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• Some previous results on measuring dependence  
   
• From random events to random variables 

 

• Correlated Bivariate Normal Distribution 
  
• Local dependence in  correlated Bivariate Normal 

distribution; Surface of dependence on squares  
• [x, x+1]x[y,y+1], (x,y)[-3.3, 3.5]x[-3.5,3.5], and on squares 

[x, x+.5]x[y,y+.5] 
 

• Conclusions 
 
 

Outline 



Introduction 

 
  In several previous publications we developed an idea how 

probability tools can be used to measure strength of 
dependence between random  events 
 

 In the present talk we propose to use it for measuring 
magnitude of local dependences between random variables. 
 

 As illustration, we demonstrate how it works in measuring 
dependence inside the normally distributed random 
variables, using the regression coefficients 
 

  Short illustrations (graphics and tables) are showing the use 
of these measures in already known popular Bivariate 
Normal distribution with different correlation values 
 

 



  How people INDICATE dependence? 
 

  The dependence in uncertainty is a complex concept.  

 In the classical approach conditional probability is used to 
determine   if two events are dependent, or not: А and B  are 
independent  when the probability for their joint occurrence 
equals to the product of the probabilities for their individual 
appearance, i.e. when  

  

 

 Otherwise, the two events are dependent. 
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  How to measure dependence? 
 

   To measure dependence between random events     

    B. Dimitrov (2010, Some Obreshkov Measures of 
Dependence and Their Use, Compte Rendus de l'Acad. 
Bulgare des Sci., v. 63, No.1, pp. 15-18) 

    revived some measures of dependence for random 
events based on notion of probabilities of the events.  

    From that discussion and among the four proposed 
measures we selected the Regression coefficients as 
suitable measure of magnitude of dependence when 
the two events are dependent. 

    
•     Some discussion and examples have been presented at the 

last year 2016 Kingsville meeting. 
 

 



  Regression Coefficients as Measures of 
dependence between random events  

•  Definition 1.  Regression coefficient  of the event А with respect 
to the event В is called the difference between the conditional 
probability for the event А given the event В, and the conditional 
probability for the event А given the complementary event          , 
namely 
 

                   =                                 -- 
 

• This measure of dependence of the event А on the event В, is 
directed dependence. 

  
• The regression coefficient  is always defined, for any pair of events 

А and В (zero, sure, arbitrary).  
 

• The regression coefficient  of В with respect to the event А is 
defined symmetrically 
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 Properties of Regression coefficients 

(r1)   The equality to zero     RB(A) = RA(B)= 0  holds only if 
the events A and B are independent.  

(r2)                                ;                                 . 

 

(r3)                                              

 

(r4)                                

 

(r5) The regression coefficients  are numbers with  equal signs  

To be valid                   =                  it is necessary and sufficient to have 

 

                                                       = 
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 Regression coefficients measure the strength of 
dependence between random events. 

 
• The relations  

 

 

 

• and 

 

 

• explain when it will be RB(A) = RA(B) . 
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 Regression coefficients - properties    

 
(r6)   The regression coefficients  and are numbers between –1 
 
 and 1, i.e. they satisfy the inequalities  
                                            
  
                                                                
 

 
 
(r6.1) The equality RB(A) = 1 holds only when А  
 
coincides (is equivalent) with the event В.  
 
Тhen is also valid the equality RA(B) =1; 
 
                 
(r6.2)  The equality RB(A)  = - 1  holds only when event А  
 
coincides (or is equivalent) with the event           - the 

complement of  В.  
 
 
   Тhen is also valid RA(B) = - 1, and respectively                 .  
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In our opinion, it is possible one event to have stronger 
dependence on the other than the reverse.  
 

This measure suits for measuring the magnitude of dependence 
between events. 

