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A MULTI-SERVER MARKOVIAN
QUEUEING MODEL WITH
PRIMARY AND SECONDARY SERVICES

V. Klimenok', S.R. Chakravarthy?, A. Dudin’

! Belgrusian State University,
? Kettering University
\ Minsk, Belarus
% Flint, USA
dudin@bsu.by

We study a multi-server queueing model in which arrivals occur according to a Markov-
1an arrival process. An arriving customer either (a) is lost due to all main servers being
busy; or (b) enters into service with one of the main servers and leaves the system (as a sat-
isfied primary customer); (c) enters into service with one of the main servers, gets service
in self-service mode, and being impatient to get a final service with one of the main servers,
may leave the system (as a dissatisfied secondary customer); or {d) enters into service with
one of the main servers, gets service in self-service mode, becomes successful in getting a
final service from one of the main servers, and departs (as a satisfied secondary customer).
This queueing model is studied in steady state and some selected performance measures are
derived.

Keywords: Markovian Arrival Process, retrials, loss, multi-server queue, tandem, asymp-
totically quasi-toeplitz Markov chain,

1. INTRODUCTION AND MODEL DESCRIPTION

The motivation for studying this queving model came from a real-life application expe-
rienced by one of the authors. The laptop computer owned by this author had a problem for
which the computer manufacturer was contacted. He had to wait before a technical expert
came on line. The author went over the problem with the expert who then advised to do a
scanning test on the hard drive first and get back with the test results. The test indicated a
problem with the hard drive and hence the author had to call back the company with the test
results. With a few tries the author was successful in reaching an expert and after analyzing
the test results the author was sent a replacement hard drive (as the Laptop was still under
warranty). Thus, the author has to go through a primary service, a secondary (self) service
and another primary service before the problem was solved. In this paper we consider a
queueing system that closely models the above mentioned real-life application. The basic
assumptions of the model are summarized below,

Modet Description

¢ Armvals occur according to a Markovian arrival process (MAP) which is defined by

the underlying continuous time Markov chain {v,}.p, on the state space {0,1,..., W}
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with the matrices of transition intensities given by D, and Dy of dimension W + 1,
These arrivals are referred to as primary customers. Any amrival finding an idle
server gets into service immediately; otherwise the arrival is considered lost.

¢ The service system is divided into two groups: main and self-service. In the main
group there are N homogeneous exponential servers. There is no bound on the number
of customers in the self-service system.

¢ The primary customers are served in the main system ata tate py, 0 <4, < 0.

» Upon completion of a service in the main system, a primary customer may move to
the seif-service system with probability 1,0 < v < 1; and with probability 1 = 1 -y,
the primary customer will leave the system. That is, with probability n a primary
customer needs to do a self-test.

¢ The service time of a customer in the self-service system is assumed to be exponen-
tially distributed with parameter x,0 < K < co. Upon completion of a service in this
system, the customers need to get served again in the main system. These customers
will be referred to as secondary customers.

¢ A secondary customer finding an idle server in the main system will get into service
immediately. However, if all the main servers are busy, then this customer will try to
get into an orbit of finite buffer size M from where the customers will try to access
the main system. If at the time of getting into the orbit the buffer ts full, the secondary
customer will be lost with probability ¢,0 < ¢ < 1, and with probability 1 — g the
customer will wait for an exponential amount of time with parameter k before trying
to get into the orbit.

s While in orbit, cach (secondary)} customer will try to access a free server in the
main system at random times that are exponentially distributed with parameter «,
0 < a < oo, That is, if there are m customers in the orbit then the duration of a retrial
time is exponential with parameter ma.

o The service time of a secondary customer in the main system is assumed to be ex-
ponentially distributed with parameter p,,0 < p, < co. Upon completing a service in
the main system, the secondary customer will leave the system.

o

2. MARKOYV PROCESS DESCRIPTION

In this section we describe the queueing model outlined in section 1 as a continuous-time
Markov chain. First, we define the following quantities.

