (P_09). In each case where a participant was involved in rotational training, it was 
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from an employer where the specific knowledge and skill needs of the employment was being 

addressed. These programs addressed a chief shortcoming of formal education for these 

participants, which was the lack of specific focus on the job or career needs the person may 

actually have. 

Certifications like six sigma black belt. In the financial services industry, including 

insurance, banking, and investment lines of business, there are many certifications relevant to the 

specific business and products that are available to the company’s customers. Several of the 

participants had insurance, banking, and investment certifications that, like rotational training, 

were specific to the job and career needs they had. Other certifications, like process engineering 

black belt, is focused on support organizations and processes. Two participants identified the 

black belt training as significant for their development of measuring knowledge and skill.  

How do I make sure I have the right data and measurability built into [a process] so I can 

see what’s causing that to not perform as needed? …Then we have the whole [view] from 

what you design it, … measurability, then I go work with the IT partners, leveraging our 

business managers, to get all the requirements, and actually [get] code developed tested, 

prototype it, and then ultimately optimize it into full-scale launch. So we own it from the 

moment that the strategy’s set from design to monitor and improve or continuously 

improve or optimize. (P_06) 

This is not the certification, but points to the need for knowledge of process engineering 

or sufficient knowledge to collaborate effectively with those experts. “We’re not the process 

owners. We’re working with the process owners to be able to define those experiences end-to-

end processes. We come in with recommendations on measurability” (P_06). Another participant 

was in a business area focused on process engineering, in which the majority of the company’s 

process engineers are assigned. “I have various process [engineering] certifications like black 

belt, master black belt, stuff like that” (P_07). In this case, education and expertise in the subject 

was necessary to manage the business area effectively. 
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Self-directed/unstructured learning. Informal learning is the unstructured, self-directed 

learning, in everyday life. The next set of findings focuses on the types of learning that are not 

designed, structured, or delivered in a facilitated manner. Many of a business’ on-the-job training 

experiences fall into this category. 

Being an agile, continual learner with a growth mindset. The ability to learn, rather 

than just the subject matter one has mastered, is the primary focus for many of the participants. I 

asked the participants, as a follow-up question to some of their stories illustrating the importance 

of understanding how they learned, rather than what they learned, “are there some of those 

experiences for which there is no substitute to just living? Is there a danger in unearned 

knowledge?” One participant talked about how the formal education laid a foundation that 

enables a student to learn how to learn, at the same time that it introduced a foundation of 

subject-matter content. This participant talked also about content that might actually be beyond 

the student at the time they take undergraduate classes.  

I would say while you may not learn it, like I say, the class just exposes you to it and the 

importance of it so that you can continue to develop in that particular area, right? So, you 

are not going to be an expert or by any means, you know, a subject matter expert or 

knowledgeable about that particular [area] just by taking one or two classes. But, it would 

help shape your thinking in terms of your continuous learning. (P_03) 

This sentiment was echoed when P_04 shared, “the biggest benefit [of formal education] 

was less about the specific things I learned in those classes or programs and more about being a 

learner and having learning agility over time.” The idea was that learning agility, that formal 

learning structured the participants’ thinking, ways of thinking, problem solving methods, and 

analytical thinking…that learning agility and the capacity to learn prepares them for any new 

content they encounter. Another participant spoke of it in terms of guidance received from a 

mentor.  
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One of the people that I worked for very early in my career, who’s still a mentor to this 

day—he’s retired—but he told me, … my career advice to you would be—he helped 

me—is, never stop learning, never stop growing. If the company needs you to do 

something, do it. You’ll be better off for it. (P_07) 

A person’s learning agility also plays out in how the learn to anticipate and respond to not 

only new situations and knowledge, but also to new leaders. 

I’ve been on the other end of organizational realignment, so it’s forced me to constantly 

adapt to how I view, how I communicate, how I approach things, I’m almost constantly 

in motion. What worked here doesn’t work here, so it’s about looking at different 

frameworks. So if you’re looking at my advice to most folks starting out, do a lot of 

different things and be highly adaptable because that forces you to think and approach 

things in a different way. It makes you more valuable because there are plenty of people 

who think linearly who have spent 20 years doing the same thing. (P_10) 

Being an experiential learner. The participants found learning agility to be a strong 

characteristic for those who are experiential learners. It was interesting to me that so many of the 

participants volunteered the term “experiential learner.” The company has strong requirements 

for people being hired into leadership positions to have formal education, but in every case, the 

participants felt that the experiential learning was significantly more valuable for them when it 

came to learning how to identify, choose, and use organizational performance measures. One 

participant shared,  

I would say those classes in college were just a foundation. it’s really my work 

experience, it’s learning from other people, it’s learning from actually trying something 

and seeing whether or not it works or doesn’t work. That’s the real learning experience 

and because I’ve been here such a long time and you know, been involved in so many 

different areas, seen so many different metrics. You just learn from that. (P_03) 

Another felt that the rotational education they received on the job had the most impact, 

because of its tight focus on the job at hand, rather than as a general educational foundation. That 

learning cycle included learning “the techniques, learning the framework, learning the 

methodologies, learning the rules… you get to go practice that over and over… practice that and 

fail and fail fast, learn fast, and move on” (P_06). The life and work experiences another 
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participant had were self-described as more impactful the formal educational experiences. The 

availability of a rotational training program at an early employer aligned strongly with this 

participant’s natural learning preferences. The high level of engagement in the rotational training 

impacted this participant heavily as well, but P_09 also described [his] master’s level work 

saying, “I checked the box on the undergrad. I went through graduate school and I LEARNED.” 

A couple of the participants talked around the concepts of theory and applied theory.  

Stats 101 was like 300 people. They didn’t make it [interesting, useful]. I’m an 

experiential learner. If they just would have done it in an applied way, I would have loved 

it, but the fact that they grilled the mechanics into you, it was painful… (P_10) 

P_11’s formal education, which was highly technical in nature, had no focus at all on 

measurement. Neither did the informal education P_11 engaged in. The participant considered 

such measurement to be a skill and behavior learned by people as they engage in business and 

other work environments. “It’s something that you learn over time as a leader” (P_11). 

In considering the participants who self-identified as experiential learners, I was not left 

with any impression on whether they esteemed or disdained formal education, in general, but I 

was left with a definite impression that the experiential learners did not find a great deal of value 

in their formal education, in particular, unless it was explicitly tied to their work area, e.g., an 

actuary who studied actuarial science, a researcher who studied statistics. The experiential 

learners tended to be working in business areas unrelated to their undergraduate, and in some 

cases, their graduate formal education. 

Desired education. In a follow-up question to the formal education discussions, I asked 

participants to think about, given their current positions and responsibilities, what formal 

education they might have benefitted from having. Several of them identified data science, in 

particular. Although the discipline was not available for many of them during the time they 
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would have been engaged in formal education, they felt it to be a highly desirable skill for those 

who can engage now. 

They felt it applied strongly to finding, testing, and understanding measures. P_03 

expressed the thought that formal development in creativity and storytelling would have been of 

benefit. Several of the participants talked about the need to be able to present complex material 

in a simple way, illustrating with a story or metaphor. Having some formal training in 

storytelling was conjectured to be of value. 

P_09 had opportunities to get additional certifications around the same time as 

completing the formal education, later regretting having chosen not pursue those opportunities. 

However, it was not the missed opportunity for certification that the participant regretted, but the 

deeper knowledge that would have been gained by doing the preparation for those certifications. 

This deeper knowledge would have been an additional tool in the toolkit used to choose 

organizational measures. 

Work Experiences 

The next section of findings from the interviews focus on the work experiences, focusing 

on various breadth of experience described by the participants. There was general agreement that 

a breadth of experience was needed to develop a robust ability to identify and use performance 

measures. The experience did not have to be across years of work, but had a several foci: access 

to a wide range of data, access to business leaders, access to projects in a wide range of business 

areas, access to strategic level projects (implying broad scope), being personally accountable for 

organizational performance, and having a mentor. 

Access to a broad range of data early in your career. A couple of the participants 

came up through career paths that started with data analysis. In such roles, they had exposure to a 
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broad range of data, including financials, human resource data, marketing and sales data, as well 

as insurance and actuarial data. “So, the benefit I got … from being an actuary is that I got to 

look at a lot of data” (P_03). Sometimes, the value of such access is not realized or recognized 

until later in one’s career, but another participant recognized the value of that access, even while 

it was happening.  

What I’ve had is access, right? … information is king, right? And in a lot of situations, 

information is highly guarded and junior people may not get access to a lot of 

information… getting clearances and approvals to access that information, it’s a difficult 

thing. (P_08) 

In this case, the participant was aware of the value of the opportunity to look at the 

organization and understand it through the richness of the data. 

Access to business leaders early in your career. Not only data stored in databases is of 

value. Other participants talked about the value of data that was shared by exposure to business 

leaders during their formative years. One participant,  

had the opportunity to interact with leaders across [the organization] at a very early stage. 

I mean, within a year or two, I am speaking to [an organizational] president, okay? And 

that engagement with leaders, okay, and understanding their priorities, what they’re 

focusing on, okay, helped me understand—because you can measure a lot of things, but 

what is it that is most important? (P_03) 

Just as P_08 had access to data, access to leaders was also part of the experience. 

What leaders have provided me is access to interesting problems or access to the data or 

access to the question, right? Like, here’s what’s happening, here’s the situation we’re 

facing. Go figure it out, right? or go get data so we can figure it out. So, the access to 

those higher-level problems or bigger problems is what’s help me develop that skill set. 

(P_08) 

Access to wide variety of project assignments early in your career. Add to the broad 

range of data and access to business leaders, a variety of interesting projects and you provide yet 

another facet to the experiential learning and development of the emerging performance 

measurement professional.  
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The first part of my career was as an actuary in pricing. then after different rotations 

through multiple areas, I got to see performance metrics. I was in claims at one point in 

time doing analytics and I was helping with metrics … learning the operational metrics 

was part of it. I went to underwriting in one of my rotations. I’ve learned a little bit about 

what they look at, you know, what changes they’re making, and what data do they look at 

to help them decide on their underwriting decisions. Then I came back and I did data 

management and now I get into really understanding the data piece of it. (P_03) 

This pattern of a wide range of experiences was echoed by another participant.  

So the first about 10 years or so of my career was all in property and casualty and pretty 

focused on claims, property claims. It’s interesting because at that point in time, at least 

in [that business area], specialization was very rewarded. Well, then, the winds kind of 

started to change a little bit and then we wanted more people with broader skills. So I 

started doing lots of other, different things inside of [that business area] including making 

a complete career path change from claims into what was then called policy service. Back 

then, that was somewhat radical. I mean, you either worked in claims your whole life, or 

you worked in policy service your whole life, or you worked in underwriting your whole 

life. Not a lot of people went between those, but now it seems like it’s not that big a deal. 

But, yeah, I worked in, the only departments I didn’t work directly in [in that business 

area] were probably like finance and actuary. (P_04) 

P_07 felt that the broad range of experiences are what made [him] an attractive candidate 

for the current position. “If I hadn’t had those [a broad range of] experiences, like what I said 

earlier, this opportunity wouldn’t have arrived” (P_07). As a data analyst, P_08 had a wide range 

of job assignments in banking organizations, within the business, HR, and customer service 

functions of those organizations. Access to both the business problems and questions as well as 

the leaders and the data in those assignments is something that P_08 considered essential in 

developing the skill and knowledge to choose good organizational performance measures. 

Another participant told a story of wide-ranging experience with a different flair. Early in 

[his] career, expertise in mainframe work made it possible to do ‘temporary duty’ in different 

business areas. Although this participant was in IT, the various temporary duty assignments were 

in the property and casualty area, the life area, and the bank area. Later, when the participant 

made the career pivot from mainframe to the client-server environment, the same types of 

opportunities became available.  
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So, I didn’t trade units, I didn’t change managers. Basically, it was like your day job over 

here, but I’m going to relieve you of most of your duties, go over there on a sabbatical for 

8 months and write code for these guys, because I had the background to do it. And then 

when I was done writing code I came back and re-immersed into the mainframe team…. 

A year or two later when PCs hit the world and we got into the whole client-

server model and we started building applications on the desktop I again got loaned out 

(this time for about 6 months). … One of the things it gave me was a lot of different 

experiences… I did that actually, 3 times in the early 90s while I was a mainframe system 

programmer. (P_11) 

Access to strategic level projects early in your career. Another aspect of breadth that 

was valued by participants was not only a breadth of project experience, but also an exposure to 

projects at varying levels of visibility in the company. Having an opportunity to work on projects 

that had a broader vision in the company enables a person to begin seeing and thinking at a 

‘system level’ of thinking. This was considered by one participant to be a critical part of [his] 

formation.  

Probably my best experience in that space was when I was in a corporate strategy group, 

in a different organization from [the company]. I was given the task to develop a 

balanced scorecard for the business. So I went through the scorecard methodology, I read 

the books. (P_08) 

By learning the concepts of the balanced scorecard, the participant learned of balancing 

measures, of trailing and leading indicators, of outcome measures and diagnostics. 

Most of your financial metrics are not a leading indicator of anything, right? So, that was 

kind of an “aha” for me, but you know you not only measure that, you have to measure 

other things. So, other things included people, you know, how are people doing? If you 

don’t have happy employees who are productively engaged with their work, the 

financials are not going to look good a few years out, right? So, what are the right things 

you need to measure about your employees and your people to know that the system is 

good, right, and it’s performing a stable way. (P_08) 

Being accountable for the measures. In a couple of stories, participants acknowledged 

that, for them, the concepts of measure and organizational performance did not truly solidify 

until they became responsible for the performance of a business area or product line.  
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When I finally owned my own P&L and it wasn’t as accounting for it or measuring it 

from a financial lens, is when I paused to think a lot of metrics that we’re using were the 

wrong metrics—or they were the right metrics for a period of time, but they needed to 

evolve to something else, because that’s where the real world happens. (P_06) 

In the position of responsibility, an organizational leader would have measures to watch 

on the dashboard. In order for those measures to be useful, the leader needs to understand ‘so 

what, who cares, and now what’ with respect to the measures. Until this participant became 

accountable, [his] understanding was limited about what to do because that number had a certain 

value, or when its trend line showed a particular behavior. Part of that education was to learn 

what to do when the trend has a certain shape or slope, whether it is moving in the expected 

direction or not, whether it is moving in a desirable direction, but at too high a rate of change.  

Once responsible for the business area, the participant had a need to explain the behavior 

of any measure or set of measures and understand whether and how they functioned as an 

explainable unit and what the movement of that explainable unit means in the complex form. It 

was at that point that a great deal of foundational knowledge, learned from formal education as 

well as past work experience crystalized and the participant was able to leverage it to add value. 

Another perspective on the measurements focused on the usability of the full range of measures 

used by any particular business area or process. Sometimes,  

we focus too much on admiring the problem with a lot of metrics versus getting the right 

metrics that say, now I can anticipate—these measures allow me to anticipate and get in 

front it before it happens, or to sit back and react in the most effective way. it wasn’t until 

you actually got in and owned a P&L and you get that practical end-to-end understanding 

of what really matters to the consumer, what matters to the people there who make it 

happen every day. (P_06) 

Another perspective focused on the reliability of the measures and how they were used. 

So we report on those metrics and we have a process and it has to be auditable and 

traceable and statistically significant, all those kinds of things. So that’s the reporting 

piece which is probably [the] mechanical aspect… We also review and provide guidance 

and advice based on what we see with all the measures and metrics we are responsible 

for. (P_08) 
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Having a mentor. There were some participants who had specific mentors, both formal 

and informal, and others who just had exposure to organizational leaders. In all three cases, the 

participants talked about their own ability and practice in leveraging the mentoring or exposure 

to learn as much as possible. One participant said,  

I haven’t had a whole lot of hands-on mentorship to be honest, like people who are 

helping me and holding my hand. I haven’t had a whole lot of that. Perhaps, if I had had 

more that, it would’ve taken less time.… But, what I’ve had is access. (P_08) 

Another participant had informal mentorship, saying, “I was a technologist. It was about 

technology not about people … my boss for the last 8-9 years certainly mentored me a lot [in] 

the softer skills, relationship building” (P_11). This participant’s mentor recognized that the 

participant needed to learn the softer skills required for leadership of people in addition to the 

skills required for management of computer technology. However, none of the participants 

discussed mentoring about how to assess the performance of the organization, in particular, but 

were focused on inspiration and motivation of the people who follow you as a leader. 

Knowledge and Skill 

The next set of findings is focused on the knowledge and skills identified by the various 

participants as being important to learning to identify and use organizational performance 

measures. The knowledge is focused around ways of thinking (structured, systems thinking, 

process thinking, creativity and storytelling), scientific or mathematical knowledge (STEM 

skills, statistics, causal analysis, financial modeling, and data collection methods), and business 

knowledge (benchmarking, foundational business knowledge learning techniques, measurement 

frameworks and methodologies). The skills are focused around soft skills (collaboration, 

consulting, giving effective feedback, leadership and mentoring, observation and conversational 

skills, asking good questions, reflection and teaching skills), and more technical skills 

(computational skills, flexing between levels of precision, forming and testing hypotheses, hiding 
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complexity, dealing with assumptions and patterns, and understanding organizational 

complexity). 

Knowledge. The next section presents the areas of knowledge deemed important by the 

interview participants for their development in learning to choose organizational performance 

measures. From understanding how to use data, to collect and leverage it in rules, benchmarking, 

and in models such as financial models, the decision maker’s familiarity with handling data is of 

interest. Ways of thinking are another focal point, including process and systems thinking, 

creativity and innovation. The other point made by many of the interview participants clusters 

knowledge of technical competence and such things as statistics, statistical significance, 

measurement frameworks and other science, technology, engineering, and math skills. 

Benchmarking (industry and internal). Any discussion of measurement is incomplete if 

you have no basis by which to determine if improvement has happened. In many businesses, this 

assessment is accomplished by comparing the organizational performance measures to either 

past performance measures or to industry benchmarks. As one participant explained, for business 

areas new to measuring and performance measurement frameworks, it is not unusual to look 

outside the organization for such comparisons. “We looked at such industry benchmarks to 

understand our efficiency and our effectiveness” (P_02). In other cases, the organization simply 

had not been able to measure anything in the ‘old way of doing things’ that could be a basis of 

comparison later. 

One organization underwent a major transformation and found it was extremely difficult 

to identify and produce measures to determine whether they had actually improved their business 

position by doing so. One participant described it this way, 
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First of all, in transformation—we have whole new processes, we have a whole new 

organizational design, we have no baseline, and, oh, a lot of things that we had no 

baseline, that we had never captured before, so how can we actually measure?” (P_03) 

In discussing “effective measures,” P_07 said,  

I would also look at, are there things, from a benchmarking perspective? If I had no idea 

[internally], are there other companies in the same industry or field that I’m in and how 

are they measuring things? What’s on their scorecard at the top of the house? What is, if 

it’s a publicly traded company, what’s in their annual report? What is in the analyst’s 

reports? That would give me some indication of what would be an effective measure, all 

assuming that we’re in the same industry. Are we trying to achieve the same thing? 

(P_07) 

Another participant describes the challenge in another part of the company by explaining 

that they do not have the internal history, sometimes calling for detailed data 20 and 30 years 

back, to accommodate the financial cycles, necessary to do baselining. In benchmarking, as in 

pattern recognition, discussed later, understanding the types of financial cycles and the behaviors 

you’re looking for is important experiential knowledge.  

That kind of detailed … information, it’s hard to get industry data on. [In other areas], 

there’s a lot of platforms where you can go out and buy and get into consortiums to get 

industry data… So we’ll do studies with companies, third parties who will provide 

information and they’ll give us some of those insights. But, those are probably more 

recent, where we’re starting to get some of that, those consortiums on those products. 

(P_09) 

In information technology,  

over the years, there have been benchmarks done. You benchmark yourself against 

industry. We use Gartner data [a research group which provides industry-specific 

content] and other industry data, saying on average people who run IT shops look like 

this, so we’re taking data to try and compare, what do we look like in comparison? 

(P_11) 

From this participant’s perspective, when a company is out there on the ‘bleeding edge,’ 

it makes benchmarking more difficult, depending on what they are trying to compare. The idea, 

then, is to take the innovative nature of something and find something more tangible to measure 

that still tells the story about the innovative technology. 
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The intangible things about bleeding edge and technology and creativity—yes, it’s really 

hard. But what it comes down to [is] how many people to support how much 

infrastructure, regardless of what’s running on that infrastructure? That’s a little more 

tangible, right? Pretty much black and white. It’s how many servers you’ve got; how 

many people you’ve got. (P_11) 

Broad, foundational business knowledge. In line with the breadth of project experience, 

range of strategic projects, and access to experienced business people, participants identified the 

foundational business knowledge that a person has as a factor in identifying what should be 

measured. The breadth of experience and access were considered by these participants to be the 

means by which this broad, foundational business knowledge is most effectively acquired. 

Formal education was acknowledged, but putting it in the context of specific business problems 

was a non-negotiable element in their views. 

One participant put it this way. “Because I’ve been in different parts of the company, all 

those interactions helped build, you know kind of, my knowledge base for that” (P_03). For 

another, it had to do with exposure to the very detailed levels of business knowledge and 

constructing those into higher levels of knowledge. 

Initially I was in very granular roles where I managed very specific portions of the 

business, which led me to become familiar with that portion of the business, right? But, 

when you are deep down in the details you don’t have visibility for how the whole system 

works, right? So, large businesses like [this company] are large complex systems and 

your junior years in the organization are probably deep into one small area of the 

business. That’s good as a formative years of business experience, but that doesn’t allow 

you to think about performance metrics, overall. That doesn’t allow you to understand 

how the whole system is stable and how the whole system succeeds or not succeed, right? 

… What allowed me to cross that threshold was having positions where I could see the 

enterprise more broadly, right? So, strategy roles. (P_08) 

P_09 spoke of the broad range of business knowledge obtained from the various formal 

education, rotational training, and on-the-job training the participant had. That broad range of 

knowledge reaped multiple benefits. The primary message from the story P_09 shared was that, 
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not only did this breadth of business knowledge enable additional training, it opened the door to 

more opportunities, while providing the tools to exceed expectations in those opportunities. 

A lot of them [other students in the rotational training program] had focused on pure 

investments during their graduate school, where ours was more on business finance … if 

you look at investments there’s a lot of things related to investment theory, diversification 

principles, different measurements of performance. Think about investing in equities. 

When you come over into business finance, [you need to know how] you value this 

particular project, this oil rig, or whatever it may be; getting down [to] fundamental tools 

for understanding components [to assess how] an individual division’s performing and 

how to decompose that. So it was more like financial statement analysis/ business 

analysis and I had things in my tool kit that I had an advantage over some of the students 

coming in from some of these tier 1 school and I was given all the top projects. (P_09) 

Causal analysis. As part of the discussions about integrated measures and the measure 

review and refresh process, causal analysis or statistical significance can be assessed for existing 

measures. From these analyses, the measures might be tuned, discontinued, or augmented. One 

participant identified causal analysis as their desired state. “Right now we are still in the early 

stages of just making sure that we are collecting the right data and that the data makes sense … 

Until we’re comfortable with that, there’s no [point in] doing more advanced analysis” (P_03). 

Similarly, P_10 says it this way, “we have not done it yet for innovation … we still need 

to get to a point where we can measure value before we can attribute value. We’re measuring 

value of the unknown” (P_10). These two participants are dealing with focus areas that are soft 

or undefined; innovative and creative. These things are difficult to measure in part because there 

is little consensus on what constitutes innovation or creativity. P_03 is of the view that one will 

look for “signs” that creativity has happened and, perhaps, measure those. 

P_03’s situation involves being in the early stages of discovering what the organization’s 

new measures look like, collecting data, and beginning to analyze it statistically. Causal analysis 

is desirable in these areas, but is considered to be a state of maturity for which the company’s 

skills are still emerging. In other areas of the company where data has been collected and 
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analyzed longer, causal analysis is more often becoming a part of standard practice. Skill and 

knowledge around those topics are other areas of interest for desired learning to aid the goal of 

finding ways to effectively assess innovation and creativity. 

Creativity, storytelling/innovation. P_03 has a need to understand creativity and the role 

it plays in influencing business success. Similarly, P_10 has a need to quantify innovation and 

the benefit gained by the company’s development of innovative ways of thinking and doing 

business. P_03 pondered the value of quantifying creativity by identifying objective signs of it—

not measuring the creativity itself, but by measuring some proxy result of its having taken place. 

It’s not as precise as we always want it to be, but we have to understand it enough to 

accept that, okay, if there’s the presence of these things and there’s enough of presence, 

okay, then that means there’s a lot of creativity… there’s a difference between presence 

of something versus a list of things [signs] that, if we do them, it [creativity] will happen. 

