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Bone Morphogenetic Protein–Based
Therapeutic Approaches
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Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming
growth factor (TGF)-b family of ligands and exert most of their effects through the canonical
effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the devel-
opment and homeostasis of numerous human organ systems. Aberrations in BMP pathways
or their regulation are increasingly associated with diverse human pathologies, and there is
an urgent and growing need to develop effective approaches to modulate BMP signaling in
the clinic. In this review, we provide a wide perspective on diseases and/or conditions
associated with dysregulated BMP signal transduction, outline the current strategies available
to modulate BMP pathways, highlight emerging second-generation technologies, and pos-
tulate prospective avenues for future investigation.

SIGNAL TRANSDUCTION IN THE BONE
MORPHOGENETIC PROTEIN PATHWAY

Bone morphogenetic proteins (BMPs) con-
stitute the largest subdivision of the trans-

forming growth factor (TGF)-b family of
ligands with nearly thirty distinct human pro-
teins bearing the BMP name. Important differ-
ences exist among these molecules with regard
to pathway mechanics and effects on cell behav-
ior. Two of the first BMPs to be cloned, BMP-1
and BMP-3, are not signaling molecules in the
classical sense; BMP-1 is a metalloprotease that
promotes BMP signaling (Kessler et al. 1996; Li
et al. 1996), whereas BMP-3 is a nonsignaling
receptor antagonist (Gamer et al. 2005). The
nomenclature that accompanied the discovery

of BMPs is most often based on sequence ho-
mology and may be confusing when discussing
BMP effects. Clarification comes, however, by
focusing on the downstream pathways activated
by each BMP ligand. For instance, as will be dis-
cussed below, it is now known that the intracel-
lular signaling effectors Smad1, Smad5, and
Smad8 actuate autoinduction of bone at extra-
skeletal sites, which is the original function
attributed to the BMP pathway (Urist 1965; Woz-
ney et al. 1988). We contend, then, that proteins
that elicit activation of Smads 1, 5, and 8 are bona
fide components of the canonical BMP signaling
cascade. We use this narrow definition of BMP
signaling in this reviewand, on this basis, identify
approximately 12 bona fide BMP ligands in hu-
mans (Table 1).
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BMP ligands are generally portrayed as ho-
modimers of two identical subunits that are
related by twofold rotational symmetry around
the intermolecular disulfide bond through a
cysteine knot, a hallmark of this ligand family
(Hinck 2012). BMPs are synthesized as large
precursor molecules, consisting of a signal pep-
tide, a large prodomain, and a carboxy-terminal
region of 100 to 125 amino acids and upon
secretion from the cell are further processed to
their mature forms. The ability of BMPs to form
heterodimers with each other has been estab-
lished through in vitro studies and genetic stud-
ies in model organisms, and multiple BMPs are
often coexpressed in tissues, suggesting hetero-
dimer formation may occur in vivo. However,
to date, only homodimeric BMPs have been
purified from harvested human tissue. Interest
in the formation of heterodimers continues as
it represents a fairly simple way to alter the func-
tionality of BMP ligands. For example, produc-
ing heterodimers of BMP-2/7, BMP-2/6, and

BMP-4/7 leads to enhanced activity (Aono et al.
1995; Israel et al. 1996; Xu et al. 2009; Isaacs et al.
2010; Valera et al. 2010; Buijs et al. 2012; Zheng
et al. 2012; Bi et al. 2013; Krase et al. 2014;
Dang et al. 2015; Morimoto et al. 2015; Neuge-
bauer et al. 2015), although the reason for this
remains to be determined.

BMP ligands activate signaling by complex-
ing with receptor kinases with dual specificity
that are present at the cell surface (Fig. 1). These
receptors are classified into type I and II recep-
tors, of which there are seven and five, respec-
tively. Four type I receptors (i.e., ALK-1, ALK-2,
ALK-3/BMPRIA, and ALK-6/BMPRIB) and
three type II receptors (i.e., BMPRII, ActRII,
and ActRIIB) serve as BMP signal transducers
(Table 1). In the classical (i.e., the canonical)
Smad pathway, ligand binding brings a pair of
constitutively active type II receptors into close
proximity with a pair of type I receptors, allow-
ing receptor trans-phosphorylation to occur.
The activated type I receptors phosphorylate

Table 1. Components of the canonical bone morphogenetic protein (BMP)-induced Smad signaling pathway

Ligands BMP-2 (BMP-2A, BDA-2A)
BMP-4 (BMP-2B, BMP-2B1, MCOPS6, OFC11, ZYME)
BMP-5
BMP-6 (VGR, VGR1)
BMP-7 (OP-1)
BMP-8A
BMP-8B (OP-2)
BMP-9 (GDF-2, HHT5)
BMP-10
GDF-5 (BMP-14, OS5, LAP4, BDA1C, CDMP1, SYM1B, SYNS2)
GDF-6 (BMP-13, KFM, KFS, KFS1, KFSL, SGM1, CDMP2, LCA17, MCOP4, SCDO4,

MCOPCB6)
GDF-7 (BMP-12)

Type I receptors ALK-1 (ACVRL1)
ALK-2 (ACVR1, ActRI)
ALK-3 (BMPRIA)
ALK-6 (BMPRIB)

Type II receptors BMPRII
ActRII (ActRIIA, ACVR2, ACVR2A)
ActRIIB (ACVR2B)

R-Smad Smad1
Smad5
Smad8 (Smad9)

Co-Smad Smad4

Alternative names are in parentheses.
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the carboxyl termini of the aforementioned
Smads 1, 5, and 8, thus activating them (Fig. 1).
The receptor-activated Smads, or R-Smads, can
then form complexes with the transcription
factor Smad4 and translocate into the nucleus
to influence gene regulation (Katagiri and Wa-
tabe 2016).

