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1. INTRODUCTION 1 

1 

Introduction


Seeing patterns in the world is part of the human condition. If the numbers 2, 4, 6, 8, . . . 

are put before someone they will readily recognize the pattern of counting by two and be 

able to continue the sequence with the number 10, 12, . . . . Similarly, someone who is mod­

erately acquainted with mathematics would recognize the numbers 0, 1, 1, 2, 3, 5, 8, . . . as 

the Fibonacci sequence. Yet, patterns are not simply limited to what can be observed 

within mathematical relationships. Figure 1 shows a pattern made of rope that the human 

eye and mind can detect as such. 

Figure 1: Pattern of a Woven Rope Frieze [1] 

Yet, while humans can identify the pattern found within the frieze, a computer could not 

perform the same recognition with the ease or sophistication inherent to the human mind. 

Even the seemingly simple act of reading and comprehending the sentences on a page is 
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dataset vector onto the space spanned by the first j eigenvectors. The data originating 

from outside the database are then reshaped in the same way and projected onto the same 

subspace. At this point, it is a simple matter of taking the Euclidean distance between 

the coefficients of the orthogonal projections of the newly tested data and the information 

which originally comprised the database. A set of closest matches can then be output, 

leaving the final interpretation of the result up to the human operator. Thus, this system 

must be considered a supervised form of recognition. 

The particular applications addressed here revolve around face recognition method­

ologies and chemometric analysis of compounds. The immediate thought regarding these 

two applications is their apparent disconnection from one another, yet such a conclusion 

could not be further from the truth. In fact, the use of these two seemingly disparate 

applications will aid in demonstrating the true robustness of the KL system and how an 

application of pattern recognition in one particular area does not mean it must be limited 

to that field. The KL technique was originally tested by using it within the context of 

face recognition. Yet, there is no reason that the same principle cannot be expanded into 

chemometrics. The idea behind this field of chemistry, which was introduced by Svante 

Wold and Bruce R. Kowalski early in the 1970s, is to obtain relevant information from 

experimental data and be able to display the usually large amount of data in a manner 

that is both meaningful and useful [6, p. 5-6]. A method commonly discussed in the 

literature is principle component analysis, or PCA, which is essentially the singular-value 

decomposition or Karhunen-Loéve technique. Consequently, the mathematics behind each 

application is the same and the only modifications required are to the programming of 

the software. 
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2 

Linear Algebra Applications to Face 

Recognition 

In order to understand how both the face recognition and chemical recognition databases 

function it is important to discuss the math behind the KL expansion method. This 

process relies on properties of the singular-value decomposition (SVD) of a matrix. The 

SVD of any matrix A provides us with a way to decompose that matrix to the form 

A = UΣV T 

where if A is p × n then U is a p × p orthogonal matrix whose columns provide a basis 

for the columnspace of A and V is an n × n matrix whose columns provide a basis for 

the rowspace of A. For our purposes only a portion of the SVD will be used. 

We should note here that the following propositions are all well established already. 

However, for the sake of completeness and to provide the reader with a greater under­

standing of this area we determined it would be beneficial to include all of the proofs. 

Most of the following proofs can be found in [15], although for proof of Proposition 2.5 a 

good source would be [14]. The purpose of the first six propositions is to establish certain 

properties of the n × n matrix AT A, namely that it has a set of eigenvectors which form 

a basis for Rn . 
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Proposition 2.1. Given any matrix A, the matrix AT A is symmetric. 

Proof. Define the matrix A as the set of vectors 

⎞⎛ ⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

A =
 v1 v2 vn· · · 

and
 ⎞
⎛
⎜⎜⎜⎜⎜⎜⎜⎝


Tv1 

Tv2 

. . . 

Tvn 

⎟⎟⎟⎟⎟⎟⎟⎠


AT = .


Then the ijth entry of AT A is 

T vi vj = vi · vj . 

Similarly, the jith entry is 

T vj vi = vj vi.· 

Since the dot product of two vectors is commutative, vi · vj = vj vi.· 

Proposition 2.2. For any symmetric matrix A, the eigenvectors from different eigenspaces 

are always orthogonal. 

Proof. Let xa and xb be two eigenvectors of A corresponding to two distinct eigen­

values λa and λb, respectively. Then, 

λaxa · xb 

= (Axa)
T xb 
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= xa
T AT xb 

= x Ta Axb 

= x T λbxba 

λaxa · xb = λbxa · xb 

(λa − λb)xa · xb = 0. 

Since λa and λb are distinct, λa − λb = 0 and � xa · xb must equal zero. Therefore, the


vectors xa and xb are orthogonal.


Proposition 2.3. The eigenvalues of AT A are all non-negative and real.


Proof. Let xa be a normalized eigenvector of AT A and λa be the corresponding eigen­


value. Then,


2 �Axa� = (Axa)
T (Axa) 

= x Ta A
T Axa 

= xa
T (λaxa) 

= λa(x Ta x) 

= λa �xa� 

= λa(1) 

2 �Axa� = λa. 

Therefore, the eigenvalues (λa) that are produced by AT A are all non-negative and 

real since the length of a vector squared is always nonnegative and real. 
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Definition 2.4. The singular values of a matrix A are equal to the length of Ax, 

where x is an eigenvector of AT A. The set of singular values is denoted by σ1, . . . , σn. 

From Proposition 2.3 we also know that the singular values are equivalent to the 

square root of the eigenvalues of AT A. 

For the remainder of this paper it will be assumed that the singular values are arranged 

such that σ1 ≥ σ2 ≥ · · · ≥ σn. It will also be assumed that the corresponding eigenvalues 

are arranged in decreasing order as well, such that λa = σa 
2 . 

Proposition 2.5. If A(n × n) has n real eigenvalues then there exists a matrix U 

with orthonormal columns such that UT AU is upper triangular. 

Proof. Since A has n real eigenvalues (λ1 . . . λn) we know that each eigenspace has at 

least one corresponding eigenvector. Take any one of these normalized vectors and 

let it be v1 with corresponding eigenvalue λ1. It is possible to use this vector to 

create an orthonormal basis for Rn . To do this, create n − 1 vectors that are linearly 

independent of v1 and use the Gram-Schmidt process to create an orthonormal basis 

for Rn . Call this set of new vectors {w1 . . . wn−1}, and use this set of vectors in 

tandem with the eigenvector of A to create the following n × n matrix. 

⎞⎛ 

U1 = 

⎜⎜⎜⎜⎝

v1 w1 · · · wn−1 

⎟⎟⎟⎟⎠


For notation purposes it is also necessary to define the set of w vectors.


⎞⎛ ⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

W =
 w1 · · · wn−1 
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The initial step in the formation of an upper triangular matrix is to multiply A and 

U1 together to produce the matrix B, such that B = U1 
T AU1. 

= 

= 

⎞

⎞ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

= 

⎞⎛⎞⎛Tv1 

Tw1 
⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠


⎟⎟⎟⎟⎠

B
 A
 v1 w1 · · · wn−1. . . 

Twn−1 ⎞⎛Tv1 

Tw1 
⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎠


⎟⎟⎟⎟⎠

Av1 Aw1 Awn−1· · · . . . 

Twn−1 ⎞⎛Tv1 

Tw1 
⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎠


⎟⎟⎟⎟⎠

λ1v1 Aw1 Awn−1· · · . . . 

Twn−1 

λ1v1 · v1 v1 · (Aw1) v1 · (Awn−1)· · ·


λ1w1 · v1


. . . W T AW 

λ1wn−1 · v1 

⎜⎜⎜⎜⎜⎜⎜⎝ 

= 

Since v1 is a normal vector and is orthogonal to the columns of W we can simplify 

this matrix to
 ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝


v1 
T AWλ1 

0 W T AW 

⎟⎟⎟⎟⎟⎟⎟⎠


B =
 .


⎞⎛ 

⎞
⎛
 ⎟⎟⎟⎟⎟⎟⎟⎠
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At this point it is important to note that the matrix B has the same eigenvalues as 

the original matrix A, this can be easily proven through the use of the characteristic 

polynomial. 

char(U1 
T AU1) = det(U1 

T AU1 − λI) 

= det(U1 
T AU1 − U1 

T λU1) 

= det(U1 
T (A − λI)U1) 

= det(U1 
T ) det(A − λI) det(U1) 

= det(UT U1) det(A − λI)1 

= det(I) det(A − λI) 

= det(A − λI) 

= char(A) 

Since B has the same eigenvalues as A (λ1 . . . λn) then the lower right partition of B, 

the n − 1 × n − 1 matrix W T AW , has n − 1 eigenvalues (λ2 . . . λn). Now define v2 

as being the normalized eigenvector of W T AW , which corresponds to the eigenvalue 

λ2. This vector is used to create an orthonormal basis for Rn−1 , {v2, y1, . . . , yn−2}. 

Use this set of vectors to create the matrix U2. 

⎞⎛ 

U2 = 

⎜⎜⎜⎜⎜⎜⎜⎝


1 0 

0 v2 yn−2y1 · · · 

⎟⎟⎟⎟⎟⎟⎟⎠


It will also become convenient later to define the n−1×n−2 matrix Y whose columns 

are the set {y1, . . . , yn−2}. Multiply U2 and B in the same manner as previously 
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conducted, which provided us with B. 

= 

= 
0 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎝ 

= 

= 

⎞⎛⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎠


1 0 

0 v2 yn−2y1 · · · 

⎞⎛ 
⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠


⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎠


1 0 

0 v2 yn−2y1 · · · 

v1 
T AWλ1 

0 v2 yn−2y1 · · · 

0 W T AW 

1 0 

⎞
⎟⎟⎟⎟⎠


⎞
⎛
 ⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎝


⎜⎜⎜⎜⎜⎜⎜⎝


⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


v1 
T AWλ1 

⎞⎛ ⎟⎟⎟⎟⎠

0 Y T W T AW 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦


1 0 

. . . 

Tyn−2 

T0 y1 

v1 
T AW 

λ2v2 
T 

λ1 

Tv2 

. . . 

Tyn−2 

Tv2 

Ty1 

⎡


⎛


⎛


W T AW 

v1 
T AW v2 v1 

T AW Y 

λ2v2 
T Y 

λ1 

λ2 
0 

Y T λ2v2 Y T W T AW Y 

v1 
T AW v2 v1 

T AW Y 

λ2 

λ1 

λ2v2 
T Y 

0 
0 Y T W T AW Y 

UT BU22 

⎜⎜⎜⎜⎝ 
= 

The bottom right partition of this result Y T W T AW Y has eigenvalues λ3, . . . , λn 
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Using this knowledge, the same process can be repeated once again, using v3, the 

eigenvector of Y T W T AW Y to create an orthonormal basis for Rn−2 . This matrix will 

be placed in the bottom right partition of an n × n matrix U3, which will be filled in 

with 1’s along the two blank diagonal entries and zeroes in all other blank entries. If 

this process is repeated n times, then the result will be in the form 

Un
T . . . U1 

T AU1 . . . Un. 

Since all of the Ui matrices are orthonormal, then the results of the matrix multi­

plication U1 . . . Un and Un
T . . . U1 

T are orthonormal. Furthermore, if we define U = 

U1 . . . Un, then UT = Un
T . . . U1 

T . Therefore, U is in the form that we desire, and the 

matrix multiplication UT AU yields an upper triangular matrix with the eigenvalues 

of A in the diagonal entries. 

