
Regis University
ePublications at Regis University

All Regis University Theses

Summer 2006

An Access Control Middleware Application
Gary W. Withrow
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Withrow, Gary W., "An Access Control Middleware Application" (2006). All Regis University Theses. 412.
https://epublications.regis.edu/theses/412

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217365275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/412?utm_source=epublications.regis.edu%2Ftheses%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

REGIS UNIVERSITY

SCHOOL FOR PROFESSIONAL STUDIES

MASTER OF SCIENCE
IN

COMPUTER INFORMATION SYSTEMS

An Access Control Middleware Application

Gary W. Withrow

June 12, 2006

Project Paper Revision/Change History Tracking

Version Submitted To Date Changes

Original Michael Busch 04/28/2006 Original submission

Revision #1 Cory Graham 05/14/2006

 Michael Busch

Revision #2 Cory Graham 05/21/2006 Grammar

 Michael Busch

Revision #3 Cory Graham 05/27/2006 Removed bulleted lists

 Michael Busch Corrected references

Final Version Cory Graham 06/12/2006

 Michael Busch

Abstract

Information in any modern organization is a very important topic. A

company’s information is arguably the single most important asset a company owns.

Loss or compromise of the corporate information assets can lead to serious financial

impact on a company’s bottom line. Currently most corporate information is stored

on network storage devices. These storage devices provide quick and easy access

to the information from anywhere in the world. These same storage devices can

also expose the information to its greatest vulnerability, attack by a hostile entity.

The current network security best practice calls for a strategy named ‘Defense in

Depth’. This strategy uses a series of defensive layers to secure the network and

the data it contains. There is a realization that no single defensive technology is one

hundred percent effective. Samples of external looking defenses include firewalls,

anti-virus gateways, proxy servers, virtual private networks (VPN), and complex

passwords. The design of these protective measures serves to protect the network

from attack by parties outside of the local area network. In additional to the external

defenses, there are also internal defense mechanisms as well. These include

locking the server room door, complex passwords, file encryption, network access

restrictions, and keeping the user database up to date.

One often overlooked technology when designing the network security

system is physical access to the company’s facilities. The goal of physical access

control is to manage who goes where within an organization and when they go

there. In addition, a physical access control system can provide physical intrusion

detection and notification to the appropriate security personnel. If a specific

individual is not within the facility, he/she should not be attempting to log in to the

network.

This project developed and demonstrated a non-typical approach to the

management architecture for a physical Access Control System (ACS). It examines

the minimum set of requirements necessary to manage an access control system as

well as focuses on using a user interface (UI) that a network administrator is familiar

with. It is felt that removing the “unknown and complex” interface normally

associated with physical access control software, companies will be more willing to

add this additional layer of defense to their network security design.

The project utilizes Microsoft® Active Directory (AD) as the primary user

interface. It also utilizes the Windows® event logging service to provide the user

with event and alarm messages in a human readable format. A data store

consisting of Microsoft SQL Server database dedicated to the management of the

hardware sub-system.

Table of Contents

1 Introduction 1
1.1 Problem Statement .. 1

1.1.1. Access Control System (ACS) Overview ..2
1.1.2. ACS and the Data Defense Strategy ..5

1.2 Review of Existing Situation... 5
1.3 How will this Project Address the Existing Situation.. 7
1.4 Goals of the Project ... 8
1.5 Barriers and/or Issues.. 8
1.6 Scope of the Project... 9

2 Project Research Methodology 10
2.1 Research Methods Used ... 10

3 Project Methodology 11
3.1 System Development Life-Cycle Model Followed ... 11
3.2 Conceptual Design Phase ... 11
3.3 Project Implementation Issues... 14

