
Regis University
ePublications at Regis University

All Regis University Theses

Summer 2010

A Design of a Generic Profile-Based Queue System
Ali Husain
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Husain, Ali, "A Design of a Generic Profile-Based Queue System" (2010). All Regis University Theses. 299.
https://epublications.regis.edu/theses/299

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217365796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/299?utm_source=epublications.regis.edu%2Ftheses%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

A DESIGN OF A GENERIC PROFILE-BASED

QUEUE SYSTEM

A PROJECT

SUBMITTED ON THE 6TH OF MAY,2010

TO THE DEPARTMENT OF INFORMATION TECHNOLOGY

OF THE SCHOOL OF COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF

SCIENCE IN DATABASE TECHNOLOGIES

BY

Ali Husain

Charles Thies, Project Advisor

Shari Plantz-Masters

Richard L. Blumenthal

Abstract

Website and server hosting accounts impose resource limits which restrict the

processing power available to applications. One technique to bypass these restrictions is

to split up large jobs into smaller tasks that can then be queued and processed task by

task. This is a fairly common need. However, different application jobs can differ widely

in nature and in their requirements. Thus, a queue system built for one job type may not

be entirely suitable for another. This situation could result in the having to implement

separate, additional queue systems for different needs. This research proposes a generic

queue core design that can accommodate a large variety of job types by providing a basic

set of features which can be easily extended to add specificity. The design includes a

detailed discussion on queue implementation, scheduling, directory structure and

business tier logic. Furthermore, it features highly configurable, time-sensitive

performance management that can be customized for any job type. This is provided as the

ability to indicate desired performance profiles for any given slot of time during the

week. Actual performance data based on the usage of a prototype is also included to

demonstrate the significant advantage of using the queue system.

Table of Contents

Abstract ... ii

Table of Contents... iii

List of Figures ... v

List of Tables ... vi

Chapter 1 - Introduction... 1

1.1 Background Information .. 1

1.2 Statement of the Problem ... 4

1.3 Statement of Goals ... 4

Chapter 2 - Review of Literature and Research... 5

2.1 Application Performance.. 5

2.2 Queue Theory and Terminology .. 12

2.3 Queue Architecture .. 14

2.4 Queue Processing Algorithms.. 16

2.5 Generic, Reusable Queues.. 17

2.6 Scheduling.. 18

2.7 Quality of Service (QoS).. 21

2.8 Conclusion.. 22

Chapter 3 - Methodology... 25

3.1 Background .. 25

3.2 Ontology... 28

3.3 Epistemology .. 28

3.4 Methodology .. 29

3.5 Research Steps.. 29

3.6 Final Outputs .. 33

Chapter 4 - System Analysis and Design ... 34

4.1 Overview .. 34

4.2 Design Goals .. 34

4.3 Queue Design ... 35

4.4 Design Instantiation (Prototype) .. 61

Chapter 5 - Evaluation ... 62

5.1 Demonstration .. 62

5.2 Benchmarking .. 67

Chapter 6 - Conclusion .. 77

Chapter 7 - Areas for Further Research and Development .. 79

Chapter 8 - References... 82

Appendix A - Class Interfaces .. 86

Appendix B - SQL Table Definitions ... 92

Appendix C - Sample Tables Data .. 92

Glossary .. 95

List of Figures

Figure 1 High-Level Component Architecture ... 36

Figure 2 Entity Relationship Diagram for Queue System .. 43

Figure 3 Directory Structure for Scheduled Tasks ... 54

Figure 4 Example Scheduler Configuration ... 55

Figure 5 UML Class Diagram of Queue Classes .. 58

Figure 6 Benchmarking Interface ... 70

Figure 7 Execution Time Comparison .. 72

Figure 8 Memory Consumption Comparison ... 75

List of Tables

Table 1 Bar-Noy et al. Queue Terminology (Bar-Noy et al., 2009) 12

Table 2 Stages of Empirical Refinement .. 28

Table 3 Mapping of Design Research Phases to the General Design Cycle 29

Table 4 Table task_types Fields.. 44

Table 5 Table tasks Fields... 45

Table 6 Table jobs Fields.. 48

Table 7 Table job_types Fields ... 50

Table 8 Table profiles Fields .. 51

Table 9 Example Profile for Messaging ... 56

Table 10 Task Types... 63

Table 11 Job Types ... 65

Table 12 Server Resources.. 69

Table 13 Required Execution Time .. 71

Table 14 Enrollments Per Second ... 73

Table 15 Memory Consumption ... 74

Generic Profile-Based Queue 1

Chapter 1 - Introduction

1.1 Background Information

Web applications can be hosted on premises or outsourced to a hosting company.

The benefit of outsourcing is that many non-business tasks are handled efficiently and

easily such as backups, server maintenance, technical support, etc. The alternative is to

maintain a potentially much more expensive IT team and infrastructure to support the

web application. Several hosting options exist with many variations. In general, however,

small to medium organizations can either purchase a website or server hosting account. A

website hosting account provides space on a shared server while a server hosting account

provides a full interface to a virtual or dedicated server. However, the major drawback of

hosting accounts is that server resources are restricted such as CPU cycles, bandwidth,

emails per hour, memory and other resources. Resources can only be increased by paying

a higher price. If a web application is not performing satisfactorily and refactoring the

code is not an option, it could mean that the hosting package must be upgraded to a

higher-priced package. If upgrading to a less restrictive account is not an option because

of cost, either trade-offs must be made or other solutions found.

One solution is enhancing system design to reduce resource consumption. Careful

design can result in an application that is scalable yet intelligent and conservative in its

consumption of resources. Design decisions at all application layers can have a

significant impact on resource usage. (Controlling Resource Consumption and Improving

Performance, 2007). A simple example is that many operations that used to require page

reloads are now handled using AJAX. It does not require the page to be reloaded and

usually performs minimal transfers of text between the client and server which speeds up

Generic Profile-Based Queue 2

applications. This greatly reduces bandwidth consumption. Thus, AJAX is actually

saving subscribers hosting costs. Therefore, with minimal resource usage kept as a design

goal, hosting costs can be greatly reduced by making proper design decisions.

A specific related scenario is that of the university department in which this

research took place. It had a limited IT budget yet had to provide services for a large

number of students. Suppose the department mentioned must create thousands of

individualized score reports and email them to students. Emailing them at the moment of

report creation is not be feasible especially if the mail server is located on a different

server and network which means a significant delay is incurred with every connection to

this server. This poses a clear resource problem. How can this department provide web

services to thousands of students while minimizing hosting costs? Furthermore, if all

students must receive weekly emails, how can this be done in a timely manner if only a

limited number of emails are allowed to be sent per hour? The problem is equally

applicable to any small organization with similar budget constraints and hosting needs

such as a community organization, a private school, etc.

The logical solution is to implement a queue system to perform these tasks

gradually to remain within resource limits. Individualized student reports can be stored in

a queue that can be processed at regular intervals. In this manner, large amounts of

limited resources can be consumed over time. Software queues, especially for emailing,

are very common. Queues can be useful for many other types of tasks as well. In this

particular department, other such tasks included processing thousands of enrollments and

importing and validating thousands of scores from files. However, it quickly became

apparent to this department that implementing a queue for every new type of task was a

Generic Profile-Based Queue 3

waste of labor resources. Instead, the department envisioned a single generic queue

infrastructure that could be extended to accommodate any type of task.

Another issue regarding queues is throughput. If total throughput is the only

performance goal considered, resources could be exhausted and users could experience

slow system responses because the queue is consuming too much. Ideally, the queue

should be able to adjust its resource usage based on pre-configured resource consumption

parameters based on day of week and time. For example, during non-working hours in

the university scenario, usage of the system drops dramatically. After midnight, for

example, the system is usually not used at all. Thus, it makes sense to boost queue

processing during such periods and to reduce it during peak usage times. Another way to

state this is that different periods of time based on day of week and time of day should

possess different processing profiles.

Thus this department endeavored to research and implement the requirements and

design of a highly flexible queue system that was generic and profile-based. It was to be

generic in that it could be extended to accommodate any task type. Each task type had its

own set of processing profiles to maximize resource usage without exceeded limits

placed by the hosting package.

The inspiration for this research came from a previous queue-based email system

developed for the university department. This system, however, was rudimentary and not

generic. Rather, it was built specifically for emailing with hard-coded processing

parameters. This research effort took this software and further developed it to meet the

specifications discussed herein.

Generic Profile-Based Queue 4

1.2 Statement of the Problem

With the pervasiveness of the Internet, applications are increasingly becoming web-

based. However, hosting accounts place impose several resource restrictions such as

execution time and memory allocated. Therefore, certain tasks that are easily processed in

less restricted desktop or network applications must be processed gradually in their web-

based versions in order to stay within resource limits. Furthermore, complex applications

can have several types of these long-running tasks or jobs. How can a single, generic

system be developed to store and gradually process any type of job? Also, how can the

rate of gradual processing be optimally controlled such that the system utilizes resources

more aggressively during low usage periods in order to finish processing jobs faster?

1.3 Statement of Goals

This research effort seeks to develop a modular, generic and extensible queue

design that processes multiple types of jobs and tasks over time based on configurable

resource consumption parameters. These parameters are defined in time-based profiles.

The ultimate goal is to be able to schedule tasks for gradual processing that stays within

allotted resource limits and user deadlines. The intended fruit of such research is that

application hosting costs can be kept lower by spreading out resource usage over time.

Furthermore, full design details are included, explained and discussed such that any

reader can apply the same design in a different context. It is the claim of this thesis that

basing queue processing on these profiles can achieve acceptable throughput, decrease

hosting costs, minimize disruption to users and maximize general efficiency.

Generic Profile-Based Queue 5

Chapter 2 - Review of Literature and Research

A comprehensive effort was made to study existing literature related to queues,

scheduling, web application architecture and related disciplines. This was done in order

to gain a broad understanding of queue implementation issues and to avoid repetition of

previous research. Furthermore, useful concepts found in that literature were later

incorporated into this research. Special consideration was given to investigating issues

not fully addressed by the current literature pool.

Literature was analyzed from a wide variety of fields. This is a natural consequence

of the fact that queues are a general concept applicable to many areas of research. Thus,

any research pertaining to queues can potentially benefit from a completely different field

of research that includes the concepts, theory and principles related to queues. Some

prominent areas of queue research are the fields of circuit and processor engineering,

network packet handling, web server request handling, manufacturing, queue theory and

scheduling. Many of these areas were investigated and are categorized and described

below.

2.1 Application Performance

An application’s performance is depends on many factors. However, the

specifications of the hosting server play a large role in determining the user’s perceived

performance of the application. In general, a server with faster processors and more

memory can respond faster than a slower, less powerful server.

However, this is true only up to a certain point (Slothouber, 1996). In fact, carelessly

using more hardware can actually decrease the overall response time (Slothouber, 1996).

Furthermore, it is not always a feasible solution to invest in more hardware since server

Generic Profile-Based Queue 6

specifications are limited by financial constraints. Thereafter, the software aspect of the

architecture must be made more efficient.

No matter how powerful the server or server cluster, it is an accepted fact that today’s

web servers and the applications that they serve perform poorly under a heavy load. A

dramatic deterioration in server response-time and connection quality occurs as requests

to the server exceed the allowed capacity (Abdelzaher & Bhatti, 1999).

Furthermore, as the load on the server increases so does the need for higher hardware

specifications and additional servers. Thus, it is incumbent upon developers of busy

websites to keep efficiency as a design goal in order to reduce the load on the server

wherever possible. By doing so, costs associated with running and hosting the website

can also be reduced. In addition, the perceived experience of the user is improved.

Several researchers have attempted to address the issue of application performance by

offering various solutions and focusing on the optimization of different aspects of an

application and its supporting environment to reduce the server load. Some of the work

focused on optimizing the web server software on which the application runs. Others

focused on server hardware and cluster configurations. Others focused on the application

and more specifically, the different tiers of an application’s architecture such as the data

tier and business tier. Specific examples of these are mentioned below.

Among those who work was centered on server optimization were Abdelzaher and

Bhatti (1999). The approach of these researchers was to reduce server load without

causing a perceivable change to the user. They outlined a method to make the server

intelligently modify content if an overload condition was detected and then to substitute

the normal content with a “degraded, less resource intensive version of the requested

Generic Profile-Based Queue 7

content” in order to reduce the size of the HTTP response (Abdelzaher & Bhatti, 1999, p.

1564).

The research of Abdelzaher & Bhatti was unique in that much previous research was

concerned with different types of load balancing solutions. Instead, they limited their

scope to what was occurring on an individual server. Abdelzaher and Bhatti (1999)

proposed a number of ways to produce the lighter version of content such as compressing

images, reduction of embedded objects per page, and reduction in the number of local

links in the website that resulted in less browsing. The mechanism for exerting control

over the content, which they described in detail, is an independent process separate from

the web server which they call the adaptation agent. The adaptation agent monitors the

server load and takes action to adapt content if it detects an overload condition. In their

scenario the adaptation agent simply changed the properties of a directory link in the web

document root to point to an alternative directory containing the lightweight content.

However, they note a major drawback to their method which is that content must be

pre-processed and stored for later retrieval. It cannot be produced at the time of the

request. Doing so, based on their previous research (Abdelzaher and Bhatti, 1999), only

further increases the server load. Therefore, their methods are limited to static content

and offer no advantage for dynamic content. (Abdelzaher and Bhatti, 1999).

Just as Abdelzaher and Bhatti achieved performance through using an entity external

to both the application and the web server, other researchers also took this approach.