Proposition 2.6. If A is symmetric then UT AU is symmetric. 

Proof. To prove UT AU is symmetric, we simply need to prove that (UT AU)T = 

UT AU . 

(UT AU)T	 = UT AT UT T 

= UT AU 

An easy corollary to the last two propositions is that any symmetric matrix A is 

diagnolizable, since a symmetric, upper triangular matrix will necessarily be diagonal. 

In the next proposition we will use the preceding conclusions, which established a basis 

for Rn from the eigenvectors of AT A, to derive a basis for the columnspace of A. Before 
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we begin the next section, recall that the columnspace of an p × n matrix A (Col A) is 

defined as the subspace of Rp spanned by the columns of A. Similarly, the rowspace of 

A (Row A) is the subspace of Rn spanned by the rows of A. 

Proposition 2.7. Define {x1, x2, . . . , xn} as an orthonormal basis for Rn consisting 

of eigenvectors of AT A. These vectors also correspond to the eigenvalues of AT A; 

λ1, λ2, . . . , λn. Now, suppose that AT A has r nonzero eigenvalues, then the set of 

vectors {Ax1, Ax2, . . . , Axr} is an orthogonal basis for the columnspace of A. 

Proof. For any a = b, xa is orthogonal to xb. 

(Axa) (Axb) = (Axa)
T (Axb) = x Ta A

T Axb = x Ta λbxb = λbxa · xb = 0 · 

Therefore, {Ax1, Ax2, . . . , Axr} is an orthogonal set. From Proposition 2.3 the eigen­

values of AT A are equivalent to the lengths of the vectors squared. Since there 

are r nonzero eigenvalues, Axa �= 0 if and only if 1 ≤ a ≤ r, which means that 

{Ax1, Ax2, . . . , Axr} is a linearly independent set in Col A. Any vector z in Col A 

can be written as z = Av and v can be written as a linear combination of x1, . . . xn 

with coefficients c1 . . . cn. 

z = Av = Ac1x1 + + Acrxr + + Acnxn· · · · · · 

= Ac1x1 + + Acrxr + 0 + + 0 · · · · · · 

Therefore, z is in Span {Ax1, Ax2, . . . , Axr}, which means that this set is a basis for 

Col A. 

Finally we are in a position to understand the reason why and how the Karhunen-Loéve 

method will work. In the interest of clarity, let’s first consider a very simple example of 
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what the following proposition is trying to establish. The goal of this example is to help 

us understand the steps involved. First, consider the matrix 

⎞⎛ 

Q =
⎜⎝

2 3 5 6
 ⎟⎠
.

5 7 8 10 

In this case, Col Q is simply R2, and the vectors that form the columns can actually be 

plotted, as in Figure 3. 

Figure 3: Vectors formed by the Columns of Q Plotted as Points in the Euclidean 
Plane 

At this point, we can take the mean vector 

⎞⎛⎞⎛ 

M =

1
⎜⎝


2+3+5+6
 ⎟⎠
=
⎜⎝

4
 ⎟⎠


4 5+7+8+10 7.5 

and subtract it from each of the columns of Q to obtain our new mean-subtracted matrix, 

⎞⎛ 

-2 -1 1 2

Qsub =
⎜⎝


⎟⎠

-2.5 -.5 .5 2.5
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the plot of which is now centered around the origin. Now we can calculate the small 

matrix
 ⎞⎛ 

10 11

Qsub ∗ QsubT = ⎜⎝


⎟⎠
.

11 13 

If we calculate the eigenvalues and corresponding eigenvectors, we get {22.6, .398} for 

the eigenvalues and
 ⎞⎛⎞⎛ ⎜⎝

.6576
⎟⎠
,


⎜⎝

.7534
 ⎟⎠


.7534 -.6576 

for the corresponding eigenvectors. If we view the graph of the space spanned by the first 

eigenvector corresponding to the larger eigenvalue, then we see it creates a nice“line of 

best fit” for the points in Qsub (see Figure 4). 

Figure 4: The Columns of Qsub Plotted as Points with the One-Dimensional Subspace 
Spanned by the First Eigenvector of Qsub ∗ QsubT 

In fact, what Proposition 2.8 establishes is that this vector spans the best one-

dimensional approximation of the data that we can find. For the purpose of maintaining 

consistency with the literature, we will define the matrix Qsub ∗ QsubT as the covariance 

matrix of Qsub, though QsubT Qsub is also given the same title. Furthermore, in the 
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proposition we contend that this method provides the “best” j-dimensional approxima­

tion of the rowspace of a matrix. While the word “best” may seem imprecise at first, 

it actually means that what we are trying to do is minimize the orthogonally projected 

distance. So in our previous example, if all of our four points were projected onto the one­

.6576 

⎞⎛ ⎜⎝

⎟⎠
dimensional subspace spanned by the vector
 , then the total of the distances


.7534 

that each point would have to travel to get to that line would be the smallest possible 

distance for any one-dimensional subspace. 

Proposition 2.8. Given any p × n matrix X, define its covariance matrix C = 

1 XT X. If the eigenvalues of C are (λ1, . . . , λn), and the corresponding eigenvectors 
p 

are {v1, . . . , vn}, such that each λi corresponds to vi. Then, the first j eigenvectors 

of C provide the best j-dimensional approximation of the rowspace of X iff λ1 ≥ λ2 ≥ 

· · · ≥ λn. 

Proof. Given a matrix X, we name the rows {x1, . . . , xp} and write 

⎞⎛ T ⎜⎜⎜⎜⎝

x1 xp· · · 

⎟⎟⎟⎟⎠

X =
 .


Every xi is a vector in Rn . Additionally, define Φ as the matrix whose columns consist 

of the set of vectors {φ1, . . . , φn} which form an orthonormal basis for Rn . Therefore, 

any xi is contained within the span of Φ and can be written as a linear combination 

of the columns: 
n

xi = αkφk. 
k=1 

Since the φ�s form an orthonormal basis for Rn, the coefficients αk are easy to calcu­
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late; 

αk φk = �xi, φk�.= xi · 

Although the matrix Φ provides the full orthonormal basis for Rn , in our application 

we will not be using the full basis. If we use, for example, only the first j vectors in 

Φ, then it is possible to split up the summation and write it as 

j n

xi = αkφk + αkφk. 
k=1 k=j+1 

��j 
� 

When it is written this way, the first term k=1 αkφk is the j-dimensional ap­

proximation of xi and the second term can be thought of as the error. For notation 

purposes, define 
n

xi 
(err) 

= αkφk. 
k=j+1 

At this point we can also define the total error of the orthogonal projection of X onto 

the linear subspace of Rn spanned by the first j vectors of Φ. 

p
1 � 

Error = 
p 

t=1 

� x(err) 
t �2 

� � � � 
1 

p� n� n� 
= 

p 
t=1 

� 
k=j+1 

αkφk 

k=j+1 

αkφk � 

p�1 
= 

p 
� (αj+1φj+1 + · · · + αnφn) (αj+1φj+1 + · · · + αnφn) � 

t=1 

Since φm · φn = 0 for all m = n and φm · φm = 1 for all m, the previous equation can 

be simplified. 
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1 
p

Error = 
p 

� αj
2
+1 + · · · + αn 

2 � 
t=1 

1 
p n

2 = (αk)
p 

t=1 k=j+1 

1 
p n

2 = (xt · φk)
p 

t=1 k=j+1 

p n
1 � � 

= (xt · φk) (xt · φk) 
p 

t=1 k=j+1 

p n
1 � � 

= (φk · xt) (xt · φk) 
p 

t=1 k=j+1 

1 
p n

= φk
T xtxt

T φk 
p 

t=1 k=j+1 

Since both of the summation functions are finite sums, it is possible to commute the 

order. 

� � 

Error = 
n� 1 

p� 
φT 

k xtx T 
t φk 

= 

= 

k=j+1 
p 

t=1 

n� 

k=j+1 

� 
1 
p 

� 
φT 

k x1x T 
1 φk + · · · + φT 

k xpx T 
p φk 

�� 

n� 

k=j+1 

� 

φT 
k 

� 
1 
p 
(x1x T 

1 + · · · + xpx T 
p ) 

� 

φk 

� 

� � 

= 
n� 

k=j+1 

�φk, 
1 
p 

p� 

t=1 

xtx T 
t φk� 

In order to proceed at this point, it is necessary to define some new notation. ψt 
(a) 

is 
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equal to the ath entry in the vector xt. Therefore, 

⎞⎛⎞⎛ 
(1) (1) (1) (n) (1) (1) (1) (n)

ψ
 ψ
 ψ
 ψ
 ψ
 ψ
 ψ
 ψ
⎜⎜⎜⎜⎝


1 ⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠


p p · · ·
 p p1 1 · · ·
 1 p� 

=1t

T xtxt = . . .
 . . .

+ +
.
 . .
 .
 . .
.
 .
.
 .
 .
 .
· · ·


ψ1
(n)
ψ1

(1) 
ψ1

(n)
ψ1

(n) 
ψp 

(n)
ψp 

(1) 
ψp 

(n)
ψp 

(n) · · · · · · ⎞⎛ 
ψ1

(1)
ψ1

(1)
+. . . +ψp 

(1)
ψp 

(1) 
ψ1

(1)
ψ1

(n)
+. . . +ψp 

(1)
ψp 

(n) · · · ⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠


. . . . . .=
 .
.
 .


ψ1
(n)
ψ1

(1) 
+. . . +ψp 

(n)
ψp 

(1) 
ψ1

(n)
ψ1

(n)
+. . . +ψp 

(n)
ψp 

(n) · · · ⎞⎛⎞⎛ T ⎜⎜⎜⎜⎝

x1 xp· · · 

⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

x1 xp· · · 

⎟⎟⎟⎟⎠

=


= XT X.


Substituting this into the equation for the error yields


n

Error = �φk, 

n

p

xtxt p 
t=1 

1
 T φk� 
k=j+1 

1 �φk, 
p
XT X φk�=


k=j+1 

n

= �φk, Cφk�. 
k=j+1 

This provides a simple way to look at the error produced by the j-dimensional 

approximation of X. Now let’s just assume for a moment that j = 0. In this case, 

the error can be expressed as 

1

p

Error = �x
p 

(err) 2 
t 

t=1 
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and xt 
(err) 

can be expressed as 

n

xt 
(err) 

= αkφk = xt. 

Since xt 
(err) 

= xt when j = 0, we can substitute into the previous equation to obtain 

� 

k=1 

p

Error = �xt�
p 

This is the same as saying 

� 

=1t

1
 2 = Constant. 

n� 
φ ,Cφ� �k k

k=1 

is also a constant and can be split up in the following manner: 

n

�φ1, Cφ1� + �φk, Cφk�. 
k=2 

Notice now that the second term ( k
n 
=2�φk, Cφk�) is equal to the error for the 1­

dimensional approximation of X, so minimizing the error in this case is equivalent to 

maximizing 

�φ1, Cφ1�. 

Recall that the set of eigenvectors of the covariance matrix form an orthogonal basis 

for Rn (which we will assume has been normalized). If we define V as 

⎞⎛ 

V =


⎜⎜⎜⎜⎝

v1 vn· · · 

⎟⎟⎟⎟⎠


then any of the columns of Φ can be written as a linear combination of the columns
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of V . In other words 

φi = γ1v1 + + γnvn = V Γ· · · 

for
 ⎞
⎛
⎜⎜⎜⎜⎝


γ1 

. .
. 