(P_03) 

These participants can measure the things their organizations do to facilitate the 

possibility of creativity and of innovation by providing an atmosphere and culture in which they 

can flourish. Actions taken to create a creativity or innovative culture can be measured and then, 

perhaps, be correlated with creative work happening in that environment. 

Another opportunity for creativity and innovation lies in partnering with other 

organizations. Each organization may hold part of the solution, one may provide an 

infrastructure in which a new idea can be implemented and another may come to the table with 

ideas of new or different things it needs to be able to do.  

If we live in a world where every time we go to a vendor [he] says, hmm, ‘we’ve got 

some pieces, but we might need to do a little work to make what you’re trying to do 

successful’ … more often than not, we’re pushing our vendors to create things for us that 

help us deliver things we’re trying to deliver. To me that’s another way of measuring 

[relationships]… We’re not completely bleeding edge, but we’re way out there. In most 

cases, it’s not easy to find technology in the world that does exactly what we want. 

(P_11) 
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The term bleeding edge refers to the extremely early adoption or development of new 

technology. When organizations are early adopters of new technology, there are often painful 

consequences. However, in some cases, as described above, there is not a more mature 

technology which suffices to fit the need. This participant sees the company as a whetstone that 

is sharpening the sword, compelling innovation and creativity by way of the capabilities the 

company is collaborating with its vendors to create. 

Data collection methods. Some of the participants more closely aligned to the data and 

analytics business areas spoke of the mechanics of measurement, of the need to have high quality 

data with which to calculate measures. In a way similar to the chain of custody for data in 

research and the ability of the researcher in following that data through analysis to findings, to 

discussion, to conclusions, the people involved in data and analytics in the company require 

certification that the data they are using is of bona fide quality and lineage.  

P_02 discussed the need for knowledge and continual awareness of data collection 

methods, including new development in technology that might produce efficiencies as time goes 

on. Additionally, this participant stressed a need for ease of data collection, expressing the data 

in a raw form so that the business might generate additional insight by slicing it in many 

different ways, and making it easy to tune the measures. In order to make data available at all, 

the data collection method may need to be designed in a way that would make participation fun, 

influencing participation, and making people want to provide data. 

Additionally, in business, access to data comes at a cost. For the good of the business and 

its customers, it is necessary to demonstrate the value of collecting data, formulating 

information, and delivering insight to the decision makers. Sometimes these decision makers are 
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the customers themselves, other times decision makers are executives and other employees 

within the company.  

[Our business area], historically, has not invested into data and analytics. … I went to 

[my boss] and told him, you’re never going to achieve the actionable insights that you 

need for your organization unless we invest. So we [increased project spending] …, and 

so with that huge increase in investment, [my boss] and my peers are asking, ‘what are 

we getting for it?’ I’m constantly telling [my direct reports], ‘with great investment 

comes great responsibility.’… We’ve got to articulate the ‘so what’ and the value 

creation to the [customer], to the employees, and to the [company]. (P_06) 

In this participant’s view, because data collection in the company is the lion’s share of 

data and analytics, demonstrating the value of the investment in data and analytics is of particular 

interest. It is evidenced by the company’s ability to produce actionable insight and in the 

efficiency and effectiveness of the data collection methods. 

Financial models. Understanding the business model, including the complexity of the 

business organization, is critical to being able to formulate and use financial models. There are 

sometimes cases where the organizational structure and the functions within a business are 

managed in a way that makes certain aspects of the financial modeling more difficult, if not 

impossible to do. Learning how to structure the organization so that the financials can be 

monitored and assessed effectively is an important endeavor (P_09). Having an understanding of 

financial models, as well as the organizational complexity and data and analytics practices is 

crucial to successfully implement some of the financial models. 

Learning techniques, measurement frameworks, rules/methodologies. As a way of 

learning and growing, P_08 indicated that the access itself, to leaders, to data, to a broad range of 

business problems was, in itself, “a great learning opportunity” (P_08).  

[You asked,] what has shaped me from how I think about measures and information and 

I’d say frameworks for that. So, that little team I described for you that I worked for at [a 

large bank] that was ‘the magic?’ I quickly learned—so you start as an analytical person 

or a finance guy. Excel is your friend. … And you thought, boy, I can do anything in 

Excel. But, … I started to learn the power of using mass-scale infrastructure and MIS. So, 
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I learned how to build anything in Excel and worked it, and ran jobs that would deliver 

account-level profitability and run it every night on every account we booked with all 

kinds of detailed assumptions and it would be at your fingertips on your screen the next 

morning. So I went through a period of about five years where I learned to really build 

those platforms and got a taste for, and got an appreciation for, scalable financial MIS. 

(P_09) 

This type of experience and appreciation enables P_09 to be more effective when 

providing information requirements, collaborating with IT to build data systems, and designing 

measurement delivery solutions. 

Process thinking. The subject of measures cannot be viewed exclusively through a data 

and information lens. The aspects of people and process are inextricably intertwined. The 

business leader and decision maker who understands the role in the wider context is advantaged 

over one who does not. 

Once the strategy has been defined and set, we take that strategy statement, that strategy 

intent, and we take it as how do you design that actual experience, right, to the moment to 

how do you design the end-to-end processes that bring those experiences to life 

consistently, every single time. How do you embed the right measures into those end-to-

end processes so you can measure the health of that process, delivered consistently 

defined by this, every single time? (P_06) 

When the decision maker is aware of and has insight into the roles and processes that are 

interrelated to his or her processes, especially if the decision maker has played roles in any of 

those interrelated processes, the decision maker is better equipped to understand how end-to-end 

logic—process thinking—may be implemented well. 

Prior to coming to [the company] two years and nine months ago, I hadn’t done a job like 

this one in 11 or 12 years. … But, you know, I had lived it, had breathed it, had applied 

process thinking to other types of jobs, but not this type of more program type role.… 

that’s kind of the hallmark of my career. (P_07) 

The successes this participant has found, including helping to raise the bar in the quality 

of the company’s process measures, demonstrate the advantage of having such multi-disciplinary 

experience and process thinking. 
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Statistics, statistical significance. The company requires the ability to measure things 

that count, but sometimes measures things that do not. A chief outcome of this study may be a 

better understanding of why this happens and how the company might prevent it. The 

understanding of statistical analysis and identifying those measures that have statistical 

significance is part of this understanding. One participant marveled about the amazing number of 

questions that can be answered with statistical data modeling.  

I have a pretty good statistics foundation, statistical modeling and statistical analysis 

foundation from engineering, plus a little bit from the MBA… So we report on those 

metrics and we have a process and it has to be auditable and traceable and statistically 

significant, all those kinds of things. So that’s the reporting piece which is probably [the] 

mechanical aspect. (P_08) 

By looking at statistical significance, this participant felt that the company could make 

headway in its objective to stop measuring things that don’t count and that are not moving the 

organization toward its desired state. 

STEM (science, technology, engineering, and mathematics) skills. While several 

participants mentioned STEM skills and the benefit they expect to see from employees who are 

strong in those disciplines, they also acknowledge that those skills alone are not sufficient.  

You have these whiz-kid individuals back in finance or accounting or whatever doing a 

lot of this mathematical genius stuff, but as soon as you put those metrics and things out 

there and your assumptions, they’re outdated unless you really bring that practical 

expertise into it to help you sit back and say, is this a good metric or not? (P_06) 

Addressing the topic of collaboration skills during measure development, P_06 related, 

I do look for individual that have the skills, more mathematical skills, I’ll lean on them to 

help me bring more of an objective view into that, more of the engineering, mathematical 

type of skills, logic, thinking that kind of helps shape that, but then I will test it with my 

individuals that are not necessarily as mathematical or engineering, what have you. 

Because I want to see how they respond to that metric and can they see themselves in that 

metric? Can they see how they move that metric, and if not, to your point, it can be the 

most over-engineered set of metrics, but I’m not getting the outcome needed because 

there’s some disconnect between the two. (P_06) 
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Balance is relevant in identifying and choosing the measures, as well as for assessing the 

measures for consumability, usability, and usefulness.  

Another participant agreed that the ability to work effectively with performance measures 

is not exclusive to people with a STEM background. 

I think what we’ve typically found is, people that have some sort of quantitative 

background... start with college degree. Whether it’s an engineering or a business degree 

are the ones that typically, it’s an easier transition, not to say that if you were a liberal arts 

major you couldn’t do it, but typically if you look at people that are doing this type of 

work, it’s one of those, more of a quantitative background. (P_07) 

But, another participant was interested in seeing more people with foundational 

knowledge in STEM, to promote more rigorous training in deep analysis and ways of thinking. 

So I really think STEM careers and getting more people to get into STEM careers so they 

can productively work in those environments, that’s becoming increasingly important. 

…[it’s] the way of thinking, yes, and the learning to identify patterns, right? For example, 

someone explains to me how a tool works or how a certain algorithm works and I 

understand the logic and I understand how I can use it for business purposes. I don’t have 

to get into the minutia of how it works, because I’ve seen that before somewhere, 

somehow during my education years. Versus a person may not have that they may be 

more insecure in front of that technology algorithm approach and they need to go deeper 

and analyze the whole thing, that slows down decisions, right? So, I think that science or 

technology or engineering background, that’s been very useful in my later career stages, 

but that’s kind of education-wise. (P_08) 

Structured/systems thinking. The concept of systems thinking was high on several 

participants’ list of important characteristics. Some referred to it as ‘end-to-end’ thinking, while 

others talked of ‘process thinking,’ which is related, but distinct. P_02 spoke of it as designing 

the end-to-end process and the business interactions with the individual business areas so that 

individual priorities are visible, understood and that the measures for the whole take that into 

account. Even contracts and agreements, using systems thinking, would be designed for the 

individual areas to account for both the internal priorities and the end-to-end priorities. 

Insight into the end-to-end process design will also inform how each business area might 

be measured, allowing the perspective to be transitioned from an internal focus of measuring 
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performance to what that participant referred to as a self-as-part-of-focus. This refers to seeing 

how an individual's personal striving for success may be ‘good’ or ‘bad’ or perceived as good or 

bad for the larger group or organization. Another pair of perspectives dealt with understanding 

one’s span of control or context boundaries within the organization. 

But, … they’ve also had to understand, outside of the data components, they’ve had to 

think a little bit in end-to-end terms. Where does something start? Where does something 

end? … where to start something and how to harvest what I do upstream [that] influences 

what happens downstream. (P_07) 

So, when I had a strategy role, I had to get familiar with the entirety of the business. 

here’s [one business area], here’s [another]. here’s how [the first] makes money, here’s 

how the [other] makes money, here is the [customer] dynamic, like, how we acquire 

[customers] and how [we] retain [customers] and how many do you need to acquire to 

keep the system growing or in balance. That sense of how the entirety of how the system 

works requires you to play a role in a broad exposure type of function. (P_08) 

Finally, P_11 talked about the need for employees to consider, analyze, and understand 

very complex things. This participant considered the ability to think in a logical, “complex, 

stringing things together” way. 

There are different jobs in the world that require different levels of aptitude. It’s the one 

thing that I think, initiative and passion can probably be groomed in your upbringing. 

Aptitude, different people are born with different levels of aptitude. I know some people 

that I think, holy smoke, I don’t know how they think like they think. Then I know some 

people who don’t have a very logical-minded aptitude, but who are extremely creative-

thinking people. So, I think there are different jobs in the world for different aptitudes. In 

our world, in the technology world, it’s a logical world, a complex, stringing-things-

together world. If I knew how to hire someone, to measure the ability of a person to 

logically think like technology works, they have a passion for this stuff and they have a 

high work ethic, I could guarantee you they’d be successful. (P_11) 

For this participant, the ability to think in this way plays into the ability to determine how 

to put measures in place that allow the organization to determine whether it is meeting its 

objectives. Especially in IT, systems are developed in components that are then assembled to 

deliver a larger, complex capability. People need to think in terms of components and 

interrelated components in order to deliver such systems. Providing the ability to measure the 
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effectiveness and efficiency of each component and then to measure the success of the assembled 

system is part of that, analogous to measuring such things in complex human processes. 

Skill. This portion of the findings focus on interpersonal skills, like collaboration, 

observing, teaching, influencing, and consulting. These focus on how we elicit and construct 

understanding together. How we test and use what we learn using these interpersonal skills is 

demonstrated as we ask good questions, form hypotheses and test them, recognize patterns and 

understand how organizational complexity impacts those patterns and the behavior of related 

measures. Skill is needed to effectively communicate the knowledge we have constructed—

hiding complexity to express ideas simply and, finally, speaking at the appropriate level of 

precision for the information consumer. 

Collaboration and influencing skills. In a process similar to a qualitative research effort 

to identify the things that are happening in a particular environment, setting, or person’s life, a 

business person may be called on to take a qualitative research approach to discovering the 

business requirements for an organization. This includes the ability to determine how the 

business strategy is envisioned, describing it in rich language that can be then understood in 

terms that one might measure. One participant, stressed the importance of her skill in 

interviewing business stakeholders, employees, and listening to the voice of the customers and 

employees.  

Listening to the employee or the customer means more to this participant than just 

hearing the words they say. It means understanding and internalizing them so that the things that 

are most important to those individual may be given the importance they require and so that the 

business can focus on meeting the needs they express. By being able to interview and elicit the 



118 

person’s needs, to listen effectively to their input, and translate that into rich, clear business 

requirements, the business’ ability to measure those needs is also improved. 

For another participant also, influence had a definite place in the toolbox. 

My biggest role is to make certain that from the leadership all the way through, we pause, 

we anticipate, we make certain that we have the right skills at the right time to work on 

the right things. Then I make certain that if we have to take a shift in how we do the 

work…. In the past we’ve done agile teams just with the IT group, but we’re not fully 

business agile this point because here’s the things that we’re missing. … We need to 

build these type of skills, but also build these types of processes and different ways of 

doing the work that allows us to be more effective and efficient. So, not only am I 

anticipating for my team, but I’m also anticipating for the broader [organization] and how 

we need this shift to different business frameworks and also how we bring different skills 

across [the organization] to help us get to the strategy. (P_06) 

Another participant focused on the collaboration skills. 

One of the steps is a stakeholder analysis... I’m going to work on understanding or 

improving this particular process, okay? Well, who are the stakeholders that touch this 

and impact it? Now, let me think about what that is. (P_07) 

This participant also expressed a second slant on playing an influencing role. 

Later in my career, … I remember talking to my wife about [the idea that] I don’t 

necessarily want to be CEO of a company or the founder of a company, but what I would 

like to do whatever the role is, is kind of to have a seat at the table on the leadership team. 

Like whatever that role, it would be satisfying. (P_07) 

P_09 shared the idea that, in learning about measures, we often have to deal with a 

confounding organizational structure. Profit centers may not particularly care about expense 

centers, so measures around expenses may not influence change or management decisions 

effectively in the profit centers. The ability of the business leader and decision maker to 

influence the choices and vision of the various business centers, especially in helping them view 

the end-to-end value chain for the organization, is a strong asset. Another participant expressed 

the need for strong collaboration and influencing skills this way,  

For my domain, I’m accountable [for] setting performance measures at the macro 

level.… no individual makes any one decision around here. We tend to ‘committee 
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approve’ everything. But, I will say that my job is to assess performance targets. And in 

our decision framework, … I’m a heavy influencer into those. (P_10) 

Consulting skills. Along with soft skills like collaboration and influencing are other skills 

that can be categorized under the heading consulting skills. It may not, necessarily, be the 

consulting skills, specifically, but the understanding that consultants are often granted, as a part 

of their consultancy, access to a wide range of data and access to business leaders.  

An example, [from] when I was management consultant. When you come in and work for 

consulting firm charging several million dollars for a project, you will have access. 

Because the organization has a vested interest in giving this group of consultants 

everything they need to go figure out the problem. So, we had lots of access to 

information. (P_08) 

The soft skills necessary for success in consultancy are called into play when dealing 

with the need to negotiate and cross over organizational boundaries to understand the interrelated 

processes and the interactive measures needed to understand end-to-end systems. 

Flexing between levels of precision. P_01 discussed the need for measurement 

practitioners to be able, or perhaps willing, to express measures a varying levels of precision. 

This participant felt that the ability to express directionally correct in measures, rather than only 

precisely correct measures, was important when delivering information to decision makers. 

Decision makers at higher levels expressed the feeling that sometimes the practitioners try to be 

too precise. There seemed also to be a mixing of the concepts of imprecision and aggregation, 

with one participant expressing the thought that, at times, decision makers might be better served 

by directionally correct information than by waiting for precision which cannot be delivered.  

[Sometimes,] I want to measure whether I won every battle, … I’ve lost the war though, 

because I wasn’t really looking at the big picture of the things that really matter to other 

individuals … in the enterprise or taking that further out toward the people element … 

What are we missing? What do we gain?” (P_06) 

Forming and testing hypotheses to explain outcomes. In order to determine what to 

measure when the necessary measures are not designed into processes and systems as part of the 
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original designs—or where no such design is suitable, there is a need to hypothesize what is 

happening in any given environment, one data and analytics process owner felt that the 

practitioner’s skill in developing and testing hypotheses was critical. This skill enables them to 

mine data in order to discover what it might have to tell about the customer behavior, process 

performance, or other subjects under study. When focusing on the concept of data mining, such 

experimentation aligns with a research study that will analyze data to determine whether the 

hypothesis bear out. This is distinctly different from designing processes and systems with an 

understanding of the desired outcomes and the data that might be provided in the design to 

enable measurement of those outcomes (P_01). 

Giving effective feedback. Also related to strong collaborative and influencing skills, the 

ability to give good feedback was identified by a couple of participants as a necessary skill. If 

you start from the premise that giving feedback is intended to enable the receiver of the feedback 

to assess and take action on some matter needing attention, then the feedback may be considered 

a measure (or assessment) of the receiver’s original behavior or actions. This puts a qualitative 

face on the idea of the measures this study is exploring.  

P_02 shared some thoughts about an effort to collect information about employee 

sentiment about their work on any given day. The employee could click on the company’s 

internal home page on a ‘smiley’ or ‘frowny’ face to indicate how they were feeling about their 

work. 

The thought process was that, like when you log on, you see your department is frowny-

faced, right, and [the company] is smiley-faced, right? and you’re smiley-faced. And 

you’ve like, well, wait a minute, that’s not an accurate depiction of how I feel, right? I’m 

now more motivated to go in and share my feedback, right, to have it be more 

representational of how I feel, right? You’re [feeling] frowny faced and the data is, the 

data does not represent that, right, it says that everybody’s happy and you’re really not 

happy, right? (P_02)  
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This type of condition might influence the employee to register their feelings about being 

‘frowny-faced.’ 

Hiding complexity to present findings simply. This skill aligns with the ability to flex 

between levels of precision. When communicating findings ‘up’ in an organization, the ability to 

hide complexity and express the findings simply is considered critical by people in a position to 

receive those findings. They want to know the ‘answer’ rather than seeing the practitioner ‘show 

their work” (P_01) While the receiver of the information may press for more details in areas of 

interest, they value the ability of the practitioner to present the simplified findings in a way that 

clearly identifies the ‘so what.’ When developing and using measures, this participant considered 

it important for the users to be able to understand what the measure was telling them and then to 

clearly identifying why it mattered to the success of the customer or the business. 

Interviewing and observation skills. There may be times when collaboration takes the 

form of interviewing and observation rather than the more typical interactive exchanges that 

occur in business. P_02 identified such skills being needed to develop good measures. 

How we train our process engineers here on change management and communications is 

a big part it [learning what needs to be measured]. It’s one thing to be technically 

brilliant. It’s another thing to be able to articulate what you were trying to do and why, 

it’s another to bring others along, in order to get things done, right? (P_02) 

Another participant agreed that effective collaboration depends on the ability to 

communicate what information is needed and ask for it effectively. 

And absolutely they are both are important, right? Also it’s recognizing that particularly 

here, we have resources here to help. if you need help understanding what change 

management or what you need to communicate is, we’ve got resources here, full-time 

resources that can help, that can be part of the team, just like just like any SME [subject-

matter expert] would. And how you would bring them into the fold to help get that 

done?” (P_07) 

Those participants were joined by a third, who agreed and added a focus on observation, 

being able to effectively see what is happening. 
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I think the pattern recognition is something that requires time. And, again, the only way 

you accelerate pattern recognition is, perhaps, having you be in a position where you can 

see what’s happening, right? Because if you’re too deep down in the organization, you 

may not see what, you may your details, but you may not see the whole picture. (P_08) 

Knowing the right questions to ask. Strongly related to interviewing skills is the ability 

to ask the right question. This is essential for understanding a problem at hand and enabling an 

analyst to, first, determine if he or she understands a problem correctly and sufficiently, and if so, 

to break it down into solvable pieces. 

I think we spent a lot of time … chasing the wrong questions. Another thing—I think I do 

this well, but I’m sure I’m guilty of it too—sometimes we ask questions and spin up a lot 

of people to answer the question. And I wonder, when we know the answer to this 

question, what will be do? Is it interesting or is it actionable, right? … it’s not only do we 

ask the right question, are we asking the right question is the flavor wrong? it’s more, will 

the answer really matter?” (P_04) 

This aligns also to the comments of this and another participant who both stressed the 

idea that it is a poor practice to generate measures to answer questions of intellectual curiosity, 

but which serve no other defined purpose (P_01, P_04). 

Another participant spoke of a long-time practice of keeping a log. A researcher might 

refer to this as a research journal. In preparing for an engagement to develop requirements or 

design a new process, the participant would do homework to prepare for the encounters, identify 

questions and be prepared to stimulate conversation using those questions. Additionally, the 

participant would reflect on the conversation and refine the questions for future encounters. In 

this manner, the participant would have a way to follow through on the questions, answers, and 

reasoning that led to certain requirements and design decisions (P_07). The participant shared 

that,  

We have resources here to help. if you need help understanding what change 

management or what you need to communicate is, we’ve got resources here, full-time 

resources that can help, that can be part of the team, just like just like any SME would. 

(P_07) 
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Mentoring skill. One participant shared a perspective on the mix of experiences that 

contributed to [his] learning. “[In] almost everything that you do, because you’re learning—

what, 70% is exposure, 20% is mentoring, and 10% is the classroom” (P_06). The participant 

acknowledged that the importance of the classroom (and by that, the participant was referring to 

formal and sometimes informal education) would vary based on the focus of an individual and 

the practice or discipline in which they are employed. Of interest also was the expressed belief 

that mentoring made a larger contribution to the participant’s learning how to choose 

organizational performance measures. 

Another participant took a more general slant when discussing the importance of 

mentoring. The focus in this participant’s business area was on the use of coaching to influence 

and fine-tune a practitioner’s skills. Coaching and mentoring differ, in this participant’s 

perspective as follows. Coaching is task- and performance-oriented. It is about helping an 

individual execute a task to a higher level of quality. Mentoring is person-oriented. It is about 

helping that individual broaden and deepen, to become more well-rounded in all the 

characteristics, skills, ways of thinking necessary to be successful in a particular environment. 

I’m a big proponent of …. I think about it almost as, mentoring can take many 

[forms]…when you hear the word mentoring it can mean many things… from a process 

[engineering] perspective, I think the concept of coaching is important, no matter what. 

And so, one of the things that we do promote and we have a formal structure around is 

coaching. (P_07) 

Focusing on the development of the whole person, the selection of a mentor is considered 

by some to be essential while others shared that it would have been nice to have one. By virtue of 

the positions each of the study’s interview participants held, I consider each to be successful. 

Still, one participant spoke of mentorship in this way. 

In my case, right? I haven’t had a whole lot of hands-on mentorship to be honest, like 

people who are helping me and holding my hand. I haven’t had a whole lot of that. 

Perhaps, if I had had more that, it would’ve taken less time, right? (P_08) 
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P_11 shared a perspective of mentoring that requires a clear measure of humility. In 

choosing who and how to mentor, this participant viewed it as an essential responsibility to help 

protégés find their way, to navigate political waters, and to interact effectively above their 

current organizational levels. 

As a leader, if I feel like, say something happened to me tomorrow and I needed to go 

away for two months. If I was worried about this organization running for two months 

without me, then I haven’t done my job making sure I have the right leaders underneath 

me to run it and make the right decisions. If you’ve got that kind of mindset, then I think 

you have not built and mentored the team that you need. (P_11) 

Recognizing and using patterns effectively. Several participants mentioned the concept 

of being able to see, recognize, and use patterns effectively in making decisions and running 

their businesses. They also discussed the ways and times when it was appropriate to recognize 

deviation from a pattern and when that divergence was a cause for concern. 

