
Regis University
ePublications at Regis University

All Regis University Theses

Summer 2010

Requirement Specification Stage of the Project
Lifecycle of Computerized Systems & the
Standards that Can Be Implemented
Nicola Grace
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Grace, Nicola, "Requirement Specification Stage of the Project Lifecycle of Computerized Systems & the Standards that Can Be
Implemented" (2010). All Regis University Theses. 295.
https://epublications.regis.edu/theses/295

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217365773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/295?utm_source=epublications.regis.edu%2Ftheses%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

REQUIREMENT SPECIFICATION AND STANDARDS i

Abstract

Understanding requirement specifications was an integral part of information systems design

and was critical to the success of interactive systems. However, specifying these requirements

was not simple to achieve. This research, including a literature review, describes general

methods to support requirement specification analysis that can be adapted into a range of

situations in accordance with relevant standards. The main techniques discussed were risk

management, stage-based lifecycle models and frameworks. Additionally, as part of the

methodology and project history, the methods for implementation, process improvements and

schedule of the research was examined. A case study with statistical analysis was described

to illustrate how these techniques, methods and standards have been applied in practice and

the advantages and disadvantages experienced.

Acknowledgements

I would like to acknowledge with thanks everyone who helped and supported me in my

studies. Especially, I would like to thank my parents for their support throughout this process.

I would like to acknowledge my willing participants, for their patience and assistance.

Finally, I would like to thank my thesis advisor, Mike Prasad, for all his guidance and support

during this process, and my thesis facilitator, Don Ina, for his clear guidance throughout the

thesis journey.

Table of Contents

Abstract ... i
Acknowledgements .. ii
Table of Contents ... iii
List of Figures ... vi
List of Tables ... vii
Chapter 1 – Introduction .. 1

1.1 Background Information ... 1

1.2 Scope of work and thesis significance. ... 2

1.3 Acknowledgment of previous work .. 4

1.4 Road Map of thesis .. 5

1.5 Beginning of thesis project workload.. 6

Chapter 2 – Review of Literature and Research .. 7

2.1 General Introduction ... 7

2.2 Standards ... 9

2.2.1 IEEE standards ... 10

2.2.2 IEEE Minor standards .. 14

2.2.3 Industrial standards .. 22

2.3 Introduction to requirement specifications .. 25

2.3.1 Techniques for requirement specification generation .. 26

2.3.2 Managing requirement specification generation .. 27

2.3.3 Risk Management in relation to requirement specification 32

2.3.4 Stage-based lifecycle models ... 32

2.3.5 Requirement specifications stages frameworks ... 33

2.4 Standard and requirement stage in combination ... 35

2.5 Conclusion ... 40

Chapter 3 – Methodology .. 42

3.1 Research Method ... 42

3.2 Application of thesis in the research subject ... 43

3.3 Justification ... 43

3.3.1 Qualitative Research .. 43

3.3.2 Quantitative Research .. 45

3.4 Key Processes and Procedures .. 48

3.4.1 Participating Groups .. 49

3.4.2 Sampling .. 50

3.4.3 Data Collection .. 50

3.4.4 Observations .. 51

3.4.5 Interviews ... 51

3.4.6 Official Records and Documents ... 54

3.4.7 Coding and Analysis .. 55

3.4.8 Exploring Researcher Values ... 55

3.4.9 Leaving the Field ... 56

3.5 Resources .. 56

3.6 Summary of methodology chapter .. 56

Chapter 4 –Project Results and Analysis ... 58

4.1 Experimental Results... 58

4.1.1 Standards and relevance to requirement specification 58

4.1.2 Gathering of requirement specification ... 59

4.1.3 Documenting of requirement specifications .. 62

4.1.4 Conflicts and problems experienced with requirement specifications 64

4.1.5 Interview .. 65

4.2 Analysis of results gathered. ... 69

4.2.1 Standards and relevance to requirement specification 69

4.2.2 Gathering of requirement specification ... 70

4.2.3 Documenting of requirement specifications .. 74

4.2.4 Conflicts and problems experienced with requirement specifications 76

4.2.5 Interview .. 77

4.3 Conclusion ... 81

Chapter 5 – Project History.. 82

5.1 The beginning of the thesis ... 82

5.2 Managing the thesis ... 83

5.3 Evaluation of whether or not the project meets project goals 86

5.4 Lesson Learned for project management .. 86

5.4.1 Lesson Learned Introduction ... 86

5.4.2 What Went Well? ... 87

5.4.3 What Didn‘t Go Well? ... 88

5.5 Project variables .. 89

5.6 Project Summary ... 90

Chapter 6 – Conclusions .. 92

6.1 Main Findings ... 92

6.2 Summary of Results Integration .. 92

6.3 Summary of Conclusions Integration .. 94

6.4 Study Limitations .. 98

6.5 Recommendations and Reflections ... 99

6.6 Final Conclusion ... 100

References .. 101

Appendix A – Annotated Bibliography ... 110

Appendix B -Questionnaire ... 142

Appendix C – Project History .. 148

Glossary ... 150

List of Figures

Figure 1. Effect of Cost vs. Product Size

Figure 2. The purpose of requirement specifications.

Figure 3. Tools for gathering requirements.

Figure 4. Requirement specification gathering techniques.

Figure: 5. Techniques to identify the needs of users.

Figure 6. Frameworks in requirement specification documentation.

Figure 7. Languages for requirement specification documentation.

Figure 8. Main Conflicts experienced during requirement specification generation.

Figure 9. Correlation between hours spent on requirement specification

documentation and overall cost of project.

Figure 10. Requirement Creep.

Figure 11. Project Plan.

Figure 12. Project Plan 11th of December 2010

Figure 13 Project Plan 14th of February 2010

List of Tables

Table: 1. Requirement specification as per document and per line.

Table: 2. Distinguishing criteria depending on industry.

Table: 3. What went well during the thesis project.

Table: 4. What didn‘t go well during the thesis project.

REQUIREMENT SPECIFICATION AND STANDARDS 1

Chapter 1 – Introduction

Requirements and specifications are very important components in the development

of any information system. Requirement specification analysis is the first step in the system

design process, where user requirements should be clarified and documented to generate the

corresponding specifications. Therefore, if this area of the project lifecycle is neglected the

project will suffer severely in future phases of the project lifecycle, because 60% of errors

originate within the requirements activity. Consequently, this thesis will research and

examine the requirement specification gathering procedures, in combination with relevant

standards.

1.1 Background Information

In the early 1970‘s, according to Brooks, F. (1995), ―the hardest single part of

building a software system is deciding precisely what to build. No other part of the

conceptual work is as difficult as establishing the detailed technical requirements, including

all the interfaces to people, to machines and to other software systems. No other part of the

work cripples the resulting systems if done wrongly, and no other part is more difficult to

rectify later. Therefore the most important function that software builders do for their clients

is the iterative extraction and refinement of the product requirements.‖

The most promising of the current technological efforts are the development of

approaches, and tools for rapid prototyping of systems as part of the iterative specification of

requirements. A prototype software system is one that simulates the important interfaces, and

performs the main functions of the intended system, while not being necessarily bound by the

same hardware speed, size, or cost constraints. To examine this topic further, in the present-

day software specification, acquisition procedures rest upon the assumption that one must

design a satisfactory system in advance, get bids for its construction, have it built and install

it. This assumption is fundamentally wrong, and many software acquisitions problems spring

from fallacy. Hence it cannot be fixed without fundamental changes within the development

and specification of documents and procedures, and hence the reason for proceeding with this

work within the thesis topic.

1.2 Scope of work and thesis significance.

The main area of significance is to demonstrate the errors and problems caused by

neglecting requirement specifications. While it is a common tendency for designers to be

anxious about starting the design and implementation, discussing requirements with the

customer is vital in the construction of systems. Activities in this first stage have significant

impact on the downstream results in the system lifecycle. For example, errors developed

during the requirements and specifications stage may lead to errors in the design stage. When

this error is discovered, the engineers must revisit the requirements, and the specifications

required to fix the problem. This leads not only to more time wasted, but also to the

possibility of other requirements and specification errors. Therefore, the understanding,

capturing and documenting of user requirements is a vital part of information systems design,

and is critical to the success of interactive systems.

It is now widely understood that successful systems and products begin with an

understanding of the needs and requirements of the users. As specified in the IEEE 15288,

IEEE12207, and IEEE 1233 standards, user requirement specification gathering and

documenting begins with a thorough understanding of the needs and requirements of the

users. The benefits can include increased productivity, enhanced quality of work, reductions

in support and training costs, and improved user satisfaction. However, requirement analysis

is not a simple process. Particular problems faced by the analyst are:

1. Addressing complex organisational situations with many stakeholders.

2. Users and designers thinking along traditional lines, reflecting the current system and

processes, rather than being innovative.

3. Users not knowing in advance what they want from the future system.

4. Rapid development cycles, reducing the time available for user needs analysis.

5. Representing user requirements in an appropriate form.

This research considers how these problems can be addressed, by selecting

appropriate methods and standards, to support the process of user requirements gathering and

documenting. The main tools to be used to aid in this process are risk management, stage-

based lifecycle models and frameworks. The research, using a case study, will also describe

and suggest standards and methods, which demonstrate how each contributes to the

requirements process. The main aim of the research is to demonstrate the importance of a

requirements document for a system, as it defines a set of acceptable implementations of that

system, including any implementation constraints. Such a document should be clear, precise,

easy to modify, and easy to check for completeness and consistency, in accordance with

international and industrial standards. When properly written, a requirements document has

many uses: as a contract between buyer and seller, that specifies what is to be built; as a

metric that management can use to measure progress; as a standard for determining the

correctness of an implementation; and as a guide that those developers can use to formulate

and evaluate various design and implementation alternatives.

The poor quality of most real world requirement documents seriously reduces their

usefulness, due to many companies neglecting the requirement specification stage of the

project lifecycle. Other authors have emphasised the ambiguity, imprecision, and

inconsistency that one often finds in such documents. This research focuses on these issues

and also on insufficient importance being placed on the requirement specification stage of the

project lifecycle. It also examines an additional problem of how many requirement

documents say too little about what to do, and too much about how to do it. As a result,

designers are constrained by poor design decisions that have been built into the requirements

or forced to collect essential system features from a mass of extraneous detail.

1.3 Acknowledgment of previous work

The main work to date on this topic is split between the two general areas of the

requirement specification stage of the project lifecycle in software engineering and the

general standards applicable to software engineering. The research in relation to requirement

specification dates from late 1970‘s to the present.

The area of requirement specification in project lifecycle was researched and written

about in detail from the early the 1970s to 1995. This research was related to the following

main factors for requirement specification:

1. An approach to producing abstract requirement specifications that applies to a

significant class of real-world systems.

2. Methodologies for requirement discovery and organisation according to

competence areas available on the project and involved risks.

3. Methodology for managing change of' requirements during the software

development project to enable fruitful project conclusion even if major requirement changes

occur.

4. Writing requirement specifications for process-control systems.

The research on standards from 1980 to 1995 is mainly on to the following topics.

Importance of standards, according to Walker (1998), ―the internal quality systems

audits are compliance requirements of the ISO 9001, but there is little common approach to

auditing of a company against the compliance requirements, other than that which may be

traced to ISO 9001 which is a basic standard‖. The main conclusion drawn from this area is

that there are standards in place but not implemented in a correct or efficient manner.

The software engineering project standards and their importance was also discussed in

1982 by Branstad & Powell, in relation to progression of standards through the project

lifecycle and their relevance.

The research and papers dating for the past five years in relation to standards within

the software engineering community again express the issues in relation to current and up-to-

date standards being accessible to engineers within the industry. One paper of interest

discusses the ―integration of software lifecycle process standards with engineering activities

for security purposes‖ (Lee, Y., Lee, J. & Lee, Z. 2002, p. 350). Another issue is the delays

in implementation of standards, according to the Software Engineering Body of Knowledge

(SWEBOK) conference of 1992, ―the introduction and constant reviewing and updating of

standards were of hindrance to the industry‖ (Bourque & Lethbridge, 2002, p.1).

The research in the past five years in relation to the requirement specifications is:

1. Methods and procedures for gathering requirement specification and managing

according to Carew, D., Exton, C. and Buckley, J. (2005).

2. Risk management in relation to requirement specification according to Glinz,

M. (2008).

3. Lifecycle frameworks for requirement specification according to Pozagj, Z.,

Sertie, H. and Boban, M. (2003).

1.4 Road Map of thesis

The thesis research is structured as follows: Chapter 1 is the introduction to the thesis

topic and scope, Chapter 2 describes the literature review for the requirement specifications

stage of the project lifecycle and the relevant standards required. This chapter also

demonstrates techniques for requirement specification, including risk management, stage-

based lifecycle model, and requirement specification stages frameworks. The chapter

concludes by discussing standards, and requirement specification stages, in combination.

Chapter 3 presents the methodology that drove the analysis of the data collection. Chapter 4

presents the results and analysis via figures, tables and statistics. Chapter 5 discusses the

project history and finally, Chapter 6 concludes the research. The thesis also contains a

number of appendices including Appendix A which is the annotated bibliography. Appendix

B which is an example of the questionnaire distributed to the participants. Appendix C is the

history of the project plan and a glossary.

1.5 Beginning of thesis project workload

The main aim of the thesis is to prove that requirement specification documenting is a

neglected phase of the project lifecycle. This thesis will discuss how to discover the

requirements, and determine their precise nature, and use these requirements in combination

with standards to contribute largely to the project lifecycle, and aid in proceeding through the

project lifecycle of a component or system. This thesis will present a set of techniques for

gathering, confirming, organising, and documenting the requirements for a product. It also

discusses how you can come to an understanding of the requirements, and how you might

write them down so that the constructors and the future generations of maintenance people

can understand them.

The main aim of the thesis is to demonstrate the importance of requirement

specifications throughout the project lifecycle, and the benefits and advantages achieved by

implementing this phase in combination with relevant and reflective standards.

Chapter 2 – Review of Literature and Research

2.1 General Introduction

The correct requirements come from understanding the work that the products are

intended to support. Only when you know the correct requirements can you design and build

the correct product, which in turn enables the product‘s users to do their work in a way that

satisfies their business needs. The cost of good requirement gathering and system analysis is

minor compared to the cost of poor requirements.

Sadly, the requirements are not always correctly understood. Jackson (1995) provides

statistics that show that as many as ―60 percent of errors originate with the requirements

activity‖. Clearly, although developers of products have the opportunity to eliminate a large

category of errors they choose, or even worse their manager chooses, to rush headlong into

constructing the wrong products. As a result, they pay many times the price for the product

that they would have if the requirements and analysis had been done correctly in the first

place. Poor quality is passed on.

By implementing relevant standards to the requirements phase of a project, the cost

and poor quality can be significatly reduced. The main aim of this thesis is to demonsrrate

this point. The thesis topic was further decided on by researching current topics in the

industry via papers, internet, university courses and postgraduate opportunities. A lot of the

relevant papers date from two decades ago and include the following:

1. Loucopoulos & Champion (1990) discuss ―software development activities

and argues that requirement specification is the most critical of all software development

activities.‖ The paper further proposes an approach of system development methods which

address the task in the context of regulatory approaches.

2. Jang (1994) discusses the ―formal requirement specification language for

requirement specification analysis‖. The main conclusion of the paper was to emphasise the

importance of knowledge based analysis for requirement specification analysis.

3. Yau and Liu (1988) examine ―an approach to software requirement

specification using a structure inheritance network.‖

4. Yau, Bae and Yeon (1994) discuss the ―fact that errors in source code can be

traced back to errors in requirement specifications.‖ The paper examines an approach to

allow verification of requirement specifications in software development for distributed

computing systems. The main aim of the paper is to demonstrate the use of formal

specification languages. The main conclusion drawn from the paper is that ambiguities in the

requirement specification statements may lead to different interpretations of the software

system, thus making verification more difficult.

5. The last paper of significance during the research of the thesis topic in relation

to requirement specification was Hunt (1997) which describes ―a radically new approach to

producing re-usable requirement specification which achieves levels of clarity and precision

hitherto unattainable‖. The paper further discusses the problem area in requirement

specification. The author then proceeds to methodology, including the general basic

framework, evolution, real application areas and finally the conclusion. The main conclusion

and aim of the paper was to draw attention to the fact that it is possible to considerably

improve the quality of a requirement specification prior to the development of the system by

designers and software engineers.

The main paper to be fully applicable to my thesis topic from the beginning was

Hesslink (1995) as the paper discusses ―the standard and its relevance to requirement

specification within the project lifecycle, project documentation, configuration management,

verification and validation and quality assurance.‖ The author accesses a number of

standards (4) and their relevance to requirement specification. He further discusses the

standards and their application to project lifecycle. He briefly discussed relevant standards

and requirement specifications, but few papers discussed requirement specification and

relevant standards in combination.

Therefore the thesis research examined the combination of requirement specification

and standards in combination, the main current papers supporting these objectives were:

1. Glinz (2008) discussed the quality requirements and their availability to

stakeholders. The main aim of the author was to demonstrate the three kinds of problems

experienced during requirement specification. The main conclusion found was the

importance of supplier organisations and customers to communicate during requirement

specifications.

2. The second paper of relevance to this time period and topic was Aliport &

Isazadeh (2008) who discussed ―the changes experienced in the gathering of requirement

specifications in the past three decades.‖

3. The final paper of relevance during this time period was Glass (2009) which

discussed ―the importance of a standard for requirement documents.‖ This supported my

belief in the importance of requirement specification and standards in combination.

2.2 Standards

The main standards of interest to this thesis research are as follows:

1 IEEE STD 15288™-2008, Systems and software engineering —System

lifecycle processes

2 IEEE STD 12207™-2008, Systems and software engineering —System

lifecycle processes.

3 IEEE STD 1233™-1998, IEEE Guide for Developing System Requirement

Specifications.

4 European Space Agency (ESA) Board for Software Standardisation and

Control (BSSC), 1991, ESA Software Engineering Standards

The major standards are IEEE STD 15288 and IEEE STD 12207, as both discuss the

system and software engineering principles, including design and requirement generation.

IEEE STD 1233 is specific to the requirement specification which was very relevant to the

thesis, as it discussed the specific requirements which was a major part of the research

performed.

2.2.1 IEEE standards

The IEEE STD 15288™-2008 (Systems and software engineering —System lifecycle

processes) establishes ―a common framework for describing the lifecycle of systems created

by humans.‖ It defines a set of processes and associated terminology. These processes can

be applied at any level in the hierarchy of a system‘s structure. Selected sets of these

processes can be applied throughout the lifecycle for managing and performing the stages of

a system's lifecycle. This International Standard also provides processes that support the

definition, control and improvement of the lifecycle processes used within an organisation, or

of a project. The standard concerns those systems that are man-made and may be configured

with one or more of the following: hardware, software, data, humans, processes (e.g.

processes for providing services to users), procedures (e.g. operator instructions), facilities,

materials and naturally occurring entities.

This standard is applicable to the thesis as it discusses in detail the lifecycle concepts

process models as per Section 5 and Section 6 the System Lifecycle Processes. Annex E is of

major influence to the thesis research as it discusses the process alignment of ISO/IEC 15288

and ISO/IEC 12207. The alignment of the processes is straightforward as both standards use

the same process names and same clause number for the individual processes. The two

standards use slightly different names for these processes. In some cases, the process in

ISO/IEC 12207 is a software specialisation of the process in ISO/IEC 15288. ―In other cases,

the process in ISO/IEC 12207 merely contributes to the achievement of one or more

outcomes of the corresponding process in ISO/IEC 15288. ― (Singh, 2000, p. 10)

IEEE STD 12207 establishes a common framework for software lifecycle processes,

with well defined terminology, that can be referenced by the software industry. It contains

processes, activities and tasks that are to be applied during the acquisition of a software

product or service and during the supply, development, operation, maintenance and disposal

of software products. Software includes the software portion of firmware. This International

Standard applies to the acquisition of systems and software products and services, to the

supply, development, operation, maintenance and disposal of software products and the

software portion of a system, whether performed internally or externally to an organisation.

Those aspects of system definition needed to provide the context for software products and

services are included.

This International Standard also provides a process that can be employed for defining,

controlling, and improving software lifecycle processes. The processes, activities and

tasks of this International Standard, either alone or in conjunction with ISO/IEC

15288, may also be applied during the acquisition of a system that contains software

(IEEE STD 12207™, 2008, p. 75).

The purpose of this standard is to provide a defined set of processes to facilitate

communication among acquirers, suppliers and other stakeholders in the lifecycle of a

software product. The standard is written for acquirers of systems and software products, and

services and for suppliers, developers, operators, maintainers, managers, quality assurance

managers and users of software products. This international standard is intended for use in a

two-party situation and may be equally applied where the two parties are from the same

organisation. The situation may range from an informal agreement up to a legally binding

contract. The standard may be used by a single party through a self-imposed set of processes.

Section 6 of the standard is very relevant to the thesis research as it discusses the System

Lifecycle Processes. Annex D is of relevance also as it compares and contrasts the ISO/IEC

12207 with ISO/IEC 15288 and their alignment. This process is straightforward as both

standards use the same process names and same clause numbers for the individual processes.

IEEE STD 1233™-1998, IEEE Guide for Developing System Requirements contains

specifications which provide a guide for the development of a set of requirements

that, when realised, will satisfy an expressed need. In the guide the set of

requirements are called the System Requirement Specification (SyRS). Developing a

SyRS includes the identification, organisation, presentation, and modification of the

requirements. The guide addresses conditions for incorporating operational concepts,

design constraints and design configuration requirements into the specification. The

guide also addresses the necessary characteristics and qualities of individual

requirements. The guide does not specify industry-wide system specification

standards or state a mandatory System Requirement Specification. The guide is

written under the premise that the current state of the art of system development does

not warrant or support a formal standards document (IEEE STD 1233™, 1998, p. 25).

The main areas of interest to the thesis in this document are in Section 4 which

discusses a System Requirement Specification (SyRS) that has traditionally been viewed as a

document that communicates the requirements of the customer to the technical community,

who will specify and build the system. The collection of requirements that constitutes the

specification and its representation acts as the bridge between the two groups and must be

understood by both the customer and the technical community.

One of the most difficult tasks in the creation of a system is that of communicating to

all of the subgroups within the customer and technical groups, especially in one

document. This type of communication generally requires different formalisms and

languages. The standards future discusses in detail the well-formed requirements as

part of section 6 including the definition of a well-formed requirement, properties of a

requirement, categorisation, and finally pitfalls of requirements. As part of section 7

of the standard an explanation of SyRS development is examined, including

identifying requirements techniques, and building well-formed requirements.

Organising the requirements and presenting the requirements (IEEE STD 1233™,

1998, p. 40).

The European Space Agency (ESA) Board for Software Standardisation and Control

(BSSC) document describes the software engineering standards to be applied for all

deliverable software implemented for the ESA, either in house or by industry.