γn 

⎟⎟⎟⎟⎠

Γ =
 .


Furthermore, if
 ⎞⎛ ⎜⎜⎜⎜⎝


λ1 0 

. . . 

⎟⎟⎟⎟⎠

Λ =


0 λn ⎞⎛ ⎜⎜⎜⎜⎝

λ1v1 λnvn· · · 

⎟⎟⎟⎟⎠

CV
 =
 = V Λ.


Putting these two equalities together and applying it to our problem allows us to put 

the inner product in a different form: 

�φ1, Cφ1�	 = φT Cφ 

= ΓT V T CV Γ 

= ΓT V T V ΛΓ 

= ΓT ΛΓ ⎞⎛ ⎜⎜⎜⎜⎝


λ1γ1 

. . .
= γ1	 γn· · · 
⎟⎟⎟⎟⎠


λnγn 

= λ1γ1
2 + + λnγn

2 .· · · 
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At this point, it is relatively easy to prove that 

�φ1, Cφ1� = λ1γ1
2 + + λnγn 

2 ≤ λ1.· · · 

First we show that, since φ1 is a normal vector 

�φ1, φ1�	 = �φ1�2 

= φT 
1 φ1 

= ΓT V T V Γ 

= ΓT Γ 

= γ1
2 + + γn

2 .· · · 

Since this sum is equal to �φ1�2 = 1, we can simply multiply it into our previous 

equation to get 

λ1γ1
2 + + λnγn 

2 ≤ λ1(γ1
2 + + γn

2).· · · · · · 

Since the eigenvalues are organized such that λ1 ≥ . . . λn, the first term on the left 

and right sides of the equation will be equal, and each of the subsequent terms on the 

left side of the equation will always be less than or equal to its corresponding term 

on the right side since all γi 
2 ≥ 0. This proves that 

�φ1, Cφ1� ≤ λ1, 

and since we want to maximize the left side of the equation, then 

�φ1, Cφ1� = λ1. 
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This result is easily obtained by setting φ1 equal to v1. Finally we can conclude 

that the best 1-dimensional approximation of the rowspace of X is the eigenvector 

corresponding to the largest eigenvalue of the covariance matrix of X. This exact 

same argument can be applied to higher dimensional approximations, so that we can 

conclude that the best j-dimensional approximation of the rowspace of X is given by 

the first j sorted eigenvectors of the covariance matrix. 

We now have a good way to find the best basis for the rowspace of X, however, it 

requires calculating C, which is a n × n matrix. If n is significantly larger than p (as it 

will be in our application) and you still want to find the best j-dimensional approximation 

of the rowspace without calculating the large matrix C, it is possible to approach the 

problem from a slightly different angle. Consider the (not quite finished) SVD of the 

matrix X, 

X = UΣV T , 

where Σ is k × k and k is the rank of X. By definition, we know that V is calculated by 

taking the eigenvalues of the covariance matrix of X. Comparing this to Proposition 2.8, 

we see that this is also the best basis for the rowspace of X. In other words, the best 

approximation for the rowspace of X is given by the right singular vectors of X, which 

are the columns of V . Now consider; 

XT = V ΣUT . 

In this case, the covariance matrix of XT is defined as 
n 
1 XXT , which is the much smaller 

p × p matrix. Therefore, returning to the definition of the SVD, the columns of U are the 

eigenvectors of the covariance matrix of XT , which also means that the best approximation 

for the rowspace of XT is equal to the left singular vectors of X. Furthermore, since the 
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rows of XT are the same as the columns of X, we can conclude that the best basis for 

the columnspace of X is equal to the left singular vectors of X. 

This is a very useful trick when you consider that the matrices U and V are related 

by the original equation 

X = UΣV T 

XV = UΣ 

V Σ = XT U. 

We can now consider the case where the ith column of U and V are given by ui and 

vi, respectively, and σi is the ith diagonal entry of Σ. We can substitute these into the 

above equation to yield 

viσi = XT ui 

1 
vi = XT ui. 

σi 

This gives us an easy way to calculate the columns of V without having to calculate 

the large n × n matrix C. Thus, this provides for a much more computationally feasible 

method for this large n × n matrix. 

Now that we have examined the principle behind the partial SVD of the database we 

can begin to discuss the applications of the mathematical theory. While many of these 

propositions can be found in an excellent linear algebra textbook such as [15] and much 

is reprinted from the article by Giordano and Uhrig [7], the importance of discussing them 

here cannot be understated. Often, those wishing to use the applications that originate 

from mathematical principles gloss over the basic ideas behind the system, but this should 

not be performed. In order to understand the system as a whole and any inherent flaws, an 
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examination of the mathematical ideas or computer science principles must be understood. 

With this understanding in mind we can now progress into our first application, human 

face recognition. 
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3 

Face Recognition Programming Using 

MATLAB 

In order to apply the mathematical processes to face recognition, a method to express 

the database of faces as a matrix is needed. The computer program MATLAB can be 

used to import images from a text file list of filenames and then convert each grayscale 

image into a h × w matrix, where w is the width (in pixels) of the image and h is the 

height. Once each image is imported and converted to the proper MATLAB format, it is 

then reshaped into a vector that is (w ∗ h) × 1, simply by placing the first column on the 

top and each successive column below its predecessor. Each vector now corresponds to a 

picture, and these vectors become the columns of a new matrix A, which is (w ∗ h) × p, 

where p is the total number of images used. MATLAB is then used to calculate the 

mean vector of the columns of A and subtracts this mean vector M from each of the 

columns in A to create the mean-subtracted matrix L. For a detailed explanation of this 

process, including the MATLAB code that we used, see Appendix A. It should be noted 

that Excel could be used to perform many of these calculations, yet the use of MATLAB 

simplifies much of the process. This simplification begins with the fact that images are 

essentially stored as matrices within the computer, and MATLAB is made to easily handle 

matrices. Many of the required calculations are built-in commands within the MATLAB 
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environment. Yet, MATLAB is suited more for a programmer or a statistician, whereas 

Excel has wide familiarity within the entire scientific community. If Excel must be used, 

many of the built-in commands for MATLAB would have to be written as macros for 

Excel or found from a website accompanying [9]. 

We can now perform a simplified version of SVD calculations. The initial step is 

to calculate the covariance matrix G = AT A. At this point the eigenvalues and their 

corresponding eigenvectors are calculated and sorted. They are sorted in descending 

order according to the size of the eigenvalues and the corresponding eigenvectors are 

placed in the same order. These eigenvectors become the columns of the p × p matrix 

V . In order to create a set of basis vectors for the columnspace of L the matrix U is 

created such that U = L ∗ V . The span of the first column of U provides the best one-

dimensional approximation of the column space of L. Similarly, the span of the first two 

columns provides the best two-dimensional approximation, and this line of thinking can be 

continued to obtain the best desired j − dimensional approximation. It is then possible to 

calculate what percentage of the variance is used by the j − dimensional approximation. 

This percentage (P er) is calculated using the sorted eigenvalues of the covariance matrix 

{λ1 . . . λn} in the equation 
j

λi 

i=1P er = ∗ 100%. n

λi 

i=1 

In order to test an image from outside the database, MATLAB imports and reshapes 

the image in the same manner as that used for the images of the database. The mean 

vector M is then subtracted from the test image vector (T ) and the coefficients of the 
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first j bases are calculated using the formula 

Ut · T 
Ct = . 

Ut · Ut 

Where Ct is the tth coefficient for T and Ut is the tth column of U . From here, MATLAB 

simply calculates the Euclidean distance between the first j coefficients of T and the first 

j coefficients of all the pictures in the database. Once these distances are sorted (in 

ascending order) it allows for us to determine which image is the closest approximation 

of the test image. From that point onward, it is up to interpretation by human eyes to 

determine whether or not a match truly exists. The MATLAB code for testing an image 

from outside the database can be found in Appendix B. 

3.1 First Database 

The first database that we tested had 130 pictures of 65 different people. Each picture 

was 400 × 500 pixels and none of the pictures contained individuals wearing glasses. We 

chose to use images of people without their glasses to eliminate a “glasses” variable, 

which would potentially limit the accuracy of the system. We used 15 of the 130 basis 

vectors in the computations, which retained 81.229% of the variance. The computer took 

90 minutes to load all 130 images into its memory and perform the required calculations. 

One output that is initially interesting to examine is the average face. This is simply the 

mean vector of the columns of A reshaped into a 400 × 500 picture. This yielded the 

image in Figure 5. 

Another image that is output by MATLAB is informally called the eigenface. Mathe­

matically, however, this image is one of the basis vectors that is reshaped into a 400× 500 

(the dimension of the image is contingent on the size of the original images in the database) 
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Figure 5: Average Face from Database 1 

image. The following figure is the first basis vector (first eigenface) for the database. 

Figure 6: First Eigenface from Database 1 

Each picture in the database, as has already been stated, has a coefficient that cor­

responds to this particular basis vector. Graphing the coefficients of this basis vector in 

terms of gender is very revealing to what facial feature this vector accentuates, as can be 
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seen in Figure 7. 

Figure 7: Coefficients of Eigenface 1 for each Face based on Gender 

Most women have negative coefficients and the large majority of the males have 

positive coefficients. Furthermore, when we went back and examined the pictures of men 

with negative coefficients we noted that they all had long hair. Also, when the images of 

females were examined, those with a negative coefficient had long hair, while those with a 

more positive coefficient had shorter hair length. This fact is slightly troublesome because 

it indicates that the most important aspect of a person’s face was the length/amount of 

hair, which is also the easiest feature of one’s face to change. This fact could potentially 

be a weakness for the system since any major change in hair length or shape would likely 

cause failure in the system. 

When examining the second eigenface it was less clear which features the system 

was identifying as important. We hypothesized that one of the possible features the 

eigenface may be identifying is the difference between a person’s hair color and the dark­

ness/lightness of a person’s skin tone. We arrived at this conclusion by analysis similar to 

that used for the previous eigenface. We found it relatively difficult to determine which 
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features were being distinguished in the eigenfaces that followed. Clearly, the program 

was differentiating between some features, but it was a failure of human perception to 

determine what those features were. 

The next step was to take the first fifteen coefficients of each face and place them in a 

vector. The formula for the Euclidean length of a vector was used to determine the length 

of the vector. This allowed us to discover which face had the overall largest magnitude. 

Thus, the vector with the highest magnitude corresponded to the face that can be best 

approximated. Figure 8 shows the original face that could be best approximated (had the 

largest coefficient vector length) and the fifteen vector approximation of this face. This 

approximated image was obtained by taking the first fifteen vectors multiplying by their 

corresponding coefficients and adding the resulting vectors together. It is clear from these 

two images that using only 15 of the 130 basis vectors produces a readily recognizable 

approximation. In contrast, the face with the worst approximation is also shown in Figure 

8. 