If you have a stable environment, then you have much confidence in terms of your 

metrics, right, especially over a long period of time. However, things do change and you 

have to be able to recognize [when] you’re in a state where it is significantly different, or 

you’re heading into the state where it’s significantly different, you need to be able to 

adjust.… We look at three different components [types of deviation from an established 

pattern], the gradual, the cyclical short-term, and then random. (P_03) 

The ability to recognize patterns and learn to use them effectively was thought to be a 

skill that required life and work experience. This is especially true in the financial sector, where 

economic cycles might be decades long. A student can be exposed to the concepts and taught 

about patterns that are already part of the economic landscape, but the ability to recognize new 

cycles is one that is considered to be learned by experience, not by formal education (P_09). 

Another participant concurred. 

I think the pattern recognition is something that requires time. … The only way you 

accelerate pattern recognition is, perhaps, having you be in a position where you can see 

what’s happening, right? Because if you’re too deep down in the organization, you may 

not see what, you may see details, but you may not see the whole picture. I think the role 

of leaders in getting people to become better pattern recognizers is sharing with them 

what’s happening. (P_08) 
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Reflection and reflexivity. Reflection is the practice of thinking about an experience or 

new piece of information and determining how it fits in one’s mental models, in one’s frame of 

reference. Reflexivity is applying the insight derived from reflection to change one’s interactions 

or behaviors with respect to the new experience or information. One participant focused on the 

“pause,” which represents a point of reflection in the participant’s way of thinking. In 

considering one’s business functions,  

you had to pause and say, you’re going to constantly look into the rearview mirror to 

measure that, and see how that translates into the future, but most of it is, you’re looking 

at, how do I identify the leading indicators to know that I’m heading into the right 

direction, versus lagging. (P_06) 

Reflection in one business area is focused on listening to customer feedback and 

determining how it should influence management of their business processes. In this process, the 

participant’s business area took the feedback, reflected on it, and determined the appropriate 

actions to take with respect to what they learned (the scorecard measures themselves) and the 

feedback about those measures. 

They hear a lot of the ground truth and feedback and we have an opportunity before we 

publish the scorecard to talk about it as a team as well as with the broader community. 

…We review the scorecard and after that is when we publish it. (P_07) 

For another participant, the discussion about reflection focused on the decision to redirect 

the educational focus in a completely new direction, toward finance. 

I took my first finance course in my core curriculum and I reflected on all of the things 

that I truly enjoyed in my prior four years and they were all analytical in nature. It wasn’t 

the sales aspect of my job or the marketing…, it was all anything that was more 

financially oriented or analytical. … So, I completely switched careers, right? Went from 

marketing sales over into finance and 17 years later, I never looked back. (P_09) 

Teaching skills. Teaching skills were not mentioned in so many words, but there were 

frequent references in the interview conversations about helping people learn or understand, or 

helping people to use measures correctly.  
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I had this focus group in which we randomly picked directors who didn’t necessarily 

know each other, okay? And they came in, they looked at the same thing, and they 

interpreted it very different, okay? And they learned from each other a lot of times as 

well. So that just meant we were producing a lot of numbers, but we really didn’t educate 

and train people enough on how to use these numbers. (P_03) 

P_05 has teaching experience, during and after graduate school, both in the classroom 

and online. Although we discussed the experience, there was no clear indication that the teaching 

experience impacted the participant’s ability to choose organizational performance measures. 

However, that skill impacted the participant’s ability to collaborate with others who had 

requirements to put measures in place. The participant considers helping others understand the 

important aspects of defining measures and executing the measurements to be a significant part 

of the job responsibility. 

Understanding organizational complexity and its impact on measurement. Although 

only one participant mentioned organizational complexity specifically, the importance placed on 

it was unmistakable. The discussion called to mind the importance of defining problems 

sufficiently and then breaking them down into component pieces that can be analyzed and 

addressed more effectively—those analytical problem solving skills, certainly, but also the 

ability to identify the real problems impacting the organization. This participant spoke of the 

complexity of the organizational structure, not specific to the company, but as is true to some 

degree for many companies. Difficulties exist where the organizational structure does not align 

cleanly with the way financial measures are calculated and assembled.  

The primary message the participant was communicating was not limited to the 

organizational structure, but could easily be applied to process complexity, to complexity in 

technical and information architectures, or even to the complexity on a single individual’s 

thinking processes. The takeaway, from this participant’s perspective was to make careful 

analysis to decompose that complexity as much as possible to enable sound measurement (P_09). 
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Effective Measures 

As a final question in each interview conversation, I asked the participants to share with 

me their perspectives on what constitutes an effective measure. Based on their responses, I 

aligned the common perceptions to the literature on balanced scorecard, program theory, goal-

question-metric approach, and performance management, composing a comprehensive view of 

the concept of an effective measure. There were several perspectives offered, with two prevailing 

themes: what an effective measure is and the contextual information required for a measure to be 

useful. In addition to having contextual information, one participant also made it ‘real’ at the 

individual level. “[By] meaningful, I’m thinking about performance measures, that’s why I said, 

measuring and being measured. So, if someone’s measuring me, but I do not agree with the 

measurement by which I’m being measured, then it’s not useful” (P_05). In this way, the 

participant identified a necessary connection between the meaning and usage of the measure and 

its meaningfulness to the person being measured. 

An effective measure is…. An effective measure is one that is actionable. Four of the 

eleven participants explicitly named this characteristic (P_04, P_05, P_06, P_09). Although there 

are some measures generated strictly based on regulatory law, a measure defined at the 

organization’s discretion will provide actionable insight that is “not overwhelming, to where, 

now, that’s all you do is spend your time monitoring instead of actually doing things” (P_03). A 

measure is considered effective if it can be used directly to make a decision or is used as a factor 

in another measure which is. 

An effective measure is one that is continually measured over time and moves over time. 

“An effective measure … it has to move” (P_03). Seven of the participants mentioned this 

dynamic (P_01, P_02, P_05, P_08, P_09, P_10, P_11). Once a measure ceases to show 
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movement, it becomes inert (constant) and ineffective in driving behavior change or decisioning 

(P_02). 

Unless one is describing an object, process, or condition in the organization which can be 

influenced or controlled, generating a measure for it should be carefully considered. One 

criterion in selecting an effective measure should be to understand explicit actions the 

organization can take to move the measure. Although only one participant (P_01) explicitly 

called this characteristic out in conversation, it seemed to be implied or assumed by many other 

participants. The themes of the conversations revolved primarily around managing and decision 

making, actions which imply that the measures can be used to impact other things the 

organization cares about.  

Another characteristic of an effective measure is that it has been used over time and, 

through that use, a business objective reached. The review of a measure over time refreshes its 

use and reconfirms its value. “You put [the tested measure] out for the larger group, you continue 

to monitor it, and you’re going to continue to tweak it and refine it” (P_03). P_05 addressed the 

concept of reviewing measures to ensure that those being measured understand and agree with 

the measures and have an opportunity to provide feedback about the usefulness of the measure. 

Since measuring drives behavior, reviewing and refreshing measures is important. Obsolete 

measures may be entrenching behaviors the organization wants to grow past (P_06). Finally, the 

review allows the organization to collect information about what works well, and how well. The 

review/refresh process includes feedback from the customers for whom they are producing the 

measures. Those customers collect data about what is working and how well, and to make sure 

the organization is still using the right measures (P_07). 



129 

A measure that is an assessment of the right thing, whether it can be measured directly or 

by measuring a sign, of some kind, that stands in proxy. That is, “what are the things that, at a 

high-level, [are] important to you. We want the signs that you’re looking for. … We have to 

accept the fact there are some things you can’t measure objectively” (P_03). Other times, no 

proxy is needed, and then effective measures are those that “measure the right thing and that they 

measure it accurately… [they are] discrete and actually measuring the thing you want to 

measure” (P_04). 

Repeatability and reproducibility when generating measures are a signal of reliability and 

quality. There may be regulatory, contractual, and procedural requirements in organizations that 

require measures to be reproducible to demonstrate fidelity. For example, if two different people 

follow the procedure to calculate the measure, they would get the same answer and if one 

repeatedly extracted data out of the same system, it would deliver the same data every time 

(P_07). This would make the measures auditable (P_08). 

An effective measure is simple or can be expressed simply (P_05, P_07). Simple 

measures, even if they are not those that are ultimately desired, create trust, momentum, and 

potentially enable the organization to grow into desired measures (P_10). Some understanding of 

simplicity relates to the clarity of the connection between the measure and the strategic intent for 

which it is designed. “If anything you're doing doesn't contribute to that simple intent, don't do 

it” (P_06). 

Effective measures are calculated correctly, tested, and demonstrated to work as 

designed.  

Before you actually put it into production to where people using it, you have to test it, 

okay? then, once you’ve tested and [see they] are driving the right behaviors and so forth 

for small sample, then you put [them] out for the larger group, you continue to monitor it, 

and you’re going to continue to tweak it and refine it. (P_03) 
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An example of this is when measures, while technically correct, do not reflect the spirit 

of the concept that needs to be measured. In some cases, the technically-correct measure drives 

wrong behavior. “When we went out and talked to the business, one of the things we heard was, 

[our business area] just seems kind of slow, right? … What? Like we’re intellectually slow?” 

(P_02). A measure was being applied that started the clock for their response time long before a 

task was presented to the business area for action. The measure was technically correct, 

calculated correctly, but misrepresented the response time for that business area. In this case, the 

measure did not actually work as intended, though it worked as designed.  

A complete definition of an "effective measure" includes…. Well defined measures 

must be balanced when viewed in context with other measures. Analysis of effective measures 

includes a well-defined rationale for balancing possibly opposing objectives and deciding, 

among multiple measures, which to focus on. An effective measure  

has to be balanced. So, we’re not talking about one particular metric, but a set of metrics. 

You can’t just go with one, you have to have a set. Because by just following one, you 

could take one, could take it to the extreme and not understand the implications of that on 

other aspects of your processes or your business. (P_03) 

As an example, another participant described the balance between product sales and the 

health of the organization overall. So balance has to be provided between measures of product 

movement and other aspects of organizational health, such as employee satisfaction and process 

efficiencies. 

As a manufacturer your goal in life is to “move the metal,” right, move as much product 

as possible, but you also want a healthy dealer franchise, right? to make sure they’re in 

place for the long run, to serve your customers in the end. (P_09) 

The identification of related measures that act in concert (including for triangulation) is 

another characteristic of a well-defined effective measure. This might be illustrated in a 

conceptual model or diagram showing the related measures. The relationships should be defined 
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to the extent that consumers know “they don’t have so many other influences that you can move 

around and not be the thing that you actually care about. That may require a set of measures” 

(P_04). Being able to assess a measure set and understand the more complex story it tells will 

help justify the cost of developing and managing the measures. 

Effective measures are produced in a timely manner.  

Timeliness and quality, okay? So there are some inherent trade-offs to that. It doesn’t 

mean there’s always a tradeoff. Sometimes there are actual things that you can do to 

improve both, to move both in the same direction, but a lot of times there are tradeoffs 

and you have to recognize that you can’t just follow one and abandon the other, okay? 

(P_03) 

P_03 stressed the idea that there are times when decision makers must choose between 

improving the performance in one dynamic, while allowing another, competing measure fall. 

This is when business conditions, environmental factors, the needs of the customer balanced with 

needs of the organization, and other judgment calls come into play. Referring back to the 

discussion of intuition versus data-driven decision making, there are some times when the 

measures themselves cannot tell the whole story. 

Effective measures need to be defined with accompanying information explicitly 

describing the behavior they are designed to drive. This may include negative behaviors that they 

may drive and ways to mitigate that negative behavior. These behaviors include intended 

behaviors, driven by design as well as possible unintended consequences. The behavior of the 

measure itself, including variance over time, seasonal variance, expected trends, and factors 

influencing-the behavior of the measure should be considered when measures are designed and 

put into operational use. As the measures “should signal some sort of action or behavior so that 

you can affect that” (P_03), you should know ahead of time so that you can determine whether 

that intended outcome is being realized. 
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A well-formed definition of a measure will also include explicitly defined context P_01, 

P_02. P_06, P_07). This context may consist of the process in which the source data is created or 

managed, the process in which the measure is created or leveraged, the intended usage, the 

various influencers (moderators impacting the measure), and a description of the environment 

being measures or in which the measure is leveraged for action. The environment in which the 

measures is created should include well-defined information enabling the business to implement 

an auditable data collection mechanism. 

Along with definition and context, a formally agreed-upon usage of the measure may be 

included in the description of an effective measure (P_02, P_03, P_05, P_07, P_09). This might 

include materials used for teaching consumers about the proper meaning, context, and usage of 

the measure and insight generated from it. By including this information, the overall value of the 

measure will be clearly articulated. 

An effective measure, especially in context with other measures that enable 

implementation and management of a desired objective, will also include an explicitly defined 

intent, the “Commander's intent.” In this way, those who are consuming the measures and taking 

action on them can remain directionally correct with respect to intended organizational 

objectives (P_02, P_03, P_05, P_06, P_10). 

Well-formed measures include a definition expressed in a business language shared by 

the measure’s producers and consumers—or in a form in which both producers and consumers 

can come to understand the measure from a common perspective P_06, P_10). This might 

include development of a shared glossary of measures. This glossary might include the explicitly 

defined meaning, that is, an understanding of the essential concept being measured as well as the 

mechanics and the formula used to derive it. It “has to be understandable—so, simple enough to 
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understand, but not too simple to where it doesn’t clearly say, here’s what you need to do” 

(P_03). 

In addition to the clearly identified behaviors of the measures themselves, that is, the way 

the numbers are expected to behave, effective measures will also have explicitly identified 

desired outcomes, business objectives, or needs that are illuminated by the measure. This 

characteristic was mentioned by all interview participants. Some measures are defined to show 

that progress is being made to achieving the objectives of a business strategy, while others are 

designed to provide diagnostic information about the efficiency of the processes used to deliver 

the business strategy. Understanding the outcomes for each measures is an important part of 

knowing if it is telling the organization about meeting the objective compared to how efficiently 

it is meeting the objective.  

Good context around an effective measure will include identification of the business 

questions that can be answered by the measure and demonstrate that the measure has a value-add 

purpose, rather than just satisfying intellectual curiosity (P_01, P_02, P_05, P_10, P_11). While 

there are business functions that call for the satisfaction of intellectual curiosity, again, balance is 

required to ensure that the resources applied to generation and maintenance of measures is 

supported by the value added to the organization. 

Another characteristic of a well-formed effective measure is the identification of the 

measure type P_02, P_03, P_04, P_06, P_07, P_08, P_09, P_10, P_11). There were three 

primary types discussed by the study’s interview participants: (1) strategic measures (P_08), (2) 

outcome measures (also referred to as lagging indicators, output measures, and goal measures), 

(3) diagnostic measures (also referred to as leading indicators, input measures, and milestones). 

A final type that was mentioned was a measure used as a proxy for, or a sign of, something 
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currently unmeasurable. This final type was an indicator for such things as creativity and 

innovation. 

I think the strategic metrics are indicators of whether you’re accomplishing your strategy 

and that’s a very high level, right? In this case it’s almost on the person accountable for 

those metrics would likely be someone like a CEO, right? The composition of those 

metrics into plans and activities then result in lower-level metrics for people in the 

organization. (P_08) 

Finally, an effective measure or set of measures may include suitable presentation or 

visualization options P_01, P_02, P_05, P_10). When telling a story to enable sound decision 

making and to communicate the progress of the organization toward strategic objectives, the 

visualization of the story plays an important role. There are some visualization tools, 

presentation options that may communicate the information more clearly than others. If this is 

the case, it may be helpful to include such recommendations when measures are developed.  

With this qualitative research and analysis of the life, education, and work experiences of 

executive process owners, the identification of skills and knowledge they drew from those 

experiences, and their insight into what effective measures are, I formulated a survey to be 

conducted with the full population of the process engineering community in the company. The 

significant themes and concepts discussed above make up the bulk of the survey, which may be 

found in Appendix C. 
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Quantitative Findings 

The qualitative interview transcripts were assessed and codes were extracted from each 

interview. These codes were aligned and analyzed to developed themes. The first draft of the 

survey was composed and organized based on the theoretical foundations of the study and the 

perspective of the research question. The theoretical foundations were decision making, program 

theory, and performance measurement. The qualitative research question was, what are 

experiences, activities, and knowledge that contributed to the decision maker’s ability to select 

organizational performance measures. 

Formulation of the Survey 

The interview findings in the qualitative findings section were organized according to the 

discovered themes. The same organizing structure guided the initial formulation of the survey 

items and the organization of the survey questions. The initial organization scheme for the 

survey, based on the foundational theory and the research question, was rational. 

Survey organization scheme. On further consideration, it seemed that the original 

organization could introduce a bias in the responses, influencing respondents inappropriately, 

leading them to a foregone conclusion. Further analysis resulted in a way to frame the survey 

that would reduce this bias: a better way to frame the survey items, an approach for developing 

the Likert responses, and an organization of the items that did not introduce such bias. 

Survey planning resulted in a formula for stating the survey items, an approach to the 

Likert responses that would yield sound results, and the formulation of candidate factors as a 

basis from which to analyze the survey results. In asking the respondent to assess each statement 

for importance, the formula was to state the item as, “my ability to…,” “my knowledge of …,” 

or “my <characteristic>….” The responses were in a five-level Likert scale: very unimportant, 
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unimportant, moderately important, important, and very important. To these, an option ‘I do not 

have this characteristic’ was added. Discussion of the consequences of this decision are included 

with the handling of missing data. Finally, the candidate factors (see Appendix D) provided a 

way to think about the various characteristics and approach the analysis. These factors were not 

visible in the survey itself, in which the items were presented simply in alphabetical order. 

Survey creation. Survey Monkey was used to create, deliver, and collect responses to the 

survey with anonymous responses, collecting no email or IP addresses. the survey was organized 

in four pages: the informed consent, the experience, knowledge, and skill items, the measure 

items, and the demographics. The items on pages two and three of the survey (EKS and measure 

items) were all required, and thus produced no missing data, in and of themselves. There were 

optional questions on the demographics, primarily those involving entry of a masters’ or post-

graduate degree focus.  

Survey execution. The survey was offered, via a link to the survey in Survey Monkey in 

an email, to the population being surveyed, for seven days, from Sept 14th to 20th. A reminder 

email was sent on September 19th and a thank you email on the 21st. Status updates were 

provided to the business leaders of the population community who facilitated access to the 

population after day three and on days six and seven.  

Survey responses were extracted on days two and six. The first extract was for testing and 

setup of SPSS and the second for full analysis. Survey responses were extracted from Survey 

Monkey into an Excel spreadsheet using the web site’s export utility. There were a total of 59 

responses, with four incomplete responses. There were two responses on day one, 20 on day two, 

two on day three, 30 on day six, and five on day seven. The peak days were the days the initial 

and reminder emails were sent to the population. 
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SPSS approach. SPSS version 21 was used to analyze the survey responses, generating 

descriptive statistics, testing for normality (required for factor analysis), assessing Cronbach’s 

alpha, and executing factor analysis. PCA was used to extract factors, regression analysis was 

used to attempt to identify variables involved in the multicollinearity issues, and MANOVA and 

one-way ANOVA were used to assess the behavior of the extracted factors by population group. 

Data analysis. Of the 59 responses, four were incomplete. The 55 complete responses 

were grouped by age range: 12 respondents (21.8%) were under 30, 23 (41.8%) were age 31-40, 

14 (25.5%) were 41-50, and 6 (10.9%) were over 50. Thirty-nine (70.9%) respondents were 

male, 15 (27.3%) female, and one declined (1.8%, this was treated as missing data). The process 

complexity demographic showed 8 respondents with simple processes (14.5%), 15 with 

moderate process complexity (27.3%), and 32 with complex processes (58.2%). There were three 

decision tenure ranges, 0-9 years with 15 respondents (27.3%), 10-11 years with 8 respondents 

(14.5%), and 12 or more years with 32 respondents (58.2%). 

The incomplete cases were removed from all analysis (Tabachnick & Fidell, 2013). All 

55 experience, knowledge, and skill (EKS) variables were assessed for mean, median, mode, 

standard deviation, variance, and missing data. There were several cases with “I don’t have this 

characteristic” responses. This value was recorded as a 6 in the data. Including these values in 

the analysis skews the means, influencing the other statistics unacceptably. These values have 

been code as missing data. However, for a number of the variables, an unacceptable percentage 

of the cases are impacted, prevented replacement with the series mean. This impacted 

financialModels, 11.9% missing; Masters, 13.6%; trainingRotation, 28.8%; postGraduate, 

23.7%; and commandControl, 5.1% (Tabachnick & Fidell, 2013). The maximum allowed to be 

missing for replacement is 5%. To move forward with the analysis so that an unacceptable 
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number of cases will not be omitted from analysis, these variables will be removed from the 

PCA analysis (Tabachnick & Fidell, 2013).  

Assess for normality and outliers. After being treated for missing data, the remaining 50 

variables were assessed for normality. With the exception of rightQuestions and 

visualizeArticulate among the EKS variables and canBeInfluenced among the measure variables, 

all were normally distributed according to assessments of the kurtosis and skewness variables. 

Normally distributed variables are desired for factor analysis (Yong & Pearce, 2013), but a 

solution using non-normal distributions, while degraded, can still have value (Tabachnick & 

Fidell, 2013). For the purpose of this analysis, these variables have been excluded from the PCA 

analysis. Outliers (see Tables 1 and 2) were addressed by pulling in the outliers to the lowest 

value, less .01. There were variables that could not be corrected. These are discussed below in 

conjunction with the factors sets they impacted. The following EKS variables could not be 

corrected due to the number of cases impacted, with the number in parenthesis indicating the 

number of cases affected: workEthic (4), technicalPractitioner (4), clearSelfImage (4), 

accountability (4), visualizeArticulate (5), and rightQuestions (5). 

Table 1 

Measure Outliers Pulled In 

One outlier 

 

Two outliers 

Three or more 

outliers 

timely balance measureType  canBeInfluenced intent (4, >5%) 

not corrected achieve relatedMeasures questions  movesOverTime 

language meaning value  works  

    behavior  

Note: Four+ outliers were not corrected. They represented >5% of the cases 

Cronbach’s alpha. Cronbach’s alpha for the untreated 55 EKS variables was .970 

(Tabachnick & Fidell, 2013). Testing reliability for the set that omits the 4 incomplete cases and 

the 5 variables with unacceptably high percent missing (that is, “I don’t have this characteristic” 
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entries) and replacing with means those missing data that are less than 5% (all other values were 

1.7% missing), the Cronbach’s alpha for the adjusted set was .955 (see Table 3).  

Table 2 

EKS Outliers Pulled In 

                   One outlier                        Two outliers 

statistics experientialLearning  ethicalPresentation businessKnowledge 

reflection influencingSkill  patternRecognition broadRangeOfData 

feedback strategicLevel  interviewingSkills applyInsight 

assumptions formalEducation  advocacyVisioning mitigateGaming 

selfDirected businessLeaderAccess  collaborative hideComplexity 

   consultingSkills hypothesis 

Note: Four+ outliers were not corrected. They represented >5% of the cases 

Table 3 

EKS Reliability Statistics 

Cronbach's Alpha N of Items 

.955 50 

One variable (rightQuestions) was recommended for removal. It would have improved the 

Cronbach’s alpha to .956, but I elected to retain it as the improvement was small and I was 

curious about whether it would factor in any meaningful way with the others. In the PCA, it 

aligned to a non-viable factor and removed. 

Assess correlations. The correlations among the 55 EKS variables were assessed, as well 

as those among the 23 measure variables. Additionally, the correlations between the EKS 

variables and the measure variables were assessed. The measure variables with the highest 

number of correlations to EKS variables are recommended for assessment using linear regression 

for future research. 

Multicollinearity among the variables was an issue in the analysis, complicating the 

factoring process. One of the signals of multicollinearity is high values (above .7) in the 

correlation matrix (Tabachnick & Fidell, 2013). There were only two correlations over .7 in the 
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matrix, but many more than two variables that produced indications in the factor analysis of 

multicollinearity. The indications were the determinant (delivered with the correlation matrix in 

the PCA results) was zero and no factors were extracted. Determining which of the variables 

were involved in the issue was difficult. 

To detect the multicollinearity, a series of linear regressions were conducted. Variables 

were included as independent variables and one-by-one, the linear regression executed. In 

statistics, collinearity diagnostics were requested. In the output, the variance inflation factor 

(VIF) was examined for each combination of dependent and independent variables, which should 

be less than three. Values above ten certainly indicate multicollinearity between the variables. 

The survey data set had VIF values between above five and in some cases in the hundreds. It will 

be essential to eliminate the problematic variables to extract factors. Using the results of the 

linear regression tests, variables were eliminated from the input to the factor extractions. 