Software is defined in these standards as the programs, procedures, rules and all

associated documentation, pertaining to the operation of a computerised system.

These standards are concerned with all software aspects of a system, including its

interfaces with the computer hardware and with other components of the system.

Software may be either a subsystem of a more complex system or it may be an

independent system. The software projects vary widely in purpose, size, complexity

and availability of resources discussed in this standard. Software project management

should define how the standards are to be applied in the planning documents. The

main factors in applying standards are the project cost, both in development and

operation, number of people required to develop, operate and maintain the software;

number of potential users of the software; amount of software that has to be produced;

criticality of the software, as measured by the consequences of its failure; complexity

of the software, as measured by the number of interfaces or a similar metric;

completeness and stability of the user requirements; and risk values included with the

user requirements (ESA Board for Software Standardisation and Control (BSSC),

1991, p. 156).

The standards are broken down into three parts,

1. Discussing the project standards

2. Procedure standards

3. Appendices.

The first part of the standard product standards is of relevance to this thesis research,

as it discusses the software lifecycle including the phase‘s activities and milestones, lifecycle

approaches, prototyping and handling requirement change. The second chapter discusses the

user requirement definition phase including the inputs to the phase, activities and outputs

from the phase. Chapter 3 is the major chapter of relevance, as it discusses software-

requirement definition phase including the introduction, input to the phase, activities and

outputs from the phase.

2.2.2 IEEE Minor standards

IEEE has several minor standards related to system lifecycle processes:

1 IEEE STD 1220™-2005, IEEE Standard for Application and Management of

the Systems Engineering Process.

2 IEEE STD 1228™-1994, IEEE Standard for Software Safety Plans.

3 IEEE STD 1362™-1998, IEEE Guide for Information Technology—System

Definition—Concept of Operations (ConOps) Document.

4 IEEE STD 1471™-2000, IEEE Recommended Practice for Architectural

Description for Software-Intensive Systems.

5 IEEE STD 1074™-2006, IEEE Standard for Developing a Software Project

Lifecycle Process Relationship

6 IEEE STD 1517™-1999, IEEE Standards for Information Technology –

Software Lifecycle Processes – Reuse Processes.

7 IEEE STD 830™-1998, IEEE Recommended Practice for Software

Requirement Specifications.

8 IEEE STD 1540™-2001, IEEE Standards for Software Lifecycle Processes –

Risk Management.

9 IEEE STD 1012™-1998, IEEE Standard for Software Verification and

Validation

10 IEEE STD 1016™-2009, IEEE Standard for Information Technology—

Systems Design— Software Design Descriptions

The IEEE STD 1220™-2005, IEEE Standard for Application and Management of the

Systems Engineering Process, has maintained its own standard for the "Systems Engineering

Process" (SEP), a phrase not used in ISO/IEC 15288. IEEE STD 1220-2005, Standard for the

Application and Management of the Systems Engineering Process, has the following abstract:

The interdisciplinary tasks which are required throughout a system's lifecycle to

transform customer needs, requirements, and constraints into a system solution are

defined. In addition, the requirements for the systems engineering process and its

application throughout the product lifecycle are specified. The focus of this standard

is on engineering activities necessary to guide product development while ensuring

that the product is properly designed to make it affordable to produce, own, operate,

maintain, and eventually to dispose of, without undue risk to health or the

environment (IEEE STD 1220™, 2005,p.5).

Explaining the relationship between the thesis and IEEE STD 1220 required

considering both the lifecycle processes and lifecycle stages provided. The IEEE STD 1220

focuses on the development of a system, including making plans and providing processes to

deal with the remainder of the system's life. IEEE STD 1220 provides requirements for an

integrated technical approach to defining and developing system products.

The Software Safety Plan exists within a more general system-wide safety program.

In particular, the Software Safety Plan provides for safety analyses preparation when

the system is designed. In describing the software safety plan, the standard places

implicit requirements on the activities of the software development. Other IEEE

standards are cited where appropriate (IEEE STD 1228™, 1994, p.3).

The IEEE STD 1228 has little relevance to the research but is worth noting.

IEEE has a standard that may be useful in achieving these outcomes: IEEE STD

1362-1998, IEEE Guide for Information Technology—System Definition—Concept

of Operations (ConOps) Document. Its abstract states: that the standard ―provides a

guide to the content of a Concept of Operations document as well as guidance in

developing the document and using requirement specification documentation

techniques.‖ IEEE STD 1362 works from the assumption that a new system is

replacing an existing one of some sort. So, the ConOps document is intended to

describe an existing system, its changes, and the new system from the point of view of

the user. ―It provides a place to describe user needs without being overly technical or

overly quantitative, so that end-users can participate in the approval of the concept.‖

(IEEE STD 1362™, 1998, p.3). This standard is only of minor interest in relation to

the thesis topic.

IEEE STD 1471™-2000, IEEE Recommended Practice for Architectural Description

for Software-Intensive Systems has a ―recommended practice for the characteristics of an

architectural description which in turn affects the requirement specification gathering and

generation, and requests the requirement specifications to be considered during the

architectural description and decision making.‖A central idea of the standard is that the

description of architecture should be expressed by describing multiple views, each governed

by a defined viewpoint to deal with various concerns of stakeholders which are documented

by the requirement specifications. The standard does not provide the viewpoints; they should

be selected based on the needs of the system.

IEEE STD 1074™-2006, IEEE Standard for Developing a Software Project Life

provides a process for creating a software project lifecycle process (SPLCP). It is primarily

directed at the process architect for a given software project. It is the function of the process

architect to develop the SPLCP, as requirement specification is generated during the SPLCP

phase of the project lifecycle. It is important for personnel to fully understand the SPLCP and

the effects that requirement specification has on the overall SPLCP.

This methodology begins with the selection of an appropriate software project

lifecycle model (SPLCM) for use on the specific project. It continues through the

definition of the software project lifecycle (SPLC), using the selected SPLCM, and

the portion of the software lifecycle that is relevant to the project. The methodology

concludes with the augmentation of the software lifecycle with organisational process

assets (OPAs) to create the SPLCP. This standard does not address non-software

activities, such as contracting, purchasing, or hardware development (IEEE STD

1074™, 2006, p. 13).

The procedure for gathering and analysing the requirement specification are examined

and examples given as part of Annex 1 to this standard. IEEE STD 1517™-1999, Standards

for Information Technology – Software Lifecycle Processes – Reuse Processes provides a

common framework for extending the software lifecycle processes to include the systematic

practice of software reuse and is of relevance to the thesis research. It specifies the processes,

activities, and tasks to be applied during each phase of a software lifecycle to enable a

software product to be constructed from assets. This standard also specifies the processes,

activities, and tasks to enable the identification, construction, maintenance, and management

of assets.

The main area of this standard that is applicable to the thesis research is examined in

Section 5 of the standard integration of reuse into the primary lifecycle process, and the

implementation of requirement specification documenting at this stage of the project.

IEEE STD 830™-1998, IEEE Recommended Practice for Software Requirement,

describes recommended approaches for the specification of software requirements. It

is divided into five clauses.

1 Clause 1 explains the scope of this recommended practice.

2 Clause 2 lists the references made to other standards.

3 Clause 3 provides definitions of specific terms used.

4 Clause 4 provides background information for writing a good Software

Requirement Specification (SRS).

5 Clause 5 discusses each of the essential parts of an SRS.

This recommended practice also has two annexes, one which provides alternate

format templates, and one which provides guidelines for compliance with IEEE/EIA

12207.1-1997. This is a recommended practice for writing software requirement

specifications. It describes the content and qualities of a good software requirement

specification (SRS) and presents several sample SRS outlines. ―This recommended

practice is aimed at specifying requirements of software to be developed but also can

be applied to assist in the selection of in-house and commercial software products.

This recommended practice describes the process of creating a product and the

content of the product. The product is an SRS‖ (IEEE STD 830™, 1998, p. 2).

This recommended practice can be used to create such an SRS directly, or can be used

as a model for a more specific standard and is of relevance to thesis topic and general

methodology in relation to requirement specifications.

IEEE STD 1540™-2001, IEEE Standards for Software Lifecycle Processes – Risk

Management prescribes a continuous process for software risk management. Clause 1

provides an overview and describes the purpose, scope, and field of application, as well as

prescribing the conformance criteria. Clause 2 lists the normative references; informative

references are provided in Annex E. Clause 3 provides definitions. Clause 4 describes how

risk management may be applied to the software lifecycle. Clause 5 prescribes the

requirements for a risk management process. There are several informative annexes. Annex

A, Annex B, and Annex C recommends three documents: Risk Management Plan, Risk

Action Request, and Risk Treatment Plan. Annex D summarises where risk management is

mentioned in the IEEE/EIA 12207 series of software lifecycle process standards.

This standard describes a process for the management of risk during software

acquisition, supply, development, operations, and maintenance. It is intended that both

technical and managerial personnel throughout an organisation apply this standard.

The purpose of this standard is to provide software suppliers, acquirers, developers,

and managers with a single set of process requirements suitable for the management

of a broad variety of risks. This standard does not provide detailed risk management

techniques, but instead focuses on defining a process for risk management in which

any of several techniques may be applied, and is therefore relevant to requirement

specification and the introduction of risk management into this section of the project

lifecycle as this is the manner in which future projects are to be performed (IEEE STD

1540™, 2001, p. 7).

IEEE STD 1012™-1998, IEEE Standard for Software Verification and Validation

provides the Verification and Validation (V&V) standard and is a process standard that

addresses all software lifecycle processes including acquisition, supply, development,

operation, and maintenance. The standard is compatible with all lifecycle models; however,

not all lifecycle models use all of the lifecycle processes listed in this standard. Software

V&V processes determines whether the development product of a given activity conforms to

the requirements of that activity and whether the software satisfies its intended use and user

needs. The determination may include analysis, evaluation, review, inspection, assessment,

and testing of software products and processes. Software V&V processes consists of the

verification process and the validation process. The verification process provides objective

evidence as to whether the software and its associated products and processes

1 Conform to requirements for all lifecycle activities during each lifecycle

process.

2 Satisfy standards, practices, and conventions during lifecycle processes

3 Successfully complete each lifecycle activity and satisfy all the criteria for

initiating succeeding lifecycle activities (IEEE STD 1012™, 1998).

The validation and verification occur at a later date in the project lifecycle but the

requirement specifications that have been documented contribute largely to this section of the

project and in turn if the requirment specification contain errors, the validation and

verification section will incur errors. This is relevant to the thesis research as it demonstrates

the importance of requirements when trying to eliminate errors.

IEEE STD 1016™-2009, IEEE Standard for Information Technology—Systems

Design— Software Design Descriptions, describes software designs and establishes

the information content and organisation of a software design description (SDD). An

SDD is a representation of a software design to be used for recording design

information and communicating that design information to key design stakeholders.

The standard is intended for use in design situations in which an explicit SDD is to be

prepared. The standard can be applied to commercial, scientific, or military software

that runs on digital computers. Applicability is not restricted by the size, complexity,

or criticality of the software. This standard can be applied to the description of high-

level and detailed designs. This standard is applicable to the thesis research as in

Section 3 of the standard it discusses a conceptual model for software design

descriptions (IEEE Std 1016™, 2009, p. 13).

To conclude on standards, 15288 are applicable to this stage of the requirement

specification as it discusses the process lifecycle for hardware, process and data. The IEEE

12207 is applicable to the process lifecycle for software and discusses in detail the software

lifecycle and how to implement the standard requirements during the requirement

specification stage of the project lifecycle. The most relevant standard is IEEE 1233, as this

guides the development of a set of requirements for the system. This guide includes the

identification, organisation, presentation and modifications of requirements. The guide also

addresses conditions for incorporating operational concepts, design concerns, and design

configuration requirements for the specifications. This standard is also used in the collection

of requirements which constitute the specification and represents the bridge between the

vendor and the customer. The ESA standard is relevant to this thesis research as it discusses

the software lifecycle and defines the user requirement phase and software requirement

phase. In relation to the software requirement definition phase, the standard introduces the

phase and discusses the activities related to this phase and the outputs formed from the phase

including the software requirement document, system test plan, project management plan,

configuration management plan, verification and validation and finally the quality assurance

plan.

In conclusion, the International Standard on System Lifecycle Processes, ISO/IEC

15288, defines a top-level cradle-to-grave lifecycle framework for managing modern systems

configured with hardware, computers, software and humans.

ISO/IEC /SC7 WG7 are responsible for developing ISO/IEC 15288. As summarised

by the Convenor of Working Group (WG) 7, ―the Standard:

a. Can be applied to the acquisition, supply, development, operation and

maintenance of systems.

b. Supports the above through configuration management and quality assurance.

c. Can be used as an internal framework by an enterprise.

d. Can be used in developing an agreement between two parties, or as a reference

standard for lifecycle processes for further standardisation, guidance and tools development‖

(Harauz & Poon, 1999, p. 1).

The IEEE Computer Society and other standard organisations are doing much to

promote a disciplined approach to software engineering practice and how aerospace systems

engineering organisations can apply these standards to their projects. ―The presentation also

highlights the software standardisation activities of national and international standards

organisations (American National Standards Institute (ANSI), ISO, International Electro –

technical commission (IEC), government organisations (National Bureau of standards (NBS),

DoD), professional societies (IEEE, ASQC, Association of Computing Machinery (ACM))

and trade associations (Aerospace Industries Association (AIA), Electronic Industries

Association (EIA), and National Standards of Authority Ireland (NSIA)).‖ (Marriott &

Siefert, 1992, p. 1)

2.2.3 Industrial standards

After discussing ISO /ANSI standards, another industry standard of interest is DO-

178B which provides guidelines for software certification. This standard addresses the use

of emerging software as an aid to reducing the lifecycle costs. However, to re-use requires

re-certification or certification of software that was not developed according to DO-178B.

The main areas of interest discussed by Hesslink (1995) are that the investigation

assists in understanding the rationale behind several standards that can be used for

certification according to DO-178B of software which was developed using another standard

and a comparison of each of the examined topics has been made. Also in this paper the

software lifecycles, documentation, and certification matters were compared‖ (Hesslink1995,

p. 3).

The main problem areas with emerging standards and guidelines are that they need to

be timely, and reflect the requirements of the industrial sector that they are designed to

support. Therefore, the standards process fails if this delay results in out-of-date standards, or

standards that are not useful (e.g. if the production of standards cannot keep up with the rate

of technological advance.)

One answer to this problem is de jure standards which are developed by formal

standard development organisations that are recognised by the International Organisation for

Standards (ISO). These standards have been produced in a way that is open to input from the

public, though to make such input a person is typically required to attend meetings around the

world at the person‘s own expense. Another attribute of de jure standards is that they must

be maintained. In the case of ISO, maintenance has typically meant that the standard is

updated exactly once every 5 years.

Typically, for de jure standards the standards development organisation claims

copyright of the standard and sells the standard. Governments realise the importance

of standards but sometimes want standards that are developed to be more flexible.

Accordingly, an agency of the government will fund organisations to develop certain

standards. For instance, the United States Department of Defence funded the

Carnegie-Mellon University Software Engineering Institute to develop and maintain

the Capability Maturity Model of software. Such standard development efforts

typically attempt to achieve consensus but may determine their own rules of

participation in the consensus process. The resultant standards may be distributed for

free because the government agency wants to maximise access to the standard‖ (Rada,

2001, p10).

Standards should be based on scientific results and best industrial practice. They

should be subject to evaluation to ensure they really work in the environment for which they

are intended. All this is difficult because standards tend to be produced in a highly politicised

environment in which corporate economic needs and cultures can take precedence over

usefulness. ―It can be seen that all of this adds up to one thing, we need change. Both the

process and nature of the software standards demand objective review.‖ (Glass, 2009, p. 2).

However, within the last 20 years the software industry has been looking for ways to

reduce the cost of developing software while at the same time improving its quality and

reliability. ―One approach to answering industry‘s needs has been through the development

and use of the IEEE standards that establish the norms of professional practices in the field of

software engineering. Most if not all of the variable software engineering standards in the

world today are developed through the Institute of Electrical and Electronics Engineers

(IEEE) Computer Society‖ (Marriott & Siefert, 1992, p. 1).

The harmonisation of professional standards usually means an attempt to unify the

standards among different nations and states. The main obstacle to this development is that

the ―software engineering profession has not reached a mature stage of development‖ (Tse,

2000, p. 347).

To emphasise the importance of requirement specification and standards in

combination, and the improvement that can be demonstrated, the need for a standard is

assessed in the next section of the literature review chapter.

2.3 Introduction to requirement specifications

A requirement is defined as ―a condition or capability that must be met or possessed

by a system, product, service, result or component to satisfy a contract, standard,

specification or other formally imposed documents.‖ (Jackson, 1995)

Requirements include the quantified and documented needs, wants and expectations

of the sponsor, customer and other stakeholders. A requirement specification is a defined goal

that details the desired end result of a project. This helps project managers to ensure that they

are delivering exactly what their customers want, because it is specified and communicated

clearly to those involved in the project.

A requirement is something the product must do or quality it must have. A

requirement exists either because the type of product demands certain functions / qualities or

because the client wants the requirements to be part of the delivered product. A functional

requirement is an action that the product must take if it is to be useful to its users.

Functional requirements arise from the work that the stakeholders need to do.

Almost any action, for example calculate, inspect, publish or most other active

verbs, can be a functional requirement. This requirement is something that the

product must do if it is to be useful within the context of the customer‘s business.

Non-functional requirements are properties or qualities that the product must have.

In some cases, non-functional requirements describe such properties as look and

feel, usability, security and legal requirements and are critical to the product‘s

success (Robertson & Robertson, 2008).

Since software requirements are textual descriptions of customer demands they can be

created in different ways. The main problem connected with software requirement

descriptions is the content of the description, and not the form of the description. The

discovery of software system‘s requirements is a long and complicated process that must be

considered extremely important for developing successful software solutions. However,

formal definition of a template for software requirement description is an important

precondition for efficient requirement management, because software requirements must be

described in a form that is easy to understand and use. Software requirements should be used

in all phases of software development in order to provide guidelines for development

activities.

2.3.1 Techniques for requirement specification generation

The main techniques used for requirement gathering are use case, benchmarking and

models / diagrams. A business use case is used when the functionality of the work needs to

be examined to aid with a business event. A requirements analyst is assigned to each of the

business use cases for further detailed study. The analysts use techniques such as

benchmarking, models and use cases workshop among many others, to discover the true

nature of the work. Once they understand the requirements, analysts work with the

stakeholders to decide the best product to help with this work. That is, they determine how

much of the work to automate or change and what effect these decisions will have on the

work. Once they know the extent of the product the requirements analyst write their

requirements. At the beginning of a project the requirements analyst is concerned with

understanding the business the product is intended to support. At this stage, the analyst is

working with scenarios and other models to help him, and the stakeholders come to an

agreement on what the work is to be.

As the understanding of the work progresses, the stakeholders decide on the optimal

product to help with the work. Now the requirement analysts start to determine the

detailed functionality for the product and write its requirements. The non-functional

requirements are derived around the same time and written along with the constraints.

At this point, the requirements are written in a technologically neutral manner and

they specify what the product is to do for the work, not what terminology is used to do

it (Jackson, 1995).

Further to this, an abstract requirement specification is developed that states system

requirements precisely without describing a real or a paradigm implementation. Although

such specifications have important advantages, they are difficult to produce for complex

systems and hence are seldom seen in the "real" programming world.

In summary, a requirements document for a system defines the set of acceptable

implementations of that system, including any implementation constraints. Such a document

should be clear, precise, easy to modify, and easy to check for completeness and consistency.

When properly written, a requirements document has many uses:

1. As a contract between buyer and seller that specifies what is to be built.

2. As a metric that management can use to measure progress.

3. As a standard for determining the correctness of an implementation.

4. As a guide that developers can use to formulate and evaluate various design

and implementation alternatives.

The standard bodies of modern day now understand the requirements document and

the how users use the document.

2.3.2 Managing requirement specification generation

Requirements management involves working with a defined set of product

requirements throughout the product‘s development process and its operational life. It also

includes managing changes to that set of requirements throughout the project lifecycle. In

practice, requirements management includes selecting changes to be incorporated within a

particular release and ensuring effective implementation of changes with no adverse impact

on schedule, scope or quality. An effective requirements definition and management solution

creates an accurate and complete system requirements, while helping organisations improve

communications in an effort to better align IT with business needs and objectives. It includes

a set of industry best practices for each category, as well as tools to enable and accelerate

requirements activities. Therefore, this is a document that needs to be clear and precise. The

poor quality of most real-world requirements documents seriously reduces their usefulness.

Other authors have emphasised the ambiguity, imprecision, and inconsistency that one

often finds in such documents.

The paper focuses on an additional but more fundamental problem: many

requirements documents say too little about what to do and too much about how to do

it. Their bulk consists of decisions that should have been postponed until design time,

instead of discussing precise information about the system's external behaviour. As a

result, designers are constrained by poor design decisions that have been built into the

requirements or forced to collect essential system features from a mass of extraneous

detail (Heitmeyer and McLean 1983, p. 1).

The number of requirements derived at any step is not important although experience

shows that it is usually fewer than six. If only one requirement is uncovered from each step,

it suggests either the level of detail in the scenario is not granular or the functional

requirements are too coarse. If more than six requirements per step are achieved, either the

requirements are too granular or have a very complex use case. The objective is to discover

enough functional requirements for the developers to build the precise product that the client

is expecting and the actor needs to do the work.

When examining functional requirements, it is advised to group them by use case.

The advantage achieved by doing so is that it becomes easy to discover related groups of

requirements and to test the completeness of the functionality. Nevertheless, sometimes other

groupings may prove more useful. Non-functional requirements do not alter the product‘s

essential functionality. That is, the functional requirements remain the same no matter which

properties you attach to them. To confuse matters even more, the non-functional

requirements might add functionality to the product. A suggestion is to think of the

functional requirements as those that cause the product to do the work, and the non-functional

requirements as those that cause the product to give character to the work.

If the requirements are traceable, then when changes happen it is far easier to find the

parts of the product affected by the changes and to assess the impact of the change on

the rest of the product. In keeping the requirements traceable it means that they can

be designed in a more effective way to allow change (Robertson & Robertson, 2008).

Most advocates of formal methods agree that such methods should be applied to

systems where the issue of correctness is a priority. While safety-and security-critical systems

fall into this category, there are a number of other systems which are not commonly classified

in these terms, and could equally benefit from the application of formal methods. While

formal methods are being applied to hardware in industry, the results of formal methods

research for software have only rarely reached beyond the research lab and are used in

industrial practice for day-to-day software development. ―One of the key factors associated

with this widespread lack of adoption is that formal methods are seen as being difficult to

comprehend‖ (Carew, Exton & Buckley, 2005, p. 1).

In particular, because many errors in the source code can be traced to the errors in the

requirement specification, it is especially important to have effective verification techniques

for managing requirement specification.

The paper currently assumes that the requirements statements are unambiguous.