It is now possible to look at the actual face recognition applications. As has already 

been stated, this was performed by taking the Euclidean distance between the coefficients 

of the orthogonal projection of the outside image with the coefficients of each image in the 

database. The image that had the smallest distance from the test image was identified 

by the program as being the closest match, and all the remaining images were ranked 

from closest to farthest away (in terms of Euclidean distance) from the test image. The 

results from this series of tests were very positive and indicated that the system worked 

well overall. Yet, it became clear very quickly that consistency in the orientation of the 

faces was needed so that proper recognition can occur. When all of the faces were facing 

forward, with minimal head tilt, the system identified the correct person as being the 

closest match 83.78% of the time. Furthermore, 97.30% of the trials identified at least 

one correct match in the top three closest matches. It is important to note that many of 
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Figure 8: The top two are the original face and the fifteen vector approximation of 
the face that can be best approximated. Similarly, the bottom two are the origi­
nal face and the fifteen vector approximation of the face that is most inaccurately 
approximated. 

the test images that were used had individuals wearing glasses. We determined that the 

presence of glasses had little to no influence on the outcome of the results. On the other 

hand, facial expression did have an impact on the results. This was indicated by several 

trials where the person had a significantly contorted facial expression compared to the 

expression in the database. In these cases the system had a more difficult time identifying 

the proper faces as being a match. We also noticed that several of the failed trials most 

likely resulted from the tilt of the person’s head. Thus, tilt and orientation of the person’s 

face were the two most significant factors that negatively affected the outcome. 

Since we noticed that the first eigenface identified long hair as being one of the 

most significant factors in making a correct match, we tested how well it would match a 
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person when significant changes to their hair occurred. First, we used Photoshop to take 

one of the female subjects with black hair and change the color to blonde. Despite the 

color change, the system was still able to correctly identify her in the database (little to 

no influence on results occurred). Next, we took several of the pictures with long hair 

(people who had a large value for the first eigenface) and used Photoshop to remove a 

substantial portion of their hair. We found that the system was unable to recognize the 

correct person as the best match when large changes to hair occurred. 

Another interesting test that we conducted involved placing a set of twins in the 

database. We tested two images of each person and in each case the system picked out 

both pictures in the database as being one of the top 3 matches. Interestingly enough, 

the other brother never appeared in the top three closest matches. This is especially 

important since even to the human eye, it is particularly difficult to differentiate between 

the two brothers as can be demonstrated by Figure 9. 

3.2 Second Database 

We thought at this point that it would be important to understand how well another 

database would work by using smaller image files (fewer pixel dimensions). The use of 

such downsized images is desirable because the amount of computer processing time 

greatly decreased with smaller image files. Thus, we used the same pictures, but reduced 

the size to 350×438 pixels. This decreased the processing time to approximately nine 

minutes, which is a tenth of the previous database’s processing time. Again, we used 

15 basis vectors, which retained 70.90% of the variance. As in the previous database, 

none of the subjects had glasses. However, we did use Photoshop to remove long hair 

around the neck and lower part of the face, which we hypothesized would reduce the 

overall amount of influence hair has in the system. Consequently, the average face for 
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Figure 9: The top two images are the original face and the fifteen vector approxi­
mation of one of the brothers. The bottom two are the original face and the fifteen 
vector approximation of the other brother. 

this database looked essentially the same, but the outline of hair around the lower half of 

the face is removed (see Figure 10). The lack of hair greatly influenced the outcome of 

the first eigenface, as can also be seen in Figure 10. 

In this eigenface, there appears to be a contrast between a person’s facial color and 

the color of their hair, as opposed to the first eigenface from the previous database, which 

focused on whether or not a person had long hair. It became difficult to determine which 

aspects of the faces were being differentiated in the subsequent eigenfaces. Yet, the 

second eigenface seemed to be detecting differences in skin tone, and the third eigenface 

appeared to be looking at how much hair was at the top of a person’s head. 

We noticed, again, that this system was very sensitive to the rotation of a person’s 

head. Consequently, we decided to test how much tilt could be present before the system 
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Figure 10: The image on the left is the average face from the second database, and 
the image on the right is the first eigenface from this database. 

started to fail. We began with a different picture of a person who was already in the 

database and rotated it 25◦. When this rotation was used the correct face was the 51st 

closest match. We then made the rotation progressively closer to center in 5◦ increments. 

When the face was 20◦ from center the closest matching face was number 34. When there 

was a 15◦ offset from center, the closest match appeared in the 11th position. When the 

rotation was 10◦, the fifth match was correct. Once the rotation was both 5◦ and straight 

up and down, the first match was the correct face. 

When we tested images from outside the database we also removed the long hair using 

the same method to create the database. This experiment yielded a 70.00% success rate. 

There are several factors that contributed to the decrease in success. The most likely 

scenario is that the removal of the hair in Photoshop was not performed in a completely 

controlled/automated manner. Instead the human eye was used to judge how much 

excess hair needed to be removed. Another possible factor for the decreased success rate 

originates from the fact that smaller image files were used. These smaller images resulted 

in less of the variance being retained (compared to the first database) even though the 

same number of basis vectors were used as in the first database. In order to correctly 

determine which factor was most influential we needed to run more tests, which will be 



3. FACE RECOGNITION PROGRAMMING USING MATLAB 37 

discussed shortly. We also tested images with the long hair left in the picture and the 

success rate was 30.00%. 

The next test we ran was with people who already had short hair. This produced 

a 93.75% success rate, in that at least one of the correct images from the database 

was chosen as one of the top three matches. Furthermore, 83.38% were selected as the 

number one closest match. These results indicate that in the previous consideration of 

whether or not human error or the decreased variance contributed most to the smaller 

success rate, human error was the largest contributing factor. We drew this conclusion on 

the indication that in the test where human error was not a factor the success rate only 

decreased slightly from that of the first database. 

3.3 Conclusion 

The technique is extremely successful and requires a minimal amount of data input. 

Although it is extremely important for all of the faces to be oriented in the same manner 

once this is achieved, the technique works very well. Thus, if the images are taken in a 

very controlled way, such as is done with police mug shots, the database would prove to 

be extremely useful. Although we decreased the size of the images in the second database 

by over 23% and the processing time by approximately 90% we were still able to obtain 

a success rate comparable to that of the first database. 

Further research in this area could focus on testing a larger number of variables in 

the pictures. Another great consideration would be further analysis regarding the most 

effective method to use for the preprocessing of images that comprise the database. We 

would also like to pursue greater automation of the entire system so that more tests with 

a greater number of images can be performed in an efficient manner. Yet, this makes us 

wonder if variables such as lighting, orientation of the head, or hair are not a factor of 
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how well the system can work. 

This will now bring us to the next recognition database involving infrared (IR) spec­

troscopic data. Since the data obtained from the IR spectrophotometer will not have the 

variations that are inherent to image files it seems likely that it would work much more 

reliably as a whole. Yet, before we can examine this database we must first understand 

in greater detail the principles of chemometrics and how IR spectroscopy functions. Since 

Fourier transform IR (FTIR) is one of the most common forms of IR spectroscopy, it will 

again be important to understand the mathematics behind this system to some extent in 

order to discover any potential problem areas that could arise when the data output by 

the instrument is placed within the recognition program. 
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4 

Introduction to Infrared Spectroscopy


4.1 Theory of Infrared Absorption Spectroscopy 

The very first infrared spectrum was obtained in 1840 by Sir John F. W. Herschel, who was 

also the son of Sir William Herschel, the original discoverer of infrared radiation [18, p. 7, 

80]. After years of study, it was determined that the infrared region of the electromagnetic 

spectrum ranges in terms of wavenumbers (ν̃) from 12,800 to 10 cm−1, or in terms of 

wavelengths from 0.78×10−6 to 1×10−3 meters [17, p. 380]. We should note at this 

point that other sources often call wavenumbers frequencies (ν), where ν = 
λ
c , λ is the 

wavelength and c is the speed of light) [22]. The infrared portion of the spectrum is 

divided into near, middle, and far regions[18, p. 80]. Of these aforementioned regions, 

the middle infrared spectral region ranging from 4000 to 200 cm−1 is the most commonly 

used for the purposes of IR spectroscopy [17]. This region is useful for the elucidation of 

chemical structure, particularly the presence of certain functional groups within a molecule 

[19, p. 559]. Essentially, a functional group is the atom or group of atoms in a molecule 

that are responsible for the characteristic reactions of a compound [34]. These functional 

groups appear in specific regions of an infrared spectrum. Table 1 details the infrared 

absorption regions of some common functional groups. 

Before examining the instrument used to produce the IR spectra of compounds, it 

is important to understand the underlying principles of this method. Figure 11 shows a 
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Functional Group Wavenumbers (cm−1) 
alcohols 

alcohol of a carboxylic acid 
carboxylic acids 

secondary amines 
C=C 

carbonyl 
ether 

alkanes 
monosubstituted benzene 

esters 
amides 

3200-3600 
2500-3600 
2500-3600 
3350-3500 
1620-1680 
1710-1750 
1025-1200 
2850-2950 

730-770 and 690-710 
1730-1750 
1680-1700 

Table 1: Infrared absorption region of common functional groups in terms of 
wavenumbers cm−1 . This table has been adapted from information found in [19, 
p. 561]. 

typical infrared spectra of polystyrene with ν̃ on the x-axis and % transmittance on the 

y-axis. Figure 12 shows the structure of this polymer. 

Figure 11: Infrared absorption spectrum of polystyrene, note the use of percent trans­
mittance rather than absorption (as in other spectroscopic applications) on the y-axis 
[20]. Note the labeled regions of the spectrum correspond to several of the important 
functional groups found within polystyrene. The monosubstituted benzene portion 
of the spectrum indicates that benzene has only one substitutent on the ring and this 
occurs in the “fingerprint” region of the spectrum. 
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Figure 12: Structure of the monomer styrene and the polymerized form polystyrene, 
whose spectra is shown in Figure 11. 

4.1.1 Causes of Absorption in the Infrared Region 

In order for a spectrum such as the one above to be produced, there is a necessary dipole 

change that must occur within the molecule. We should note that a dipole is essentially 

a pair of separated opposite electric charges. In a polyatomic molecule, the dipole of the 

entire molecule is the vector sum of the dipole found within individual bonds [34]. This 

does not mean that only molecules with permanent dipoles will produce an IR spectra. 

Rather, this change in dipole can originate from the molecular vibrational or rotational 

motion of the molecule [21, p.684]. To this end, we can examine a molecule of carbon 

dioxide. The structure of carbon dioxide is given in Figure 13. This molecule is perfectly 

Figure 13: Structure of carbon dioxide. 

symmetric, and consequently has no overall dipole moment. Yet, bending vibrations and 

antisymmetric vibrations present within the molecule can give rise to an oscillating dipole 

moment, and consequently produce an infrared spectrum [21, p. 684]. Figure 14 shows 

several of the motions that can occur within a molecule to produce changes in the dipole 

moment. Due to these changes in dipole moment within the molecule, IR spectra are often 
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referred to as vibrational-rotational spectra [22]. It is important to note that homonuclear 

Figure 14: Types of molecular vibrations that can occur within a molecule. 

species such as O2, N2, and H2 do not see a net change in dipole, even when vibrations 

and rotations within the molecule are considered. Consequently, these molecules do not 

absorb in the infrared region. Such molecules are more the exception, since the vast 

majority of molecular species do absorb within the infrared range [22, p. 52-53]. 