3.3.1. Modifications to Existing User Interfaces ..15
3.3.2. Microsoft Active Directory ...15
3.3.3. Windows Event Log Service ...16
3.3.4. Middleware Application Design Architecture ...16
3.3.5. Design Architecture...17
3.3.6. Implementation Language...19
3.3.7. C++ ...21
3.3.8. Java ..21
3.3.9. C# ...22
3.3.10. Implementation Language Summary ..23
3.3.11. Implementation Methodology ..23
3.3.12. Persistent Data Storage..24
3.3.13. Microsoft Active Directory ...25
3.3.14. Flat Files ...26
3.3.15. Database...26
3.3.16. Persistent Data Storage Summary..27
3.3.17. Design Tools ...27

3.4 Summary of the Project Implementation Issue Decisions 31

4 Project Detailed Design and Implementation 32
4.1 Introduction .. 32
4.2 Project Detailed Design Phase .. 33

4.2.1. User Interface Layer ...33
4.2.1.1 Overview...33
4.2.1.2 Users and User Groups ..34
4.2.1.3 Doors and Door Groups..34
4.2.1.4 Schedules ...34
4.2.1.5 Event Reporting ..35
4.2.2. Business Logic Layer..36
4.2.3. Communication Services Layer ..39
4.2.3.1 VertX Hardware System Interface...40
4.2.3.2 Microsoft Active Directory Interface ..41

4.2.3.3 Windows Event Log Interface ...42
4.2.3.4 XML Message Consumer Interface...42
4.2.3.5 Database Interface..43
4.2.4. Data Objects Layer ...44
4.2.4.1 Card Holder Object ...45
4.2.4.2 Door Object...46
4.2.4.3 Schedule Object..46
4.2.4.4 Door Group Object..47
4.2.4.5 Access Level Object ...47
4.2.4.6 Access Group Object ..48
4.2.4.7 Event Objects..48
4.2.4.8 Hardware Configuration Object...49

4.3 Detailed Database Design ... 49
4.3.1. Database Schema Design Process ..49
4.3.2. Factory Default Data ...50

5 Conclusions 51
5.1 Did the Project Meet Initial Expectations ... 51
5.2 Lessons Learned ... 51

5.2.1. N-Tier Architecture..52
5.2.2. Database Design ..53
5.2.3. C# ...54
5.2.4. Design Patterns ..54

5.3 What Would I Have Done Differently ... 54
5.4 Future Application Development.. 55

5.4.1. Where the Project Can Go..55
5.4.2. Active Directory Extensions ..55
5.4.3. Control Requirement...56
5.4.4. XML Message Service ..57
5.4.5. Database Extensions ..58

Table of Figures

Figure 1 - Conceptual Design ... 12
Figure 2 – VBScript to Add Card Number to an Active Directory User Object 16
Figure 3 - High Level Design .. 19
Figure 4 - Event Message Sequence Diagram... 29
Figure 5 - Application Use Cases ... 32
Figure 6 - Business Logic Layer Classes.. 37
Figure 7 – Communication Service Layer Class Relationships.. 39
Figure 8 - Data Layer Class Relationships ... 45

Access Control 1

1 Introduction

1.1 Problem Statement

Corporate information has immeasurable value to a company. Loss or

corruption of this information can lead to serious financial consequences for the

stockholders, employees, suppliers, and customers of the company. The need to

protect this information has become increasingly apparent to the executive boards

of most major corporations. The software industry has developed numerous

defense mechanisms to combat information loss. These include firewalls (both

software and hardware), anti-virus gateways, patch management applications, file

encryption techniques, and data backup solutions. No single defensive measure is

one hundred percent impenetrable. The SANS institute has recommended a

“Defense in Depth” strategy when designing and implementing the defense of

corporate information assets to mitigate the risks to corporate data (2005). To

accomplish this goal, the IT professional places a series of defensive mechanisms

around the company’s data storage and networks. The attacker must breach all of

the layers before the information is vulnerable. Each additional layer provides an

additional barrier to the information. However, each additional layer incurs costs

associated with the purchase, implementation, and maintenance of the product. In

addition, each layer can add additional bandwidth requirements to the network that

will influence the access speed of the data.