Ambiguities in the requirements statements may lead to different interpretations of the

software system, thus making the verification more difficult. The research is needed

to deal with the verification of requirements statements containing ambiguities. In

addition, by extending the information tree with hierarchical structure, the approach

can be applied to the requirements verification of large-scale software for distributed

computing systems (Yau, and et al, 1994, p. 7).

Within the dependable systems community there has been considerable interest and

effort looking at improving the development process of managing requirements, especially

the Requirements Engineering process according to Emmet and Bloomfield (1997). In

particular, the importance of the human factors of development processes is increasingly

recognised as being an important source of process weaknesses and improvement

opportunities.

The standards process itself can be considered a requirement engineering process in

which user requirements are captured, negotiated, analysed and defined. This development

process hopefully results in a document that expresses the requirements of the industry and

standards process participants.

Like many requirement engineering processes it is an inherently socio-technical

process, constructed from a number of integrated social and technical activities,

including various document production, distribution and reviewing activities which

are co-ordinated at the subgroup and individual levels; in short, a good candidate for a

requirement engineering analysis (Emmet & Bloomfield, 1997, p. 208).

The work performed by Pozagi, Sertie and Boban (2003) is focused on ―presenting an

effective means of requirement specification and methodologies that can be used in order to

support and improve requirement management techniques on software development

projects‖. Therefore, with this work they propose methodologies for dealing with software

requirements that should be used in order to develop successful software solutions. Since the

conditions on today's global software market are rapidly changing, change of requirements

during software development is a common occurrence.

Consequently, they have also proposed methodology for dealing with requirement

change that enables fruitful project conclusion even if major requirement change

occurs. Presented methodologies are dedicated to provide effective requirement

management practice and to support descriptions of customer demands on software

system solution. These demands are usually captured as text statements about

capabilities of software system (Pozagj, Sertie & Boan, 2003, p. 670).

Methodology activities are intended for assessing system scope in order to examine

target system problem areas and to define global project scope in terms of used technology.

After that, a competence-based project infrastructure should be established. ―This means that

developer‘s competencies and knowledge should be assessed because each member of the

software development team should be responsible for tasks that are closely connected with

his competencies‖ (Pozagj, and et al, 2003, p. 671).

Information about requirement dependency is important for selection of requirements

to be realised. By capturing dependency information, project teams can easily choose

requirements for realisation. When the whole set of requirements is identified, described and

analysed in terms of dependency, requirements should be assigned to particular project

members according to their competencies and become their responsibility. Therefore,

presented methodology divides requirements according to knowledge areas on software

development projects in order to improve the requirement discovery and definition process

because project team members will better understand and capture requirements.

2.3.3 Risk Management in relation to requirement specification

At this point, it should be remembered that requirements are a means, not an end.

Requirements that deliver value are defined here as the benefit of reducing development risk

(developing a system that doesn‘t satisfy stakeholders‘ desires and needs) minus the cost of

specifying the requirements. Consequently, replace the rule ‗You shall quantify all quality

requirements‘ with ‗A quality requirement should be represented such that it delivers

optimum value‘. This will demonstrate that risk assessment is the key means to determining

how a given quality requirement should be represented.

By choosing the representation on the basis of a risk assessment, it can emphasise the

fact that projects can fail if quality requirements aren‘t considered and treated adequately.

Basically, they must assess how every quality requirement should be represented so that it

delivers the most value. This means assessing the risk of developing a system that doesn‘t

satisfy the stakeholders‘ desires and needs with respect to a given quality requirement, and

how they can mitigate this risk at the lowest possible cost. A risk-based, value-oriented

strategy for specifying quality requirements needs a broad range of representation forms

Whenever there‘s a high risk that the deployed system won‘t meet a quality

requirement to the satisfaction of a critical stakeholder (and there‘s no way to weaken

the requirement, lower the stakeholder‘s expectations, or shift the risk onto somebody

else‘s shoulders), the best way to mitigate this risk is still a classic, comprehensive

quantification of the requirement (Glinz, 2008, p. 37).

2.3.4 Stage-based lifecycle models

A requirement specification represents both a model of what is needed and a

statement of the problem under consideration. This type of specification is derived through

an iterative approach which involves the two major activities of conceptual modelling and

analysis of modelled reality. ―These activities involve much informality and uncertainty.

Consequently, some authors attribute the problems in requirement specification to the nature

of the task‖ (Loucopoulos & Champion, 1990, p. 116).

Software requirements must be used to guide such approach to software development,

because iteration is based on selection of software requirements that will be implemented.

This approach to software development demands useful definitions of software requirements

because software requirements are used to plan software development. However, there are

many problems connected with effective use of software requirements for guiding software

development such as bad requirement definition, wrong requirement selection and change of

requirements during software development. Besides these problems, software requirements

are often badly organised and difficult to understand.

To solve these problems with stage-based lifecycle models, it proposed methodologies

for efficient requirement management. The first proposed methodology focuses on

the process of requirement discovery and definition. The process of requirement

discovery is highly important because all sets of requirements must be discovered in

order to build software solutions that satisfy customer demands. Therefore, to avoid

problems connected with late requirement discovery such as system architecture

change. ―System architecture can be defined as software system organisation or

structure of significant components interacting through interfaces and development of

wrong software systems, a specific approach to requirement discovery proposed with

this methodology should be taken‖ (Pozagj and et al, 2003, p. 671).

2.3.5 Requirement specifications stages frameworks

Requirements prototyping are simulation models designed to help you learn more

about the stakeholder‘s requirements. The aim of a prototype is to make it easier for people

to imagine what it might be like to use the real product to do work. Ideally, working with this

model will stimulate them into remembering requirements they have forgotten, or thinking of

ideas that might not otherwise occur to them until they began using the real product.

Low-fidelity prototypes offer a quick way to put together a mock-up of a product

using familiar technology such as pencil and paper, whiteboards, flipcharts and so on. These

protocols encourage stakeholders to focus on what the product does. They help to discover

missing functionality and to test the scope of the product. High-fidelity prototypes use

software tools and give the appearance of reality, and their advantage is obvious: It takes little

imagination to see the prototype as a working system.

The authors suggest that you adopt prototypes of both kinds as a regular part of the

requirements process. The review process follows an iterative cycle until all problems

have been resolved. That is, when errors are discovered, their corrections are

reviewed and, if necessary, the specification looked at again to ensure none of the

corrections introduced new problems. This iteration continues until you stop finding

errors. The authors recommend keeping a record of discarded requirements to prevent

their accidental reintroduction and to monitor which kinds of requirements are being

rejected. This kind of documentation might prevent the reappearance of the unwanted

requirements in future projects (Robertson & Robertson, 2008).

The review gives an ideal opportunity to reassess the easier decision on whether to go

ahead with the project. A seriously-flawed specification or indication that the costs and the

risks outweigh the benefits is almost always an indication that there may be a need to

consider project euthanasia. The requirement process is not applicable just to new products

that are being developed from the ground up.

Most product development that is done today is aimed at maintaining or enhancing an

existing product or at making a major overhaul to an existing product or suite of

products. A lot of today‘s development involves Commercial off-the-Shelf (COTS)

products, open source products or other types of component ware. Whatever the

development method, understanding the requirements for the final outcome is still

necessary (Robertson & Robertson, 2008).

The section continues to focus on use cases as the requirement specifications and

proposes a technique to check whether the given use cases are implementable with the

framework.

To check the implementability, consistency of branch conditions of the frameworks

and the requirement specification have to be checked as well as equivalence of action

sequences between the frameworks and the requirement specification. To this end, a

novel approach based on a satisfyability problem for deriving the consistent truth

assignments of the branch conditions is introduced. The approach can be incorporated

in bi-simulation checking for assuring the equivalence of the action sequences, and

therefore, the implementability can be checked. Furthermore, this paper shows a

feasibility of the proposed technique by using Compositional Reachability Analysis as

a mean of bi-simulation checking (Zenmyot, Kobayashi & Scakit, 2008, p. 1).

2.4 Standard and requirement stage in combination

Good requirements practices can accelerate software development. The process of

defining business requirements aligns the stakeholders with shared vision, goals and

expectations. Substantial user involvement in establishing and managing changes increases

the accuracy of requirements and ensures that the functionality will enable users to perform

essential business tasks. Software requirements engineering encompasses the two major sub-

domains of requirements definition and requirements management. A variety of practices

can help software teams bridge communication gaps and do a better job of understanding,

documenting and communicating customer needs. By incorporating relevant standards into

this procedure, a more robust and precise requirement specifications can be built.

A set of requirements is needed for any project, especially computer system projects,

to be successful. This is where many projects fail, in that they do not specify correctly what

the system should do. In fact, many systems have just been given a deadline for delivery, a

budget to spend, and a vague notion of what it should do.

The root of this problem is:

1. Computer systems developers rarely have as good an idea on how a business

runs or should run, compared to a business user,

2. Business users have little idea of what a computer system could achieve for

them.

As a result paralysis sets in and business management time is concentrated on meeting

timescales and budgets, rather than what are going to be delivered and the quality of the

system. The advantage of a good set of requirements need not just be a reduction in costs. In

fact, many systems justified on a reduction in operating costs fail to deliver as low skilled but

relatively cheap staff has to be replaced by high skilled and more expensive staff. The

advantage can be a reduction in time to process something, which will lead to a reduction in

costs, or being better able to use the unique knowledge base belonging to a business.

In addition to the general constraints you may include some development constraints.

These are mainly in project management, but are still a restriction on the types of solution

that can be offered. There are three general types of development constraints:

a. Time - When a system should be delivered is the obvious time constraint.

b. Resource - How much money is available to develop the system is obvious,

but a key resource would be the amount of time business staff could spend in briefing system

development staff.

c. Quality - Any standards which are used to develop the system, including

project management, development methods, etc.

The goal is to deliver high quality and well-structured requirement specification

documents. For example, the system to be specified was a set of embedded systems

responsible for driver and passenger comfort. A feature requirement specification template

was defined to capture and document the results of the specification activities. For each

feature, the template was used and consisted of the following sections:

a. Basic feature description

b. Context diagram

c. Scenarios

d. Detailed requirements

e. Interface and data descriptions

―The activities resulted in about 50 feature requirement specification documents. On

average, each specification document covered about 40 pages. 48% of the specifications

delivered are expected to be highly stable, 24% are still ranked as quite stable‖ (Robertson

and Robertson, 2008). At the end of the specification period all documents were required to

be inspected. The goal of this step was to improve the quality of the requirement

specifications, to enhance the common understanding of the content of the documents and to

eliminate open points, mistakes and ambiguities.

Due to the large volume of documents a parsimonious yet effective inspection

approach was necessary. Hence, the defect detection as well as the meeting-based

collection activity was modified to fulfil these requirements as well as to address the

inspection issues outlined above. This resulted in the non-traditional inspection

implementation (Laitenberger, Beil & Schwinn, 2002, p. 3).

Rework typically accounts for up to 40% of a development organisation‘s total

budget, and most of this rework focuses on correcting software requirements defects.

Software requirements is a collaborative process for simulating, iteratively improving and

validating a set of requirements to which all key project stakeholders agree, enabling:

1. Save time and money: Accurate upfront software requirements definition helps

ensure your team works on the business problems that matter most

2. Reduce rework: Early validation and agreement by stakeholders means

development and quality teams spend less time on rework and deliver projects faster

3. Improve requirement accuracy: The collaborative creation of working

simulations improves accuracy by promoting understanding and eliciting relevant feedback—

before development begins

The other areas that affect the project lifecycle, including budget, cost and quality are

requirement creep and requirement leakage. Requirement creep refers to new requirements

entering the specification after the requirements are considered complete. Any requirement

appearing after this point is considered to be requirements creep. Requirements creep has

been tagged with a bad name, usually because of the disruption to the schedule and the

bloated costs of product delivery.

Without wanting to defend requirements creep, the authors think it prudent to look at

some of the causes of creep and to discuss how they can approach that problem.

Firstly, most creep comes about because the requirements were never gathered

properly in the first place. If the requirements are incomplete, then as the product

develops, more and more omissions must of necessity be asked for. The authors

suggest they were requirements that really were part of the product all along. They

were just not, until now, part of the requirement specification (Robertson &

Robertson, 2008).

By implementing standards early, requirement creep can be minimised. The main

areas where requirement creep occurs is if the users and the clients are not given the

opportunity to participate fully in the requirements process, then specification will

undoubtedly be incomplete. Almost certainly the requirements will creep as delivery

approaches and the users begin asking for functionality they know they need. Creep is also

observed because the original budget, for corporate policy reasons, is set unrealistically low.

When noticeable creep sets in it is mainly not a matter of the requirements creeping, but of

the product itself not being up to the correct functionality and also requirements change.

Quite often they change for very good reasons in that the business has changed, or new

technological advances have made change desirable. These kinds of changes are often seen

as requirements creep. In truth, if changes that cause new requirements happen after the

official end of the requirements process, and they could not have been anticipated, then this

type of requirement creep could not have been avoided. Whatever the reason, whether good

or bad, reasons for requirement creep must be identified and must be able to respond

appropriately

In summary, the best way to minimise requirements creep is to engage in a good

requirements process, with the active and enthusiastic participation of the stakeholders and to

start with a reasonably sized project guided by relevant standards. Anything less and there

can be requirement creep which must be expected.

Requirement leakage refers to requirements that somehow ―leak‖ into the

specification. For example, think of this as the way water can leak into a rowboat as you

cross a lake. Little water may not harm you, but too much of it and your chances of getting

safely to the other side are seriously diminished. You can also think about requirements

leakage as unrecognised. The main problems with requirement leakage are that nobody

knows where the requirement leakages come from and who is responsible for them.

Therefore, nobody wants to own them, and yet leaking requirements affect the budget. Either

they are rejected or the project plan is adjusted to reflect the current reality.

Jackson (1995) reports ―for the average project, about 33% of the requirement appear

after the requirements process is deemed to have ended. That is about one third of all the

requirements that have crept or leaked into the specification.‖ The graph in Figure 1 depicts

the cost of delivering functionality.

Look at what happens when the size of the product creeps up by 35%. The effort

needed expands by a little more than that, yet this is the part of the product that

somebody expects to get for free. When the requirements grow beyond what was

organically anticipated, the budget must grow proportionally. Each requirement has a

cost attached‖ (Robertson & Robertson, 2008).

Figure 1. Effect of Cost vs. Product Size. From Robertson & Robertson (2008).

2.5 Conclusion

In conclusion, the four standards (IEEE Std 15288, IEEE Std 12207, IEEE Std and

ESA Board for Software Standardisation and Control) are relevant to the requirement

specification of the project lifecycle and therefore in turn to this thesis research. By applying

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7

Ef
fo

rt

Product Size

Effort of Cost vs. Product Size

Effort

Accepted Product

Size
Afte
rOriginal Size of

these standards a more productive and responsive requirement specification document can be

produced.

The requirements definition is the most crucial part of the project. Incorrect,

inaccurate, or excessive definition of requirements must necessarily result in schedule delays,

wasted resources, or customer dissatisfaction. The requirements analysis should begin with

business or organisational requirements and translate those into project requirements. If

meeting stated requirements will be unreasonably costly, or take too long, the project

requirements may have to be negotiated down, down-scoped or down-sized, in discussions

with customers or sponsors. Any discussion of requirements analysis methods will quickly

become specific to the type of project effort. Many industrial areas have specific, proven

techniques for obtaining thorough and accurate definition of requirements.

There are three types of major problems with requirements definitions written in

natural language;

1. Lack of clarity,

2. Requirements confusion from requirements not being fully traceable.

3. Requirement amalgamation.

Good requirements practices can accelerate software development. The process of

defining business requirements aligns the stakeholders with shared vision, goals and

expectations. Substantial user involvement in establishing and managing changes to agree

upon requirements increases the accuracy of requirements, ensuring that the functionality

built will enable users to perform essential business tasks. Software requirement engineering

encompasses the two major sub-domains of requirements definition and requirements

management.

Chapter 3 – Methodology

3.1 Research Method

This study is intended to examine and describe a requirement specification stage of

the project lifecycle incorporating international and industrial standards. The description was

developed based on international and industrial recommendations including risk

management, stage-based lifecycle models, and frameworks. The research literature

indicates that requirement specifications are an important consideration in the project

lifecycle. A case study was conducted as an investigation, and further examined using

interview techniques. This chapter summarises the studies, and discusses the methodology of

the current thesis.

The main area of interest in the methodology of this thesis was a case study with

statistical analysis. A case study is described by Leedy (2005) ―as a particular individual,

program or event which is studied in depth for defined periods of time‖. For this thesis the

case study looks at the natural course and treatment of requirement specification gathering

using relevant standards for guidance. The case study covers a range of areas in this topic

including the following

1. Different approaches taken in industries.

2. Requirement specifications purpose and usage.

3. The standards relevant to requirement specification and industries.

4. Tools and equipment used during requirement specification gathering.

5. Standards and requirement specification in combination.

The case study proved useful for investigating how individual requirements and

projects change over time, due to certain circumstances or interventions. In either

circumstance, the case study was useful for generating or providing preliminary support for

hypotheses. It has been decided to perform the case study using 25 individuals from 4

different industrial sectors, therefore giving a wide range of information.

3.2 Application of thesis in the research subject

The main aim of the case study for this thesis is to learn more about the requirement

specification stage of the project lifecycle, and also how companies change over to gathering

requirement specification in detail and implementing standards in relation to requirement

specification.

The method used for the case study was a collection of extensive data from the

individuals on which the investigation was focused. These data included observations,

interviews, documents (questionnaire, past articles, journals, and books), and past records

(past case studies). I also recorded details about the context surrounding the case, including

information about the physical environment, and the economic and social factors that affect

the situation.

3.3 Justification

The justification is performed to examine the correct qualitative and quantitative

research to use for the thesis study. The main research techniques found to be suitable for the

thesis research was a case study with statistical analysis.

3.3.1 Qualitative Research

The main research techniques that were examined for the thesis research and deemed

non applicable were ethnography, phenomenological studies, grounded theory study and

content analysis. The main reasons for not using these research techniques are outlined

below.

In ethnography, the research looks at an entire group, more specifically a group that

shares a common culture in depth. The research studies the group in its natural setting for

lengthy time periods (several months or years) and the main focus of investigation is on the

everyday behaviour of the people in the group. The subject of thesis requirement

specification and standards is not an everyday behaviour, and the time line required for the

ethnography was not available. Also this technique requires experience and is not suitable

for a novice like myself.

Phenomenological studies attempt to understand people‘s perceptions, perspectives

and understanding of a particular situation. ―In order words, a phenomenological study tries

to answer the question of what it is like to experience such and such. In some cases, the

researcher has had a personal experience related to the phenomena in question, and wants to

gain a better understanding of the experiences of others‖ (Leedy, 2005). Although

phenomenological research depending on exclusively lengthy interviews with carefully-

selected samples of participants (5 to 25) it could have been performed for this thesis, instead

I decided to perform a case study and interview 5 people in relation to the case study.

The next qualitative research is grounded theory study, which is one of the researches

that are least likely to be used for a particular theoretical framework. The main purpose of

the grounded theory is to begin with the data, and use them to develop a theory. More

specifically, a grounded theory study uses a prescribed set of procedures for analysing data,

and constructing a theoretical model from them. The term grounded refers to the idea that the

theory that emerges from the study is derived from the ―ground‖ in data that has been

collected in the field, rather than taken from the research literature. Grounded theory studies

are especially helpful when current theories about phenomena are either inadequate or

nonexistent. Typically, a grounded theory study focuses on a process (including people‘s

actions and interactions) related to a particular topic, with the ultimate goal of developing a

theory about that process. This type of qualitative research is mainly used in research

techniques outside of information system and computing and, therefore was not deemed

suitable for this thesis topic.

The final type of qualitative research is content analysis. Content analysis is a

detailed and systematic examination of the contents of a particular body of material for the

purpose of identifying patterns, themes or biases. Content analyses are typically performed

on forms of human communication, including books, newspapers, films, television, art,

music, videotapes of human interactions, transcripts of conversional and internet blog and

bulletin board entries. The content analysis involves the greatest amount of planning at the

front end of the project. The researcher typically defines a specific research problem or

question at the very beginning. The research also identifies the sample to be studied and the

method of analysis early in the process. Content analysis is not necessarily a stand-alone

design. For instance, content analysis might be incorporated into a cross-sectional study to

discover development trends in children‘s conceptions. The main disadvantage of this

qualitative search is that it is a challenging qualitative study due to its flexible nature, and

therefore was not deemed appropriate for this thesis topic.

3.3.2 Quantitative Research

The other research methods that can be used are the following:

1. Pre-experimental designs.

2. True experimental designs.

3. Quasi experimental designs.

4. Ex post facto designs.

In pre-experimental design it is not possible to show cause and effect relationships,

because either (a) the independent ―variable‖ doesn‘t vary, or (b) experimental and control

groups are not comprised of equivalent or randomly-selected individuals. Such designs are

helpful only in forming tentative hypotheses that should be followed up by more controlled

studies. The main types are:

1. One-shot experimental case study

A single group is studied at a single point in time after some treatment that is

presumed to have caused change. The carefully studied single instance is compared to

general expectations of what the case would have looked like had the treatment not

occurred and to other events casually observed. No control or comparison group is

employed.

2. One group pre-test –post-test design

A single case is observed at two time points, one before the treatment and one after

the treatment. Changes in the outcome of interest are presumed to be the result of the

intervention or treatment. No control or comparison group is employed.

3. Static group comparison

A group that has experienced some treatment is compared with one that has not.

Observed differences between the two groups are assumed to be a result of the

treatment

One of the important drawbacks of pre-experimental designs is that they are subject to

numerous threats to their validity. Consequently, it is often difficult or impossible to

dismiss rival hypotheses or explanations. Therefore, researchers must exercise

extreme caution in interpreting and generalising the results from pre-experimental

studies (Child Care and Early Education Research Connections. (n.d.))

The main advantages in pre-experiments, can be a cost-effective way to discern

whether a potential explanation is worthy of further investigation. However, the main

disadvantage is that it offers few benefits since it is often difficult or impossible to rule out

alternative explanations. The nearly insurmountable threats to their validity are clearly the

most important disadvantage of pre-experimental research designs, and based on these

disadvantages it was decided not to perform pre-experimental design for this thesis.

The first three designs of true experimental designs are

1. Pre-test – Post-test Control Group Design,

2. Solomon Four Group Design

3. Post-test-Only Control Group Design

True experimental design is regarded as the most accurate form of experimental

research, in that it tries to prove or disprove a hypothesis mathematically, with statistical

analysis. The main advantage of this design is that the results of a true experimental design

can be statistically analysed, and so there can be little argument about the results. It is also

much easier for other researchers to replicate the experiment and validate the results.