It should be noted that Smad4-independent
BMP activities have also been reported (Fig. 1),

consistent with the finding that several nonca-
nonical signaling pathways such as p38 mito-
gen-activated protein kinase (MAPK), extracel-
lular signal-regulated kinase (Erk), and Akt, and
microRNA processing (Davis et al. 2008; Zhang
2009) are also regulated by BMP ligands. In fact,
a proteomic study indicates that the phosphor-
ylation status of nearly 400 proteins changes
within thirty minutes of stimulation by BMP-

Cell s
urface

Cytoplasm

Smad4, others
3

4
Integration of context-dependent
cellular effects (e.g., proliferation,

apoptosis, migration,
differentiation)

Erk and p38
MAPK, PI3K-
Akt, others

Smad1,5,8

2BMP
ligand

1

BMPRII

ALK-2 and
ALK-3

ActRII andActRIIB

Figure 1. The bone morphogenetic protein (BMP) pathway and potential strategies for therapeutic modulation.
(1) Activation of the BMP pathway occurs via interaction between dimeric BMP ligands and complexes of type I
(e.g., ALK-2 and ALK-3) and type II receptors (BMPRII, ActRII, or ActRIIB). This step may be inhibited by
delivery of extracellular ligand traps such as naturally occurring antagonists, receptor decoys, or neutralizing
antibodies. Alternatively, BMP ligand availability may be enhanced through delivery of exogenous ligands or
inhibiting endogenous extracellular BMP antagonists by neutralizing antibodies or small molecules. (2) Ligand
binding leads to activation of the type I receptors by type II receptors and subsequent phosphorylation of the
receptor-activated Smads 1, 5, and 8 (R-Smads) along with other pathways including extracellular signal-
regulated kinase (Erk) and p38 mitogen-activated protein kinase (MAPK), and PI3K-Akt. The kinase activities
of the type I receptors may be blocked by small molecule inhibitors such as LDN-193189. The BMP pathway
inhibitors FKBP12 and casein kinase 2 endogenously limit the activities of the type I receptors and may be
inactivated by delivery of FK506 and CK2.3, respectively, to increase BMP signal transduction. (3) R-Smads may
perform Smad4-independent activities such as regulating microRNA processing or associate with Smad4 or
other transcription factors to control gene regulatory networks. Persistence of BMP signaling may be modulated
by regulating the Smurf1-mediated ubiquitylation of Smad effector proteins by disrupting Smurf1 interaction
with R-Smads by small molecule inhibitors or by increasing Smurf1 protein levels. (4) R-Smad-dependent and
R-Smad-independent events are integrated in a context-dependent manner to control cellular activity.

BMP-Based Therapeutic Approaches
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2, suggesting that these modifications do not
depend on Smad activation and Smad-mediat-
ed signaling and transcription (Kim et al. 2009).
One proposed mechanism for how Smad versus
non-Smad signaling occurs stems from bio-
chemical analyses that show the presence of
preformed BMP receptor oligomers on the cell
surface before ligand binding. In this model,
preformed receptor complexes containing one
type I BMP receptor and one type II BMP re-
ceptor are proposed to participate in canonical
BMP signaling, whereas ligand-induced recep-
tor complex formation between homodimeric
type I and type II receptors are proposed to
segregate with noncanonical p38 MAPK BMP
signaling (Nohe et al. 2002; Hassel et al. 2003).
More recently, a number of high-resolution mi-
croscopy techniques have refined this idea
(Guzman et al. 2012). It appears that preformed
heteromeric BMP receptor complexes are highly
dynamic and transient in the absence of ligand,
and, once ligand is added to the complex, ca-
nonical signaling is quickly initiated and com-
pleted. In contrast, noncanonical BMP pathway
activation requires greater stability to initiate
and complete signaling and takes place in spe-
cialized membrane microdomains that enhance
type I and type II receptor interactions after
ligand association via cytoskeletal elements
and membrane scaffolding proteins. It is impor-
tant to point out that the exact biological sig-
nificance of distinctions in receptor complex
formation has yet to be determined in vivo.

BMP pathway activity is regulated at many
levels (Walsh et al. 2010; Huang and Chen
2012). Extracellular antagonists, such as noggin
and gremlin, function to sequester ligands up-
stream of receptor binding, preventing pathway
activation. The inhibitory Smads, Smad6 and
Smad7, block R-Smad activation at the type I
receptor level, and prevent R-Smad interaction
with Smad4. R-Smad and receptor degradation
is promoted by E3 ubiquitin ligases such as
Smurf1 (Smad ubiquitination regulatory factor
1). Additionally, transcriptional regulation by
Smads can be blocked by interaction with in-
hibitory proteins such as c-Ski or the c-Ski-like
proto-oncogene product SnoN (SKIL) (Hill
2016; Miyazawa and Miyazono 2017).

CURRENT STRATEGIES TO MODULATE BMP
PATHWAY ACTIVITY

Aberrations in BMP signal transduction—both
overactivation and underactivation—are impli-
cated in a variety of clinically relevant settings.
A later section of this review will detail the
rationale for and provide evidence of successful
BMP-based therapeutics. Here, we wish to pro-
vide a brief outline of strategies currently avail-
able to modulate the BMP pathway in vivo,
starting from upstream of receptor engagement
and moving downstream from receptor and ef-
fector activity (Table 2). A greatly expanded dis-
cussion of this topic with detailed applications
has been published recently (Lowery et al. 2016).

Modulation of BMP Activity in the
Extracellular Environment

The United States Food and Drug Administra-
tion (FDA) has approved the use of recombi-
nant BMP-2 and BMP-7, which are marketed as
InFuse Bone Graft and OP-1, respectively, in
several orthopedic and oral and maxillofacial
applications. Significant off-label use of these
products has been noted, however, and ongoing
or upcoming clinical trials seek to evaluate
the usefulness of recombinant BMP-2 and/or
BMP-7 in additional orthopedic or dental ap-
plications. Along with naturally occurring BMP
ligands, numerous engineered biomimetic ver-
sions have been generated for optimized expres-
sion in Escherichia coli (Saito et al. 2003; Seol
et al. 2006; He et al. 2008; Lee et al. 2008, 2009;
Bergeron et al. 2009; Lin et al. 2010; Zouani et al.
2010; Allendorph et al. 2011; Sugimoto et al.
2012; Tang et al. 2012; Kang et al. 2013; Sua-
rez-Gonzalez et al. 2014; Kuo et al. 2014; Lauzon
et al. 2014; Beauvais et al. 2015; Falcigno et al.
2015; Liu et al. 2015; Ma et al. 2015; Zhang et al.
2015; Zhou et al. 2015). Additionally, several
BMP-inspired ligands have been developed
with enhanced signaling ability compared with
naturally occurring BMP ligands (Table 3). Spe-
cific applications involve engineered BMP li-
gands and are highlighted in a recent review
(Lowery et al. 2016). Delivery of cDNAs encod-
ing these natural or engineered BMP ligands for
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synthesis in vivo has also been achieved in
numerous settings (Lowery et al. 2016). Addi-
tionally, several FDA approved drugs regulate
expression of BMP ligands or potentiate the
BMP pathway, including the statin drugs lova-
statin and simvastatin (Sugiyama et al. 2000;
Maeda et al. 2001; Song et al. 2003; Bradley
et al. 2007; Kodach et al. 2007; Zhang and Lin
2008), the Rho-kinase inhibitor fasudil (Kanaza-
wa et al. 2009, 2010), and the phosphodiesterase
inhibitors pentoxifylline, rolipram, and sildenafil
(Horiuchi et al. 2001; Horiuchi et al. 2002; Ron-
delet et al. 2010; Tokuhara et al. 2010; Yen et al.
2010; Munisso et al. 2012; Yang et al. 2013b).

