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A B S T R A C T

Background and Objectives: Birth cohort screening for the hepatitis C virus (HCV) has been implemented in the US, but there is
little evidence of its cost-effectiveness in England. We aim to evaluate the cost-effectiveness of one-time HCV screening for
individuals born between 1950 and 1979 as part of the National Health Service health check in England, a health check for
adults aged 40 to 74 years in primary care.

Methods: A Markov model was developed to analyze add-on HCV testing to the National Health Service health check for
individuals in birth cohorts between 1950 and 1979, versus current background HCV testing only, over a lifetime horizon.
The model used data from a back-calculation model of the burden of HCV in England, sentinel surveillance of HCV testing,
and published literature. Results are presented from a health service perspective in pounds in 2017, as incremental
cost-effectiveness ratios per quality-adjusted life years gained.

Results: The base-case incremental cost-effectiveness ratios ranged from £7648 to £24 434, and £18681 to £46024, across
birth cohorts when considering 2 sources of HCV transition probabilities. The intervention is most likely to be
cost-effective for those born in the 1970s, and potentially cost-effective for those born from 1955 to 1969. The model
results were most sensitive to the source of HCV transition probabilities, the probability of referral and receiving
treatment, and the HCV prevalence among testers. The maximum value of future research across all birth cohorts was
£11.3 million at £20 000 per quality-adjusted life years gained.

Conclusion: Birth cohort screening is likely to be cost-effective for younger birth cohorts, although considerable uncertainty
exists for other birth cohorts. Further studies are warranted to reduce uncertainty in cost-effectiveness and consider the
acceptability of the intervention.
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Introduction

Hepatitis C virus (HCV) is major global public health problem.1

An estimated 143 000 people were living with HCV in England in
2015, and mortality related to HCV doubled between 2005 and
2014 as individuals acquiring their infections decades
earlier progressed to advanced liver disease.2,3 More recently,
HCV-related deaths have fallen due to the rollout of new
direct-acting antiviral (DAA) treatments.3 DAAs can cure
(achieve a sustained virological response [SVR]) more than 90% of

patients, are simpler to administer, and have fewer side
effects than previously used interferon and/or ribavirin-based
treatments.4

The World Health Organization’s (WHO’s) Global Health
Strategy targets to eliminate viral hepatitis as a major public
health threat include 90% diagnosis coverage and 80% treatment
uptake.5 Interventions to increase diagnoses and improve linkage
to care are required if countries are to achieve WHO targets, and
the efficiency, cost-effectiveness, and overall impact of these
interventions needs to be evaluated.

* Address correspondence to: JackWilliams, MSc, Department of Health Service Research and Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock
Place, London, UK WC1H 9SH. Email: Jack.Williams@lshtm.ac.uk

1098-3015 - see front matter Copyright ª 2019, ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1016/j.jval.2019.06.006

www.sciencedirect.com
www.elsevier.com/locate/jval
mailto:Jack.Williams@lshtm.ac.uk
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jval.2019.06.006


Analysis of HCV antibody tests in England by birth cohorts
shows a high proportion of positive tests among those born
between the 1950s and mid-1980s, based on unpublished Public
Health England (PHE) sentinel surveillance of bloodborne viruses
(BBV) laboratory diagnoses from 2012-2016 (3.7%-6.5% for first
recorded tests). Due to the asymptomatic nature of HCV, many
infected individuals remain undiagnosed and do not associate
their previous exposures to their current risk of infection.6