These researchers investigated how modifications to the operating system kernel could be

used to enhance performance or provide greater stability to an application. One group

developed a loadable kernel module that could be used to control the rate of requests

Generic Profile-Based Queue 8

being sent to the web server to avoid overload (Voigt, Tewari, Freimuth & Mehra, 2001).

They demonstrated that this was more effective and scalable than application-level

controls implemented within the web server software itself. This is a technique generally

referred to as admission control. However, they note that success of this method is

dependent upon highly accurate policies that determine which packets to drop.

Furthermore, there is an underlying assumption “that the system administrator has

complete understanding of server behavior under varying load conditions” (Voigt,

Tewari, Freimuth & Mehra, 2001, p. 13). This requirement introduces difficulty into the

implementation of this technique.

Harchol-Balter and Schroeder (2006) also criticized admission control since

ultimately it can still result in denial of service to some users (Harchol-Balter &

Schroeder, 2006). Therefore, other efforts were made to improve performance while not

denying requests. An example is that of Harchol-Balter, Schroeder, Bansal and Agrawal

(2003) in which they, like the researchers above, worked with the kernel. However, their

solution was not filtering requests by controlling admission. Instead, it was modifying the

way in which requests were scheduled. In other words, they investigated how to improve

the order in which the HTTP requests in the queue are being processed.

In the intriguing research of Harchol-Balter, Schroeder, Bansal and Agrawal they

compared two methods of scheduling socket buffers to determine which resulted in better

web server response times. The first method was the standard referred to as FAIR which

is based on conventional processor sharing on a first-in first-out (FIFO) basis. The second

was the Shortest-Remaining-Processing-Time (SRPT) method in which the server always

processes the shortest jobs first. They called this the unfair scheduling method. A concise

Generic Profile-Based Queue 9

way to define SRPT is “a greedy strategy to minimize the number of jobs in the system

by always working on the job that is closest to completion” (Harchol-Balter & Schroeder,

2006).

The surprising result of this group of researchers was that favoring smaller sized tasks

over larger ones resulted in faster response times, in general, even for large or long jobs.

They showed that in unfair scheduling, larger jobs were either not penalized or only

minimally penalized. Furthermore, their technique resulted in no loss to the resulting

throughput. Finally, they note that their SRPT concepts can be applied to any resource

that is a bottleneck such as the CPU instead of the network, depending on which is the

greater bottleneck in a given scenario. They did, in fact, do this at the database level and

this is described later. (Harchol-Balter, Schroeder, Bansal & Agrawal, 2003).

However, the work of these researchers, like Abdelzaher and Bhatti, was limited in

scope to static requests. Furthermore, they did not consider the case of server overload.

(Harchol-Balter, Schroeder, Bansal & Agrawal, 2003). Rather, the case of SRPT during

overload was addressed in a separate paper by Schroeder and Harchol-Balter (Schroeder

and Harchol-Balter, 2006). While previous research dealt strictly with using SRPT for

static content, their new contribution was using SRPT in the context of server overload.

Using their implementation of SRPT, they were again able to demonstrate its superiority

to the conventional FAIR method of scheduling during an overload condition (Harchol-

Balter & Schroeder, 2006).

However, a drawback concerning SRPT should be noted here which is that ordering

these requests requires an estimation of the job size in advance. This is referred to as size-

based scheduling. While it may be easily achievable with non-dynamic static pages, it is

Generic Profile-Based Queue 10

far more difficult for dynamic content. Even Harchol-Balter and Schroeder (2006) admit

that SRPT was previously suggested only for static content. However, they justify the

importance of their contribution by noting that the vast majority of web requests are for

static content. Furthermore, many sites cache their dynamic content as static content in

order to improve processing times. (Harchol-Balter and Schroeder, 2006).

In criticism of SRPT, Cherkasova (1998) notes that always preferring the shortest

jobs can lead to starvation, or denial of service, to large jobs if shorter jobs continually

arrive (Cherkasova, 1998). Instead, she advocates alpha scheduling with no pre-emption.

In this scenario, instead of prioritizing requests only based on job size, a combination of

both time and job size are used. She combines these two values and associates that value

with each job. Thus, large jobs are eventually serviced no matter what based on the time

in which they were submitted to the queue.

Harchol-Balter and Schroeder (2006), mentioned above, did not address the issue of

dynamic content since it is largely related to the database tier instead of the web server.

However, in order to achieve performance gains for dynamic content as well, they

applied the queuing concepts of their work on the database tier in a different research

undertaking. This is because they made their algorithms general enough to be applicable

outside the scope of web servers. Just as they modified scheduling of requests to the web

server, they also modified the internal database management system lock queues using

similar scheduling policies. As in their other research, significant performance gains were

achieved by modifying the scheduling behavior of the queue (McWherter, Schroeder,

Ailamaki & Harchol-Balter, 2004).

Generic Profile-Based Queue 11

However, a common difficulty with the previous research mentioned is that many of

the techniques mentioned are not feasible for average web application developers who

typically do not intervene with the code of the systems upon which their applications are

built. The implementation of the above methods requires detailed knowledge of the

operating system, web server or DBMS architecture. Instead, modifying the application

itself is much easier and within grasp of the common developer or organization as a

whole.

Besides the research mentioned, there are other well-known techniques for boosting

application performance. Casteel (2008) mentioned pushing out processing logic to

different layers of the application that are less restrictive. For example, if the maximum

memory for server-side scripting is too low, the developer can consider shifting some

logic to the database or client-side. This can significantly reduce the load (Casteel, p. 4,

2008). The reason is the reduction in network communication and inter-process

communication (Advantages of Using PL/pgSQL, 2010). Also, queries do not have to be

re-parsed upon every call. Furthermore, hosting accounts typically do not specify

constraints with high specificity regarding the database.

A common example of this is placing logic in stored procedures within the

database. This logic could also be placed within the business tier. However, this adds the

processing cost of network traffic between the web server and database server as well as

the need to parse SQL more frequently. A stored procedure, on the other hand, can

remain in a pre-compiled state which avoids these resource expenses (Casteel, p. 4,

2008).

Generic Profile-Based Queue 12

However, placing business tier code in the database, while resulting in better

performance, is not always desirable. One disadvantage is that code sometimes becomes

less maintainable since the convenience of maintaining all code from a single IDE for one

language could be lost. In fact, some frameworks, such as Ruby on Rails, reject this

completely despite its advantages (DeVries, Naberezny, p. 89, 2008).

2.2 Queue Theory and Terminology

Researchers Bar-Noy et al. (2009) provide a useful vocabulary for batch

processing. A given task is called a job or client. A processing machine is a channel.

Each task is given a weighting called the revenue. They define throughput as the number

of completed jobs. Table 1 shows a side by side comparison of their vocabulary with the

terminology used in this research. (Bar-Noy et al., 2009).

Table 1 Bar-Noy et al. Queue Terminology (Bar-Noy et al., 2009)
Bar-Noy Current Work

job or client job
channel server

weighting termed a revenue priority
batched queued

Sundell and Tsigas (2005) also contribute relevant terms related to priority queues.

They state that in priority queue theory, the queue is considered a set of key-value pairs

where the key is the priority of the item (Sundell & Tsigas, 2005).

Slothouber (1996) provided a simple overview of queue theory in relation to web

servers in which he elucidates several important concepts. The major contribution of

Slothouber’s work was a high-level model of a web server as a network of queues. In

doing so, however, he also presented many details on queue theory. He stated that every

queue has an associated arrival rate (A) which is the rate at which new jobs arrive. The

Generic Profile-Based Queue 13

service time (Ts) is the average time needed to process each job. The average time spent

in a queue is (Tq) and is called the queuing time. Therefore, the average response time T

can be calculated as follows:

T = Ts + Tq

The service rate of the queue is the inverse of the service time (1/Ts). A queue system

is said to be stable if the arrival rate is less than the service rate. In this case all jobs are

being serviced and there is an upper bound to the queue size. However, if the opposite is

true, the queue is unstable and grows without bound.

Another important metric is utilization of the server which is the product of the arrival

rate and service time. A utilization value between 0 and 1 is considered stable while a

value of 0 denotes an idle server. If the utilization equals 1 the server is being used to

maximum capacity. Slothouber (1996) also discussed Little’s Law. It states that, on

average, the number of jobs waiting in the queue equals product of the arrival rate and

response time. (Slothouber, 1996).

The concept of parallelization can potentially be used for the goal of this research.

Parallelization is the running of multiple processes simultaneously. This reduces the load

generated by a single process doing the job of all of them. However, it is not yet clear if

and how parallelization can be used to bypass the limits imposed by hosting accounts.

Snyder and Southwell (2005) discuss its use and benefits in the area of queue processing.

The queue can be processed faster if multiple identical processes are handling it. (Snyder

and Southwell, 2005).

Generic Profile-Based Queue 14

2.3 Queue Architecture

Literary evidence suggests that queues can be implemented in a number of different

ways. Snyder and Southwell (2005) discussed queue usage to control resource

consumption. They spoke from the perspective of viewing high resource usage as being a

security threat. They went on to describe multiple possible implementations of both

queues and the batch processors that handle the queues. Examples of queues they

mentioned are a simple directory that stores jobs, an IMAP server or a database (Snyder

and Southwell, 2005). Maclennen (2001) covered the basics of a database as an email

queue and suggested some enhancements. For example, the body of an email message

can be stored in a file whose path is stored in the database. Also, the success and failure

of each mailing attempt can be stored in a status field for each message. (Maclennen,

2001).

Herrington (2006) described two alternatives for implementing a queue

(Herrington, 2006). He mentioned using a file directory for simple queues and a database

table for more complicated needs. Furthermore, he presented some server-side code for

both a mail-only queue and a more generic queue suitable for any task. In the case of the

generic queue, he suggested storing interpretable code within the database itself in order

to provide an action to take for each queued item. However, the intention of the included

information was to be a very rudimentary introduction to what is required to design and

utilize a queue. It was far from being a detailed design on which to base a commercial

system. (Herrington, 2006).

Jim Gray of Microsoft Corporation, a strong proponent of using databases for

queue implementation, went as far as to say in a position paper that queues, in the context

Generic Profile-Based Queue 15

of Message Oriented Middleware, are essentially databases (Gray, 1995). He argued that

since queues need security, configuration, performance, monitoring, recovery, and

reorganization utilities, database management systems are the ideal mechanism for

implementing queues since they already provide these services. He goes on to say in his

section subtitled Queues are “Interesting” Databases:

Storing queues in a database has considerable appeal. The idea is that queues are a

database class encapsulated with create(), enqueue(), dequeue(), poll(), and

destroy() methods. By using a database, the queue manager becomes a naive [sic]

resource manger [sic] with no special code for startup, shutdown, checkpoint,

commit, query, security, or utilities. Rather it is just a simple application – the

database system does all the hard stuff like locking, logging, access paths,

recovery, utilities, security, performance monitoring, and so on. The queue

manager benefits from all the database utilities to query, backup, restore,

reorganize, and replicate data. In addition it piggybacks on the TP-lite and trigger

mechanisms of the database system for process and server pool management.

However, he also mentions the difficult problems associated with using databases

as queues. For example, enqueue operations require inserts followed by commits which

places considerable performance demands on the system because of concurrency control

and recovery component operations. Also, deletions can be very complex since they

typically involve “deleting a record, processing the request, enqueuing results in other

queues, and then committing” (Gray, 1995, p. 6). This indicates the need for specialized

isolation levels for queues. (Gray, 1995, p. 6).

Generic Profile-Based Queue 16

Much literature has also addressed processes or systems that coincide with queues.

Zhang and Ferrari (1993) contributed research regarding queue architecture for network

switches. Nevertheless, some concepts of their discussion are relevant in the context of a

task processing queue. Namely, they mentioned the benefits of having a rate-controller

unit that regulates the rate of processing a queue. (Zhang, Ferrari, 1993).

2.4 Queue Processing Algorithms

Another area rich with queue-related research is processing algorithms. One of the

most useful works was that of Ronngren and Ayani (1997) which carried out an extensive

comparative study of several well known priority queue processing algorithms. These

algorithms spanned across three main access patterns known as the Classic Hold, Markov

Hold, and Up/Down. The researchers kept their scope broad and applicable to many

fields. However, the study was in the context of using an in-memory data structure as a

queue rather than a persistent queue such as the file system or a database. Nevertheless,

many points they discussed are relevant to queues in general. For instance, they discuss

the implications of parallel access. Also, they discuss how different factors can affect

performance such as queue size (number of elements in the queue) and access patterns.

(Ronngren and Ayani, 1997).

Concurrency is another algorithmic issue addressed by algorithmic research.

Queues in which access by multiple clients are expected to simultaneously access

resources are called concurrent queues. Concurrent queues pose a special set of

algorithmic concerns addressed in research papers such as that of Sundell and Tsigas

(2005). In their paper, they shed light on the issue of keeping a shared data structure

consistent in a concurrent environment. The most common and straightforward method is

Generic Profile-Based Queue 17

mutual exclusion which requires locking the shared object during access. However, they,

among others, have proposed a non-locking algorithm that still achieves consistency.

(Sundell & Tsigas, 2005).