BMP signal transduction can be blocked
by preventing ligands in the extracellular space
from interacting with receptors embedded in
the plasma membrane. One method to achieve
this blockade is through the use of soluble
decoy receptors, composed of the ligand-bind-
ing domains of individual BMP receptors. This
approach takes advantage of defined ligand
affinities for particular receptors. A successful
example of this strategy is an ALK-1 decoy,
marketed as dalantercept, which preferentially
sequesters BMP-9 and BMP-10 (Cunha et al.
2010; Mitchell et al. 2010; Larrivee et al. 2012;
Ricard et al. 2012; Bendell et al. 2014; Hawinkels
et al. 2016). This molecule is currently in

clinical trials as an anti-angiogenic cancer ther-
apy (see clinicaltrials.org registry numbers
NCT01458392, NCT01642082, NCT01720173,
NCT01727336, and NCT02024087). This ap-
proach parallels BMP regulation in vivo as
BMP ligands are sequestered upstream of recep-
tor engagement by a large number of naturally
occurring soluble antagonists (Walsh et al.
2010). Several of these, most notably noggin
and gremlin, either delivered as recombinant
proteins or synthesized in vivo by gene transfer,
have shown efficacy in modulating BMP signal-
ing (Lowery et al. 2016). Conversely, several
neutralizing antibodies have been developed
to block the activity of naturally occurring
BMP antagonists in the extracellular environ-
ment (Hampton et al. 2007a,b; Ciuclan et al.
2013). It is possible that the interaction between
noggin and its target BMP ligand could be dis-
rupted by small molecules (Ahmed et al. 2010).

Modulating Receptor and Effector Activities

BMP signal transduction may be blunted by
small molecules that block the BMP receptor
protein kinase pocket. The first such compound
was dorsomorphin (Yu et al. 2008b), which
served as a guide for subsequent generations
of analogs, such as LDN-193189, with enhanced

Table 2. General overview of current strategies to modulate bone morphogenetic protein (BMP) signal
transduction

Extracellular Overexpression of ligand via gene transfer Overexpression of extracellular
antagonist via gene transfer

Delivery of recombinant ligand Delivery of recombinant
extracellular antagonist or decoy
receptor

Neutralization of extracellular antagonists by antibody,
decoy ligand, or small molecule

Neutralization of ligand by
antibody

RNA interference–mediated silencing of endogenous
expression of extracellular antagonists or microRNAs

RNA interference–mediated
silencing of expression of
endogenous ligands

Intracellular Overexpression or induced expression of BMP receptors by
gene transfer, pharmacological agent, or RNA
interference–mediated silencing of microRNAs

RNA interference–mediated
silencing of expression of
receptors or effectors

Delivery of CK2.3 peptide or FK506 to alleviate BMP
receptor inhibition

Delivery of BMP receptor kinase
inhibitors

Stabilizing effector turnover by RNA interference–mediated
silencing or small molecule inhibition of Smurf1

BMP-Based Therapeutic Approaches
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specificity and efficacy (Table 4). Specific appli-
cations involving engineered BMP ligands are
summarized in a recent review (Lowery et al.
2016). Conversely, the peptide CK2.3 leads to
increased BMP signal transduction by disrupt-
ing the inhibitory interaction between casein
kinase (CK) 2 and BMP type I receptors (Akkir-
aju et al. 2015), whereas the FDA approved
immunosuppressant FK506 activates BMP sig-
naling by inhibiting FKBP12. The BMP pathway
can also be modulated downstream from recep-
tor activity by stabilizing Smads 1, 5, and 8
through silencing the expression of the E3 ubiq-
uitin ligase Smurf1 or, potentially, by preventing
Smurf1 interaction with these Smads (Okada
et al. 2009; Kato et al. 2011; Cao et al. 2014).

CLINICAL RELEVANCE OF BMP-BASED
THERAPEUTICS

Orthopedic and Craniofacial Settings

More than 50 million people in the United
States alone have osteoporosis or osteopenia
(Wright et al. 2014), and this number is expect-
ed to increase as the population ages. Thus, un-
derstanding the mechanisms that regulate bone
growth and remodeling is an important goal. It
is widely accepted that BMP signaling is re-
quired for normal skeletal development and
patterning (Salazar et al. 2016). However, in
comparison to the information available re-
garding the embryonic role of BMP signaling
in skeletogenesis, relatively little is known
about the roles of the BMP pathway in the post-
natal skeleton, and many of the available data
are merely correlative. For instance, although
BMP signaling levels correlate with bone min-
eral density (Szweras et al. 2002; Yan et al. 2009;
Nallamshetty et al. 2013; Shen et al. 2013;
Guemes et al. 2014; Kureel et al. 2014), and
aberrations in the expression of BMP pathway
components or BMP-induced effects are ob-
served in bone marrow stromal cells (BMSCs)
from aged (Moerman et al. 2004) or osteopo-
rotic (Prall et al. 2013; Haasters et al. 2014) sub-
jects, respectively. These correlative findings
raise the possibility of a causative relationship.
Other results are controversial and/or inconsis-

tent between studies. Two studies have linked a
single nucleotide polymorphism (SNP) in the
BMP2 gene (rs2273073, c.109T.G, Ser37Ala)
with lumbar spine bone mineral density and
osteoporotic fractures in an international
cohort and an Icelandic cohort, respectively
(Reneland et al. 2005; Styrkarsdottir et al.
2003). However, this SNP is not associated
with bone parameters in studies of Dutch
(Medici et al. 2006), Swedish (McGuigan et al.
2007), or American Caucasian populations
(Ichikawa et al. 2006). Similarly, a SNP in
BMP4 (rs17563, c.538C.T, Val147Ala) is linked
to bone mineral density in Australian Caucasian
women (Ramesh Babu et al. 2005) and possibly
Taiwanese women (Lin et al. 2008) but not in
Italian women (Semprini et al. 2000). It should
be noted that associations between bone mineral
density and two other SNPs in BMP2 or one SNP
in BMP4 were found in Korean males (Choi et al.
2006), and we are not aware of reports corrob-
orating or contradicting these findings.