Cost-effectiveness analyses of birth cohort screening
interventions have been performed in several countries, including
the United States, Canada, Italy, Japan, and Korea.7–12 Only the
United States has implemented birth cohort screening, while
Japan has recommended one-time testing for the general
population.5,13 Evidence on the cost-effectiveness of birth cohort
screening in an English context is limited. A single abstract has
reported that birth cohort screening in the United Kingdom was
unlikely to be cost-effective.14 Yet, the authors concluded that
further studies should incorporate more accurate information on
HCV prevalence by age and include cost implications associated
with screening. One possible means of limiting the additional cost
of screening could be to add HCV testing to the existing NHS
health check programme. The NHS health check is a free health
check delivered in primary care in England that is offered to adults
aged 40 to 74 years, once every 5 years, to assess and reduce a
person’s risk of heart disease, diabetes, kidney disease, and
stroke.15 This possibility was highlighted in the National Institute
for Health and Care Excellence (NICE) hepatitis testing guidelines,
but it also states that more information is required before a
recommendation can be made due to the uncertainty around its
cost-effectiveness.16

In this study, we evaluate the cost-effectiveness of a one-time
HCV screening intervention for individuals born between 1950
and 1979 included as part of the NHS health check, who have not
previously been diagnosed with HCV.

Methods

Model Analysis

A state-transition Markov model was used to analyze the
impact of a one-time HCV antibody test, given to those in each
eligible birth cohort attending the NHS health check programme.15

The model analyzed birth cohorts, in 5-year age bands, for those
born between 1950 and 1979, and not previously diagnosed with
HCV. Current practice includes those tested for hepatitis based
either on their symptoms or risk status. No birth cohort screening,
with current background testing only, was the only comparator in
the model, with a background probability of HCV testing in
England. Patients moved between discrete health states using a
6-month cycle length. The analysis was performed from the
perspective of NHS England with results displayed in pounds in
2017, with the intervention modeled to begin in 2018. Outcomes
were measured in quality-adjusted life years (QALYs). A lifetime
time horizon was used, and all costs and outcomes were
discounted at 3.5%, as per NICE guidelines.17 The model calculated
the incremental cost-effectiveness ratio (ICER), representing the
incremental costs associated with the intervention divided by the
incremental QALYs, to give a cost per QALY gained. The model was
developed in TreeAge Pro 2017.

Model Population and HCV Prevalence

The prevalence and disease severity of undiagnosed HCV
infection in England was estimated using an adapted version of a
previously published back-calculation model.2,18 Its details have

been published elsewhere, but essentially it uses UK hospital
episode statistics and Office for National Statistics data on
decompensated cirrhosis, hepatocellular carcinoma, and
HCV-related mortality to estimate the burden of HCV.6 The most
recent model also incorporates the estimated people who inject
drugs population size.2

The back-calculation model provides estimates for HCV birth
cohort populations by diagnosis status, injecting drug user (IDU)
status (current-, ex- and never-IDU), and disease severity, which
informed the economic model parameters. It also provides
statistical uncertainty in the form of credible intervals, which were
used when estimating parameter uncertainty.

Our model assumed that birth cohort screening would not be
used to identify current IDUs, providing a conservative estimate of
the prevalence among health check attendees (since prevalence is
higher amongst current IDUs), but assumed ex-IDUs were as likely
to attend as non-IDUs. Details on the total estimated population in
each birth cohort is provided in the Appendix in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.06.006. A
scenario was performed in which ex-IDUs were assumed to be
50% less likely to attend compared to non-IDUs (see Appendix
Table 1 in Supplemental Materials found at https://doi.org/10.1
016/j.jval.2019.06.006). A scenario performed in the back-
calculation model analysis was also considered, in which the
current IDU population size was estimated using longer hospital
episode statistics data and not constrained by an informed prior,
resulting in higher estimated prevalence, particularly in younger
groups.2

Model Structure

The Markov model captured the natural history of HCV, and is
similar to those used in previous economic evaluations, and also
aligns with the data used to parameterize disease severity in the
model.19,20 It consists of 8 main health states (see Appendix Fig. 1
in Supplemental Materials found at https://doi.org/10.1016/j.jval.2
019.06.006). Individuals enter the model as either uninfected or
classified in a disease state according to the modified Histology
Activity Index (Ishak) score in the following health states: mild
HCV (F0-F2), moderate HCV (F3-F5), and compensated cirrhosis
(CC) (F6), fromwhich they experience further disease progression.
From these states individuals progress to later disease states,
decompensated cirrhosis, hepatocellular carcinoma, and liver
transplant, in which the HCV status was assumed to be known due
to the severity of the disease, an assumption that has been made
in previous models.2,19 Those testing positive but not receiving
treatment were assumed to accrue health state costs after
diagnosis.