Constructs representing EKS items 

Research question 2. What constructs represent the important content of experience, 

knowledge and skill, and what constructs encapsulate the concept of the effective measures? The 

composition of this exploratory survey was ill-suited to the PCA due to the high volume of 

variables and the unknown relationships among them. While the correlation matrices showed 

only modest strength of correlations (most between .3 and .5), there were two above .7. This did 

not signal the difficulty that occurred when the factor extraction was attempted. Although this 

unsuitability existed, exploring higher-order groupings among the variables, identifying and 

eliminating collinear variables, and simplifying the data set is essential to further analysis of this 

data. Two requirements of factor analysis are that the variables be normally distributed and have 

no untreated outliers. Another assumption for general factor analysis is that the variables load 
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onto the factors at .7 or above and, at the same time, do not load onto another factor at greater 

than .32 (Tabachnick & Fidell, 2013; Yong & Pearce, 2013). In this exploratory analysis, 

primarily to facilitate the initial culling of the potentially unneeded variables, values over .5 and 

cross-loadings of up to .45 were considered (Osborne & Costello, 2004).  

The most serious weakness of the analysis is the poor sample size (de Winter, Dodou, & 

Wieringa, 2009; Osborne & Costello, 2004; Tabachnick & Fidell, 2013). High loading levels, 

low numbers of factors, and a large number of variables can still yield a viable exploratory factor 

analysis solution. Six viable factors were extracted with solid loadings from a large number of 

variables (50), so it is possible that the factors have some stability (de Winter et al., 2009). 

Nevertheless, the exploratory factor analysis approach, in particular PCA, is being used to 

provide insight to cull the data set and improve the survey for future studies of appropriate 

sample size. 

Initial attempts at factor extraction using all 78 variables as input failed due to 

multicollinearity among the variables, indicated by the determinant value of zero on the 

correlation matrix. A value greater than .0001 is required for factor extraction (Tabachnick & 

Fidell, 2013). Subsequent attempts, using the 55 EKS variables in one pass and the 23 measure 

variables in a second also failed. As problematic variables were identified, they were dropped 

from the analysis. Factors were extracted and assessed for viability. This assessment included 

assessment of the eigenvalues for each factor and performing parallel analysis with Monte Carlo 

simulation to determine whether to retain or discard each factor and evaluating the loadings of 

each variable to the factor. Although some recommendations are for loadings above .7 on the 

primary factor and on all other factors at below .3, loadings of .5 are considered strong for 

exploratory factor analysis (Osborne & Costello, 2004). 
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The initial extraction used the following approach. The SPSS dimension reduction 

function was selected. The set of variables to be examined was selected and the options for the 

extraction were set. For descriptives, univariate descriptives and initial solution statistics were 

requested. For the correlation matrix, coefficients, significance levels, determinant, and KMO 

and Bartlett’s test of sphericity were requested. For the extraction, the principal components 

method was selected and the correlation matrix analyzed. The unrotated factor solution and scree 

plot were displayed. The extraction was initially executed based on eigenvalues greater than one. 

Finally, 25 iterations were specified for convergence. 

The direct oblimin rotation method was requested with rotated solution and loading plots 

displayed. Scores were not saved as variables. Missing data had been replaced with means (for 

the 55 EKS variables), but the ‘exclude cases pairwise’ missing values choice was selected. 

Output in the coefficient displays were sorted by size, with coefficients smaller than .32 

suppressed (Tabachnick & Fidell, 2013). 

The correlation matrix was examined, particularly focusing on values over .7 and the 

determinant, which would indicate multicollinearity. The communalities of the variables were 

examined to determine whether they were strongly correlated to the factor. Values below .3 

indicated variables that were not sufficiently strongly correlated to the factor to be viable. These 

variables were removed from the analysis and the extraction re-executed. 

The Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) and Bartlett’s test of 

sphericity were examined. A KMO test of .5 or above was considered adequate for factor 

analysis (Yong & Pearce, 2013), with a value above .6 preferred (Tabachnick & Fidell, 2013). A 

sufficient KMO indicates adequate sample size for factor analysis and a significant Bartlett’s test 

of sphericity (p <.001), indicates that is at least one pair of variables with a significant 
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correlation. Both a KMO greater than .5 and a significant Bartlett’s test were required to move 

forward. 

Next, SPSS produced a table containing the total variance explained by each component. 

The cumulative percent of the extraction sums of squared loadings was considered. Values over 

50% were considered good. The parallel analysis was executed to compare the parallel analysis 

eigenvalues to the eigenvalues produced by the PCA. If the parallel analysis eigenvalue was less 

than the PCA eigenvalue, the factor was retained, else it was discarded. If the factors extracted 

by the PCA were discarded, the extraction was re-executed to force the number of factors that 

were retained. 

Table 4 

Total Variance Explained - PCA 

Component 

Initial Eigenvalues 

 

Extraction Sums of 

Squared Loadings 

Rotation Sums 

of Squared 

Loadingsa 

Total % of 

Variance 

Cumulative %  Total % of 

Variance 

Cumulative 

 % 

Total 

1 9.814 30.668 30.668  9.814 30.668 30.668 5.603 

2 2.619 8.184 38.852  2.619 8.184 38.852 3.682 

3 2.094 6.543 45.395  2.094 6.543 45.395 4.029 

4 1.851 5.785 51.180  1.851 5.785 51.180 2.024 

5 1.655 5.173 56.353  1.655 5.173 56.353 3.639 

6 1.456 4.550 60.903  1.456 4.550 60.903 4.322 

7 1.265 3.952 64.855  1.265 3.952 64.855 4.297 

8 1.154 3.606 68.460  1.154 3.606 68.460 3.915 

9 .974 3.044 71.505  

…    (rows 10-31 omitted) 

32 .026 .081 100.000      

Note: Extraction Method: Principal Component Analysis. 

a. When components are correlated, sums of squared loadings cannot be added to obtain a total 

variance. 

 

The pattern matrix showed the cleanest view of the extracted factors, allowing an 

assessment of cross-loadings as well as identification of the variables that loaded to each factor. 

It may be that the cross-loadings are also a result of the small sample size (Osborne & Costello, 
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2004). Any variables that loaded at less than .3 on any factor were removed and the analysis re-

executed. For the final PCA, in order to deal with multicollinearity, the set of variables that 

loaded successfully in the principal axis factoring were used as a starting point and then variables 

added one at a time to determine whether it introduced multicollinearity. Variables that resulted 

in a determinant of zero were removed and testing continued. 

EKS factors. Variable descriptives were examined and the kurtosis and skewness 

calculations examined to determine the normality of the distributions of each variable. While 

normality is desired, it is not absolutely required (Tabachnick & Fidell, 2013). Since the non-

normally distributed variables were also impacted by uncorrectable outliers, they were not used 

in the PCA. 

Examination of univariate outliers resulted in the correction outliers on 22 variables. The 

variables that are not normally distributed (rightQuestions and visualizeArticulate) and the 

variables with outliers that could not be corrected due to having more than 5% of the cases 

impacted, are shown in Table 5. These variables were not included in the PCA.  

Table 5 

Non-normal or Uncorrected EKS Variable Outliers 

EKS variable 

 Skewness 

Std. Error  

of Skewness Kurtosis 

Std. Error  

of Kurtosis 

Uncorrected 

Outliers 

rightQuestions .514 -2.851 .322 7.246 5 

visualizeArticulate .498 -2.285 .322 4.661 5 

dataCollection .902 -1.123 .322 .074 4 

workEthic 1.013 -1.014 .322 -.284 4 

accountability .995 -1.053 .322 .074 4 

clearSelfImage .951 -.850 .322 -.284 4 

technicalPractitioner .911 -.724 .322 -.216 4 

Note: confidence interval for mean 95%. 
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The KMO for the EKS variables being tested for PCA was .616 and the Bartlett’s test of 

sphericity was significant, at p <.001, indicating adequacy of sample size and that there is at 

least one pair of variables with a significant correlation. See Table 6. 

Table 6 

EKS Variables KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .616 

Bartlett's Test of Sphericity Approx. Chi-Square 991.014 

 df 496 

 Sig. .000 

The communalities table showed no variables correlated that were below .3 (Tabachnick & 

Fidell, 2013). Eight factors were extracted. Factors five and six could not be assigned meaningful 

names, and so were not carried forward in the analysis, though they are reported in Table 7. 

Cronbach’s alpha, presented in Table 8, was calculated for each of the meaningful EKS factors. 

Measure factors. Variable descriptives for the measure factors were examined and the 

kurtosis and skewness calculations examined to determine the normality of the distributions of 

each variable. Only canBeInfluenced was not normally distributed. Examination of univariate 

outliers resulted in the correction outliers on 12 variables. Only one measure variable had 

uncorrectable outliers. The variables that are not normally distributed and the variables with 

outliers that could not be corrected due to having more than 5% of the cases impacted, are shown 

in Table 9. These variables were not included in the PCA. 
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Table 7 

EKS Variables Pattern Matrixa 

EKS Variable  

Component 

1 2 3 4 5 6 7 8 

influencingSkill .841        

professionalNetworks .696        

collaborative .598        

mentors .524 -.358       

teachingSkills .474      .367  

feedback .393     .359  -.326 

causalAnalysis  .862       

statistics  .665       

STEMSkills  .545       

benchmarking  .437    .390   

ethicalPresentation   .804      

signalNoise   .713      

assumptions   .557      

organizationalComplexity  .551 .435     

applyInsight .369  .540      

businessKnowledge    .826     

consultingSkills  .372  -.434     

breadthOfExperience .322 .384  .394     

hideComplexity     -.756    

agileLearning     -.727    

broadRangeOfData .399    -.425    

informalEducation      .869   

computerSkill      .611   

businessLeaderAccess      .512   

experientialLearning       .793  

learningCulture     -.393  .678  

formalEducation      .386 .467 .342 

ambiguity        -.595 

pointOfView    -.348    -.524 

levelsOfPrecision   .363     -.522 

strategicLevel        -.480 

advocacyVisioning .363    .350  .321 -.404 

Note: Extraction Method: Principal Component Analysis. Rotation Method: 

Oblimin with Kaiser Normalization.a   a. Rotation converged in 22 iterations. 
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Table 8 

EKS Factors 

Factor Mean Std Dev 

Cronbach's 

Alpha 

Normality 

Kurtosis Skewness 

1 CollaborationFactor 3.8427 .64856 .820 -.559 -.531 

2 ComplexityTools 4.1496 .60231 .745 .644 -.692 

3 Synthesis 4.1241 .50500 .739 1.248 -.867 

4 BusinessKnowledge 4.1028 .58410 .422 -.585 -.152 

7 Learning 3.6396 .75748 .639 -.527 .072 

8 StrategicThinking 4.0711 .60485 .779 .311 -.755 

Note: confidence interval for mean 95%. 

Table 9 

Non-normal or Uncorrected Measure Variable Outliers 

Measure variable 

Skewnes

s 

Std. Error  

of Skewness Kurtosis 

Std. Error  

of Kurtosis 

Uncorrected 

Outliers 

canBeInfluenced .834 -1.316 .322 2.949 0 

Intent 1.043 -.690 .322 .074 4 

Note: confidence interval for mean 95%. 

The KMO for the measure variables being tested for PCA was .680 and the Bartlett’s test 

of sphericity was significant, at p <.001, indicating adequacy of sample size and that there is at 

least one pair of variables with a significant correlation (see Table 10). The communalities table 

showed no variables correlated that were below .3 (Tabachnick & Fidell, 2013). Five factors 

were extracted (see Table 11). 

Table 10 

Measure Variables KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .680 

Bartlett's Test of Sphericity 

Approx. Chi-Square 330.034 

Df 153 

Sig. .000 
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Table 11 

Measure Variables Pattern Matrix 

Measure Variable 

Component 

1 2 3 4 5 

behavior .876     

outcomes .814     

value .692     

relatedMeasures .651     

actionable  .761    

simple  .751    

achieve  .592    

meaning .451 .589 .352   

presentationVisualization  -.837   

questions   -.710   

language   -.617  .446 

measureType   -.596  -.354 

movesOverTime    .842  

Context    .713  

Balance    .557  

repeatable     .769 

rightThing    .400 .617 

auditable  .456   .496 

Note: Extraction Method: Principal Component Analysis. Rotation 

Method: Oblimin with Kaiser Normalization. Rotation converged in 14 

iterations. 

Cronbach’s alpha, presented in Table 12, was calculated for each of the measure factors.  

Table 12 

Measure Factors 

Factor Mean Std Dev 

Cronbach's 

Alpha 

Normality 

(based on K&S) 

1 Business 

Outcome 
3.6455 .73863 

.820 Normal 

2 MeasureUsage 3.6364 .73096 .742 Normal 

3 Usability 4.1909 .51587 .683 Normal 

4 MeasureContext 3.4970 .64748 .652 Normal 

5 Execution 4.497 .42972 .583 Normal 

Note: confidence interval for mean 95%. 
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Relationship between EKS factors and measure factors. Multiple linear regression 

was conducted to determine whether there is a relationship between the EKS factors and the 

measure factors. 

H10: There is no relationship between the EKS factors and the Measure factors. 

H1a: There is a linear relationship between the EKS factors and the Measure factors. 

The assumptions for multiple linear regression are a sample size of about 20 cases per 

independent variable, no multicollinearity among the independent variables, independent 

variables must be correlated to the dependent variables, no outliers among the variables, and that 

the independent variables be normally distributed. To test the linear relationships between 

dependent variables, a scatter plot was generated to allow observation of elliptical patterns (see 

Figure 1). The Shapiro Wilk tests of normality (see Table 13) showed that some of the measures 

were not normal. For MeasureUsage, F=.975, 55, p >.05; CollaborationFactor, F=.962, 55, p 

>.05. However, the Kurtosis and Skewness values (see Table 14) for these factors are well 

between ±2, indicating normality.  

 

Figure 1. Scatter plot: Linear relationship between independent variables 
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Table 13 

EKS Factors Tests of Normality 

Factor Kolmogorov-Smirnova  Shapiro-Wilk 

Statistic df Sig.  Statistic df Sig. 

BusinessOutcome .149 55 .004  .944 55 .012 

MeasureUsage .109 55 .155  .975 55 .303 

CollaborationFactor .100 55 .200*  .962 55 .077 

ComplexityTools .134 55 .016  .925 55 .002 

Synthesis .125 55 .032  .942 55 .010 

StrategicThinking .126 55 .030  .956 55 .041 

Notes: *. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

Table 14 

EKS Factor Descriptive Statistics 

Factor N Mean 

Std. 

Deviation 

Skewness  Kurtosis 

Statistic Std. Error  Statistic Std. Error 

BusinessOutcome 55 3.6455 .73863 -.821 .322  1.330 .634 

CollaborationFactor 55 4.0181 .64856 -.361 .322  -.573 .634 

ComplexityTools 55 4.1496 .60231 -.745 .322  .644 .634 

MeasureUsage 55 3.6364 .73096 -.191 .322  -.323 .634 

StrategicThinking 55 4.0711 .60485 -.505 .322  .178 .634 

Synthesis 55 4.2606 .50500 -.633 .322  .639 .634 

Valid N (listwise) 55        

There were no correlations over .7 (no multicollinearity among these variables) and all 

the variables were correlated. However, none were correlated as high as .3, which is an indicator 

that the independent variables may not predict the dependent. This is evident in the R2 value in 

the model summary (see Table 15). 

R2 for model 1 tells us that 6.7% of the variance in the BusinessOutcome is attributed to 

change in the independent variables (CollaborationFactor and ComplexityTools). For Measure 

Usage (dependent) with Synthesis and StrategicThinking (independent), the correlations are 

greater than .3, indicating that there may be a linear relationship. R2 for model 2 indicates that 

the predictor variables (StrategicThinking and Synthesis) account for 15.7% of the variance in 

the dependent variable (MeasureUsage). Multiple linear regression among the EKS factors and 
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the Measure factors produced no viable model for a predictive relationship. The tolerance and 

VIF in the Coefficients table (see Table 16) show that there is not multicollinearity among the 

independent variables. 

Table 15 

Model Summaryb 

Model R 

R 

Square 

Adjusted 

R Square 

Std. Error of 

the Estimate 

 Change Statistics 

 R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .259a .067 .031 .72703  .067 1.869 2 52 .165 

2 .396a .157 .124        .68409 .157 4.827 2 52 .012 

Notes: Model 1: a. Predictors: (Constant), ComplexityTools, CollaborationFactor 

b. Dependent Variable: BusinessOutcome 

 

Notes: Model 2: a. Predictors: (Constant), StrategicThinking, Synthesis 

b. Dependent Variable: MeasureUsage 

Table 16 

EKS Factor Model Coefficientsa 

Model 

Unstandardized 

Coefficients 

Std 

Coeff 

t Sig. 

95.0% Confidence 

Interval for B Correlations 

Collinearity 

Statistics 

B 

Std. 

Error Beta L B U B 0-order 

Partia

l Part Tolerance VIF 

1 (Constant) 1.105 .820  1.347 .184 -.541 2.751      

 Synthesis .431 .224 .298 1.922 .060 -.019 .881 .378 .258 .245 .676 1.480 

 
Strategic 

Thinking 
.171 .187 .141 .912 .366 -.205 .547 .311 .126 .116 .676 1.480 

Note: a. Dependent Variable: MeasureUsage 

Impact of Demographic Dimensions on Factor Importance 

Research question 3. How are those constructs impacted by various dimensions within 

the respondent community? The survey respondents indicated their perception of the importance 

of each of the EKS characteristics. The exploratory factor analysis extracted six viable factors for 

these characteristics. Each factor has a composite importance based on the average of the 

importance assigned to each of the characteristics composing it. The following analysis will 

assess whether the importance of each factor independently is impacted by four demographic 
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dimensions: age range, gender, decision-making tenure, and process complexity. Additionally, 

the linear combination of the six factors will be tested for impact by the same four dimensions. 

One-way ANOVA was used for the individual assessments and MANOVA was used to assess 

the linear combination. 

Impact of dimensional groups on individual constructs. One-way ANOVA was 

conducted for the factors with Cronbach’s Alpha greater than .7: CollaborationFactor, 

StrategicThinking, ComplexityTools, Synthesis, BusinessOutcome, and MeasureUsage. For each 

factor, the following hypothesis sets were tested: 

H1: the importance of the factor does not vary based on the gender group of the 

respondent.  

H2: the importance of the factor does not vary based on the complexity of the process in 

which the respondent is involved.  

H3: the importance of the factor does not vary based on the age group of the respondent. 

H4: the importance of the factor does not vary based on the decision-making tenure group 

of the respondent. 

While the Shapiro-Wilk test of normality showed that the EKS factors are not normally 

distributed (see Table 17), the Kurtosis and Skewness for the factors are well within ±2 (see 

Table 8). The Normal Q-Q Plots (Figures 2 – 7) show that the observed values align well to the 

expected norms. The factors will be considered normally distributed for the purposes of this 

analysis.  
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Table 17 

EKS Factors Test of Normality 

EKS Factor 

Shapiro-Wilk 

Statistic df Sig. 

Business Knowledge .950 55 .024 

Collaboration .941 55 .009 

ComplexityTools .952 55 .030 

Learning .949 55 .020 

Strategic Thinking .935 55 .005 

Synthesis .937 55 .006 

Note: a. Lilliefors Significance Correction 

 

 

Figure 2. Normal Q-Q Plot, 

BusinessKnowledge Factor 

 Figure 3. Normal Q-Q Plat, 

Collaboration Factor 

   

 

Figure 4. Normal Q-Q Plot, 

ComplexityTools Factor 

 Figure 5. Normal Q-Q Plat, Learning 

Factor 
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Figure 6. Normal Q-Q Plot, 

StrategicThinking Factor 

 Figure 7. Normal Q-Q Plat, Synthesis 

Factor 

The EKS factors were tested for multivariate outliers using the Mahalanobis distance (see 

Table 18). This assessment determines if there are unusual combinations among the variables 

included in the factor and whether the combination of the variables produces outliers in the new 

variables. The maximum value for the Mahalanobis Distance from the chi-square table for six 

variables is 22.46. The value for the six factors, 22.17037 is less than 22.46. There are no 

multivariate outliers among the EKS factors. In case of significant findings, a Scheffe post hoc 

test, which is robust for unequally sized groups, was requested for all one-way ANOVAs. 

Table 18 

Mahalanobis’ Distance for EKS Factors  

Item N Range Minimum Maximum 

Mahalanobis Distance 55 21.72543 .44494 22.17037 

Valid N (listwise) 55    

BusinessKnowledge factor. A one-way ANOVA was run to determine if there is a 

difference in the perceived importance of Business Knowledge between male and female 

respondents. Levene’s test of homogeneity of variances was not significant, F(1,52) = .028, p 

>.05 (see Table 19), so we fail to reject the null hypothesis, indicating that there is no difference 

in the variances. The assumption of homogeneity is validated.  
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Table 19 

Test of Homogeneity of Variances for BusinessKnowledgeFactor for Gender 

Levene Statistic df1 df2 Sig. 

.028 1 52 .867 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) =  

.156, p >.05 (see Table 20), indicating that there is no difference in the BusinessKnowledge 

factor among gender groups. The Collaboration importance does not vary by gender groups. 

Table 20 

ANOVA BusinessKnowledgeFactor   

Item Sum of Squares df Mean Square F Sig. 

Between Groups .059 1 .059 .156 .694 

Within Groups 19.483 52 .375   

Total 19.541 53    

A one-way ANOVA was run to determine if there is a difference in the perceived 

importance of Business Knowledge between age groups. Three respondent age groups are 

defined. Group 1 is respondents up to 40, group 2 is those between 41 and 50, and group 3 is 

those 51 and over. This broke the respondents into three similarly-sized groups (15, 22, and 18, 

respectively). Levene’s test of homogeneity of variances was not significant, F(1,52) = .822, p 

>.05 (see Table 21), so we fail to reject the null hypothesis, indicating that there is no difference 

in the variances. The assumption of homogeneity is validated.  

Table 21 

Test of Homogeneity of Variances for BusinessKnowledgeFactor for Age group 

Levene Statistic df1 df2 Sig. 

.822 3 51 .488 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) =  

.069, p >.05 (see Table 22), indicating that there is no difference in the BusinessKnowledge 

factor among the age groups. The perceived importance of business knowledge does not vary 

among age groups. 
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Table 22 

ANOVA for BusinessKnowledgeFactor for Age group 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .079 3 .026 .069 .976 

Within Groups 19.468 51 .382   

Total 19.547 54    

A one-way ANOVA was run to determine if there is a difference in the perceived 

importance of Business Knowledge between process complexity groups. Levene’s test of 

homogeneity of variances was not significant, F(1,52) = .432, p >.05 (see Table 23), so we fail 

to reject the null hypothesis, indicating that there is no difference in the variances. The 

assumption of homogeneity is validated.  

Table 23 

Test of Homogeneity of Variances for BusinessKnowledgeFactor for processComplexity 

Levene Statistic df1 df2 Sig. 

.432 2 52 .651 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) =  

.272, p >.05 (see Table 24), indicating that there is no difference in the BusinessKnowledge 

factor among the process complexity groups. The perceived importance of business knowledge 

does not vary based on the complexity of the process for which a respondent is responsible. 

Table 24 

ANOVA for BusinessKnowledgeFactor for processComplexity 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .202 2 .101 .272 .763 

Within Groups 19.345 52 .372   

Total 19.547 54    

A one-way ANOVA was run to determine if there is a difference in the perceived 

importance of Business Knowledge between decision-making tenure groups. Levene’s test of 

homogeneity of variances was not significant, F(1,52) = .312, p >.05 (see Table 26), so we fail 
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to reject the null hypothesis, indicating that there is no difference in the variances. The 

assumption of homogeneity is validated.  

Table 25 

Test of Homogeneity of Variances for BusinessKnowledgeFactor for Decision-making Tenure  

Levene Statistic df1 df2 Sig. 

.312 2 52 .733 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) =  

3.293, p >.05 (see Table 26), indicating that there is no difference in the BusinessKnowledge 

factor among the decision-making tenure groups. The perceived importance of business 

knowledge does not vary based on the decision-making experience of the respondent. 

Table 26 

ANOVA for BusinessKnowledgeFactor for Decision-making Tenure 

Item Sum of Squares df Mean Square F Sig. 

Between Groups 2.197 2 1.099 3.293 .045 

Within Groups 17.350 52 .334   

Total 19.547 54    

Collaboration factor. A one-way ANOVA was run to determine if there is a difference in 

the Collaboration factor between men and women. Levene’s test of homogeneity of variances 

was not significant, F(1,52) = .902, p >.05 (see Table 27), so we fail to reject the null hypothesis, 

indicating that there is no difference in the variances. The assumption of homogeneity is 

validated. 

Table 27 

Test of Homogeneity of Variances for the CollaborationFactor for Gender 

Levene Statistic df1 df2 Sig. 