Beyond these correlative findings, several
studies show that systemic administration of
recombinant BMP-2, BMP-6, or BMP-7 or al-
leviating inhibition of the BMP receptor ALK-3
using a synthetic peptide improve bone mass
and associated parameters (Turgeman et al.
2002; Simic et al. 2006; Dumic-Cule et al.
2014; Akkiraju et al. 2015). These anabolic
effects are likely due to increased osteoblasto-
genesis and/or an enhanced bone formation
rate in vivo, which is supported by the high-
bone-mass phenotype seen by 4 months of age
in transgenic mice with constitutively activated
canonical BMP signaling in osteoblasts (Zhang
et al. 2009). These studies suggest that augment-
ing BMP signaling in individuals with low bone
mass may hold therapeutic benefit, and a phase
II clinical trial is examining this possibility
through injection of recombinant BMP-2 into
the hip (NCT00752557). Although results are
not yet available for this study, the rationale is
reminiscent of the numerous reports detailing
the ability of recombinant BMP ligands to pro-
mote local bone growth in maxillofacial appli-
cations, including the FDA approved use for
recombinant BMP-2 in sinus lift and alveolar
ridge augmentation procedures. Building on
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these results, an ongoing clinical trial examines
the possible benefit of coating dental implants
with recombinant BMP-2 (NCT00422279).
Augmenting BMP signaling has also been used
with considerable success in the healing of re-
calcitrant fractures. Although most fractures
heal without intervention, �10% result in non-
unions, increasing patient morbidity owing to
infection and requiring increased hospital stay.
To date, recombinant BMP-2 and BMP-7 have
received FDA approval as adjunct therapies for
the treatment of nonunion fractures, in which
the benefits of treatment include accelerated
healing and lower infection rates (Ali and Brazil
2014). Augmenting BMP signaling by recombi-
nant ligand administration has also shown effi-
cacy in procedures that require bone grafts, such
as skeletal defects resulting from severe trauma,
tumor resection, pathological degeneration,
and congenital malformation. In these circum-
stances, BMPs can be combined with autografts
that are harvested from the patient’s own skele-
ton, allografts harvested from cadavers, or
synthetic bone substitutes. The best examples
of success in using exogenous BMPs are in the
area of spine fusion surgery, where BMP-2 and
BMP-7 have shown efficacy equal to that of
using autograft for establishing bone union
(Burkus et al. 2005). Concerns relating to the
dose of exogenous BMP required for healing,
the mode of BMP delivery and the potential
for unwanted heterotopic ossification (HO) at
neighboring sites have led to the ongoing devel-
opment of novel BMP molecules that show
greater potency and would be predicted to
have enhanced efficacy and safety when deliv-
ered at lower doses (Cahill et al. 2015). Alterna-
tively, the use of agents that can modulate the
production of endogenous BMPs would offer
substantial benefit although the clinical usage
of this approach remains to be uncovered.

Heterotopic Ossification

The studies described above show that BMP
signaling is a potent inducer of de novo bone
formation. Thus, it is not altogether surprising
that BMP signaling is implicated in the patho-
genesis of HO, a common acquired disorder in

which bone forms at extraskeletal sites, and,
once formed, may impair mobility and cause
chronic pain. HO is often associated with the
soft tissue trauma during joint replacement or
other major reconstructive surgeries. HO is also
an unfortunate and troublesome complication
seen in severely wounded soldiers, amputees, or
paralyzed individuals. Current treatments for
nongenetic forms of HO include nonsteroidal
anti-inflammatory drugs (NSAIDs) that inhibit
the production of prostaglandins at the injury
site, and local irradiation to block the recruit-
ment of skeletal stem cells to the site of injury.
Although both can be somewhat effective in
dampening the HO response, each treatment
has severe side effects. NSAID use has been as-
sociated with gastrointestinal distress, renal tox-
icity, and reduced platelet function. Radiation,
although preventing HO, destroys healthy tis-
sue. In severe cases, surgical removal of the HO
has been performed, but this practice often
increases hospital stay, and there remains the
potential for recurrence of HO because of the
trauma induced by tissue resection. A new treat-
ment option that has shown promise in animal
models is the delivery of synthetic retinoid
agonists that potently inhibit the early BMP-
mediated chondrogenic stage of HO (Sinha
et al. 2016). Retinoid agonist therapy is current-
ly being examined in patients with a rare, genet-
ic form of HO (see below). BMP receptor kinase
inhibitors may also have utility in treating HO.
Combinatorial approaches that combine reti-
noid agonists with BMP receptor kinase antag-
onists have also been suggested as potential
therapies as they might be able to be tailored
to the patient.

Unlike acquired HO, fibrodysplasia ossifi-
cans progressiva (FOP) is a rare and highly
disabling skeletal disease characterized by seem-
ingly spontaneous episodes of HO that often
begin in early childhood. The crippling accu-
mulation of extraskeletal bone tissue in FOP
results in skeletal deformities, chronic pain,
and joint ankylosis, and eventually encompass-
es much of the body (Huning and Gillessen-
Kaesbach 2014). FOP is caused by missense
mutations in the ACVR1/ALK2 gene that alter
the tertiary structure of this type I BMP receptor
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and enable activins, ligands that do not normal-
ly trigger BMP signaling, to induce BMP signals
(Shore et al. 2006; Hatsell et al. 2015; Hino et al.
2015). Current treatments for FOP, such as ster-
oidal and nonsteroidal NSAIDs, are palliative
but do not prevent the progression of HO.
Clinical trials with synthetic retinoid agonists
are ongoing (NCT02190747, EudraCT 2014-
001453-17, EudraCT 2014-002496-28), based
on the notion that FOP and HO have common
pathogenic mechanisms that converge on acti-
vation of BMP signaling. Unlike HO, blocking
activin signaling may be an effective treatment
for FOP patients. Systemic blockade of activins
has been shown to ameliorate cancer-induced
cachexia, raising the possibility that similar
agents might successfully control the BMP sig-
naling caused by activins in patients with FOP
(Zhou et al. 2010). As apparent from the Regen-
eron Pharmaceuticals website, clinical trials
examining safety of this approach have begun.
Additionally, given that a single, recurrent
mutation underlies most FOP cases, strategies
such as allele-specific RNA interference may
prove useful in reducing expression of mutant
ALK-2 through gene therapy approaches (Low-
ery and Rosen 2012).