Access Control 2

A layer of defense that is often overlooked, particularly in small businesses

is an Access Control System (ACS). The primary function of the ACS restricts the

access of individuals to the facility and therefore the physical data network. The IT

professional uses this additional layer of protection to limit potential periods of

vulnerability. However, typical ACS applications are complex and the user must

address many details to keep the system effective.

Regular administration of the typical ACS package is often difficult. To an

over worked IT professional it is another job that may only get erratic attention or

be setup so everyone has access to all the areas of the company at any time.

This is not a very effective policy.

1.1.1. Access Control System (ACS) Overview

Who goes Where and When!

These words sum up the purpose of any access control system (ACS). To

accomplish its task successfully, an ACS usually has a physical component and a

software component. The design of these two components is typically uses a

proprietary protocol. Therefore, they will only work with each other.

The physical component of the ACS requires that control of each door

through some mechanism, usually electro-mechanical locks on doors, and/or door

position monitoring hardware. The next requirement of the ACS is the

identification of each user to the system. The accomplishment of this requirement

is through some mechanism, usually a card, keypad, or biometric reader.

Access Control 3

The establishment of the identity of the user is with a token (typically a card or key

fob), a Personal Identification Number (PIN), or a biometric identifier (iris,

fingerprint, or hand geometry). Each mode of identification will result in an

identification number that is unique to each user. The ACS evaluates the access

privileges of the user based on the following criteria: the assigned privileges, the

door, and the time of the presentation. Either the door is unlocked to allow the

user to enter or the door remains locked based on the result of the evaluation of

this set of criteria. The software component receives a report is made of the result

of the access decision through a messaging mechanism from the hardware. The

software component displays these messages to the system administrator.

Provisioning the system provides effective oversight and manageability.

The ACS software component organizes users and doors into groups and then

assigns the user privileges based on a schedule. Provisioning typically occurs in

two distinct phases. First, is the initial provisioning occurs when the hardware is

first in the facility. The second phase of provisioning is an ongoing process

throughout the life of the ACS system.

Initial provisioning includes the assignment of a physical address and a

name to each door in the system. It may also include setting of specific device

attributes in the system. There are both software and hardware attributes. An

example of a software attribute is the address of the host PC that will be controlling

or monitoring the system. An example of a hardware attribute might be the type of

switch installed on a specific door. Provisioning a typical access control system

will include several hundred of these attributes.

Access Control 4

The ongoing provisioning includes updating the card database when adding

a user to the system, removing a user from the system, or changing his/her

privileges in the system. These events can occur rarely or on a daily basis

depending on the size and complexity of the system and the granularity of the

control established by the system administrator. The design of the ACS software

component must provide an efficient interface in either extreme. Often systems

become overly complex in order to handle all of the potential scenarios that a

system must address.

In addition to providing oversight and provisioning, the ACS software

component must also provide methods for controlling various functions and

devices within the system (H. Knight, personal communication January 25, 2006).

A well-planned ACS system provides significant benefits to an organization.

First, it can provide convenience to users by allowing access without requiring

them to remove a key from a purse or pocket. At the same time, it will secure the

facility reducing the possibility of unwanted eyes wandering into a sensitive area.

Next, it can provide an easy to verify form of identification of employees,

contractors or guests by simply wearing the badge on the outside of the users

clothing. Next, it can save the property owner money by reducing the cost of

managing physical door locks and keys in a facility. Lost keys can add to up

significant cost and windows of vulnerability to a company. Next, it can provide

evidence of entry and exit through a log of user activity, showing when and where

a specific user has been as well as who used which door and when.

Access Control 5

However, ACS systems also have some drawbacks, these include a single

vendor providing both the hardware and software components. Typically, these

systems include a proprietary interface between the hardware and software. This

has locked the end user into a single vendor for life of the entire access control

system. If either the hardware or software becomes outdated, the owner must

replace the entire system. This also restricts the functionality available to that set

of functionality the system vendor has provided in the system.