The model does not capture disease transmission, and thus
assumes that those uninfected will remain uninfected, and that
those who achieve SVR cannot be reinfected. In addition to
HCV-related mortality, age-adjusted background rates of mortality
were applied to all health states in the model, to capture the risk
of non-HCV related mortality.21

Background Probability of Testing and Linkage to Care

The background probability of testing of HCV for each birth
cohort was estimated from PHE sentinel surveillance of BBV
testing statistics and Office for National Statistics population
statistics for England.22 Testing from all reported care settings,
excluding drug services and prison services, were included. All
tests up to an individual’s first positive test were included. The
annual probability of testing ranged from 1.9% to 3.6% (Table 1),
with the same rate across mild moderate and CC health states.
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While the prevalence of HCV is higher among those tested
compared to the general population, by excluding current IDUs
and those previously testing positive for HCV in this analysis, it is
unknown whether the background rate of HCV testing would
differ between those infected and uninfected; however, in the
model we assumed it would be equal. We considered those
infected having double the probability of testing in a sensitivity
analysis. Because testing may be more likely with cirrhosis, a
scenario with background testing 50% lower for mild and
moderate HCV health states was performed.

All individuals without a previous HCV diagnosis and not
current IDUs were included in the screening population. The PHE
sentinel surveillance of BBVs suggests reflex RNA tests (performed
on the same antibody positive sample to avoid repeat attendance)
were performed on 65% of HCV antibody positive tests.23 The
remainder were assumed to be RNA tested at a subsequent
appointment. Based on PHE statistics, 67.7% of antibody positive
tests would be RNA positive. The proportion of patients
successfully referred and attending their referral was based on the
midpoint of the proportions referred from general practitioners in
2 retrospective studies of hepatitis care pathways in England
(63.4%).24,25 The uptake of DAA treatment for those attending their
referral is unknown, but expected to be higher than published
values for non-DAA treatments (21%).23 We assumed 50% would
receive treatment (35%-65% in sensitivity analyses).

Treatment outcomes for first-line DAA treatment were derived
from real-world evidence with SVR rates of 92.8% and 90.8% for
non-cirrhotics and cirrhotics, respectively.26 Individuals not
achieving SVR were assumed to be retreated once, with SVR rates
for retreatment of 93.9% and 85.5% for people without and with
cirrhosis, respectively.27 Lower retreatment SVR rates (70%) were
also considered. The analysis was pan-genotypic and did not
stratify outcomes by HCV genotype.

Intervention Effect

We assumed that testing would take place alongside the NHS
health check, of which 48.3% of those invited attended (as of
January 2018), and we assumed all attendees were tested for
HCV.28 Lower uptake was considered in a sensitivity analysis. The
intervention effect was assumed as additional to the background
rate of HCV testing, which would continue in other settings. There
is an opportunity for those not originally attending the health
check to be tested at their next health check appointment 5 years
later; however, this was not modeled.

Transition Probabilities

For mild, moderate, and CC health states, 2 sources of
transition probabilities were identified and considered in the

Table 1. Key economic model parameters.