Vascular Disease

Related to the notion that aberrant BMP path-
way activation leads to HO, evidence also indi-
cates that elevated BMP signaling plays a major
role in vascular calcification (Cai et al. 2012;
Garcia de Vinuesa et al. 2015; Morrell et al.
2016). For instance, genetic loss of the BMP
pathway antagonists matrix-Gla protein, which
binds to and inhibits BMP ligands (Zebboudj
et al. 2002; Yao et al. 2006), or Smad6 leads to
widespread vascular calcification in mice (Luo
et al. 1997; Galvin et al. 2000). As such, strate-
gies designed to reduce BMP pathway activa-
tion, including RNA interference of individual
BMPs and delivery of recombinant BMP antag-
onists or small molecule inhibitors of BMP
signaling, diminish vascular inflammation and
reactive oxygen species formation, and/or limit
the degree of vessel calcification (Derwall et al.
2012; Saeed et al. 2012; Koga et al. 2013; Zhang

et al. 2014; Kajimoto et al. 2015; Malhotra et al.
2015). Together, these studies suggest that ther-
apies aimed at reducing BMP signaling in the
vasculature may be beneficial in patients at high
risk for calcification such as those with end-
stage renal disease; however, we are unaware of
completed or ongoing clinical trials examining
this possibility.

In contrast to the logical connection be-
tween BMP-induced extracellular matrix for-
mation and vascular calcification, little was
known about the critical role of BMP signaling
in maintaining integrity of the pulmonary vas-
culature before the finding that the vast major-
ity of patients with heritable pulmonary arterial
hypertension (HPAH) carry heterozygous mu-
tations in the BMPR2 gene (Deng et al. 2000;
Lane et al. 2000). HPAH is a rare form of the
relatively common disease pulmonary hyper-
tension (PH), in which the small, resistance-
level arterioles of the lung undergo structural
remodeling to become thicker and less compli-
ant. These changes increase the load on the right
ventricle and lead to right ventricular hypertro-
phy and, ultimately, right-sided heart failure
(Simonneau et al. 2009). Given that the pathol-
ogy in all forms of pulmonary hypertension
(PH) show strikingly similar pathology, that
�20% of patients with sporadic pulmonary ar-
terial hypertension (PAH) also carry BMPR2
mutations, and that BMP signal transduction
and pathway components are down-regulated
in the lungs of PH patients (Lowery and de
Caestecker 2010), it is likely that adequate levels
of BMP signaling are required for proper regu-
lation of the pulmonary vasculature. However,
the specific roles of BMP signaling in this con-
text remain unclear. Numerous mechanisms
have been proposed for the dysregulated BMP
signaling with varying degrees of experimental
support, including anti-inflammatory and/
or antimitogenic effects, direct deregulation of
vascular tone, deregulation of endothelial cell
apoptosis and integrity of the tunica intima,
and anti-oxidant actions by repressing reactive
oxygen species formation (Lowery and de Caes-
tecker 2010).

Clearly, an increased understanding of the
endogenous actions of BMP signaling in the
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pulmonary vasculature could contribute to de-
veloping targeted therapies in the future. Even
without a detailed understanding of the down-
stream actions, animal models suggest that
several strategies aimed at generally increasing
BMP signal transduction in the pulmonary vas-
culature may be beneficial in PAH. Indeed, the
phosphodiesterase-5 inhibitor sildenafil, which
is FDA approved for the treatment of PAH, pre-
vents disease development in a toxin-induced
model of PAH in rats and this is associated
with increased BMP signaling in the lung
(Yang et al. 2013b). Similarly, the FDA approved
antimalarial chloroquine attenuates PAH devel-
opment in rats with an associated increase in
BMPRII expression (Long et al. 2013). More
direct evidence comes from the observations
that increasing BMPRII expression using direct
gene transfer or by repressing the action of miR-
20a reduces the severity of PAH development
(Reynolds et al. 2007; Brock et al. 2014). More-
over, increasing BMPRII expression has been
reported to reverse the pathological changes
associated with PAH in mice (Reynolds et al.
2012; Feng et al. 2016), suggesting that increas-
ing the availability of BMPRII alone may
be sufficient to provide therapeutic benefit in
PAH, although this has not been observed in
every study (McMurtry et al. 2007). Alternative-
ly, beneficial outcomes are apparent when BMP
signal transduction is increased in established
PAH by neutralizing the action of gremlin (Ciu-
clan et al. 2013), administering recombinant
BMP-9 (Long et al. 2015), or alleviating the
FKBP12-mediated inhibition of BMP type I
receptors using the FDA approved small mole-
cule FK506 (Spiekerkoetter et al. 2013). Of note,
a clinical trial examining the safety and efficacy
of FK506 in patients with sporadic or heritable
PAH (NCT01647945) was initiated but then
terminated because of limited funding and/or
slow recruitment of subjects.

It is striking to point out that the vascular
abnormalities characteristic of PAH have gener-
ally been considered restricted to the pulmo-
nary vascular bed (Fares 2014). This is especially
intriguing when considering that several BMP
ligands are present in human and rodent serum
at biologically active concentrations (David

et al. 2008; Herrera and Inman 2009) and that
BMP pathway components are expressed by
vascular cells derived from other locations in
the body (Lowery and de Caestecker 2010).
Indeed, emerging evidence suggests that PAH
patients likely experience vascular manifesta-
tions in the systemic circulation, including en-
dothelial dysfunction and/or structural anom-
alies of capillaries (Fares 2014). The latter is
consistent with genetic studies in animals that
reveal the developmental requirement of BMP
signaling in normal embryonic angiogenesis
and vessel maturation (Lowery and de Caes-
tecker 2010). Furthermore, most patients with
hereditary hemorrhagic telangiectasia (HHT),
which is characterized by structurally weak
arteriovenous malformations (AVMs) that may
appear in numerous vascular beds, inherit
mutations in genes encoding the BMP receptors
ALK-1 or endoglin (Cai et al. 2012; Garcia de
Vinuesa et al. 2015). Treatment for AVMs varies
by location and suspected severity, but generally
involves coagulation therapy, surgical removal,
or occlusion. It is unclear at present if BMP
pathway modulation will be useful in the treat-
ment of HHT and we are not aware of any clin-
ical trials evaluating this possibility.

