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TWO PARALLEL FINITE QUEUES WITH
SIMULTANEOUS SERVICES

AND MARKOVIAN ARRIVALS

S.R. CHAKRAVARTHY and S. THIAGARAJAN
GMI Engineering Management Institute

Department of Science and Mathematics, Flint, MI 850-898 USA

(Received May, 1996; Revised January, 1997)

In this paper, we consider a finite capacity single server queueing model
with two buffers, A and B, of sizes K and N respectively. Messages arrive
one at a time according to a Markovian arrival process. Messages that ar-

rive at buffer A are of a different type from the messages that arrive at
buffer B. Messages are processed according to the following rules: 1. When
buffer A(B) has a message and buffer B(A) is empty, then one message
from A(B) is processed by the server. 2. When both buffers, A and B, have
messages, then two.messages, one from A and one from B, are processed si-
multaneously by the server. The service times are assumed to be exponen-
tially distributed with parameters that may depend on the type of service.
This queueing model is studied as a Markov process with a large state
space and efficient algorithmic procedures for computing various system
performance measures are given. Some numerical examples are discussed.

Key words: Markov Chains, Markovian Arrival Process (MAP),
Renewal Process, Queues, Finite Capacity, Exponential Services and Algo-
rithmic Probability.

AMS subject classifications: 60K20, 60K25, 90B22, 60327, 60K05,
60K15.

1. Introduction

We consider a finite capacity single server queueing model with two buffers, say A
and B, of sizes K and N, respectively. Messages arrive one at a time according to a

Markovian arrival process (MAP). Messages that enter buffer A are possibly of a

different type from those entering buffer B and hence are processed differently by the
server. We shall refer to messages that arrive at buffer A(B) as type A(B) messages.
Messages that enter the two buffers are processed according to the following rules.

1This research was supported in part by Grant No. DMI-9313283 from the
National Science Foundation.
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a) When buffer A(B) has a message and buffer B(A) is empty, then one message
from A(B) gets processed by the server and the service time is assumed to be exponen-
tially distributed with parameter

b) When both buffers, A and B are not empty, then one type-A message and one

type B-message are processed simultaneously by the server and the service time is
assumed to be exponentially distributed with parameter #AB"

c) When the buffers are empty, the server waits for the first arrival of a message.
We mention some potential applications of our model.
1. In multi-task operating systems, tasks are usually classified according to their

characteristics, and separate queues serviced by different schedulers are maintained.
This approach is called multiple-queue scheduling. A task may be assigned to a speci-
fic queue on the basis of its attributes, which may be user or system supplied. In the
simplest case, the CPU is capable of supporting two active tasks (either user or sys-
tem supplied) simultaneously. If the CPU is busy with both user and system tasks,
then the service times (which can be assumed to be exponential with parameter /tAB
are different from the service times (which can be assumed to be exponential with
parameters #A or #B) when the CPU is running only one task from either of the
queues.

2. In communication systems, there are common transmission lines which trans-
mit messages from more than one data source. In the simplest case, a minimum of
two data sources, say A and B, may use a transmission line. If both data sources are

using the transmission line simultaneously, then the service times can be assumed to
be exponential with parameter #AB" Otherwise, if the channel is being used by only
one data source at a time, either A or B, then the service time by the channel can be
assumed to be exponential with parameter #A or #B, respectively.

3. In transportation systems, we may face the following situation. A factory
manufactures two different types of items, say IA and IB. IA and IB are transport-
ed by a truck to warehouses A and B respectively. Assume that the production of
items IA and IB occurs independently of each other. If, at any time, both items are
waiting to be transported, then the truck has to go to both warehouses A and B, and
the delivery times can be assumed to be exponentially distributed with parameter
#AB" If, however, only one type of item, either IA or IB, awaits transportation, then
the truck needs to go to either A or B and the delivery times can be assumed to be
exponentially distributed with parameter #A or #B, depending on the item to be
transported.

This paper is organized as follows. A brief description of the MAP is given in Sec-
tion 2. The Markov chain description of the model is presented in Section 3 and the
steady state analysis of the model is outlined in Section 4. Numerical examples are
presented in Section 5 and concluding remarks are given in Section 6.