Parameter Mean value Distribution Source

Probabilities
Intervention effect (uptake) 48.3% Beta (a = 5767 770, b = 6176 881) 28

Proportion of reflex RNA tests 65% Beta (a = 26 537, b = 14 319) 23

Proportion RNA positive 67.7% Beta (a = 24 094, b = 11 475)
Probability of referral and attendance 63.4% Beta (a = 35.966, b = 20.7627) 24,25

Probability of treatment (postreferral) 50% Uniform (0.35, 0.65) Assumption

Costs
HCV antibody test £3.64 Uniform (£1.82, £5.46) 38

Nurse cost for test (10 min) £38/hr Uniform (£30.40, £45.60) 39

RNA test £68.38 Uniform (£34.19, £102.57) 38

Cost additional consultation (RNA
testing)

£32 Uniform (£25.60, £38.40) 39

Outpatient evaluation £238 Uniform (£190.40, £285.60) 49

Further outpatient evaluation £262 Uniform (£209.60, £314.40) 49

DAA treatment £10 000 N/A Assumption40

DAA treatment (re-treatment) £15000‡ N/A Assumption40

DAA treatment monitoring £1310 Uniform (£1048, 1572) 49

Prevalence of undiagnosed chronic HCV
(RNA1 among health check attendees*
1950-1954 0.10% Beta (a = 38.1, b = 37 215) 2

1955-1959 0.16% Beta (a = 53.4, b = 32 359)
1960-1964 0.23% Beta (a = 58.1, b = 25 614)
1965-1969 0.27% Beta (a = 68.1, b = 25 168)
1970-1974 0.25% Beta (a = 65.7, b = 26 137)
1975-1979 0.19% Beta (a = 68.2, b = 36 490)

Annual probability of background testing†

1950-1954 1.89% Beta (a = 98.1, b = 5084) 22

1955-1959 2.09% Beta (a = 97.9, b = 4580)
1960-1964 2.19% Beta (a = 97.8, b = 4358)
1965-1969 2.26% Beta (a = 97.7, b = 4218)
1970-1974 2.67% Beta (a = 97.3, b = 3550)
1975-1979 3.57% Beta (a = 96.4, b = 2601)

DAA indicates direct-acting antivirals; HCV, hepatitis C virus.
*Prevalence excludes current-IDUs.
†Background rate of testing excluding drug services and prison settings.
‡Cost of retreatment assumed to be £5000 higher than first DAA treatment in scenario analyses.
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model (see Appendix Tables 2 and 3 in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2019.06.006).

First, transition probabilities were derived from a health
technology assessment in the United Kingdom by Shepherd
et al,29 based on clinical cohorts, which have been used in other
HCV models,19,20,30 and have informed NICE HCV testing
guidelines,16 with additional transition probabilities for
progression of cirrhotic individuals achieving SVR.31,32

We also considered transition probabilities from mild,
moderate, and cirrhotic health states generated by the back-
calculation model by Harris et al, which used prior values from
Sweeting et al, and estimated age-based transition probabilities in
the model fitting process.2,33

While the probabilities from Shepherd et al29 are comparable
to other economic evaluations, those generated from the
back-calculation model align with HCV prevalence and severity
parameters derived from the same source, and are thus consistent
with other model inputs.

A previously published analysis explored the differences
between 2 models estimating costs and QALYs for HCV in the
United Kingdom, based upon the 2 sources of transition
probabilities described above.34 The authors concluded that in
addition to transition probabilities from Shepherd et al,29 the
age-dependent transition probabilities estimated by Harris et al
should also be considered in future modeling work, due to
considerable differences in estimated costs and QALYs. Because of
the uncertainty around the most appropriate choice of transition
probabilities, we present the base-case results using both sources.

For value of information analyses in which transition
probabilities were available from both Shepherd et al29 and the
back-calculation model, a uniform distribution was created to
capture the uncertainty in the estimates from the 2 sources.
Addition details are provided in the Supplemental Materials found
at https://doi.org/10.1016/j.jval.2019.06.006.