Tissue Fibrosis

Given that increased BMP pathway activation
is implicated in calcification and ossification
of soft tissue, it is somewhat surprising that
activating the BMP pathway has been identified
as a potential therapy for tissue fibrosis. In par-
ticular, the ability of BMP signaling to oppose
TGF-b-induced fibrosis and promote tissue
recovery has been shown in several clinically
relevant contexts (Hudnall et al. 2016). For
example, endogenous BMP signaling plays a
critical role in recovery after obstructive uropa-
thies and treatment of mice with exogenous
BMP-7 enhances renal recovery after unilateral
ureteral obstruction, in which TGF-b promotes
glomerular fibrosis (Manson et al. 2011b). Ac-
tivation of BMP signaling also has beneficial
effects on TGF-b-induce fibrosis of cardiomyo-
cytes (Wang et al. 2012b), ocular burn injuries
(Saika et al. 2006), and silica-induced or aller-
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gen-induced pulmonary fibrosis (Myllarniemi
et al. 2008; Yang et al. 2013a, 2016; Stumm et al.
2014). These studies serve as substantial proof-
of-concept for the notion that activation of
BMP signaling may hold broad therapeutic
benefit in other contexts of fibrosis. Support
for this hypothesis comes from preclinical stud-
ies examining the utility of recombinant BMP-7
or BMP-7-based gene therapy in bone marrow
fibrosis (Gonzalez et al. 2002), corneal fibrosis
(Saika et al. 2005; Tandon et al. 2013), hepatic
fibrosis (Kinoshita et al. 2007; Hao et al. 2012;
Zhong et al. 2013; Wang et al. 2014), lens fibro-
sis (Saika et al. 2006), prosthesis-related fibrosis
(Tan et al. 2013), cardiac fibrosis (Zeisberg et al.
2007; Urbina and Singla 2014), and numerous
models of renal fibrosis (Vukicevic et al. 1998;
Klahr and Morrissey 2003; Zeisberg et al. 2003;
Sugimoto et al. 2007; Manson et al. 2011a,b;
Zhen-Qiang et al. 2012; Li et al. 2015).
Although much of the research thus far has
focused on BMP-7, it should be noted that other
strategies aimed at generally increasing BMP
signal transduction have been reported to be
beneficial in models of tissue fibrosis. These in-
clude administration of recombinant BMP-2 or
gene therapy-based BMP-2 expression (Yang
et al. 2009; Wang et al. 2012b), administration
of a BMP-related peptide (Sugimoto et al. 2012)
or the small molecule FK506 (Qi et al. 2014),
reducing expression of the BMP antagonist
gremlin using siRNA (Zhang et al. 2010), or
delivery of the downstream BMP target genes
Id1 and Id3 (Saika et al. 2006).

Hemochromatosis and Iron Deficiency
Anemia

The body has a complex system to regulate iron
homeostasis (Gangat and Wolanskyj 2013).
Iron is essential to make the hemoglobin neces-
sary for red blood cells to carry oxygen; anemia
occurs when iron levels are inadequate. Iron
excess, however, is toxic, and as there is no
known mechanism for regulated iron excretion,
systemic iron homeostasis must be maintained
by tightly balancing intestinal iron absorption
and iron release by macrophages and hepato-
cytes (Babitt et al. 2007). Iron release into the

circulation occurs through the iron exporter
ferroportin. This export process is regulated
by the iron regulator protein hepcidin, a
25-amino-acid peptide produced by the liver
(Zhao et al. 2013). Hepcidin levels are sensitive
to the iron status in the body through mecha-
nisms that involve canonical BMP–Smad sig-
naling (Parrow and Fleming 2014). Hepato-
cyte-specific deletion of Smad4 produces mice
with a severe iron overload phenotype, whereas
mutations in the HFE2 gene, which encodes a
BMP coreceptor hemojuvelin, result in juvenile
hemochromatosis, a disease characterized by
severe iron overload (Babitt et al. 2006). Further
evidence of the importance of BMP signaling
in iron homeostasis comes from analysis of
the physiological role of BMP-6. Bmp6 mRNA
expression correlates with body iron stores in
mice, and mice lacking BMP-6 show low
hepcidin expression and severe iron overload,
which can be corrected by increasing BMP-6
levels (Andriopoulos et al. 2009). Most recently,
BMP-2 has been implicated in iron homeosta-
sis with effects independent of BMP-6 (Koch
et al. 2017).

These and additional experimental data
support the notion that decreasing BMP might
be beneficial in treating disorders of iron defi-
ciency. For instance, neutralizing antibodies tar-
geting BMP-6 have been shown to increase
serum iron levels in mice (Andriopoulos et al.
2009; Meynard et al. 2011; Wang et al. 2012a). It
should be noted that, although this provides
compelling evidence implicating BMP-6 as the
predominant BMP ligand in iron homeostasis
in vivo, it does not rule out strategies targeting
the BMP–Smad signaling pathway in general.
Consistent with this, reducing BMP signaling
through several means, including ALK-3 and
hemojuvelin decoys, or the kinase inhibitors
dorsomorphin and LDN-193189, increase se-
rum iron levels in models of iron deficiency
anemia (Babitt et al. 2007; Yu et al. 2008b;
Andriopoulos et al. 2009; Steinbicker et al.
2011; Theurl et al. 2011; Wang et al. 2012a).
Data from completed or ongoing clinical trials
examining these strategies in humans are not yet
available, but the possible use of LDN-193189
for treating anemia of inflammation is a focus
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of the Bridging Interventional Gaps (BrIDGs)
Program of the National Institutes of Health
(NIH) National Center for Advancing Transla-
tional Sciences.

Central Nervous System Ischemia-Related
Injury

Bmp7 expression increases following ischemic
injury to the cerebrum (Chang et al. 2003), rais-
ing the possibility that BMP signaling exerts
protective or reparative actions in this tissue,
and that augmenting its effect may be beneficial
in the treatment of stroke. Support for this as-
sertion comes from reports that administration
of recombinant BMP-7 in a rodent model of
transient ischemia before or at the onset of
reperfusion leads to neuroprotection and de-
creased cerebral apoptosis through reduced
activation of NF-kB, caspase 3, caspase 8, and
caspase 9 (Pei et al. 2013; Xu et al. 2013). The
translational potential of this strategy was fur-
ther advanced by the showing that intracisternal
administration of recombinant BMP-7 one day
after reperfusion leads to rapid improvement of
neurological function (Liu et al. 2001). This
finding was accompanied by increased glucose
usage and local cerebral blood flow in the affect-
ed region (Liu et al. 2001). The therapeutic
window for BMP pathway activation appears
to be early as BMP-7 administration 2 weeks
following ischemia-reperfusion did not lead to
functional improvement (Shin et al. 2014).