4.1.2 A Model for Understanding Infrared Vibrations 

Since we now understand the importance of a change in dipole moment for the production 

of an IR spectrum, we can further examine the molecular vibrations of a molecule. The 

simplest method by which to conduct such an examination is to reduce the molecule to 

a two-body problem and imagine atoms as balls and the bonds connecting the atoms as 

massless springs. This model, which is shown in Figure 15, is the ball-and-spring model 



� � 

43 4. INTRODUCTION TO INFRARED SPECTROSCOPY 

for such a two-body system, which could be either a diatomic molecule, or two bonded 

atoms in a larger molecule. In this case, we have assumed that the mass of atom A is 

Figure 15: The ball and spring model for a diatomic molecule consisting of atoms A 
and B. The spring has a force constant of k. 

m1 and the mass of atom B is m2, and the “spring” has a restoring force of F , which 

is proportional to the displacement x of the atoms from the equilibrium position [23, p. 

27]. Thus, F is given by Hooke’s law, which is 

F = −kx 

where k is the force constant of the spring in N . The value produced essentially tells us 
m 

the overall strength of the bond between the two atoms. Finding the value of νc (the 

classical vibrational frequency) is relatively easy through the use of the classical mechanics 

principle of the harmonic oscillator, which is given by 

1 k 1 k(m1 + m2)
νc = = 

2π m 2π m1m2 

where m is the reduced mass of the two atoms in kg. Consequently, only the force constant 

and the reduced mass of the bonded atoms have any influence on the resulting frequency. 

Therefore, this method can be used to aid in determining where stretching bands of similar 

two-body systems might occur within the spectrum. For instance, it would be possible 

to compare a C-H bond with a C-D bond (where D stands for deuterium, which is heavy 

hydrogen and is represented by 2H) since these two diatomic systems have nearly identical 
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force constants. In this case, the value for the reduced mass in the equation to find 

frequency changes from 12+1 to 12+2 for C-H and C-D, respectively. 
12×1 12×2 

While the equations from classical mechanics that have been used so far in our dis­

cussion of IR spectroscopy have been helpful in understanding the concept as a whole, 

they do not completely describe behavior that occurs on the atomic level. Thus, we must 

consider how we can treat these molecular vibrations in a quantum mechanical sense. 

This consideration still requires the use of the harmonic oscillator previously described in 

order to arrive at the wave equation of quantum mechanics [17, p. 385]. If we look at 

the solutions to these wave equations, the potential energies produced have the general 

form � 
1 h k(m1 + m2)

E = v + 
2 2π m1m2 

where h is Planck’s constant, and v is the vibrational quantum number, which has integer 

values (0, 1, 2, 3, . . . ) [17, p. 385]. This means that only discrete energies can be found, 

whereas in a classical treatment such restrictions do not exist, and the resulting energy 

1 k(m1+m2)values can be prodcued over a wide range. When we combine νc = 
2π m1m2 

with 

the previous equation, we obtain 

1 
E = hνc v + 

2 

where νc is once again the classical vibrational frequency [24, p. 13]. 

We then make the assumption that there is a specific requirement on the energy of 

the radiation that causes transitions from one quantum mechanical level to the next. 

Specifically, this means that the value for the energy of the radiation, in this case infrared, 

must exactly match the difference in energy levels of the molecule to be excited (ΔE). 
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Thus, if we reexamine E = hνc v + 
2
1 for the ground state (when v is 0) we obtain 

1 
E0 = hνc. 

2 

Similarly, if excitation occurs to the first excited state, where v = 1, the energy for this 

level would be 
3 

E1 = hνc
2 

meaning that excitation from the ground to the first excited state would require an input 

of energy equal to 
3 1 

ΔE = hνc − hνc = hνc. 
2 2 

The frequency of radiation that will bring about this excitation is actually identical to the 

classical vibrational frequency of the bond νc [17, p. 386]. Thus, 

Eradiation = hν = ΔE = hνc. 

Expressing this in wavenumbers then means that we can directly calculate ν̃ by using 

1 k(m1 + m2)
ν̃ = 

2πc m1m2 

meaning that a better interpretation of the force constant can be obtained. 

This comparison of force constants might not be as straightforward as comparing the 

reduced masses of a deuterated compound with its hydrogen counterpart, as previously 

shown, but it is important to understand the relative strength of different bonds. Thus, 

if we wanted to examine the difference between a single and a double bond between two 

carbon atoms, C-C and C=C, we would immediately know that the reduced mass of the 

system remains unchanged. Therefore, only the force constant changes between the single 
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and the double bond. Typically, values for these force constants lie in the range between 

3 × 102 and 8 × 102 N/m for a single bond [17, p. 386]. The force constant for a double 

bond, in our example C=C, would be about twice that of a single bond. Similarly, a triple 

bond would have a value of approximately three times that of a single bond since it is 

approximately three times as strong as a single bond [17, p. 386]. 

4.2 Instrumentation for Infrared Spectroscopy 

4.2.1 Basic Principles of Infrared Spectroscopy 

Before examining the functioning of the actual IR spectrometer, it is important for us to 

understand the general principle of the method as a whole. To this end, Figure 16 shows 

the basic idea behind the functioning of an IR spectrometer. The radiation travels on 

Figure 16: This block diagram of an IR spectrometer shows IR radiation coming from 
the source. This radiation comes into contact with the sample, where absorption of the 
radiation by the molecule occurs. Upon exiting the sample, the radiation intersects 
with the detector, which allows for the spectrum to be produced. 

a path from the source, which will be discussed shortly, intersects with the sample, and 

eventually comes into contact with the detector. The detector then converts its readings 

into an electronic output, which allows for the formation of a digital IR spectrum. In the 

following sections, the different possible sources, general path of radiation within an IR 
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spectrometer, and Fourier Transform infrared spectroscopy will be discussed in order to 

aid in your understanding of the pattern recognition system that will follow in Chapter 5. 

4.2.2 Infrared Sources 

In order to produce the necessary infrared radiation for excitation, a source is required. 

There are several specific types of sources, which when heated, produce radiation of the 

desired intensity [25, p. 11]. Typically, these sources are heated by electrical means 

to temperatures between 1500 and 2200 K, which causes the source to approximate a 

continuum of radiation similar to that of a blackbody [17, p. 389]. 

A Nernst Glower filament within a spectrophotometer is essentially similar in principle 

to that of a common household light bulb. The filament is drawn out into a cylinder with 

a diameter between 1 to 2 mm that is high resistance across the length of the wire [17, 

p. 389],[25, p. 11]. The composition of the Glower is mainly powdered, sintered oxides 

of zirconium, thorium, and cerium held together through the use of binding materials [25, 

p. 11]. When an electrical current is applied across the filament, the temperature rises 

causing the emission of radiation. It should be noted that the hotter the filament gets, 

the less electrical resistance is present within the filament. Therefore, the circuit that 

provides the filament with electricity must be designed in such a way that the current can 

be limited, otherwise the filament would burn out extremely quickly [17, p. 389]. 

Another extremely common source used for infrared radiation is a Globar. A Globar is 

essentially a rod of silicon carbide that is heated to between 1300 to 1500 K [26, p. 75]. 

Again, the spectral distribution of the Globar approaches that of a theoretical blackbody. 

The main advantage that a Globar has over the Nernst Glower is the greater output in 

energy seen below the 5 µm range [17, p. 389]. In addition to the Nernst Glower and the 

Globar, an incandescent wire source, mercury arc, tungsten filament lamp, and carbon 
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dioxide laser source can all be used to produce infrared radiation [17, p. 390]. Each 

type of source has its own benefits, but the Nernst Glower and the Globar are the most 

common sources in the average infrared spectrophotometer [22, p. 52]. 

4.2.3 Infrared Instruments 

There are multiple types of infrared spectrophotometers available including: (a) dispersive 

grating spectrophotometers that are generally used for qualitative analysis; (b) multiplex 

instruments that use the methods of Fourier transform; and (c) nondispersive photometers 

that are used for quantitative work in the determination of organic species present within 

normal atmospheric conditions [17, p. 392]. Even more recently two-dimensional infrared 

(2D IR) spectroscopy has become a quite common instrumental technique [27]. The 

most common technique, however, is still the use of Fourier transform (discussed shortly) 

spectrometers due to their ability to observe the entire spectrum at once [28, p. 481]. 

Consequently, this will be the only method discussed within the scope of this analysis. 

The vast majority of modern FTIR instruments have their basis in a Michelson inter­

ferometer. This type of device modulates optical radiation and produces an interferogram 

by scanning the difference in the optical path lengths of two beams [24, p. 66]. As can 

be seen in Figure 17 the interferometer consists of a fixed mirror, a moveable mirror, and 

a beam splitter [26, p. 80]. 

The beam splitting mirror divides the source wavelength into two essentially equally 

powerful beams. These beams are then recombined in such a way that variations in the 

intensity of the combined beam are measured as a function of the differences in the path 

lengths of the two beams (with the speed of the moveable mirror remaining constant) [17, 

p. 186]. Thus, when the two mirrors are equidistant from the beam-splitting mirror, the 

amount of radiation allowed to pass is at its maximum value. A single scan along the entire 
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Figure 17: A schematic diagram of the Michelson interferometer, shown here with a 
monochromatic source. The source produces a wavelength λ that is divided into two 
beams. These beams interact with both the fixed mirror and the moveable mirror, 
interacting with the sample, and eventually recombining into one beam that intersects 
with the detector. Note the moveable mirror travels in distances that are determined 
by the wavelength of the source [17, p. 186]. 

length of the moveable mirror’s plane allows for a complete single-beam spectrum to be 

produced, and the greater the length of travel the mirror is allowed, the greater the overall 

resolution of the produced spectrum. It should be noted, however, that numerous scans 

(dependent upon the application and the overall concentration of the sample) are collected 

and then signal averaged by the computer [26, p. 82]. There is much more that can be 

discussed regarding the actual functioning of this interferometer but such a discussion 

would lead us away from a more generalized understanding of the instrumentation. For 

more information regarding this and other types of interferometers see [17] and [26]. 

With a general understanding of the Michelson interferometer, it is possible to discuss 

how the radiation produced by the Nerst filament or the Globar is used to gather IR 

spectroscopic data. To begin, let us examine Figures 18 and 19, which are two schematic 
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diagrams of Fourier transform infrared spectrophotometers. Figure 18 is shown since the 

Figure 18: A typical layout of a FTIR spectrometer [28, p. 485] 

path of radiation from the source can be readily followed to the sample and eventually 

the detector. Figure 19 shows the same path, but in a manner that details to a greater 

extent the actual instrument used in the data collection phase for the formation of the 

FTIR database. Also, this figure indicates in greater detail the number of mirrors required, 

and their relative positions to one another, which is what can be seen within the actual 

instrument. The first item to note on each diagram is the presence of the laser, generally a 

HeNe source. This laser serves not as the source of the IR radiation, but rather as both a 

visible means with which to align your sample with the path of the infrared radiation, and 

as an experimental control for obtaining the infrared interferogram [28, p. 487]. Figure 

19 also shows a dessicant box and a shield surrounding the IR source. Both of these have 

importance within the overall instrumentation. The dessicant box serves to remove excess 
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Figure 19: Schematic diagram for a single-beam FTIR spectrometer [17, p. 395] 

water vapor from within the inner workings of the spectrometer. Water absorbs within 

the infrared region, and the presence of such vapor along the path of the radiation would 

cause erroneous readings to result. Similarly, the shield around the IR source is important 

in order to direct the radiation along the desired path. 