2.5 Generic, Reusable Queues

The benefits of a queue are easily understandable. A large workload can be split up

over time. However, each application has specific queue requirements. Therefore, it is

common in these situations for development to require re-engineering for each specific

application (Message-Oriented Middleware, 2010). Thus, having a generic queue that

can be re-used is highly desirable since it saves all of the re-engineering effort. One

example is where this concept has been implemented because of its great significance is

Messaging Oriented Middleware (MOM) such as Oracle’s Advanced Queuing. In fact,

many parallels can be drawn between MOM and the queue design proposed in this

research. MOM stores messages in a queue for client applications to retrieve them at a

later time which provides an asynchronous form of communication. Oracle’s Advanced

Queuing uses a database for persistence, as does the system described in this research. It

is used primarily to allow heterogeneous systems to communicate through a standard

system. In other words, it provides a generic mechanism for storing data that must be

transferred between applications which can be adopted for almost any use. Similarly, the

design contained herein details a generic queue can that be re-used by any differing

components of a single application. While Advanced Queuing is focused on generic

inter-system queuing, this research is focused on generic intra-system queuing such that

very different parts of a single application can share a single reusable queue system

within it. (Oracle9i Application Developer's Guide - Advanced Queuing, 2002).

Generic Profile-Based Queue 18

2.6 Scheduling

Much research has been conducted in various technical fields regarding optimal

performance for scheduling algorithms. The goal of these efforts was to make queue or

system scheduling more efficient in general or for particular cases. Other researchers

sought to provide a framework such as Marchetti and Cerda (2008) who described a

mathematical framework for batch scheduling in resource constrained environments.

However, their research was mainly geared towards industrial manufacturing.

One example of more general scheduling work was that of Capannini et al. (2007)

where they proposed a method called Convergent Scheduling and compared it to other

methods such as Back Filling and Earliest Deadline First (Capannini, Baraglia, Puppin,

Ricci & Pasquali, 2007). The resulting product of their work was a scheduling

framework. The research they undertook demonstrated how heuristics could be used to

result in better and more efficient scheduling. In another study, they designed a two-level

scheduler consisting of interconnected sub-clusters for large-scale processing (Pasquali,

Baraglia, Capannini, Ricci & Laforenza, 2008).

However, the work of Capannini et al. and most of the current literature is focused

mainly on processing items in the queue in the fastest time possible and is not concerned

with resource consumption and constraints. This is because it is mainly geared towards

large organizations whose application hosting resources are typically not highly

restricted. This is immediately evident since the title of their first paper mentioned above

refers to ‘Large Computing Farms’. The title of the second one refers to ‘Large-Scale

Grids’.

Generic Profile-Based Queue 19

One of the research efforts in throughput maximization was that of Bar-Noy et. al

(2009). They made their work purposely general in order to be applicable to anything

related to scheduling with batching (Bar-Noy et. al, 2009). In fact, they open by saying

the work is usable in fields as diverse as multimedia on-demand and integrated circuit

manufacturing. They showed that, while scheduling algorithms typically prevent multiple

jobs on the same machine at the same time, this need not be a constraint. Rather, they

prove that simultaneous jobs can actually be beneficial. Their work provides great

insights into the implications of scheduling and batching.

Another essential component of scheduling is using an external system to run

application activities according to a schedule. For example, the Unix crond service can be

configured to invoke a script every minute, hour or week. Potential queue processors

mentioned by Snyder and Southwell (2005) are custom Unix daemons and the cron

facility. These tools can be used to specify exactly when application execution should be

periodically invoked (Snyder and Southwell, 2005). Maclennen (2001) describes a

Windows based alternative which is to run the queue handler as a service (Maclennen,

2001).

Regarding process scheduling, Herrington (2006) makes an important argument for

choosing a processing daemon versus an application thread. He notes that threads

constantly hold memory and could stall or end up in a never ending loop. Using an

external process scheduler is much safer from these possibilities. The processes are only

run at specified times thereby conserving memory. This is especially important to

consider in a resource constrained hosting environment.

Generic Profile-Based Queue 20

Berman, Wolski, Figueira, Schopf and Shao (1996) mention a related extension of

scheduling which is application-level scheduling. In this scenario, multiple applications

access shared resources through a single point of access that must schedule application

requests. They refer to important scheduling principles that are relevant to this research.

One such principle is that “Dynamic information is necessary to determine system state”

(p. 3). In other words, scheduling is optimal when the scheduler has some indication of

the current load on the system and the current resources available. For example, if the

scheduler detects that system usage is currently low, it can be less restrictive in granting

resources or processing tasks. They also maintain that “Good schedules involve some

prediction of application and system performance” (p. 3). Berman et al. explain that this

principle indicates that having knowledge in advance of expected system behavior

provides the ability for the system to choose the best course of action to achieve optimal

performance. For example, a scheduler can be configured to increase its activity during

times when system usage is expected to be low or when resources are expected to be free.

In order to classify a strategy for scheduling tasks, this researcher referred to the

work of Blythe et al. (2005) which relates to an innovative task scheduling strategy in

grid environments. They explain that there are two main approaches to scheduling

resource allocation to tasks. Task-based allocation makes resource decisions based only

on the jobs or tasks available at a given instant. However the workflow-based approach

considers all possible jobs regardless of the moment in time and maps resources in

advance. (Blythe et al., 2005).

Generic Profile-Based Queue 21

2.7 Quality of Service (QoS)

The quality of service (QoS) of a system has been defined as the “set of

quantifiable quality properties of a service” (Enabling a Web of Billions of Services,

Glossary). The concept of QoS is important in relation to scheduling and queues since

the scheduling system must attempt to guarantee the execution of a queued task before a

deadline.

Bhoj, Ramanathan and Singhal (2000) worked on bringing the concept of QoS to

web servers. They designed and developed a custom QoS-enabled web server which they

called Web2K. This server considered different users as being from different classes and

used this to prioritize their requests. Web2K used this as a basis to deliver QoS. Thus,

instead of blindly denying service to random requests, under overload the server was able

to selectively deny requests. In this manner, the server can provide better QoS for mission

critical services. (Bhoj, Ramanathan & Singhal, 2000).

In their paper they mention several important points related to queues. Firstly, one

way to attempt a guaranteed response time is to perform admission control. An acceptor

mechanism checks remaining queue capacity and accepts or denies requests based on the

space remaining in the queue. (Bhoj, Ramanathan & Singhal, 2000).

An innovative scheduling queue concept used by Web2K was its temporary storage

of denied requests. During overload periods, it temporarily stored these requests and later

processed them as higher priority requests. In this manner it was able to easily

accommodate bursty periods of traffic. Thus its queue architecture was made more

reliable resulting in better scheduling and QoS. (Bhoj, Ramanathan & Singhal, 2000).

Generic Profile-Based Queue 22

Another important contribution of the research team was the demonstration of how

queue theory from a certain fields can be successfully applied to a vastly different field.

A novel aspect of Web2K was its acceptor mechanism built for a web server while

having its roots in techniques used for manufacturing queues. (Bhoj, Ramanathan &

Singhal, 2000).

2.8 Conclusion

The literature review process was crucial in developing and refining this research

endeavor. It was instrumental in discovering areas still left unexplored. Some issues not

covered in the research mentioned above are discussed below.

Furthermore, in contrast to much of the previous scheduling queue work such as

that of Capinni et al. (2008) which was directed towards large, powerful information

technology infrastructures with massive resources, this current research project aims to

develop a system to process a queue based on available but highly constrained resources.

This situation is typical of smaller organizations or small departments within a large

company or other environment. In such scenarios it is more likely that the management

seeks to avoid high hosting costs and maintaining an in-house information technology

support department.

Similarly, while most queue scheduling research focused on achieving maximum

performance, it seems that research has largely ignored another concern which is

achieving acceptable performance while giving high priority to the conservation of

resources. This can be extremely important especially when the queue is used for non

critical operations. Previous research sought to maximize throughput by controlling and

optimizing performance by various techniques such as heuristics (as in Capinni et al.), as

Generic Profile-Based Queue 23

mentioned above. Many of these research efforts do not make any mention of resource

limits.

The focus in this paper is quite different. The goal is to process the queue as

quickly as possible without exceeding resource constraints or limits imposed by hosting

accounts and without causing a significant reduction in website response time. The queue

scheduling is to be controlled and QoS maintained by means of user-configured profiles

that map performance parameters to periods of time. In other words, any given time has a

desired performance profile and the queue must conform to that profile within this time

period.

Previous publicly available research has also not provided a detailed design of a

persistent queue-based scheduling system. While Gray did introduce some design

concerns, his intent, as mentioned, was only to defend a position. Although he mentioned

the same general idea being developed in this paper of manipulating a queue

implemented as a database with wrapper classes, he did not go into a great level of detail.

He also did not expound upon how to implement the queue as a database. Similarly, he

did not elaborate on the implementation of the queue wrapper classes. Furthermore, he

limited his discussion to the scope of MOM.

In this paper, the goal is not only to provide such a research-verified design but to

go farther by aiming for a totally generic queue container that is usable by any

application for any task no matter how unique it is or how complex its processing

requirements are.

While the approach of Abdelzaher and Bhatti (1999) was to make the server respond

with lower grade content, this paper focuses on returning the same level and quality of

Generic Profile-Based Queue 24

content and instead optimizing what occurs at the server end. The approach of this paper

discusses splitting a request into segments and then queuing those segments to be

processed over time. Although not always desirable, it can result in a dramatic

performance enhancement in many situations in which immediate processing of large

jobs is not required. An additional constraint imposed by the work of Abdelzahir and

Bhatti (1999) was that it required content to be pre-processed, which is useless for

dynamic content.

Generic Profile-Based Queue 25

Chapter 3 - Methodology

3.1 Background

The nature of this research was qualitative. More specifically, this research began

as a constructivist effort in its ontology. This is because no existing software solution was

found that could cover provide for the custom needs of the university in which the study

was conducted. Instead, a solution had to be created.

Action research was also considered since it stresses iteratively solving a problem

through experimentation and adaptation. It was very appropriate for the scenario of

making repeated attempts to process massive volumes of queued tasks within a given

period of time while continually studying and modifying the system design to bring it

closer to the goal.

Shortly into the research, a related but more applicable and structured methodology

was adopted, which is design science research in information systems (DSRIS). It is a

specific subset of constructive research (Kuechler, 2009). It also inlcudes the iterative

benefits of action research. In fact, action research can be a component of design science

research (Vaishnav and Kuechler, p. 49, 2008). It stresses attaining knowledge through a

design-build-evaluate cycle. Its defining characteristic is learning by building. Thus, it

was a perfect fit and was taken as the overall design framework of this effort. Vaishnavi’s

book ‘Design Science Research Methods and Patterns’ was the core reference used to

structure this research.

Design science research works well in an IS development environment by

formalizing the development of a prototype and its subsequent evaluation. DSRIS also

Generic Profile-Based Queue 26

has a unique capabilitty for iterative learning and refinement of the research question

(Vaishnavi and Kuechler, p 42, 2008).

Design science is also referred to as improvement research (Vaishnavi and

Kuechler, p 46, 2008). As opposed to research which aims to explain, it aims instead to

“produce and apply knowledge of tasks or situations in order to create effective artifacts”

(March and Smith, 1995).

Using DSRIS as a framework, the major steps of the research can be summarized as

follows:

• Build a strong awareness of the problem.

• Sugggest a tentative design.

• Implement the design as an artifact.

• Evaluate the artifact against criteria.

• Derive conclusions and knowledge based on the evaluation.

The above steps were taken from Vaishnav and Kuechler (2008) and are called the

General Design Cycle (GDC).

Regarding the implementation step, a few points must be noted. The artifact in

DSRIS can be abstract in nature such as a construct, model or method (March and Smith,

1995 – Vaishnavi, 49). Furthermore, the instantiation of the artifact can be quite

rudimentary since the main purpose is to focus on design and not the actual

implementation (Vaishnavi and Kuechler, 2004 – Vaishnavi, 49). March and Smith

indicate that conceptual models can be an aritifact of design science (March and Smith,

1995). In this case, a model was made along with an actual software instantiation of.

Generic Profile-Based Queue 27

Evaluation in design science research occurs by using empirical methods “to

determine how well an artifact works” (Hevner et al., 2004). Vaishnavi and Kuechler

mention multiple evaluation techniques, among which is simulation (Vaishnav and

Kuechler, p. 49, 2008). Evaluation can take on multiple forms such as “action research,

controlled experiment, simulation, or scenarios” (Vaishnavi, 2004). Hence, the goal is to

evaluate the artifact’s utility (Vaishnavi and Kuechler, 49, 2008).

Furthermore, DSRIS stages 1-4 shown in Table 2 are indefinitely iterative such that

after exiting from any stage, the researcher can return to any previous stage (Vaishnav

and Kuechler, p. 59, 2008).

Another concept taken from (Vaishnav and Kuechler, 2008) is that of research

patterns. These authors provide several formal, established patterns to apply to the five

steps of DSRIS, or the GDC.

For the problem selection and development stages, the ‘Being Visionary’ pattern was

used. This pattern is to “envision an improvement in a situation or problem even if the

present sioltion is acceptable” (Vaishnav and Kuechler, p. 95, 2008). In this case the

system was working fine in its production environment but the vision of a generic and

profile based queue seemed to have several potential enhancing benefits.

For the suggestion and development stages the ‘Empirical Refinement’ pattern was

used. Its intent is to “develop a soltuion to the research problem through iterations of

system evelopment,empiracle observation, and refinement” (Vaishnav and Kuechler, p.

129, 2008). Table 2 shows the stages of Empirical Refinement (Vaishnav and Kuechler,

2008).