2. Markovian Arrival Process

The MAP, a special class of tractable Markov renewal processes, is a rich class of
point processes that includes many well-known processes. One of the most significant
features of the MAP is the underlying Markovian structure and its ideal fit into the
context of the matrix-analytic solutions to stochastic models. Matrix-analytic
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methods were first introduced and studied by Neuts [3]. The MAP significantly
generalizes the Poisson processes but still keeps the tractability of the Poisson process-
es for modeling purposes. Furthermore, in many practical applications, notably in
communications, production and manufacturing engineering, the arrivals do not usual-
ly form a renewal process. So, MAP is a convenient tool which can be used to model
both renewal and nonrenewal arrivals. In addition, MAP is defined for both discrete
and continuous times, and also for single and group arrivals. Here we shall need only
the case of single arrivals in continuous time. For further details on MAP, the reader
is referred to Lucantoni [2] and Neuts [3].

The MAP with single arrivals in continuous time is described as follows. Let the
underlying Markov chain be irreducible and let Q- (qi, j) be the generator of this
Markov chain. At the end of a sojourn time in state i, which is exponentially distri-
buted with parameter "i > -qi, i, one of the followin events could occur: (i) an
arrival time of type A could occur with probability p. and the underlying Markov
chain is in state j with 1 < I and j < m; (ii) an arrival of type B could occur with
probability p/ and the underlying Markov chain is in state j with 1 < I and J m;
(iii) with probability rij the transition corresponds to no arrival and the state of the
Markov chain is j, where j : i. Note that the Markov chain can go from state to
only through an arrival. We define three matrices: C -(cij), DA -(diAj) and DB
dB "i, l<i<m and c j ,irij j i, l < j < m where d.A.=(ij), where ci, , 3

;iP, 1 <_ i, j <_ m, and where diBj 1iPiBj, 1 _< i, j _< m. We assume C to be a stable
matrix so that the inter-arrival times will be finite with probability one and the
arrival process will not terminate. The generator Q is then given by C + DA + DB.
Note that

m m m- p.A p.,,j+ ,,j+ ri, j 1. (1)
j=l 3=1 j=l,js/=i

Thus, the MAP for our model is described by three matrices, C, DA and DB
with C governing the transitions corresponding to no arrival, DA governing those cor-

responding to arrivals of type A and DB governing those corresponding to arrivals of
type B. If 7r is the unique (positive) stationary probability vector of the Markov pro-
cess with generator Q, then

7rQ 0 and 7re 1. (2)

The constants, )tA --7rDAe and )tB "-7rDBe referred to as the fundamental rates,
give the expected number of arrivals of type A and type B per unit of time respective-
ly, in the stationary version of the MAP.

3. Markov Chain Description of the Model

The queueing model outlined above can be studied as a Markov chain with
[m + 3m(N + 1)(K + 1)]2 states. The description of the states are given in Table 1.
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Table 1

State Description

(i,j,k,A)

(i,j,k,B)

(i,j,k, AB)

The system is idle.

There are type A messages and j type B messages
in their respective buffers. The phase of the arrival
process is k and the server is processing a message of
type A.

There are type A messages and j type B messages
in their respective buffers. The phase of the arrival
process is k and the server is processing a message of
type B.

There are type A messages and j type B messages
in their respective buffers. The phase of the arrival
process is k and the server is simultaneously
processing two message, one of type A and one of
type B.

The notation e(e’), will stand for a column (row) vector of l’s; ei(e) will stand
for a unit column (row) vector with 1 in the ith position and 0 elsewhere, I will repre-
sent an identity matrix of appropriate dimensions. The symbol (R) denotes the
Kronecker product of two matrices. Specifically L (R) M stands for the matrix made
up of the block LijM.

The generator Q* of the Markov process governing the system is given as follows.

C B0 0 0

B2 B1 A0 0 0

0 A2 A1 Ao 0 0

0 0 0

0 0

A2 A1 Ao
A2 A1 Ao
0 A2 A3

(3)

where

Bo e (R) Do,
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C1 I(R)DB 0

t2 C1 I (R) DB 0

0 It2 C1 I(R) DB 0

0 0 It2 C1

0 0

I(R)DB 0

C1 I(R)DB

#2 C1 +I(R)DB

B2 eI (R) (R) I,

I(R)D1

0 I@DA 0 0

0 I(R)DA 0

0 I(R)DA

C1 I(R)DB 0

0 C1 I(R)DB 0

0 0 C1 I(R)DB

C1 C1 4- I (R) DB

#3

0

0

0 0 0

/t3 0

0 /t3 0
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A3

CI+I@DA
0

0

0

I(R)DB 0

C1 + I @ DA I (R) DB 0

C1 + I (R) DA I (R) DB
0 C1 +I(R)(DA+DB)

Do-[DADBO], #-

#A 1 tZAI 0 0

#B C1 I (R) C A(#), A(#) 0 #BI 0

whereI<i<3#i ei (R) # (R) I,

4. Steady State Analysis

In this section we will derive expressions for the steady state probability vectors of
the number of type A and type B messages at an arbitrary time as well as at arrival
epochs.