Collectively, the results discussed above sug-
gest that exogenous activation of BMP signaling
may exert protective effects following stroke. It
should be noted that administration of the BMP
inhibitor noggin has also been reported to pro-
mote functional recovery following stroke inju-
ry. For example, recombinant noggin delivered
by intraventricular implantation of an osmotic
pump 2 weeks after ischemia-reperfusion pro-
motes functional recovery and tissue repair
(Shin et al. 2014). The timing of noggin delivery
in this study leaves open the possibility that
the protective actions of endogenous BMP sig-
naling occur early after ischemia-reperfusion
injury. That said, transplantation of noggin-ex-
pressing BMSCs 6 hours following reperfusion

also leads to improved neurological function
(Chen et al. 2011). We suggest that these seem-
ingly conflicting results may be attributed to
the difference in augmenting endogenous
repair mechanisms versus actuating artificial,
exogenous repair mechanisms that introduce
numerous unknown variables to the injury
site. Head-to-head comparison of these differ-
ent therapeutic strategies is required to deter-
mine which is more appropriate in the clinical
setting; however, we are not aware of any com-
pleted or ongoing clinical trial evaluating mod-
ulation of BMP signaling in stroke.

Spinal Cord Injury

In vitro and in vivo evidence point to a role for
BMP signaling in regulating neural lineage
determination, with a seeming predilection
for astrocytic differentiation over neuronal or
oligodendrocytic fates (Mabie et al. 1997; Seto-
guchi et al. 2004; Hampton et al. 2007a; Xiao
et al. 2010). Several groups have attempted to
promote regeneration of the central nervous
system following injury by modulating BMP
signaling. For instance, expression of BMP-2
and BMP-7 increase rapidly with compressive
injury of the spinal cord in rodents (Matsuura
et al. 2008; Xiao et al. 2010) and intrathecal
administration of recombinant noggin im-
proves locomotor function 10 weeks after injury
(Matsuura et al. 2008). Increased regrowth of
the corticospinal tract is also observed with
noggin administration in this model (Matsuura
et al. 2008). These findings suggest that inhibi-
tion of endogenous BMP signaling may be
beneficial in improving motor function caused
by spinal cord injury (SCI), and this conclusion
is further supported by results obtained when
neural precursor cells expressing noggin are de-
livered to the site of injury (Setoguchi et al.
2004). However, it should be noted that, in a
different rodent SCI model involving severing
of the spinal cord, administration of a neutral-
izing antibody against noggin also increases ax-
onal sprouting and neural plasticity (Hampton
et al. 2007a,b). The impact of noggin inhibition
on motor function following SCI was not re-
ported in the short follow-up period of these
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studies. We are not aware of any completed or
ongoing clinical trials evaluating BMP pathway
modulation for treatment of SCI.

Myocardial Infarction

Loss of cardiomyocytes and cardiac function is
seen in several kinds of myocardial injury in-
cluding myocardial infarction, viral myocarditis,
and ischemia-reperfusion. Current treatments
are not effective at replenishing cardiomyocyte
numbers and strategies to reduce apoptosis or
increase proliferation may improve cardiac
function. In vitro studies indicate that BMP-2
treatment reduces cardiomyocyte apoptosis in
response to hypoxia or oxidative stress (Ebelt
et al. 2013), and systemic administration of a
single dose of recombinant BMP-2 limits infarct
size and reduces cardiomyocyte apoptosis after
acute myocardial ischemia in mice (Ebelt et al.
2013); however, no long-term benefit on cardiac
function is observed during the follow-up peri-
od of 3 weeks postinfarction. It is possible that
benefit could occur with a lengthier follow-up
period. This is, in fact, the case when recombi-
nant BMP-10 is released from an implanted
sponge; cardiac function improves beginning
�6 weeks postinfarction and continues for at
least 12 weeks postinfarction (Sun et al. 2014).
BMP-10 administration is also associated with
increased cardiomyocyte proliferation and re-
duced infarct size (Sun et al. 2014). These find-
ings must be balanced, however, with results
showing that infarct size is substantially re-
duced by heterozygous loss of Bmp4 when is-
chemia is followed by reperfusion (Pachori
et al. 2010). Consistent with this, administra-
tion of recombinant noggin or dorsomorphin
thirty minutes before reperfusion reduces in-
farct size (Pachori et al. 2010). In addition,
administration of recombinant follistatin-like
1 during reperfusion reduces the activation of
Smad1, 5, and 8, and improves cardiac function
at an early time point of 24 hours postinjury
(Ogura et al. 2012).

These collective findings raise the possibility
that BMP signaling exerts biphasic effects in
the injured myocardium. BMP signaling may
promote cardiomyocyte apoptosis immediately

following injury, and cardiomyocyte prolifera-
tion and function after a lag period. This
complex picture of BMP action creates uncer-
tainty for the therapeutic rationale of modulat-
ing the BMP pathway as a means to improve
cardiac function following myocardial infarc-
tion. Characterizing the currently unknown
mechanism that mediates this shift is an impor-
tant area for future investigation. We are not
aware of any clinical trials evaluating the ability
of BMP signaling to improve cardiac function
following myocardial injury.

Other Pathologies

In addition to the applications above that have
substantial experimental and clinical underpin-
nings, preclinical studies also suggest that in-
creasing BMP pathway activation may be bene-
ficial in other clinically relevant scenarios, such
as retinal injury, in which recombinant BMP-4
treatment reduces retinal ganglion cells death
(Ueki and Reh 2012), strabismus, in which re-
combinant BMP-4 reduces force generation and
size of the superior rectus muscle (Anderson
et al. 2011), infertility, in which administration
of recombinant BMP-6 or BMP-7 in vivo im-
proves oocyte quality and folliculogenesis (Lee
et al. 2001; Park et al. 2012), and diet-induced
obesity, in which recombinant BMP-7 treat-
ment improves blood lipids and hyperglycemia
(Boon et al. 2013). Additionally, two simulta-
neous and independent reports suggest that
augmenting BMP signaling may be beneficial
in promoting skeletal muscle growth and inhib-
iting muscle wasting by opposing the effects of
myostatin (also known as growth and differen-
tiation factor 8, GDF-8) and related molecules
(Sartori et al. 2013; Winbanks et al. 2013). The
ligand GDF-5 appears to be predominantly
responsible for the endogenous antagonism of
Smad2/3-mediated effects in this context (Sar-
tori et al. 2013), although artificially increasing
BMP-7 expression can exert the same or similar
effects (Winbanks et al. 2013). It is worth noting
that direct delivery of BMP ligands to the skel-
etal muscle environment is well documented to
promote ectopic bone formation and is the de-
fining characteristic for bona fide BMP ligands.
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Thus, capitalizing on findings that suggest that
increasing local BMP activity improves muscle
repair will likely be challenging and requires
clever strategies to activate BMP signaling using
intracellular means. Indeed, both landmark
studies show that adenoviral-based expression
of a constitutively active version of ALK-3 leads
to substantial myofiber hypertrophy (Sartori
et al. 2013; Winbanks et al. 2013).