The main disadvantage of true experimental design is that while perfect in principle,

there are a number of problems with this type of design. Firstly, they can be almost too

perfect, with the conditions being under complete control and not being representative of

real-world conditions. True experiments can be too accurate, and it is very difficult to obtain

a complete rejection or acceptance of a hypothesis, because the standards of proof required

are so difficult to reach. True experiments are also difficult and expensive to set up. They

can also be very impractical. Based on these drawbacks it was decided not to proceed with

true experimental design for this thesis research.

 A quasi-experimental design is one that looks a bit like an experimental design but

lacks the key ingredient of random assignment. With respect to internal validity, they often

appear to be inferior to randomised experiments. However, there is something compelling

about these designs; taken as a group, they are more easily and frequently implemented than

their randomised cousins. The most commonly used quasi-experimental design is the non-

equivalent groups design. In its simplest form it requires a pre-test and post-test for a treated

and comparison group. This was not a workable method for the thesis study. The second

design is the regression-discontinuity design. At first glance, the regression discontinuity

design strikes most people as biased because of regression to the mean. After all, we're

http://www.experiment-resources.com/controlled-variables.html
http://www.experiment-resources.com/research-hypothesis.html
http://www.socialresearchmethods.net/kb/intval.php
http://www.socialresearchmethods.net/kb/quasnegd.php
http://www.socialresearchmethods.net/kb/quasnegd.php

assigning low scorers to one group and high scorers to the other. This was deemed not to be

suitable for this thesis research.

The ex post facto design is a variation of the "after-only with control group"

experimental design. The chief difference is that both the experimental and control groups

are selected after the experimental variable is introduced rather than before. This approach

eliminates the possibility that participants will be influenced by awareness that they are being

tested. Ex post facto designs provide an alternative means by which a researcher can

investigate the extent to which specific independent variables may possibly affect the

dependent variable of interest. Although experimentation is not feasible, the researcher can

identify events that have already occurred or conditions that are already present and then

collects data to investigate a possible relationship between these factors and subsequent

characteristics or behaviours. After observing that different circumstances have prevailed

among two or more groups, the researcher attempts to determine whether these different

circumstances preceded an observed difference on some dependent variable. Ex post facto

designs are often confused with correlation or experimental designs because they share

certain characteristics with each of these other design types. Like correlation research, ex

post facto research involved looking at existing circumstances. However, like experimental

research it has clearly identifiable independent and dependent variables. Although ex post

facto studies lack the control element and so do not allow us to draw definite conclusion

about cause and effect, it is nevertheless a legitimate research method that pursues truth and

seeks out the solution of a problem through the analysis of data. This was deemed unsuitable

as it requires a comparison between a control and experimental group which was not

applicable to this thesis topic. .

3.4 Key Processes and Procedures

The method used for the case study includes collecting extensive data on the

individual(s), methods used for requirement generation and event(s) on which the

investigation is focused. These data included observations, interviews and documents. I also

recorded details about the context surrounding the case, including information about the

physical environment, and economical factors that have a bearing on the research topic.

3.4.1 Participating Groups

Data gained in the varied industrial settings of the participants assisted in

understanding the patterns of requirement specifications, and the meanings and discussions of

the participants regarding their participation in requirement specification gathering in

accordance with standards. There are four sub-groups which were solicited for participation.

The first group represented the medical industry with exposure to requirement specification

and standards for that industry. The majority of the people had only worked in the medical

industry and experienced standards relevant to that industry and had documented requirement

specifications for that industry also. The second group represented the pharmaceutical

industry, with exposure to requirement specifications standards for that industry. The

majority of the people had only worked in the pharmaceutical industry with one working in

computer systems previous to the pharmaceutical industry. The third group represented the

software industry with exposure to requirement specifications and standards for that industry.

The majority of people had only worked in that industry and were younger and less

experienced than any other industry. The final group represented the electronic industry,

from a variety of companies with exposure to requirement specification documentation and

standards for the electronic industry. The majority of people had only worked in the

electronic industry

3.4.2 Sampling

A minimum of 25 people were solicited for the research. The requirement

specification and gathering techniques discussed previously were investigated using a sample

of professionals, who are currently working with computer systems or automation control

systems in the pharmaceutical, medical device, electronic and computer software industries.

A sample of professionals is appropriate to this study for the following reasons:

1. The sample questioned and interviewed all work within the relevant industries

to the standards examined.

2. The professionals all gather, document and review requirement specifications

on a weekly basis and therefore have considerable knowledge in the area.

3. The professionals use and examine standards and operating procedures during

their work life.

3.4.3 Data Collection

Twenty- five questionnaires were passed out to participants ranging from a number of

industries, including the pharmaceutical, medical device, software and electronics industries

throughout the Republic of Ireland. Participants filled out the questionnaire (Appendix B).

Each respondent received a document consisting of:

1. A cover sheet explaining the purpose of the study, the participant‘s rights and

the name of the contact person and telephone number of those who might have questions

after the questionnaire was complete.

2. The questions

3. The instruments described in this section.

The purpose, task demands, and rights were explained in print when the questionnaire

was being distributed. Respondents were told that the questionnaire would include questions

concerning procedures, techniques, and experiences they may have had. They were

guaranteed anonymity and confidentiality for their responses, and they were told that the

session would take 45 minutes or slightly more. In actuality, the time it took for the

participants to finish was between 30 minutes and 1 hour. All participants were asked to sign

a written consent form before completing their questionnaire. Participants were also given

instructions on how to properly fill out the questionnaire before they started. The initial

sample consisted of 25 respondents of which 23 chose to complete the questionnaire. Of

these, 2 questionnaires were omitted because they were only partially completed. Finally, of

the 21 remaining questionnaires, 20 were selected for this study because they met the criteria

of having no missing data for any specific questions, and were working with requirement

specifications in the related industries

3.4.4 Observations

Over the year, I conducted observations of five participants who were gathering

requirement specifications in relation to standards within all four industries, in relation to

automation and control system projects. These observations totalled 2 sessions, ranging from

the shortest at 30 minutes and the longest at 3 hours. The main procedure for the

observations was discussing the gathering of requirement specifications and the procedure

and frameworks used to gathered the data. The longer session consisted of witnessing the

documenting of the gathered requirement specifications, and the use of the standard in

correlation.

3.4.5 Interviews

I had interviews with the five participants, which consisted of general discussion on

requirement specification and their importance. The interviews also focused on techniques

and procedures used to aid in the gathering of requirement specifications.

The interview was performed and yielded a great deal of useful information. The

main questions that were asked to the interviewees were on the relevant standards that are

applicable to their industry, and any in-house procedures that were used during their

requirement specification gathering techniques. The interview then proceeded to facts about

the methods used for the generation of requirement specification including tools and

standards. The interview continued by discussing projects that requirement specifications

were implemented on and the advantages and disadvantages of performing a detailed

requirement specification generation on projects. The interview also discussed the motives

and justification behind implementing requirement specifications on projects. In conclusion,

the past behaviours of the past projects where requirement specification were not focused on

were discussed, and compared with projects where focus was paid to this specific phase of

the project lifecycle, including requirement creep and leakage

The semi-structured interviews include the following types of questions:

1. What sector is your company working in?

2. Have you worked on any projects where requirement specification gathering

was performed and how did that project proceed?

3. Do you produce requirement specification document on a daily, weekly or

monthly basis?

4. What is the main reason for producing these documents?

5. Do you reference any standards when documenting requirement specification?

6. Do you reference any in-house standards and standard operating procedures

when documenting the specifications?

7. What tools or techniques do you use during requirement specification

gathering and which do you find the most useful?

8. Do you discuss and review the document with the stakeholders before

finalising?

9. Do you use frameworks or criteria to sector the requirements gathered.

10. Do you document the requirements in a testable manner and if so can you

please give examples?

11. Do you document the specifications mainly in technical language or business

language and which do you find the most effective?

12. What are the main conflicts and obstacles that you find when performing

requirement specification gathering?

13. Have you worked on any projects where requirement specification gathering

was not performed and how did that project proceed?

14. Have you worked on any projects where requirement specification gathering

was performed and how did that project proceed?

15. What do you think are the main factors that affect a project, i.e. budget, quality

and schedule?

During the interviews I took heavily-documented notes and narrowed this area to a

focus area on requirement specification generation, standards and the combination of both

together. The main challenge was trying to discuss and examine the main pitfalls of projects

from people, and the main areas of correction on projects in relation to requirement

specification documents. As I collected and analysed the data from the questionnaire, I found

issues to explore which were mainly in relation to the different industrial standards, different

techniques used for requirement specification gathering including frameworks, and the major

difference was the conflicts experienced by people and how the conflicts affected the overall

project. These questions arose and created a need for further observation and contributed to a

second round of interviews with people. I collected data from the interviews looking for

emerging themes and recurrent events, categorised them and re-evaluated my themes and

categorising. As I collected more data, I wrote analytical memos about my data and re-

evaluated my previous theories as I compared old data with new. The themes of academic

engagement, generated by my study continued to expand in depth and breadth, and they

generated more themes that guided the development of my study.

3.4.6 Official Records and Documents

Official records and documents were another source of information. At the start and

during my study I went to the college libraries, and researched the topic through journals,

papers, and books. I also performed searches on databases, paying particular attention to the

standards and past papers in relation to requirement specification gathering. I took notes on

my laptop and documented notes by hand.

To further examine and support the case study, I also reviewed official records and

documents including user requirement specifications documents and standards. During my

studies, I examined the relevant standards to industry in detail before performing the

interview, and also as part of the Literature Review and Annotated Bibliography. I took

handwritten notes and typed abstracts from the literature for later inclusion in my thesis with

relevance to the questionnaire.

For example, by going through old papers on this topic it was found that some

companies do not perform requirement specification but instead use the manual to examine

the requirements and then test the requirements against the manual. This was found not to

work for the majority of projects due to the manuals not being descriptive enough or not

incorporating all aspects. It was also observed that companies did not find the process of

writing the requirement specifications difficult, because they were not really concentrating on

writing a traditional SRS document. Instead, they were writing a user‘s manual, which is a

familiar document with a well-known structure. Even more important, it is a user-centred

document which promotes the requirements elicitation process. ―For instance, they

frequently found themselves asking questions like, so, if the user wants to move an object,

can he find out how to do it by reading the manual? Or how will the system respond if the

user tries to select a group of objects?‖ (Berry, 2003, p. 10) Due to this information, during

the interview I also asked the interviewee if they use manuals for the requirement

specification instead of documenting it themselves.

3.4.7 Coding and Analysis

As I collected and analysed data from preliminary observation, I found further issues

to explore, mainly around the difference in projects when requirement specifications were

documented, and when they were not documented. These questions arose and created a need

for further observing or interviewing.

For example, one project I discussed during the interview process had no requirement

specification gathered or documented, and no standard referenced. This project went over

budget by 10% and over schedule by 2 months. This supported my theory that if the

requirement specification stage of the project lifecycle is neglected, then it has a knock-on

effect on the overall project in relation to budget and schedule.

 However, another project where I had observed the documenting of the requirement

specifications also went over budget by 30% and over schedule by 9 months. On reflection

this project had very detailed requirement specifications, which were to some degree too

detailed, and therefore caused confusion and over-designing to occur. Therefore a happy

medium between these two requirement specification documentation techniques needs to

occur and standards will aid in this.

3.4.8 Exploring Researcher Values

During this research I continuously reviewed my expectations and values as a regular

reminder of the role that requirement specifications and standards have on the project

lifecycle in relation to budget, schedule, and quality. I also performed ongoing self

reflections in memos and discussion with peers throughout the course of the study, which

helped me identify and account for the interference of assumptions in my study. For

example, sometimes I was tempted to express my opinion on the importance of detailed

requirement specifications on a project but this would have caused bias in my research and

swayed the interviewee into one particular direction.

3.4.9 Leaving the Field

The process of leaving the field was gradual in relation to this thesis topic. As I work

in this field I will not be fully leaving my research. This field constantly changes in relation

to standards, standard bodies, changing of the standards, and views on this topic. The one

area I did feel I was lacking in was the research and examination of material from official

standards, standards bodies and industrial standard operating procedure, which this thesis

research clarified for me.

3.5 Resources

The thesis was completed by me (the author) who documented and distributed the

questionnaire. I also performed the interviews with five (5) people. The five people ranged

from two in the automation sector of the pharmaceutical industry, one in the medical device

industry, one in the electronics industry, and finally one in the software development

industry. There was no budget provided for this thesis topic and time resources were done in

my spare time, outside of normal working hours.

3.6 Summary of methodology chapter

The methodology used for this thesis is in the form of a case study with statistical

analysis, as it was decided that none of the other qualitative or quantitative research

techniques were suitable for the thesis topic. The case study was based on a questionnaire

that was distributed to a number of people from different industrial sectors. The case study

was further examined by interviewing five people from different sectors of the industry. The

interview was performed with the following questions in mind in relation to facts; people‘s

beliefs, motives, present and past behaviours, standards of behaviours and reasons behind

actions taken. The main aim of the interview was to discuss the particular issues around

requirement specification and standards. The main problems with interviews are that time is

limited and people can feel uncomfortable. The results of the case study were analysed and

documented, as part of Chapter 4 of the thesis Results and Analysis.

The details required for the case study were organised, and mainly examined the

industry, standards, requirement specifications, and generation of requirements incorporating

standards. Specific documents, including the specified standards, and standards operating

procedures for requirement specification writing, were also referenced and examined during

the case study. Identification of patterns was found via statistical analysis, and finally an

overall portrait of the case was constructed and conclusions were drawn from the case study

and statistics. A research report was also prepared for the case study as part of Chapter 4

which discussed the rationale for the case study, detailed description of the facts related to the

case study, a description of the data collected and a discussion of the patterns found. The

main purpose of the case study was to understand one person or situation in greater depth,

and focus on one case or a few cases within its natural setting. The main methods of data

collection used were observations, and interviews performed with five people from four

different industries. The main pre-requisites of the case study was that the personnel being

interviewed and completing the questionnaire were informed of the nature of the study, and

were willing to participate in it.

Chapter 4 –Project Results and Analysis

The hypothesis of this thesis project to be discussed and answered is:

―The requirement specification stage of the project lifecycle is a neglected stage of the

project lifecycle, and if, with the combination of relevant standards, can this stage of the

lifecycle be improved‖.

The hypothesis is that there would be significant differences in schedule, cost and

quality of the project, if the requirement specification gathering was introduced in

combination with relevant standards. A more detailed review of the literature is presented in

Chapter 2 Literature Review and Appendix A Annotated Bibliography.

4.1 Experimental Results

The experimental results are split into four (4) key topics, including the following;

1. Standards and relevance to requirement specification

2. Gathering of requirement specification

3. Documenting of requirement specifications

4. Conflicts and problems experienced with requirement specifications.

4.1.1 Standards and relevance to requirement specification

The results are from four different industries, so that requirement specification

gathering and documenting used within the industry can be examined. The number

questioned were 20 people from all four areas of the medical device, pharmaceutical,

software, and electronics industries, with each industry consisting of 25% of the participants,

and therefore an even split. The majority of the people used requirement specification

techniques for gathering and documenting requirements in their daily work routine; with 90%

stating that they used requirement specifications daily, and 10% saying they used requirement

specification weekly. The percentage of participants that use requirement specifications daily

did not differ by industry, c2 (1, N = 20) = 0.90, p = .50. The 10% of weekly users were

from the software industry.

The questions then led into regulatory standards, and the number of people in the

industries that regularly reference standards for clarity and guidance reasons. The statistics

found that only 40% of the participants referenced industrial standards. The main standards

that were noted as being referenced by the participants were IEEE 12207 and IEEE 1233.

One participant acknowledged a Food and Drug Administration (FDA) standard for computer

systems (Code of Federal Regulations (CFR) Part 11 standard), which is only applicable to

the pharmaceutical industry. It was therefore not discussed as part of the thesis research. The

next question then led into in-house standards, and the number of people in the industries that

regularly reference in-house standards within their relevant industries for clarity and

guidance. The statistics found that 95% of the participants referenced in-house standards and

guidelines. The remaining 5% did not use any in-house standards, but were within the 40%

that used regulatory standards.

Finally, in relation to standards, it was found that the two main standards that were

discussed were IEEE 12207 and IEEE 1233, with one participant referencing International

Organisation of Standardisation (ISO) 9001 for the electronics industry.

4.1.2 Gathering of requirement specification

The research then moved into the area of gathering requirement specifications. The

participants were asked what the main purpose of gathering was, and documenting

requirement specifications within their daily jobs. Figure 2 demonstrates this:

Figure 2. The purpose of requirement specifications.

Figure 2 demonstrates that 60% of the participants use requirement specification to

aid, and contribute to the project lifecycle, while 20% use it for documentation purposes, and

20% use requirement specifications for other activities, mainly validation. To discuss this

topic further, the types of tools used for gathering requirement specification were discussed,

and Figure 3 demonstrates that use case tools are the most popular at 50%, followed by

models and figures with 30%, and finally benchmarking at 20%. Benchmarking was found to

be the most popular in the medical industry, with no other industry using benchmarking for

the survey.

Figure 3. Tools for gathering requirements.

60%

20% 20%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Project Lifecycle Documentation Other

20%

50%

30%

0%

20%

40%

60%

80%

100%

Benchmarking Use Case Models and Diagrams

To further discuss and examine the techniques used for gathering and managing

requirements, the following techniques were discussed:

a. Stakeholder analysis.

b. Secondary market research.

c. Context of use analysis.

d. Task analysis.

e. Rich pictures.

f. Field study.

g. Diary keeping.

h. Video recording.

It was found that some of the participants used many of these techniques to aid their

requirement specification gathering and documenting. Figure 4 demonstrates the trend within

this area of techniques.

Figure 4. Requirement specification gathering techniques.

29%

7%

14%

25%

7% 7%

0%

11%

0%

20%

40%

Stakeholder
analysis

Secondary
market

research

Context of
use analysis

Task
analysis

Rich
Pictures

Field Study Diary
Keeping

Video
recording

The next logical step was to discuss the stakeholders‘ part in relation to requirement

specifications, and if the participants communicate and discuss with the stakeholders before

formalising the requirements specification. It was drawn from the questionnaire that 90% of

the participants discussed the requirements specification with the stakeholders, before

formalising the document. Finally, the last part of this section on requirement specification

gathering was in relation to when the requirement specifications are gathered, and what

techniques are used to identify individual needs of the users, as per Figure 5.

Figure 5. Techniques to identify the needs of users.

4.1.3 Documenting of requirement specifications

The third stage of the results section proceeds to the documenting of requirement

specifications. The first section that the participants were asked to explain was when user

requirements had been agreed on. Additionally, the required frameworks were examined

and, if prioritisation or criteria setting frameworks were implemented. It was found that 50%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Focus groups Interviewing
users,

stakeholders
and experts

Scenarios Evaluating
existing

competitor
system

Brainstorming Storyboards Prototyping User cost
benefit

Design
guidelines

of the participants used criteria setting, 20% used prioritisation frameworks and 30% used no

frameworks, as Figure 6 demonstrates.

Figure 6. Frameworks in requirement specification documentation.

The next question was to ensure that the stakeholders fully understood and agreed

with the written requirements, before they are passed downstream to other departments. It

was found that 100% of participants ensured this step occurred before proceeding further

with the requirement specification document. The questionnaire then discussed the

documenting of requirement in a testable manner, and if this was a priority to the author of

the requirement specification document. It was found that 60% of the participants wrote the

requirement specification in a testable manner, while the remaining 40% did not deem this a

priority of requirement specification documentation. Also in the writing of requirement

specification it was asked if most of the requirements were written in a business language, a

technical language or both. From the participants‘ feedback it was shown that 70% of the

participants used a mixture of both business and technical language, 20% used only business

language, and 10% used only technical language (Figure 7).

Prioritisation
20%

Criteria Setting
50%

None
30%

Figure 7. Languages for requirement specification documentation.

To conclude with this section of the results, the final question was whether

participants distinguished between formal and informal requirements. It was calculated that

50% of the participants said yes they do distinguish, while 50% said they do not. This was

further investigated in the interview process to clarify this area.

4.1.4 Conflicts and problems experienced with requirement specifications

The final section of the questionnaire was to discuss the main conflicts that occurred

during the requirement specification stage of the project lifecycle, and how these conflicts

were overcome. The main conflict that caused problems during the requirement specification

generation was level difference, which is where the level of experience of people or

understanding of the project differs significantly. The next conflict was inter-group

prejudices, such as conflicts between technical and marketing staff, or quality and

manufacturing staff. The final conflict to be discussed was personality clashes, for example

Business language
20%

Technical Language
10%

Mixture of business
and technical

language
70%

where people cannot work together and cause problems within the project group. Luckily

this was only seen by one of the participants and is a limited problem conflict, but hardest to

overcome. Figure 8 shows the percentages of the main conflicts.

Figure 8. Main Conflicts experienced during requirement specification generation.

4.1.5 Interview

The next stage of the project was the five interviews that were conducted with

personnel who use requirement specifications and relevant standards in their daily work. The

first area to clarify during the interview was the amount of time a requirement specification

document would take to be gathered, documented, and accepted by stakeholders in relation to

the overall project size. The project size was measured by the overall project budget. Figure

9 demonstrates the correlation found.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Level differences Intergroup Prejudice Personality clashes

20 40 60 120 160
50000

150000

320000

450000

600000
R² = 0.9953

0

100000

200000

300000

400000

500000

600000

700000

O
ve

ra
ll

C
os

t o
f P

ro
je

ct

(E
ur

o)

Time in Hours

Figure 9. Correlation between hours spent on requirement specification documentation

and overall cost of project.

The indicated correlation, found during the interview, was that the number of hours

spent on requirement specification documentation and generation is directly related to the

overall cost of the project. Therefore bigger projects required an increase in requirement

specification but this does not necessarily mean more detail. This also indicated a positive

correlation. Table 1 demonstrates the amount of detail required for documentation of a

project in relation to cost.

Table: 1. Requirement Specification as per document and per line.

Overall Cost of

Project (Euro)

Number of

requirement sections

in a document

Number of

requirements per

section

Number of

requirement

documents

80,000 12 1-5 1

120,000 12 5-7 1

300,000 13 6-8 2

1,500,000 19 10-15 3

2,500,000 23 15-25 7

Table 1 shows the relationship between the number of requirements present in a

document, and the number of requirements listed per line in a section of the requirement

document and number of requirement documents. The table also contains information on the

overall budget of the project, and the indicated correlation between this figure and the

number of requirements present in the document. This also supports the evidence that some

requirement specification documents are heavily written with an extraneous amount of detail,

while other requirement specification documents are written in a lighter format. Either of

these methods adversely affects quality.

The next section to be examined in the interview process was requirement creep. It

was found that requirement creep was a major issue within the medical device and

pharmaceutical industries. Figure 10 demonstrates requirement creep within the different

industries.

Figure 10. Requirement Creep.

During the interview process it was also evident that both the pharmaceutical and the

medical device industries were more highly regulated. But the software and electronics

industries were more in compliance with their relevant standards and risk management. After

discussing requirement creep in depth during the interview, it was found from the ―lessons

learned‖ documentation of the industrial projects being discussed by the participants, that

between 40-60% of requirement creep was due to inaccurate or insufficient requirement

specification documents.