 
The distance of the regression coefficient from the zero (where 

the independence is)  could be used to classify the strength of 
dependence, e,g.  

 
   almost independent     (when RA(B) < .05) ; 

 
   weakly dependent       (when .05<|RA(B) |< .2) ;   
       
   moderately dependent  (when .2<|RA(B) |< .45) ; 

 
   in average dependent  (when .45<|RA(B) |< .8) ; 

 
   strongly dependent   (when | RA(B) | > .8) ; 
  
 

 Regression coefficients – a proposition to 
classify the strength of dependence    



• One serious advantage of the  Regression 
coefficients is to use this magnitude of 
dependence to evaluate the posterior 
distribution of one event when information of 
the other event occurred is available. We have 

    
P(A | B ) = P(A) + RB(A)[1-P(B)]. 

 
• This formula competes with the BAYES RULE, 

that requires joint probability P(A∩B). We offer 
to use the strength of dependence RB(A) 
instead. 

 Predictions using Regression coefficients    



One interesting fact 

   If we introduce 

• Definition 3. Correlation coefficient between two events A 

and B is defined by the number  

               =         
        Its sign, plus or minus, is the sign of either of the two regression 

coefficients.  

• Then an equivalent representation will be 

                                   =      
 

Which corresponds to the Pierson-Brave Contingency coefficient φ. 
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• The introduced measures allow to see the interaction 
between any pair of numeric r.v.’s (X,Y) throughout the 
sample space 

 

• Understand and use the local dependence.  
 

• Let F(x,y)=P(X ≤  x, Y ≤ y) - the joint c.d.f.  

 

•  Marginals F(x) =P (X  ≤  x), G(y)=P(Y  ≤  y).  

 From Events to Random Variables 



•  Introduce the events  

 

• Ax = {x ≤ X ≤ x + ∆1x};  By = {y ≤ Y ≤ y + ∆2y},  

 

 for any x, y ϵ ( -∞, ∞). 

 

• Then the measures of dependence between events A 
and B turn into a measure of local dependence 
between the pair of r.v.’s X and Y on the rectangle  

D=[x, x + ∆1x]×[y, y + ∆2y]. 

 From Events to Random Variables 



•  Naturally, they can be named and calculated as follows: 

• Regression coefficient of X with respect to Y, and of Y 
with respect to X on the rectangle D= [x, x+∆1x]×[y, 
y+∆2y]. By  Definition 1 we get 

 

RY((X,Y) ϵ D)= 

 

 

 

• Here by ∆DF(x,y)  is denoted the two dimensional finite 
difference for the function F(x,y) on rectangle  D=[x, 
x+∆1x]×[y, y+∆2y]. 

 From Events to Random Variables 
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• Namely 

 

∆DF(x,y)  =F (x+∆1x, y+∆2y)- F (x+∆1x, y)-  

                   - F (x, y+∆2y)+ F (x, y). 

 

• In an analogous way is defined RX((X,Y) ɞ D). Just 
denominator in the expression is changed respectively.  

 

• Correlation coefficient ρY((X,Y) ɞ D) between the r.v.’s  X 
and Y on rectangle  D=[x, x+∆1x]×[y, y+∆2y] can be 
presented in similar way by the use of Definition 2. We 
omit detailed expressions as something obvious.   

 

 From Events to Random Variables 



• The biggest advantage of the  Regression coefficients  as measures 
of the magnitude of dependence is their easy interpretation, 
described above, and the fact that they come available from the 
knowledge of the probabilities of the respective events, or 
proportional number of individuals in the sets of subpopulations 
of interests. 
 

• In Probability modeling which use multivariate distribution we see 
GREAT Advantages when knowing one component within an 
interval, to predict everything that may happen with the other 
component.  
 

• Next we illustrate specific rules in calculation of Regression 
Coefficients as measures of dependence to analyze the local 
dependence structure in Bivariate Normal distribution. 

 Regression coefficients    



•  The  pair (X,Y) has pdf 

 

 

 

• Here ρX,Y is the Correlation coefficient  

 

• The marginal FX(x) and GY(y) are normal distributions. 

 

• We use standard normal marginals, and correlated 
components with different numeric values of the 
correlation coefficient ρX,Y  in our illustrations. 

•   

 

 Correlated Bivariate Normal Distribution 
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 Correlated Bivariate Normal Distribution 
Graphs: ρ = + - .95  



•  The   functions  
 
 
 
 

• and 
  

 
 
 
 
represent the local dependence between correlated 
components Y with respect to X in g1(x,y) , and of X with 
respect to Y in g2(x,y) on the unit square [x, x+1]x[y, y+1] 
located at the point (x,y).  

