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Abstract

A new class of models, named dynamic quantile linear models, is
presented. It combines dynamic linear models with distribution free
quantile regression producing a robust statistical method. Bayesian
inference for dynamic quantile linear models can be performed
using an efficient Markov chain Monte Carlo algorithm. A fast
sequential procedure suited for high-dimensional predictive modeling
applications with massive data, in which the generating process is itself
changing overtime, is also proposed. The proposed model is evaluated
using synthetic and well-known time series data. The model is also
applied to predict annual incidence of tuberculosis in Rio de Janeiro
state for future years and compared with global strategy targets set
by the World Health Organization.

Keywords: Asymmetric Laplace distribution, Bayes linear, Bayesian
quantile regression, Dynamic models, Gibbs sampling

1 Introduction

This paper aims to combine two innovative areas developed during the last
quarter of the twentieth century building a useful broad new class of models,
namely dynamic linear models and quantile regression. In a collection of
papers in the 1970s some new ideas to model time series data were put
forward by Jeff Harrison and co-authors [18]. This class of models can be
ingeniously viewed as regression models with parameters varying throughout
time. At almost the same time, Roger Koenker introduced the quantile

1

ar
X

iv
:1

71
1.

00
16

2v
2 

 [
st

at
.M

E
] 

 1
8 

Fe
b 

20
18



regression models, generalizing the L1 regression, a robust procedure that
has since been successfully applied to a range of statistical models [21]. It
provides richer information on the effects of the predictors than does the
traditional mean regression and it is very insensitive to heteroscedasticity and
outliers, accommodating the non-normal errors often encountered in practical
applications.

The inferential approaches are, nevertheless, completely distinct. While
the first contribution follows the Bayesian paradigm, the other resorts to
optimization techniques to solve the stated minimization problem, and its
inference is theoretically founded on large sample theory. In the next
paragraphs, we state the main novelties in both consolidated areas.

Dynamic linear models (DLM) are part of a broad class of models
with time varying parameters, useful for modeling and forecasting time
series and regression data. They were introduced by [18] and extended
to generalized linear models by [49]. A hierarchical version was later
introduced by [14]. A deeper treatment of the subject can be found in
[48, 9, 31, 34] and [35]. During the last 30 years, many contributions,
methodological and computational, have been introduced. The advent
of stochastic simulation techniques stimulated applications of the state
space methodology to model complex stochastic structures, like dynamic
spatiotemporal models [15], dynamic survival models [3], dynamic latent
factor models [28], and multiscale modeling [11, 12]. A number of papers
have recently appeared on the application of DLM to hydrology [10], intraday
electricity load [30], finance [55], insurance and many other areas. The
relative ease with which Markov chain Monte Carlo (MCMC) methods can
be used to obtain the posterior distributions, even in complex situations, has
made Bayesian inference very useful and attractive, but at the expense of
losing the sequential analysis of both states and parameters. Moreover, some
fast computing alternatives exploring analytical approximations can be seen
in [8] and [43]. Another advantage of our approximation procedure is that
it provides the marginal likelihood sequentially as new data arrive. This is
essential to perform sequential model monitoring and model selection [47].

The quantile regression models were introduced in the 1970s by [21].
A simple minimization problem yielding the ordinary sample quantiles in
the location model was shown to generalize naturally to the linear model,
generating a broad new class of models named “quantile regression models”.
The τ -th quantile regression, τ ∈ (0, 1), is defined as any solution to
the minimization of the expected value of a very special loss function,
usually called the check function. Contrary to the commonly used quadratic
loss function for mean regression estimation, the quantile regression links
to a special class of loss functions that have robust properties. A good
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comprehensive revision of quantile regression can be found in [20].
This is a straightforward generalization of the minimization involved in

ordinary regression. The estimator which minimizes the sum of absolute
residuals is an important special case (τ = 1/2), often called the L1 regression
or the median regression. It is surprising how long it took to recognize that
irrespective of the actual distribution of the data, Bayesian inference for
quantile regression proceeds by forming the likelihood function based on the
asymmetric Laplace distribution [52].

The recent literature includes a large number of papers on foundations
of quantile regression, including advances in nonparametric [16, 6, 46, 19].
In Bayesian foundations, [1] discuss prior elicitation, and [51] evaluate the
asymptotic validity of posterior inference for Bayesian quantile regression.
[54] add random effects to account for over-dispersion caused by unobserved
heterogeneity or for correlation in longitudinal data. Varying covariate effects
based on quantile regression is explored in [33], including a new perspective on
variable selection. A quantile regression method for hierarchical linear models
is presented in [53]. Inference in the context of quantile regression process
is explored in [56], in a setting with a large number of small heterogeneous
clusters. They provide consistent estimates of the asymptotic covariance
function of that process.

Quantile regression is applied to temporal and spatially referenced data
as a flexible and interpretable method of simultaneously detecting changes
in several features of the distribution of some variables. A method based
on estimating the conditional distribution was given by [5] and quantile
autoregression was introduced by [22]. [41] developed a spatial quantile
regression model that allows the covariates to affect the entire conditional
distribution, rather than just the mean, and this conditional distribution is
allowed to vary smoothly from site-to-site. Another reference in the context
of spatially referenced data is [29]. [39] developed a spatiotemporal model
where each spatial location has its own quantile function that evolves linearly
over time, and the quantile functions are smoothed spatially using Gaussian
process priors. [40] proposed a semi-parametric quantile regression model for
censored survival data.

Applications of quantile regression have become widespread in recent
years. A general discussion of using quantile regression for return-based
analysis was given by [45] and [2]. Quantile regression for rate making in
the framework of heterogeneous insurance portfolios was applied by [25].
A spatiotemporal quantile regression model for the analysis of emergency
department-related medical expenditures was developed by [32]. A Bayesian
quantile ordinal model was proposed by [37] and applied to a public opinion
survey on tax policies. A Bayesian quantile regression model for insurance
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company cost data, introduced by [44], enables the modeling of different
quantiles of the cost distribution as opposed to just the center and also
helps to estimate the cost-to-output functional relationship at a firm level
by borrowing information across firms. [27] presented a model for residual
lifetime with longitudinal biomarkers.

We extend the dynamic linear models to a new class, named dynamic
quantile linear models, where a linear function of the state parameters is
set equal to a quantile of the response variable at time t, yt, similar to
the quantile regression of [20]. This method is suited for high-dimensional
predictive modeling applications with massive data in which the generating
process itself changes over time. Our proposal keeps the most relevant
characteristics of DLM such as: (i) all relevant information sources are used:
history, factual or subjective experiences, including knowledge of forthcoming
events; (ii) everyday forecasting is generated by a statistical model and
exceptions can be taken into account as an anticipative or retrospective base;
(iii) what happened and what if analysis are easily accommodated; and (iv) the
model can be decomposed into independent components describing particular
features of the process under study.