4.1 The Steady State Probability Vector at an Arbitrary Time

The stationary probability vector x of the generator Q* is the unique solution of the
equations

xQ* o, xe- 1. (4)
In view of the high order of the matrix Q, it is essential that we use its special
structure to evaluate the components of x. We first partition x into vectors of
smaller dimensions as x-(x*,u(0),u(1),u(2),...,u(K)), where u(i)is partitioned as

u(i) (u0(i),ul(i),u2(i),ua(i),...,uN(i)), uj(i) is further partitioned as uj(i)
(v(i, j, A), v(i, j, B), v(i, j, AB)). The v vectors are of order m. The steady-state
equations can be rewritten as

:*c + u(O)B: O,

x*Bo + u(0)B1 + u(1)A2 0,

u(i-1)Ao + u(i)Al + u(i + l )A2-0,1<_i_<K-land
u(K- 1)Ao + u(K)A3 O.

By exploiting the special structure of Q*, the steady state equations in (5) can be
efficiently solved in terms of smaller matrices of order m using block Gauss-Siedel
iteration. For example, the first equation of (5) can be rewritten as

x* [#A(0, 0, A) + #B(0, 0, B) + #ABI(0, 0, AB)]( C) 1. (6)
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The rest of the required equations can be derived in a similar way and the details are
omitted.

4.2 Accuracy Check

The following intuitively obvious equation can be used as an accuracy check in the
numerical computation of x.

K N
x* + E E [u(i, j, A)+ u(i, j, B)+ u(i, j, AB)] 7r, (7)

i=0 j=O

where r is as given in equation (2).

4.3 The Stationary Queue Length at Arrivals

The joint stationary density of the number of messages in the queue, the type of
service and the phase of the arrival process at arrival epochs is determined in this
section. We denote the stationary probability vectors at an arriving point for type A
message as ZA, where zA (Z*A, ZA(O),ZA(1),...,ZA(K))and for message B as

where zB -(Z*B, ZB(O),ZB(1),...,zB(N)) respectively. These vectors can be expressed

as VzA and VzB vectors. These vectors are given by

and

* I__X*DA t,ZA(i,j,A) Au(i,j,A)DA,ZA-- hA
u (i,j,B) u(i,j,B)DA and uZA(i,j, AB) u(i,j, AB)DA

where l_<i_<K, I_<j_<N,

* --B uZB( ,A) -Bu(i, AzB X*DB, i, j j, )DB,

uZB(i, j,B) -Bu(i, j,B)DB, uZB(i, j, AB) Bu(i, j, AB)DB, (9)

where l_<i_<K, I<_j<_N.

4.4 Stationary Waiting Time Distribution of an Admitted Message of Type A or

Type B

Let y4(i,j) denote the steady state probability vector that an arriving type A
message finds type A messages and j type B messages and the server is busy with a

type r message, for r-A, B, AB with 0_<i_<K and 0<_j<_N. We define YA to
be the steady state probability vector that an arriving type A message finds the
system to be idle.

We can show that the waiting time is of phase type with representation (@A, LA)
of order K. Here @A and LA are given by

0A C(ZA(O),ZA(1),...,ZA(K- 1)), (10)

where the normalizing constant c is given by c- (1- ZA(K)e 1, and
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where