Utilities

Utility values were derived from a UK randomized controlled
trial of mild HCV infection, and a UK study of patients with
later-stage disease.35,36 They were converted into a utility
decrement and subtracted from UK general population utility
estimates to provide age-adjusted values (see Appendix Table 4 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.201
9.06.006).37

Costs

It was assumed that individuals would receive a HCV antibody
test (£3.64).38 The cost of administering this test was assumed to
take 10 minutes by a practice nurse (band 5, £38/hour).39 No other
intervention costs were included. Costs associated with the NHS
health check (eg, invitations) were not included as these are
already established. Costs for RNA tests (£68.38) and subsequent
appointments (£32, for those not receiving reflex testing) and
outpatient visits prior to treatment were applied (Table 1).23,38,39

The DAA acquisition costs for the NHS are confidential; however,
an approximate £5000 price has been reported (reduced from list
prices of .£30 000).40 To remain conservative, we assumed DAA
treatment costs of £10 000 for first treatment, and £15000 for
retreatment. We also considered DAA treatment costs of £5000,
and show results across a range of DAA costs in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.06.006.
Treatment costs were conditional on achievement of SVR, as per
NHS policy.41

Health state costs were derived from a previous health
technology assessment, while costs associated with SVR were

derived from Grishchenko et al (see Appendix Table 5 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.201
9.06.006).29,42 All costs were inflated to 2017 costs.39 Individuals
that were infected but undiagnosed were assumed not to accrue
health state costs.

Sensitivity Analyses

One-way deterministic sensitivity analyses (DSAs) were
performed for individual parameters and shown in a tornado plot
to capture the impact upon the ICER. The key DSA results for 1
birth cohort are shown (full DSA results for 2 cohorts, by source of
transition probabilities, are available in the Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.06.006).
Probabilistic sensitivity analysis was performed, with all
probabilistic parameters sampled simultaneously over 10 000
model simulations.

Value of information analyses show the maximum amount
that should be paid to eliminate the uncertainty in all model
parameters (the expected value of perfect information [EVPI]).
This considers the loss of health benefits and resources by making
the wrong decision, due to uncertainty. The EVPI can also consider
the maximum value of research for individual or groups of model
parameters, known as the expected value of partial perfect
information (EVPPI).43

The EVPI analysis was performed using 10 000 simulations, for
each birth cohort. For each of the EVPPI analyses, we ran 1000
inner loops (relating to the probabilistic sensitivity analysis) and
1000 outer loops (relating to the parameter[s] of interest assessed
as part of the EVPPI analysis). These inner and outer loop
simulation numbers were chosen to provide a sufficient number
of probabilistic simulations while considering the computational
time required to perform all analyses. For probabilistic sensitivity
analysis, EVPI and EVPPI analyses, we use a willingness-to-pay
threshold of £20 000, representing the lower bound of NICE’s
threshold range.17 The eligible population for EVPI and EVPPI
calculations is provided in the Appendix in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.06.006.

Results

The deterministic base-case results for each birth cohort are
shown in Table 2. The ICERs for each birth cohort using the
Shepherd et al29 transition probabilities ranged from £18681 to
£46024 with the most favorable ICERs for younger birth cohorts.
When considering the back-calculation transition probabilities,
the ICERs ranged from £7648 to £24 434, with ICERs below
£20 000 for those born from 1955 to 1979.

Probabilistic Sensitivity Analysis

When using the transition probabilities from Shepherd et al29

at the willingness-to-pay threshold of £20 000 per QALY gained,
the intervention is unlikely to be cost-effective for those born
between 1950 and 1964 (probability of 1%-27%), but is borderline
cost-effective for those born between 1965 and 1979 (probability
of 41%-53%, Fig. 1). Yet, when using transition probabilities from
the back-calculation model, the intervention is likely to be
cost-effective for those born from 1955 to 1959 (69% probability),
and is highly likely to be cost-effective for those born from 1960 to
1979 (94%-99.5% probability).