We introduce the inference via Markov chain Monte Carlo (MCMC)
methods, and also via an alternative approach based on normal
approximations and Bayes linear estimation, as used in [49], which besides
being computationally faster than MCMC, allows sequential analysis of the
data.

The remainder of the paper is organized as follows. Section 2 explores
in more details the dynamic quantile linear model. Section 3 presents our
efficient MCMC algorithm and the sequential approach for the dynamic
quantile linear modeling. Section 4 illustrates the proposed method with
synthetic data, and also presents some results of the well-known time series
of quarterly gas consumption in the UK from 1960 to 1986 and the annual
flow of the Nile River at Aswan from 1871 to 1970. The model is also applied
to time series data on tuberculosis in Rio de Janeiro state, Brazil, from
2001 to 2015. We also predict the incidence for future years and compare
the results with those of the global tuberculosis strategy targets established.
Finally, Section 5 concludes with discussion of the paper and some possible
extensions.
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2 Dynamic quantile linear model

The τ -th quantile of a random variable yt at time t can be represented as a
linear combination of explanatory variables,

Qτ (yt) = F′tθ
(τ)
t ,

where Qτ (yt) is the τ -quantile of yt, formally defined as Qτ (yt) = inf{y∗ :
P (yt < y∗) ≥ τ}, for 0 < τ < 1. Ft is a p× 1 vector of explanatory variables

at time t, and θ
(τ)
t is a p×1 vector of coefficients depending on τ and t. From

now on, the superscript τ will be omitted in order to keep the notation as
simple as possible.

For a given time t, [21] defined the τ -th quantile regression estimator of
θt as any solution of the quantile minimization problem

min
θt

ρτ (yt − F′tθt) ,

where ρτ (.) is the loss (or check) function defined by ρτ (u) = u(τ−I(u < 0)),
with I(·) denoting the indicator function. Minimizing the loss function ρτ (·)
is equivalent to maximizing the likelihood function of an asymmetric Laplace
(AL) distribution, as pointed out by [52]. However, instead of maximizing the
likelihood, as [52], we derive the posterior distribution of the τ -th quantile
regression coefficients at time t using the AL. Therefore, regardless the
distribution of yt, it is enough to assume that:

yt | µt, φ, τ ∼ AL
(
µt, φ

−1/2, τ
)
, yt ∈ R, t = 1, 2, . . . , T, (1)

where µt = F′tθt ∈ R is a location parameter, φ−1/2 > 0 is a scale parameter,
and τ ∈ (0, 1) is a skewness parameter representing the quantile of interest.
In dynamic modeling, one goal is also to obtain the predictive distribution.
This can be done in a robust fashion using a grid of values of τ ∈ (0, 1) to
describe the full predictive distribution of yt. Nevertheless, in this paper, we
focus on providing precise inference about the linear predictor µt for each
τ -th quantile.

In a dynamic linear model, the states at time t depend on the states at
time t − 1 according to an evolution equation θt = Gtθt−1 + wt, where Gt

is a (p× p) matrix describing the evolution parameters and wt is a Gaussian
error with variance matrix Wt. Therefore the proposed dynamic quantile
linear model (DQLM) is defined as

yt|θt, φ, τ ∼ AL
(
F′tθt, φ

−1/2, τ
)
,

θt|θt−1,Wt ∼ Np(Gtθt−1,Wt), t = 1, 2, . . . , T. (2)
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In the next section, we present two methods of inference for the proposed
model. In the first one, we extend the algorithm proposed by [24] for Bayesian
(static) quantile regression and propose an efficient MCMC algorithm to
sample from the posterior distribution of the unknown quantities of the
dynamic quantile linear model (2). The second one is a computationally
cheaper alternative that explores analytical approximations and Bayes linear
optimality. An advantage of the last one is that it provides the marginal
likelihood sequentially as new data arrive.

3 Posterior inference for the DQLM

3.1 Efficient MCMC algorithm

[23] presented a location-scale mixture representation of the AL that allows
finding analytical expressions for the conditional posterior densities of the
model. In this way, if a random variable follows an asymmetric Laplace
distribution, i.e. yt | µt, φ, τ ∼ AL

(
µt, φ

−1/2, τ
)
, then we can write yt using

the following mixture representation:

yt | µt, Ut, φ, τ ∼ N(µt + aτUt, bτφ
−1/2Ut),

Ut | φ ∼ Ga(1, φ1/2),
(3)

where aτ = 1−2τ
τ(1−τ) and bτ = 2

τ(1−τ) are constants that depend only on τ .

Therefore, the dynamic quantile linear model (2) can be rewritten as the
following hierarchical model:

yt|θt, Ut, φ, τ ∼ N
(
F′tθt + aτUt, bτφ

−1/2Ut
)
,

θt|θt−1,Wt ∼ Np (Gtθt−1,Wt) ,
Ut|φ ∼ Ga(1, φ1/2),

(4)

for t = 1, . . . , T . To allow for some flexibility in the model (4), we can even
assume that φ−1/2 changes with time, which can be done in logarithmic scale
according to a random walk or using the discounted variance learning through
the multiplicative gamma-beta-gamma model [48, chapter 10, p. 357].

The model is completed with a multivariate normal prior for θ0,
θ0 ∼ Np (m0,C0), an independent inverse gamma prior for φ−1/2,
φ−1/2 ∼ IGa(nφ/2, sφ/2), and an inverse Wishart prior for Wt, Wt ∼
IWishart(nw,Sw).
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The posterior distribution of the parameters in the model (4) is given by

π(Θ,U,W, φ | DT ) ∝
T∏
t=1

[π(yt|θt, Ut, φ)π(θt|θt−1,Wt)π(Ut)π(Wt)] (5)

π(φ−1/2)π(θ0),

where Dt = {Dt−1 ∪ It ∪ yt} represents all information until time t, for
t = 1, 2, . . . , T . The quantity It represents all external information at time t.
If there is no external information at time t, then It = ∅. All prior information
is summarized in D0 = I0 containing all hyper parameters associated with
the prior distributions. The unknown quantities are defined as follows: Θ =
(θ0,θ1, . . . ,θT ), U = (U1, U2, . . . , UT ), W = (W1,W2, . . . ,WT ).