-(R)() o 0 0 0 0 0

Bo A1 0 0

0 B A2 0

0 0 0 Ai_ 1

0 0 0 B1

0 0 0 0

#A #A

B, x()- o

A 0

0 0 0

0 0 0

0 0 0

A 0 0

0 B1 AK

0 0

#B 0

0 #A

(11)

a()(R) o o o o
3@#(R)e 0 0 0 0

0 e3(R)#(R)e 0 0 0

0 0 e’3)#(R)e 0 0

0 0 0 e’3@@e 0

/()(R) o o o o
3)#I 0 0 0 0

0 e3(R)#(R)I 0 0 0

0 0 e3(R)#(R)I 0 0

0 0 0 e’3(R)#(R)1 0

and
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E1 E2

0

0 0 0 0 0

0 0 0

0 0 0

withe1- I (R) (C + DA) A(#) (R) I,E2 I (R) DB and E3-I(R)Q-A(#)(R)I.
The waiting time distribution of type B messages can be derived in a similar

manner, the details of which are omitted

4.5 Measures of System Performance

Once the steady state probability vector x has been computed, several interesting
system performance measures, useful in the interpretation of the physical behavior of
the model, may be derived. We list a number of such measures along with the
corresponding formulas needed in their derivation.

(a) The overflow probabilities of type A and type B messages.
The probability that an arriving message of type A or type B will find the buffer full
is given by

P(Overflow of type A messages)
N

A_a(,(K,j,A)+ ,(K,j,B)+ (K,j, AB))DAe (12)

P(Overflow of type B messages)
K

A1-B,_n(,(i,N,A)+ ,(i,N,B)+ ,(i,N, AB))DBe. (13)

(b) The throughput of the system
The throughput, 7, of the system is defined as the rate at which the messages leave
the system. It is given by

7 AA[1 P(Overflow of type A messages)]

+ ,kB[1- P(Overflow of type B messages)]. (14)

(c) The fractions of the time the server is busy with type A, type B and type
AB messages

We denote by PA or PB, respectively the proportion of time the server is serving a

message of type A or the proportion of time the server is serving a message of type B.
PAB is the proportion of time the server is serving messages of types A and B at the
same time.

K N K N

E ,(i, j, A)e, PB E E (i, j, B)e
j-o =o j =o

and
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K N

i=O j=O

(d) The fraction of time the server is idle
The fraction of the time the server is idle is given by x*e.

(e) The expected queue lengths of buffers A and B
The expected queue lengths of buffers A and B are given by

K N
E(Queue length of A) E E (v(i, j, A) + v(i, j, B) + u(i, j, AB))e

i--lj=l

(15)

and (16)N K
E(Queue length of B) E E (u(J’ i, A) + v(j, i, B) + u(j, i, AB))e.

i--lj=l

(f) The mean waiting time of A and B
The mean waiting times of message A and message B are given by (using Little’s

result)
Mean Waiting Time of A- Expected queue length of A

and AA(1 P{Overflow of A)} (17)
Expected queue length of B

Mean Waiting Time of B-
IB(1_ P{Overflow of B})"

5. Numerical Examples

We consider four different MAPs which have the same fundamental arrival rate at
10, but which are qualitatively different in the sense that they have different variance
and correlation structures. The arrival distributions of the four different MAPs are

given in Table 2 below.

Table 2: MAP Representation
MAP C D

1 -95.63539 0.00000 95.49759 0.13780

0.00000 -0.10585 0.01592 0.08993
2 5.45210 0.00000 0.81800 4.63410

0.00000 -163.56480 156.47670
Erlang of order 5 with rate 50 in each state

7.08810

4 -25.00000 0.00000 24.75000 0.25000

0.00000 -0.16556 0.16390 0.00166

We set K N 15, #A 4, and #B 6. For the type A and type B message
arrivals, we consider the MAPs listed in Table 2. We use the notation MAP_ij to
denote the case where type A arrivals occur according to MAP_/and type B arrivals
occur according to MAP_j. The performance measures- the throughput, the type A
and type B message loss probabilities, the idle probability of the server, the fraction
of time the server is busy with type r, r A,B and AB, messages, the mean queue
lengths of type A and type B messages and the mean waiting time of an admitted
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type A message- are plotted as functions of #AB in Figures 1-22.
The observations from these figures are summarized as follows.
[1] The type A and type B message loss probabilities appear to decrease as the

service rate AB increases for all MAP combinations. This characteristic is as is to
be expected. However, we find that the amount of decrease is more significant in the
cases where the arrival process for neither type-A nor type-B arrivals is a bursty one.
In other words, if either type-A or type-B arrivals are bursty, then increasing #AB
does not have much effect on the type-A or type-B message loss probabilities. In
addition, for any other combination of MAPs, these probabilities become close to zero
when the service rate I_tAB exceeds the larger of #A and #B"