.902 1 52 .347 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) = 

.050 p >.05 (see Table 28), indicating that there is no difference in the CollaborationFactor 
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among the gender groups. The perceived importance of Collaboration does not vary based on 

gender. 

Table 28 

ANOVA for the CollaborationFactor for Gender 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .022 1 .022 .050 .823 

Within Groups 22.495 52 .433   

Total 22.517 53    

A one-way ANOVA was run to determine if there is a difference in the Collaboration 

factor based on process complexity. Levene’s test of homogeneity of variances was not 

significant, F(2,52) = 2.764, p >.05 (see Table 29), so we fail to reject the null hypothesis, 

indicating that there is no difference in the variances. The assumption of homogeneity is 

validated. 

Table 29 

Test of Homogeneity of Variances for CollaborationFactor for processComplexity 

Levene Statistic df1 df2 Sig. 

2.764 2 52 .072 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(2) = 

.385, p >.05 (see Table 30), indicating that there is no difference in the CollaborationFactor 

among the process complexity groups. The perceived importance of Collaboration does not vary 

based on process complexity. 

Table 30 

ANOVA for the CollaborationFactor for processComplexity  

Item Sum of Squares df Mean Square F Sig. 

Between Groups .307 2 .154 .358 .701 

Within Groups 22.317 52 .429   

Total 22.624 54    

A one-way ANOVA was run to determine if there is a difference in the Collaboration 

Factor based on respondent age group. Levene’s test of homogeneity of variances was not 
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significant, F(3,51) = .942, p >.05 (see Table 31), so we fail to reject the null hypothesis, 

indicating that there is no difference in the variances. The assumption of homogeneity is 

validated.  

Table 31 

Test of Homogeneity of Variances for CollaborationFactor for Age group 

Levene Statistic df1 df2 Sig. 

.942 3 51 .427 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(3) = 

2.369, p >.05 (see Table 32), indicating that there is no difference in the CollaborationFactor 

among the respondent age groups. The perceived importance of Collaboration does not vary 

based on age. 

Table 32 

ANOVA for CollaborationFactor for Age group 

Item Sum of Squares df Mean Square F Sig. 

Between Groups 2.767 3 .922 2.369 .081 

Within Groups 19.856 51 .389   

Total 22.624 54    

A one-way ANOVA was run to determine if there is a difference in the Collaboration 

factor based on respondent decision-making tenure group. Levene’s test of homogeneity of 

variances was not significant, F(2,52) = 1.44, p >.05 (see Table 33), so we fail to reject the null 

hypothesis, indicating that there is no difference in the variances. The assumption of 

homogeneity is validated. 

Table 33 

Test of Homogeneity of Variances for CollaborationFactor for Decision-making Tenure 

Levene Statistic df1 df2 Sig. 

.863 2 52 .428 

As a result, we can use the ANOVA. The one-way ANOVA was significant, F(2) = 

3.589, p <.05 (see Table 34), indicating that there is a difference in the Collaboration factor 
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among the respondent decisions-making tenure groups. The perceived importance of 

Collaboration does vary based on decision-making tenure.  

Table 34 

ANOVA for CollaborationFactor for Decision-making Tenure 

Item Sum of Squares Df Mean Square F Sig. 

Between Groups 2.744 2 1.372 3.589 .035 

Within Groups 19.879 52 .382   

Total 22.624 54    

Because the one-way ANOVA delivered a significant result, the Scheffe post hoc test is 

examined for the multiple comparisons of the decision-making tenure levels. There are no results 

showing a significant difference between the rows, but the lowest value produced is between 

groups one and two (less than ten years’ experience and 10 to 12 years’ experience (see Table 

35). The homogenous subsets output shows the Scheffe test as significant (p <.05; see Table 36) 

with the Means Plot (Figure 8) showing a marked difference between groups one (m=4.4694, 

sd=.53247) and two (m=3.8250, sd=.72850; see Table 37). Respondents with less than 10 years’ 

decision-making experience found the collaboration factor significantly more important than did 

the group with 10-12 years’ experience. Neither group was significantly different from the group 

with 13 or more years’ experience. 

Table 35 

Multiple Comparisons Dependent Variable: CollaborationFactor for Decision-making Tenure 

Post hoc 

test 

(I) decision 

TenureRange 

(J) decision 

TenureRange 

Mean Diff 

(I-J) Std. Error Sig. 

95% Confidence Interval 

L Bound U Bound 

Scheffe 

1.00 
2.00 .64443 .27069 .068 -.0377 1.3266 

3.00 .43193 .19348 .093 -.0556 .9195 

2.00 
1.00 -.64443 .27069 .068 -1.3266 .0377 

3.00 -.21250 .24441 .687 -.8284 .4034 

3.00 
1.00 -.43193 .19348 .093 -.9195 .0556 

2.00 .21250 .24441 .687 -.4034 .8284 
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Table 36 

CollaborationFactor for decisionTenureRange for Decision-making Tenure 

Post Hoc Test decsionTenureRange N 

Subset for alpha = .001 

1 

Scheffea,b 

2.00 8 3.8250 

3.00 32 4.0375 

1.00 15 4.4694 

Sig.  .033 

Notes: Means for groups in homogeneous subsets are displayed. 

 

a. Uses Harmonic Mean Sample Size = 13.458. 

 

b. The group sizes are unequal. The harmonic mean of the group sizes is used.  

 

Type I error levels are not guaranteed. 

Table 37 

Descriptives for CollaborationFactor for Decision-making Tenure  

 N Mean Std. 

Deviation 

Std. Error 95% Confidence 

 Interval for Mean 

Min Max 

L Bound U Bound   

1.00 15 4.4694 .53247 .13748 4.1746 4.7643 3.20 5.00 

2.00 8 3.8250 .72850 .25756 3.2160 4.4340 2.60 4.60 

3.00 32 4.0375 .62721 .11088 3.8114 4.2636 2.80 5.00 

Total 55 4.1244 .64727 .08728 3.9494 4.2994 2.60 5.00 

 

The Means plot shows a marked difference between group one and two. 

 
Figure 8. Decision-making Tenure Means Plot 
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StrategicThinking factor. A one-way ANOVA was run to determine if there is a 

difference in the StrategicThinking factor between men and women. Levene’s test of 

homogeneity of variances was significant, F(1,52) = 5.059, p <.05 (see Table 38), so we reject 

the null hypothesis, indicating that there is a difference in the variances. The assumption of 

homogeneity is violated.  

Table 38 

Test of Homogeneity of Variances for StrategicThinking for Gender 

Levene Statistic df1 df2 Sig. 

8.048 1 52 .006 

As a result, we cannot use the ANOVA. In cases with a non-homogeneity of variances, 

the Brown-Forsyche robust test of equality of means is used. This test resulted in a non-

significant finding, F(1,47.659) = .574, p >.05 (see Table 39), indicating that there is no 

difference in the StrategicThinking factor among the gender groups. The perceived importance 

of Strategic Thinking does not vary based on gender. 

Table 39 

Robust Tests of Equality of Means for StrategicThinking for Gender 

Test Statistica df1 df2 Sig. 

Welch .574 1 47.659 .453 

Brown-Forsythe .574 1 47.659 .453 

Note: a. Asymptotically F distributed. 

A one-way ANOVA was run to determine if there is a difference in the StrategicThinking 

factor based on process complexity. Levene’s test of homogeneity of variances was not 

significant, F(2,52) = .292, p >.05 (see Table 40), so we fail to reject the null hypothesis, 

indicating that there is no difference in the variances. The assumption of homogeneity is 

validated.  



163 

Table 40 

Test of Homogeneity of Variances for StrategicThinking for Process Complexity 

Levene Statistic df1 df2 Sig. 

.292 2 52 .748 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(2) = 

.385, p >.05 (see Table 41), indicating that there is no difference in the StrategicThinking factor 

among the process complexity groups. The perceived importance of Strategic Thinking does not 

vary based on process complexity. 

Table 41 

ANOVA for StrategicThinking for Process Complexity 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .262 2 .131 .385 .682 

Within Groups 17.699 52 .340   

Total 17.961 54    

A one-way ANOVA was run to determine if there is a difference in the Strategic 

Thinking factor based the age group of the respondent. Levene’s test of homogeneity of 

variances was not significant, F(3,51) = .673, p >.05 (see Table 42), so we fail to reject the null 

hypothesis, indicating that there is no difference in the variances. The assumption of 

homogeneity is validated.  

Table 42 

Test of Homogeneity of Variances for StrategicThinking for Age groups 

Levene Statistic df1 df2 Sig. 

.673 3 51 .572 

As a result, we can use the ANOVA. The ANOVA was not significant, F(3) = .607, p 

>.05 (see Table 43), indicating that there is no difference in the StrategicThinking factor among 

the respondent age groups. Strategic Thinking importance does not vary between age groups. 
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Table 43 

ANOVA for StrategicThinking for Age groups 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .619 3 .206 .607 .614 

Within Groups 17.342 51 .340   

Total 17.961 54    

A one-way ANOVA was run to determine if there is a difference in the Strategic 

Thinking factor based on respondent decision-making tenure group. Levene’s test of 

homogeneity of variances was not significant, F(2,52) = .515, p >.05 (see Table 44), so we fail 

to reject the null hypothesis, indicating that there is no difference in the variances. The 

assumption of homogeneity is validated. 

Table 44 

Test of Homogeneity of Variances for StrategicThinking for Decision-making Tenure 

Levene Statistic df1 df2 Sig. 

.515 2 52 .601 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(2) = 

3.088, p >.05 (see Table 45), indicating that there is no difference in the Strategic Thinking 

factor among the respondent decision-making tenure groups. The perceived importance of 

Strategic Thinking does not vary based on decision-making tenure. 

Table 45 

ANOVA for StrategicThinking for Decision-making Tenure 

Item Sum of Squares df Mean Square F Sig. 

Between Groups 1.906 2 .953 3.088 .054 

Within Groups 16.055 52 .309   

Total 17.961 54    

ComplexityTools factor. A one-way ANOVA was run to determine if there is a 

difference in the ComplexityTools factor between men and women. Levene’s test of 

homogeneity of variances was not significant, F(1,52) = .070, p >.05 (see Table 46), so we fail 
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to reject the null hypothesis, indicating that there is no difference in the variances. The 

assumption of homogeneity is validated.  

Table 46 

Test of Homogeneity of Variances for ComplexityToolsFactor for Gender 

Levene Statistic df1 df2 Sig. 

.070 1 52 .793 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(1) = 

.447, p >.05 (see Table 47), indicating that there is no difference in the ComplexityTools factor 

among the gender groups. The importance of Complexity Tools does not vary between gender 

groups. 

Table 47 

ANOVA for ComplexityToolsFactor for Gender 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .152 1 .152 .447 .507 

Within Groups 17.661 52 .340   

Total 17.812 53    

A one-way ANOVA was run to determine if there is a difference in the ComplexityTools 

factor based on process complexity. Levene’s test of homogeneity of variances was not 

significant, F(2,52) = 3.196, p <.05 (see Table 48), so we reject the null hypothesis, indicating 

that there is a difference in the variances. The assumption of homogeneity is violated.  

Table 48 

Test of Homogeneity of Variances for ComplexityToolsFactor for Process Complexity 

Levene Statistic df1 df2 Sig. 

3.196 2 52 .049 

As a result, we cannot use the ANOVA. The Welch test of equality of means is not 

significant, F(2,16.293) = .620, p >.05 (see Table 49), indicating that there is no difference in the 

importance of the ComplexityToolsFactor between respondents responsible for processes of 
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different complexity. The perceived importance of Complexity Tools does not vary by process 

complexity. 

Table 49 

Robust Tests of Equality of Means for ComplexityToolsFactor for Process Complexity 

Test Statistic df1 df2 Sig. 

Welch .620 2 16.293 .550 

Brown-Forsythe .661 2 12.998 .533 

A one-way ANOVA was run to determine if there is a difference in the ComplexityTools 

factor based on respondent age group. Levene’s test of homogeneity of variances was not 

significant, F(3,51) = .308, p >.05 (see Table 50), so we fail to reject the null hypothesis, 

indicating that there is no difference in the variances. The assumption of homogeneity is 

validated. 

Table 50 

Test of Homogeneity of Variances for ComplexityToolsFactor for Age groups 

Levene Statistic df1 df2 Sig. 

.308 3 51 .819 

As a result, we can use the ANOVA. The ANOVA was not significant, F(3) = 1.106, p 

>.05 (see Table 51), indicating that there is no difference in the ComplexityTools factor among 

the respondent age groups. The perceived importance of Complexity Tools does not vary by age. 

Table 51 

ANOVA for ComplexityToolsFactor for Age groups 

 Sum of Squares df Mean Square F Sig. 

Between Groups 1.094 3 .365 1.106 .355 

Within Groups 16.815 51 .330   

Total 17.910 54    

A one-way ANOVA was run to determine if there is a difference in the Complexity Tools 

factor based on respondent decision-making tenure group. Levene’s test of homogeneity of 

variances was not significant, F(2,52) = .104, p >.05 (see Table 52), so we fail to reject the null 



167 

hypothesis, indicating that there is no difference in the variances. The assumption of 

homogeneity is validated. 

Table 52 

Test of Homogeneity of Variances for ComplexityToolsFactor for Decision-making Tenure 

Levene Statistic df1 df2 Sig. 

.104 2 52 .901 

As a result, we can use the ANOVA. The one-way ANOVA was significant, F(2) = 

4.180, p <.05 (see Table 53), indicating that there is a difference in the Complexity Tools factor 

among the respondent decision-making tenure groups. The perceived importance of Complexity 

Tools varies significantly between decision-making tenure groups. 

Table 53 

ANOVA for ComplexityToolsFactor for Decision-making Tenure 

Item Sum of Squares df Mean Square F Sig. 

Between Groups 2.481 2 1.240 4.180 .021 

Within Groups 15.429 52 .297   

Total 17.910 54    

Because there is a significant finding from the one-way ANOVA, the Scheffe post hoc 

analysis (see Table 54) is examined to determine which of the groups exhibit significant 

differences in the importance of the complexity tools factor. There is a significant difference in 

the mean value of the ComplexityToolsFactor between decision-making tenure groups one and 

three (p <.05). Those respondents with less than ten years’ decision making tenure considered 

the complexity tools of more importance (m=4.4533, sd=.56804) than did those with 13 or more 

years of experience (m=3.9938, sd=.53878; see Table 55). 
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Table 54 

Multiple Comparisons for Dependent Variable: ComplexityToolsFactor   

Post Hoc 

Test 

(I) 

decisionTenure 

Range 

(J) 

decisionTenure 

Range 

Mean 

Difference (I-

J) 

Std. 

Error Sig. 

95% Confidence 

Interval 

L Bound U Bound 

Scheffe 

1.00 
2.00 .53049 .23847 .094 -.0705 1.1314 

3.00 .45958* .17045 .033 .0301 .8891 

2.00 
1.00 -.53049 .23847 .094 -1.1314 .0705 

3.00 -.07091 .21531 .947 -.6135 .4717 

3.00 1.00 -.45958* .17045 .033 -.8891 -.0301 

 2.00 .07091 .21531 .947 -.4717 .6135 

Note: *The mean difference is significant at the 0.05 level. 

Table 55 

Descriptives for ComplexityToolsFactor   

Group N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Min Max Lower Bound Upper Bound 

1.00 15 4.4533 .56804 .14667 4.1388 4.7679 2.80 5.00 

2.00 8 3.9228 .52272 .18481 3.4858 4.3599 2.80 4.60 

3.00 32 3.9938 .53878 .09524 3.7995 4.1880 2.40 5.00 

Total 55 4.1088 .57590 .07765 3.9531 4.2645 2.40 5.00 

Synthesis factor. A one-way ANOVA was run to determine if there is a difference in the 

Synthesis factor between men and women. Levene’s test of homogeneity of variances was 

significant, F(1,52) = 4.440, p <.05 (see Table 56), so we reject the null hypothesis, indicating 

that there is a difference in the variances. The assumption of homogeneity is violated.  

Table 56 

Test of Homogeneity of Variances for SynthesisFactor for Gender 

Levene Statistic df1 df2 Sig. 

4.440 1 52 .040 

As a result, we cannot use the ANOVA. The Welch robust test of equivalence of means 

was not significant, F(1, 43.815) = .300, p >.05 (see Table 57), indicating that there is no 

difference in the Synthesis factor among the gender groups. The perceived importance of 

Synthesis does not vary based on gender. 
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Table 57 

Robust Tests of Equality of Means for SynthesisFactor for Gender 

Test Statistica df1 df2 Sig. 

Welch .300 1 43.815 .586 

Brown-Forsythe .300 1 43.815 .586 

Note: a. Asymptotically F distributed. 

A one-way ANOVA was run to determine if there is a difference in the Synthesis factor 

based on process complexity. Levene’s test of homogeneity of variances was not significant, 

F(2,52) = .824, p >.05 (see Table 58), so we fail to reject the null hypothesis, indicating that 

there is no difference in the variances. The assumption of homogeneity is validated.  

Table 58 

Test of Homogeneity of Variances for the SynthesisFactor for Process Complexity 

Levene Statistic df1 df2 Sig. 

.824 2 52 .444 

As a result, we can use the ANOVA. The ANOVA was not significant, F(2) = .044, p 

>.05 (see Table 59), indicating that there is no difference in the Synthesis factor among the 

process complexity groups. The importance of Synthesis does not vary between process 

complexity groups. 

Table 59 

ANOVA for the SynthesisFactor for Process Complexity 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .027 2 .014 .044 .957 

Within Groups 16.173 52 .311   

Total 16.200 54    

A one-way ANOVA was run to determine if there is a difference in the Synthesis factor 

based on respondent age group. Levene’s test of homogeneity of variances was not significant, 

F(3,51) = .128, p >.05 (see Table 60), so we fail to reject the null hypothesis, indicating that 

there is no difference in the variances. The assumption of homogeneity is validated.  
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Table 60 

Test of Homogeneity of Variances for SynthesisFactor for Age groups 

Levene Statistic df1 df2 Sig. 

.128 3 51 .943 

As a result, we can use the ANOVA. The one-way ANOVA was not significant, F(3) = 

.094 p >.05 (see Table 61), indicating that there is no difference in the Synthesis factor among 

the respondent age groups. The perceived importance of Synthesis does not vary based on age. 

Table 61 

ANOVA for the SynthesisFactor for Age Groups 

Item Sum of Squares df Mean Square F Sig. 

Between Groups .089 3 .030 .094 .963 

Within Groups 16.111 51 .316   

Total 16.200 54    

A one-way ANOVA was run to determine if there is a difference in the Synthesis factor 

based on respondent decision-making tenure group. Levene’s test of homogeneity of variances 

was not significant, F(2,52) = 2.262, p >.05 (see Table 62), so we fail to reject the null 

hypothesis, indicating that there is no difference in the variances. The assumption of 

homogeneity is validated. 

Table 62 

Test of Homogeneity of Variances for SynthesisFactor for Decision-making Tenure  

Levene Statistic df1 df2 Sig. 

2.262 2 52 .114 

As a result, we can use the ANOVA. The one-way ANOVA was significant, F(2) = 

4.175, p >.05 (see Table 63), indicating that there is a difference in the BusinessOutcome among 

the respondent decision-making tenure groups. The perceived importance of Synthesis varies 

based on decision-making tenure.  
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Table 63 

ANOVA for SynthesisFactor for Decision-making Tenure 

Item Sum of Squares Df Mean Square F Sig. 

Between Groups 2.241 2 1.121 4.175 .021 

Within Groups 13.959 52 .268   

Total 16.200 54    

Because the one-way ANOVA indicated a significant result, the Scheffe post hoc test is 

examined (see Table 64) to determine the groups among which there is a significant difference in 

the importance of the Synthesis factor. The difference is between groups one and two: those with 

fewer than 10 years found Synthesis significantly more important (m=4.4469, sd=.48608) than 

those with 10-12 years’ experience (m=3.7917, sd=.79057; see Table 65). 

Table 64 

Multiple Comparisons for Dependent Variable: SynthesisFactor   

Post Hoc 

Test 

(I) decision 

TenureRange 

(J) decision 

TenureRange 

Mean Diff 

(I-J) 

Std.  

Error Sig. 

95% Conf Interval 

L Bound U Bound 

Scheffe 

1.00 
2.00 .65527* .22683 .021 .0837 1.2269 

3.00 .23716 .16213 .350 -.1714 .6457 

2.00 
1.00 -.65527* .22683 .021 -1.2269 -.0837 

3.00 -.41810 .20480 .135 -.9342 .0980 

3.00 
1.00 -.23716 .16213 .350 -.6457 .1714 

2.00 .41810 .20480 .135 -.0980 .9342 

Note: *The mean difference is significant at the 0.05 level. 
 

Table 65 

Descriptives for SynthesisFactor for Decision-making Tenure 

Group N Mean 

Std. 

Deviation Std. Error 

95% Conf Interval for Mean 

Min Max Lower Bound Upper Bound 

1.00 15 4.4469 .48608 .12550 4.1778 4.7161 3.67 5.00 

2.00 8 3.7917 .79057 .27951 3.1307 4.4526 2.50 4.50 

3.00 32 4.2098 .44995 .07954 4.0475 4.3720 3.33 5.00 

Total 55 4.2136 .54773 .07386 4.0656 4.3617 2.50 5.00 

ANOVA summary. The findings of the one-way ANOVA tests demonstrate, for each 

factor, that the importance of the factor does not vary based on the gender group of the 
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respondent (H), the complexity of the process in which the respondent is involved (H2), or the 

age group of the respondent (H3). However, the importance of three factors did vary based on the 

decision-making tenure of the respondent (H4): Synthesis, Collaboration, and Complexity Tools. 

The stability of the factors is still of concern when determining the meaning of the findings due 

to the small sample size. 

Impact of dimensional groups on the collective set of constructs. MANOVA was 

executed to determine whether the constructs, collectively, were impacted by the various 

dimensional groups: age, gender, decision-making tenure, and process complexity. The 

validation of the assumptions and the test results are presented in the following sections.  

Assumptions. The assumptions under which MANOVA is executed are that the test 

includes two or more dependent variables (scale) and one or more independent variables 

(categorical with 2 or more levels). The Observations need to be independent. The sample size 

needs to exceed the number of levels of the independent variable times the number of dependent 

variables. Although multivariate normality is desirable, if this condition is not met, Pillai’s Trace 

is used. If the multivariate normality condition is met, use Wilk’s. The test is sensitive to outliers, 

so multivariate outliers will be examined. There must be a linear relationship between each pair 

of dependent variables across each level of independent variable. This is examined by assessing 

the scatter dot diagram and showing an elliptical shape. Homogeneity of covariance, tested as 

part of the MANOVA, is also required. Finally, the dependent variables cannot be multicollinear. 

There will be six scale, dependent variables and one independent variable for each 

execution of the test. The test will be executed once for each of age, gender, decision-making 

tenure, and process complexity. The observations are independent. For sample size, the 

independent variables have either two or three levels each and there are six dependent variables, 
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so 18 cases would be sufficient for this analysis. There are varying numbers of cases available 

for this analysis (due to missing data), but in all required analysis there were more than 52 viable 

cases. Tests for multivariate normality have been shown previously. Test for outliers and 

multicollinearity, linear relationships will be shown following. 

Outliers. Outliers are tested by calculating the Mahalanobis’ distance across the set of 

variables being analyzed. The critical value in the chi-square tables for Mahalanobis’ distance for 

six dependent variables is 22.46 (Tabachnick & Fidell, 2013). The Mahalanobis distance for the 

six factors being analyzed is 22.170 (see Table 66). There are no multivariate outliers. 

Table 66 

MANOVA Assumptions, Outliers, Residuals Statisticsa 

Item Minimum Maximum Mean SD N 

Predicted Value 3.5111 4.7048 4.2545 .21493 55 

Std. Predicted Value -3.459 2.095 .000 1.000 55 

Standard Error of Predicted Value .156 .626 .326 .102 55 

Adjusted Predicted Value 3.2888 5.1383 4.2673 .28459 55 

Residual -1.45214 1.86979 .00000 .90207 55 

Std. Residual -1.518 1.954 .000 .943 55 

Stud. Residual -1.642 1.981 -.006 1.006 55 

Deleted Residual -1.79111 2.08285 -.01276 1.03078 55 

Stud. Deleted Residual -1.672 2.045 -.003 1.020 55 

Mahal. Distance .445 22.170 5.891 4.478 55 

Cook's Distance .000 .137 .021 .032 55 

Centered Leverage Value .008 .411 .109 .083 55 

Linear relationships. To check for the linear relationship between the dependent 

variables, assess the multi-scatter plot. The general shape of the intersections between the six 

dependent variables should be elliptical from lower left to upper right. These patterns are 

generally visible in Figure 1, shown previously. 