We can sample from the posterior distribution (5) through an MCMC
algorithm. Our starting point is the efficient Gibbs sampler for Bayesian
(static) quantile regression proposed by [24]. The dynamic coefficients are
then sampled using a forward filtering backward sampling (FFBS) algorithm
[7, 13, 42]. Theorem 3.1 displays the full conditionals and the sampling
algorithm.

Theorem 3.1 Let Φ = (u,W,Θ, φ, t = 1...T )). A Gibbs sampling algorithm
for the dynamic quantile model in (4) involves two main steps:

1. First, sample φ−1/2, ut, and Wt for t = 1, . . . , T from their full
conditional distributions:

(i) φ−1/2 | DT ,Θ,U ∼ IGa
(
n∗φ/2, s

∗
φ/2
)
, where n∗φ = nφ + 3T and

s∗φ = sφ +
T∑
t=1

(yt − F′tθt − aτUt)2

bτUt
+ 2

T∑
t=1

Ut.

(ii) Ut | DT ,θt, φ ∼ GIG
(
χ∗t , κ

∗
t ,

1
2

)
, where χ∗t =

(yt−F′tθt)2
bτφ−1/2 and

κ∗t = a2τ
bτφ−1/2 + 2

φ−1/2 and GIG is the generalized inverse Gaussian
distribution.

(iii) Wt | DT ,θt ∼ IWishart (n∗w,S
∗
w) , where n∗w = nw + p + 1 and

S∗w = Sw + (θt −Gtθt−1)
′ (θt −Gtθt−1).

2. Next, use the FFBS method to sample from π(θ | ·):

(i) Forward filtering: for t = 1, . . . , T calculate

mt = at + RtFtq
−1
t (yt − ft) and Ct = Rt −RtFtq

−1
t F′tRt,

with at = Gtmt−1, Rt = GtCt−1G
′
t + Wt, ft = F′tat + Utaτ and

qt = F′tRtFt + bτUtφ
−1/2.
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(ii) Backward sampling: sample θT ∼ Np(mT ,CT ) and for t = T −
1, . . . , 0 sample θt ∼ Np(ht,Ht), where

ht = mt + CtG
′
tR
−1
t+1(θt+1 − at+1) and Ht = Ct −CtG

′
tR
−1
t+1GtCt.

In place of assuming an inverse Wishart prior for Wt it is also possible
to use a discount factor δ ∈ (0, 1) subjectively assessed, controlling the loss
of information. In this case the unique difference is that Rt is recalculated
according to a discount factor δ such as Wt = 1−δ

δ
GtCt−1G

′
t. Hence, Rt can

be rewritten as Rt = 1
δ
GtCt−1G

′
t.

The full conditional distribution of Ut is obtained using Lemma 3.1, which
shows that the generalized inverse Gaussian distribution (GIG) is conjugate
to the normal distribution in a normal location-scale mixture model.

Lemma 3.1 Let y = (y1, . . . , yn) be a normal random sample with likelihood
function π(y|U) =

∏n
i=1N(yi|a+ bU, cU) and suppose that the prior

distribution for U is GIG (χ, κ, λ). Then, the posterior distribution U | y ∼
GIG(χ∗, κ∗, λ∗), where χ∗ = χ + c−1

∑n
i=1 (yi − a)2, κ∗ = nb2c−1 + 2κ and

λ∗ = λ− n/2.

The proof of this result is immediate and is omitted in the text. Moreover,
note that a Ga(α, β) distribution is a particular case of a GIG with χ = 0,
κ = 2β and λ = α.

3.2 Approximated dynamic quantile linear model

On the other hand, considering that data arrive sequentially, we propose
an efficient and fast sequential inference procedure obtained with a closed-
form solution, in order to update inference on unknown parameters online.

The approach also explores the mixture representation of the AL
described in (3). Hence, posterior computation can be conveniently carried
out using conventional Bayesian updating, conditional on the gamma random
variable Ut. We also use a normal approximation to Ut’s distribution in
the logarithm scale, introducing explicit dynamic behavior, once again,
generalizing the model presented in (4).

The normal approximation to the gamma distribution, described in [4],
is presented below and the proof is presented in Appendix A.

Lemma 3.2 Using the Kullback-Leibler divergence, in a large class of
transformations, we have:
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(i) The best transformation, to approximate θ ∼ Ga(a, b) for a normal
distribution is ζ(θ) = log(θ). Then ζ ' N [E(ζ), V (ζ)], where E(ζ) '
log
(
a
b

)
− 1

2a
and V (ζ) ' 1

a
.

(ii) If ζ ∼ N [E(ζ), V (ζ)] then θ = exp(ζ) is such that E(θ) '
exp [E(ζ) + V (ζ)/2] and V (θ) ' exp [2E(ζ) + V (ζ)]V (ζ).

Therefore, an approximate conditional normal dynamic quantile
regression is obtained as:

yt | θt, ut, φ ∼ N
(
F′tθt + aτφ

−1/2 exp(ut), φ
−1bτ exp(ut)

)
,

θt | θt−1,Wt, φ ∼ Np (Gtθt−1, φ
−1Wt) ,

ut | ut−1,Wu,t, φ ∼ N (ut−1, φ
−1Wu,t) .

(6)

where ut = log(Ut), with Ut ∼ Ga(a, b). Model (6) is more flexible than
model (4) because it allows ut to change with time according to a random
walk. Furthermore, the scale parameter here is introduced in all the model
equations.

The model is completed assuming the following independent prior
distributions: θ0 ∼ Np(m0, φ

−1C0), u0 ∼ N(mu,0, φ
−1Cu,0) and φ−1 ∼

Ga(n0/2, d0/2). The model in (4) can be viewed as a particular case of
proposal (6) assuming that Wu,t = 0,∀t, mu,0 = −1/2 and Cu,0 = 1.

The inference procedure is described below. First we present all results
conditional on both ut and φ and later we integrate out those quantities.

3.2.1 Normal conditional model

We start the inference procedure by exploiting the advantage that,
conditional on ut and φ, we have normal distributions in one-step forecast
and posterior distributions of θt at time t, so all the properties of a normal
model can be used here. The dependence on ut appears first due to the
one-step forecast distribution at time t and it will appear in the posterior
distribution as time passes. Let us define u1:t = (u1, . . . , ut). Theorem 3.2
presents the main steps in the inference procedure conditional on ut.