Deterministic Sensitivity Analyses

One-way DSA was performed on the 1970-1974 birth cohort
using Shepherd et al29 transition probabilities (Fig. 2). The source
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of transition probabilities had the largest impact upon the ICER,
followed by the probability of attending referral and receiving
treatment. The ICER was also sensitive to the assumed prevalence
among testers (0.25% to 0.14%) and a higher antibody test cost
(£10). Reducing the uptake of the intervention did not affect the
ICER, since there was no fixed cost of the intervention; however,
the overall health benefit would be reduced.

EVPI and EVPPI

Assuming the intervention remains viable for all individuals in
each birth cohort to be invited to the NHS health check (5 years),
the EVPI across all birth cohorts (representing the maximum value
for future research) was £11 289 902 at £20 000/QALY, with the
highest value in birth cohorts born between 1955 and 1969
(Table 3).

The aggregated EVPPI results across all birth cohorts showed
the highest value in reducing uncertainty was in the linkage to
care parameters (£3 587 609); the utility of those achieving SVR
(£2 487 084); and the transition probabilities frommild, moderate,
and compensated cirrhosis health states (£1 617 959, Table 3).
Additional EVPI results and EVPPI results by birth cohort are
available in the Appendix in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2019.06.006.

Discussion

While previous studies show diagnosis and treatment
should be prioritized among high-risk populations actively
transmitting infection, we demonstrate that birth cohort
screening as part of the NHS health check can also be
cost-effective in England.20,30,44

Our findings indicate that the intervention is likely to be
cost-effective for those born in the 1970s under the base-case
modeling assumptions, but there is uncertainty as to whether
the intervention would be cost-effective for those born between
1955 and 1969.

While the prevalence was slightly higher for younger birth
cohorts, the lower ICERs also result from a longer duration of
benefit associated with treatment at younger ages (due to higher
utility associated with SVR). Our analysis also shows that further
research for birth cohort screening as part of the NHS health
check is justified to reduce the uncertainty and assess the
acceptability of adding HCV testing to the NHS health check, with
a high maximum value of future research of £11.3 million across
birth cohorts. The EVPPI has shown future research is most valued
in reducing the uncertainty in the linkage to care, the utility
associated with SVR and HCV transition probabilities, as the
uncertainty in these parameters caused the most uncertainty in
the underlying decision upon cost-effectiveness. Deterministic
analyses also demonstrated the impact of assumptions made
surrounding the prevalence among testers. The sensitivity of the
cost-effectiveness results to linkage to care also suggests
case-finding interventions are more likely to be cost-effective
following improvements in the proportion linked to care among
those testing positive, and these improvements should precede or
complement future investment in case finding interventions.

Our results also build upon previous work demonstrating the
differences in model predictions using 2 sources of HCV transition
probabilities.34 In our analysis, the decision on cost-effectiveness
for 3 of the 6 birth cohorts changed based only upon the source
of transition probabilities. This supports previous conclusions that
further research of progression rates is required to reduce the
uncertainty for decision makers in the United Kingdom and
elsewhere.34

Table 2. Cost-effectiveness results per individual eligible to attend the NHS health check for each birth cohort, by source of transition
probabilities.

Birth cohort Testing option Total costs (£) Total QALYs Incremental costs Incremental QALYs ICER