Generic Profile-Based Queue 28

Stage
Table 2 Stages of Empirical Refinement

Title
1

2

3

4

5

Construct a Conceptual Framework
Develop a System Architecture

Analyze and Design the System

Build the Prototype System

Observe and Evaluate the System

Again, these stages are iterative and allow for movement between them. Complex

systems are rarely understood completely prior to their implementation (Nicholas, J.,

2004, p. 129). During their implementation, knowledge is acquired about how to move

the implemenation forward and about the requirements for successfully completing it. In

this research effort, the implementation and evaluation of the generic queue system began

with a very basic skeletal design. This was later expanded as missing needs and features

were encountered and as evaluation provided guidance about missing system

requirements.

3.2 Ontology

The ontology of design research recognizes “multiple, contextually situated

alternative world-states” and is socio-technologically enabled (Vaishnavi, V. 2008).

Thus, it was consistent with the fact that multiple solutions existed for the research

problem under focus.

3.3 Epistemology

Vaishnavi states that design research epistemology stresses “knowing through

making” an “objectively constrained construction within a context” (Vaishnav and

Kuechler, 2008). It also holds the view that “iterative circumscription reveals meaning”.

Generic Profile-Based Queue 29

In this research effort, an artifact was being developed and knowledge about generic

queue development and processing was being sought though its construction.

3.4 Methodology

According to Vaishnavi, design research methodolgy is developmental and

measures artifactual impacts on the composite system (Vaishnavi, 2008). In this case, the

system was developed incrementally until all system needs were accounted for. In fact,

the system was developed enough to be used as a production system and it was used as

such.

3.5 Research Steps

The steps of this research relied on those given by Vaishnav and Kuechler in their

mapping of design research phases to what they call the General Design Cycle. This is

detailed in Table 3 (Vaishnav and Kuechler, 2008, p. 59).

Table 3 Mapping of Design Research Phases to the General Design Cycle
Step General Design Cycle

(GDC) Steps
Research Phases

1 Awareness of Problem Problem definition
2 Suggestion Literature review, Tentative Design
3 Development Prototype Development (Artifact

Implementation)
4 Evaluation Simulation
5 Conclusion Conclusion

The specific steps taken during this research are explained below in greater detail.

3.5.1 Build a strong awareness of the problem.

Queue scheduling and processing is an expansive topic. Thus, one of the most

difficult steps was determining in concrete terms what exactly this research was trying to

achieive. However, it eventually became clear that the items of greatest interest to the

Generic Profile-Based Queue 30

university supporting this research were related to resource conservation and reusable

queue code. Thus, the central goal was to build a generic queue capable of holding any

theoretically queable task. Furthermore, it had to function under resource constraints that

could vary from one part of the application to another.

3.5.2 Sugggest a tentative design.

In this stage existing knowledge and the well-defined problem definition are

syntheiszed into an artifact made to solve the problem. The design was first carefully

thought out. It was subsequently developed through a series of iterations. The intial

design was suitable for a single type of queue task without any resource considerations.

This initial effort led to many realizations about the requirements of building a queue

system and provided a foundation for which to begin designing a generic and extendable

system that was profile based. The design was iteratively modified even until the very

end of development as new needs were discovered and refinements were made.

More specifically, this design encompasses the following items which elucidate the

design:

•	 High Level Integration Diagram – this diagram gives a high-level view of all the

system components and how they interact.

•	 UML Class Model – this portion describes the business layer classes developed in

a scripting language which manipulate and control the queue.

•	 Database ERD and Table Description – this portion describes the database tables,

their relationships and the fields in order to clarify their purpose and justification

and how they effectively implement the queue container.

Generic Profile-Based Queue 31

3.5.3 Implement the design as an artifact of the research

In order to verify the effectiveness of the design and to test and refine it, the

design was implemented as a prototype. Furthermore, this prototype was developed

enough to be used on a production server.

The first implementation, based on the first design explained above, was mainly

an exploratory effort to gain a firm understanding of the fundamentals of building a

queueing system. This implemenation was used in a production environment.

Deficiencies were noted and adjustments were made.

Once the fundamentals and the issues surrounding queue systems were thoroughly

understood, the researcher felt ready to explore the more complex issues of building a

generic profile-based queue.

Subsequently a second major design effort was made which was followed by a

lengthy development period that aimed to fully reach the goals set forth by this research

effort.

The second implementation built upon the first by implementing a fully object-

oriented generic queue system. It was a core system that was extended and manipulated

by task-specific and profile based application components such as messaging and

enrollment modules.

As stated, the artifact was fully implmented and was eventually used by a

university department to handle resource intensive queable tasks, namely enrollment of

students and mass email communications. As such, it was a production-level artifact.

Generic Profile-Based Queue 32

3.5.4 Evaluate the artifact against criteria

Under the design research paradigm, the evaluation phase indicates “the quality of

the design process and the design product under development”. In other words, the goal

of the evaluation was to demonstrate that the artifact fulfills the design goals.

Vaishnav and Kuechler list several acceptable methods of evaluation for DSRIS

(Vaishnav and Kuechler, 2008, p. 159-171). Hevner, March, Park and Ram also list many

methods and refer to actual examples of evaluation work for design science research

(Hever, A., March, S., Park, J., Ram, S., 2004, p. 18).

The most applicable evaluation methods for this project were the demonstration

and benchmarking patterns taken from Vaishnav and Kuechler. The demonstration

pattern is most appropriate when demonstrating the solution is itself considered a

constribution. In this case this applies since demonstration proves the usability of the

design’s architecture and program logic. Vaishnav and Kuechler state that the first step is

to construct the solution as a prototype which proves that it is a realizable solution. The

second step is to demonstrate that the solution is reasonable for a set of predefined

situations. These situations “should be predefined and not created to suit the solution”.

Furthermore, they should cover multiple problem variations. The result is that the

demonstration shows either inadequacy or efficacy of the solution. (Vaishnav and

Kuechler, 2008, p. 160). Thus, this pattern was implemented by constructed the prototype

and also putting it into actual production use.

The second evaluation pattern taken from Vaishnav and Kuechler is

benchmarking, which is used to rate the performance of a solution (Vaishnav and

Kuechler, 2008, p. 167). In this case, it is being used to demonstrate the ability of a queue

Generic Profile-Based Queue 33

based system to process more tasks than an older version of the software being used that

lacked a queue to process the same task types. Both versions are being measured against

the same benchmark to guage the increase in processing power available through the

queue design.

During the evaluation stage, the following key questions were considered:

•	 Is the queue truly generic in that it is suitable for multiple types of queable tasks

that differ in nature?

•	 Is the queue successfully determining its processing parameters based on time of

day, day of week, and task type? In other words, is it a profile-based queue as

described in the thesis design?

3.5.5 Derive conclusions and knowledge based on the evaluation.

At this stage conclusions were formulated and documented based on the results of

the evaluation.

3.6 Final Outputs

The final outputs and deliverables of this research were:

•	 A detailed system design for building a generic queue that is processed according

to configurable resource constraints.

•	 A prototype/artifact which implements the generic queue.

•	 Multiple application clients that effectively utilize the queue.

Generic Profile-Based Queue 34

Chapter 4 - System Analysis and Design

4.1 Overview

This chapter includes the queue design and a detailed description of the prototype,

which are the major artifacts of the research.

4.2 Design Goals

It is constructive to first lay out the precise goals of the design which follows below.

More specifically, this section focuses on the goals that make this design a unique

contribution to queue design.

The design was intended to result in a queue that:

•	 Is technology-independent.

•	 Is independent of the application described herein and thus replicable for any

application.

•	 Is highly flexible and extensible such that any conceivably queueable task can be

placed on it.

•	 Can determine its performance directives based on user-configured usage profiles

and successfully process its tasks within the resource limits set by these

directives.

Finally, it should be noted that the queue design, while being implemented for a web-

based application, is suitable for a wider range of applications.

The remainder of this section is split up into two major parts. The first (4.3) explains

the design and the second (4.4) describes the instantiated artifact and its features.

Generic Profile-Based Queue 35

4.3 Queue Design

This section describes the queue design developed to meet the goals stated above.

Sufficient details have been provided to allow the reader to implement this design for any

other system.

4.3.1 Component Architecture

The first aspect of the design is the overall architecture of the system components

and how they interact with each other. This is the high-level view of the system

components that reveals how they interact with each other.

After several iterations of development and reflection, an effective and flexible

layered architecture was developed to achieve the stated goals. The major components

are shown in Figure 1 in a layered fashion. Figure 1 shows six major layers:

•	 OS Scheduler – the scheduling application such as cron for Unix.

•	 Shell Scripts – the shell scripts that execute the program invokers (see below) that

are grouped together based execution schedules.

•	 Application Invokers – the programs written in the web application scripting

language that can be invoked at any time by any shell script whose purpose is to

load pages.

•	 Queue Processing Controllers – the controllers containing the business tier logic

•	 Queue Model – the database handling logic

•	 Queue Container – the database tables holding the actual queue data

Generic Profile-Based Queue 36

Figure 1 High-Level Component Architecture

It is helpful to consider the Application Invokers first. These are server side scripts

which call the Application Controllers that contain the queue processing logic. These are

called in groups by Application Shell Scripts based on similar scheduling cycles. For

example, all invokers that must be called every minute called at once by a single shell

script.

The OS Scheduler is not part of the application. Rather, it is an external

application utilized to invoke the Application Shell Scripts at specific times.

The Application Controller component contains the actual business logic and

utilizes the object classes contained in the Queue Model to manipulate the Queue

Container, which was implemented as a database.

Generic Profile-Based Queue 37

This overall architecture was found to provide maximum flexibility since the

scheduler is decoupled from the application by two layers. Furthermore, application

invokers are not restricted to a specific periodic execution (weekly, hourly, etc.) since

they can be called by any application shell script. Thus, the same application invoker can

be called by multiple invokers or its scheduled cycle could easily be modified without

having to recode the application.

It should be noted for the benefit of the reader that initial portion of the design,

i.e. the layered invocation of the application by the scheduler, is, of course, general to any

scheduled application activities and is not limited to queue activity. This same pattern can

be replicated for any scheduled activities in any web application.

4.3.2 System Constructs

Marc and Smith (1995) have indicated that design science research efforts

produce constructs as one of their outputs. Constructs are the conceptual vocabulary of a

problem-solution domain (Vaishnav and Kuechler, p. 13, 2008). The constructs of this

research are the following:

Generic Queue Core Terms

task – an entry in the queue referring to a unit of work that must be processed and

completed.

task type – the type designation of a task. This determines the processing logic for

a task.

job – a logical grouping of tasks usually created during the same execution cycle

or close together in time. For example, a weekly student report is generated for

10,000 students. These are all submitted to the queue at once as members of the

Generic Profile-Based Queue 38

same job. If all 10,000 reports have been mailed out, that single job has been

completed.

task priority – a numerical value indicating the relative priority of a task.

job priority – a numerical value indicating the relative priority of a job.

queue client – Also known as a Job Processor, an application component that

makes use of the queue services and contains business logic that processes all of

the tasks of a given job. Examples are email messaging and enrollment clients.

profile entry – a directive stored in the database indicating how the queue should

behave under a set of environmental circumstances for a given task type. Each

entry contains ideal queue throughput values for a given time range and set of

days of the week. An example is that during the weekend at any time the queue

should send 100 emails per hour. Another profile entry could indicate that during

the weekdays from 9 AM to 5 PM the queue should send only 5 per hour.

profile – a set of profile entries for a task type. An example is a profile for

messaging that contains two entries. One is for work hours, another is for off

hours during weekdays and a third is for the weekend.

active profile – the profile that has been chosen to be used for a given moment in

time. The other profiles are inactive.

processing cycle – a single execution run of a queue client (see above). Each

processing cycle is invoked by the system scheduler.

system scheduler – the mechanism that determines how often and when to run the

queue client processing cycles for each job type.

Generic Profile-Based Queue 39

Application Specific Terms

These are terms relating to the specific queue clients developed for the

instantiated prototype.

enrollment – the placement of a student into a course section.

enrollment file – a file containing one or more lines with each line containing the

data needed to enroll a single student into a section

Each item stored on the queue is a task that has a specific task type. Example

types are message and enrollment for the system under discussion.

Tasks of a similar nature created at the same time and grouped together logically

are assigned to the same job. A job can contain any number of tasks. For example, a

group of 10,000 email messages all created together for the same purpose all belong to

the same job.

A queue client can contain multiple profile entries in its profile. These provide the

queue with details about the quantity of tasks to be processed during each processing

cycle. However, the frequency of processing cycles is determined by the system

scheduler.

4.3.3 Queue Container

This section explains in detail the actual software construct that implements the

queue storage mechanism in the form of a database.

4.3.3.1 Implementation Overview

Multiple options are available for queue implementation. These have been

discussed in the literature review section. In summary, some common options are using a

Generic Profile-Based Queue 40

database, file or an IMAP server. The most suitable option in this scenario for the generic

core of the queue is a database. This is because of the ease with which data fields can be

stored along with the queued item. For example, an email message has an associated file

path for the message body, recipient address, sender address, etc. This is not as easily

achievable using the alternatives discussed earlier such as an IMAP server or a simple file

directory. Thus, for this particular queue scenario, using a database is the best option.

Another reason to use a database is that this queue should be flexible enough to

allow any type of task to be placed on it. This is easily achievable using child tables

linked to a parent queue table. The parent table serves as the generic core while the child

tables extend it with whatever additional data fields are needed based on the specific

queue client needs. Furthermore, views can combine these parent and child tables to

effectively produce multiple instances of the queue, each customized with data fields

pertaining to a specific application of the queue for a given task type. This is described in

further detail during the table and field discussion.