In each case, after leaving the actual source, the IR radiation strikes an initial mir­

ror that directs the radiation toward the Michelson interferometer and eventually to the 

beamsplitter. The beamsplitter itself is composed of transparent materials with refractive 

indices such that approximately 50% of the radiation from the source is reflected and 50% 

is transmitted [17, p. 395]. Usually, this is accomplished through the use of Mylar that 

is placed between two solid plates that have a low refractive index such as germanium 

or silicon deposited on cesium iodide or bromide, sodium chloride, or potassium bromide 

[17, p. 396]. The radiation then leaves the interferometer and comes into contact with 
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another mirror that directs and focuses the radiation on a particular area of the sample 

cell. The sample is held in place by a cell that is made of an infrared transmitting mate­

rial. Such materials include glass, quartz, sodium chloride, potassium bromide, and other 

salts each having their own transmission limits [26, p. 83]. Unless you are conducting an 

experiment involving thin films either KBr or NaCl is the material of choice. Upon exiting 

the sample, the radiation passes through another series of mirrors, where the two beams 

are recombined into one before coming into contact with the detector. 

This process is repeated 32 times per sample, which produces approximately 934 

data points between 4000 cm−1 and 400 cm−1 (of course this value varies based on the 

resolution setting of the spectrometer). A background spectrum is required for subtraction 

so that any atmospheric contaminants can be removed from the final recording. Once the 

background is subtracted from the interferogram produced by the sample, the 32 scans 

are then averaged by the root-mean-square (rms) noise equation 

Σi(Ai − A)2 

rms noise = . 
n 

In this equation, Ai is the measured signal for the ith data point, A is the average signal, 

and n is the total number of data points (in our case 934) [28, p. 488]. This aids in 

reducing the overall random electrical noise experienced during data acquisition. Keep in 

mind, however, that an averaging of n spectra only improves the signal-to-noise ratio by 

a factor of 
√
n. Thus, if the overall signal-to-noise ratio is to be improved by a factor of 

5, 25 additional scans would be required. Consequently, for weak samples it would not 

be unheard of to have the number of scans be on the order of 104 or 105 [28, p. 488]. 

Of course, since the output data is digital, the process of averaging is extremely efficient. 

Yet, this still leaves us with an interferogram and not an actual spectra. The next section 

will discuss how this interferogram is transformed into a viable spectra such as that seen 
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in Figure 11. 

4.3 Fourier Transform in Infrared Spectroscopy 

As we previously discussed, it is important to turn the interferogram into a viable spec­

trum through the use of Fourier transform. Recall from elementary calculus that both 

differentiation and integration are considered to be transforms. That is, each of these 

methods transforms one function into another function [29, p. 278]. For instance, if we 

examine the function f(x) = x4 we know that this can be transformed into both a cubic 
d 

polynomial or a family of fifth degree polynomials by integration. Thus, x 4 = 4x 3 and � dx 
5 

x 4dx = 
x

+ c. With this idea in mind, it is possible to further explore how we are 
5 

able to analogously obtain a spectrum from the Fourier transform of the interferogram. 

Mathematically, a Fourier series, which takes its name from the French mathematician 

J. B. J. Fourier, of a function f defined on an interval (−p, p) is given by [30, p. 643] 

a0 
∞

nπ nπ 
f(x) = + an cos x + bn sin x 

2 p p
n=1 

where 
1 p 

a0 = f(x)dx 
p −p 

1 p nπ 
an = f(x) cos xdx 

p −p p 

1 p nπ 
bn = f(x) sin xdx. 

p −p p 

This essentially tells us that the original function f can be represented through a trans­

formation into a function composed of the summation of sines and cosines. Thus, if 

the interferogram resembles Figure 20, it is possible to transform this into a series of 
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trigonometric functions. Note that in the image below, the x-axis retardation value (δ) 

is obtained from the difference in pathlength between the two waves produced in the 

Michelson interferometer. Figure 20 is far from a simple example, but if we consider the 

Figure 20: Sample interferogram. Note that constructive interference occurs when­
ever the retardation, δ, is an integral multiple of wavelength λ of the light. Therefore, 
as the mirror moves the formation of constructive and destructive phases occurs cre­
ating both local and global maxima and minima within the interferogram. [28, p. 
486]. 

interferogram produced by a monochromatic source of radiation, then the resulting plot 

is equivalent to a cosine equation resembling 

2πδ 
I(δ) = B(ν̃) cos ν) cos(2π˜= B(˜ νδ)

λ 

where I(δ) is the intensity of light reaching the detector and ν̃ is the wavenumber of 

the light [28, p. 482]. Thus, it becomes apparent that the intensity, I, of the radiation 

is dependent upon the retardation term. Yet, this only accounts for monochromatic 

radiation. The concept can be expanded in a similar fashion if there are two wavelengths 

of light present to produce 

I(δ) = B1 cos(2πν̃1δ) + B2 cos(2πν̃2δ). 
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Generalization of this idea for a continuum source such as that found within an infrared 

spectrometer means that an infinite number of cosine terms must be used, producing 

+∞ 

I(δ) = B(˜ νδ d˜ν) cos(2π˜ ν). 
−∞ 

This would represent the interferogram as in Figure 20, and taking the Fourier transform 

of the previous integral provides us with 

+∞ 

B(ν̃) = ν δdδ).I(δ) cos(2π˜
−∞ 

Of course, a true Fourier transform would require both a real (the cosine portion) and 

imaginary (sine) components, but for the purposes of spectroscopy the imaginary portion 

of the integral can be ignored and it is sufficient to only manipulate the real functions 

[17, p. 189]. 

The careful reader would note that the Fourier transform equation as written could not 

be directly used because this assumes that the source contains radiation from anywhere 

between zero to infinite wavenumbers (ν̃). Similarly, the drive mechanism of the moveable 

mirror would have to be infinitely long in order for the integration to occur from positive 

infinity to negative infinity. Also, since the output from the spectrometer is digital it cannot 

be taken in infinitessimally small intervals [17, p. 189]. These facts do not actually have 

any influence on the mathematics behind the construction of the final output spectra, 

but they do limit the overall resolution of the instrument. If data could be collected in a 

manner that would be conducive to the use of the full Fourier transform equation we would 

have infinitely resolved information. Yet, this cannot practically be the case since we are 

limited by the computer technology currently available. Even with such limitations, IR 

spectroscopy is an inherently powerful technique. We will next explore how data obtained 
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from the use of this instrumentation can be manipulated in order to build a database of 

chemical compounds, similar to the database of faces discussed in Chapter 3. 
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5 

Infrared Spectra Recognition Using 

MATLAB 

Using the mathematical principles discussed in Chapter 2 it is possible to form a database 

of spectral information obtained through the use of an infrared spectrophotometer. Over­

all, the process is similar to what has been discussed previously, but the actual technique 

is quite simplified since we do not have to concern ourselves with converting between an 

h × w matrix and a (w ∗ h) × 1 vector. This simplification originates from the fact that 

the data obtained from the spectrometer is already in vector form (wavenumbers versus 

percent transmittance). Thus, since the data needed for analysis is already contained in 

vector form, the resulting SVD calculations follow the same logic that was discussed in 

Chapter 3. The code for the formation of the database can be found in Appendix C and 

the code used for testing a spectra from outside the database can be found in Appendix 

D. 

In order to create the database, the FTIR of various chemical compounds had to be 

obtained. As we saw with the previous database, the larger the amount of information 

that composes the database the better the ability of the system to perform identification. 

Therefore, we want to maximize the stretching patterns seen within the various spectra 

in order to increase the effectiveness of the system as a whole. Reference [31] discusses 
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a similar need to maximize a database of chemical compounds for the purposes of Mass 

Spectra identification. While the applications are different, the underlying principle re­

mains the same. Table 2 details the compounds that were used in the formation of each 

database. Ideally, however, a database of approximately 50 compounds or more would 

serve our purposes much better, but using a smaller set works well to perform a proof 

of concept. The infrared spectra of the various compounds in Table 2 that comprise the 

Compound Functional Group of Interest 
2-methoxyethyl ether 

2-octanol 
acetone 
aniline 

benzaldehyde 
benzene 

cyclohexanone 
cyclopentanone 

decane 
ethanol 

ethyl acetate 
methanol 

p-anisaldehyde 
tertiary butanol 

toluene 

Ether 
Alcohol and Alkane Chain 

Carbonyl 
Phenyl ring and Amine 

Carbonyl and Phenyl ring 
Aromatic ring 

Carbonyl and Cyclic ring 
Carbonyl and Cyclic ring 

Alkane 
Alcohol 

Ester 
Alcohol 

Carbonyl, Phenyl ring, and Ether 
Alcohol and Tertiary Butyl 

Phenyl ring and Benzylic carbon 

Table 2: Details regarding the chemical compounds used to form the database and 
the functional group of interest on each molecule. 

database were collected on a Nicolet 210 FTIR. Spectra of the same compounds were 

also collected on a Nicolet 510P FTIR in order to determine whether it would be pos­

sible for the system to work from instrument to instrument. All spectra were collected 

using a neat method since all compounds tested exist in liquid form. NaCl windows were 

cleaned using dicholormethane, and a small amount of solution was placed between the 

two windows. The spectrophotometer was set to scan a range from 4000 cm−1 to 400 

cm−1 at a resolution setting of 8. It should be noted that the spectrophotometer used for 
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the formation of the database failed completely shortly after data collection began due to 

a hardware malfunction. Some “bad scans” were noted during data collection, but it was 

determined that the spectra collected were still valid for our purposes. 

5.1 First Spectral Database 

The first database we formed contained 27 spectra of 15 different compounds. During 

data collection several spectra of the same compound were collected. Since many of the 

compounds in the database volatilize easily this allowed us to obtain spectra with very 

intense peaks, and ones where many of the important peaks had weakened to a great 

extent. We decided to use 5 of the 27 basis vectors, which retained 91.185% of the 

variance. Recall that the percentage of the variance retained is calculated by 

j

λi 

i=1P er = n ∗ 100%. 

λi 

i=1 

The computer took less than one second to load the spectra and perform the necessary 

calculations to construct the database. As with face recognition, it is possible to examine 

the average spectra of all compounds tested. The construction of this image was accom­

plished by taking the mean of all vectors in the matrix B, which is h × i where h is the 

height of the data vectors, and i is the number of spectra in the database. This mean 

vector was then plotted against wavenumbers, which produced the image in Figure 21. It 

can be noted that from this average spectrum little information about functional groups 

in the database can be obtained between approximately 2750 cm−1 and 2000 cm−1 . Also, 

alcohol functional groups, which normally occur between 3600 cm−1 and 3000 cm−1, are 

prominent within this average spectrum [19, p. 561]. Still we should observe that this 
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Figure 21: Average Spectrum from the First Database 

average image holds a striking resemblance to an infrared spectrum, just as the average 

face in Chapter 3 resembled a human face. 