Theorem 3.2 Assuming that the states’ posterior distribution at time t− 1
is θt−1 | Dt−1, u1:(t−1),Wt, φ ∼ N [mt−1, φ

−1Ct−1] and the conditions defining
model (6), it follows that the prior distribution of θt and the conditional
predictive distribution for any time t, given ut and φ, are respectively:

θt | Dt−1, u1:(t−1),Wt, φ ∼ Np[at, φ
−1Rt],

yt | Dt−1, u1:t,Wt, φ ∼ N [ft(ut), φ
−1qt(ut)], (7)
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with at = Gtmt−1 and Rt = GtCt−1Gt +W, ft(ut) = F′tat +aτφ
−1/2 exp(ut)

and qt(ut) = F′tRtFt + bτ exp(ut). The conditional joint covariance between
yt and θt, given Dt−1, u1:t, φ, is easily obtained as RtFt completing the joint
normal prior for θt and yt. Therefore, the posterior density of θt follows as:

θt | Dt, u1:t,Wt, φ ∼ Np(mt(ut), φ
−1Ct(ut)), (8)

where mt(ut) = at + RtFtqt(ut)
−1(yt − ft(ut)) and Ct(ut) = Rt −

RtFtqt(ut)
−1F′tRt.

It is worth pointing out that mean and variance of the predictive and
the state posterior distributions are functions of ut, as reinforced by the
notation used. However, since ut is unknown for all t, we must find those
distributions marginal on them. We will do this sequentially in the one-step
forecast distribution in (7) for each time t.

3.2.2 Marginalizing on ut

From now on, we will rewrite the time evolution equation in model (6)
as θ∗t | θ∗t−1,W∗

t , φ ∼ Np+1

(
G∗tθ

∗
t−1, φ

−1W∗
t

)
, where θ∗t = (θt, ut)

′, G∗t =
BlockDiag (Gt, 1) and W∗

t = BlockDiag (Wt,Wu,t) with prior distribution
given by θ∗0 | D0, φ ∼ (m∗0, φ

−1C∗0), where m∗0 = (m0,mu,0)
′ and C∗0 =(

C0 Λ0

Λ′0 Cu,0

)
.

Assuming the posterior distribution at time t − 1, θ∗t−1 | Dt−1,W∗
t , φ ∼

Np+1(m
∗
t−1, φ

−1C∗t−1). By evolution, it follows that θ∗t | Dt−1,W∗
t , φ ∼

Np+1(a
∗
t , φ
−1R∗t ), with a∗t = G∗tm

∗
t−1 and R∗t = G∗tC

∗
t−1G

∗
t + W∗

t .
In particular, we have that ut | Dt−1,Wu,t, φ ∼ N(au,t, φ

−1Ru,t) and the
result (ii) leads to this distribution in the original (gamma) scale as:

Ut | Dt−1,Wu,t, φ ∼ Ga(αt, βt), (9)

where αt = φR−1u,t and βt = exp(−au,t)φR−1u,t .
Thus, we have that the one-step forecast distribution in (7) can be seen as

a normal-gamma mean-variance mixture, with the following different features
from those stated in (3): (i) Ut in this case is gamma distributed with shape
parameter different from 1; and (ii) qt(ut) is a linear function of ut with
non null linear coefficient. These comments lead us to a recent class of
distributions, a variant of the AL, as described in Theorem 3.3.

Theorem 3.3 The one-step ahead forecast distribution, conditional on φ
and marginalized on ut arises as the convolution of independent normal and
generalized asymmetric Laplace distribution (GAL). It can be represented as

yt = ζt + εt,
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where ζt ∼ GAL(F′tat, aτφ
−1/2β−1t , bτφ

−1β−1t , αt) and εt ∼ N (0, φ−1F′tRtFt) .
We will refer to this as an NGAL distribution.

A brief presentation of the NGAL distribution, its moments the
characteristic function, and the proof of Theorem 3.3 are presented in
Appendix B. Although, the NGAL distribution suffers from a lack of closed-
form expressions for its probability density and cumulative distribution
functions, they can be efficiently determined using numerical integration as
discussed in Appendix B. In particular, the one-step ahead forecast mean
and variance marginal on ut, can be easily obtained through properties of
conditional mean and variance as:

E (yt | Dt−1, φ) = E [E (yt | Dt−1, Ut) | Dt−1] = F′tat + aτφ
−1/2E (Ut | Dt−1)

= F′tat + aτφ
−1/2αt/βt = ft, and

V (yt | Dt−1, φ) = E [V (yt | Dt−1, Ut) | Dt−1] + V [E (yt | Dt−1, Ut) | Dt−1]
= φ−1 [F′tRtFt + bτE (Ut | Dt−1)] + a2τφ

−1V (Ut | Dt−1)
= φ−1

(
F′tRtFt + bταt/βt + a2ταt/β

2
t

)
= φ−1qt.

The recurrences for posterior mean and variance may also be derived
using approaches that do not invoke the normal assumption, since they
possess strong optimality properties that are derived when the distributions
are only partially specified in terms of means and variances. The Bayes linear
estimation procedure, presented in [48, Chap. 4], provides an alternative
estimate that can be viewed as an approximation to the optimal procedure.
Theorem 3.4 presents the main steps in the inference procedure now marginal
on ut.

Theorem 3.4 The joint distribution of θ∗t and yt is partially described using
its first and second moments, as follows:(

θ∗t
yt

∣∣∣∣Dt−1,W∗
t , φ

)
∼
[(

a∗t
ft

)
, φ−1

(
R∗t Atqt
qtA

′
t qt

)]
,

where At = q−1t

(
RtFt + φ−1/2aτ exp(au,t)Λt

Λ′tFt + φ−1/2aτ exp(au,t)Ru,t

)
and Λt = GtΛt−1.

The joint covariance between yt and θ∗t , given Dt−1 and φ, is obtained
using the first order Taylor approximation exp(ut) ≈ exp(au,t)[1 + ut − au,t].

Through the Bayes linear estimation procedure, we get:

θ∗t | Dt,W∗
t , φ ∼ [m∗t , φ

−1C∗t ], (10)

where m∗t = a∗t +At(yt−ft) and C∗t = R∗t −AtqtA
′
t and we can easily return

to the normality assumption.

The variance W∗
t can be estimated using a discount factor strategy.
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3.2.3 Estimating φ

The steps of the method described above are conditional on φ. In the case
where φ is unknown a practical solution is to use a plug-in estimator for φ
obtained from the maximum a posteriori estimation.