Conversely, preclinical studies suggest that
decreasing BMP pathway activation may be
beneficial in varied clinically relevant scenarios,
such as Duchenne’s muscular dystrophy, in
which Noggin gene delivery improves skeletal
muscle histology and markers of myogenesis
(Shi et al. 2011), intraventricular hemorrhage
of the brain, in which recombinant noggin
treatment restores cellular morphology, myeli-
nation, and motor function (Dummula et al.
2011), regeneration of the liver, in which small
molecule BMP type I receptor inhibitors, in-
cluding LDN-193189, DMH2, or VU5350,
increase hepatocyte proliferation following par-
tial hepatectomy and LDN-193189 restores liver
mass (Tsugawa et al. 2014), acute lung injury,
in which LDN-193189 preserves epithelial bar-
rier integrity after bleomycin-induced injury
(Helbing et al. 2013), and rhytid, in which an
ALK-3 decoy reduces wrinkle formation (Yoon
et al. 2013).

FINAL PERSPECTIVES

The evidence discussed above strongly indicates
that modulation of BMP signaling may be ben-
eficial in treating human disease and improving
patient quality of life. It is striking, then, how
few tools are currently available to target this
pathway in the clinical setting. The only FDA
approved use at present is that of recombinant
ligands delivered in relatively few clinical sce-
narios, such as open or nonunion fractures,
vertebral fusion, and maxillofacial bone aug-
mentation. The large quantities of ligand that
must be used in these settings have created ma-
jor concerns over both the cost and the potential
for adverse events such as inflammation and
HO. We are encouraged by the significant ad-
vances that have been made in addressing both

of these limitations. For instance, numerous
groups have generated short BMP-inspired bio-
mimetic peptides that can be synthesized and
are less expensive to generate than recombinant
proteins, and, in some cases, have enhanced ac-
tivity over the naturally occurring BMP ligands
(Table 3). Two promising examples of this ap-
proach are the BMP-9-based peptide pBMP-9
(Bergeron et al. 2009; Lauzon et al. 2014;
Beauvais et al. 2015) and the chimeric activin
A/BMP-2 protein (AB204) (Allendorph et al.
2011; Ahn et al. 2014; Yoon et al. 2014; Kim
et al. 2015; Yoon et al. 2015a,b). It is possible
that drugs aimed at blocking the action of BMP
antagonists could further reduce the quantity of
ligand or peptide required for clinical benefit
(Okada et al. 2009; Ahmed et al. 2010; Kato
et al. 2011; Cao et al. 2014). Additionally, con-
siderable advancement has been made toward
the development of a carrier system that stabi-
lizes BMP ligands at the site of implantation,
and reducing the diffusion of BMP ligands
from the delivery site, which would improve
the ability to enact local activation of BMP sig-
naling while reducing the likelihood of adverse
events at distant sites (Agrawal and Sinha 2016).
Although we are unaware of completed or
ongoing clinical trials examining these next-
generation BMP signaling activation strategies,
recent progress allows us to envision a future in
which augmentation of the BMP pathway can
be accomplished using extremely small quanti-
ties of material.

Some disease conditions or particular pa-
tient populations, however, may not be well
suited for broad BMP signaling activation strat-
egies. For instance, although preclinical models
suggest that correcting deficient BMP signaling
by ligand delivery might help in treating PAH
(Long et al. 2015), the ability of BMP signaling
to promote vascular calcification raises concern
regarding the systemic administration of BMP
signaling activators. Such scenarios may call for
more nuanced strategies, such as the one built
on the observation that the BMP antagonist
gremlin is elevated in PAH and that delivery of
an antigremlin neutralizing antibody improves
disease pathology (Ciuclan et al. 2013). Exten-
sion of this methodology to other disease states
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may reveal new, targeted strategies that modu-
late BMP signaling in defined physiological
contexts by inhibiting aberrantly expressed an-
tagonists or ligands.

Given that BMP signaling typically controls
a large network of genes and cellular outcomes,
it is highly likely that only a small portion of
these directly relates to disease pathology, and
that partial restoration would provide clinical
benefit. Again using PAH as an example, defects
in BMPRII-dependent signaling lead to changes
in numerous signaling pathways in the pulmo-
nary vasculature (Lowery and de Caestecker
2010), only one of which is impaired nitric ox-
ide signaling (Frank et al. 2008). However, drugs
that potentiate or promote nitric oxide action
such as sildenafil are effective in improving pul-
monary hemodynamics (Abrams et al. 2000;
Prasad et al. 2000; Galie et al. 2005). To us,
this signifies that the future of BMP-based
therapeutics must take into account the down-
stream events that are controlled by BMP sig-
naling in any given pathological context, thus
allowing for targeted therapies—perhaps in-
creasing the expression of even a single BMP
target gene like Id1 or Id3 (Saika et al. 2006).

Finally, we wish to draw attention to the
need for drugs that discriminate between indi-
vidual type I BMP receptors. As discussed
above, altered activity of the type I BMP recep-
tor ALK-2 causes FOP (Shore et al. 2006), and
pharmacological inhibition of BMP signaling
reduces ectopic bone formation in preclinical
models (Yu et al. 2008a; Peterson et al. 2014).
Although compelling and groundbreaking, the
drug used in these studies, LDN-193189, also
potently inhibits other type I BMP receptors in
addition to ALK-2 and has notable off-target
effects on AMP kinase, vascular endothelial
growth factor (VEGF) receptor 2 and platelet-
derived growth factor (PDGF) receptor b,
which must be taken into consideration (Low-
ery et al. 2016). As outlined in Table 4, this has
prompted several groups to develop new type I
BMP receptor inhibitors with dramatically en-
hanced selectivity for ALK-2 (and the closely
related ALK-1) over the other type I receptors
(Engers et al. 2013; Mohedas et al. 2013, 2014;
Tsugawa et al. 2014). We are unaware of com-

pleted or ongoing clinical trials data comparing
the safety or efficacy of these compounds,
although one of these, LDN-212854, has been
shown to block ectopic bone formation in a
mouse model of BMP-dependent HO (Mohe-
das et al. 2013). The significant interest in drugs
for treating FOP may also be translatable to an-
other human disease, diffuse intrinsic pontine
glioma (DIPG), which is also caused by activat-
ing mutations in the ACVR1/ALK2 gene (Bucz-
kowicz et al. 2014; Fontebasso et al. 2014; Taylor
et al. 2014; Wu et al. 2014). Furthermore, the
intensity of this line of investigation may de-
velop a toolbox to help delineate the effects of
specific type I receptors in vivo; for example,
differential type I receptor targeting proved
beneficial in building an understanding of
how BMP signaling promotes liver regeneration
in a rodent model (Tsugawa et al. 2014).
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