However, it was found during the course of the research that in the application

specific queue client layer, relying on only a single queue implementation type for all

tasks is not always enough. For example, combining a file queue with a database queue in

a multi-queue layered architecture was found to be the most efficient solution for dealing

with large numbers of enrollment tasks, as described later. Nevertheless, this is not an

aspect of the core generic queue but rather an extension of it in the queue client layer

used for an application specific purpose.

Generic Profile-Based Queue 41

4.3.3.2 Database Tables

The design of the queue tables is an essential aspect of this queue implementation.

The tables and their fields were carefully chosen and refined to capture the data required

to perform the basic queue processing functions as well as to support additional powerful

features.

In order to fully explain the design, it is helpful to go table by table and justify the

existence and purpose of each table. Before proceeding, it should be noted that the tables

were normalized in order to avoid repetition of data.

There are two main groups of tables. The first group comprises the generic core of

the queue. This is the portion that can be used in any application, no matter how the

queue is being used. The second group is the application specific queue clients. These

tables are the child tables that build upon the generic core. Tables in this group naturally

differ from application to application.

The entity-relationship diagram (ERD) shown in Figure 3 represents the queue

table design. However, additional graphical cues have been added to show the following

points:

•	 The tasks table is essentially the heart of the queue since it holds each

individual task.

•	 In addition to the tasks table, the tables which form the generic core of the

system are the following: jobs, job_types, task_types, profiles.

•	 The messages, queued_enrollments and enrollments tables are application

specific queue clients.

Generic Profile-Based Queue 42

•	 There is a further dichotomy within the generic core. Tables related to

tasks are colored brown while tables related to jobs are colored blue.

•	 Within the queue clients, queued_enrollments and enrollment_files are

colored grey since they are related. Table messages stands on its own.

Generic Profile-Based Queue 43

Figure 2 Entity Relationship Diagram for Queue System

Generic Profile-Based Queue 44

Following is a list of the database tables in Figure 2 along with descriptions and

justifications of their inclusion.

4.3.3.2.1 Table task_types

Each task type has a different nature and requires different processing logic. Thus,

table task_types is needed to store the different types of queue tasks within the system. A

task is the smallest atomic unit processed by the queue. In the prototype developed, three

entries existed in this table: enrollment, message and enrollment file read. A brief

description of each type follows:

enrollment – the placement of a single student into a section.

message – the sending of a single email

enrollment file read – the reading of a profile-specified number of lines from an

enrollment file.

Although not implemented yet, a score import is another potential task type.

A task type cannot comprise more than a single atomic, indivisible unit of action

or logic. Joining together different task types is easily achievable using job types, which

are described later.

Table 4 shows the fields of table task_types and their usage.

Table 4 Table task_types Fields
Field Purpose Default Value

task_type_id Primary key.
name Short title/description of the type.
max_attempts Maximum number of attempts for the task type. 0
default_priority Default priority level for items queued as this type. 0

Generic Profile-Based Queue 45

A task should be attempted at most the number of times indicated by

max_attempts. If it has been exceeded, a task’s status should be set as failed.

The default_priority field is available to be used in the application to set the

priority of a task. However, it can be overridden using the job priority or any application

other value.

4.3.3.2.2 Table tasks

As explained previously, a task is atomic and is the smallest unit of action in the

queue system. This table, whose fields are shown in Table 6, holds the individual tasks

that are queued. Examples are a single email message or a single enrollment. This table is

the core of the entire generic queue.

Table 5 Table tasks Fields
Field Default ValuePurpose

Primary key task_id
Type designation for the tasktask_type_id
Job type designation of a task.job_id
Timestamp at creation time. Starting time

and date.
start_ts

Last possible moment before which to process task. start_ts plus
default task type
duration

deadline

Timestamp at end of processing time or at failure time. end_ts
Relative priority. 0priority
Number of times this task has been attempted. 0attempts
Field to track initiating user. user_id
Indication of whether a task has completed or not. Nullstatus
Indication of success or failure of task. Nullsuccess

message Field to store any error or notification message
associated with the task for later retrieval such as in
reports.

Generic Profile-Based Queue 46

Each task has a mandatory task type designated by task_type_id and a mandatory job

indicated by job_id. When the task is created, it is assigned a timestamp stored in start_ts.

When it is finished with either success or failure, another timestamp is stored in end_ts.

end_ts is useful in some scenarios, especially for measuring performance of the queue.

However, if the application has no need to record when a task was finished, this can be

disabled. The default priority for the task comes from its task type. However, this can be

overridden if needed by the application. When a task is processed, attempts is first

incremented. If processing is interrupted or unsuccessful, another attempt can be made at

any time and attempts is again interrupted. This can continue as long as max_attempts for

the task type is not exceeded.

Two fields are used to track the overall status of the task. status indicates whether the

task is finished or not while success indicates whether the task was logically successful or

not. For example, an email message task might have been attempted three times, which is

the maximum set for the message task type. They all logically failed because of network

problems. Thus, success is set to false because the message was not successfully sent.

However, status is set to done since the task is no longer being attempted.

An important issue regarding tasks is task processing order. A aspect of this design is

that task processing order can flexibly differ at the queue client level. While an initial

order can be set in the queue, it can be manipulated later by the queue client. In other

words, the application can easily process different types of tasks in different jobs in any

order determined by requirements. Even if two jobs use the same task type in their tasks,

the order in which tasks are processed can be set differently for the two tasks.

Generic Profile-Based Queue 47

A combination of several task characteristics can be used to determine the default

processing order. Tasks are first grouped by their jobs. The jobs themselves are ordered

by priority and then deadline. Within a job, tasks have an internal order. A creation

timestamp, stored in start_ts, is recorded for each task. Using the default_duration for the

task’s type, a deadline timestamp is calculated.

However, priority also comes into play since a higher priority task should be

processed first even if it has a later start_ts value or if another tasks deadline is about to

expire (discussed below). Furthermore, the job priority associated with the task’s job type

can be used to add another layer of ordering. For example, tasks could be ordered by job

priority first and then with each job by priority and next by deadline.

It is up to the queue client to decide the final task processing order. Since this is a

generic queue where multiple tasks are mixed together, the queue clients must look at a

subset of the queue to determine order. For example, the messaging queue client must

pick the next message by first filtering out message tasks only. The tasks table is itself

ordered by record insertion time. This filtration along with default ordering of tasks is

provided by views discussed later.

4.3.3.2.3 Table jobs

Table jobs, explained in Table 7, is used to logically group queue items together.

For example, a single mailing might be sent out to 1000 students. These are all added as a

single job consisting of 1000 different emails that must be sent.

Generic Profile-Based Queue 48

Table 6 Table jobs Fields
Field Default ValuePurpose

Primary key job_id
Current time and date. start_ts Timestamp at creation time.

Timestamp at job end time. end_ts
deadline_ts Calculated deadline timestamp for job. start_ts plus default job

type duration.
Job priority level. Priority level from job type. priority

Nullstatus Indicates success, failure, pending
(default).
A user-defined name. name

job_type_id A type designation for the job.
A field containing custom job information Nullinfo_json
stored in Javascript Object Notation.

An important aspect of this design is that jobs are not limited to a single task type.

In other words, a single job could involved several different types of tasks. An example

could include a job that must 1) enroll a group of students, 2) email each on a welcome

letter and 3) email the administrative staff a list of successful imports. In this manner all

of these groups of tasks have been logically grouped together within a single entity.

As in with tasks, job are processed in an application determined order at the queue

client level with a default order set within the queue. The default job processing order is

to consider priority followed by deadline. This is described further in the views section

below.

An important feature of this table is the info_json field. This field can be

populated with any supplementary information that needs to be associated with the job. It

is stored in the lightweight Javascript Object Notation (JSON). JSON makes an ideal

notation for storing basic data since a large number of libraries are available to parse it

and they also provide a number of other features for manipulation (CITE). Its usage can

Generic Profile-Based Queue 49

be made clear through a simple example. One of the jobs in the prototype was an emailer

whose role was to add announcement messages to the message_queue such that a single

message is stored for every student in the queue. The job is executed every minute and

adds 5 messages at a time. The mailer job is later responsible for actually emailing these

messages by processing the message_queue. However, how can the job remember

between executions the title of the message to be sent and the path in which its body is

stored as a file? This information and any other associated information that is needed

between the start time of the job and its end time can be stored in the info_json field and

retrieved easily every time the job is run.

4.3.3.2.4 Table job_types

Table job_types contains the different types of jobs whose tasks can be placed on

the queue. It allows default processing parameter values can be associated with different

job types.

Generic Profile-Based Queue 50

Table 7 Table job_types Fields

Field

job_type_id

Purpose

Primary key
Short title/description of the type name
Maximum number of items to be processed of this type
per hour, this can be altered by program or system
administrator.

max_tasks_per_hour

Maximum number of items to process per execution. For
example

max_tasks_per_sess

Default priority level for items queued as this type. This
can be easily overridden anywhere in the application.

default_priority

The time that should be used to calculate the deadline.default_duration

4.3.3.2.5 Table messages

This is a table holding information for the messaging queue client. [EXPAND]

4.3.3.2.6 Table enrollments

This is a table holding information for the enrollment queue client. [EXPAND]

4.3.3.2.7 Table profiles

Each task type can have one or more profiles stored in table profiles. These

profiles indicate throughput parameters for a given combination of time and day of week.

The fields are shown below.

Generic Profile-Based Queue 51

Table 8 Table profiles Fields

Field

profile_id

Purpose

Primary key
task_type_id Type of task this profile applies to.
max_per_hour Maximum tasks to process per hour.
max_per_sess Maximum tasks to process per session.
start_ts Starting timestamp at creation time.
end_ts Ending timestamp.
Sat True if profile includes Saturday.
Sun True if profile includes Sunday.
Mon True if profile includes Monday.
Tue True if profile includes Tuesday.
Wed True if profile includes Wednesday.

True if profile includes Thursday.Thu
True if profile includes Friday. Fri

Default Value

1

1
Current time and date

false
false
false
false
false
false
false

For example, a given profile for weekend hours might have work days set to false

and weekends to true with high values set for max_per_hour and max_per_sess.

4.3.3.3 Views

In order to facilitate queue processing, database views can be developed to

combine important fields from different tables. Furthermore, since this is a generic queue

with mixed task types in it, they are especially important to provide filtered versions of it.

Finally, the views also provide a convenient default order to the tasks to be used in

processing.

4.3.3.3.1 View jobs_ordered

This view displays all fields of the jobs table ordered by priority in descending

order and then deadline in ascending order. Thus, the highest priority job whose deadline

is earliest appears in the first row.

Generic Profile-Based Queue 52

4.3.3.3.2 View tasks_ordered

This view displays all fields of the tasks table ordered by priority in descending

order and then deadline in ascending order. Thus, the highest priority task whose deadline

is earliest appears in the first row.

4.3.3.3.3 View job_tasks

This view combines jobs_ordered and tasks_ordered to give a final view of all

tasks along with related job information for each task. More importantly, it gives an order

that is derived from both job and task information. This view is ordered first by the

ordering of jobs_ordered. Then, within the rows for each job, the ordering is taken from

tasks_ordered.

4.3.3.3.4 Queue Client Views

Queue client views combine together all tables and fields relevant to a single

queue client. The client views build upon the core views. Views can be ordered according

to the need of the queue client.

For example, the message_queue view provides in each row all information

relating to a single message task. It is ordered by job priority, task priority and then

deadline. A similar view exists for enrollments.

It is not essential for a queue client to use the default ordering provided by the

queue.

4.3.4 Task Scheduling

The scheduling component of the design was developed to allow very flexible and

decoupled invocation of the queue clients. Direct invocation of the many web application

Generic Profile-Based Queue 53

components by the scheduler can become very difficult when the number of scheduled

tasks is high. In complex applications, the number of entries in the scheduler file could

easily become unmanageable. This it is not very portable. If the application were moved

to a new server, scheduled tasks could be tedious to migrate because of operating system

or scheduler differences. It is better to push all of the references to application logic into

the application directory structure itself in a scheduler independent way. This can be

achieved by splitting the process of invocation into a series of steps. In this design,

scheduling configuration has been completely decoupled from the invocations of program

logic. The scheduler is configured with directory names within the application and

instructed to execute whatever scripts lie in them regardless of what they are. These

directories each contain scripts that must be run on the same schedule. A given directory

contains all files that must be run every minute while another contains all script files that

must be run once per week. As an example, this web application has multiple processes

that must be run on different schedules. For example, report creation may occur once a

week whereas emails are processed from the queue once every minute.

The scheduler never invokes the application directly. Instead, it invokes these

scheduled scripts discussed above which in turn invoke one or more components of the

application that need to be run during the current schedule cycle. In this manner

application tasks can be reshuffled without having to adjust the scheduler configuration

(such as crontab files) at all. Instead, only the scheduled scripts need to be modified.

Thus, portability is greatly enhanced since changes are required only within the

application’s directory contents.

Generic Profile-Based Queue 54

The suggested directory structure appears in Fig. 3 as viewed through a file

browser. The web_application is the document root of the web application. The

scheduling_files subdirectory contains all files related to scheduling. Within this

directory, there are two directories which each hold a different type of script file. The

application_invokers directory holds application invokers, which are files that are used to

invoke components of the application but contain no actual application logic themselves.

The scheduled_scripts are files invoked by the system scheduler written in an operating

system command line scripting language. They in turn call the application invokers

written in the programming language of the application. In this manner, the application is

made to be completely independent of the scheduler. The scheduled_scripts directory

contains subdirectories that group files based on the similarity of their periodic execution

cycles. All files that need to be run every one minute are placed in the 1min directory. All

files that need to be run every hour are placed in the hourly directory and so on.