The posterior distribution of φ given the observed data is given by:

p(φ | DT ) =
T∏
t=1

p(yt | Dt−1, φ)p(φ | D0), (11)

where p(yt | Dt−1, φ) is the predictive distribution conditional on φ.
Closed-form expressions for the density function of the family of NGAL

distributions are not available as far as we know. However, the density and
the cumulative distribution function can be obtained numerically using the
convolution form or the inversion of the characteristic function. In particular,
using the convolution to represent the density function, we get:

p(yt | Dt−1, φ) =

∫ ∞
−∞

pε(yt − z)pζ(z)dz, (12)

where pζ(.) is the density of the GAL distribution, and pε(.) is the density
of a normal distribution with mean 0 and variance c. Using the inversion of
the characteristic function, we get:

p(yt | Dt−1, φ) =
1

2π

∫ ∞
−∞

e−isytϕ(s)ds, (13)

where ϕ(.) is the characteristic function of the NGAL distribution.
The integrals (12) and (13) can be evaluated numerically using current

quadrature methods. For example, [26] discussed numerical integration using
Gaussian quadrature and adaptive rules, which dynamically concentrate the
computational work in the sub regions where the integrand is most irregular,
and the Monte Carlo method. They concluded that adaptive Gauss-Kronrod
quadrature performed best in their examples.

A brief summary of the algorithm is stated in the following steps:

(1) for k = 0 give an initial value φ−1
(0)

;

(2) calculate for t = 1, . . . , T :

(i) a∗t = G∗tm
∗
t−1, R∗t = G∗tC

∗
t−1G

∗
t + W∗

t , αt = φR−1u,t and βt =
exp(−au,t)φR−1u,t ;

(ii) ft = F′tat +aτφ
−1/2αt/βt and qt = (F′tRtFt + bταt/βt + a2ταt/β

2
t ) ;

12



(iii) get p(yt | Dt−1, φ(k)) numerically using (12) or (13);

(iv) calculate m∗t = a∗t + At(yt− ft) and C∗t = R∗t −AtqtA
′
t, where At

is a function of φ−1
(k)

.

(3) do k = k + 1 and get φ−1
(k)

maximizing p(φ|Dt) in (11).

(4) repeat (2) and (3) until convergence is achieved.

4 Applications

To illustrate the performance of the proposed model and inference
procedures, we apply the method to some synthetic data and well-known
time series data. Then, we apply it to the incidence of tuberculosis in Rio
de Janeiro, in which it is important to assess if public health policies are
effective, not only in reducing the trend in the number of cases, but also the
variability of total cases. Moreover, the upper quantiles may be useful to
detect an epidemic.

Although the approximated method presents less computing burden and
keeps the relevant sequential analysis of the data, we interchange the use
of the MCMC approach with the approximate method in the following
applications.

4.1 Artificial data examples

In order to assess the efficiency of the proposed sequential procedure and the
convergence of the MCMC estimation, two artificial datasets were generated.
The proposed model was fitted to these datasets and its estimates were then
compared to the true values used in the dataset generation process.

In both studies a non-informative prior distribution is assumed for the
parametric vector with: m0 = 0, C0 = 105, nφ = 0.001, sφ = 0.001. We take
two approaches to deal with the evolution variance: (i) we set an inverse
Wishart prior distribution for δ = 0.95; and (ii) we apply a discount factor
δ = 0.95 setting Wt = Ct(1− δ)/δ [48, p. 51].

The results shown hereafter for the MCMC algorithm correspond to 5,000
MCMC sweeps, after a burn-in of 1,000 iterations and the chain thinning by
taking every 4th sample value.
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4.1.1 Trend and seasonal DLM

An artificial time series of size T = 100 was generated for a Gaussian dynamic

linear model, with the specification F = (1, 0, 1, 0)′ and G =

(
L2 0
0 J2(ω)

)
,

where L2 =

(
1 1
0 1

)
and J2(ω) =

(
cos(ω) sin(ω)
−sin(ω) cos(ω)

)
, with ω = 2π

12
.

This corresponds to a second-order polynomial model with a harmonic

component. We arbitrarily fixed V = 49 and W =

(
W2 0
0 I2

)
, where

W2 =

(
0.02 0.01
0.01 0.01

)
and In×n is an identity matrix of dimension n.

The DQLM was fitted for τ = 0.10, 0.50 and 0.90 and both inference
approaches proposed in the paper were considered. In the MCMC
algorithm, we assumed an inverse Wishart prior distribution for W with
hyperparameters nw = 8 and Sw = 0.1I4, where I4. Convergence for all
the parameters was achieved. Figures 12 and 13 in Appendix C show,
respectively, the trace plot with the posterior distribution of parameters
θt’s and the histograms of the posterior densities of some elements of the
covariance matrix W.

Panels of Figure 1 present the posterior summary of the level and seasonal
components and the linear predictor F′tθt for each quantile (from left to right
τ = 0.10, 0.50, 0.90), with the generated time series (points). The posterior
mean is represented by the solid line and the 95% credible region by the
shaded area.
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(a) MCMC
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(b) Approximated method

Figure 1: Smoothed posterior mean (solid line), 95% credible region (shaded
area) of the level and seasonal components for each quantile, based on the
MCMC output (a) and in the approximated method (b). From left to right
τ = 0.10, 0.50, 0.90.
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Figure 2 presents the plot of the estimated values of the linear predictor
for each quantile under MCMC approach versus the proposed approximated
algorithm. The lengths of the segments represent the 95% credibility interval
obtained by MCMC approach. We conclude that both methods produce
similar results, but while MCMC takes about 5 minutes for 5,000 sweeps for
a specific quantile, the approximated method takes seconds. Both algorithms
were implemented in the R programming language, version 3.4.1 [36], in a
computer with an Intel(R) Core(TM) i7-7700 processor 3.60 GHz. This is
first evidence of the relevance of the approximated DQLM to deal with a
scalable dataset.
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Figure 2: Plot of the estimated values (posterior mean) of the linear predictor
under the MCMC inference approach versus the approximated method.

4.1.2 Non-Gaussian artificial dataset

To illustrate how the method works with a non-Gaussian dataset, we
generated an artificial dataset from a first order dynamic gamma regression
with mean µt, scale parameter φ and a canonical link function ηt = log(µt) =
F′tθt. In particular, we generated T = 100 observations assuming Ft =
(1, xt), where xt is an auxiliary variable at time t, Gt = I2×2, W = 0.01I2×2,
for all t = 1, . . . , T and φ = 50. Each auxiliary variable xt was generated
independently from a uniform distribution defined in the interval (2,4).

The model (4) was fitted to the original data and to the log transformed
data, for the quantiles 0.10, 0.50, and 0.90. We particularly choose here
to do the inference using only the MCMC algorithm. Although quantile
regression is invariant to monotonic transformations, that is, the quantiles
of the transformed variable are the transformed quantiles of the original
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variable [20, chapter 2, p. 34], the estimates of all the involved quantities
were noticeably better when the data were transformed.