The interview process also examined requirement leakage, and found that most

documents within the four industries were revised and updated 2-6 times during the project

lifecycle, depending on the size and complexity of the project. It was also noted that

approximately 25% of requirements are gathered after the first revision of the requirement

0

1

2

3

4

5

6

7

8

9

10

Medical Device Pharmaceutical Software Electronics

N
um

be
r

of
 W

ee
ks

specification document. Due to this issue, project managers deal with this problem by doing

a risk assessment and placing a risk of 10% to 15% in their budget to allow for the cost of

requirement creep and leakage.

During the interview process, the use of prototypes was examined; it was found that

all four industries used prototypes in one form or another. The pharmaceutical and medical

device industries used the prototypes for simulation techniques, and off-line testing to ensure

that all requirements were met by the system. The electronics and software industries used

the prototypes to demonstrate the possible usage of the system, and ensure the users /

stakeholders understood the system fully. Also from doing the interview and witnessing

process, it was evident that manuals were used as a tool for requirement specification

gathering and documenting in the pharmaceutical and medical industries. The manuals were

mainly used for the off-the-shelf systems.

During the questionnaire it appeared that one problem area was defining and

distinguishing between informal and formal requirements. There was a 50/50 split on the

question of whether this occurred or not. It was therefore investigated further in the interview

process and found that the participants distinguished between requirements very differently,

depending on the industry they work in. Table 2 demonstrates this point.

Table: 2 Distinguishing criteria depending on industry

Industry Medical Devices Pharmaceutical Software Electronics

Distinguishing

Criteria

Quality critical

Safety critical

Product contact

Quality critical

Product critical

Environment, Health

and Safety (EHS)

requirements

Business requirements

White box

Black box

Quality critical

Safety critical

4.2 Analysis of results gathered.

To further the research of the thesis, the results found and calculated during the results

section are analysed to aid in the understanding of standards and requirement specification

and their combination.

4.2.1 Standards and relevance to requirement specification

To ensure that the results were applicable to the thesis, the questionnaire was

distributed 25% to the medical device industry, 25% to the pharmaceutical industry, 25% to

the software industry and 25% to the electronics industry. The main standards that were

identified during the analysis were IEEE 12207 and IEEE 1233. Both of these standards are

discussed in Chapter 2, Literature Review.

The IEEE 12207 is an international standard which establishes a common framework

for software lifecycle processes with well-defined terminology that can be referenced by the

software industry. It contains processes, activities, and tasks that are to be applied during the

acquisition of a software product or service, and during the supply, development, operation,

maintenance and disposal of software products, which includes the software portion of

firmware. The standard applies to the acquisition of systems and software products and

services to the supply, development, operation, maintenance, and disposal of software

products. It also applies to the software portion of a system, whether performed internally or

externally to an organisation. These aspects of system definition are needed to provide the

context for software products and services included. The standard also provides a process

that can be employed for defining, controlling, and improving software lifecycle processes.

The purpose of the standard is to provide a defined set of processes to facilitate

communication among acquirers, suppliers and other stakeholders in the lifecycle of a

software product. The standard is written for acquirers of systems, software products and

services for suppliers, developers, operators, maintainers, managers, quality assurance

managers, and users of software products.

IEEE STD 1233™-1998, IEEE Guide for Developing System Requirements contains

specifications which provide guidance for the development of a set of requirements that,

when realised, will satisfy an expressed need. In the guide, the set of requirements are called

the System Requirement Specification (SyRS). Developing a SyRS includes the

identification, organisation, presentation, and modification of the requirements. The guide

addresses conditions for incorporating operational concepts, design constraints, and design

configuration requirements into the specification. The guide also addresses the necessary

characteristics and qualities of individual requirements and the set of all requirements.

The results also demonstrated the importance of in-house standards, and the number

of in-house procedures that are in place for requirement specification generation. This

supports the theory that requirement specification generation is becoming an important topic

in the related industries, with 95% of the participants stating that there are in-house

procedures and standards in place. This allows the requirement specification gathering and

documenting to occur in a standard manner, with guidelines available.

In summary, it was found from the results that standards are now implemented during

the requirement specification within all industries, either in the form of international

standards, or as in-house standards.

4.2.2 Gathering of requirement specification

The study proceeded to discuss the main objectives of the participants when gathering

and documenting requirement specifications. It was found that 60% were using requirement

specification to aid with project lifecycle. The project lifecycle refers to the logical sequence

of activities to accomplish the projects goals or objectives. Regardless of scope or

complexity, every project goes through a series of stages during its life. There is first an

initiation, in which the outputs and critical success factors are defined, followed by a

planning phase, characterised by breaking down the project into smaller parts/tasks, an

execution phase, in which the project plan is executed, and lastly a closure or exit phase that

marks the completion of the project.

The requirement specification stage takes effect during the planning stage of the

project lifecycle. This second phase includes a detailed identification and assignment of each

task until the end of the project. It includes a risk analysis and a definition of criteria for the

successful completion of each deliverable. The governance process is defined, stakeholders

identified and reporting frequency and channels agreed. The most common tools or

methodologies used in the planning stage are business plans and milestone reviews including

requirement specification.

Only 20% of participants used the requirement specification for documentation

purposes, and the other 20% of participants used requirement specifications for other

activities, which from further analysis, proved to be for validation activities, and requirement

traceability matrices for projects included in the risk management.

In seeing how companies implement requirement specification, the results

demonstrated the tools used for gathering requirements, with the most popular tool being use

cases. These demonstrate the actors, system boundaries, system interaction and relationship

in a clear and defined manner. Models and figures are also used for requirement specification

gathering and documenting, including class figures and models of interactions. The last tool

for requirement specification gathering is benchmarking, where companies compare previous

similar systems from other projects and use the requirement specification documents to

design and build a similar system and also to implement reuse.

To further discuss and examine the techniques for gathering and managing

requirements, stakeholder analysis was examined, and found that 29% of the participants use

stakeholder analysis. Stakeholder analysis identifies all the users and stakeholders, who may

influence or be impacted by the system. This helps ensure that the needs of all those involved

are taken into account. User groups may include end users, supervisors, installers and

maintainers. Other stakeholders include recipients of output from the system marketing staff,

purchasers and support staff. Stakeholder analysis identifies for each user and stakeholder

group their main roles, responsibilities and task goals in relation to the system. One of the

main issues is how to trade off the competing needs of different stakeholder groups in the

new system.

Secondary market research was used by 7% of the participants, involving researching

published sources such as research reports, census data and demographic information that

throw light upon the range of possible user markets. Websites representing special groups of

users, such as that for the Royal National Institute for the Blind, give information about the

nature of the user population they represent.

Context of use analysis was used by 14% of the participants, and is used when a

system or product is developed. The quality of a system, including usability, accessibility

and social acceptability factors, depends on having very good understanding of the context of

use of the system. For example, in an office environment, there are many characteristics that

can impinge on the usability of a new software product, e.g. user workload, support available,

or interruptions. Capturing contextual information is therefore important in helping to

specify user requirements. In order to gather contextual information, stakeholders attend a

facilitated meeting, called a context meeting. Here a questionnaire is completed to capture

the characteristics of the users, their tasks and operating environment

Task analysis proved popular with 25% of the participants using this technique. Task

analysis involves the study of what a user is required to do, in terms of actions and/or

cognitive processes to achieve a task. A detailed task analysis can be conducted to understand

the current system, the information flows within it, the problems for people, and opportunities

that indicate user needs. There are many variations of task analysis and notations for

recording task activities. One of the most widely used is hierarchical task analysis, where

high-level tasks are decomposed into more detailed components and sequences. Another

method creates a flow chart, showing the sequence of human activities and the associated

inputs and outputs.

Rich pictures were only used by 7% and it can help stakeholders map, explore and

understand a complex problem space, and thereby help to identify hidden requirements. The

technique involves creating a series of sketches to show how people and systems relate to

each other in an organisation. They may show peoples‘ roles, power structures,

communications and reporting mechanisms. Drawing simple figures of people with thought

and speech bubbles linked to them can show particular problem areas in the current

environment that may lead to new user requirements.

The field study was used by 7% of the participants. Field study and observational

methods involve an investigator viewing users as they work, and taking notes of the activity

that takes place. Observation may be either direct, where the investigator is actually present

during the task, or indirect, where the task is recorded on videotape by the analysis team and

viewed at a later time. The observer tries to be unobtrusive during the session, and only poses

questions if clarification is needed. Obtaining the co-operation of users is vital, so the

interpersonal skills of the observer are important.

Diary keeping was not used by any of the participants, but could provide a record of

user behaviour over a period of time. They require the participant to record activities they are

engaged in, throughout a normal day, which may lead to the identification of user

requirements for a new system or product. Diaries require careful design and prompting, if

they are to be employed properly by participants.

Video recording was used by 11% of the participants, and can be used to capture

human processes in a stakeholder‘s workplace or other location. The results can then be

revised for the purpose of understanding more about the work and generating relevant

questions relevant to user needs. Video can also be a useful supplement to other methods,

e.g. to demonstrate new system concepts to users during user/stakeholder discussion groups.

In summary it was found that requirement specification were being implemented

within all industries, and that tools and methods were being used to aid with requirement

specification generation. As the requirement specification gathering techniques had been

fully discussed, the analysis moved to the documentation discussion, in relation to

requirement specifications.

4.2.3 Documenting of requirement specifications

The next logical step in the analysis section is the documenting of requirement

specifications. The first section to be examined is frameworks, which examines prioritisation

and criteria setting. It was demonstrated that 50% used criteria setting, 20% used

prioritisation frameworks and 30% used no frameworks. Criteria setting relates to the need

for criteria to help decide whether the user requirements have been achieved. This can be

done by an inspection team or by user testing. Defining acceptance criteria in advance can be

achieved by performing pre-tests on the existing system, or on a competitor system, to

specify that the new system must be at least as good as these current systems. Prioritisation

of user requirements is important so that development resources can be directed

appropriately. This helps control the risks in system development, and allows the customer to

redirect future effort to meet the user‘s needs more closely.

The importance of ensuring the stakeholders were fully involved in the requirement

specification was analysed and the results found that all participants (100%) ensured key

stakeholders were involved. By ensuring that all stakeholders were involved, all

requirements can be assessed fully, and a full understanding of the requirements is achieved

by all people involved in the requirement specification generation procedure. To ensure

stakeholders can fully understand the document, the following should be stated in the

requirement specification document:

a. Identification of the range of relevant users and other stakeholders.

b. A clear statement of design goals.

c. The requirements with an indication of their priority levels.

d. Measurable benchmarks against which the emerging design can be tested.

e. Evidence of acceptance of the requirements by the stakeholders.

f. Acknowledgement of statutory or legislative requirements.

To further examine the documenting of requirement specifications, the manner in

which requirements are documented was examined, including writing the requirements in a

testable manner. It was found that only 60% of the participants wrote the requirements in a

testable manner, with the remaining 40% not deeming this a priority. This was disappointing

as requirement specification if written in the correct manner can aid with the testing and

implementation phase of the project lifecycle. Therefore this was one section of the

requirement specification that was seen to be slightly neglected.

Requirement specification, if written in a business language, technical language or a

mixture will again aid with testing further within the project lifecycle. It was found that 70%

implement a mixture of both languages, 20% only use business language and the remaining

10% use only technical language. By implementing a mixture in the languages it helps in the

understanding between the stakeholders.

Another area to aid in the documentation of requirement specification is the splitting

of requirements between formal and informal requirements. This again proved to be a

neglected stage of the requirement specification as it had a split response on the topic.

Therefore, during the interview process it was further examined.

In summary, it was found that documenting of requirements was performed, using

aids and frameworks, to ensure that requirement specifications were written in a language

that was applicable to the industry. This was one area of the research that was lacking, and in

some way neglected, as only 60% of the participants ensured that requirements were written

in a testable manner.

4.2.4 Conflicts and problems experienced with requirement specifications

This area discussed the main conflicts experienced as part of the team group, and

within the project team. It was demonstrated from the results that the main conflict (70%)

experienced by participants was level difference. The level difference can be from within the

project team structure, for example, the level difference of understanding between the project

engineer and the quality assurance personnel. Another example is from outside of the main

project team, for example between marketing people of a new-built system and the project

builder of the system. The main ways of overcoming this area of conflict is by presenting the

requirement specification data in a mixture of technical language and business language,

therefore allowing all levels to understand the system more readily. The next conflict

experience by the participants was inter-group prejudices, which 25% of the group said they

had experienced. These prejudices stem mainly from the main objectives and purpose of

different groups, for example, an engineering team person will be concerned with budget,

scheduling and building of the system while a quality / validation team person will be mainly

concerned with quality and only secondly concerned with budget and schedule. Therefore,

this can cause a conflict within the key group, as neither of the peoples‘ key objectives is

identical. The main way to overcome this problem is by communication within the wider

group of all key project objectives, i.e. budget, schedule and quality, and to equally share the

objectives.

The last conflict to be experienced by participants in the group was personality

clashes. This conflict is of major concern to any project, as it is not easily overcome, and is

mainly due to personality clashes in organising key people. This requires all personnel to

behave in a professional manner within the team group and not allow personal opinions to

affect the documentation and execution of a project; luckily this conflict was only

experienced by 5% of the participants.

4.2.5 Interview

The next stage of the project was in relation to the interview process. The main

objective of this stage of the thesis research was to examine the correlation between hours

spent on requirement specification documentation and the overall cost of the project.

The main observation made from this correlation is that, as the budget increases on

the project, the requirement specification documentation increases, and in turn, the hours

spent generating and documenting the requirements increase.

It was also found that requirement specification detail increased with the size of the

project. For example a project worth €80,000 would usually have one requirement

specification document, with approximately 12 requirement sections, with 1-5 requirements

per section, while a project worth €1.5 million may have three requirement specification

documents, with approximately 19 requirement sections, with 10-15 requirements per

section. This was also witnessed when documents were examined and it was found that

requirement specification documents from the pharmaceutical industry, specifically, had an

extraneous amount of detail present, while requirement specification documents from the

electronics industry were lighter on detail. The level of detail did not have any effect on the

quality of the project, but the higher level of detail increased the cost of the project to ensure

that it was implemented correctly. This again was another key aspect that affected the project

lifecycle. Also evident in the industries was the use of manuals when documenting the

requirement specification. This was especially used for off-the-shelf systems, which reduced

the amount of generation required for the requirement specifications, and aided immensely

with documentation of the requirement specification documents.

The next logical section of this thesis to be discussed was requirement creep.

Requirement creep refers to a new requirement entering the specification, after the

requirements are considered complete. Requirement creep can come about because the

requirements were not gathered completely in the first place. If the requirements are

incomplete, then as the product develops, more and more omissions must, of necessity, be

asked for. It was found during the interview process that requirement creep is a major issue

in the pharmaceutical industry, with some projects delayed or off schedule by 9 weeks due to

requirement creeps occurring during the life of the software project. The medical device

industry experienced 5 weeks delays to software projects due to the same issue of

requirement creeps. However, the software and electronics industries experienced only 1

week delays to software projects due to requirement creep.

By implementing standards early, requirement creep can be minimised. The main

areas requirement creep occurs in is if the users and the clients are not given the opportunity

to participate fully in the requirements process, then the specification will undoubtedly be

incomplete. Almost certainly the requirements will creep as delivery approaches and the

users begin asking for functionality they know they need. Creep is also observed because the

original budget, for corporate policy reasons, is set unrealistically low. When noticeable

creep sets in it is not a matter of the requirements creeping but of the product itself not being

of the correct functionality. Quite often they change for very good reasons, i.e. the business

has changed, or new technological advances have made change desirable. These kinds of

changes are often seen as requirement creep.

In truth, if changes that cause new requirements happen after the official end of the

requirements process, and they could not have been anticipated, then this type of requirement

creep could not have been avoided. Whatever the reason, whether good or bad, reasons for

requirement creep must be identified, and must be responded to appropriately. After

discussing this problem further during the interview process, it was found that requirement

creep was mostly witnessed on bespoke software equipment within the industry. The fact

that both the medical device and pharmaceutical industries were not fully specialised in

software, causing the requirement specification documentation not to be as specified as is

required for the bespoke software system, and requirement creep and leakage occur. In

summary, it was found from the interview process that the best way to minimise requirement

creep is to engage in a good requirements process, with the active and enthusiastic

participation of the stakeholders, and to start with a reasonably-sized project, including

system boundaries guided by relevant standards.

Requirement leakage was another area to be analysed as part of the interview process,

and the results that were experienced. Requirement leakage refers to requirements that

somehow ―leak‖ into the specification. The main problems with requirement leakage are that

nobody knows where the requirement leakage comes from, and who is responsible for them.

Therefore, nobody wants to own them, and yet leaking requirements have an effect on the

budget. Either they are rejected or the project plan is adjusted to reflect the current reality. It

was found during the interview process that a requirement specification can be revised from

two to six times during the lifecycle of the project, to incorporate requirement specification

adjustments, including creep and leakage. On average, about 25% of the requirements appear

after the first requirement specification process has been completed. The main issue with

requirement leakage, or adding new requirements, is the cost involved and the adjustments

that are required to the budget and the schedule. On investigation during the interview

process it was found that the majority of the industry builds in a cost of between 10% to 15%

risk of requirement leakage and requirement creep occurring. Risk management was also

used throughout requirement specification, in terms of the amount of testing and details

required for certain criteria, for example, quality criteria versus business criteria.

Prototyping was another area to be witnessed as part of the interview process; the

prototyping was used in different aspects depending on the industry. The pharmaceutical and

medical industries used prototypes to aid with requirement specifications, to ensure that all

aspects of the system were thought about and in turn that the requirements were generated

and documented as part of the requirement specification document. The electronics and

software industries used the prototype to allow the stakeholders and users to interact with the

system. This ensures that all key processes were in place and, if a process was found to be

missing, that the stakeholder / user would highlight this issue, and the requirement

specification document could be revised, to include this process within the relevant language.

Finally, during the questionnaire process the uses of informal and formal requirements

were discussed, but did not prove beneficial. It was examined further and the main manner in

which the requirements were distinguished was by using other forms of criteria. For

example, in the medical device industry the requirements are distinguished using quality-

critical, safety-critical and product-contact requirements. The formal requirements are

examined as part of the quality-critical and product-contact requirements. The informal

requirements are distinguished as safety-critical requirements. This manner of distinguishing

was also evident in the pharmaceutical industry, with formal requirements being captured in

quality-critical and product-critical requirements, and informal requirements being captured

as part of EHS requirement and business requirements. Within the software industry, the

formal requirements and informal requirements are mixed between both the white box testing

and black box testing, and therefore this is the manner in which this industry defines the

requirements. Finally, the electronic industry uses quality-critical for the formal

requirements and safety-critical for informal requirements. Requirements that may not be

captured as informal or formal requirements may however be captured under a different

name. However, in general terms, they can still be traced back to either formal or informal

requirements.

The one main finding from this research is that all changes, revisions, updates and

errors found during the project lifecycle affect the schedule and budget of the project.

However, the quality of the system always remains at 100% and is never allowed to waver.

Either the budget or schedule must be revised to ensure quality stays high.

4.3 Conclusion

The main findings from the results and analysis section is that the requirement

specifications are not necessarily a neglected phase of the project lifecycle, but evidence

shows that personnel perform requirement specifications in combination with standards, but

not necessarily in the correct manner. From the research and analysis that was examined, it

was found that some industries pay high attention to requirement specification, because they

are regulated to do so, while other less-regulated companies still implement standards within

the requirement specification, but in a more controlled manner.

On reflection, relevant standards are used to aid with the generation and

documentation of requirement specification, and therefore it is not a neglected stage of the

project lifecycle. However, it is a stage of the project lifecycle that is misunderstood and is

not always completely reflective of the project itself.

Chapter 5 – Project History

5.1 The beginning of the thesis

The thesis began due to my work area being in the installation and commissioning of

computer systems. My work was mainly based around gathering and documenting

requirement specifications in alignment with current and applicable standards. My work

consists of requirement specification gathering, generation of documents, and consistently

ensuring the requirement specification documents are updated and reflect the live system. As

this area was related to my job, this added extra emphasis to the topic and an easy way of

introducing the thesis into my professional life, as one of the main objective of the thesis

research was to ensure that the project was suitable to my profession and related to my daily

work environment.

By ensuring that my chosen topic was a relevant and current one, I reviewed topics

from other universities in relation to research opportunities. I found, from researching

relevant papers and university postgraduate opportunities, that the requirement specification

topic had been researched in detail in the early 1990‘s and that there were many relevant

papers. The topic then re-appears in the late 2000s (2006 to 2009) and there were a number

of relevant papers and research opportunities.

The main papers of relevance from the previous 20 years were the following:

1. Loucopoulos, P & Champion, R. (1990). Concept acquisition and analysis for

requirement specification.

2. Jang, H. (1994). A knowledge based analyser for requirement specification

analysis.

3. Yau, S. & Liu, C. (1988). An Approach to software requirement specification

4. Yau, S. & Bae, D. (1994). An approach to object oriented requirement

verification in software development for distributed computing systems

5. Hunt, L. (1997). Getting the Requirement Right – A Professional approach.

6. Hesslink, H. (1995). Comparison of standards for software engineering based

on DO-178B for certification of avionics systems.

The main current papers to aid in this decision to progress this research topic were:

1. Glinz, M. (2008). A Risk Based, Value Oriented Approach to Quality

Requirements.

2. Alipourt, H. & Isazadeh, A. (2008). Software Reliability Assessment Based on

a Formal Requirement specification.

3. Glass, R. (2009). Doubt and Software Standards

After performing a month of research in June 2009, I decided to follow this line of

research into my thesis topic, and therefore continued my chosen topic through to the idea

paper. The idea paper was submitted and named ―Requirement specification stage of the

project lifecycle and the standards that can be implemented at this stage‖.

Then I compiled my thesis idea paper, and I identified three suitable thesis advisors,

with knowledge and interests in this general area of software engineering. The thesis advisor

willing to accept the thesis was Mike Prasad, with whom I corresponded for approval of my

thesis idea paper. I then formally submitted the idea paper.

5.2 Managing the thesis

From here the thesis was managed in two ways:

1. At the beginning it was managed according to the dates received from

National University of Ireland (NUI) Galway.

2. After the first thesis module the thesis has been managed according to a

Project Plan that was reviewed by me and my thesis advisor (Mike Prasad).

This project plan has been made a live document and is updated as required to include

all adjustments and minor changes to the timeline of the thesis. The NUI Galway dates have

been incorporated in the project plan, to ensure that the project plan represents the full life of

the project. Figure 11 shows the current project plan. The main changes to the original plan

were in relation to the amount of work that was possible to commence on the thesis during

the weekly modules of MScSIS course. The work load increased in some modules, which

made it harder, if not impossible, to continue with work on the thesis project. Also my

professional work life increased in complexity and workload, which in turn affected the thesis

project progression.