¢ i, = Number of customers in the self-service system at time ¢,#, 2 0.
¢ m, = Number of secondary customers in the orbit at time 7,0 < m; < M. “
¢ n, = Number of busy {(main) servers at time ¢,0 < n, < N. _
e k; = Number of secondary customers in the main service group at time 1,0 < &, < n,.
e v, = Phase of the arrival process at time £,0 < v, < W. '
The process {E }mo = (i, my, 0, kp, Vi)eso 18 clearly a continuous-time Markov chain. Flrst
note that the dimension of the state space of the process {n,, k,}»0 1s given by K = 0.5(N +
+1)(N + 2). In the following e will denote a column vector {of appropriate dimension) of
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1’s and 7 an identity matrix (of appropriate dimension). When needed we will identify the
dimension of this matrix with a suffix. For example, {, will denote an identity matrix of
dimension r. The symbol ® denotes the Kronecker product of matrices. For details and
properties on Kronecker products we refer the reader to [5]. We now define a number of
auxiltary matrices for use in the sequel.

By A(C,---,C,) we denote the diagonal (block) matrix whose i diagonal (block)
element is given by C,.

O,x» will denote a rectangular matrix of dimension a x b with all entries equal to zero.
We will denote the case when a = & by O or O,. The latter symbol will be used when
appropriate.

E ;x(s+1y 1 @ rectangular matrix of dimension a X (a + 1) which in partitioned form is
defined by

de
Eax(cH-!} =f( Oaxl Ia )
E is a square matrix of order X which in partitioned form is defined as
01 Eix
5t Eya
Ensv+1)
ON-H

E is a square matrix of order X whose only nonzero (block) entry is the last diagonal
block. That is,
oo ( Okx-n-1 Ok -N-1)x(¥+1) )
OW41x(K-N-1) Iy ‘
E®, for r= 1,2, is a square raatrix of order K which in partitioned form is defined as

0

ef | HY
E(f) d=f : r} ]
H; X
va ONH

where the matrices H of dimension (n + 1) X n are defined by

n 0
n—1 1
pr: ’ng)___, 2 JAi<n<N
1
0 n

A sequence C of square matrices of order W = W + 1 defined as

c % Do~ Tks + (n = kyp M + 5, 0D1,0 <k <m0 <n <N,

where 8, » is the Kronecker delta.
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o C=ACD,- - ,C™), where C? = ACCP, - ,C), for 0< n < N.
Lemma 1. The Markov chain {§}»0 has the generator A, given in partitioned form by

App A )
Ao Ay Al
A= Az Azx As , 1
Aszy Asza
")

where the square matrices A;; of dimension (M + 1)K W are Sfurther partitioned into smaller
blocks of dimension KW as A;; = (A,; ;(m, m’)) O<mm <M, and i, j 2 0. These smaller
nonzero block matrices are given as follows.

Ajisim,m) = ik(E®Iy), i21,0<m< M -1, 2
Ao M M) =ix(E+gE)® Iy, i>1, 3)
Ajsimom+ 1) = ix(E®Iy), i21,0sm<M-1, @
Aji(m,m) = My (E(l) ®13),i20,0<m< M, 5)
Ajmom=—1)= ma(E'@!w), iz0,0<m=< M, (6)

Ajmm) = C+ i (EV @ 1) + wmEP Ig) + E®@ Dy — (ma+ ix),0<m< M -1, (7)
Ak M, M) = C+ (D @ Iy) + w(E?P @ Iy) + E® Dy~
“Ma(l ~-EYRIy ~ikI-EY® Iy — giv(tE® Iy), i 2 0. 8)

Proof: Follows immediately by looking at all possible transitions of the Markov chain.

3. STEADY STATE ANALYSIS

In this section we will perform the steady state analysis of the model under study. First
we will show that the queueing model described in section ! is always stable. Next, we will
calculate the steady state probabilities and list some selected system performance measures.
Observe that the Markov chain {,},59 is a level dependent quasi-birth and death process
and the steady state analysis of such processes has been done in the literature (see e.g.
[2]. However, here we will use the results for the multi-dimensional asymptotically quasi-
toeplitz Markov chains (AQT MC) as presented in (1, 3]. This approach allows us to prove
the stability condition and also establish an efficient algorithm for the computation of the
steady-state probability vector.