Shepherd et al29

1950-1954 Background testing
Birth cohort screening

15.21
23.68

10.1396
10.1398 8.47 0.00018 £46024

1955-1959 Background testing
Birth cohort screening

27.33
38.47

11.7818
11.7822 11.14 0.00036 £31051

1960-1964 Background testing
Birth cohort screening

38.28
52.04

13.2980
13.2986 13.76 0.00056 £24364

1965-1969 Background testing
Birth cohort screening

40.92
55.99

14.8456
14.8463 15.07 0.00071 £21100

1970-1974 Background testing
Birth cohort screening

36.97
49.87

16.2488
16.2495 12.90 0.00067 £19236

1975-1979 Background testing
Birth cohort screening

29.96
38.84

17.6997
17.7002 8.89 0.00048 £18681

Back-calculation model
1950-1954 Background testing

Birth cohort screening
24.60
31.42

10.1387
10.1390 6.82 0.00028 £24434

1955-1959 Background testing
Birth cohort screening

42.90
51.33

11.7801
11.7806 8.43 0.00054 £15535

1960-1964 Background testing
Birth cohort screening

64.11
73.87

13.2948
13.2957 9.76 0.00093 £10542

1965-1969 Background testing
Birth cohort screening

76.44
87.12

14.8404
14.8418 10.68 0.00133 £8037

1970-1974 Background testing
Birth cohort screening

68.63
78.17

16.2441
16.2453 9.54 0.00125 £7648

1975-1979 Background testing
Birth cohort screening

51.54
58.47

17.6963
17.6972 6.93 0.00085 £8196

NHS indicates National Health Service; ICER, incremental cost-effectiveness ratios; QALY, quality-adjusted life year.
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Comparison With Other Research

There is no other published evidence in the United Kingdom of
the cost-effectiveness of birth cohort screening for HCV. Although
our results differ considerably by transition probabilities, our
results are similar to those derived from the US ($35700-$37720/
QALY), Canada (Can$36471/QALY), and France (cost-effective from
V26000-V60 000/QALY).7–9,45,46 These analyses used higher DAA
costs, but tended to use higher health state utilities and
higher prevalence estimates. Further details on these comparisons
are available (see Appendix in Supplemental Materials found
at https://doi.org/10.1016/j.jval.2019.06.006.) Many European
countries are developing national HCV elimination plans to meet
WHO elimination targets.47 Similar to the results from France, our
results suggest that birth cohort screening can be cost-effective in
areas of relatively low prevalence of HCV, if testing is added
onto existing health services, such as the NHS’s health check
programme.

Limitations

In the absence of a study of the intervention itself, there is
uncertainty about the extent to which current and ex-IDUs are
likely to attend the health check, influencing the estimated
prevalence among attendees. We assumed current IDUs and those
previously testing positive could be tested through other targeted
screening interventions; and ex-IDUs would attend at the same
rate as never IDUs, an assumption that has a considerable impact
upon cost-effectiveness. Furthermore, any inaccuracies in the
estimated prevalence from the back-calculation model, which has
its own methodological limitations, would significantly influence
our results, and thus a study that estimates the seroprevalence
among attendees would reduce the uncertainty of our results.2

Moreover, while we have demonstrated the uncertainty in the
estimated cost-effectiveness using 2 sources of transition
probabilities, it is unclear which is most appropriate for economic
evaluations in the United Kingdom. The use of transition

Figure 1. Cost-effectiveness acceptability curves for each birth cohort, for 2 sources of transition probabilities, derived from (A)
Shepherd et al29 and (B) the back-calculation model.
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probabilities from Shepherd et al29 creates an inconsistency
between our economic analysis and other model inputs estimated
by the back-calculation model (the distribution of prevalence and
disease stage across age groups). Nevertheless, this can be

considered conservative, since a lower disease progression in the
back-calculation model would have resulted in a higher estimated
prevalence and therefore would have decreased the estimated
ICERs.

There is also uncertainty surrounding the background HCV
testing rate of infected and uninfected individuals. We assumed
that infected individuals in this population would be tested at
the overall population rate of testing, with no differences
between those infected and uninfected. Methods to adequately
capture the efficacy of expanding risk-based testing should be
considered, as testing is likely to become less efficacious with
upscaling, a trend observed in PHE sentinel surveillance data.3,23

This will be important for future evaluations of case finding
interventions in different population groups that may have
differing rates of background testing. There could also be
additional benefits to testing, such as testing among close
contacts of those testing positive. Furthermore, we assume no
disease transmission due to the assumptions around the
population modeled.