However, if greater customization is needed in scheduler configuration, there is nothing

preventing the scheduler from calling the application invokers directly.

Figure 3 Directory Structure for Scheduled Tasks

Generic Profile-Based Queue 55

Fig. 4 shows an example scheduler configuration using cron. The highlighted line

shows how just one line is needed to invoke all scripts that need to be run once a week.

The same can be done for hourly and monthly tasks.

Figure 4 Example Scheduler Configuration

4.3.5 Queue Processor

The processing of the queue takes place in server-side logic. The design of the

object-oriented queue processing mechanism consists of classes representing the major

aspects of the queue system. The classes are described below and their purposes are

justified. Furthermore, the behavior of the processor is discussed and explained.

4.3.5.1 Profiles

The queue client is responsible for choosing the profile to use based application

criteria. The profile chosen during an execution cycle is referred to as the active profile.

In this manner, the queue determines its own behavior. The profile-based action of the

queue allows customizable behavior and that is what gives it the ability to react to

Generic Profile-Based Queue 56

changes in its environment. Profiles provide performance and processing directives based

on different environmental factors.

Profiles are specific to task types. Thus, messaging and enrollment can have their

own individual profiles. A specific set of messaging profiles could be summarized as

follows:

WeekendWeekday Work Hours Weekday After Hours
Profile Values

start_time
end_time

Sat
Sun
Mon

Tue

Wed

Thu

Fri

max_per_hour
max_per_session
default_priority

Table 9 Example Profile for Messaging

7:00 AM
12:00 AM

*

*

*

*

*

5

1

1

12:00 AM
7:00 AM

*

*

*

*

*

*
*

1000 1000
5 5
1 1

The first profile is applied from Saturday to Wednesday and indicates that during

work hours (7 AM to 12 AM), 5 emails can be sent per hour. After work hours, the queue

can send 1000 emails per hour since the server needs less resources to devote to users.

During the weekend, the number remains at 1000 at all times. Note that Thursday and

Friday are the weekend for the university in which the study is taking place.

Upon each execution, the queue client determines which profile should be used

based on the current time and day of week. It then retrieves the number of tasks it should

process which is indicated in the profile. It keeps doing this unless it exceeds the

Generic Profile-Based Queue 57

maximum tasks per hour set in the profile. Thus, behavior of the system during work

hours can be drastically different from non-work hours during which most users are not

using the system. The general scenario has been outlined here. However, processing

based on profiles can be customized in each queue client if needed.

Profile selection can theoretically be based on many different factors. However, in

this scenario the profile was selected based on day of week and time of day. The

application’s user interface is expected to prevent the entry of overlapping profiles.

It must be noted that the profile selection features and algorithms developed in

this prototype were basic yet sufficient for application’s requirements. The goal of its

development was to be a proof-of-concept. Only day of week and time of day were

considered in the profile data. Nevertheless, it provided a tremendous benefit.

Furthermore, the profile features and algorithms could be greatly enhanced for both this

and other applications to provide further power and customization.

4.3.5.2 Model

The queue is manipulated directly by its corresponding classes. The relationships

between these classes are shown in Fig. 5.

Generic Profile-Based Queue 58

Figure 5 UML Class Diagram of Queue Classes

Task is an abstract class that is extended by the classes representing the queue

clients such as Message or Enrollment. Its attributes are completely useable in the sub

classes. However, its methods must be implemented in the sub-classes since adding a

message to the queue requires different logic than adding an enrollment.

Note that there is association between Job and Task indicating that a Task can

belong to at most a single Job if any and a Job can contain many tasks.

Generic Profile-Based Queue 59

Each Task requires a TaskType object as an attribute. Finally, each TaskType

object can possess multiple Profiles while a Profile is unique to a single TaskType

object.

4.3.5.3 Controllers

The server side controllers contain the logic that manipulates the model. There

should be at least one controller per queue client along with controllers for other

purposes such as queue analysis and maintenance.

The controllers are invoked by the scheduling system in order to carry out specific

actions at specific times.

4.3.5.3.1.1 Mailer

The mailer controller manages messages in the queue. It is executed every minute

by the scheduling mechanism. During each execution it first determines which profile is

currently active. It then checks the maximum number of emails that can be sent during

the current hour and checks whether that maximum has been reached. If it has not been

exceeded, pending messages are retrieved to be sent. Processing throughput values can

come from three sources. The first is from the task type. The second is the job type.

The number of messages retrieved is determined by the max_per_session

parameter in the chosen profile.

If a message was sent successfully, the task can then be mark as completed along

with corresponding message body files.

A central goal of the system is to always attempt to have emails sent before their

deadline. An important issue to consider is what happens if tasks and jobs are behind

Generic Profile-Based Queue 60

their deadlines. If the deadline for a job has passed and emails still remain, other jobs

should not be delayed as a result. At this point, the queue system processes the late job

and the next items in the queue simultaneously so that the late job is gradually finished

off while the other jobs begin. In this scenario, the controller retrieves an equal amount of

emails from each remaining job and serves all jobs in a round-robin fashion.

The system tracks how many tasks have been processed in the current hour in

order not to exceed the max_per_hour directive associated with the messaging task type.

This value is saved in a usage statistics file called queue_stats.

4.3.5.3.1.2 Enroller

The reason queuing is needed for enrollment is that it requires many integrity

checks that consume resources. Performing them at the same time as file parsing was

found to exceed typical hosting constraints by a lot. Separating them removes this limit.

The goal in using the queue for enrollment was place no restriction on the number of

enrollments that can be imported from a file other than the maximum file size that can be

uploaded through a browser.

For a small number of enrollments, the user can choose immediate processing.

For large enrollment jobs, an imported file is not processed at all. It is simply saved on

the server and a job is queue to process it. Processing this queued enrollment file requires

two scheduled processes. The first is to parse the files line by line and enqueue the

enrollment attempts. The second process is to actually enroll the students in the queue

while checking for errors such as lack of prerequisites or incorrect student numbers. If the

enrollment file is fully processed, the user is notified by email of success or failure.

Generic Profile-Based Queue 61

4.3.5.3.1.3 Queue Maintenance

Maintenance of the queue refers to deletion of completed tasks along with their

associated data and files. For example, if a message has been sent, the file containing its

content can be deleted. This can be done immediately after sending or by a scheduled

queue maintenance script which checks for all tasks and files that are eligible for deletion

and deletes them. The prior solution is more direct and timely.

4.4 Design Instantiation (Prototype)

As noted, the prototype was not a separate software application. Rather, it was

developed as a part of an existing university web application in order to demonstrate and

test its usability and the benefit of the queue design.

The prototype was developed to a great extent. This is because it was intended and

used for production level operations. It served a community of approximately 150 faculty

and 5000 students. Processing times were satisfactory. The prototype successfully ran on

a VPS shared hosting solution with low resource allocations that were only slightly above

the most basic VPS package found.

Generic Profile-Based Queue 62

Chapter 5 - Evaluation

This section includes a formal DSRIS style evaluation along with a discussion of the

above analysis and results. As stated above in the research methodology section,

evaluation in DSRIS consists of proving the utility of the artifacts produced. The artifacts

produced in this research were the full queue design and the instantiation of that design.

Two methods are being used to evaluate the artifacts. These methods are defined by

Vaishnavi and Kuechler (Vaishnavi and Kuechler, p. 160, 2008). The first method being

used is demonstration. By demonstrating the functionality of the prototype, the design is

proven to be effective as well as the prototype itself. More specifically, in this case the

queue is proven to be generic by successfully handling multiple types of queuable tasks.

Also, the queue is proven to be configurable and profile-based by successfully

incorporating profile values into its operation and demonstrating a difference in behavior

resulting from the selection of different profiles. The second method is benchmarking.

The system is tested and its performance is compared to a non-queue solution.

5.1 Demonstration

This section describes the demonstration-based evaluation of the design through

its prototype. It is broken down into different design goals of the system which are each

demonstrated in order to prove that they were successfully met.

5.1.1 Generic Nature of Queue

The queue proved to be truly generic in nature. It was used for a wide variety of

job types and task types as shown in Tables 9 and 10. All were successfully

accommodated by the queue. Countless programming hours were saved since a separate

Generic Profile-Based Queue 63

queue system did not have to be developed for different application components. Rather,

the same generic queue core was reused several times.

Furthermore, many of the job types were not preconceived requirements. Rather,

the need for them arose after the queue was already developed. Thus, the fact the queue

easily handled these new job and task types proved its generic nature. Several actual

examples exist. For instance, at one point it was decided that, in addition to emails being

sent to all students enrolled in a given course, another need was to simply send out an

email to all students in the system no matter what course they were enrolled in. Using the

highly flexible, extendable

Table 9 shows the task types used in the prototype. There were three main types.

Table 10 Task Types
Task Type Name Purpose

Message Sending an email message
Enrollment Enrolling a student into a section
Enrollment file Reading a block of lines from enrollment

file and queuing them for enrollment.

Table 10 displays the job types used in the application of which there are

currently six. Three of them make use of more than one task type. For example, the

enrollment import job performs many enrollment tasks and also queues a new

confirmation message task to inform the user about the jobs status.

The table displays various characteristics about each job type which makes it

evident that, although composed of the same basic task elements, these jobs differ widely

in nature and requirements. Furthermore, since the moment the queue was put into

production use, new job types arose regularly and the queue successfully handled them.

Generic Profile-Based Queue 64

The fact that the queue was able to handle all of these jobs successfully is proof of its

generic and flexible nature.

Generic Profile-Based Queue 65

Table 11 Job Types
Jo

b
T

yp
e

N
am

e

A
ve

ra
ge

 T
as

ks

Pe
r

Jo
b

T
as

ks
 P

er
 S

es
si

on

Fr
eq

ue
nc

y

A
ve

ra
ge

D

ur
at

io
n

T
as

k
T

yp
e(

s)

D
es

cr
ip

tio
n

Enrollment
Import

Weekly
Student
Report

Student
Mailing

Enrollment
File
Processing

Daily
Logon
Report

Emailing
Single
Message

600

5000

5000

600

1

1

10

1

1

10

1

1

60/hr

12/hr

60

60/hr

1/day

1/min

10
min

5
days

5
days

30min

15
min

5 min

Enrollment

Email

Email

Read
enrollment
file,
enrollment

Email

Email

Import a list of enrollments in
a CSV and immediately add
them to the enrollment queue.
The process the queue
gradually. Finally, email an
error report to the user who
submitted the job.
Generate a report for every
student enrolled in a course
and queue it for mailing.
Gradually process the queue.
Queue one copy of an email
message for every student.
Also send a copy of the email
to the user who submitted it.
Gradually process the queue.
Upload a file containing
enrollments to be processed.
Gradually process the file.
During each session, store the
file enrollments in the
enrollment queue. Process this
queue gradually. Email a
report of errors to the user.
Generate a list of users who
logged on today and users who
did not. Email this list to the
academic program supervisor.
A simple job to send a single
email message.

Offering 700 10 1/min 24 Enrollment Gradually copy the enrollment
Copy hours list of one offering to another

offering.

Generic Profile-Based Queue 66

5.1.2 Effective Use of Profiles

A specific instance in which the configurable profiles were highly effective and

provided a significant, novel advantage over the previous version was that system

behavior varied between the development and production application versions without

having to change any programming. Programming logic on both servers was exactly the

same. However, the profiles were simply adjusted to reflect the fact that the development

server was able to process the queue much faster for speedy development work and

testing. The production server profile was adjusted for slower processing in order not to

interfere with user activity. This was one of the main initial goals of the system and it was

achieved.

5.1.3 Completeness, Correctness and Reliability

An indicator that the queue system produced was complete, correct and reliable is

that it was used at a production level rather than only in an experimental development

environment.

Careful analysis of data stored in the queue showed the following:

• Job id’s were being assigned correctly.

• All tasks were being processed. No tasks were being skipped.

• Tasks were receiving a proper status designation of success or failure.

5.1.4 Performance and Timeliness

The queue system demonstrative a massive performance improvement over its

previous non-queue based predecessors. This is discussed further in the benchmarking

section.

Generic Profile-Based Queue 67

In terms of timeliness, the queue was found to always process its tasks in an

acceptable time frame. It successfully met the deadlines assigned to each job and to each

individual task.

It was also noted that sending emails typically succeeded on the first try and the

system was able to process approximately 10,000 emails per week using a rate of one

email per minute with no problem.

5.1.5 Cost Savings

Another demonstration of the efficacy of the prototype is the real-life cost-savings

effect it had on the organization that utilized it. One example of an unexpected situation

in which the software artifact provided a major cost savings occurred during its

production use. The university department grew significantly in student population. A

feature to copy an offering’s enrollments to another was failing because the VPS resource

limits were being exceeded. A successful solution was devised which was to define an

offering enrollment copy job. This job’s role was to gradually copy enrollments from one

offering to another without consuming too many system resources at a time. The number

of students to copy every minute was set to a small number. The enrollment job was

completed within 24 hours which was tolerable for the department. In the end, the

department was saved from having to upgrade to a more expensive virtual private hosting

plan.

5.2 Benchmarking

Benchmarking was used in order to present actual data proving the advantage

provided by the queue system. The application feature used for benchmarking was

enrollment since this is the most resource intensive activity of the system. Two sets of

Generic Profile-Based Queue 68

data are presented below. In the first part, the new queue based system was tested against

the old pre-queue method. Both systems were tried to determine their resource usage

under successive levels of intensity. Furthermore, the time and memory required for each

upload operation was also recorded to measure performance as well. In the second part,

data is presented about what was achieved on an actual production virtual private sever

using the queue system.