Let R; be the diagonal matrix obtained by taking the diagonal entries of the matrix
A i 2 0. It is well-known that the block matrix P having the structure like (1) with blocks
Py=R1'A;,l=i-1,i+1and P;; = R;'A;; + 1,i 2 0, is the one-step transition probability
matrix of the embedded (or jump) discrete-time Markov chain, {E,},»0, corresponding to the
original continuous-time Markov chain {&,},»0. It is easy to verify that: (i} this discrete-time
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Markov chain is AQTMC (see [1, 3]) and (it) if this chain is positive recurrent then the
Markov chain {&,},;0 is also ergodic.

It is easy to see that the limits given by ¥, = }2‘2 Piii-t, for k = 0,1,2, exist for all
values of the system parameters for the model under study. Specifically the expressions
for these limits derived by considering two cases: (a) g > 0 and (b) ¢ = 0, are given in
the following two lemmas. In the following the matrices Y, will be displayed in block
partitioned form and we denote the (m, r)* block of ¥, by Yi(m, r).

Lemma 2. For g > 0 we have Y, = Y, = O, and the nonzero blocks of the matrix Yy are
given by

Eolyr=m0<m<M-1,
Yo(m, r) = E+E)QIy,r=m=M, ')
EQly,r=m+1,0smsM-1.

Proof: Follows immediately from the definition of the limits.
Lemma 3. For g =0, the nonzero blocks of the matrices Yy, k =0, 1,2, are given by

E@ly,r=m0<m<M,

Yﬂ(msr)={E@]w,r=m+I,OSmSM_1‘

10)

VM, M) = (E @ Ii)R;'IC + i (EV @ Iy) + m(E? @ Iy)) - Mol - E)® Iyl + Igw, (11)
Y2(M, M) = n(E ® IR (TP © Iy), (12)

where R7' = R7Y(M, M). -
Proof: Follows immediately from the definition of the limits.

Remark. It is easy to verify that (since g = 0) the matrix (£ ® IW)I?;‘ does not depend
on i and so the matrices Y (M, M), k = 1,2 also do not depend on i.

In order to establish the stability condition along the lines of {1, 3], we first define the
matrix generating function Y(z) = Yy + Yiz+ Y28, 17 < 1.

When Y(1) is a reducible matrix with stochastic irreducible blocks, YP(1), 1 << L, of
its normal form and Y’(1) < oo, the Markov chain {&,}. is stable if the following conditions
are fulfilled (see [1, 3]):
dY®(z)

dz

where x; is the unique solution of the equations

X le<1, 1<ILL, (13)

YD =x,xe=11<I<L (14)

Now we are ready to establish the following theorem.

Theorem 1. The Markov chain (&) s stable.

Proof. In the case when ¢ > 0, from Lemma 2 we see that Y'(z) is equal to zero for any
z. So, condition in (13) always holds good.
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In the case when g = 0, it follows from {10)-(12) that the nonzero blocks of the matrix
generating function Y(z) are given by

EQly,r=m0<msM-1,
Y@,y ={ E®Lj,r=m+1,0<m<M-1, (15)
EIy + Y™ () r=m=M,

where the square matrix Y™ (z7) of order K is such that the only nonzero block entry
occurs in the last (N + 1YW rows which are given by

[ Owsnyixk-w-pw  R'A+Bz  R'C™z+ 2y ] .

where the diagonal (block) entries of the diagonal matrix R~ are the (¥ + 1)W diagonal
entries of the matrix fi’;", and the matrices A and B are defined by

A=iHY + WH?Y @ Iy, B = wyn(HY © 1),

Transforming the matrix Y(1) into the normal form (see, e.g., [4]), it is easy to verify that
the unmque irreducible (stochastic) block of this matrix is

Y“}(]) = R—lc}(;?') + Iﬁ; R_-INUQ
Iy Oy [}

where the diagonal entries of the diagonal matrix R~' are given by the last W diagonal
entries of the matrix R~
The corresponding block in the matrix Y(z) has the form:

RCY v RN ) _ ( RUD) - Nl + 2 RN )

Yo = ( I 0 7 0

where D(1) = Dy + Dy 1s the generator of the underlying MAP, {v;},.0. Denote by 0 the
stationary probability vector of D(1). This vector satisfies the system:

00(1)=0,0e=1. (16)

It can be verified that the vector x;, which is the solution of system (14), is calculated as
x; = 0 and consequently inequality (13) has the form:

0(-D(1) + Nalgde > 0,
and this, upon using (16), reduces to
N[J,g > 0,

which is always true. So, the Markov chain (£}, is always stable,
Remark. We formally proved the existence of the stationary distribution of the Markov
chain {§;},9. However, we can intuitively explain this existence. With respect to the primary
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customers the system is like a multi-server loss system in that an arriving (primary) customer
finding all servers is considered lost. With a certain probability a primary customer becomes
a secondary customer. When all secondary customers compete (the worst case scenario by
taking ¢ = 0) with primary customers for an additional service in the main system, the
system will be stable as these secondary customers will have a very high probability of
occupying a free (main) server once the number in self-service system becomes relatively
large.

The stationary distribution: First, we cnumerate the states of the Markov chain {&,},59
and the corresponding embedded chain, {E,},»o of section 2, in lexicographic order. Denote
by p = (pes 1, -+ +) and ®m = (7, |y, - - - ), respectively, the steady state probability vectors
of the Markov chains, {E},»o and (€} 0.

Looking at the relationship between {&},,, and {E;}»0, We observe that p is related to n
in the following way:

p;=2rR!, i20, (17

where the positive (finite) constant € is given by
e= () mR'e). (18)
=0

The calculation of the stationary vector m using AQTMC is discussed in [1, 3] and hence
we have the following theorem.
Theorem 2. The stationary probability vector & of embedded Markov chain (€ )0, is
calculated as follows:
n; = J'I:O(I’,',i >1, (19)

where the matrices ®, i > 1, are computed as
O =1, = [ [Pkl -Py iz, (20)
=1

and the matrices P;; are defined by
Poyy=Prylzt, Py=Pyu+ Py G120,
with the matrices G satisfy the following backward recursion:
G® = Prix + PiaG® + Py G¥OGY k> 0, (21)

and the vector Wy is the unique solution to the following system of linear equations:

mol - Poo) =0 and ugz Ope = 1. (22)
k=0

Note that the critical aspect of solving for the steady state probability vector = lies in the
evaluation of G* matrices using the recursion in (21). This evaluation can be accomplished
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(see for example, [1, 3]) by starting with a large k and setting G = G, where the matrix G
is a solution to the equation
G = Y(G). 23)

For the model under study, the solution of (23) is described in the following theorem.
Theorem 3. For the case when q > 0, the matrix G is calculated as

G=¥, ) (24)

where the matrix Y, is defined by formula (9).
For the case when q = 0, the matrix G has following structure:

_{ &
G= ( G» ). (25)
with Gy and G, calculated as
G = Y((,]), G, = [ Owenivxic-n-nw  — B+ C AEvi vy ], (26)

where the matrix Yé” is obtained from Y, by deleting the last (N + 1)W rows, and
B= BE yirivenyw-

Once the steady state vector @ is computed, we can use equations (17) and (18) to
evaluate p of the Markov chain (&} ..

Selected System Performance Measures: With the knowledge of the steady state
probability vector, p, we can compute a variety of system performance measures to study
the qualitative behavior of the model. Here we will list a few measures along with their
formulas. '

o The probability, P(&lzj, that a primary customer will be lost is calculated as

Pg.)u = A‘_l Z pi(IMH ® E @ Dl)e.
ey

o The probability, P,.s;, that an arbitrary self-service customer will enter into the orbit
1s calculated as N
Py = Z pi(FMH ® E ® IW)C,
i=1
where Fu.q is a square matrix of order M + 1 obtained from I, by replacing the
last diagonal entry with 0,
e The probability, P , that a secondary customer will be lost is calculated as

lass?

szs = QZP:(UMH ~Fr) 9 E® Ige.
i=1

o The probability, Py, that an arbitrary primary customer will get into a self-service
system is calculated as

Pos =n(1 - PO ).
o The rate (or throughput), v, of satisfied customers leaving the system is given by

v =M=~ PYy1-nP2).

loss
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