Despite considerable uncertainty and the limitations of our
analysis, value of information analyses have sought to address the
impact of parameter uncertainty by evaluating where future
research would be most valued to reduce uncertainty.
Nevertheless, due to assumptions made in the model that were
not parameterized, additional uncertainty exists that is not
reflected in these results. This includes the absence of startup
costs for the intervention, assumptions surrounding health check
attendees (thus influencing the estimated prevalence), and
assumed equal testing among those infected and uninfected in
other testing settings. For this reason, the value of information
estimates can be considered conservative. Furthermore, patients
with existing pre-conditions, such as heart disease, kidney
disease, diabetes, or previous stroke, may not receive a health

Figure 2. One-way deterministic sensitivity analysis for 1970 to 1974 birth cohort, using transition probabilities from Shepherd et al.29

Transition probabilities (Shepherd→ Back-calculation model)

Probability of treatment, post referral (50%→ 35% / 65%)

Probability of referral (63.4%→ 44.6% / 82.2%)

Prevalence (0.25%→ 0.14% / 0.4%)

Reinfection applied (0% → 1% per year)

Uptake of intervention (48.5% → 30%)

Cost of HCV antibody test (£3.64 → £2 / £10)

Cost of treatment (£10,000 → £5,000)

Lower SVR utility increment (0.05-0.06 → 0.04)

Nurse time (10 mins → 5 mins for intervention arm only)

Low value (if applicable)Scenario / High value

5,000 10,000 20,000

ICER per QALY gained (£)
30,00015,000 25,000

HCV indicates hepatitis C virus; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life years; SVR, sustained virological response.

Table 3. EVPI and EVPPI for all birth cohorts.

Birth cohort/parameter EVP(P)I at £20
000 WTP

EVPI
1950-54 £175023
1955-59 £2264784
1960-64 £3577217
1965-69 £2270456
1970-74 £1644936
1975-79 £1357486
Total £11 289902

EVPPI (Total for all birth cohorts)
Linkage to care parameters* £3587609
Utility of SVR health states £2487084
Transition probabilities from mild, moderate
and CC health states†

£1617959

Utility of non-SVR health states £337008
Health state costs £98650
Prevalence and initial values‡ £0
Background rate of testing £0

CC indicates compensated cirrhosis; EVPI, expected value of perfect information;
EVPPI, expected value of partial perfect information; SVR, sustained virological
response; WTP, willingness to pay.
*Includes probability of referral and the probability of accepting treatment.
†Using uniform distributions estimated using values from both Shepherd et al29

and back-calculation model.
‡Includes prevalence, probability of RNA1, and initial starting distribution
(proportion mild/moderate/cirrhotic).
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check invitation, thus uncertainty exists about how testing could
be provided to these patients, or whether the prevalence of HCV in
this group might differ.

Conclusions

Our analysis suggests any future research for birth cohort
testing should prioritize younger birth cohorts, as these are the
most likely to be cost-effective. We have also shown the
importance of the care pathway on the cost-effectiveness of
case-finding interventions, and the benefit of integrating HCV
testing with existing health services. A feasibility study would
allow a full costing analysis to be undertaken, and could capture
the proportion of patients successfully linked to care and receiving
treatment. Additional to the parameter uncertainty, this study
could assess the acceptability of the intervention as part of the
NHS health check to primary care providers, and to health check
attendees to avoid unintended negative consequences, such as
decreased attendance.

Finally, with many case-finding interventions in HCV currently
being evaluated in the United Kingdom,19,48 future modeling work
should consider all potential testing interventions in combination
to identify and prioritize the most cost-effective combination of
interventions. For example, a more sophisticated risk-based
testing algorithm may provide a more targeted approach to
case-finding in primary care, although the sensitivity of these
algorithms is unknown.48 The use of more complex economic
models comparing multiple case-finding interventions can help to
inform the allocation of HCV resources in England to reduce
disease burden and meet WHO targets.
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