5.2.1 Server Resources and Configuration

This section provides an overview of the resources allocated on both the

development and production server. They are displayed in Table 11.

Generic Profile-Based Queue 69

Table 12 Server Resources
Type

Database
Shared Buffers

Temp Buffers

Work Memory

Server side
scripting

Max Execution
Time
Max Input Time

Memory Limit

Hardware
Memory
CPU

Operating
System

Development

1 MB

1 MB

1 MB

1000 sec

1000 sec

200 MB

4 GB

1 x Intel Core2

Duo 3.00 GHz

Windows XP

Production Description

100 sec

100 sec Parsing
request data

150 MB Maximum
amount of
memory a
script may
consume

288 MB

3 x Intel(R)

Xeon(TM)

CPU

3.20GHz,

2048 KB

cache

Cent OS

(Linux)

5.2.2 Direct (Non-Queued) vs. Queued Enrollment

This section shows the results of a crucial test to gauge whether the entire effort

produced any advantage over the old system or not. Figure 6 shows a screen shot of the

application used to carry out the benchmarking experiment. The system provided

feedback indicating the number of successful and unsuccessful enrollments along with

the peak memory usage and the time required for execution. Furthermore, the user is

Generic Profile-Based Queue 70

provided a choice to use the direct, unqueued enrollment method or the new queue-based

method. In this manner, both systems were compared.

Figure 6 Benchmarking Interface

The enrollment database table was emptied out between every run to give each

upload operation the same exact circumstances. The enrollment files uploaded were also

optimized to prevent failed enrollments which add execution time because of thrown

exceptions.

Table 13 displays the required execution time of the direct, non-queued enrollment

versus the new queue based mechanism in order to measure the resulting increase in the

number of imports that could be uploaded at once. The table shows the required time to

process the file as well as the peak memory consumption of the application while facing

successive levels of activity.

Generic Profile-Based Queue 71

Table 13 Required Execution Time
Number of Queued Time Direct Time (sec) Queued Versus Direct

Enrollments (sec)
25 0.33 1.66 20.00%

100 0.99 5.00 20.00%

200 1.52 10.12 15.00%

300 2.22 15.17 15.00%

400 2.93 20.44 14.00%

500 3.69 25.79 14.00%

600 4.46 31.41 14.00%

700 5.29 37.04 14.00%

800 5.82 43.74 13.00%

900 7.03 47.55 15.00%

1000 7.45 53.91 14.00%

1500 10.96 86.90 13.00%

2000 14.76 112.68 13.00%

3000 23.70 174.16 14.00%

Average 14.86%

The results in Table 13 indicate that the queue method of enrollment takes, on

average, only 15% of the time required by the direct method. Of further significance is

that the direct method shows that at approximately 600 enrollments it reaches an

unacceptable execution time based on an allowed execution time of 30 seconds, which is

common in many hosting plans.

Generic Profile-Based Queue 72

Figure 7 Execution Time Comparison

Figure 7 portrays the data of Table 13 graphically and emphasizes how the

improvement in performance becomes even greater as the number of enrollments

increases.

0

20

40

60

80

100

120

140

160

180

200

25 100 200 300 400 500 600 700 800 900 1000 1500 2000 3000

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of Enrollments

Generic Profile-Based Queue 73

Table 14 Enrollments Per Second
Number of Enrollments Queued Direct

25

100

200

300

400

500

600

700

800

900

1000

1500

2000

3000

Average

76

101

132

135

137

136

135

132

137

128

134

137

136

127

127.35

15

20

20

20

20

19

19

19

18

19

19

17

18

17

18.57

The data in Table 13 was used to derive an average number of enrollments shown

in Table 14. The queue based system achieved a 586% increase over the direct method.

Generic Profile-Based Queue 74

Table 15 Memory Consumption
Number of Queued Direct Queued Versus

Enrollments Direct
25 9.11 9.25 98.00%

100 13.28 13.99 95.00%

200 18.75 20.36 92.00%

300 24.33 26.61 91.00%

400 29.82 33.10 90.00%

500 35.51 39.35 90.00%

600 40.99 45.59 90.00%

700 46.48 51.85 90.00%

800 51.99 58.32 89.00%

900 57.85 64.80 89.00%

1000 63.35 70.84 89.00%

1500 90.78 101.42 90.00%

2000 119.06 133.51 89.00%

3000 173.92 195.26 89.00%

MAX

MAX

4000 FAILED FAILED

3189

3619

Average 90.79%

Table 15 displays a comparison of memory consumption which turned out to be

approximately the same for both systems with the queue system having slightly better

Generic Profile-Based Queue 75

performance. On average, it consumed 90% of what the direct method required. Memory

consumption turned out to be the primary limiting factor of the experiment. Both systems

failed at 4000 enrollments because they exceeded the maximum allowed memory.

However, before failing, the queue system was able to perform 3619 enrollments while

the direct method reached only 3189. The consumption is also displayed graphically in

Figure 8.

0

50

100

150

200

250

25 100 200 300 400 500 600 700 800 900 1000 1500 2000 3000

Pe
ak

 M
em

or
y
U
sa
ge

 (M
B)

Number of Enrollments

Figure 8 Memory Consumption Comparison

It is important to interpret the data above correctly. The actual execution time,

memory consumed and number of enrollments achieved are not highly significant since

this differs based on server resources. Rather, it is the percentage change achieved as

shown in the tables. Furthermore, the fact that queue system did not achieve a drastic

improvement in memory consumption as it did for execution time does not mean that the

objectives were not met. Rather, it indicates that the queue system is able to achieve what

Generic Profile-Based Queue 76

the direct method did in far less time which virtually eliminates the possibility of users

facing connection timeouts as was common in the older direct method of enrollment. In

summary, the queue system can accomplish what the previous system could in only 15%

of the time and using 90% of the former memory required.

5.2.3 Queue System Actual Performance in a VPS

The production server underwent similar testing and achieved 2827 maximum

queued enrollments compared to 959 maximum direct enrollments. This represents a

195% increase in performance based on the resources allocated.

Generic Profile-Based Queue 77

Chapter 6 - Conclusion

This endeavor was both a learning experience and a knowledge generating process.

Its end product was the design for a highly reusable and extendable generic queue core

system as well as a prototype implementation.

Furthermore, the queue performance is configurable through the use of profiles for

specifics blocks of time. Also, the core queue design can be applied in a wide variety of

circumstances and is independent of the particular technologies used.

A careful reading of this document shows that the research goals were met

successfully and that the queue design was effective. To begin with the design was made

to be technology independent such that it could be implemented for any application on

any architecture. It did indeed produce a system that handled several different types of

tasks. Its performance was measured carefully and was found to be very satisfactory and

vastly superior to previous non-queue methods. This improvement in performance

translates directly into a hosting cost savings, which was one of the original stated goals

of the research.

Nevertheless, it is restated here that the main goal was not performance in the sense

that the queue was designed to produce maximum throughput. Rather, it was to preserve

resources and to maximize throughput under resource constraints.

The design has great potential to assist many projects in preventing the need for

developing separate queue systems for logically different task types. Instead, this

research has demonstrated that a single generic queue core extended for any purpose can

suffice. This saves significant development time, effort and costs. Because of the

Generic Profile-Based Queue 78

ubiquitous need for queues, the usefulness of this research is far-reaching and it is hoped

that it makes a solid contribution to the field of web application architecture.

Generic Profile-Based Queue 79

Chapter 7 - Areas for Further Research and Development

During the time span allotted for this research, several potential areas for further

research and development of the design and prototype were identified. These include the

following items:

•	 Allowing for multiple matching profiles for a time span and choosing a single one

based on criteria in order to increase the flexibility and preciseness of profiles.

•	 Expanding the scope of the design such that the queue itself becomes a very basic

scheduler. This further decouples the application from its environment and allows

for greater portability. For example, instead of having only a deadline for each

task, the queue can also have a start time for each task. With both a start time and

end time, the queue can aim to carry out a task within a time frame, thus

achieving basic scheduling functionality. Furthermore, this idea can be adjusted to

make tasks executed regularly rather than just once.

•	 Choosing profiles dynamically based on multiple factors in addition to time of

day and day of week. The profile picking algorithm used in this research was

limited to using time as a factor. However, other field types were also included in

the profile table to allow for further development. For example, a profile could be

picked by a combination of time of day as well as memory currently available.

Whereas a default profile may, for example, direct the system to consume

minimum resources during business hours, the system can be more intelligent to

allow for exceptions. For example, a current lull in system activities by users may

allow for higher resource consumption by the queue. This enhancement could

result in a highly versatile queue with very controllable behavior.

Generic Profile-Based Queue 80

One variation of this enhancement could be that the system uses real-time

usage data to determine the desired queue throughput. For example, if there are

many concurrent users, the system should pick a less demanding profile entry for

messaging to preserve bandwidth. The ultimate test of success for this project is

that the program should be run and two sets of data should be produced. One

shows user traffic and the other shows email sending traffic. The latter should

peak whenever the former drops.

•	 Logging system events in order to maintain records about queue activity and task

errors. This information could also be periodically mailed to a system

administrator for review.

•	 Assigning a due date to both tasks and jobs. The queue processing algorithm

could then incorporate these values to determine which tasks to process first.

•	 Checking real-time resource usage and comparing it to multiple matching profiles

and using a complex algorithm to pick from the matches. The algorithm could

intelligently check which profile can most utilize currently available resources

based on recorded usage trends. A further evolution beyond that could be using

older historical trends to pick a profile in advance. However, in both scenarios,

flexibility would have to be built in to allow the queue to cut back in resource

usage if availability is scarce.

•	 Performing rigorous queue clean-up operations. As the queue processes tasks, the

resources associated with those tasks should ideally be freed up immediately.

These include temporary files, database records, etc. Although this is currently

done to a certain extent, it is not optimized to be immediate and complete.

Generic Profile-Based Queue 81

•	 Using materialized views for faster queue processing.

•	 Using high performance queue processing algorithms.

Beyond what has been mentioned, other areas specific to the application developed

in this university scenario have also been identified as follows:

•	 Adding on other queue clients such as large score imports requiring many steps of

validation.

•	 An enhancement could be allowing multiple recipients to be specified for each

message in the queue. Currently, if multiple recipients are specified for a single

message, a task is added for each recipient. However, this greatly affects the

algorithms specified above since in this case there is no direct correlation between

the number of tasks and the number of emails needed to be sent. It also introduces

the complication that even a single message might exceed the number of emails

per hour allowed constraint since the number of recipients might exceed this

number.

Generic Profile-Based Queue 82

Chapter 8 - References

Creswell, J. W. (2003). Research design: qualitative, quantitative, and mixed

methods approaches (2nd ed.). Thousand Oaks, CA: Sage Publications.

Leedy, P. D., & Ormrod, J. E. (2005). Practical research: planning and design (8th

ed.). Upper Saddle River, NJ: Pearson Education.

Willis, J. W. (2007). Foundations of qualitative research: interpretive and critical

approaches. Thousand Oaks, CA: Sage Publications.

Yin, R. K. (2003). Case study research: design and methods (3rd ed.). Thousand

Oaks, CA: Sage Publications.

Pasquali, M., Baraglia, R., Capannini, G., Ricci L., Laforenza, D. (2008). A two-

level scheduler to dynamically schedule a stream of batch jobs in large-scale grids. High

performance distributed computing, proceedings of the 17th international symposium on

high performance distributed computing, p. 231-232.

Capannini, G., Baraglia, R., Puppin, D., Ricci, L., Pasquali, M. (2007). A job

scheduling framework for large computing farms. Proceedings of the 2007 ACM/IEEE

conference on supercomputing, Article 54.

Herrington, J. (2006). Batch processing in PHP: how to create long-running jobs.

Retrieved from http://www.ibm.com/developerworks/opensource/library/os-php-batch on

August 28, 2009.

Ronngren, R., Ayani, R. (1997). A comparative study of parallel and sequential

priority queue algorithms. ACM Transactions on Modeling and Computer Simulation

(TOMACS). 7(2), 157 – 209.

http://www.ibm.com/developerworks/opensource/library/os-php-batch

Generic Profile-Based Queue 83

March, S. and Smith, G. (1995). Design and natural science research on information

technology. Decision Support Systems, 15, 251-266.

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information

systems research. MIS Quarterly, 28(1), 75-105.

Vaishnavi, V. (2004). Research patterns: improving and innovating information

systems and technology. Version 1.0, 2004. Georgia State University, Atlanta, GA.

Vaishnavi , V. and Kuechler, W. (2004). Design research in information systems.

ISWorld. Retrieved on January 6, 2006 from

http://www.isworld.org/Researchdesign/drisISworld.htm.

Kuechler, W. (2009). Email conversation.

Marc, S. and Smith, G. (1995). Design and natural science research on information

technology. Decision Support Systems, 15, 251-266.

Configuring queue profiles. Retrieved from

http://www.juniper.net/techpubs/software/erx/junose82/swconfig-qos/html/queue

profiles-config2.html#1000063 on January 1, 2010.

DeVries, D., Naerezny, M. (2008). Rails for PHP developers. The Pragmatic

Programmers.

Nicholas, J. (2004). Project management for business and engineering. Elsevier.

Oracle Corporation. Oracle9i application developer's guide - advanced queuing.

release 2 (9.2). Part Number A96587-01 Introduction to Oracle Advanced Queuing.