 Correlated Bivariate Normal –Local 
Dependence Functions  
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 Correlated Bivariate Normal –Local 
Dependence Function g1(x,y): ρ = + - .95   



 

 

 Correlated Bivariate Normal –Local Dependence 
Function g1(x,y): Numeric values on integer points in the 

square [-3,3]x[-3,3]   
 X \ Y -3 -2 -1 0 1 2 3 

-3 .6531 .1818 -.3884   -.1389 -.0219 -.0013 

-2 .0324 .6289 -.1354 -.3948   -.0248 -.0015 

-1 -.0325 -0707 .6396 -.2937 -.2062   -0020 

0   -.2062 -.2937 .6396 -.0707 -.0325   

1 -.0248   -.3948 -.1354 ‘6829 .0324 -.0015 

2 -.0219 -.1389   -.3484 .1818 .6531 .0244 

3 -.0214 -.1361 -.3418   -.1353 .4884 .5773 



The calculations in the missed cells (all made with MAPLE) were non-
numeric: 

 

 

 Correlated Bivariate Normal –Local Dependence 
Function g1(x,y): Numeric values on integer points in the 

square [-3,3]x[-3,3]   
 

 

>  

 

>  

 

>  

 

>  

 

>  

 



 Correlated Bivariate Normal –Local 
Dependence Function g2(x,y): ρ = + - .95  



 Correlated Bivariate Normal density:  
ρ = + - .5   





  

 Correlated Bivariate Normal –Local 
Dependence Function g2(x,y): ρ = + - .5  



 Correlated Bivariate Normal –Local 
Dependence Function g1(x,y): ρ = +  .5  

• Dependence as function of size of square size [.5 vs 1]. 



 Correlated Bivariate Normal –Local 
Dependence Function g2(x,y): ρ = - .5  

Dependence as function of size of square size [1 vs .5]. 



 Correlated Bivariate Normal –Local 
Dependence Function g1(x,y): ρ = + - .5  

• Dependence as function of size of square size [.5 vs 1]. 



  

 

  Correlated Bivariate Normal density:  
ρ = + - .1  



  

 Correlated Bivariate Normal –Local 
Dependence Function g1(x,y): ρ = + - .1  



 Correlated Bivariate Normal –Local 
Dependence Function g2(x,y): ρ = + - .1  



 

 

 Correlated Bivariate Normal Distribution 



• We discussed Regression coefficients as measures of 
dependence between two random events. 

• These measures are asymmetric, and exhibit natural 
properties.  

• Their numerical values serve as indication for the 
magnitude of dependence between random events. 

• These measures provide simple ways to detect 
independence, coincidence, degree of dependence.  

• If either measure of dependence is known, it allows 
better prediction of the chance for occurrence of one 
event, given that the other one occurs. 

 CONCLUSIONS 



• We discussed Regression coefficients as measures of 
dependence between the two components of BVND. 
 

• These measures are examined by the 3d surface of 
dependence on squares [x, x+a]x[y,y+a] with a=.5; 1.0 and 
(x,y)[-3.5, 3.5]x[-3.5,3.5] 
 

• We observe high positive local dependence close to the line 
y=x, and negative local dependences, also of relatively high 
magnitude, about the opposite signs y= - x. This magnitude 
vanishes as long the points become far from the origin (0,0). 
 

•  Notice reduction of magnitude in half on smaller square. 
 

• The ancient Greeks used to say: Just seat, watch, and make 
your own conclusions. 

 CONCLUSIONS 



• We extend the REGRESSION COEFFICIENTS measures from 
events to local dependence between random variables  

 

• Our study of the local dependence IN THE BIVARIATE NORMAL 
distribution WITH CORRELATED COMPONENTS  on squares 
inside [-3.5, 3.5]x[-3.5, 3.5] finds different behavior 
completely different than the global dependence.  

 

• Graphical illustrations show things outside our expectations. 

 

• Local dependence can be essentially different on different 
regions in the field.  

 CONCLUSIONS 
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