Finally, the ACS software component may contain 20 or more screens with

numerous sub screens, presenting a very complex interface to the system

administrator. Often, the system administrator may only need to perform some

limited subset of the system functionality to achieve effect control. The system

complexity and steep learning curve inhibit the use of the system.

1.1.2. ACS and the Data Defense Strategy

Network connections are typically not accessible outside of a building.

Controlling the authorized access to a building limits the vulnerability of the

corporate network to attack from the inside. The attacker must first gain physical

access to the building and then access to a network connection.

1.2 Review of Existing Situation

ACS software is a very complex application. Most ACS applications have

hundreds of configurable parameters. This configurability leads to a complex user

interface consisting of as many as twenty screens with numerous options of each

Access Control 6

screen. Often, the administrator may only need to perform some limited subset of

the overall system functionality to achieve effective access control. The system

complexity and steep learning curve inhibits the use of the system.

The designs of all of the current access control systems on the market

include a high degree of coupling between the hardware system and the software

application using proprietary protocols. The current access control purchaser can

expect to use the same system for ten years before replacing it. As new ACS

requirements are recognized, the end user must modify their system to address

each new requirement. This assumes the system provider has also modified their

system to address the new requirements. There is often a delay in this

development effort while the vendor evaluates the market to ensure there is a wide

enough demand for the new functionality to justify the cost of development and

deployment. This delay exposes the user to some period of increased vulnerability

that the new functionality would address.

Typically, access control vendors tend to market their products to several

different market segments. These segments are divided by the feature set each

segment has determined are required to meet its specific access control needs.

These segments span the range from the centrally managed enterprise wide

installation to a single office installation managed by an off-site contracted service.

The ACS vendors include the complete suite of functionality even if the target

market segment does not require some features. This increases the complexity of

the software component of the system.

Access Control 7

1.3 How will this Project Address the Existing Situation

This project will demonstrate that a software vendor could write an access

control application with a familiar set of User Interface (UI) screens. The hardware

sub-system used in this project includes several hundred configurable parameters.

The system designers included this configurability to allow the adoption of the

hardware by as many different ACS vendors as possible. This configurability

includes a serious drawback; the system can be very complex to initially setup.

This configurability has allowed the adoption of this hardware platform by software

development partners that target their products to all segments of the ACS market.

This project addresses this issue by focusing on a single potential market

segment. With this restriction, the number of configurable parameters that the

installer or user needs to change is significantly reduced.

In addition, the design of the hardware’s software interface is an “open”

application programming interface (API). The corporate policy is to make the API

available to any software development partner that wishes to implement a software

product that will interface with the hardware. The software vendor does not need

to sell the hardware to qualify as a software partner. The intent is to provide as

much flexibility to the end user of the hardware as possible. The implication is that

a customer could change software vendors without changing the field hardware. A

situation that is not currently available with the current access control products.

Access Control 8

1.4 Goals of the Project

The goal of this project is develop a “familiar” user interface to an access

control system. Familiar means a minimum number of configuration screens and

familiar interface designs to provide the basic required functionality. The project

will use existing user interfaces wherever possible. If more than one option exists,

a preference will be toward an interface that is familiar to a typical Windows®

information technology (IT) professional.

There are several basic requirements for an access control system. First,

the user must be able to enter new users or change existing users in the system.

Second, the user must be able to monitor system activity. Which card user

accessed which door and when as well as the ability to monitor basic system

performance. Finally, the user should be able to add new schedules and very

rarely new doors to the system.

1.5 Barriers and/or Issues

A significant barrier to the successful completion of the project is to identify

an interface that will handle the users and doors of the company facilities. This

interface must be able to export new or changed data to another application in a

timely manner and in a standard format. In addition, this interface must be

extendable to include the identification number associated with each user and

handle the doors and door groups that will be required.

Access Control 9

There must also be a mechanism for reporting events to the user. These

events must be a human readable format, not cryptic numbers usually associated

with ACS messages. The IT administrator must be able to review these messages

when it is required. The system must provide an archival feature for these

messages for some time before deleting the message from the system.