In order to validate the former result, some simulation studies were
developed. Several samples were generated from the gamma model. A simple
static model is proposed in this exercise, with Ft = 1 and Wt = 0, for all
t = 1, . . . , T . Fifty replications of samples of sizes T = 100 and T = 250 were
generated using three different levels of skewness.

Figure 3 reports the empirical nominal coverage of the 95% credibility
intervals measured in percentages and the relative mean absolute error
(RMAE) for the posterior mean of the quantiles for each case. The RMAE
decreases when we apply the AL to the logarithm of the sample observations
and also as the sample size increases or the distribution becomes more
symmetrically distributed. The desired nominal level of 95% is best achieved
when the logarithm of the sample is considered, mainly as the level of
asymmetry decreases. The improvement in the results when using the log
transformation is more noticeable as the skeweness decreases.
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Figure 3: Empirical nominal coverage of the 95% credibility intervals (%) and
the MAE for the posterior mean of the quantiles for each case. The symbols
• and N represent the results obtained when fitting the quantile regression
to the logarithm of the observations for T = 100 and T = 250, respectively.
◦ and M represent the same results when the quantile regression is applied to
the observations on the original scale for T = 100 and T = 250, respectively.

Those results encourage us, as a future work, to explore in this context
the idea of using the AL distribution for random effects in the link function,
instead of applying it to the transformed response variable.

4.2 Real data examples

In this section we revisit some classic univariate time series previously
analyzed in the literature. In the first example we apply the proposal to
the time series of quarterly gas consumption in the UK from 1960 to 1986,
in which there is a possible change in the seasonal factor around the third
quarter of 1970. The second one is the annual flow of the Nile River at Aswan
from 1871 to 1970. This series shows level shifts, so we considered here a
model which includes change points or structural breaks. Both datasets are
available in the R software [36].
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4.2.1 UK gas consumption

The following dataset consists of quarterly UK gas consumption from 1960
to 1986 (see Figure 4). The plot of the data suggests a possible change in
the seasonal factor around the third quarter of 1970.

Time
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s

1960 1965 1970 1975 1980 1985

20
0

60
0

10
00

Figure 4: Quarterly UK gas consumption from 1960 to 1986, in millions of
therms.

We employ a model built on a local linear trend plus a quarterly seasonal
component DLM to analyze the data, that is, we consider Ft = (1, 0, 1, 0, 0)′

and Gt =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

 , for all t = 1, . . . , 108, in model (4).

We fit the DQLM for τ = 0.10, 0.50, 0.90 to the real dataset on the
log scale. Figure 5 provides a plot of the posterior mean with the MCMC
algorithm (in black) and approximated method (in blue) of the trend and
seasonal components, together with 95% credibility intervals using MCMC.
It is possible to observe the change in the seasonal factor around the third
quarter of 1970. Moreover, in terms of the posterior mean both methods are
very close to each other.
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Figure 5: Posterior mean (solid line), 95% credible region (shaded area) for
the level and seasonal components for each quantile.

4.2.2 Nile River flow

The dataset in Figure 6 corresponds to the measurements of the annual flow
of Nile River at Aswan (Egypt) from 1871 to 1970. The time series shows
level shifts. The construction of the first dam of Aswan started in 1898 and
the second big dam was completed in 1971, which caused enormous changes
on the Nile flow and in the vast surrounding area. Thus, in order to capture
these possible level changes we consider here a model that does not assume
a regular pattern and stability of the underlying system, but can include
change points or structural breaks.

A simple way to account for observations that are unusually far from
their one step-ahead predicted value is to describe the evolution error using
a heavy-tailed distribution. The Student-t distribution family is particularly
appealing in this respect for two reasons: (i) the Student-t distribution
admits a simple representation as a scale mixture of normal distributions,
which allows one to treat a DLM with t-distributed observation errors as
a Gaussian DLM, conditional on the scale parameters; and (ii) the FFBS
algorithm can still be used. Thus, we consider, the DQLM with evolution
characterized by the Student-t distribution, given by:

θt ∼ N(Gtθt−1, λ
−1
t W),

λt ∼ Ga(ν/2, ν/2), t = 1, . . . , T.
(14)
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Figure 6: Measurements of the annual flow of Nile River at Aswan from 1871
to 1970.

The latent variable λ−1t can be informally interpreted as the degree of non-
Gaussianity of wt. In fact, values of λ−1t lower than 1 make larger absolute
values of wt more likely. Hence, the posterior distribution of λ−1t can be
used to flag possible outliers. Through its degree-of-freedom parameter ν,
which may also vary on time, different degrees of heaviness in the tails can
be attached. This class of models is discussed in [34].

In this example, we fitted a first-order polynomial dynamic model, thus
we assumed Ft = Gt = 1 in model (4). We fitted the model (14) and the one
with normal evolution, for the 0.25, 0.50, and 0.75-quantiles.

In both cases, for the variance of the states W , we considered a half-
Cauchy prior distribution, discussed by [17], with scale 25, set as a weakly
informative prior distribution. Although we could even assume a prior
distribution for this, as described in [34], we assumed ν known a priori and
fixed at 2.5

Figure 7 shows the linear predictor for each quantile, with its 95%
credibility interval represented by the shaded area, obtained from the normal
(first column) and Student-t fits (second column). Model (14) results in
smoother linear predictors with more accurate credibility intervals.
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Figure 7: Posterior mean of the linear predictor (represented by the solid
line) and the 95% credible region (represented by the shaded area) for each
quantile.
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Table 1 presents the posterior mean of the linear predictor for the 0.10,
0.50, and 0.90-quantiles for the model with normal and Student-t evolution
around the year 1899. The abrupt regime change is better captured in the
Student-t than in the normal model for all quantiles.

Table 1: Posterior mean of the linear predictor for the 0.10, 0.50, and 0.90-
quantiles of the model with normal and Student-t evolution.

Student-t Normal
Year 10% 50% 90% 10% 50% 90%
1896 1064.01 1134.51 1219.03 1046.11 1124.00 1216.96
1897 1004.97 1083.83 1147.69 984.23 1064.32 1137.24
1898 959.51 1047.47 1117.77 922.98 1016.65 1093.48
1899 792.07 890.29 972.25 836.57 943.65 999.19
1900 784.17 871.67 938.27 814.69 903.88 949.23
1901 771.33 863.93 926.85 794.25 882.78 930.59

Figure 8 shows the boxplots of the posterior distribution of λ−1t in
logarithmic scale from 1871 to 1970 for each quantile. Values of log λ−1t
greater than 0 indicate an abrupt regime change. Boxplots in gray do not
include the value 0. Thus, it is possible to observe that the model in fact
accommodates the outliers. The regime change in 1899 is detected for all
the quantile regression models fitted. However, for the 0.75-quantile other
outliers were detected.
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Figure 8: Boxplots of the posterior samples of λ−1t in log scale for the 0.25,
0.5, and 0.75 quantiles over the years.