Figure 11 Project Plan

REQUIREMENT SPECIFICATION AND STANDARDS 86

5.3 Evaluation of whether or not the project meets project goals

The main aim of the thesis was to prove that requirement specification

documenting was a neglected phase of the project lifecycle. The main conclusion

found from the thesis was that requirement specifications are being implemented in

projects within industries, but that this stage of the project lifecycle is still

misunderstood, and therefore not implemented in the correct manner. This, in turn,

does not provide all the benefits that requirement specifications can produce if done

correctly.

5.4 Lesson Learned for project management

As part of the lesson learned activity, an evaluation of whether or not the

project met project goals was assessed. What went right, and what went wrong, were

also assessed.

5.4.1 Lesson Learned Introduction

The purpose of this event was to document how the thesis project ran, and to

establish any improvements that could be obtained for any future thesis projects. This

exercise was carried out to ensure that any key lessons learned during this project are

captured and can act as a benchmark for other thesis projects.

REQUIREMENT SPECIFICATION AND STANDARDS 87

5.4.2 What Went Well?

Table: 3 What went well during the thesis project

Number Description Comment/Lessons Learned

1
All interviews occurred, and were a

productive experience

The same process of interviewing would be

used in future projects

2
Training and relevance to my

profession was beneficial

Future projects should be in an area of

benefit to me, or any other authors.

3

The introduction of a requirement

specification gathering system as

discussed in Chapter 4, was not in the

scope of the original thesis project

This was a major risk in the project due to

time lines, but proved relevant in explaining

and categorising requirement specifications.

4

All examination of requirement

specification was performed in cross-

functional industries, and examined

the experience of personnel from a

number of industries, in relation to

requirement specification and

standards.

This allowed a cross-functional group to be

examined, in relation to the relevant topics.

5 Schedule was met. The project was delivered on time

Number Description Comment/Lesson Learned

6

Any relevant standards were

researched and examined which

aided in the thesis project, and also

general knowledge of the area of

requirement specification.

Therefore providing a solid base work.

7

Performing the literature review

early aided in progressing the

following chapters

Perform literature review early on the

thesis project, set the ideas in places for

the remaining chapters.

5.4.3 What Didn’t Go Well?

Table: 4 What didn’t go well during the thesis project

No Description Comment/ Lesson Learned

1

Researching of standards and

requesting of standard documents

took longer than expected.

Perform standard research earlier in the

thesis project.

2

Idea Paper required much

improvement, when referenced to

complete a thesis statement.

More research and preparation required for

the idea paper, to aid with the thesis

statement preparation and approval.

No Description Comment/ Lesson Learned

3

Questionnaire was re-written after

first review by two independent

personnel, to aid with clarity of

question and expected response.

Clarity of question was still required during

the questionnaire distribution process and

five questionnaires were omitted from the

results and analysis section due to

incompleteness or incorrectness.

4
Finding clarity of required dates

from the university.

There was a medium risk of missing the

deadline of the 14th of February for

annotated bibliography submittal, due to a

missed communication in December about

the revised date. Continuous checking of

information on university system required

for future projects.

The project ended with a thesis project that was delivered on time and in a reviewed

American Psychological Association (APA) formatted manner, consisting of six chapters and

four appendices. In all, on review the thesis project did meet the project goals that were

explained and set out in the idea paper, thesis statement and scope of thesis project.

5.5 Project variables

The main project variables are the following:

1. Timelines

The timelines were assessed at the beginning of the thesis (August 2009). These

timelines aimed to have the thesis project completed by June 2010. This was moved to mid-

August, due to higher commitments to second year‘s modules than anticipated. The timeline was

kept active and up to date, via the project plan as per Figure 11 and Appendix C.

2. Case Study Questionnaire

The case study questionnaire was performed from January 2010 to May 2010. It was

submitted to 25 people in February, and all questionnaires were received and reviewed by April

2010. Interviews were performed with additional people that worked in a relevant industry, with

user requirement specification documents on a weekly / monthly basis. The main variables in

this exercise were people‘s perception of the questions being asked, how to overcome this

problem, and how to avoid errors were given clarity on the questionnaire.

3. Case Study Personnel

The case study personnel were gathered from four different industries, to give a higher

degree of sampling from different prospectives. The case study was performed in a manner that

tried to remove all bias in relation to requirement specification gathering and documenting. This

was aided by the manner in which questions were asked and ensured that interviewees were

allowed to answer all questions in full and with detail.

4. Statistical variations

The statistical variations were limited in the statistical tools that were used for the results

and analysis chapter. The main error in the statistical analysis was the rounding of decimal

places to whole numbers.

5.6 Project Summary

The annotated bibliography, literature review, methodology, questionnaire and case study

were performed throughout the timelines of second-year course modules. The remaining

chapters of introduction, results and analysis, project history, and conclusion were performed

following the completion of the course modules from July to August 2010. The literature review

discussed in detail the relevant standards to the thesis project and the generation and

documenting of requirement specification, taking into account risk analysis, lifecycle and case

studies. The advantages and disadvantages of implementing standards during requirement

specification analysis were discussed, taking into account risk management, development and

process improvements.

The methodology chapter went on to discuss the process of procedures taken during the

questionnaire and interviews for the case study part of the thesis project. The results and

analysis section used statistical analysis on the data gathered, and then further discussed the

statistical results and analysis. The thesis was then concluded within the project history chapter,

and the conclusion chapter. However, the main obstacles to completing the thesis were time

lines and constraints.

Chapter 6 – Conclusions

6.1 Main Findings

The purpose of this study is to examine the hypotheses that the requirement specification

stage of the project lifecycle of computerised systems is a neglected stage. Therefore, this

research examines the techniques used for requirement gathering and managing, including a case

study, with influence from the relevant standard bodies. In an influential book, Robertson &

Robertson (2005) wrote, ―requirement specification importance has grown significantly over the

past few years‖. The main fact to be investigated is if the requirement specifications are

implemented with relevant standards as guidance, would the errors and problems found during

the phase of the project lifecycle be minimised. In a major article reporting on this research,

Raja (2007) wrote that ―56% of the errors found in a project are associated with the requirement

specification stage of the project lifecycle.‖ According to Robertson & Robertson (2005), they

―estimate 60% of the errors are associated with the requirement specifications stage of the

project lifecycle being neglected.‖ This research supports these two theories by examining the

effect that standards have on reducing the errors occurring in requirement specification stages of

a project. It extends the research by acknowledging the importance of requirement specification

in present-day projects, and their effect on project schedule, budget and quality.

6.2 Summary of Results Integration

A series of structured figures are used to demonstrate the results calculated during the

results section of the research. It is found that the participants are spread equally over the

medical device, pharmaceutical, software and electronics industries. The research group

consisted of 90% of the participants using requirement specifications on a daily basis, and 10%

on a weekly basis, 40% referencing industrial standards, and 95% referencing both industrial and

in-house standards. This demonstrates that standards within today‘s industry are referenced on a

regular basis, either in their original form, or as in-house standards, that have been documented

in a more relevant manner for the industry of use.

The research proceeded to examine gathering of requirement specifications. Figure 1-4

examine documentation for requirement specifications, including the first model, which

discusses the main purpose of requirement specification in relation to project lifecycle,

documentation activities and other activities. Figure 2 demonstrates the use of models and

figures, benchmarking and use cases to aid with requirement gathering. Figure 3 follows on to

examine requirement gathering in a more detailed structure, examining eight different tools that

can be used to aid with requirement gathering, including stakeholder analysis, task analysis, and

content of use analysis. Finally, the last figure within the section of requirement gathering

(Figure 4) relates to the contribution and input of stakeholders at this stage of the requirement

specification.

The results then proceed to examine the documenting of requirement specification. This

section consists of three figures, including a figure describing the use of frameworks within the

requirement specification documentation, and discusses criteria frameworks and prioritisation

frameworks. The documentation section also contains a figure, discussing the documenting of

requirements in a testable manner, and finally the use of languages within the documentation

section of requirements. This is the one section of the requirement specification that was most

neglected by the participants, and not fully explored or understood. The results then proceed to

discuss the main conflicts experienced by the participants, in connection with level differences,

inter-group difference, and personality differences, which are demonstrated as part of Figure 5.

The results section then proceeds into the interview section. This section discusses the

indicated correlation between hours spent on requirement specifications and overall costs of the

project. The main indication from this section is that there is a linear relationship, with the size

of the project increasing as the requirement specifications also increase. This is also

demonstrated in the first table of the section. The section then proceeds to discuss requirement

creep and requirement leakage. Figure 10 demonstrates that requirement creep is responsible for

delays within the project‘s schedule. It also found that on average between 40% - 60% of the

requirement creep is due to insufficient or inaccurate requirements documentation. This is in

line with the findings of both Raja (2007) and Robertson & Robertson (2006), which is

disappointing as relevant standards have been used on these projects. The section also examines

the use of prototypes and manuals for ensuring all requirement specifications are gathered and

documented. The final section of the results is in relation to distinguishing criteria and risk

management.

6.3 Summary of Conclusions Integration

The main conclusions drawn from the literature review are that there are four standards

(IEEE STD 15288, IEEE STD 12207, IEEE STD 1233 and ESA Board for Software

Standardisation and Control) which are of relevance to the requirement specification of the

project lifecycle. The requirements definition is the most crucial part of the project. Incorrect,

inaccurate, or excessive definition of requirements must necessarily result in schedule delays,

wasted resources or customer dissatisfaction. The requirements analysis should begin with

business or organisational requirements, and translate these into project requirements, which are

evident from the results and analysis examined in this research. The three main types of problem

with requirements are:

1. Definitions written in natural language which lack clarity,

2. Requirements confusion from requirements not being fully traceable,

3. Requirement non–co-operation.

By examining requirements, it is shown that good requirements practices can accelerate

software development. The process of defining business requirements aligns the stakeholders

with shared vision, goals, and expectations.

The main conclusion drawn from the methodology chapter is that a case study, with

statistical analysis, is the correct analytical method to use for this research. The case study is

based on a questionnaire that was distributed to 25 participants from four different industries.

The case study is further examined by interviewing five people from the four different industries.

The one problem experienced during the interview process was time limitations. The main areas

to be examined as part of the case study are industry standards, requirement specification

generation, documentation, and generation of requirement specification incorporating standards.

The identification of patterns was found via statistical analysis. Finally, an overall portrait of the

case was constructed, and conclusions were drawn from the case study and statistics. A research

report was also prepared for the case study as part of Chapter 4

The main findings from Chapter 4 (Results and Analysis) are that requirement

specifications are not necessarily a neglected phase of the project lifecycle. It is evident that

personnel perform requirement specifications in combination with standards, but not necessarily

in the correct manner. From the research and analysis, it was found that some industries only

fulfil attention to requirement specification because they are regulated to do so but do not

necessarily give them the correct level of detail. Although other companies are not as highly

regulated in relation to the requirement specifications, they still implement standards within the

requirement specification, but in a more controlled manner. On reflection, requirement

specification and relevant standards are used to aid with the generation and documenting of

requirement specification. Therefore, it is not a neglected stage of the project lifecycle, but it is a

stage that is misunderstood and is not always completely reflective of the project itself.

The main findings of Chapter 5 (Project History) are that the thesis consistently

performed to schedule from June 2009 to August 2010. The project history also discussed the

lessons learned throughout the project. The main lessons learned for the management of the

project were as follows:

1. All interviews were productive.

2. Relevance to my profession was beneficial.

3. An examination of requirement specification was performed in cross-functional

industries.

4. Schedule was met.

5. All relevant standards were researched.

6. Questionnaire required a large degree of accuracy and clarity.

Finally, the last Chapter 6 (Conclusion) discusses the general learning and findings of the

results and conclusions, including recommendations and reflections.

In summary, one of the foremost benefits of having proper user requirements is that the

project is able to be planned and estimated, thereby saving the likelihood of cost and time

overruns. From the research this is evident. Requirement specification are performed by

following the relevant standards, but projects still overrun and cost extra, mainly due to the fact

that the requirement specification stage of the project lifecycle is still a misunderstood area. I

strongly believe that successful projects can only be produced through competent and careful

requirement gathering. Requirement gathering provides us with the opportunity to learn about

the proposed projects. It also gives the client the opportunity to look at the project blueprint on

paper.

Based upon the requirement specification, the project manager will work with the client /

stakeholder to translate these requirements into a detailed project specification. At this stage, the

team will resolve any conflicting views of the overall projects goals, define the interaction of the

project with each member of the requirements team, and then go about establishing a cost,

quality and deliverable schedule for the project. After the initial requirements-gathering

exercise, they are able to calculate the cost and deliverable of the project. One word of warning,

at this early stage of the project the estimates are likely to be vague as they are based on some

degree of uncertainty. The further the project progresses, the more solid the requirements

become and the degree of uncertainty is reduced. Additionally, all captured requirements can be

stored within a common central database for use by the project team.

The main lesson learned in relation to the requirement specification, in combination with

relevant standards, from this research is:

1. Clarify any ambiguities – it will save time.

2. If the scope of the project is well defined, the project will succeed.

3. Developers assume they know what the users / stakeholders want.

4. Manager should not decide what the system should look like and exclude the

users / stakeholders – involve them from the start.

5. If requirements are incomplete and are inaccurate at the start of a project,

developers are more likely to see the project failing than succeeding.

6. Requirements must be reviewed by all stakeholders on the project and not be

limited to just the client.

7. If there is uncertainty about gathering user requirements, follow a requirement

gathering methodology / standard.

8. Have knowledgeable and experienced analysts or developers assist in the

requirements definition or exploratory phase of the project.

6.4 Study Limitations

The present study offers several important findings to the research area. Yet there are

some limitations to the study as well. The first limitation is the sampling. The sample size is 25

participants. The proportion of participants within the four relevant industries was excellent, as

25% of the participants were from each industry. There were a proportionate number of men and

woman (10 women to 15 men), 5 of the men were removed from the study for various reasons;

so the ratio was now 1:1. The results are important because this is a population that continually

works with requirement specifications.

The second limitation to this research was the lack of response to the distinguishing of

requirement specifications. This question was answered by all participants, but the results were

not consistent, and demonstrated that 50% used informal and 50% used formal procedures.

Upon further investigation, during the interview process it was found that distinguishing between

requirements was performed but not in a formal/informal manner as discussed in the

questionnaire. A better procedure in the future for the questionnaire would be to produce a more

accurate questionnaire.

A final limitation of the study was in only interviewing five participants, and witnessing

requirement specification gathering as part of their daily jobs. Due to the questionnaire data

being fraught with problems, and to people‘s perception of the questions, it would have been

more beneficial to have performed a more comprehensive research. This would include actual

physical witnessing of the requirement specification gathering, documenting and incorporating

standards. The problem here is that committing to more interviews and witnessing more

processes would require a great deal of extra time and willing participants.

6.5 Recommendations and Reflections

The main recommendation that can be drawn from this research is the importance of time

management. To further expand on this topic, I would perform further research via the interview

process. One other area that I feel requires further research is the relevance of standards to the

requirement specification stage of the project lifecycle. From the literature review research, it is

evident that there are numerous standards of relevance to this stage of the project lifecycle, with

four standards being of major relevance. From my field research I found that standards are

implemented, but vary with the perception and discretion of the personnel documenting the

requirements. This area requires further research into the usability and application of the

standards to requirement specification, with special attention to the language used, within the

standards, and the generality of the standards. Another area requiring further research is the

indication of the linear correlation between project size, and requirement specification document

size. This area is also relevant to requirement creep, and requirement leakage, which requires

further examination in association with standards.

On reflection, the questionnaire produced very useful data and is an excellent building

block to the interview process and observation. Although the interview process is time-

consuming, it yielded much useful information. The interview process area bore the least

accurate results, due to the questionnaire being open to interpretation and misunderstanding, due

to poor clarity within the questionnaire.

The main lessons learned from the process, in relation to beginning a thesis research

again, would be to ensure time and work constraints are not such a major stumbling block as

shown in this thesis. I would also ensure that the questionnaire is written in a more scientific and

self-explanatory way.

6.6 Final Conclusion

In conclusion, careful user requirement gathering is an essential first step in any project.

In my experience, the time spent upfront gathering detailed user requirements eliminates

unnecessary delays, improves system quality and greatly reduces requirement creep and its

associated cost overruns. More importantly, it also takes courage to really listen to what users /

stakeholders want, as many organisations aren‘t prepared to listen to employees, suppliers,

contractors and consultants. Today more and more companies are being forced to adopt the use

of the IEEE standards, ISO standards or ESA standards, implying that there is a greater emphasis

being placed on gathering user requirements, which is beneficial to both the cost and quality of a

project. The one major lesson taken, from this research is to remember that effective

requirements management is the first step to becoming more mature in the development process

of project management.

References

Aliport, H. and Isazadeh, A. (2008). Software Reliability Assessment Based on a Formal

Requirement Specification. Journal of IEEE, 311–316. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4581454.

Berry, D. (2003). User‘s Manual as a Requirement Specification: Case Studies. Computer

Society Journal, 1-25. Retrieved from

http://se.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.conferences/users.man.pdf.

Bourque, P. & Lethbridge, T. (2002). Improvements to the Guide to the Software Engineering

Body of Knowledge (SWEBOK) and to the Software Engineering Education Body of

Knowledge (SEEK). Journal of Software Technology and Engineering Practice, 10, 1.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1267594.

Branstad, M. & Powell, P. (1982). Software Engineering Project Standards. IEEE Transactions

on Software Engineering, 10, 73–78. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=5010201.

Brooks, F. (1995). The Mythical Man month (4th ed.). Boston, MA: Addison-Wesley.

Carew, D., Exton, C. and Buckley, J. (2005). An Empirical Investigation of the

comprehensibility of requirement specifications. Software Engineering Journal, 10, 256-

265. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1541834.

Child Care and Early Education Research Connections. (n.d.). Retrieved from

http://www.childcareresearch.org/childcare/datamethods/preexperimental.jsp;jsessionid=

F3629DA363FBBD7B33411A769172579F.

Emmet, L. and Bloomfield, R. (1997). Viewpoints on improving the standards making process:

Document Factory or Consensus Management. IEEE Journal, 51, 207–216. Retrieved

from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=595972.

ESA Board for software standardisation and control. (1991). ESA Software Engineering

Standards. ESA PSSS Journal, 2, 1 -330. Retrieved from

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECA5CUXBQE_0.

html.

Glass, R. (2009). Doubt and Software Standards. IEEE Computer Society Journal, 1, 1-2.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=5222806.

Glinz, M. (2008). A Risk Based, Value Oriented Approach to Quality Requirements. IEEE

Computer Society Journal, 21, 34–41. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4455629.

http://www.childcareresearch.org/childcare/datamethods/preexperimental.jsp;jsessionid=F3629DA363FBBD7B33411A769172579F
http://www.childcareresearch.org/childcare/datamethods/preexperimental.jsp;jsessionid=F3629DA363FBBD7B33411A769172579F

Harauz, J. and Poon, P. (1999). System Engineering in the Twenty First Century. ISESS’99

Panel, 1, 1-2. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=767662.

Heitmeyer, C. and McLean, J. (1983). Abstract Requirements Specification: a New Approach

and Its Application. IEEE Transaction on Software Engineering Journal, 5, 580-590.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1703098.

Hesslink, H. (1995). A comparison of standards for software engineering based on DO-178B for

certification of avionics system. Elsevier Science Microprocessors and Microsystems,

19, 559 -563. Retrieved from

http://www.sciencedirect.com.libgate.library.nuigalway.ie/science?_ob=ArticleURL&_u

di=B6V0X-3YB9T0J-

1&_user=103680&_coverDate=12%2F31%2F1995&_alid=1429652798&_rdoc=1&_fmt

=high&_orig=search&_cdi=5658&_sort=r&_docanchor=&view=c&_ct=18&_acct=C00

0007922&_version=1&_urlVersion=0&_userid=103680&md5=28a19ffdc69ae78f1e269

2a48568b2dd.

Hunt, L. B. (1997). Getting the Requirements Right – a Professional Approach. IEEE Journal, 1,

464-472. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=615536

IEEE. (1998). IEEE STD 830, IEEE Recommended Practice for Software Requirements

Specifications. IEEE Computer Society Standard, 1-39. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=720574.

IEEE. (2004). IEEE STD 1012 IEEE Standard for Software Verification and Validation, IEEE

Computer Society Standard, 1-120. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1488512.

IEEE. (2009). IEEE STD 1016 IEEE Standard for Information Technology—Systems Design—

Software Design Descriptions. IEEE Computer Society Standard, 1-40. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=5167255.

IEEE. (2006). IEEE STD 1074, IEEE Standard for Developing a Software Project Lifecycle

Process. IEEE Computer Society Standard, 1-116. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1665059.

IEEE. (2005). IEEE STD 1220, Systems engineering — Application and management of the

systems engineering process. IEEE Computer Society Standard, 1-101. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1511885.

IEEE. (1994). IEEE STD 1228, IEEE Standard for Software Safety Plans. IEEE Computer

Society Standard, 1-23. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=467427.

ISO / IEC. (1998). IEEE STD 1233, IEEE Guide for Developing System Requirement

Specifications. IEEE Computer Society Standard, 1-36. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=502838.

IEEE. (1998). IEEE STD 1362, IEEE Guide for Information Technology—System Definition—

Concept of Operations (ConOps) Document. IEEE Computer Society Standard, 1-21.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=761853.

IEEE. (2000). IEEE STD 1471, IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems. IEEE Computer Society Standard, 1-23. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=875998.

IEEE. (1999). IEEE STD 1517, IEEE Standard for Information Technology—Software Lifecycle

Processes—Reuse Processes. IEEE Computer Society Standard, 1-51. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1511021.

IEEE. (2001). IEEE STD 1540, IEEE Standard for Software Lifecycle Processes—Risk

Management. IEEE Computer Society Standard, 1-30. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=914365.

ISO/IEC. (2008). ISO/IEC 12207 Systems and software engineering — Software lifecycle

processes. IEEE Computer Society Standard, 1-138. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=669648.

ISO/IEC. (2001). ISO/IEC 15288 The System Lifecycle Process standard for the 21st century.

IEEE Computer Society Standard, 1-20. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1490129.

Jackson, M. (1995). Software Requirements and Specification, A lexicon of practice, principles

and prejudices (3rd ed.). Harlow, England: Addison-Wesley.

Jang, H. (1994). A knowledge Based Analyser for requirement specification analysis. IEEE

Journal, 1, 276-282. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=346480.

Laitenberger, O., Beil, T. and Schwinn, T. (2002). An Industrial Case Study to examine a non-

traditional Inspection Implementation for Requirement Specification. Journal from IEEE

Symposium on Software Metrics, 2, 1-10., Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1011329.