Multivariate normality. To determine multivariate normality, assess the Kurtosis and 

Skewness of the variables and consider the Shapiro-Wilk test of normality (used for fewer than 

2000 cases). Number of cases is 55, so use Shapiro-Wilk. The Shapiro-Wilk test of normality 
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indicates none of the factor variables is distributed normally (for each dependent variable, p 

<.05; see Table 13). However, for every factor variable, both Kurtosis and Skewness are 

between ±2 (see Table 14). 

Multicollinearity. To test for multicollinearity, the correlations among the six dependent 

variables were examined. One correlation is high at .756: strategicThinking X 

businessKnowledgeFactor (see Table 67). The test is if the correlation is between ±.2 and ±.8 it 

is acceptable. Correlations below .9 are acceptable (Tabachnick & Fidell, 2013).  

Table 67 

EKS Factor Correlations 

Factor 

Row 

identifier 

Strategic 

Thinking 

Compl.  

Tools 

Factor 

Collab. 

Factor 

Synthesis 

Factor Learning 

Business 

Know.  

Factor 

Strategic 

Thinking 

Pearson 

Cor 
1 .435** .474** .492** .472** .756** 

Sig.(2-tail)   .001 .000 .000 .000 .000 

N 55 55 55 55 55 55 

Compl.  

Tools 

Factor 

Pearson 

Cor 
.435** 1 .404** .526** .360** .542** 

Sig.(2-tail) .001   .002 .000 .007 .000 

N 55 55 55 55 55 55 

Collab.  

Factor 

Pearson 

Cor 
.474** .404** 1 .551** .542** .569** 

Sig.(2-tail) .000 .002   .000 .000 .000 

N 55 55 55 55 55 55 

Synthesis 

Factor 

Pearson 

Cor 
.492** .526** .551** 1 .511** .409** 

Sig.(2-tail) .000 .000 .000   .000 .002 

N 55 55 55 55 55 55 

Learning Pearson 

Cor 
.472** .360** .542** .511** 1 .527** 

Sig.(2-tail) .000 .007 .000 .000   .000 

N 55 55 55 55 55 55 

Business 

Know.  

Factor 

Pearson 

Cor 
.756** .542** .569** .409** .527** 1 

Sig.(2-tail) .000 .000 .000 .002 .000   

N 55 55 55 55 55 55 

Note: **Correlation is significant at the 0.01 level (2-tailed). 
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Tests. Dependent variables are the six factors extracted from the EKS variables from the 

survey data. Ranged values of each factor were generated to enable determination of linear 

relationships, however, the original version of each factor was used for the MANOVA tests. A 

cross-tabulation of factors to the levels of the independent variables is provided in Appendix F. 

Age Range. The multivariate analysis of variance was requested for a significance level 

of .05, confidence intervals of 95%. Because the age ranges produced unequal group sizes 

(12,23,14, and 6; see Table 68) Scheffe is used for post hoc analysis. The dependent variables are 

BusinessKnowledge, Collaboration, ComplexityTools, Learning, StrategicThinking, and 

Synthesis. Table 69 shows the descriptive statistics for the dependent variables for age. 

Table 68 

Between-Subjects Factors, Age 

AgeRange N 

3.00 12 

4.00 23 

5.00 14 

6.00 6 

Box’s test is not significant, p >.05, validating the equality of covariances assumption 

(see Table 70). Levene’s test (see Table 71) is not significant for any of the dependent variables, 

p >.05 for each. This indicates that there is homogeneity of variances for all the dependent 

variables. 
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Table 69 

Descriptive Statistics, EKS Factors by Age 

Factor AgeRange Mean Std. Deviation N 

StrategicThinking 3.00 4.1785 .54463 12 

4.00 4.0870 .67676 23 

5.00 4.3393 .47644 14 

6.00 4.2917 .45871 6 

Total 4.1935 .57672 55 

ComplexityToolsFactor 3.00 4.2652 .65200 12 

4.00 3.9478 .60066 23 

5.00 4.1714 .44277 14 

6.00 4.2667 .57504 6 

Total 4.1088 .57590 55 

CollaborationFactor 3.00 4.3833 .50782 12 

4.00 4.0192 .66148 23 

5.00 3.9000 .70055 14 

6.00 4.5333 .45019 6 

Total 4.1244 .64727 55 

SynthesisFactor 3.00 4.2083 .48265 12 

4.00 4.1775 .61286 23 

5.00 4.2381 .54973 14 

6.00 4.3056 .52086 6 

Total 4.2136 .54773 55 

Learning 3.00 3.7375 .82606 12 

4.00 3.4928 .80321 23 

5.00 3.5714 .68474 14 

6.00 4.0556 .77220 6 

Total 3.6276 .77558 55 

BusinessKnowledge 

Factor 

3.00 4.1389 .57662 12 

4.00 4.0435 .57123 23 

5.00 4.0714 .68161 14 

6.00 4.1111 .72008 6 

Total 4.0788 .60166 55 

Table 70 

Box's Test of Equality of Covariance Matrices,a Age 

Box's M 55.275 

F 1.035 

df1 42 

df2 3861.193 

Sig. .410 

Notes: a. Design: Intercept + AgeRange 
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Table 71 

Levene's Test of Equality of Error Variances,a Age 

Factor F df1 df2 Sig. 

BusinessKnowledgeFactor .822 3 51 .488 

CollaborationFactor .942 3 51 .427 

ComplexityToolsFactor .308 3 51 .819 

Learning .516 3 51 .673 

StrategicThinking .673 3 51 .572 

SynthesisFactor .128 3 51 .943 

Notes: Tests the null hypothesis that the error variance of the 

dependent variable is equal across groups. 

 

a. Design: Intercept + AgeRange 

The test assumptions have been met, so Wilks’ Lambda is used (see Table 72). Wilks’ 

Lambda is not significant, p >.05, indicating no difference between the linear combinations of 

dependent variables based on ageRange. The partial eta squared (.128) indicates that 12.8% of 

the variability in the linear combination of dependent variables can be explained by age. 

Table 72 

Multivariate Tests,a Age 

Effect Test Value F 

Hypoth. 

df 

Error  

df Sig. 

Partial 

Eta Sq 

Noncent. 

Parameter 

Obsvd 

Powerd 

Intercept Pillai's Trace .987 562.137b 6.000 46.000 .000 .987 3372.822 1.000 

Wilks' Lambda .013 562.137b 6.000 46.000 .000 .987 3372.822 1.000 

Hotelling's Trc 73.322 562.137b 6.000 46.000 .000 .987 3372.822 1.000 

Roy's Lgst Root 73.322 562.137b 6.000 46.000 .000 .987 3372.822 1.000 

AgeRang

e 

Pillai's Trace .371 1.128 18.000 144.000 .331 .124 20.308 .753 

Wilks' Lambda .663 1.136 18.000 130.593 .325 .128 19.202 .717 

Hotelling's Trc .459 1.140 18.000 134.000 .321 .133 20.521 .755 

Roy's Lgst Root .307 2.459c 6.000 48.000 .037 .235 14.754 .777 

Notes: a. Design: Intercept + AgeRange 

 

b. Exact statistic 

 

c. The statistic is an upper bound on F that yields a lower bound on the significance level.  

 

d. Computed using alpha = .05 
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Gender. The multivariate analysis of variance was requested for a significance level of 

.05, confidence intervals of 95%. Because the gender group sizes are unequal (39 and 15; see 

Table 73), Scheffe is used for post hoc analysis. The dependent variables are 

BusinessKnowledge, Collaboration, ComplexityTools, Learning, StrategicThinking, and 

Synthesis. Table 74 shows the descriptive statistics for the dependent variables with respect to 

Gender. 

Table 73 

Between-Subjects Factors, Gender 

Variable Group N 

Gender 1 39 

 2 15 

Table 74 

Descriptive Statistics, Gender 

Factor Gender Mean Std. Deviation N 

StrategicThinking 1 4.1639 .65464 39 

2 4.2667 .33363 15 

Total 4.1924 .58209 54 

ComplexityToolsFactor 1 4.0816 .60482 39 

2 4.2000 .51824 15 

Total 4.1145 .57973 54 

CollaborationFactor 1 4.1179 .68475 39 

2 4.1628 .57802 15 

Total 4.1304 .65180 54 

SynthesisFactor 1 4.1849 .61154 39 

2 4.2580 .35071 15 

Total 4.2052 .54929 54 

Learning 1 3.6457 .79277 39 

2 3.5556 .77323 15 

Total 3.6207 .78116 54 

BusinessKnowledgeFactor 1 4.0598 .61593 39 

2 4.1333 .60159 15 

Total 4.0802 .60721 54 

Box’s test is significant, p <.05, violating the equality of covariances assumption (see 

Table 75). Levene’s test is significant for Strategic Thinking and for SynthesisFactor, p <.05 at 
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.006 and .040 respectively (see Table 76). The assumption of homogeneity of variances is 

violated. 

Table 75 

Box's Test of Equality of Covariance Matrices,a Gender 

Box's M 44.104 

F 1.734 

df1 21 

df2 2710.792 

Sig. .020 

Notes: Tests the null hypothesis that the observed covariance 

matrices of the dependent variables are equal across groups. 

 

a. Design: Intercept + gender 

Table 76  

Levene's Test of Equality of Error Variances,a gender 

Factor F df1 df2 Sig. 

StrategicThinking 8.048 1 52 .006 

ComplexityToolsFactor .070 1 52 .793 

CollaborationFactor .902 1 52 .347 

SynthesisFactor 4.440 1 52 .040 

Learning .051 1 52 .822 

BusinessKnowledgeFactor .028 1 52 .867 

Notes: Tests the null hypothesis that the error variance of the dependent 

variable is equal across groups. 

 

a. Design: Intercept + gender 

Because the tests of equality of variance and covariance are violated Pillai’s Trace is 

used, rather than Wilks’ Lambda. Pillai’s Trace is not significant, p >.05 (see Table 77) at .973 

indicating that there is no difference between the linear combination of dependent variables 

based on gender. 
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Table 77 

Multivariate Tests,a Gender 

Effect  Value F 

Hypoth. 

df 

Error  

df Sig. 

Partial 

Eta Sq 

Noncent. 

Parameter 

Obsvd 

Powerc 

Intercept Pillai's Trace .986 548.205b 6.000 47.000 .000 .986 3289.233 1.000 

Wilks' Lambda .014 548.205b 6.000 47.000 .000 .986 3289.233 1.000 

Hotelling's Trc 69.984 548.205b 6.000 47.000 .000 .986 3289.233 1.000 

Roy's Lgst Root 69.984 548.205b 6.000 47.000 .000 .986 3289.233 1.000 

Gender Pillai's Trace .026 .206b 6.000 47.000 .973 .026 1.238 .098 

Wilks' Lambda .974 .206b 6.000 47.000 .973 .026 1.238 .098 

Hotelling's Trc .026 .206b 6.000 47.000 .973 .026 1.238 .098 

Roy's Lgst Root .026 .206b 6.000 47.000 .973 .026 1.238 .098 

Notes: a. Design: Intercept + gender 

 

b. Exact statistic 

 

c. Computed using alpha = .05 

DecisionTenure. The multivariate analysis of variance was requested for a significance 

level of .05, confidence intervals of 95%. Because the decision-making tenure ranges are not 

equally sized (15, 8, and 32 respondents; see Table 78), Scheffe post hoc analysis was requested. 

Table 79 shows the descriptive statistics for the dependent variables. 

Box’s Test is not significant, p >.05 at .409 (see Table 80), indicating that the equality of 

covariances assumption is met. Levene’s test is not significant, for all dependent variables, p 

>.05 (see Table 81), indicating that the homogeneity of variance assumption is met. The Wilks’ 

Lambda test was used. 

 

Table 78 

Between-Subjects Factors, decisionTenure 

Variable  Group N 

decisionTenureRange 1.00 15 

 2.00 8 

 3.00 32 
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Table 79 

Descriptive Statistics, decisionTenure  

Factor decisionTenureRange Mean Std. Deviation N 

StrategicThinking 1.00 4.3833 .54989 15 

2.00 3.7813 .69997 8 

3.00 4.2076 .52028 32 

Total 4.1935 .57672 55 

ComplexityToolsFactor 1.00 4.4533 .56804 15 

2.00 3.9228 .52272 8 

3.00 3.9938 .53878 32 

Total 4.1088 .57590 55 

CollaborationFactor 1.00 4.4694 .53247 15 

2.00 3.8250 .72850 8 

3.00 4.0375 .62721 32 

Total 4.1244 .64727 55 

SynthesisFactor 1.00 4.4469 .48608 15 

2.00 3.7917 .79057 8 

3.00 4.2098 .44995 32 

Total 4.2136 .54773 55 

Learning 1.00 3.8345 .73082 15 

2.00 3.2917 .60257 8 

3.00 3.6146 .82135 32 

Total 3.6276 .77558 55 

BusinessKnowledgeFactor 1.00 4.4000 .55205 15 

2.00 3.8750 .66518 8 

3.00 3.9792 .56757 32 

Total 4.0788 .60166 55 

Table 80 

Box's Test of Equality of Covariance Matrices,a decisionTenure 

Box's M 59.516 

F 1.036 

df1 42 

df2 1503.540 

Sig. .409 

Notes: Tests the null hypothesis that the observed covariance 

matrices of the dependent variables are equal across groups. 

 

a. Design: Intercept + decisionTenureRange 
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Table 81 

Levene's Test of Equality of Error Variances,a decisionTenure 

Factor F df1 df2 Sig. 

StrategicThinking .515 2 52 .601 

ComplexityToolsFactor .104 2 52 .901 

CollaborationFactor .863 2 52 .428 

SynthesisFactor 2.262 2 52 .114 

Learning .375 2 52 .689 

BusinessKnowledgeFactor .312 2 52 .733 

Notes: Tests the null hypothesis that the error variance of the dependent 

variable is equal across groups. 

 

a. Design: Intercept + decisionTenureRange 

Wilks’ Lambda is not significant, p >.05 (see Table 82), indicating that there is no 

difference between the linear combination of dependent variables based on decisionTenure. 

Table 82 

Decision-making tenure Multivariate Tests,a decisionTenure 

Effect Test Value F 

Hypoth. 

 df 

Error 

df Sig. 

Partial 

Eta Sq 

Noncent. 

Parameter 

Obsvd 

Powerd 

Intercept Pillai's Trace .987 605.247b 6.000 47.000 .000 .987 3631.480 1.000 

Wilks' Lambda .013 605.247b 6.000 47.000 .000 .987 3631.480 1.000 

Hotelling's Trc 77.266 605.247b 6.000 47.000 .000 .987 3631.480 1.000 

Roy's Lgst Root 77.266 605.247b 6.000 47.000 .000 .987 3631.480 1.000 

Decision 

Tenure 

Range 

Pillai's Trace .340 1.638 12.000 96.000 .094 .170 19.659 .810 

Wilks' Lambda .688 1.610b 12.000 94.000 .102 .170 19.320 .800 

Hotelling's Trc .413 1.581 12.000 92.000 .111 .171 18.978 .790 

Roy's Lgst Root .249 1.990c 6.000 48.000 .086 .199 11.939 .670 

Notes: a. Design: Intercept + decisionTenureRange 

 

b. Exact statistic.  

 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 

 

d. Computed using alpha = .05 

Process Complexity. The multivariate analysis of variance was requested for a 

significance level of .05, confidence intervals of 95%. Because the process complexity groups 
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are not equally sized (8, 15, and 32 respondents; see Table 83), Scheffe post hoc analysis was 

requested. Table 84 shows the descriptive statistics for the dependent variables. 

Table 83 

Between-Subjects Factors, processComplexity 

Variable Group N 

ProcessComplexity 1 8 

2 15 

3 32 

Table 84 

Descriptive Statistics, processComplexity  

Factor Process 

Complexity Mean 

Std.  

Deviation N 

StrategicThinking 1 4.3125 .59387 8 

2 4.2500 .50885 15 

3 4.1373 .61184 32 

Total 4.1935 .57672 55 

ComplexityToolsFactor 1 3.8750 .90672 8 

2 4.2255 .45961 15 

3 4.1125 .52533 32 

Total 4.1088 .57590 55 

CollaborationFactor 1 4.0250 .79597 8 

2 4.2400 .44207 15 

3 4.0950 .69898 32 

Total 4.1244 .64727 55 

SynthesisFactor 1 4.2500 .42725 8 

2 4.2333 .44006 15 

3 4.1953 .62693 32 

Total 4.2136 .54773 55 

Learning 1 3.5230 .93104 8 

2 3.6889 .64816 15 

3 3.6250 .81099 32 

Total 3.6276 .77558 55 

BusinessKnowledgeFactor 1 3.9583 .65314 8 

2 4.0444 .61550 15 

3 4.1250 .59719 32 

Total 4.0788 .60166 55 

Box’s test of equality was not significant, p >.05 (see Table 85), validating the equality 

of covariances assumption. However, Levene’s test is significant for ComplexityToolsFactor, p 
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<.05 at .049 (see Table 86). This violates the homogeneity of variances for this dependent 

variable. 

Because the test of equality of variance was violated, Pillai’s Trace was used. The test is 

not significant, p >.05 (see Table 87), indicating that there is no difference in the linear 

combination of dependent variable based on process complexity. The partial eta squared value, 

.092, indicates that 9.2% of the variability in the linear combination of dependent variables is 

explained by process complexity.  

Table 85 

Box's Test of Equality of Covariance Matrices,a processComplexity  

Box's M 75.800 

F 1.320 

df1 42 

df2 1503.540 

Sig. .084 

Notes: Tests the null hypothesis that the observed covariance matrices of 

the dependent variables are equal across groups. 

 

a. Design: Intercept + processComplexity 

Table 86 

Levene's Test of Equality of Error Variances,a processComplexity 

Factor F df1 df2 Sig. 

StrategicThinking .292 2 52 .748 

ComplexityToolsFactor 3.196 2 52 .049 

CollaborationFactor 2.764 2 52 .072 

SynthesisFactor .824 2 52 .444 

Learning .873 2 52 .424 

BusinessKnowledgeFactor .432 2 52 .651 

Notes: Tests the null hypothesis that the error variance of the dependent 

variable is equal across groups. 

 

a. Design: Intercept + processComplexity 

 

MANOVA summary. Although there were differences found in some factors based on 

decision-making tenure, those differences did not impact the linear combination of those factors. 
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There is no difference in the importance represented by the linear combinations of dependent 

variables based on age, gender, decision-making Tenure, or process complexity. 

Table 87 

Multivariate Tests,a processComplexity 

Effect  Value F 

Hypoth. 

 df 

Error 

df Sig. 

Partial 

Eta Sq 

Noncent. 

Parameter 

Obsvd 

Powerd 

Intercept Pillai's Trace .985 504.931b 6.000 47.000 .000 .985 3029.587 1.000 

Wilks' Lambda .015 504.931b 6.000 47.000 .000 .985 3029.587 1.000 

Hotelling's Trc 64.459 504.931b 6.000 47.000 .000 .985 3029.587 1.000 

Roy's Lgst Root 64.459 504.931b 6.000 47.000 .000 .985 3029.587 1.000 

Process 

Complexity 

Pillai's Trace .183 .806 12.000 96.000 .643 .092 9.675 .439 

Wilks' Lambda .825 .791b 12.000 94.000 .659 .092 9.489 .429 

Hotelling's Trc .202 .775 12.000 92.000 .674 .092 9.302 .419 

Roy's Lgst Root .120 .962c 6.000 48.000 .461 .107 5.774 .342 

Notes: a. Design: Intercept + processComplexity 

 

b. Exact statistic. 

 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 

 

d. Computed using alpha = .05 
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Discussion 

The prevailing themes of the qualitative interviews were influencing and collaboration 

skills; informal, experiential, and rotational learning; and mentoring, pattern recognition, and 

benchmarking knowledge. The interview participants stressed the influence of a broad range of 

experience in their development, as well as their exposure to a broad range of mentors and 

opportunities to mentor others. These things all point to the lived experiences as the most 

impactful for answering the question of what these decision makers perceived shaped their 

ability to choose performance measures for their organizations.  

Among those who did not practice specific mathematical or statistical work, it was 

generally agreed that the undergraduate and graduate education was formational and provided 

the ability to learn, rather than specific knowledge or skill in choosing measures. Those who 

practiced in the subject area of their undergraduate education, in actuarial science, for example, 

had a different perspective. There were few who pursued advanced degrees other than MBAs, 

and in several instances, the reasons they pursued them at all was to broaden their view. 

There were several topics that seemed especially important to the interview participant 

who raised them, but were raised by only one or, at most, two participants. Such topics were the 

ability to distinguish the important from the less- or unimportant, the ability to hide complexity 

when communicating information, and the ability to conceive and test hypotheses. These topics 

were interesting, because although they were raised by few participants, they were deemed 

highly important by the survey respondents. 

The stressed interview topics which appeared in the top ten most important topics, based 

on the survey responses, were signalNoise (which speaks to distinguishing important 

information, ranked 3rd in importance), hideComplexity (ranked 7th), and hypotheses (tied for 
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17th). It was interesting that experiential learning, informal education and rotational training, 

although mentioned by many of the interview participants as important, were all ranked below 

30 by the survey respondents. 

When collected into the constructs indicated by the statistical analysis, the individual 

experience, knowledge and skill characteristics formed factors dealing with complexity tools 

(statistics, causal analysis, STEM skills, and benchmarking—most important), synthesis (the 

ability to pull together various pieces of information to make sense or meaning from them), 

business knowledge (the breadth of exposure discussed by the interview participants), strategic 

thinking (dealing with ambiguity, precision, perspective), collaboration(influence, networking, 

collaboration, mentoring and feedback), and learning (experiential and formal education and 

being part of a learning culture). 

The experience, knowledge, and skill characteristics identified in the participant 

interviews and collectively formed into factors by statistical analysis of the survey responses 

map cleanly to the literature describing important knowledge and skill for individual decision 

making, program theory, and performance management. These relationships are outlined in the 

following discussion. 

Individual Decision Making 

The nature of decision making varies by situation (Khatri & Ng, 2000; Papenhausen, 

2006; Tingling & Brydon, 2010). It is also influenced by an individual’s personal characteristics, 

interpersonal relationships, and professional and organizational interactions, as evidenced in the 

qualitative findings of this study. The situation and what the decision maker brings to the table, 

in terms of personal, interpersonal, and organizational characteristics, define a context in which 

decision making happens. 
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Personal characteristics. There are some aspects of individual decision making that may 

be influenced by an individual’s personal characteristics such as self-image and comfort with 

ambiguity. The decision maker’s system of beliefs, including his or her self-image plays a part in 

the lens through which they view the organization (Robbins & Judge, 2011). Findings showed 

that having a clear self-image was considered important or very important by 76.4% respondents. 

This impacts their ability to frame situations for problem solving. The decision maker’s comfort 

with ambiguity is complemented when they have a habit of reflection and an agile learning 

mindset within which to extend their knowledge as ambiguity is resolved over time.  

Being comfortable with ambiguity, uncertainty. When making decisions about 

intangible concepts such as sentiment (Frisk et al., 2014; Kalantari, 2010), leaders may have to 

satisfice, that is, make the best decision they can with only the information available. For 

decision makers in highly technical fields, this comfort with ambiguity or uncertainty may be 

more important when dealing with decisions about bleeding edge technology (P_11), but 

precisely correct information may be required when dealing with administrative aspects of 

managing technology. Decision makers do not always have clear-cut questions, allowing for the 

development of specific and unambiguous measures (Basili & Weiss, 1984; Choong, 2013; Frisk 

et al., 2014) and the decision maker’s ability to accept and use directionally correct information, 

augmenting with intuition and experience is essential in these ill-defined cases (P_01, P_06). 

74.5% of respondents felt being comfortable with ambiguity was important or very important. 

Knowing your own value/having a clear image of your own value. A decision maker’s 

confidence in their knowledge and experience is called into play when satisficing becomes 

necessary. A decision maker who does not have precisely correct information from which to 

make decisions may need to bring other experiential knowledge into play, including knowledge 
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of risks and how to deal with those (Schwarber, 2005). If the leader does not have confidence in 

their own knowledge, skill, experience—in essence, the value of their decision making, then 

their individual decision making skills will be impacted by the absence of complete and precise 

information for decision making. 

Reflection and reflexivity. Having a habit of stopping to pause and reflect on what is 

known versus assumed, what information is needed to address a particular business decision, and 

who needs to be involved in the decision making process was called out as essential by more 

than one interview participant. The community of practice echoed the voice of the leader-

decision makers, identifying these themes at a high level of importance. Reflection and the 

ability to apply insight gained from reflection were rated at the same level of importance. 80% of 

respondents felt reflection and being able to apply the insight gained from reflection was 

important or very important. 