Similarly, another image that can be examined is the first basis vector from the compu­

tation. We will informally call such an image an eigenspectrum. Figure 22 shows this first 

basis vector. It is not readily apparent which features of the spectra are being distinguished 

Figure 22: First Eigenspectrum from Database 1


as it was for face recognition. One likely reason for such difficulties in determination might
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stem from how humans interpret information. The spectra produced does not give clear 

areas of differences like the eigenfaces do since basis vectors from a facial recognition 

database can readily display contrast between areas of differentiation. One likely hypoth­

esis is that this first basis vector is classifying compounds based on stretches that occur 

between 2750 cm−1 and 2000 cm−1 . Most of the spectra in the database see almost no 

peaks occurring within this range. There are, however, several spectra that show weak 

peaks within the given range. Just as hair was a major determining factor within the first 

facial recognition database, areas where only some compounds exhibit vibrational modes 

aid the system in beginning the classification process. We should note that due to the 

smaller sample size of the database the overall implications that the eigenspectra hold are 

somewhat diminished. A large database would have to be constructed in order to fully 

interpret what information can be gleaned from the eigenspectra. 

Overall, this database served the purpose of proving the concept that the same math­

ematical basis for face recognition could be applied in other settings to perform similar 

tasks. The system was able to identify, with 100% accuracy, test spectra that already 

existed in the database. It is not until the second database was constructed that different 

spectra of compounds in the database were tested, as well as the ability of the system 

to correctly identify compounds from one spectrometer based on a database of spectra 

taken on an different model of FTIR. 

5.2 Second Spectral Database 

In order to properly test the system repeat spectra were removed from the database 

composition and only one spectrum from each compound listed in Table 2 were used to 

build this second database. Thus, this database consisted of 15 total spectra and we used 5 

of the basis vectors, which retained 89.5815% of the variance within the database. Overall, 
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this elimination of duplicate spectra did not greatly alter the average spectrum, which can 

be seen in Figure 23. This minimal alteration indicates that the various spectra collected 

Figure 23: Average Spectrum from the Second Database 

for each compound have peaks within essentially the same region between subsequent 

measurements of the same compound. 

The eigenspectra from this database are also interesting to examine. Figure 24 shows 

the first and second eigenspectra produced by this database. The first basis vector (eigen­

spectrum) appears to resemble a generic infrared spectrum to a greater degree than what 

we have previously encountered. Interestingly, the entire graph occurs in a negative region. 

Since the collected spectra that form the database were not normalized, this appearance 

of an almost “negative” eigenspectrum indicates that the most important factor in this 

database is examining whether the data input falls within a range that exceeds the normal 

0 to 100% transmittance. We then hypothesized that the second eigenspectrum is exam­

ining peaks that occur in both the alcohol and carbonyl stretches. This hypothesis would 

make sense when coupled with the fact that such peaks are always strikingly intense and 

play a predominant role in human identification of spectra since such peaks are almost 

always readily indicative of these functional groups. 



63 5. INFRARED SPECTRA RECOGNITION USING MATLAB 

Figure 24: The graph on the left shows the first eigenspectrum from this Second 
Database. Of note in this graph should be the Percent Transmittance scale since 
the entire spectrum occurs below zero. The graph on the right shows the second 
eigenspectrum from this second database. This spectrum shows regions of importance 
where alcohols and carbonyl functional groups normally occur. 

The first test that was performed with this database involved using spectra of the 

same compounds that were obtained on the same instrument used in the creation of the 

database. Thus, the extra spectra that were removed from the first database were used 

as spectral images from outside the database. Each spectra was tested, and the ranking 

of the correct spectrum by the database was noted. Overall, this led to a 58.33% success 

rate, where the correct spectrum was placed as one of the top three closest matches and 

41.66% of the time the first choice was the correct choice. Yet, when conducting these 

tests, it was noted that 2-octanol, benzaldehyde, cyclohexanone and ethanol all produced 

rankings that were quite high, which is far from ideal since we would want the ranking of 

the spectra to be as low as possible. Upon further examination of these graphs, we noticed 

that the tested spectra and the spectra of these compounds did not correlate well with one 

another, even to the human eye. Figure 25 shows the spectra in the database compared 

with the spectra that were used to test the system. It became clear after examining these 

spectra side by side why the system was not able to correctly identify these spectra since 
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Figure 25: The graphs on the left show the spectra that was placed in the database 
and the graphs on the right show the spectra of the same compound that was used to 
test the database. In the cases of 2-octanol, benzaldehyde, and ethanol the spectra 
on the right were deliberately obtained after allowing the compound to volatilize in 
the IR cell. For cyclohexanone, the IR cell was loaded with excess liquid in order to 
obtain broadened peaks. 
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even the human eye has difficulty seeing similarities between the spectra on the left and 

the spectra on the right of Figure 25. If these results are removed from consideration the 

overall accuracy of the system to correctly identify the spectrum in the top three choices 

increases to 87.50% and 62.50% of the time the computer identifies the correct spectrum 

as the closest match. 

The next test involved obtaining spectra (of the compounds that are within the 

database) on another fourier transform spectrometer. This was an important variable 

to test since a pattern recognition system that could not correctly identify spectra taken 

on another instrument would not prove to be a viable system. The same methodology al­

ready discussed for the preparation of the cells was used and measurements were obtained 

on a Nicolet 510P FTIR. The resolution of the original measurements that comprise the 

database was matched on this second FTIR and nine of the original 15 compounds were 

measured. Overall, we were able to determine that the system correctly identified the 

spectra as one of the top three closest matches with 64.71% accuracy. It was noted, 

however, that the samples for toluene used to conduct these tests did not closely correlate 

with the toluene spectra found within the database. This resulted in the system having 

difficulty correctly identifying this spectra. Thus, with these erroneous tests removed from 

consideration we found that the system had an accuracy of 71.43% of the correct match 

being in the top three and 50.00% of the time the closest match was the correct match. 

One interesting result that was discovered during testing was the influence of using 

normalized versus non-normalized data. When a spectrum is collected it can often exceed 

100% transmittance on the y-axis. In the construction of the database all of the spectra 

did not greatly exceed 100% transmittance. When testing, the data on the Nicolet 510P 

spectra that would go beyond 100% would be saved both in a normalized and non-

normalized (raw) form. It was noted that most of the time the non-normalized data would 

result in the correct identification being the first or second choice, while the normalized 
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Figure 26: This image represents the projection of the non-normalized and normalized 
spectra onto the subspace spanned by the eigenspace. Essentially, the projection of 
each data set intersects the truncated eigenspace at slightly different values due to 
differences in normalization. Then, since the Euclidean distance is measured between 
these projections and the spectra already in the database, it is possible for the correct 
spectrum to be closer to one rather than the other. The results indicate that this 
reasoning is likely correct since we are not able to form a generalized trend for whether 
normalized or non-normalized spectra work better in the database. 

data would be correctly identified between the fourth and seventh positions. Yet, there was 

one slight discrepancy noted when the 2-octanol spectrum was used. In this instance the 

non-normalized data was correctly identified in the second position, while the normalized 

data was identified correctly as the first choice. This discrepancy likely originates from the 

projection of the image outside the database onto the subspace spanned by the eigenspace. 

This is demonstrated in Figure 26. Thus, in future studies and uses of this method, 

consistency in the use of normalized or non-normalized spectra must be achieved. 

At this point, we should note that while the accuracy ratings are not 90% or above, 

the speed with which the process occurs makes the system beneficial for use within the 

laboratory. Normal spectral identification without the use of a computer involves an­
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alyzing the peaks that are found within the spectrum and determining which functional 

groups correspond to the identified peaks. Once that is complete then other spectroscopic 

information such as nuclear magnetic resonance (NMR) or mass spectrometry are used 

to further elucidate the identity of the molecule. Yet, the system we have tested thus 

far can build the spectral database of compounds in less than one second and test a 

compound in approximately 0.01 seconds. Thus, while the match might not always be in 

the top three, this information can be used as a starting point for elucidation of structure 

since the system does appear to often choose other molecules within the database that 

have similar functional groups. 

5.3 Third Spectral Database 

The final database was composed in order to determine how much of an influence the 

number of basis vectors used in the composition of the system had on the accuracy of its 

results. Thus, we chose to use 10 basis vectors in this database, which retained 97.8694% 

of the variance. We would then expect, at the very least, a slight increase in the accuracy 

of the system. The average spectrum produced by MATLAB did not have any noticeable 

changes from Figure 23. Also, the first few eigenspectra were identical to those seen in 

Figure 24. 

The same tests performed in Section 5.2 were conducted on this new database. The 

percentage of correct identification remained the same for spectra obtained on the same 

instrument used to construct the database, 87.50%. The overall percentage for choosing 

the correct match in the top three choices increased slightly to 78.57% (with the exclusion 

of the erroneous toluene data) and 57.14% of the time the correct spectrum was the first 

choice. Thus, while it is difficult to draw conclusions because of the small size of the 

database we can say that at this point that the first five basis vectors do contain the most 
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information about the spectra within the database. It does appear that a simple increase 

in the number of basis vectors used is not necessarily indicative of an increase in overall 

accuracy. Still the fact that both trials produced results in approximately the 80% range 

indicates that the system should be examined further in the future with a larger database 

to determine its overall viability as an everyday laboratory tool. 
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6 

Conclusion


We now have a better overall understanding of what pattern recognition is, how it can 

be implemented mathematically, and the types of applications where such methods might 

prove useful. The two applications discussed here are far from the only possible uses for 

this pattern recognition system. The same principles could be applied to identify animals, 

fingerprints, other types of spectroscopic data, or almost anything we could think of 

involving a pattern that humans might find tedious to analyze. 

While we have shown that the system works exceptionally well with face recognition 

and infrared spectroscopy pattern recognition, there is still room for improvement. Mainly, 

one area that could be improved with both applications is that of automation. Currently, 

there still remains some work to be done by humans in order to make the program function. 

Ideally, an exceptionally viable program would require little input on the part of the user 

and could be able to rebuild databases as new information became available on the fly. 

Such automation would also lead to the ability of applying this system to recognizing 

faces within moving images, or having the computer immediately output the identity of a 

compound once it has finished collecting data from the FTIR. In particular, with regard 

to the system used for face recognition, it would be wonderful to further examine how 

the problems of head tilt, lighting, and changes to hair could be readily resolved within 

the mathematical basis for the system. Also, as with any system it still remains to be 

seen how a database of 200, 500, or 1000 faces would influence not only the time it takes 
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for recognition to occur, but the overall accuracy of the system. In theory, the system 

should be more accurate since it would have a greater amount of information from which 

to draw. 

Many of the key points to examine in the face recognition database could also use 

further scrutiny regarding the spectroscopic identification. One of the main problems with 

the database previously discussed is its size. This small size originated from equipment 

failure over the course of experimentation. Yet, the results do provide the proof of concept 

for this application. There are already commercially available applications that perform 

such recognition of spectra such as [32]. How such systems function are not readily 

revealed due to patents, and programs such as these can cost in excess of $2000 for a 

single database of compounds and the software. It would be interesting to examine in 

future studies the accuracy of these systems in determining not only the correct identity of 

a compound, but also whether it works for mixtures of compounds or non-neat methods 

(since non-liquid compounds must be treated in a slightly different manner than liquids 

for infrared spectroscopy). 

As technology continues to progress the ability of computers to accurately and quickly 

perform pattern recognition will only increase. Thus, it is possible to foresee that con­

struction of large databases to perform these recognition tasks will become much more 

commonplace in the future. Remember, it was not so long ago that only extraordinar­

ily expensive computers could perform the tasks described here. In fact, all calculations 

were performed on desktop computers using a standard amount of RAM and a processor 

greater than 2GHz. Yet, we must remember the power of our own minds. While we have 

shown the ability of a computer to perform tasks that humans do without thinking, what 

we have actually shown is the ingenuity we inherently possess within our own minds to 

solve problems and better understand the world around us. We must never forget that, 

as Marcus Aurelius put it, “nothing has such power to broaden the mind as the ability 
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to investigate systematically and truly all that comes under thy observation in life” [33]. 