[2] It is interesting to see how the message loss probability is affected significant-
ly when going from highly bursty to non-bursty type arrivals. For example, consider
the case where type B arrivals are governed by MAP_3. This MAP corresponds to
Erlang arrivals and hence arrivals are not bursty in nature. Suppose we compare the
type B loss probabilities when type A arrivals have (a) MAP_I and (b) MAP_2 re-
presentations. The graphs of the performance measures for those two cases can be
seen in Figure 3. For values of #AB --#A, type B loss probability is significantly
high for (b) compared to that for (a). For values of #AB > #S, there is no significant
difference. This can be explained as follows. The bursty nature of type A arrivals in
(a) leads to more services of type A alone as well as of type B alone, compared to
simultaneous services of type A and type B. On the other hand, for the case in (b),
both type A and type B arrive in a non-bursty manner and hence more simultaneous
services of type A and type B are performed. Since in the initial stages, #AB > #A
and ttAB > #B, the type B message loss probability is greater for case (b) than for
case (a). The same phenomenon occurs when the MAPs for type A and type B are
reversed (see Figure 2).

[3] There is a small increase in the idle probability of the server as #AB in-
creases. Also, for any fixed value of #AB’ the idle pro’bability is greater if any of the
arrival process is highly bursty. The phenomenon of high loss probability and high
idle probability for the same set of parameters seems to be a little contradictory ini-
tially. However, when we look at the arrival process that leads to this phenomenon,
we shall see that it is not contradictory at all. In the case when the arrivals are high-
ly bursty, we shall see intervals of low to moderate number of arrivals separated by
intervals of high number of arrivals. During the periods of high arrivals, the buffer
will be filled in quickly leading to high loss probability; and during the periods of low
to moderate number of arrivals, the server may clear the messages, which leads to
high idle probability. Note that this phenomenon occurs only when the arrivals are
bursty and not otherwise.

[4] The probability of the server being busy with a type A message alone (or
type B alone) increases as #AB increases. Correspondingly, the probability of the
server being busy with both type A and type B messages decreases. This is obvious
because #A and #B are fixed at 4 and 6 while #AB increases from 0.5 to 10. So, for
larger values of #AB, the server will take more time to service just type A alone or
type B alone, than to serve them together. Another point ot be noted is that, for
both MAP_31 and MAP_41 cases, the probability of the server being busy with type
A messages is significantly higher than the probability of the server being busy with
type B messages. This can be explained as follows. Since type B messages arrive in
a bursty manner, the server spends most of the time serving type A messages, and
not type B ones. At other times, the server is busy serving both types simultaneous-
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ly. It is also interesting to note that the probability that the server is busy with both
types of messages in service is higher when both types of arrivals have MAPs with
positive correlation.

[5] As is to be expected, the mean queue lengths of type A and type B messages
decrease as #AB increases. However, the decrease is less significant when any one of
the arrival processes is negatively correlated or is highly bursty in nature.

[6] The throughput for MAP combinations increases to a point as #AB is in-
creased. This is as is to be expected. But for very low values of #AB, we find that
the MAP combinations with negatively correlated arrival processes have smaller
throughput than positively correlated ones. However, as #AB increases, a crossover of
these plots takes place; and for a high value of/tAB the throughput is much higher
for processes that have zero or negative correlation.

[7] The mean waiting times of admitted type A and type B messages appear to
decrease when #AB increases, for all MAP combinations. In the case of low values of

#AB, we note the following interesting observation. When at least one of the types
has highly bursty arrivals, the mean waiting time of that type appears to be smaller
compared to other MAPs, for any fixed #AB" This again is due to the fact that, in
this case, the server will be less busy serving both types of messages simultaneously
compared to serving type A alone or type B alone. Since #AB is small (compared to

#A and #B), the server will take more time on the average to process both types
simultaneously. However, in this case the server is busy most of the time with either
type A or type B messages alone, which leads to a lower mean waiting time. When

#AB is large, the mean waiting time appears to be large for highly bursty arrival type
messages, which is again as is to be expected.

6. Variant of the Model-Group Services

The model can also be extend to include group services. Instead of serving messages
one at a time, the server can be modeled such that it is capable of serving n1
messages of type A, n2 messages of type B and n3 combinations of type A and type
B messages at the same time.
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