4.3 Tuberculosis cases in Rio de Janeiro

According to the World Health Organization (WHO), tuberculosis (TB) is
one of the top 10 causes of death worldwide. Brazil is one of the countries
with the highest number of cases in the world and since 2003 the disease has
been considered a priority by the Brazilian Ministry of Health. As part of
the overall effort to reduce the incidence and mortality rate, the Ministry of
Health, through the General Office to Coordinate the National Tuberculosis
Control Program (CGPNCT), prepared a national plan to end tuberculosis
as a public health problem in Brazil, reaching at target of less than 10 cases
per 100,000 inhabitants by 2035. The plan to end the TB epidemic is a target
under the Sustainable Development Goals that requires implementing a mix
of biomedical, public health and socioeconomic interventions along with
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research and innovation. The World Health Assembly passed a resolution
approving with full support the new post-2015 End TB Strategy with its
ambitious targets [50].

The state of Rio de Janeiro is located in southeastern Brazil, with over
16 million residents in 2017. The Rio de Janeiro state has one of the highest
TB rates in the country. In 2015, there were 13,094 new notified cases,
representing 15% of new cases for the whole country. We fit the proposed
DQLM with a trend component for monthly incidence in Rio de Janeiro from
January 2001 to December 2015. Figure 9 (a) presents the posterior mean
(dashed line) and the 95% credibility interval (region in gray) for the linear
predictor for the 0.10, 0.50, and 0.90-quantiles, under the MCMC procedure.
Figure 9 (b) presents the posterior summary of the interquantile range (IQR)
between 10% and 90%. It is possible to observe a decreasing pattern for the
IQR, mainly after 2008.
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Figure 9: Monthly incidence of TB in Rio de Janeiro state: (a) Posterior
mean (dashed line) of the linear predictor for the 0.10, 0.50, and 0.90-
quantiles, and their 95% credibility intervals for the 0.10 and 0.90-quantiles;
(b) Posterior summary for the interquantile range between the 0.10 and 0.90
quantiles.

One of the targets of the post-2015 global tuberculosis strategy is a 20%
reduction in tuberculosis incidence by 2020, a 50% reduction by 2025, an
80% reduction by 2030 and a 90% reduction in tuberculosis incidence by
2035, compared with 2015. Therefore, one interest here is to predict the
incidence for the next 20 years, in order to detect in terms of quantiles, if
the target can be achieved. For this, we grouped an incidence for all 15 years
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and predicted the incidence for the next 20 years.
In MCMC inference procedure, samples from θT+k, k a non-negative

integer, are obtained by propagating the samples from the posterior
distribution through the evolution equation (4). In the approximated
method, this is done after estimating φ through maximum posterior
estimation. Hence, we get that:

θ∗T+k | DT ∼ [a∗T+k, φ
−1R∗T+k], (15)

where a∗T+k = GT+ka
∗
T+k−1 and C∗T+k = GT+kR

∗
T+k−1G

′
T+k can be

recursively calculated.
Figure 10 presents the forecast from 2016 to 2035 of the median of the

annual incidence of TB per 100 thousand inhabitants under the MCMC
approach. The region in gray represents the 95% credibility interval and the
red crosses indicate the TB reduction targets calculated for Rio de Janeiro
state using 2015 as the baseline. It is possible to observe that the annual
decline in Rio de Janeiro TB incidence rates must accelerate to reach the
targets.
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Figure 10: Temporal predictions of annual incidence of TB in Rio de Janeiro
state for the next 20 years. The circles represent the observations considered
in the inference, the line represents the mean of the predictive distribution for
the median (0.5-quantile), the region in gray represents the 95% credibility
interval for the median, and the red crosses the reduction targets.
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5 Conclusions

In this article we propose a new class of models, named dynamic quantile
linear models. For the inference procedure, we develop two approaches: (i) a
MCMC algorithm based on Gibbs sampling and FFBS for the model of the
location-scale mixture representation of the asymmetric Laplace distribution;
and (ii) a faster sequential method, based on approximations using Kullback-
Leibler divergence and Bayes linear method. The second inference approach
has the advantage of being computationally cheaper.

We evaluated the DQLM in artificial and real datasets. In the simulation
study, we applied our model in a Gaussian example with trend and seasonal
components where the DQLM performed well, and the approximate DQLM
was a computationally efficient alternative to MCMC. We also applied our
model in a non-Gaussian example generated by a gamma model encouraging
the investigation of introducing the AL model in the link function, or in the
response variable. In the classic real data examples, the UK gas consumption
is an example of real data with trend and seasonal components which our
model was able to capture. The Nile River example, we illustrated by fitting
a model for outliers and structural breaks that the detection of occasional
abrupt changes differs depending on the quantile of interest.

The application to the tuberculosis data in Rio de Janeiro, Brazil,
illustrates the practical importance of evaluating quantiles instead of the
mean in the context of forecasting. It also encourages us to extend
the proposal to joint modeling for the quantiles and a dynamic quantile
hierarchical model. Our method can be applied to any infectious disease.
It is important to assess whether public health policies are effective, not
only in reducing the trend in the number of cases, but also the variability of
number of total cases. Moreover, the upper quantiles can be useful for early
detection of an outbreak (epidemic). If the distribution of the number of
cases (represented by the quantiles) is much higher than usual, it is a strong
indication that attention is required.

Appendix A: Proof of Lemma 3.2

Lemma 3.2

(i) Let us find a tractable monotone transformation ζ = ζ(θ) to induce
normality in the sense of minimizing the divergence measure between p(ζ)
and its normal approximation. In particular we have θ ∼ Ga(a, b). This is
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equivalent to finding ζ that minimizes the expected value

k[p(ζ), q(ζ)] =

∫
p(ζ) log

p(ζ)

q(ζ)
dζ,

where q(ζ) is the density function of the N [E(ζ), V (ζ)] distribution and
p(ζ) = p(θ)/|dζ/dθ|.

Thus, we want a function ζ which minimizes

k[p(ζ), q(ζ)] =

∫
p(ζ) log p(ζ)dζ −

∫
p(ζ) log q(ζ)dζ

=

∫
p(ζ) log p(ζ)dζ +

1

2
log(2πV (ζ))

∫
p(ζ)dζ +

∫
p(ζ)

[
(ζ − E(ζ))2

2V (ζ)

]
dζ

=

∫
p(ζ) log p(ζ)dζ +

1

2
log(2πV (ζ)).