A basis of acceptable system performance is the perceived speed at which

a user can gain access after adding the user to the system. The application must

meet the following arbitrary time constraint. A new user must be able to gain

access to a door within five seconds after adding the user to the system.

1.6 Scope of the Project

The scope of this project is limited to a demonstration of the key concepts

required to implement an access control application. These include the ability to

manage a cardholder and view events generated by the access control system.

These two features are two of the three primary functions a typical user will need

to perform on a regular basis (H. Knight, personal communication January 25,

2006). The first phase will not address the control functionality requirement; this

discussion of this requirement will be in the conclusion section.

The intention of this phase of the project is not to be a marketable version of

the application, nor is it to be a complete access control application. The author

acknowledges that there is functionality missing from this version. Addressing this

functionality must occur before the application would be a marketable product.

Access Control 10

2 Project Research Methodology

2.1 Research Methods Used

The hardware manufacturer conducted a series of investigations into the

currently available access control hardware and software systems. These

investigations consisted of reviews of company web sites, viewing demonstration

software and software demonstrations at trade shows. The company collected

and collated the information as market research for a new product development

effort. The company that funded the research effort views the information as

confidential so no further discussion of the specific information is included in this

document.

Because of the research however, it became apparent that no current ACS

vendor targeted the very small system user. These users would have one or two

doors that needed control as well as a very small number of cardholders (less than

100). The cost to the vendor of support for these users was a significant factor in

their decision not to address this segment of the market. The complexity of the

software application was the leading cause of the cost factor. The user would

need to call the support service due to infrequent use of the system. If the vendor

charged enough revenue to cover the cost of this service, the market price of the

product would be too high.

Access Control 11

3 Project Methodology

3.1 System Development Life-Cycle Model Followed

This project development methodology was a combination of the waterfall

and iterative software design methodologies. The team divided the project into the

following phases: conceptual design, detailed design, implementation, and then

evaluation. Within each of these phases, the team applied an iterative approach to

the tasks. The team would perform some amount of work and then review the

work before the performance of additional work. This methodology subdivided the

application into manageable pieces for a resource limited development team. The

following sections will address the different project phases.

3.2 Conceptual Design Phase

The original idea for the project developed from several years of

development work on a new hardware platform offering by HID Corporation. It

became obvious that the HID product would not gain acceptance in the market

until the software application developers wrote software that addressed this new

platform. The software application providers had made considerable investment

in the current hardware platforms and the cost to migrate was generally

prohibitive. From this came the idea of attempting to use any existing interface

mechanisms instead of writing new ones.

Access Control 12

The original conception of the application was similar to a “middleware”

application. Middleware applications typically connect two disparate systems.

These could be applications running on two different hardware platforms or two

different applications running on the same hardware platform. The middleware

application performs some type of translation to the data as it moves between the

two systems. This application fits that conceptual model.

Figure 1 - Conceptual Design

At this point, a search began for the potential interface applications.

For the small business, there are two operating systems on the market,

Windows and Linux. Although Linux may have several advantages over

Windows servers, in 2005 Windows is still the clear choice for most businesses

(DiDio). For several years, Microsoft has striven to present one look and feel to

Access Control 13

the computer user. This is most evident in the Microsoft Office suite of

applications. Microsoft has also encouraged third party application developers to

adopt a similar look and feel to their applications. The model used to develop the

controls in Visual Basic promotes this similar look and feel. The first time a user

interacts with a new application, the familiar look and feel reduces the users'

learning curve. This philosophy has served Microsoft well as indicated by their

market share numbers. The “familiar look and feel” was a significant factor

during the search for user interface mechanisms.

A review of the Microsoft literature indicated that Active Directory could be

“extended” to add new attributes to the object definitions (n.d.). Active Directory

already had the concept of users and resources (computers and printers) as well

as groups of users and resources. An access control system’s software

component uses the same concepts. The team decided to attempt to extend

Active Directory to meet the needs of the project.