Message-oriented middleware. Taken from http://en.wikipedia.org/wiki/Message

oriented_middleware on February 18, 2010.

http://en.wikipedia.org/wiki/Message
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-qos/html/queue
http://www.isworld.org/Researchdesign/drisISworld.htm

Generic Profile-Based Queue 84

Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph Seffi Naor, Baruch Schieber,

And Hadas Shachnai. (2009). Throughput maximization of real-time scheduling with

batching. ACM Transactions on Algorithms. 5(2), 1-17.

Berman, F., Wolski, R., Figueria, S., Schopf, J., Shao, G. (1996). Application-level

scheduling on distributed heterogeneous networks. Proceedings of Supercomputing.

Blythe, J. Jain, S. Deelman, E. Gil, Y. Vahi, K. Mandal, A. Kennedy, K. Task

scheduling strategies for workflow-based applications in grids. (2005). Cluster

Computing and the Grid. 2, 759-767.

Zhang, H., Ferrari, D. Rate-controlled static-priority queuing. (1993). Proceedings of

IEEE INFOCOM’93. 227 - 236.

Harchol-Balter, M, Bansal, N., Schroeder, B. (2000). Implementation of SRPT

scheduling in web servers. Technical Report CMU-CS-00-170.

Cherkasova, L. (1998). Scheduling strategy to improve response time for web

applications. High-Performance Computing and Networking. 1401, 305-314.

Sundell, H., Tsigas, P. (2005). Fast and lock-free concurrent priority queues for

multi-thread systems. Journal of Parallel and Distributed Computing. 65(5), 609-627.

Abdelzaher, T., Bhatti, N. (1999). Web content adaptation to improve server

overload behavior . Computer Networks. 31(11-16), 1563-1577.

Voigt, T., Tewari, R., Freimuth, D., Mehra, A. (2001). Kernel mechanisms for

service differentiation in overloaded web servers. Proceedings of the USENIX Annual

Technical Conference.

Schroeder, B., Harchol-Balter, M. (2006). Web servers under overload: how

scheduling can help. ACM Transactions on Internet Technology (TOIT). 6(1): 20 – 52.

Generic Profile-Based Queue 85

Harchol-Balter, M., Schroeder. B., Bansal, N., Agrawal, M. (2003). Size-based

scheduling to improve web performance . ACM Transactions on Computer Systems

(TOCS). 21(2): 207-233.

Schroeder, B., Harchol-Balter, M. (2006). Web servers under overload: how

scheduling can help. ACM Transactions on Internet Technology (TOIT). 6(1): 20-52.

Slothouber, L. (1996). A model of web server performance. Proceedings of the

Fifth International World Wide Web Conference.

Schroeder, B., McWherter, D., Ailamaki, A. , Harchol-Balter, M. (2004). Priority

mechanisms for OLTP and transactional web applications. International Conference on

Data Engineering (ICDE'04). 20:535.

Advantages of using PL/PGSQL. PostgreSQL 8.4.2 Documentation

Retrieved on March 11, 2010 from http://www.postgresql.org/docs/8.4/static/plpgsql-

overview.html#PLPGSQL-ADVANTAGES.

Marchetti, P., Cerdá, J. (2009). An approximate mathematical framework for

resource-constrained multistage. Chemical Engineering Science. 64(11): 2733-2748, 16p

Performance evaluation. (2007). 26th International Symposium on Computer,

Performance, Modeling, Measurements, and Evaluation. 64(9-12):1009-1028.

Abdelzaher, T., Bhatti, N. (1999). Adaptive content delivery for

web server QoS. International Workshop on Quality of Service.

Enabling a web of billions of services. (2010). Glossary. Retrieved March 17,

2010 from http://www.soa4all.eu/glossary.html.

http://www.soa4all.eu/glossary.html
http://www.postgresql.org/docs/8.4/static/plpgsql

Generic Profile-Based Queue 86

Appendix A - Class Interfaces

1. Generic Queue Core Classes

//Queue should be extended for new queue client types.
class Queue {

function Queue();

//get pending jobs for a certain type

function getPendingJobs(jt);

function findDoneJobs();

function closeDoneJobs();

function getJobType(typNm);

function delJobs();

function delTasks();

function initializeJob(typNm);

function getNewJob(typNm);

function getTaskType(typNm);

}

class JobType {

public job_type_ar;

public job_type_id;

function JobType(jobTypeId);

//get list of users who should be notified that a job of this
//type has been completed
function getAlerts();

}

class Job {

//refresh fields in the active record object
function refresh();

function isLate();

function isDone();

function add();

Generic Profile-Based Queue 87

function setType(jt);

// mark as complete
function setAsDone();

//decode data stored in info_json table field
function getJSONInfo();

function save();

//is job done or not?

function getStatus();

}

class Profile {

public profile_id;

public profile_ar;

function Profile(id);

}

class TaskType {

public task_type_id;

public task_type_ar;

public start_ts;

public end_ts;

function TaskType(id);

//choose which performance profile to use
function getActiveProfile();

}

//Task should be extended for new task types
abstract class Task {

public task_id;

public task_ar;

public start_time;

public end_time;

public status;

Generic Profile-Based Queue 88

public attempts;

public curr_time;

public task_type;

public job_id;

public now;

private task_type_desc;

function Task(id);

//add to queue

function enqueue();

//mark as complete

function setAsDone();

//remove from queue

function dequeue();

//indicate that this task has been tried again

function incrementAttempts();

function getDefaultPriority();

function setType(tt);

}

2. Enrollment Queue Classes

class EnrollmentQueue extends Queue {

public qdEnrs;

function EnrollmentQueue();

function getEnrJobType();

function getEnrTasksForJob(jb, onlyWithErrs);

function getNumEnrsSent(start_ts, end_ts);

function getPendingEnrs(num);

//perform enrollment for all pending enrollments retrieved
function processEnrs();

function enqueEnr(sectionNumber, studentId, gender, campusId,

offeringId, semesterId, jobId);

function delEnrs();

Generic Profile-Based Queue 89

}

class EnrFileQueue extends Queue {

public qdEnrFiles;

function EnrFileQueue();

function getEnrFileJobType();

function addFile(path, offId, campId, jobId);

//get queued enrollments for a single job
function getEnrFileTasksForJob(jb, onlyWithErrs);

function getNumEnrFilesSent(start_ts, end_ts);

function getPendingEnrFiles(num);

function processEnrFiles();

function enqueEnrFile(sectionNumber, studentId, gender, campusId,

offeringId, semesterId, jobId);

function delEnrFiles();

}

class QueuedEnrFile extends Task {

public enrFile_id;

public enr_file_ar;

function QueuedEnrFile(id);

function read();

}

class EnrJob extends Job {

public enr_ar;

public job_id;

function EnrJob(jobId);

}

class QueuedEnrollment extends Task {

public qd_enrollment_id;

Generic Profile-Based Queue 90

public qd_enrollment_ar;

function QueuedEnrollment(id);

function enroll();

}

3. Message Queue Classes

class MessageQueue extends Queue {

public msgs;

function MessageQueue();

function getUnsentMsgs(num);

function getNumMsgsSent(start_ts, end_ts);

function sendMsgs();

function delMsgs();

}

class Message extends Task {

private message_id;

public msg_ar;

public body_path;

public body_tpl;

public title;

public from;

public to;

public to_user_id;

function Message(id);

function send();

function addRecipients(recps);

//add to queue
function addMsg();

function del();

Generic Profile-Based Queue 91

//return array of file paths for attachments
function getAttchStr();

function hasAttch();

}

Generic Profile-Based Queue 92

Appendix B - SQL Table Definitions

1. Queue Tables

CREATE TABLE profiles
(

profile_id integer NOT NULL,
start_time time,
end_time time ,
sat boolean,
sun boolean,
mon boolean,
tue boolean,
wed boolean,
thu boolean,
fri boolean,
task_type_id integer,
max_per_hour integer,
max_per_sess integer,
default_priority integer,
CONSTRAINT profile_pk PRIMARY KEY (profile_id)

)

CREATE TABLE task_types
(

task_type_id integer NOT NULL,
task_type_name character varying,
default_priority integer,
default_duration integer,
max_attempts integer,
CONSTRAINT task_types_pk PRIMARY KEY (task_type_id)

)

CREATE TABLE tasks
(

task_id integer NOT NULL,
task_type_id integer,
job_id integer,
start_ts timestamp ,
end_ts timestamp ,
priority smallint,
attempts integer,
status character(1),
user_id integer,
message text,
success character(1),
CONSTRAINT tasks_pk PRIMARY KEY (task_id),
CONSTRAINT tasks_job_id_fk FOREIGN KEY (job_id)

REFERENCES jobs (job_id)
ON UPDATE CASCADE ON DELETE RESTRICT,

Generic Profile-Based Queue 93

CONSTRAINT tasks_type_fk FOREIGN KEY (task_type_id)
REFERENCES task_types (task_type_id)
ON UPDATE NO ACTION ON DELETE NO ACTION

)

CREATE TABLE jobs
(

job_id integer NOT NULL,
job_type_id integer,
status character(1),
user_id integer,
priority integer,
start_ts timestamp ,
end_ts timestamp ,
due_date_ts timestamp ,
title text,
description text,
info_json text,
CONSTRAINT jobs_pk PRIMARY KEY (job_id),
CONSTRAINT jobs_type_fk FOREIGN KEY (job_type_id)

REFERENCES job_types (job_type_id)
ON UPDATE NO ACTION ON DELETE NO ACTION

)

CREATE TABLE job_types
(

job_type_id integer NOT NULL,
job_name character varying,
default_task_duration integer,
default_task_priority integer,
max_task_attempts integer,
max_tasks_per_hour integer,
max_tasks_per_sess integer,
CONSTRAINT job_types_pk PRIMARY KEY (job_type_id)

)

CREATE TABLE job_alerts
(

job_alert_id integer NOT NULL,
employee_id integer,
job_type_id integer,
CONSTRAINT job_alerts_pk PRIMARY KEY (job_alert_id)

)

2. Queue Client Tables

CREATE TABLE messages
(

message_id integer NOT NULL,
body text,

Generic Profile-Based Queue 94

from_user_id integer,
title text,
to_user_id integer,
from_addr character varying(200),
to_addr character varying(200),
body_path character varying(2000),
was_sent boolean DEFAULT false,
attachments character varying,
task_id integer,
CONSTRAINT msg_pk PRIMARY KEY (message_id),
CONSTRAINT msg_tsk_id_fk FOREIGN KEY (task_id)

REFERENCES tasks (task_id)
ON UPDATE CASCADE ON DELETE CASCADE

)

CREATE TABLE queued_enrollments
(

qd_enrollment_id integer NOT NULL,
sec_num integer,
gender character(1),
student_id bigint,
campus_id integer,
task_id bigint,
oid integer,
offering_id bigint,
sec_num_source character(1),
max_sec_size integer,
CONSTRAINT qd_enrs_pk PRIMARY KEY (qd_enrollment_id),
CONSTRAINT qd_enrs_task_id_fk FOREIGN KEY (task_id)

REFERENCES tasks (task_id)
ON UPDATE CASCADE ON DELETE CASCADE

)

CREATE TABLE enrollment_files
(

enr_file_id integer NOT NULL,
path character varying,
offering_id integer,
campus_id integer,
job_id integer,
curr_line integer DEFAULT 0,
CONSTRAINT enr_file_pk PRIMARY KEY (enr_file_id),
CONSTRAINT enr_file_job_id_fk FOREIGN KEY (job_id)

REFERENCES jobs (job_id)
ON UPDATE CASCADE ON DELETE CASCADE

)

Generic Profile-Based Queue 95

Glossary

Generic Queue Core Terms

task – an entry in the queue referring to a unit of work that must be processed and

completed.

task type – the type designation of a task. This determines the processing logic for

a task.

job – a logical grouping of tasks usually created during the same execution cycle

or close together in time. For example, a weekly student report is generated for

10,000 students. These are all submitted to the queue at once as members of the

same job. If all 10,000 reports have been mailed out, that single job has been

completed.

task priority – a numerical value indicating the relative priority of a task.

job priority – a numerical value indicating the relative priority of a job.

queue client – Also known as a Job Processor, an application component that

makes use of the queue services and contains business logic that processes all of

the tasks of a given job. Examples are email messaging and enrollment clients.

profile entry – a directive stored in the database indicating how the queue should

behave under a set of environmental circumstances for a given task type. Each

entry contains ideal queue throughput values for a given time range and set of

days of the week. An example is that during the weekend at any time the queue

should send 100 emails per hour. Another profile entry could indicate that during

the weekdays from 9 AM to 5 PM the queue should send only 5 per hour.

Generic Profile-Based Queue 96

profile – a set of profile entries for a task type. An example is a profile for

messaging that contains two entries. One is for work hours, another is for off

hours during weekdays and a third is for the weekend.

active profile – the profile that has been chosen to be used for a given moment in

time. The other profiles are inactive.

processing cycle – a single execution run of a queue client (see above). Each

processing cycle is invoked by the system scheduler.

system scheduler – the mechanism that determines how often and when to run the

queue client processing cycles for each job type.

Application Specific Terms

These are terms relating to the specific queue clients developed for the

instantiated prototype.

enrollment – the placement of a student into a course section.

enrollment file – a file containing one or more lines with each line containing the

data needed to enroll a single student into a section

	Regis University
	ePublications at Regis University
	Summer 2010

	A Design of a Generic Profile-Based Queue System
	Ali Husain
	Recommended Citation

	Microsoft Word - Ali Husain_FinalThesis2.docx