This perspective supports the point of view discovered in the literature, identifying the 

reflective practice as one that contributes to sound decision making (Schwarber, 2005; Steptoe-

Warren et al., 2011; Papenhausen, 2006; Weaver, 2014). The selection of measures that enable a 

decision maker to determine the success of a business strategy is strengthened by a focus on 

strategic thinking and the habit of reflection as part of that strategic thinking. 

Being an agile learner in a learning culture with active mentoring. Organizational 

learning is considered by many researchers to be part of a strong organizational measurement 

framework (Barrett et al., 2005; Kaplan & Norton, 1996; Senge, 1990), in the form of the 

learning feedback loop. In order for an organization to learn, the organization’s individual 

members require a growth mindset and a continual learning behavior. Being an agile learner 

enables such organizational learning. Several of the interview participants discussed the notion 
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of their ability to learn eclipsing the subject matter they had studied in formal education. Their 

mindsets were essential to their success in identifying the right measures to manage their 

organizational responsibilities: in continually hearing and considering new information, 

determining how it fit or did not fit in their existing frameworks, and then incorporating the new 

information into their decision making models. 61.8% of respondents felt that having an agile 

learning mindset was important or very important, while 69% considered mentoring important or 

very important. 

Mentors and mentoring, and teaching skills. Part of learning is the importance of 

engaging in professional networks, which may include having mentors and mentoring others. 

38% of respondents ranked teaching skills as important or very important to learning to choose 

organizational measures. The collaboration within professional networks and interactions with 

mentors can help the emerging leader learn how to determine when a decision is ‘good enough’ 

(Kalantari, 2010; Schwarber, 2005). Such a mentor typically has rich, relevant knowledge to 

share (Khatri & Ng, 2000; Papenhausen, 2006; Simon et al., 2011; Weaver, 2014). The 

complementary side of having a mentor is, in time, becoming a mentor to emerging leaders. Such 

mentoring may be seen to go hand-in-hand with teaching skills, which both involve one’s ability 

to share knowledge effectively, whether passing on the practice or sharing understanding of 

measures developed by the practice. Mentors, mentoring, and teaching skills, while rated as 

‘important’ by the average score in the survey, were low in comparison to the experience, 

knowledge, and skill considered important to actually identify and use performance measures. It 

may be that the careful propagation of the knowledge required for the practice is negatively 

impacted by this relative unimportance. 
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Interpersonal characteristics. The interpersonal characteristics that may impact a 

person’s individual decision making include their collaboration and influencing skills, 

interviewing and observational skills, as well as being able to ask the right questions to get the 

information they need for decision making.  Having an agile learning focus and a growth mindset 

will also impact how they investigate and collect the information necessary for decision making. 

Consulting, collaboration, and influencing. When making decisions, good decision 

makers collaborate to get the information they lack, to reinforce or corroborate information from 

other sources, or to validate their own knowledge (Schwarber, 2005; Steptoe-Warren et al., 

2011). This collaboration may impact how the decision maker frames the problem (Franklin, 

2013), thereby potentially changing the approach to making the decision. The importance of 

these skills was echoed by the survey analysis, which ranked these skills in the top third in terms 

of their importance in the development of a decision maker. These skills were, on average, 

among the more important of the skills considered by the survey respondents. 81.8% found 

collaboration and influencing skills important or very important and 85.5% rated consulting 

skills similarly. This may balance the relative unimportance of the mentoring, mentors, and 

teaching skills, if the emerging decision makers are able to participate in the consulting and 

collaborative activities and see those skills modeled by their more experienced leaders. 

In business, strategies are often collaboratively developed. This enables the strategy 

owners to frame their business problems, identify issues and search for the right information to 

form a solution. Collaboration ranked high among the skills identified by the interview 

participants of this study and survey respondents, supporting the development of the leader’s 

collaborative skills as an important part of learning to choose organizational performance 

measures needed to provide information for decision making. 
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Interviewing and observation skills and knowing the right questions to ask. Chief 

among the interviewing and observation skills called out by interview participants was the ability 

to ask good questions and to listen effectively to the answers. Richness of experiences among the 

decision makers was an important factor in strong decision making based on the literature review 

(Khatri & Ng, 2000; Papenhausen, 2006; Simon et al., 2011; Weaver, 2014). The study 

participants felt that it was not only their own rich experience, but that their ability to recognize 

and leverage the rich experiences of others also contributed to effective decision making. This 

was echoed by the 90.9% of survey respondents who rated interviewing and observation skills as 

important or very important. 

Professional and organizational interaction. In addition to personal and interpersonal 

characteristics, the characteristics that describe an individual’s interactions with the wider 

organization are also interesting to explain how they learned to identify performance measures. 

Having strong personal networks among professional colleagues. Organizational 

experiences, including developing strong personal networks, were mentioned by several 

interview participants (P_04, P_09, P_11). These networks constitute, in part, the resources these 

decision makers call on for collaboration in their decision making. Another participant discussed 

the importance of one’s personal brand—the essential value one is known for among one’s 

personal network (P_04). Establishing a reputation as a reliable decision maker, for example, is 

valuable in being included in collaborations which impact interactions among business areas, for 

end-to-end process measures. Only 58.1% of survey respondents rated this characteristic as 

important or very important. 

Access to a broad range of data and project assignments, including strategic level 

projects, early in one’s career. For a future decision maker, seeking out job positions which 



193 

afford a high degree of access to a broad range of data over a broad range of business areas is 

considered a strong contributor to learning about what matters in the organization. Forming this 

understanding of what is important is the theme across both access to a broad range of data as 

well as the wide variety of project assignments. It is not just about what the organization knows, 

but about how the organization uses that information that makes this type of experience 

invaluable to the emerging decision maker. This was considered important by five of the 

interview participants and important or very important by 63.6% (projects), 40% (broad data), 

and 49% (strategic-level projects) of survey respondents. The survey respondents were, in 

general, less experienced than the interview participants. This supports the perspective from 

literature that good decision makers have richer experience in their backgrounds (Khatri & Ng, 

2000; Papenhausen, 2006; Simon et al., 2011; Weaver, 2014). 

The overarching message from the interview participants about the personal 

characteristics necessary to identify and use organizational performance measures was that the 

individual’s dedication to using good information, in as complete a form as possible, was 

essential. This was echoed in the importance assigned to the characteristics by the practitioners 

in the survey responses. This completeness and quality could be assured by personal agile 

learning tendencies; by purposely seeking out a rich variety of data, project, and work 

experiences; and by collaborating with others who have knowledge that one lacks. These 

perspectives were consistent with the literature on individual decision making. With these sound 

practices and experiences, a decision maker can also apply program theory to the task of 

identifying and choosing effective organizational performance measures. 
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Program Theory (PT) 

The logic model from program theory is the second primary building block in identifying 

organizational performance measures (Monroe et al., 2005; Rossi et al., 2004). Program theory 

describes what is delivered by a program, who is impacted, the desired outcomes, assumptions 

about resources and activities, and how these are expected to lead to the desired outcomes 

(Brousselle & Champagne, 2011; McLaughlin & Jordan, 2010; Rogers et al., 2000). The 

decision maker’s way of thinking is an important capability in developing or using models of 

program theory. Ways of thinking for the interview participants were formed and tuned in both 

formal and informal education. 

Skills learned in formal and informal education. All of the participants had bachelor’s-

level formal education and most had master’s-level formal education. Only one had doctoral 

level experience. Many of the participants had content-focused informal education, like Six 

Sigma Black Belt training or various insurance or investment certifications. The general 

consensus among the participants was that their way of thinking was the greatest benefit most 

received from their formal education. Those who had more extensive science, technology, 

engineering and math (STEM) background expressed the viewpoint that the analytical ways of 

thinking inherent in those disciplines were particularly beneficial to the understanding of 

measures and their proper usage. 50% of survey respondents found formal education important 

or very important in learning to choose organizational measures. The ratings were higher for 

informal education, with 81.8% rated as important or very important. 

Understanding causal relationships in program theory. Three areas of interest from 

the interviews impact this aspect of program theory: causal analysis, process thinking, and 

structured system thinking. Several of the interview participants focused strongly on the idea that 
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system thinking was essential in identifying good performance measures. They stressed the idea 

that one must be able to look at an organization end-to-end, understanding how it interacts with 

other organizations and how its feedback loops work. One participant talked of causal analysis as 

a way to test measures that have been put in place to determine whether they are actually 

significant in the outcomes being measured. 96.3% of survey respondents felt understanding 

causal relationships was important or very important. 

Another participant, along with the first, talked of measuring intangibles like creativity 

and innovation. These participants speculated about using causal analysis to determine whether a 

proxy measure, something focused on a sign that creativity or innovation is happening, rather 

than the creativity itself, might be useful. Creativity and innovation were considered important or 

very important by 69% of survey respondents. This stands to reason, as creativity and innovation 

are essential in formulating ideas about what to build or what to do, but the process engineering 

community is focused on how to do those things. Creativity is important in that environment, but 

in different ways. 

Process and systems thinking were two ideas that were discussed by many, if not all the 

interview participants in one form or another. Process thinking was considered important or very 

important by 92.7% of survey respondents, while systems thinking was rated so by only 67.2%. 

This also stands to reason, as the focus of the population being surveyed is process engineering. 

These interrelated ways of thinking deal with not only the linear execution of activities from a 

pre-defined start to finish, but also of the layers of disciplines involved, including the people who 

conduct the activities, the technology they use, and the information they consume and produce. 

This flows into the concepts of program theory, identifying the situation in which the program 

operates, the actions we take, as well as identifying the people impacted by the actions (some the 
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actors, some the subjects, and some impacted peripherally). Although the information consumed 

and produced is not explicitly mentioned in the logic model of program theory, the outcomes 

suggest possible focal points for development of measures—which require input data, business 

rules defining the measures, and the output measure. These implied information requirements 

form the connection point to the next building block, performance measurement frameworks. 

Performance Measurement (PM) and Performance Measurement Frameworks 

Performance measurement systems include such models as the balanced scorecard (BSC) 

and the goal, question, metric (GQM) approach. In this discussion, three major factors are 

considered: first, what does the decision maker know and how do they use that knowledge? 

Second, what experience does the decision maker have? And third, what techniques does the 

decision maker use? 

Critical skills and knowledge for measuring. There were some broad categories of 

knowledge and skill identified by the interview participants as they considered how they learned 

to choose organizational measures. Being able to package information suited to the intended 

audience is considered essential. Part of being able to identify what is important lies in 

understanding statistical significance in measures and then being able to express the business 

significance effectively. 

Identifying what is important at the right level of precision, while hiding unneeded 

complexity. filter signal from noise, that is, the important from the unimportant, was considered 

an essential skill. The interview participants acknowledged that experience was generally 

required to do so—being told about such distinctions was not enough. Interacting with more 

experienced decision makers and understanding their objectives was identified as an important 

part of this experience. The GQM allows the practitioner to distinguish the important things in a 
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structured approach (Boyd, 2005). 92.7% of survey respondents agreed that understanding how 

to hide complexity and express ideas simply was important or very important, with 74.5% rating 

the ability to express information at the right level of precision similarly. While developing the 

ability to distinguish the essential from the other information, a person would, ideally, also 

develop the parallel abilities to hide much of the detailed complexity and to present findings 

simply.  

The ability to flex between levels of precision is also likely to be influenced by the 

recognition of the important or essential at the level at which decisions need to be made. Part of 

the criteria for identifying the important information is to understand the relationships between 

the measures and the organizational objectives. This supports the findings in existing research 

(Humphreys & Trotman, 2011; Kaplan & Norton, 1996; Kasperskaya & Tayles, 2013; Morard et 

al., 2012; Olsson & Runeson, 2001; Theriou et al., 2004; Wongrassamee et al., 2003; Wu, 2005).  

Statistical significance and business significance. Once measures are identified and data 

collection and analysis enabled, testing for the statistical significance of the measures may lend 

insight into which measures provide meaningful information to enable decision makers to 

improve the performance of the organization. Measures that are not statistically relevant to the 

outcomes they are thought to measure may be eliminated and work reduced, data storage and 

processing time recovered, and time and attention turned to measures which are truly effective in 

aiding the management of the organization. 76.3% of survey respondents rated the importance of 

understanding statistics and statistical significance as important or very important.  

Unfortunately, decision makers may assume causality, when it may not exist (Akkermans 

& van Oorschot, 2005). The perspective of the interview participants supports findings in 

literature regarding the assumptions made about causality in performance measurement systems. 
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At the same time, it acknowledges those assumptions and seeks to verify or correct the use of 

measures which do not, in fact, point to the desired outcomes.  

An additional aspect of complexity in the conversation about statistical significance and 

causality involves organizational complexity. There are challenges in determining the right 

measures to use and effective ways to filter those measures when dealing with complex 

organizations. One example of this concern is when measures cross organizational areas, but are 

devised under inconsistent ways of naming, collecting, recording metadata for, and reporting the 

measures. This presents a particularly challenging case for the development of the performance 

measurement framework (Mendonça et al., 1998). 

Critical experience and the motivation to measure. There is a difference between 

knowing about something and knowing how to do something, or being something. Knowing 

about performance measures and being able to choose them effectively are related, but distinct. 

One is knowledge and the other skill. Being accountable for measures impacts a decision maker 

in ways that participating as a practitioner in developing measures does not. Being able to 

formulate hypotheses and test them is another way in which the practitioner can begin to 

transition from knowing about performance measurement to being skilled in performance 

measurement. Knowledge that contributes to the ability to formulate hypotheses concerns 

recognizing existing patterns of behavior and measurement schemes as well as benchmarking. 

Being accountable for the measures. Determining the measures required to describe the 

success of a particular process or business area was described as a skill for which decision 

makers may not have a frame of reference, the motivation, or the span of control to do 

effectively until they are in the position of being accountable for the business area or process—

and thereby the supporting measures. These participants perceived the scope of the ‘big picture’ 
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necessary for management of the business area to be one which required actual experience to 

understand. It could be talked about in formal education, discussed in work experience, but it had 

to be lived to grow into the full, necessary understanding.  

There was no discussion in the literature I reviewed that supported the concerns 

expressed by these interview participants about the difficulty of being able to see the entirety of 

the big picture they required. In addition to the ability to see the big picture completely, the 

decision maker requires the ability to formulate hypotheses about how the components of that 

picture interact. Echoing this, 80% of survey respondents considered experience being 

accountable for delivering measures as an important or very important aspect of learning to 

choose organizational performance measures. 

Forming and testing hypotheses to explain outcomes. Participants expected to be able to 

see the big picture, formulate hypotheses to explain its functional interactions, and then to test 

those interactions to determine whether the overall objectives of the endeavor were being 

achieved. 76.3% of survey respondents felt the ability to formulate and test hypotheses was 

important or very important. One of the issues with devising performance measurements systems 

to produce such insight is that decision makers may not be able to articulate their goals or 

objectives with sufficient clarity to identify the measures they need (Boyd, 2005; Markovic & 

Kowalkiewicz, 2008). By using such tools as the logic model of program theory described 

above, decision makers may apply a step-wise, structured analytic approach to articulating their 

objectives. The clear line of sight illustrated in the logic model between what the organization 

does, who it impacts, and the outcomes it is trying to drive will inform the hypotheses that the 

decision maker may use to determine the usefulness of the selected measures. 
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Recognizing and using patterns, as well as using industry and internal benchmarking, 

effectively. The process complexity may be assessed using the patterns detected in their 

construction (Cheng & Prabhu, 2008; Schäfermeyer et al., 2012). The patterns visible in trends 

and the similarity or divergence from examples such as benchmark measures provide insight for 

the seasoned decision maker that may not be available or understood by the emerging decision 

maker (Weaver, 2014). 78.2% of survey respondents felt pattern recognition was an important or 

very important aspect of learning to choose measures. 74.5% considered knowledge of 

benchmarking similarly. Understanding the patterns present in a process may aid the decision 

maker in the selection of measures that are more likely to be useful for processes of particular 

complexity. The value of the measures lies not only in their selection, but in learning how to read 

the behavior of those measures over time. 

Critical techniques when designing and measuring. There were several techniques 

identified in the interviews that were supported by the survey responses as being important to 

learning to choose organizational performance measures. The ability to consider unexpected 

consequences—indeed, the awareness that such things need to be considered—is important. The 

ability to look at the measure design from another person or business area’s point of view is an 

integral part of being able to anticipate the consequences of putting measures in place. Then, 

with the interactions of various processes, business areas, and individuals in place, considering 

the consequences of putting measures into production, the manner in which those measures are 

presented to the organization is important.  

Unexpected consequences. Being able to predict unexpected consequences of measuring 

and being able to control for gaming behavior when designing metrics are necessary for the 

identification and design of good performance measures. Even careful implementation of 
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measures and measuring poses potential risk, as measuring may have unforeseen and undesirable 

consequences (Deem et al., 2010). Measuring in business area may drive undesirable behaviors 

in other areas which have unaligned or competing objectives (Azevedo, Carvalho, & Cruz-

Machado, 2013; Courty & Marschke, 2003; Richard, Devinney, Yip & Johnson, 2009). This 

characteristic was not considered important by the majority of survey respondents. 54.5% 

considered it moderately important or less. This is consistent with the finding that process 

thinking is considered more important than systems thinking. Looking at consequences of 

measurement is an outcome, which would be of high interest to systems thinkers, but not to 

process thinkers due to the focus of their practice. 

Interview participants recognized the need to have a broad view of the business, 

facilitating their ability to see such competing objectives and minimize the possibility of driving 

such undesirable consequences. Anticipating consequences involves ideating on ways to prevent 

or mitigate undesirable behaviors that may ensue. Undesirable behaviors, such as gaming may 

cause programs to fail without business leaders understanding why (Monroe et al., 2005). 

Important factors of that view are the decision maker’s willingness and ability to consider the 

perspectives of the other business areas. 

Being able/willing to see the other's point of view. Seeing the importance of the 

objectives of those in other related business areas may require a decision maker to make a 

concerted effort to understand the point of view of the decision makers and others in that 

business area (P_02, P_04). The questioning and listening skills discussed above will be 

leveraged in order to understand the point of view of the other area, as well as the ability to give 

effective feedback on what has been discussed. This collaborative work is likely to be an 

essential part of developing sound, company-wide performance measurement frameworks 
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composed of effective, integrated measures. 90.9% of the survey respondents rated this 

characteristic as important or very important. 

Creativity, storytelling/innovation and understanding ethical presentation of measures. 

While creativity and storytelling are necessary pieces of communicating the insight provided by 

measures, there is a balancing ethic in how those measures are presented. The insight derived 

from measures is not always intuitively obvious. Often, decision makers must study the measures 

and determine the insight that is concealed within them. As this is a matter of judgment and 

ingenuity, there is also the possibility of bias or errors in interpretation. Is incumbent on those 

who measure, derive insight, and report on outcomes to ensure ethical presentation of the 

information which influences the direction of the organization based on the measures (APA, 

2009). 85.5% of survey respondents agreed that this was important or very important. One 

example of deficiency in this area is the common measures bias, which may result in diminished 

decision-making quality (Humphreys & Trotman, 2011).  

Factors 

As presented in the findings, the factors discovered using principal component analysis 

must be considered with prejudice based on the very poor sample size (55), the number of 

variables (50), and the presence multicollinearity among the variables (clearly present, but not 

completely quantified). Although the multicollinearity was not visible in the correlation matrices, 

it was visible in regression testing and it prevented factors from being extracted from the EKS set 

as a whole, and from the measures set as a whole. Two variables (master’s and post-graduate 

education) were found to be redundant to the formalEducation variable. Depending on the focus 

of the inquiry, whether the understanding of the levels of formal education are of most interest, 

either formalEducation or the two others might be removed for better results.  
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There is insight to be gained to direct future research in this space, so the following is 

offered for consideration as the basis for more suitable study conditions. The consistency in the 

findings of the importance of the factors among gender groups, age groups, process complexity 

groups, and decision-making tenure provides an encouraging basis on which to conduct further 

research. 

Experience, knowledge, and skill factors. The factors extracted from experience, 

knowledge and skill variables were named Business Knowledge, Collaboration, Complexity 

Tools, Learning, Strategic Thinking, and Synthesis. Business Knowledge concerns the 

practitioners’ breadth of business knowledge, project experience, and consulting skill. It points to 

their ability to recognize and understand what is happening in the organization based on broad 

experience and ability to interact effectively. 

The collaboration factor is composed of items dealing with interactions among the 

various players involved with performance measures—those identifying requirements, 

practitioners developing processes and ways to measure them, and those using measures to 

accomplish their business purpose. Complexity tools are the skills and techniques a practitioner 

requires to deal with complexity: first, awareness and perspective, then analysis, and then 

meaning making. The learning factor is composed of the practitioner’s preference for 

experiential learning, having a formal learning foundation, and being an active part of a learning 

culture. It represents a fertile ground for individual and, collectively, organizational learning. 

The strategic thinking factor describes the importance of a practitioner’s breadth of 

experience and span of awareness across the organization as well as their ability to distinguish 

what is important and to clearly articulate vision. And finally, the synthesis factor deals with the 

knowledge and skill necessary to consume, analyze, synthesize measures in their precise, 
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detailed form, and, based on knowledge of the audience, package that synthesized understanding 

in a way that speaks truly to it. These four factors represent the composition of experience, 

knowledge, and skill initially revealed through qualitative interviews and then supported in 

quantitative analysis. 

Measure factors. The factors extracted from the measure variables were named Business 

Outcomes, Measure Usage, Measure Context, Usability, and Execution. Of these, the execution 

factor was perceived as most important based on the survey responses. This factor is composed 

of items (measuring the right things, repeatable results, and auditable processes and numbers) 

that deal with the production of the numbers actually delivered to the decision makers, indicating 

that it is not in the understanding of the measure, but in the delivery and application that the 

value may be realized. Usability was the next, most important factor, indicating that measures 

need to be actionable, simple, achievable, and have meaning that can be clearly understood by 

the consumers. 

The business outcomes factor deals with the ways in which a measure or collection of 

measures drive behavior and influence outcomes that constitute business value. Understanding 

the behaviors that the measure assesses and drives, whether the overall business outcomes are 

achieved, balanced against a clear understanding of the value of those outcomes is important in 

this factor. Finally, it was acknowledged that an understanding is needed of how to deal with 

related measures which sometimes compete for attention and periodization when funding 

questions arise. 

Measure context and usage provide information about the ties between the information 

impacted by the measure and the questions that can be answered by the measure to say whether 

an outcome has been achieved versus why it was or was not achieved (Basili & Weiss, 1984; 
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Becker & Bostelman, 1999; Boyd, 2005; Humphreys & Trotman, 2011). Usage addresses the 

ways in which a measure can be used in a healthy way with respect to achieving the 

organization’s objectives. Although these measures were deemed less important than the 

execution and usability measures, they were still identified as important. 

Tools to handle complexity were perceived as the most important of the experience, 

knowledge, and skill characteristics, followed by those EKS characteristics needed for synthesis. 

business knowledge, general as well as industry-specific, and strategic thinking abilities were 

also rated as very important. The practitioner’s ability to collaborate effectively and participate in 

a learning culture were considered important. Business knowledge is directly applicable in 

decision making. It enables the identification of options and allows the practitioner to see 

possible consequences of the choices they make, based on their past experiences. The complexity 

tools factor, including benchmarking, statistics, causal analysis, and other STEM skills, 

contributes to the practitioner’s ability to test and learn in order to make better decisions. These 

complexity tools allow the practitioner to execute this learning in modeling environments first, 

minimizing the impact to the organization, before applying successful models in the workplace. 

Strategic thinking and synthesis allow the practitioner to distinguish between situations in 

which intuition versus data-driven decisions should be used. The learning factor includes aspects 

of belonging to a learning culture. This implies sharing knowledge to the organization as well as 

gaining knowledge from the organization. This communication and interaction is necessary for 

healthy decision making (Humphreys & Trotman, 2011; Kaplan & Norton, 1996; Kasperskaya & 

Tayles, 2013; Morard et al., 2012; Olsson & Runeson, 2011; Theriou et al., 2004; Wongrassamee 

et al., 2003; Wu, 2005). Strategic thinking and synthesis is also enable practitioners to develop 

and leverage skill in program theory. making connections and understanding consequences of 
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actions and ensuring those actions drive the desired outcomes is inherent in developing program 

theory (Brousselle & Champagne, 2011; McLaughlin & Jordan, 2010; Rey et al., 2012; Rogers et 

al., 2000). 