Lee, Y., Lee, J. & Lee, Z. (2002). Integrating Software Lifecycle Process Standards with

Security Engineering. Computer and Security Journal, 21, 345–355. Retrieved from

http://www.sciencedirect.com.libgate.library.nuigalway.ie/science?_ob=MImg&_imagek

ey=B6V8G-46692F5-F-

H&_cdi=5870&_user=103680&_pii=S0167404802004133&_orig=search&_coverDate=

08%2F01%2F2002&_sk=999789995&view=c&wchp=dGLbVlW-

zSkzV&md5=4d26deaa5cfd77718500e0c47666ffff&ie=/sdarticle.pdf.

Leedy, P. D. and Ormond, J.E. (2005). Practical Research: Planning and Design (9th ed.).

Upper Saddle River: Pearson Prentice Hall.

Loucopoulos, P. and Champion, R. (1990). Concept acquisition and analysis for requirement

specification. Software Engineering Journal, 1, 116-124. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=54395.

Marriott, P. & Siefert, D. (1992). IEEE Software Engineering Standards Status and Perspective.

IEEE Journal, 1, 1518. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=195208.

Pozagj, Z., Sertie, H., Boban, M. (2003). Effective requirement specification as a precondition

for successful software development project. International Conference Information

Technology, 25, 669-674. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1225420.

Rada, R. (2001). Standardising Management of Software Engineering Project. IEEE Journal, 10,

1-7. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=926527.

Raja, A. (2007). Empirical Studies of Requirements Validation Techniques. IEEE Journal, 1, 1-

9. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4909209.

Robertson, S & Robertson, J. (2006). Mastering the Requirements Process (2nd ed.). Upper

Saddle River, NJ: Addison-Wesley.

Singh, R. (2000). International Standard ISO/IEC 12207 Software Lifecycle Processes. IEEE

Journal, 40, 1-18. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=471194.

Walker, A.J. (1998). Improving the quality of ISO 9001 audits in the field of software.

Information and Software Technology, 40, 865-869. Retrieved from

http://www.sciencedirect.com.libgate.library.nuigalway.ie/science?_ob=MImg&_imagek

ey=B6V0B-3VKBS26-J-

3&_cdi=5642&_user=103680&_pii=S0950584998001049&_orig=search&_coverDate=1

2%2F01%2F1998&_sk=999599985&view=c&wchp=dGLzVzz-

zSkzS&md5=ddbebdf4489c3177d844e23e3e9df93f&ie=/sdarticle.pdf.

Tse, T.H., (2000). Towards Harmonised Professional Standards for Software Engineers:

Constraints, Conflicts and Concessions. IEEE Journal, 7, 346–347. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=884746.

Yau, S., Bae, D. and Yeon, K. (1994). An approach to Object oriented Requirements Verification

in Software Development for Distributed Computing Systems. IEEE Journal, 7, 96-102.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=342825.

Yau, S. and Liu, C. (1988). An approach to software requirement specification. IEEE Journal, 2,

83-88. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=17154.

Zenmyot, T., Kobayashi, T. and Sackit, M. (2008). A Technique to Check the Implementatability

of Behavioural Specifications with Frameworks. Software Engineering Conference, 15,

111-118. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4724538.

Appendix A – Annotated Bibliography

Requirement Specification stage of the project lifecycle of computerised systems & the

standards that can be implemented: An Annotated Bibliography

Jang, H. (1994). A knowledge Based Analyser for requirement specification analysis. IEEE

Journal, 1, 276-282. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=346480.

In this paper, the author proposes a knowledge-based analyser of a formal

requirement specification language of real time systems (RT-FRORL) for requirement

specification analysis. As part of the introduction the RT-FRORL analyser is discussed

including how it is based on an underlying verification framework and associated

verification methodologies. The remainder of the paper discusses the RT-FRORL as a

requirement specification language of real time systems and the analysis used as part of

the requirement specification and how the framework originates from an integration of

rapid prototyping, operational specification and transformational implementation.

In conclusion, it was found that the RT-FRORL analyser is based on an

underlying development and verification framework and associated verification

methodologies. The verification methodologies consist of a combination of resolution

refutation, anomaly detection matrix and algorithms methods.

Yau, S. and Liu, C. (1988). An approach to software requirement specification. IEEE Journal, 2,

83-88. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=17154

In this paper, an approach to software requirement specification using a structured

bipartite inheritance network is presented. In the introduction and definitions sections a

bipartite inheritance network is introduced which is a network with two different kinds of

basic nodes: data entity and action, which are independent of each other and structured

into an inheritance hierarchy. This approach is further discussed in the model for

software requirement specifications section which states the advantages experienced in

the software requirement specification.

In the discussion section, the authors have developed an approach to software

requirement specification using a structured bipartite inheritance network. Their approach

emphasises that data entities and actions be stated explicitly in the software requirement

specification, and the data entities and actions be refined in a unified way.

Hunt, L. B. (1997). Getting the Requirements Right – a Professional Approach. IEEE Journal, 1,

464-472. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=615536

This paper describes a radical new approach to producing re-usable requirement

specifications which achieves levels of clarity and precision hitherto unattainable. Above

all the approach provides the ability to demonstrate clearly to a client the actual content

of a specification as opposed to its supposed content - in an information sense. Such

ability is vital if the professional engineer is to carry his client with him or if the client is

to be convinced when changes are required before any serious commitment to

consequential or candidate design is made.

The paper discusses this approach as part of the introduction, problems areas and

methodology including general basic framework evolution and finally real application.

This paper draws attention to the fact that, due to the rising perception of the need to

produce improved specifications, appropriate tools are now being developed.

Aliport, H. and Isazadeh, A. (2008). Software Reliability Assessment Based on a Formal

Requirement Specification. Journal of IEEE, 311–316. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4581454.

Assessment of reliability using characteristics of software development process

phases is one of the discussions which have been attracting more and more attention

during the recent three decades. Most of the techniques and models use the results of

design implementation and test phases. There are only a few models that are employed at

the early phase of software development. Assessment of software reliability in the early

phases of the software development process, however, is very important for better

prognosis and management of risks. In this paper, the authors propose an approach for

early software reliability assessment based on software behavioural requirements. They

use a formal method called view-charts to specify the behaviour of software systems. In

conclusion, the authors introduce a new approach for representing the behaviour of

software systems and using it for early software reliability assessment.

ISO/IEC. (2001). ISO/IEC 15288 The System Lifecycle Process standard for the 21st century.

IEEE Computer Society Standard, 1-20. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1490129.

The ISO/IEC 15288 Standard discusses the system lifecycle process for the 21st

Century. The main agenda of the standard is in relation to the background, history,

ISO/IEC 15288 overview and benefits. The standard discusses in further detail the scope

of the ISO/IEC, applicability of ISO/IEC, use of the standards and lifecycle processes and

lifecycle of the system processes. It discusses the structure of the standard, title, purpose,

outcomes and activity. The standard concludes by discussing the benefits of using

ISO/IEC 15288. The main conclusion drawn from the standard is the ISO/IEC 15288 is a

key reference for any situation where systems are concerned and the lifecycle models are

a key concept for successful systems.

ISO/IEC. (2008). ISO/IEC 12207 Systems and software engineering — Software lifecycle

processes. IEEE Computer Society Standard, 1-138. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=669648

This International Standard establishes a common framework for software lifecycle

processes, with well-defined terminology, that can be referenced by the software industry.

It applies to the acquisition of systems and software products and services, to the supply,

development, operation, maintenance, and disposal of software products and the software

portion of a system, whether performed internally or externally to an organisation. Those

aspects of system definition needed to provide the context for software products and

services are included. Software includes the software portion of firmware. The standard

consists of an explanation of the application of the standard, software lifecycle processes

and software specific processes. The standards also assist in the area of requirement

specification by providing (via an annex) a tailoring process description and a process

reference model.

ISO / IEC. (1998). IEEE STD 1233, IEEE Guide for Developing System Requirement

Specifications. IEEE Computer Society Standard, 1-36. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=502838

The standard provides guidance for the development of a set of requirements that

will satisfy an expressed need. In the standard a set of requirements will be called the

System Requirements Specification (SyRS). Developing a SyRS includes the

identification, organisation, presentation and modification of the requirements. The

standard guide addresses conditions for incorporating operational concepts, design

constraints and design configuration requirements into the specification as per the SyRS

development process overview section. The standard also addresses the necessary

characteristics and qualities of individual requirements as per the well formed

requirements section. The standard also contains a SyRS development section.

ESA Board for software standardisation and control. (1991). ESA Software Engineering

Standards. ESA PSSS Journal, 2, 1 -330. Retrieved from

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECA5CUXBQE_0.

html

This standard discusses in great detail the purpose, structure and classes of the

standards. The standard is split into different parts to allow for easier reading. Part 1 is

product standards which discuss the software lifecycle, user requirement definition

phases, software requirement definition phase, architectural design phase, detailed design

and production phase, transfer phase operations and maintenance phase. Part 2 discusses

management of the lifecycle, software project management and software configuration

management, software validation and verification and software quality assurance. The

main chapters that are of emphasis to this thesis are Chapter 2 and 3 of the user

requirement definition phase and software requirements definition phase respectively.

IEEE. (2005). IEEE STD 1220, Systems engineering — Application and management of the

systems engineering process. IEEE Computer Society Standard, 1-101. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1511885

The standard defines the interdisciplinary tasks that are required throughout a

system‘s lifecycle to transform stakeholder needs, requirements and constraints into a

system solution as per general requirements of the standard. This standard is applicable

to the thesis research as it is intended to guide the development of systems for

commercial, government, military, and space applications. The standard specifies the

requirements of the Systems Engineering Process (SEP) and its application throughout

the product lifecycle. The standard focuses on the engineering activities necessary to

guide product development while ensuring that the product is properly designed to make

it affordable to produce, own, operate, maintain and eventually to dispose of, without

undue risk to health or the environment. The content of this standard describes an

integrated approach to product development, which represents the total technical effort

that is covered as part of the application of system engineering throughout the system

lifecycle and system engineering process.

IEEE. (1994). IEEE STD 1228, IEEE Standard for Software Safety Plans. IEEE Computer

Society Standard, 1-23. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=467427

This standard applies to the Plan used for the development, procurement,

maintenance and retirement of safety-critical software, as part of the standard‘s

overview and content of the software safety plan. The standard requires that the plan

be prepared within the context of the system safety program.

IEEE. (1998). IEEE STD 1362, IEEE Guide for Information Technology—System Definition—

Concept of Operations (ConOps) Document. IEEE Computer Society Standard, 1-21.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=761853

The standard discusses the format and content of the concept of the operation

document. The ConOps is a user oriented document that describes system characteristics

to be delivered to a system from the user‘s viewpoint. The guide consists of nine clauses.

The first clause is in relation to scope including identification, document overview and

system overview. The second clause is about referenced documents and the third clause

is about the current system or situation. The fourth clause is about justification for and

nature of changes which include priorities, desired changes and user classes. The fifth

clause is for the concepts of proposed changes and the sixth clause is operational

scenarios. The seventh clause is a summary of impacts including operational impacts,

organisational impacts and impacts during development. The eighth clause is the analysis

of proposed systems where a summary of improvement, disadvantage limitations and

alterations and trade off is considered. The final clause is in relation to notes and

appendices.

IEEE. (2000). IEEE STD 1471, IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems. IEEE Computer Society Standard, 1-23. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=875998

This recommended practice addresses the architectural description of software-

intensive systems. The scope of this recommended practice encompasses those products

of system development that capture architectural information. The standard consists of

five chapters. Chapter 1 is an overview of the scope, purpose, intended users and

conformance to this recommended practice. Chapter 2 is about references and Chapter 3

about definition. The main chapter of interest to the thesis research is Chapter 4, which is

in relation to the conceptual framework including architectural description, stakeholders,

activities in connection to lifecycle and uses of architectural description. Chapter 5 is in

relation to architectural description practices. This aids with the thesis research as it

discusses the importance of architectural design with requirement specifications.

IEEE. (2006). IEEE STD 1074, IEEE Standard for Developing a Software Project Lifecycle

Process. IEEE Computer Society Standard, 1-116. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1665059

This standard provides for creating a software project lifecycle process (SPLCP).

This methodology begins with the selection of an appropriate Software Project Lifecycle

Model (SPLCM) for use on the specific project. It continues through the definition of the

software project lifecycle (SPLCP). The standard explains the background and

importance of SPLCP in the overview of the standards and the key concepts. The main

area of the standard that is relevant to the thesis research is that it emphasises the

importance of requirements being identified and gathered before the SPLCP is

established. The standard then proceeds to discuss the implementation of SPLCP.

IEEE. (1999). IEEE STD 1517, IEEE Standard for Information Technology—Software Lifecycle

Processes—Reuse Processes. IEEE Computer Society Standard, 1-51. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1511021

This standard provides a common framework for extending the software lifecycle

processes to include the systematic practice of software reuse. It specifies the processes,

activities and tasks to be applied during each phase of a software lifecycle to enable a

software product to be constructed from assets. This standard also specifies the

processes, activities and tasks to enable the identification, construction, maintenance and

management of assets. The standard consists of the following general areas, application

of reuse, integration of reuse and reuse supporting phase of the project.

IEEE. (1998). IEEE STD 830, IEEE Recommended Practice for Software Requirement

Specifications. IEEE Computer Society Standard, 1-39. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=720574

This recommended practice describes recommended approaches for the

specification of software requirements. It is divided into five clauses. Clause 1 explains

the scope of this recommended practice. Clause 2 lists the references made to other

standards. Clause 3 provides definitions of specific terms used. Clause 4 provides

background information for writing a good Software Requirement Specification SRS.

Clause 5 discusses each of the essential parts of an SRS. This recommended practice also

has two annexes, one which provides alternate format templates and one which provides

guidelines for compliance with IEEE 12207.1-1997.

This standard is of relevance to the thesis research as it is a recommended practice

for writing software requirement specifications. It describes the content and qualities of a

good software requirement specification (SRS) and presents several sample SRS outlines.

The standard is aimed at specifying software to be developed and can be applied to assist

in the selection of in-house and commercial software products.

IEEE. (2001). IEEE STD 1540, IEEE Standard for Software Lifecycle Processes—Risk

Management. IEEE Computer Society Standard, 1-30. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=914365

This standard prescribes a continuous process for software risk management.

Clause 1 provides an overview and describes the purpose, scope and field of

application, as well as prescribing the conformance criteria. Clause 2 lists the

normative references informative references are provided in Annex E. Clause 3 provides

definitions. Clause 4 describes how risk management may be applied to the software

lifecycle. Clause 5 prescribes the requirements for a risk management process. There are

several informative annexes. Annex A, Annex B, and Annex C recommends content of

three documents: Risk Management Plan, Risk Action Request and Risk Treatment

Plan. The standard describes a process for the management of risk during software

acquisition, supply, development, operations and maintenance. It is intended that both

technical and managerial personnel throughout an organisation apply this standard.

The main aim of this standard and its purpose in relation to thesis research is for

it to provide software suppliers, acquirers, developers and managers with a single set of

process requirements suitable for the management of a broad variety of risks. This

standard does not provide detailed risk management techniques, but instead focuses on

defining a process for risk management in which any of several techniques may be

applied.

IEEE. (2004). IEEE STD 1012 IEEE Standard for Software Verification and Validation, IEEE

Computer Society Standard, 1-120. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1488512

This Verification and Validation (V&V) standard is a process that addresses all

software lifecycle processes including acquisition, supply, development, operation and

maintenance. This standard is compatible with all lifecycle models; however, not all

lifecycle models use all of the lifecycle processes listed in this standard.

Software V&V processes determines whether the development products of a

given activity conform to the requirements of that activity and whether the software

satisfies its intended use and user needs. This determination may include analysis,

evaluation, review, inspection, assessment and testing of software products and

processes.

The user of this standard may invoke those software lifecycle processes and the

associated V&V processes that apply to the project. This standard applies to software

being acquired, developed, maintained, or reused [legacy, modified, commercial off-the-

shelf (COTS), non-developmental items (NDI)]. The term software also includes

firmware, microcode and documentation. Software V&V processes consists of the

verification process and validation process. The standard is applicable to the research

topic as it demonstrates the use of requirement specification further along in the project

lifecycle (i.e. validation and verification). The standard discusses the importance that

correct and accurate requirement specification can have on the validation verification of a

project and the negative affect if not correctly in place.

IEEE. (2009). IEEE STD 1016 IEEE Standard for Information Technology—Systems Design—

Software Design Descriptions. IEEE Computer Society Standard, 1-40. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=5167255

This standard describes software designs and establishes the information content

and organisation of a Software Design Description (SDD). This standard is intended for

use in design situations. These situations include traditional software construction

activities where design leads to code, and ―reverse engineering‖ situations where a design

description is recovered from an existing implementation. This standard can be applied

to commercial, scientific or military software that runs on digital computers.

Applicability is not restricted by the size, complexity or criticality of the software. The

standard consists of definition, conceptual model for software design, design description,

information content and design viewpoints. The main points of interest to the thesis topic

are in chapter 4 which relates to design views, elements, overlays, rationale and

languages, with special emphasis on stakeholders and design in a combination which is

applicable to requirement specification generation.

Hesslink, H. (1995). A comparison of standards for software engineering based on DO-178B for

certification of avionics system. Elsevier Science Microprocessors and Microsystems,

19, 559 -563. Retrieved from

http://www.sciencedirect.com.libgate.library.nuigalway.ie/science?_ob=ArticleURL&_u

di=B6V0X-3YB9T0J-

1&_user=103680&_coverDate=12%2F31%2F1995&_alid=1429652798&_rdoc=1&_fmt

=high&_orig=search&_cdi=5658&_sort=r&_docanchor=&view=c&_ct=18&_acct=C00

0007922&_version=1&_urlVersion=0&_userid=103680&md5=28a19ffdc69ae78f1e269

2a48568b2dd.

The DO-178B standard provides guidelines for software certification. Re-use of

software is emerging, partly enabled by the integrated modular avionics concept and

imposed by a reduction of lifecycle costs. The standards discussed in this paper are Do-

178B, DOD-STD-2167A, ESA PSS-05-0 and IEC65A (secretarial) 122.

Every standard has its particular emphasis and way of dealing with the software

lifecycle. DO-178B provides a high level view on the definition of phases. DOD-STD-

2167A emphasises tests. ESA PSS-05-0 provides the most support in the requirements

phase. Finally, IEC65A is a standard which does not reflect a specific emphasis within

the lifecycle, although it could be argued that this standard has more involvement in the

design phase than the other standards. Again, not all standards have the same scope. The

design and coding phases may be omitted from the lifecycle of DO-178B. DO-178B and

DOD-STD-2167A include a survey of system requirements at the start of each

development project (N.B. ESA and IEC65A have equivalent hardware standards). DO-

178B specifies the target hardware, in advance of the development as a system

requirement, whereas the other standards choose a suitable computer system in the course

of the development process. ESA PSS-05-0 shows the most and the only explicit user

involvement. It is the only standard that includes a phase which is fully the responsibility

of the (future) user, the User Requirements Definition. The DO-178B prescribed software

lifecycle phases are based on the waterfall model. The lifecycle phases of the other

standards are based on the V-model. In conclusion it was found that all examined

standards guide the software development process.

Hesslink graduated at the University of Groningen in information and artificial

intelligence. He has performed a number of studies in the area of avionics software

certification. This paper is relevant to the thesis research as it demonstrates the vast array

of standards in the software engineering industry that directly affect other industries

including avionics.

Harauz, J. and Poon, P. (1999). System Engineering in the Twenty First Century. ISESS’99

Panel, 1, 1-2. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=767662.

This paper discusses the history to the International Standard on System Lifecycle

Processes, ISO/IEC 15288, and its completion and is distributed worldwide. It also

defines a top-level cradle-to-grave lifecycle framework for managing modern systems

configured with hardware, computers, software and humans. The main areas discussed in

the paper are how the standard can be applied to the acquisition, supply, development,

operation and maintenance of systems, how the standard supports the process through

configuration management and quality assurance. It also discusses the standard can be

used as an internal framework by an enterprise and can be used in developing an

agreement between two parties, or as a reference standard for lifecycle processes for

further standardisation, guidance and tools development.

The paper further discusses on a number of issues, including the relationship

between ISO/IEC 15288 (i.e., systems engineering lifecycle) and ISO/IEC 12207 (i.e.,

software engineering lifecycle) and how to maximise the efficient use of ISO/IEC 15288

and ISO/IEC 12207. It discusses what impact ISO/IEC 15228 has on the way systems

engineering is performed in various countries and how to ensure the adoption of ISO/IEC

15288 as an International Standard will lead to wide usage of this Standard. Finally, to

ensure that the revision of ISO/IEC 12207, subsequent to the publication of ISO/IEC

15288, will lead to consistency and interoperability with ISO/IEC 15288 and what

approaches should be taken in gathering the experience of using ISO/IEC 15288.

John Harauz is a senior specialist in the Engineering Standards Department in

Ontario Hydro‘s nuclear division. John has been involved in the development and

regulatory licensing of safety-related and safety-critical real-time systems since 1978. He

received the corporate New Technology award in 1995 for his contribution to developing

innovative safety-critical software engineering technology. John is a member of the

Association of Professional Engineers of Ontario and a technical expert in ISO/IECJTC1/

Software and System Engineering Conference (SC7) and IEC TC45. Dr. Peter Poon is the

Telecommunications and Mission Services Manager for the French, German and Italian

space missions at the Jet Propulsion Laboratory, California Institute of Technology. He is

a member of the IEEE Software Engineering Standards Executive Committee; a

Technical Expert for ISO/IEC JTC1/SC7 and the United States of America Technical

Advisory Group for SC7; and is Program Chair for SES‘98. This paper is of major

relevance to the thesis topic as it discusses software engineering standards in present day

industries.

Singh, R. (2000). International Standard ISO/IEC 12207 Software Lifecycle Processes. IEEE

Journal, 40, 1-18. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=471194.

The paper discusses the history in relation to the development and deployment of

ISO/IEC 12207 standard. The paper then proceeds to discuss the basic concepts of the

standards including the software lifecycle architecture, modularity, responsibility,

lifecycle processes. The authors further discuss the primary processes including

acquisition, supply, development, operation and maintenance. The supporting and

tailoring processes are also discussed in detail. The author then proceeds to examine the

guidance and interactions among the processes and proceeds onto the application of the

standard to a project by examining the role of the lifecycle, organisational policies,

system lifecycle, developments models and types of software, documentation and

evaluation. In a case study the author examines the application of the standard to an

organisation. In conclusion it found that the ISO/IEC 12207 is the first international

standard that provides a complete set of processes for acquiring and supplying software

product and services. These processes may be employed also to manage, engineer, use

and improve software throughout its lifecycle.

The author is a member of the federal aviation administration and actively works

within the software industry in relation to standards. This paper is highly applicable to

the research as it discusses in detail the ISO/IEC 12207 standard which has a major affect

on the requirement stage of the project lifecycle.