Such observation cannot be performed by a computer. While our system shows the power 

of a computer there are always limitations and tasks that the human mind can perform 

with much greater ease. So, the next time you look at a person’s face and recognize 

them, examine an infrared spectra, or simply see a pattern within an object, remember 

how easily you complete the task and how much effort it would be to make a computer 

carry out the exact same charge. 
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Appendix A 

Code for Face Recognition Database 

Formation 

The following code was used to load all of the images in the database from a textfile. 

This textfile was generated through the use of command line within Windows. For more 

information regarding how to change directories and produce a bare format filelist see 

[16]. 

In general this MATLAB function loads all of the images, converts them to the proper 

(“double”) format and reshapes them all into vectors. Then, the function performs all 

of the computations on the database which are necessary to create the best basis as 

described by Proposition 2.8. Please, see our explanations throughout the code (denoted 

with the % symbol). Before considering the code, however, we must note it is necessary 

to define two other functions which were used within this image loading function. The 

first is defined as “linecount” and its purpose is to count the number of lines within the 

filelist to determine how many images we will be loading. The code is as follows. 

function lc=linecount(filename) 

fid=fopen(filename,’r’); if fid < 0 
lc=0; 

else 
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lc=0; 
while 1


ln=fgetl(fid);

if ~isstr(ln) break; end;

lc=lc+1;


end; 
fclose(fid); 

end; 

The second function which is needed to execute the “load images” function is known 

as “sorteig”. This function simply sorts the eigenvalues of our covariance matrix in 

descending order and then sorts the corresponding eigenvectors in the same order. 

function[V1,L1]=sorteig(V,L)

lambda=diag(L);

n=length(lambda);

[val,idx]=sort(lambda);

val=val(n:-1:1);

idx=idx(n:-1:1);

L1=diag(val);

V1=V(:,idx);


Now, with all the previous m-files loaded into the work folder of MATLAB we can 

define our “load images” function. We should note the syntax that MATLAB uses for its 

coding. The initial line tells the program that we are defining a function. The information 

in square brackets on the left side of the equal sign indicates variables that will be output 

after the code has been allowed to run. The “load images” tells MATLAB the name of 

the function, and the variables within parenthesis are what the program needs in order to 

run properly. In this case that would be a filelist with a .txt extension, such as “filelist.txt” 

and b determines the desired number of basis vectors used in the computations. Finally, 

in order to run the code from the command screen we would have to type 
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>>[Images, w, h, Meanimage, Meanface, Meansub, V, S, Basis, SmallBasis, 
SmallV, Percent]=load_images(’filelist.txt’,5) 

making sure to note the use of single quotes around the filename of the filelist. In this 

case, we would be using five basis vectors for analysis. The code that MATLAB would 

follow is now detailed below. 

function [Images, w, h, Meanimage, Meanface, Meansub, V, S, Basis,

SmallBasis, SmallV, Percent] =load_images(filelist,b)

numimgs=linecount(filelist);

fid=fopen(filelist,’r’);


for i=1:numimgs 
imgname=fgetl(fid); 
if ~isstr(imgname) 

break; 
end; 

fprintf(1, ’loading JPG file %s\n’, imgname); 

Img=imread(imgname); 

Img=double(Img)+1; 

if i==1

[w,h]=size(Img);


end;


Images(1:w*h,i)=reshape(Img,w*h,1);

end;


fclose(fid);


fprintf(1, ’Read %d images.\n’, numimgs); 
%All of these lines up to now have simply loaded the images, 
%converted them to the proper format, reshaped them into 
%vectors and printed out a running list as the computer loaded each file. 

Meanimage=mean(Images’); 
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Meanface=reshape(Meanimage, w, h);

imagesc(Meanface); figure(gcf);

colormap(gray);


%Displays the average face. 

Meanimage=Meanimage’; 

Meansub=Images-repmat(Meanimage, 1, numimgs); 

Covar=Meansub’*Meansub; %Calculates the covariance matrix. 

[V, S]=eig(Covar);

[V, S]=sorteig(V,S);


Basis=Meansub*V; 
%Calculates basis from eigenvectors. 

for	 g=1:b

SmallBasis(:,g)=Basis(:,g);

SmallV(:,g)=V(:,g);


end 

for	 t=1:b

Per=sum(diag(S(1:t,1:t)));

Percent=(Per/(sum(diag(S))))*100;


%This calculates the percent of the variance retained by 
%our b basis vectors. 

end 
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Appendix B 

Code for Testing Facial Image from 
Outside the Database 

This code begins in basically the same way as the database formation by loading the 

outside image into the MATLAB workspace. The test image is then mean subtracted and 

projected onto the subspace spanned by our chosen number of basis vectors. The distance 

from each of the images in the database is then calculated. These vectors, which are the 

database images, are then sorted from smallest to greatest distance. The final aspect of 

the code displays the test image alongside the top three closest matches from within the 

database. 

function [RTest, Coeff, Dist, B, Index, best1, best2,

best3]=outside_image(testimage,SmallBasis, Meanimage, SmallV, Image,

k)

numimgs=linecount(testimage); fid=fopen(testimage,’r’);


for i=1:numimgs 
imgname=fgetl(fid); 
if ~isstr(imgname) 

break;

end;


Img=imread(imgname); 

Img=double(Img)+1; 

if i==1 
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[w,h]=size(Img);

end;


RTest(1:w*h,i)=reshape(Img,w*h,1);

end;


fclose(fid);


RTest=RTest-Meanimage; %Mean-subtract the test image 

for i=1:k 
Coeff(1,i)=(dot(SmallBasis(:,i),RTest))/(dot(SmallBasis(:,i) 

,SmallBasis(:,i))); 
end 

%Projects the test image onto the space spanned by the chosen basis vectors. 

[r, c]=size(SmallV); 

for i=1:r 
Dist(i,1)=norm(SmallV(i,:)-Coeff); 

end 
%Calculates the distance of this projection from all the database images. 

[B,Index]=sortrows(Dist); 
%Sorts the database images from least to greatest 
%distance from the test image. 

m1=Index(1,1);

m2=Index(2,1);

m3=Index(3,1);


best1=Image(:,m1);

best2=Image(:,m2);

best3=Image(:,m3);


best1=reshape(best1, w, h);

best2=reshape(best2, w, h);

best3=reshape(best3, w, h);


figure(1);

imagesc(Img);

colormap(gray);
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figure(2)

imagesc(best1);

colormap(gray);


figure(3);

imagesc(best2);

colormap(gray);


figure(4);

imagesc(best3);

colormap(gray);


%Displays the test image and three closest matches from the database. 
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Appendix C 

Code for Infrared Spectra Database 
Formation 

The following code was used to load all of the IR spectra into the computer’s memory 

and form the database. A textfile was again used to tell MATLAB which spectra to load 

since multiple databases were formed as discussed in Chapter 5. Again, as in Appendix A 

the instructions for generating a filelist from within Windows can be found in [16]. 

While the code remains essentially the same, there are several significant differences. 

For instance, the problem encountered when forming the database for face recognition 

required the conversion of images into the “double” format. In this case, the data was 

taken from the spectrometer as a .csv or comma separated value file. Therefore, when 

this data was imported into MATLAB through the use of the “csvread” command, it 

was already in the proper format for mathematical analysis. Note that the two functions 

“linecount” and “sorteig” were required for the functioning of the system, just as was 

shown in Appendix A. 

function [Spectra, w, h, MeanSpectra, Meansub, V, S, Basis, SmallBasis, 
SmallV,Percent]=load_ir(filelist,b) 

numir=linecountir(filelist); 
fid=fopen(filelist,’r’); 

%This opens the file input/output commands within Matlab. 
%The ’r’ tells Matlab it has only read permission for the 
%filelist in question. 
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for i=1:numir 
irname=fgetl(fid); 
if ~isstr(irname) 

break;

end;


fprintf(1, ’loading IR file %s\n’, irname);

%Tells the user which IR spectra file is currently being loaded

%into the system’s memory.


Spec=csvread(irname); 
%Uses the built in csvread command to convert the commaseparated value 
%files into matricies within Matlab 
if i==1 

[w,h]=size(Spec);

end;


Spectra(1:w,i)=Spec(:,2);

%Since the first column of all the spectra (the values for wavenumbers)

%are the same this extracts only the second column, which contains

%information regarding percent transmittance of the compound.

end;


fclose(fid);


fprintf(1, ’Read %d IR.\n’, numir); 

MeanSpectra=mean(Spectra’); 

MeanSpectra=MeanSpectra’; 

Meansub=Spectra-repmat(MeanSpectra, 1, numir); 

Covar=Meansub’*Meansub;

%Calculates the covariance matrix.


[V, S]=eig(Covar);

[V, S]=sorteig(V,S);

%Uses the sorteig command to sort the eigenvalues.


Basis=Meansub*V; 

for g=1:b 
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SmallBasis(:,g)=Basis(:,g);

SmallV(:,g)=V(:,g);


end


for	 t=1:b

Per=sum(diag(S(1:t,1:t)));

Percent=(Per/(sum(diag(S))))*100;


%Calculates the percent of the variance retained through the 
%use of the b basis vectors. 

end 
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Appendix D 

Code for Testing Infrared Spectra 
from Outside the Spectral Database 

Again, the code begins by loading the spectra from outside the database into the MATLAB 

workspace. This is accomplished by the “csvread” command once again. Again, the 

spectra to be tested is mean subtracted and projected onto the subspace spanned by 

the chosen number of basis vectors. The Euclidean distance is then found between the 

tested spectra and those within the database. These vectors are then sorted from closest 

(most probable match to a spectra in the database) to most distant (least likely match 

with the spectra in the database). Since the vector containing the wavenumber values 

has been removed for the purpose of calculation MATLAB does not readily show the top 

three matches from the database, but an examination of the Index variable tells us which 

spectra the test image corresponds to in order of probability. If the spectra are desired 

to be viewed, a scientific graphing spreadsheet such as Excel or OriginPro can be used to 

produce the spectra. 

function [RTest, Coeff, Dist, B, Index]=outside_irpaper(testir,

SmallBasis, MeanSpectra, SmallV, k)

numir=linecount(testir);

%The linecount function here will have to only count one line,

%but it makes it easier to switch which file to test.

fid=fopen(testir,’r’);
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for i=1:numir 
irname=fgetl(fid); 
if ~isstr(irname) 

break; 
end; 

Spec=csvread(irname); 

if i==1

[w,h]=size(Spec);


end;


RTest(1:w,i)=Spec(:,2);

end;


fclose(fid);


RTest=RTest-MeanSpectra; 
%Produces the mean subtraced test spectrum. 

for i=1:k

Coeff(1,i)=(dot(SmallBasis(:,i),RTest))

/(dot(SmallBasis(:,i),SmallBasis(:,i)));


end 

[r, c]=size(SmallV); 

for i=1:r

Dist(i,1)=norm(SmallV(i,:)-Coeff);


end


[B,Index]=sortrows(Dist); 
%Produces the sorted rows of the measured distances so that the 
%index matrix reflects the overall ranking of spectra within the database. 
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