Limitations 

The insight gained through the qualitative portion of the study is presented as a basis for 

understanding the characteristics of experience, knowledge, and skill that 11 senior decision 

makers in the company felt influenced their development in choosing organizational 

performance measures. In that respect the basic answer to the research question is answered. The 

quantitative portion of the study provided insight into the alignment of the practitioner 

community with respect to the leadership. There are limitations in the application of the 

quantitative findings of the study. As has been presented with transparency throughout the 

discussion, although they provide insight, the results of the quantitative portion of the study 

cannot be generalized due to the small sample size (de Winter et al., 2009; Tabachnick & Fidell, 

2013). The number of items in the survey questionnaire introduced a multicollinearity problem 

with the data during PCA. The researcher has explained in careful detail the measures that were 

taken to minimize the risk in presenting these findings, with the expectation that the foundation 

that has been established will add to the body of knowledge and enable further development in 

this space. 

Recommendations for Future Research 

Future research is recommended  

(1) To pursue the regression analysis for the candidate sets (see Table 1). This, in 

addition to other analysis of the current study data is recommended to cull out the 



207 

variables which constituted multicollinearity in this study, confounding the extraction 

of factors.  

(2) To explore the conditions under which de Winter, Dodou, and Wieringa (2009) 

discovered sample sizes less than 50 can yield sound results is also recommended.  

(3) Finally, to replicate this study, perhaps among a professional community of process 

engineering professionals, to achieve the conventionally desired samples sizes for 

factor analysis. 

Conclusion 

Qualitative interviews with eleven organizational decision makers yielded a rich body of 

experience, knowledge, and skills that contribute to the decision makers’ learning to choose 

performance measures in the organization. A cross-sectional survey of process engineering 

professionals in the organization illuminated those areas deemed of most importance to the 

practitioners largely responsible for identifying and implementing performance measures for 

process execution. Most of the tests showed that the importance of the constructs did not vary 

across the age, gender, and process complexity dimensions. The exceptions were in the decision-

making experience dimension with respect to the collaboration, complexity tools, and synthesis 

constructs. Practitioners with less experience found these constructs significantly more 

important, indicating perhaps, a greater need for emerging decision makers to have solid 

guardrails and guidance as they hone their decision making over time. 
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Appendix C Cross-sectional Survey Instrument 

List of survey items 

How important is each of the following in influencing your ability to identify effective performance 

measures 

1. My ability to ask the right questions 

2. My ability to clearly visualize and articulate what success looks like 

3. My ability to conceive and test hypotheses to explain outcomes 

4. My ability to hide complexity and express ideas simply 

5. My ability to identify the important from the unimportant 

6. My ability to mitigate "gaming" behavior when designing measures 

7. My ability to predict unexpected consequences of decisions 

8. My ability to recognize and manage assumptions during collaboration 

9. My ability to reflect and apply insight I gain from reflection 

10. My ability to think in a structured, "systems" view 

11. My ability to think in terms of process 

12. My access to a broad range of data early in my career 

13. My access to business leaders for mentoring and role modeling early in my career 

14. My accountability for measures in my job assignments (owning a process or P&L, for example) 

15. My agile learning mindset 

16. My breadth of experience in project work early in my career 

17. My broad business knowledge  

18. My clear self-image and confidence in my own value 

19. My comfort with ambiguity 

20. My consulting skills 

21. My creativity and innovative skills 

22. My ease in moving between levels of precision 

23. My effective feedback during collaboration 

24. My experience as a technical practitioner with various measurement frameworks or methodologies 

25. My experience in collaborative work environments 

26. My experience in command and control organizational environments 

27. My experience in organizations with a strong learning culture 

28. My exposure to strategic level projects early in my career 

29. My focus on the other's point of view during collaboration 

30. My formal education 

31. My habit of reflection, of pausing to consider factors that impact a given situation or decision 

32. My influencing skill during collaboration 

33. My informal education (that is, generally a certificate program, including training delivered by your 

employer for which they keep a record) 

34. My knowledge of financial models and modeling 

35. My leadership skills, especially advocacy and visioning 

36. My Master's level formal education 

37. My mentoring skills 

38. My mentors 

39. My observation and interviewing skills 

40. My participation in professional work/training rotation programs 

41. My pattern recognition skills 

42. My Post-graduate level formal education 

43. My preference for experiential learning 

44. My self-directed, unstructured learning 
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How important is each of the following in influencing your ability to identify effective performance 

measures 

45. My skill with computers 

46. My STEM skills 

47. My strong personal and professional networks 

48. My strong work ethic 

49. My teaching skills 

50. My understanding of benchmarking 

51. My understanding of causal analysis; my ability to distinguish between correlation and causation 

52. My understanding of data collection methods 

53. My understanding of statistics, statistical significance 

54. My understanding of the ethical presentation of measures (that is, that statistics, while true, may be 

presented in an unethical way—a way that misleads either intentionally or unintentionally) 

55. My understanding of the impact of organizational complexity on measurement 

In your opinion, to what extent does each of the following statements describe an effective measure. 

56. An effective measure is actionable 

57. An effective measure is one that describes an object, process, or condition in the organization which 

can be influenced or controlled 

58. An effective measure is one that measures the right thing 

59. An effective measure is one that moves over time 

60. An effective measure is one that works as designed 

61. An effective measure is produced in a timely manner 

62. An effective measure is repeatable and reproducible 

63. An effective measure is simple or can be expressed simply 

64. An effective measure is used to enable the business to achieve its objectives 

65. The definition of an effective measure includes a definition expressed in business language shared by 

the measure's producers and consumers 

66. The definition of an effective measure includes a well-defined and auditable data collection 

mechanism 

67. The definition of an effective measure includes a well-defined rationale for balancing possibly 

opposing objectives 

68. The definition of an effective measure includes an explicit description of expected behavior 

69. The definition of an effective measure includes an explicit statement of the overall value of the 

measure 

70. The definition of an effective measure includes an explicitly defined context (including, but not 

limited to process, usage, influencers, environment, completeness) 

71. The definition of an effective measure includes explicit identification of related measures that act in 

concert 

72. The definition of an effective measure includes explicit identification of appropriate usage 

73. The definition of an effective measure includes explicitly defined commander's intent 

74. The definition of an effective measure includes explicitly defined meaning, providing an 

understanding the essential concept being measured as well as the mechanics/formula to derive it 

75. The definition of an effective measure includes explicitly defined desired outcomes, business 

objectives, or needs that are driven by the measure 

76. The definition of an effective measure includes explicitly identified measure type (e.g., diagnostic, 

outcome, or strategic measures) 

77. The definition of an effective measure includes identification of the types of business questions it 

answers 

78. The definition of an effective measure includes recommendations for suitable 

presentation/visualization options for the measure 

Note: This survey is the original work of the study author.  
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Appendix D Candidate Factors 

Candidate Factor Survey Item (restated) Variable 

Collaboration 

My focus on the other's point of view during collaboration pointOfView 

My effective feedback during collaboration feedback 

My experience in command and control organizational 

environments 

commandControl 

My experience in collaborative work environments collaborative 

My ability to recognize and manage assumptions during 

collaboration 

assumptions  

My influencing skill during collaboration influencingSkill  

Knowledge 

Development 

My broad business knowledge  businessKnowledge  

My agile learning mindset agileLearning 

My preference for experiential learning 

experientialLearnin

g 

My formal education formalEducation 

My habit of reflection, of pausing to consider factors that 

impact a given situation or decision 

Reflection 

My experience in organizations with a strong learning culture learningCulture 

My Master's level formal education Master's 

My participation in professional work/training rotation 

programs 

trainingRotation 

My Post-graduate level formal education Post-graduate 

My informal education (that is, generally a certificate 

program, including training delivered by your employer for 

which they keep a record) 

informalEducation 

My clear self-image and confidence in my own value clearSelfImage 

My strong work ethic workEthic 

My ability to think in terms of process processThinking 

My self-directed, unstructured learning self-directed 

My breadth of experience in project work early in my career 

breadthOfExperienc

e 

My exposure to strategic level projects early in my career strategicLevel 

Experience with 

Measures 

My ability to identify the important from the unimportant 

[signal/noise] 

signalNoise 

My ability to predict unexpected consequences of decisions 

unexpectedConsequ

ences 

My understanding of benchmarking Benchmarking 

My understanding of causal analysis; my ability to distinguish 

between correlation and causation 

causalAnalysis 

My skill with computers [computer skill] computerSkill 

My knowledge of financial models and modeling financialModels 

My understanding of data collection methods dataCollection 

My ability to mitigate "gaming" behavior when designing 

measures 

mitigateGaming 

My understanding of statistics, statistical significance Statistics 

My understanding of the ethical presentation of measures 

(that is, that statistics, while true, may be presented in an 

ethicalPresentation 



228 

unethical way—a way that misleads either intentionally or 

unintentionally) 

My understanding of the impact of organizational complexity 

on measurement 

organizational 

Complexity 

My access to a broad range of data early in my career broadRangeOfData 

My accountability for measures in my job assignments 

(owning a process or P&L, for example) 

accountability 

Mentors 

My creativity and innovative skills creativity 

My ability to clearly visualize and articulate what success 

looks like 

visualizeArticulate 

My strong personal and professional networks 

professionalNetwor

ks 

My comfort with ambiguity ambiguity 

My leadership skills, especially advocacy and visioning advocacyVisioning 

My mentoring skills mentoring 

My access to business leaders for mentoring and role 

modeling early in my career 

businessLeaderAcc

ess 

My mentors mentors 

Technique 

My ability to ask the right questions rightQuestions 

My consulting skills consultingSkills 

My ease in moving between levels of precision levelsOfPrecision 

My ability to conceive and test hypotheses to explain 

outcomes 

Hypotheses 

My ability to hide complexity and express ideas simply hideComplexity 

My ability to think in a structured, "systems" view [systems 

thinking] 

systemsThinking 

My experience as a technical practitioner with various 

measurement frameworks or methodologies 

technicalPractitione

r 

My ability to reflect and apply insight I gain from reflection applyInsight  

My observation and interviewing skills interviewingSkills 

My pattern recognition skills patternRecognition 

My STEM skills STEMSkills 

My teaching skills teachingSkills 

Effective 

Measure 

An effective measure is actionable Actionable 

An effective measure is one that moves over time movesOverTime 

An effective measure is one that describes an object, process, 

or condition in the organization which can be influenced or 

controlled 

canBeInfluenced 

An effective measure is used to enable the business to achieve 

its objectives 

Achieve 

An effective measure is one that measures the right thing rightThing 

An effective measure is repeatable and reproducible Repeatable 

An effective measure is simple or can be expressed simply Simple 

An effective measure is one that works as designed Works 

An effective measure is produced in a timely manner Timely 

Good Measure 

Definition 

The definition of an effective measure includes a well-defined 

rationale for balancing possibly opposing objectives [balance] 

Balance 

The definition of an effective measure includes an explicit 

description of expected behavior 

Behavior 
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The definition of an effective measure includes an explicitly 

defined context (including, but not limited to process, usage, 

influencers, environment, completeness) 

Context 

The definition of an effective measure includes a well-defined 

and auditable data collection mechanism 

Auditable 

The definition of an effective measure includes explicitly 

defined commander's intent 

Intent 

The definition of an effective measure includes a definition 

expressed in business language shared by the measure's 

producers and consumers 

Language 

The definition of an effective measure includes explicitly 

defined meaning, providing an understanding the essential 

concept being measured as well as the mechanics/formula to 

derive it 

Meaning 

The definition of an effective measure includes explicitly 

defined desired outcomes, business objectives, or needs that 

are driven by the measure 

Outcomes 

The definition of an effective measure includes identification 

of the types of business questions it answers 

Questions 

The definition of an effective measure includes explicit identification 

of related measures that act in concert 

relatedMeasures 

The definition of an effective measure includes explicitly identified 

measure type (e.g., diagnostic, outcome, or strategic measures) 

measureType 

The definition of an effective measure includes explicit identification 

of appropriate usage 

Usage 

The definition of an effective measure includes an explicit statement 

of the overall value of the measure 

Value 

The definition of an effective measure includes recommendations for 

suitable presentation/visualization options for the measure 

Presentation 

Visualization 
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Appendix E Code book 

All codes are numeric values from 1-6. 

Variable Survey Item Additional information  

accountability 

My accountability for 

measures in my job 

assignments (owning a 

process or P&L, for 

example) 

accountability in an organization is 

a requirement to justify actions or 

decisions.  

achieve 
An effective measure is used to enable the business to achieve its 

objectives 

actionable 
An effective measure is 

actionable 

The term actionable refers to the 

ability of the consumer of the 

information to take an appropriate 

action because of the information. 

advocacyVisioning 

My leadership skills, 

especially advocacy and 

visioning 

Advocacy is a leadership action 

intended to influence an action or 

behavior. Visioning is a leadership 

action of developing goals or 

visions (foresight) for the future of 

the organization. 

agileLearning My agile learning mindset 

In the perspective of the interview 

participants, the agile learning 

mindset is the ability of the 

practitioner to flex between the 

many sources and styles of learning, 

to be in a continual state of learning, 

open to new ideas and able to test 

them and determine their 

consistency with the practitioner’s 

learning style. 

ambiguity My comfort with ambiguity 

In the perspective of the interview 

participants, the ability to deal with 

ambiguity included being able to 

ideate several possible meanings, 

provide a strategy that would deal 

with the viable meanings and plan 

accordingly.  

applyInsight  

My ability to reflect and 

apply insight I gain from 

reflection 

Applying insight refers to the ability 

to realize value from what one has 

understood.  

assumptions  
My ability to recognize and manage assumptions during 

collaboration 

auditable 
The definition of an effective 

measure includes a well-

Auditable data collection is a means 

of assuring the correctness and 
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Variable Survey Item Additional information  

defined and auditable data 

collection mechanism 

completeness of the data used to 

produce a measure 

balance 

The definition of an effective 

measure includes a well-

defined rationale for 

balancing possibly opposing 

objectives 

This is about making choices when 

the things being measures come into 

conflict. 

behavior 

The definition of an effective 

measure includes an explicit 

description of expected 

behavior 

This refers to the behavior of the 

measure itself, rather than the nature 

of the thing being measured. E.g., is 

the measure expected to have a 

slight upward trend? A level trend, 

a certain shape when a condition of 

concern is indicated? 

benchmarking My understanding of benchmarking 

breadthOfExperience My breadth of experience in project work early in my career 

broadRangeOfData My access to a broad range of data early in my career 

businessKnowledge  
My broad business 

knowledge  
 

businessLeaderAccess 
My access to business leaders for mentoring and role modeling 

early in my career 

canBeInfluenced 
An effective measure is one that describes an object, process, or 

condition in the organization which can be influenced or controlled 

causalAnalysis 
My understanding of causal analysis; my ability to distinguish 

between correlation and causation 

clearSelfImage My clear self-image and confidence in my own value 

collaborative My experience in collaborative work environments 

commandControl 
My experience in command and control organizational 

environments 

computerSkill My skill with computers [computer skill] 

consultingSkills My consulting skills  

context 

The definition of an effective measure includes an explicitly defined 

context (including, but not limited to process, usage, influencers, 

environment, completeness) 

creativity 
My creativity and 

innovative skills 
 

dataCollection 
My understanding of data 

collection methods 

Although the level of rigor may be 

different, or ensured through 

different means, this item refers to 

the care taken in collecting and 

handling data from its system of 

record to the ultimate information 

consumer. 
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Variable Survey Item Additional information  

ethicalPresentation 

My understanding of the ethical presentation of measures (that is, 

that statistics, while true, may be presented in an unethical way—a 

way that misleads either intentionally or unintentionally) 

experientialLearning My preference for experiential learning 

feedback My effective feedback during collaboration 

financialModels My knowledge of financial models and modeling 

formalEducation My formal education  

hideComplexity My ability to hide complexity and express ideas simply 

hypotheses My ability to conceive and test hypotheses to explain outcomes 

influencingSkill  My influencing skill during collaboration 

informalEducation 

My informal education (that is, generally a certificate program, 

including training delivered by your employer for which they keep a 

record) 

intent 

The definition of an effective 

measure includes explicitly 

defined commander's intent 

“commander’s intent” is statement 

of the overall objective of the 

leader. 

interviewingSkills My observation and interviewing skills 

language 

The definition of an effective measure includes a definition 

expressed in business language shared by the measure's producers 

and consumers 

learningCulture 

My experience in 

organizations with a strong 

learning culture 

The learning culture is one that 

encourages the individual in the 

culture to increase their knowledge, 

hone their skills, and improve their 

performance as a conscious 

practice. 

levelsOfPrecision My ease in moving between levels of precision 

master's My Master's level formal education 

meaning 

The definition of an effective measure includes explicitly defined 

meaning, providing an understanding the essential concept being 

measured as well as the mechanics/formula to derive it 

measureType 
The definition of an effective measure includes explicitly identified 

measure type (e.g., diagnostic, outcome, or strategic measures) 

mentoring My mentoring skills 

Refers to the practitioner’s ability to 

mentor others. May be related to 

teaching skills. 

mentors My mentors 

Refers to the mentors a practitioner 

has had. May be related to business 

leader access. 

mitigateGaming 

My ability to mitigate 

"gaming" behavior when 

designing measures 

Refers to the understanding of 

unexpected consequences of 

measuring something and 

preventing (if possible) or dealing 
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Variable Survey Item Additional information  

with the negative behaviors that 

might result 

movesOverTime 
An effective measure is one 

that moves over time 

Using measures that return only 

constant values are considered 

(perhaps only assumed to be) less 

actionable than those on which 

decisions may be more readily 

made. 

organizationalComplexity 

My understanding of the 

impact of organizational 

complexity on measurement 

Refers to the complex 

interrelationships among business 

areas of an organization, the ways 

they deal with communication, 

funding, and performance 

measurement. 

outcomes 

The definition of an effective measure includes explicitly defined 

desired outcomes, business objectives, or needs that are driven by 

the measure 

patternRecognition 
My pattern recognition 

skills 

Refers to human pattern 

recognition, rather than machine 

pattern recognition, such as is used 

in data mining. 

pointOfView 

My focus on the other's 

point of view during 

collaboration 

Perspective 

post-graduate 
My Post-graduate level 

formal education 
Doctoral-level studies 

presentationVisualization 

The definition of an effective 

measure includes 

recommendations for 

suitable 

presentation/visualization 
options for the measure 

Data visualization is about making 

the data consumable for the general 

consumer (e.g., Infographics in 

USA Today). 

processThinking 
My ability to think in terms 

of process 

Process thinking refers to the 

practice of considering the activities 

of the process rather than focusing 

on the outcomes. Contrast with 

systems thinking. 

professionalNetworks My strong personal and professional networks 

questions 

The definition of an effective 

measure includes 

identification of the types of 

business questions it 

answers 

May be related to usage 

reflection 
My habit of reflection, of pausing to consider factors that impact a 

given situation or decision 
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Variable Survey Item Additional information  

relatedMeasures 

The definition of an effective 

measure includes explicit 

identification of related 

measures that act in concert 

May include correlations, causality, 

or other interaction relationships 

between the measures themselves or 

the processes, activities, or 

behaviors they are intended to 

measure. 

repeatable 
An effective measure is 

repeatable and reproducible 

This is a quality concept, generally 

essential during execution of 

measurement activities. Related to 

timeliness [timely]. 

rightQuestions 
My ability to ask the right 

questions 

Finding the right answer to the 

wrong question is not helpful and 

can be, in business, dangerous. This 

item refers to the ability of the 

practitioner to identify the right 

issue to be addressed (the problem, 

for example, rather than a symptom 

of the problem). 

rightThing 
An effective measure is one 

that measures the right thing 

Refers to the difficulty, at times, of 

devising measures that assess 

exactly the phenomenon, behavior, 

or performance required, but might 

measure a proxy in place of the 

actual thing.  

self-directed 
My self-directed, 

unstructured learning 
Refers to informal education 

signalNoise 

My ability to identify the 

important [signal] from the 

unimportant [noise] 

Or the critically important from the 

merely important 

simple An effective measure is simple or can be expressed simply 

statistics 

My understanding of 

statistics, statistical 

significance 

Refers to skill in designing, 

executing, and/or consuming 

statistical information. 

STEMSkills My STEM skills 

Refers to skill in the science, 

technology, engineering and 

mathematics disciplines. 

strategicLevel 

My exposure to strategic 

level projects early in my 

career 

Strategic-level projects are those 

that span multiple business areas 

and/or have organization-wide 

impact 

systemsThinking 

My ability to think in a 

structured, "systems" view 

[systems thinking] 

Systems thinking considers the 

components of a system and how 

they interrelate to deliver overall 

value to the organization. 
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Variable Survey Item Additional information  

teachingSkills My teaching skills 

This includes those formally trained 

to teach in a classroom or those 

with innate ability to pass on 

knowledge in a structured, 

productive way.  

technicalPractitioner 
My experience as a technical practitioner with various 

measurement frameworks or methodologies 

timely 
An effective measure is 

produced in a timely manner 

This speaks to the delivery of a 

measure within a defined required 

time. 

trainingRotation 

My participation in 

professional work/training 

rotation programs 

Training rotation programs are non-

formal education, generally at 

business organizations, where a 

participant rotates through a 

designed series of roles and job 

responsibilities for the purpose of 

learning the business, assessing 

their fit and liking for a position, 

and finding a best-fit role. 

unexpectedConsequences 

My ability to predict 

unexpected consequences 
of decisions 

This speaks to the actions that 

people might take because 

something is being measured. It 

does not necessarily address the 

desirability or undesirability of 

those actions. 

usage 

The definition of an effective 

measure includes explicit 

identification of appropriate 

usage 

This is about educating the 

consumer about the proper 

application of the information. Just 

as the context and generalizability 

of an academic study cannot always 

be applied freely, the use of 

measures is constrained by the 

context in which they are defined. 

value 

The definition of an effective 

measure includes an explicit 

statement of the overall 

value of the measure 

This is about connecting the 

measure to the value streams (the 

series of processes or activities that 

produce value in an organization) in 

which it plays a part. 

visualizeArticulate 

My ability to clearly 

visualize and articulate 
what success looks like 

This is about being able to paint a 

picture for the followers so that they 

will recognize successful outcomes 

and be able to talk about them in 

ways that will resonate with people 

who need to understand if the 
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organization is accomplishing its 

objectives. 

workEthic My strong work ethic  

works An effective measure is one that works as designed 
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Appendix F Factors * grouping variables Crosstabulation 

Factors * Grouping Variables Crosstabulation 

Factor 
ageRange  

process 

Complexity 
 gender  

decisionTenure 

Range 

 3 4 5 6 Total  1 2 3 Total  1 2 Total  1 2 3 Total 
StrategicThinking 

Range 

0 3 0 0 3  0 1 2 3  3 0 3  0 1 2 3 

4 7 6 3 20  4 5 11 20  15 5 20  5 4 11 20 

8 13 8 3 32  4 9 19 32  21 10 31  10 3 19 32 

Total 12 23 14 6 55  8 15 32 55  39 15 54  15 8 32 55 

ComplexityTools 

Range 

1 2 0 0 3  2 0 1 3  3 0 3  1 1 1 3 

3 13 5 2 23  2 7 14 23  15 7 22  2 4 17 23 

8 8 9 4 29  4 8 17 29  21 8 29  12 3 14 29 

Total 12 23 14 6 55  8 15 32 55  39 15 54  15 8 32 55 

Collaboration 

Range 

0 3 3 0 6  2 0 4 6  5 1 6  0 2 4 6 

2 9 5 1 17  1 8 8 17  11 5 16  3 1 13 17 

10 11 6 5 32  5 7 20 32  23 9 32  12 5 15 32 

Total 12 23 14 6 55  8 15 32 55  39 15 54  15 8 32 55 

SynthesisRange 0 2 0 0 2  0 0 2 2  2 0 2  0 2 0 2 

5 4 6 2 17  3 5 9 17  13 4 17  4 2 11 17 

7 17 8 4 36  5 10 21 36  24 11 35  11 4 21 36 

Total 12 23 14 6 55  8 15 32 55  39 15 54  15 8 32 55 

LearningRange 0 2 0 0 2  1 0 1 2  1 1 2  0 0 2 2 

4 6 4 0 14  1 3 10 14  10 4 14  2 5 7 14 

5 12 8 4 29  5 9 15 29  20 8 28  9 3 17 29 

3 3 2 2 10  1 3 6 10  8 2 10  4 0 6 10 

Total 12 23 14 6 55  8 15 32 55   39 15 54  15 8 32 55 

Business 

Knowledge  

Range 

1 1 1 1 4  1 1 2 4   3 1 4  0 1 3 4 

6 13 6 2 27  5 7 15 27  20 6 26  6 4 17 27 

5 9 7 3 24  2 7 15 24  16 8 24  9 3 12 24 

Total 12 23 14 6 55  8 15 32 55   39 15 54  15 8 32 55 

Note: ageRange: 3 (0-30), 4(31-40), 5(41-50), 6(51+); process complexity 1(simple), 2(moderate), 3(complex); gender 1(male), 

2(female); decisionTenureRange 1(0-0), 2(10-11), 3(11.1+) 
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