Rada, R. (2001). Standardising Management of Software Engineering Project. IEEE Journal, 10,

1-7. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=926527

In a software engineering division of a company, the most important standards are

those used for the management of the software engineering projects. Although numerous

relevant de jure software engineering standards exist, national guidelines such as the

Department of Defence‘s Capability Maturity Model and corporate standards, such as the

Microsoft Solutions Framework exert a significant influence on the marketplace. A

review of the existing standards shows significant similarity across them. The hypothesis

is advanced as a major factor in determining that the adoption of one standard over

another is the environment of the adopter. The following methods were employed by the

author for one case study, two surveys and one content analysis of various companies.

The results show that the choice of a software engineering management standard follows

the preference of a major strategic partner or customer. A company that depends on

Microsoft in important business ways is inclined to adopt the Microsoft Solutions

Framework. Likewise a company that is a major customer of the United States

Department of Defence is inclined to use the Capability Maturity Model supported by the

Department of Defence.

The author is based in the University of Maryland and is performing research in the

department of information systems. The paper was presented as part of the IEEE

conference in 2001. The paper is relevant to the research as it discusses the most

important standards used in software engineering projects and which are applicable to

requirement specifications.

Glass, R. (2009). Doubt and Software Standards. IEEE Computer Society Journal, 1, 1-2.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=5222806.

Standards for requirement documents are receiving criticism due to standard bodies

consistently producing standards that fail the basic criteria for good engineering. The

author added that standards should be based on established scientific results and best

industrial practice and argued that our contemporary software standards tend not to meet

those criteria. Standards should be based on scientific results and best industrial practice.

Standards should be subject to evaluation to ensure they really work in the environment

for which they‘re intended. All of this is difficult to attain because standards tend to be

produced in a highly politicised environment. The author believes that both the process

and nature of our software standards demand objective review and change.

The paper was published as part of the IEEE Computer Society paper in 2009. The

author is editor of Elsevier‘s Journal of Systems and Software and is a visiting professor

at Griffith University where he‘s involved with the Australia Resource Centre for

Complex System. The paper supports the thesis research as it discusses the problems

associated with requirement gathering documents and their inconsistencies.

Marriott, P. & Siefert, D. (1992). IEEE Software Engineering Standards Status and Perspective.

IEEE Journal, 1, 1518. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=195208

The IEEE Computer Society sponsors the development of software engineering

standards and recommended practices for the software industry. These standards address

the requirements, design, test, verification, validation, measurement, plans and

documentation aspects of software engineering projects. To date, 11 of these standards

have been approved by the IEEE and ANSI and are published as ANSI/IEEE standards.

An additional 13 standards are currently in development. This presentation describes

what the IEEE Computer Society and other standards organisations are doing to promote

a disciplined approach to software engineering practice and how aerospace systems

engineering organisations can apply these standards to their projects. The presentation

also highlights the software standardisation activities of national and international

standards organisations (ANSI, X3, ISO, IEC), government organisations (NBS,

Department of Defence (DoD)), professional societies (IEEE, American Society Quality

Control (ASQC), and ACM) and trade associations (AIA, EIA, and NSIA).

The authors are of computer technology background with Masters of Science in

Software Information Technology. This paper is relevant to my work as it discusses the

large variety of standards and their relevance to other areas and new additional standards.

Tse, T.H., (2000). Towards Harmonised Professional Standards for Software Engineers:

Constraints, Conflicts and Concessions. IEEE Journal, 7, 346–347. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=884746.

The harmonisation of professional standards usually means an attempt to unify the

standards among different nations or states. It is a necessary step towards the maturity of

a profession because of two factors: (a) that professional standards have been developed

independently in different nations, and (b) that the standards thus developed are not

uniform among nations. The paper discusses this concept during the introduction and

then begins to discuss constraints and conflicts by examining the body of knowledge,

professional ethics, public interest and Asian concerns.

The author is based in the department of Computer Science and Information

Systems in the University of Hong Kong. The paper is relevant as it discusses the

professional standards that have been presented in different countries. The author further

discusses a comparison between the standards.

Robertson, S & Robertson, J. (2006). Mastering the Requirements Process (2nd ed.). Upper

Saddle River, NJ: Addison-Wesley.

Mastering the Requirements Process sets out an industry proven process for

gathering and verifying requirements, with an eye toward today‘s agile development

environments. The authors show how to discover precisely what the customer wants and

needs while doing the minimum according to the projects level of requirement.

The key features of this book are in relation to the chapters explaining what the

requirement is and the requirement process. The next chapter of reference is Chapter 11

which discusses the quality gateway and requirements quality. The final chapter of

reference is Chapter 14 reviewing the specification with special attention to inspections

and finding missing requirements.

The authors have many years of experience and help companies improve their

requirement techniques and move into system development. The Robertsons are

principles of the Atlantic Systems Guild, a well know consultancy specialising in the

human dimensions of complex system building.

Jackson, M. (1995). Software Requirements and Specification, A lexicon of practice, principles

and prejudices (3rd ed.). Harlow, England: Addison-Wesley.

The subject discusses in depth the requirement specification software. The

requirements specification is explained in the format of top down development, dataflow

diagrams and the distinction between what and how. The main important topics in

relation to the research performed in the thesis are the principle of evaluating

development methods, new approaches for capturing and describing requirements and

specifications based on relationships between the software systems and the problem

contact.

The author has worked in software for over 30 years. After ten years in

consultancy he started his own company offering courses, tools, consultancy and project

support. In 1992, he received an Honorary DSc from the University of West of England

for his work on software development methods. He is a visiting professor of University

of West England (UWE) and holds visiting chairs at several other universities. He is now

an independent consultant in software development methods as well as consulting part

time at AT&T Bell Laboratories.

Heitmeyer, C. and McLean, J. (1983). Abstract Requirement Specification: a New Approach and

Its Application. IEEE Transaction on Software Engineering Journal, 5, 580-590.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1703098.

As abstract requirement specification states system requirements precisely without

describing a real or a paradigm implementation. Although such specifications have

important advantages, they are difficult to produce for complex systems and hence are

seldom seen in the "real" programming world. This paper introduces an approach to

producing abstract requirement specifications that applies to a significant class of real-

world systems, including any system that must reconstruct data that has undergone a

sequence of transformations. It also describes how the approach is used to produce a

requirements document for Secure Copy Protection (SCP), a small, but nontrivial Navy

communications system. The specification techniques used in the SCP requirements

document are introduced and illustrated with examples. In conclusion it was found that

the existence of the SCP requirements document demonstrates that an abstract

requirement specification is feasible. The future work is in demonstrating that the SCP

requirements document will also serve as a model.

Constance L. Heitmeyer received the M.A. degree in history and the M.A. degree in

mathematics from the University of Michigan, Ann Arbor. From 1969 to 1971 she was a

Research Assistant at the University of Michigan where she developed communications

software for the MERIT computer network. During 1972 to1973 she was an Assistant

Professor in the Department of Computer Systems, Florida Atlantic University and Boca

Raton. In 1973 she joined the Naval Research Laboratory, Washington, DC, where she is

currently head of the Message Systems Automation Section of the Computer Science and

Systems Branch. John D. McLean received the B.A. degree in mathematics in 1974 from

Oberlin College, Oberlin, OH, and the M.A. degree in philosophy in 1976 and the Ph.D.

degree in philosophy and the M.S. degree in computer science both in 1980 from the

University of North Carolina, Chapel Hill. The paper is relevant to the thesis topic as it

discusses requirement specification systems and how best to distinguish and gather

requirements. This paper is largely relevant to the case study to be performed as part of

the thesis topic.

Carew, D., Exton, C. and Buckley, J. (2005). An Empirical Investigation of the

comprehensibility of requirement specifications. Software Engineering Journal, 10, 256-

265. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1541834

It is a commonly held view by Software Engineers that informal requirement

specifications are easier to comprehend than formal requirement specifications.

Moreover, the training time required to gain a sufficient level of understanding in formal

notations is unknown. This paper presents an empirical study carried out to compare the

comprehensibility of two specifications, formal specification and an informal (or semi-

formal) specification, in an attempt to quantify the amount of training needed to

understand formal methods. The two specifications used implemented the same logic.

The paper begins by discussing the specification and introducing the background to this

study. The paper then proceeds to perform experimental design including participants,

materials and experimental procedure. The authors then consider what the influencing

attributes are and the qualitative data analysis to be performed. The paper discusses the

problems encountered in the experiment.

The future work will be to conduct empirical studies similar to this one with

different training periods given to participants. Knowing the amount of training required

to comprehend formal specifications is crucial to universities and industry. Also, further

experiments investigating the comprehensibility of different levels of formality in

specification languages are needed to provide information and guidelines to both research

and industrial communities.

The authors are all based at University of Limerick and both Exton and Buckley

have doctorates. The paper is relevant to the research as it discusses the requirement

specification stage of the project lifecycle and examines in detail both informal and

formal requirements

Yau, S., Bae, D. and Yeon, K. (1994). An approach to Object oriented Requirements Verification

in Software Development for Distributed Computing Systems. IEEE Journal, 7, 96-102.

Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=342825.

The authors begin their discussion by drawing attention to the problem of many

errors in the source code that can be traced to the errors in the requirement specification.

It is especially important to have effective verification techniques for the requirement

specification. In this paper, an approach to verification of object-oriented requirement

specification (OORS) in software development for distributed computing systems is

presented. The approach taken, the requirement specification generated by object-

oriented analysis is described using a formal specification language, which is transformed

into an information tree. Then, the completeness and consistency of the requirement

specification expressed in terms of the information tree is verified by comparing it with

the original requirements statement.

Many errors are found in the source code stem from inconsistent or incomplete

requirement specification hence, the requirements verification is a very important part in

developing reliable software for the distributed computing environment.

In conclusion, it was found that currently it is assumed that the requirement

statements are unambiguous. Ambiguities in the requirement statements may lead to

different interpretations of the software system, thus making the verification more

difficult. Further research is needed to deal with the verification of requirement

statements containing ambiguities.

The authors are both American based in Arizona and Florida universities

respectively. The authors work within the computer and information science departments.

The paper is of relevance to the research as it discusses common errors that occur in

requirement specification gathering and supports the thesis topic of requirement

specification being a neglected stage of the project lifecycle.

Emmet, L. and Bloomfield, R. (1997). Viewpoints on improving the standards making process:

Document Factory or Consensus Management. IEEE Journal, 51, 207–216. Retrieved

from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=595972.

In this paper the authors describe an application of PERE (Process Evaluation in

Requirements Engineering) to the standards process. PERE provides an integrated

process analysis that identifies improvement opportunities by considering process

weaknesses and protections from both mechanistic and human factor viewpoints. The

resulting analysis identified both classical resource allocation problems and also specific

problems concerning the construction and management of consensus within a typical

standards making body. A number of process improvement opportunities are identified

that could be implemented to improve the standards process. The paper discusses these

topics under the following headings, ‗an introduction to PERE‘, ‗PERE‘, and ‗process

capture‘ and ‗process analysis results of the case study‘ and ‗conclusion that consensus

problems are the real barrier to timely standards production‘. Ironically the present trend

for more distributed working and electronic support (via email etc.) may make the

document factory aspect of standards production more efficient at the expense of

consensus building.

The authors of the paper are based in the London University and work within the

computer science industry. The paper is relevant to the research as it discusses both

requirement specification gathering and the standards that are applicable to this stage.

Pozagj, Z., Sertie, H., Boban, M. (2003). Effective requirement specification as a precondition

for successful software development project. International Conference Information

Technology, 25, 669-674. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1225420.

Software development is closely connected to requirements. To enable

development of' software systems that satisfies most customer demands in this work, the

authors propose methodologies for obtaining efficient requirement management

infrastructure on a software development project. They propose methodologies for

requirement discovery and organisation according to competent areas available on the

project and involved risks. They also propose methodology for managing change of'

requirements during the software development project in order to enable prosperous

project conclusion even if major requirement change occurs. Presented methodologies

provide means of elective requirement management that can significantly improve quality

of complex software systems.

To solve the problems discussed in the paper and improve requirement use on a

software development project, the authors propose three methodologies. These

methodologies form best practice for requirement management according to their

experience and should be performed in all phases of a software development project.

The authors presented this paper as part of the information technology interfaces

conference in Croatia. The authors are based in the University of Split in departmental

areas including economics, research and development and facility of law. The paper

supports the thesis research in relation to methodology for obtaining efficient requirement

specification and the correct gathering methods.

Glinz, M. (2008). A Risk Based, Value Oriented Approach to Quality Requirements. IEEE

Computer Society Journal, 21, 34–41. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4455629.

The main issue discussed in this paper is that when quality requirements are elicited

from stakeholders, they are often stated qualitatively, such as ―the response time must be

fast‖ or ―we need a highly available system.‖ However, qualitatively represented

requirements are ambiguous and thus difficult to verify. The paper further discusses the

three kinds of problems associated with this requirement, which includes system

developers building a system that delivers less than the stakeholders expect and this result

in stakeholder dissatisfaction and might in extreme cases render a system useless. The

system developers build a system that delivers more than the stakeholders need and this

result in systems that are more expensive than necessary. The developers and the

customer disagree on whether the delivered system meets a given quality requirement and

there is no clear criterion to decide who is right. The author further discusses this in the

advantages and drawbacks to requirement specification and risk based analysis and

presentation.

In conclusion it was found that risk-based, value-oriented treatment of quality

requirements extends the classic approach of making every quality requirement

measurable. When the authors consider the value that the specification of a quality

requirement adds, quantification is clearly not always the best way to represent a quality

requirement. The approach shown here helps treat quality requirements adequately over a

wide range of project situations and so help advance software quality.

Glinz is a full Professor of Informatics at the University of Zurich. His main areas

of research include requirements and software engineering in particular modelling,

validation and quality in software engineering education. He has received a Dr. in

computer science. The research from this paper is applicable to the research thesis topic

as it discusses the risk management application to requirement specification gathering.

Loucopoulos, P. and Champion, R. (1990). Concept acquisition and analysis for requirement

specification. Software Engineering Journal, 1, 116-124. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=54395.

This paper proposes that this approach needs to be augmented by the use of

informal models which assist in the very early steps of the requirement specification

process, i.e. during elicitation and analysis of concepts about the application domain. To

this end, the paper discusses the use of a knowledge representation formalism, which

provides the necessary foundation for capturing and analysing concepts about an

application domain, and a prototype system which assists in this process. The paper

introduces its concepts and then proceeds to the requirement specification section. To

fully demonstrate this concept, a knowledge representation model is used and an example

of a concept elicitation session is discussed,

This paper in conclusion has argued that because the task of requirement

specification is the most critical of all tasks in the software development lifecycle, this

task needs special attention in terms of modelling paradigms and support tools. In

particular, the authors argue that the very early stages of requirement capture (namely the

elicitation of concepts about the application domain and the analysis of these concepts)

need to be supported by an approach which permits the construction of informal models

and the use of scenarios about the modelled phenomena. These objectives have been

addressed in the context of an approach which makes use of conceptual graphs

implemented in a frame-based system as the underlying knowledge representation

scheme. A prototype system has also been developed which provides a range of facilities

which support concept elicitation and analysis.

The authors performed this research as part of the Analyst Assist project. This was

a collaboration project including Data Logic, University of Manchester Institute if

Science and Technology (UMIST), Ministry of Defence and Istel.

The research of the paper is relevant, due to the discussion around the requirement

specification including analysis concepts. The paper also supports the requirement

specification stage of the project lifecycle which is the most critical part of the lifecycle.

Zenmyot, T., Kobayashi, T. and Sackit, M. (2008). A Technique to Check the Implementatability

of Behavioural Specifications with Frameworks. Software Engineering Conference, 15,

111-118. Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=4724538.

In software development with frameworks, it is essential to use the framework with

which given software requirements are implemental. This paper focuses on use cases of

the requirement specifications and proposes a technique to check whether the given use

cases are implementable with the framework in the introduction and approach section of

the paper. The paper also discusses problems in checking implementability. To check

the implementability, the requirement specification has to be checked as well as

equivalence of action sequences between the frameworks and the requirement

specification. To this end, a novel approach based on a satisfyability problem for

deriving the consistent truth assignments of the branch conditions is introduced including

the modelling behaviour. The approach can be incorporated in bi-simulation checking for

assuring the equivalence of the action sequences and therefore, the implement-ability can

be checked. The authors use case descriptions which are modelled on Labelled

Transition Systems (LTS) in their approach. Furthermore, this paper shows a feasibility

of the proposed technique by using Compositional Reach-ability Analysis as a mean of

bi-simulation checking.

The authors are all based at the Tokyo Institute of Technology in Japan and are

based in the department of computer science. The paper was presented as part of the

IEEE Computer Society in 2008. The paper is relevant to the research as it discusses in

detail the framework used to support software requirements, and also discusses

techniques to support this area.

Laitenberger, O., Beil, T. and Schwinn, T. (2002). An Industrial Case Study to examine a non-

traditional Inspection Implementation for Requirement Specification. Journal from IEEE

Symposium on Software Metrics, 2, 1-10., Retrieved from

http://www.ieeexplore.ieee.org.libgate.library.nuigalway.ie/stamp/stamp.jsp?tp=&arnum

ber=1011329.

Software inspection is one of the key enablers for quality improvement and defect

cost reduction. Although its benefits are shown in many studies, a major obstacle to

implement and use inspection technologies in software projects is the costs associated

with it. In this paper, the authors present and examine a non-traditional inspection

implementation at DaimlerChrysler AG. The design of this inspection approach evolved

over time as part of a continuous improvement effort and therefore integrates specific

issues of the project environment as well as recent research findings. In addition to the

description of the inspection approach, the paper presents quantitative results to

characterise the suggested inspection implementation and investigates some of the

essential hypotheses in the inspection area.

Throughout the case study, data was collected to get qualitative and quantitative

insight in this approach. Since this was part of a real development project at

DaimlerChrysler, it was impossible to perform a (quasi-)controlled experiment to

investigate cause-effect relationships. Hence, most of the conclusions require further

study in the context of a more controlled study. However, the data confirm that this kind

of inspection ensures that the inspectors perform an adequate preparation and that the

effort for this pays off in terms of defects detected. Moreover, the results allow for the

conclusion that in this project two inspectors were useful, i.e., each of the inspectors

contributes to the results. The data also shows that the number of physical pages as a size

measure leads to different conclusions than a more content oriented measure. This

represents a fruitful area of research. Future research should also take a closer look at the

impact of the individual inspectors and the author on inspection results.

The authors are based in the experimental software engineering department within

the Institute for Experimental Software Engineering. The paper supports the thesis

research as it examines the cost, budget and quality of the requirement specification on

the project lifecycle. It examines this aspect in detail by discussing the pro and cons.

Appendix B -Questionnaire

Question: 1 what sector is you working in?

Pharmaceutical industry

Medical device industry

Software Industry

Electronics Industry

Other (Please Specify)

Question 2 Do you use or produce requirement specification during your daily work?

Yes

No

Plan to do so

Question 3 Does your company implement external / regulatory standards in relation

to requirement specifications?

Yes

No

Question 4 Does your company implement in house standards in relation to

requirement specifications?

Yes

No

REQUIREMENT SPECIFICATION AND STANDARDS 143

Question 5 Is there any one particular standard you would reference for requirement

specifications?

Yes

No

Yes, please specify:

__

__

Question 6 For what purpose is the requirement specification intended?

Project Lifecycle

Documentation

Other

Question: 7 What tools do you use when gathering requirements?

Benchmarking

Use Case Workshops

Models and Diagrams

REQUIREMENT SPECIFICATION AND STANDARDS 144

Question: 8 When gathering managing user requirements do you use any of the

following techniques?

Stakeholder analysis

Secondary market research

Context of use analysis

Task analysis

Rich pictures

Field study

Diary keeping

Video recording

Question 10 Do you meet with the stakeholders before finalising the requirement

specifications?

Yes

No

Question: 11 Once user data has been collected, do you use any of the following

techniques to identify the needs of the user?

Focus group

Interviewing where users

Scenarios and use cases

Evaluating existing or competitor system

Brainstorm session‘s

Storyboards

Prototyping

User cost benefit analysis

Design guidelines

Question: 12 When user requirements have been agreed on and require frameworks for

user requirement specification, do you use any of the following

frameworks?

Prioritisation

Criteria Setting

None

REQUIREMENT SPECIFICATION AND STANDARDS 146

Question: 13 Do you ensure that the originating stakeholder understands and agree with

the written requirements before it is passed downstream to other

departments?

Yes

No

Question 14 Do you write the requirements are a testable manner?

Yes

No

Question: 15 Do you write the requirements in:

Business language

Technical language

Or Mixture

Question 16 Do you distinguish between formal and informal requirements?

Yes

No

Question: 17 What are the main conflicts that occur during requirement specification

gathering?

Personality clashes

Inter-group Prejudice

Level differences

Appendix C – Project History

The first revision of the project plan that was drafted on the 11th of December 2009 is as per Figure 12.

Figure 12. Project Plan as per 11th of December 2009.

The second draft of the project plan as drafted on the 14 of February 2010 as per Figure 13:

Figure 13. Project Plan as per 14th of February 2009

REQUIREMENT SPECIFICATION AND STANDARDS 150

Glossary

ACM Association of Computing Machinery

AIA Aerospace Industries Association

ANSI American National Standards Institute

APA American Psychological Association

ASQC American Society Quality Control

BOM Bill of Materials

BSSC Board for Software Standardisation and control

C2 Chi Square

CFR Code of Federal Regulations

COTS Commercial off-the-shelf

DoD Department of Defence

EHS Environment, Health and Safety

EIA Electronics Industries Association

ESA European Space Agency

FDA Food and Drugs Administration

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organisation of Standardisation

LTS Labelled Transition system

MES Manufacturing Execution Systems

N Number of test cases

NBS National Bureau of Standards

NDI Non-development items

NSIA National Standards of Authority Ireland

NUI Galway National University Institute Galway

OPA Organisational Process Assets

OORS Object Oriented Requirement Specification

P Probability

RT- FRORL Requirement Specification Language of Real-Time Systems

SC7 Software and System Engineering Conference

SCADA Supervisory Control And Data Acquisition

SCP Secure Copy Protection

SDD Software design description

SEP System engineering process

SPLCP Software Project Lifecycle Process

SPLCM Software Project Lifecycle Model

SPLC Software Project Lifecycle

SRS Software Requirement Specification

SWEBOK Software Engineering Body of Knowledge

SyRS System Requirement Specification

UMIST University of Manchester Institute of Science and Technology

US United States

UWE University of West England

V&V Verification and Validation

WG7 Working Group 7

	Regis University
	ePublications at Regis University
	Summer 2010

	Requirement Specification Stage of the Project Lifecycle of Computerized Systems & the Standards that Can Be Implemented
	Nicola Grace
	Recommended Citation

	Requirment Specifictaion Stage of the Project Lifecycle of Computerised Systems and the stndards that can be implemented