We consider the class of transformations ζ = ζ(θ), such that dζ/dθ = θ−α,
0 ≤ α ≤ 1, which contains as particular cases the standard transformations:

ζ(θ) =


θ, for α = 0,
log θ, for α = 1,
(1− α)θ1−α, for α < 1.

We have∫
p(ζ) log p(ζ)dζ =

∫
p(θ) log p(θ)dθ −

∫
log ζ ′(θ)p(θ)dθ

= C1 + α

∫
log θp(θ)dθ = C1 + αE(log θ) ≈ C + α

(
log

a

b
− 1

2a

)
.

Moreover, using that V (ζ) ≈ [ζ ′(E(θ))]2 V (θ), we get log(2πV (ζ)) =
2α log (b/a) + C2. Then,

k[p, q] = α

(
log

b

a
− 1

2a

)
+ C,

which is a decreasing function in α for the particular values that a and b
can assume in the method. It follows that progressively better normalizing
transformations are obtained for larger values of α. Thus, in this class of
transformations, ζ(θ) = log θ is the one which minimizes the divergence
measure between p(ζ) and its normal approximation.

(ii) If we have ζ ∼ N [µ, σ2], such that µ = E(ζ) and σ2 = V (ζ), then
θ = exp(ζ) has distribution LN [µ, σ2] and we desire the better Ga(a, b)
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to approximate this lognormal distribution in the sense of Kullback-Leibler
divergence. That is, we want a and b which minimize

k[p(θ), q(θ)] =

∫
p(θ) log p(θ)dθ −

∫
p(θ) log q(θ)dθ,

or maximizes

f(a, b) =

∫
p(θ) log q(θ)dθ,

where q(θ) and p(θ) are the density functions of the Ga(a, b) and LN(µ, σ2)
distribution, respectively.

Thus,

f(a, b) =

∫
p(θ) log q(θ)dθ =

∫
(a log b− log(Γ(a)) + (a− 1) log(θ)− bθ) p(θ)dθ

= a log b− log(Γ(a)) + (a− 1)ELN(log(θ))− bELN(θ)

= a log b− log(Γ(a)) + (a− 1)µ− b exp
(
µ+ σ2/2

)
.

Deriving it with respect to a and b and setting equal to zero, we get that
the maximum of f(a, b) is achieve when:

a = σ−2 and b = σ−2 exp

[
−
(
µ+

σ2

2

)]
,

for σ2 < 1, in order to guarantee the existence of the mode of the gamma
distribution.

Appendix B: NGAL distribution

This distribution was first presented in [38], who described some of
its properties. A random variable Y has a NGAL distribution if its
characteristic function is equal to

ϕy(s) =

(
αβ exp(iδs− γs2/2)

(α− is)(β − is)

)ρ
, (16)

where α, β, ρ and γ are positive parameters and δ is real. We write Y ∼
NGAL(δ, γ, α, β, ρ) to indicate that Y follows such a distribution. Using the
cumulants of the distribution it is possible to obtain:

E(Y ) = ρ

(
δ +

1

α
− 1

β

)
and V ar(Y ) = ρ

(
h+

1

α2
+

1

β2

)
.
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Also, the coefficients of kurtosis and skewness are, respectively, given by:

k4
k22

=
6(α4 + β4)

ρ(hα2β2 + α2 + β2)2
and

k3

k
3/2
2

=
2(β3 − α3)

ρ1/2(hα2β2 + α2 + β2)2
.

Figure 11 compares the density curves of NGAL for some values of the
parameters. It is possible to observe that as σ2 increases, the density becomes
both wider and flatter. The parameters α and β affect, respectively, the
upper and lower tail behavior of the NGAL distribution: small values of α
and β correspond, respectively, to a fat upper and lower tails, while as they
increase, the upper and lower tails of the distribution reduce to those of a
normal distribution. Finally, as ρ increases both mean and variance increase.
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Figure 11: Density function of the NGAL distribution with some different
values of the parameters.

Finally, we need to prove that the distribution described in Theorem 3.3
is a NGAL distribution. In order to facilitate the notation, let us omit the
index t and call: θ = F′tat, µ = aτφ

−1/2β−1t , σ2 = φ−1bτβ
−1
t , c = φ−1F′tRtFt,

ρ = αt and w = u∗t . Thus, we have:

y | w ∼ N
(
θ + µw, c+ σ2w

)
,

w ∼ Ga(ρ, 1).
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Conditional on w, we obtain the ch.f of y as:

ϕy(s) = E
[
E
(
eisy | w

)]
= eisθ

∫ ∞
0

eisµwE
(
eis(c+σ

2w)1/2z
)
g(w)dw

= eisθ
1

Γ(α)

∫ ∞
0

eisµwe−
1
2
s2(c+σ2w)wα−1e−wdw

= eisθ−
1
2
s2c 1

Γ(α)

∫ ∞
0

wα−1e−w(1+ 1
2
σ2s2−iµs)dw

= eisθ−
1
2
s2c

(
1

1 + 1
2
σ2s2 − iµs

)ρ
. (17)

Thus, ϕY (s) = ϕε(s).ϕζ(s), where ϕε(s) is the N(0, c) ch.f and ϕζ(s) is the
GAL(θ, µ, σ, ρ) ch.f. Thus, it follows that the NGAL distribution is that of
the convolution of the normal N(0, c) and GAL(θ, µ, σ, ρ) distributions, that
is Y = ζ + ε, for independent ζ and ε.

Moreover, the ch.f in (17) can be expressed as stated in (16), for α = 2κ√
2σ

,

β = 2√
2σκ

, δ = θ/ρ, γ = c/ρ and the additional parameter κ > 0 is related to
µ and σ as follows:

κ =

√
2σ2 + µ2 − µ√

2σ
, while µ =

σ√
2

(
1

κ
− κ
)
,

showing that it is NGAL distributed.

Appendix C: Assessment by MCMC

Figure 12 shows the trace plot with the posterior distribution of parameters
θt’s for some times for each quantile regression fitted. The chains in black
are obtained for quantile 0.10, in dark gray for quantile 0.50 and in light gray
for 0.90. The line represents the true value of each component of θt used in
the data generating process.

Figure 13 presents histograms of the posterior densities of some elements
of the covariance matrix W, where the true value used in the data generation
process is given by the vertical dashed line. The hyperparameters appear to
be well estimated.
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Figure 12: Trace plot with the posterior densities of θt’s for some times and
σ for each quantile regression fitted.
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Figure 13: Histograms with the posterior densities of the hyperparameters
in the diagonal of the covariance matrix W.
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