The team next addressed the mechanism to view events. Two events

aided in the decision to use the existing Windows event log service. First, a

previous project had used the Windows event log service to record application

events and present to the user without the application itself providing this

function. It proved to be quick to implement and easy to use. Second, while

observing the network administrator troubleshoot a problem he first used the

same event service to review the messages from the suspect application. A brief

discussion revealed that he considered it a primary tool he used to administer the

network. These two things made the decision to use the Windows event log

Access Control 14

service an obvious one.

These two decisions addressed two of the three access control software

features. The third, control of the system, was not included in the phase of the

project. The section of this paper titled “Future Application Development”

addresses this item. At this point, it was time to consider the detailed design of the

application.

3.3 Project Implementation Issues

Before the project team could perform any of the detailed design work, the

team had to address several issues. First, there were several issues related to

the detailed design that needed to be resolved. The team must address several

issues before the implementation phase could begin.

The first set of issues that the team needed to address were, what

changes to Active Directory and the Windows event log service would be

required. Next, the team needed to address the implementation phase issues;

these included the design architecture, programming language, and

implementation methodology. Finally, the team needed to address the data

storage issue.

The detailed design broke the project into two distinct areas of

development. First was the design of any modifications to either of the two

existing UIs that were chosen and the second was the design of the middleware

application that would tie the existing UIs to the hardware sub-system.

Access Control 15

3.3.1. Modifications to Existing User Interfaces

The decision to use AD and the Windows event log service required an

analysis of each of them. The analysis focused on what, if any, modifications

each UI required before it was usable for the new purpose. The team examined

each of the UI mechanisms separately and a description of the results of these

examinations is in the next two of sections.

3.3.2. Microsoft Active Directory

Research revealed that is was straightforward to modify Microsoft’s

directory service, Active Directory, to add additional attributes to the existing

objects. This addressed the cardholder management requirement of the project.

There are three different techniques to make these modifications. Robbie Allen

lists the following three methods; first, is with a graphical user interface (GUI)

such as ADSI Edit, second, with a command line interface (CLI) such as the ds

utilities and, third through a scripting language such as VBScript (2003). The

design team decided that the scripting technique offered the solution that could

be migrated to a real product the easiest. The programmer created a series of

scripts that added the needed attributes to the user object in AD. For this project,

the script added a single attribute (Employee Card Number) to AD to

demonstrate the concept. Shown in Figure 2 is an example of the type of script

that the programmer created to add the attribute to the user object.

Access Control 16

Dim oemployeeCardNumber
Dim oUser3
Dim temp3
Set oemployeeCardNumber = Wscript.Arguments
Set oUser3 = GetObject(oemployeeCardNumber(0))
temp3 = InputBox("Employee-Card Number: " & oUser3.employeeCardNumber & _
 vbCRLF & vbCRLF & "If you would like enter a new number or modify
the existing number," & _
 " enter the new number in the textbox below")
if temp3 <> "" then oUser3.Put "employeeCardNumber",temp3
oUser3.SetInfo
Set oUser3 = Nothing
Set oemployeeCardNumber = Nothing
Set temp3 = Nothing
WScript.Quit

Figure 2 – VBScript to Add Card Number to an Active Directory User Object

3.3.3. Windows Event Log Service

The use of the Windows event log service did not require any modification.

The team decided to add two additional log files to separate out the routine event

messages and any events created because of the database resource. This

would serve to reduce the time the administrator would take to review the ACS

events. The programmer wrote two scripts in VBScript to create these two

additional files.

3.3.4. Middleware Application Design Architecture

The detailed design of the middleware application required several issues

be addressed, first the design architecture, second the language used to

implement the design and third the design implementation philosophy. These

three issues are common to any software development effort. In some

organizations, the design team makes a conscious decision about each issue. In

other organizations, the design team never specifically addresses these issues.

Access Control 17

This design team made the decision to address each issue after a thoughtful and

thorough research effort. A discussion of each of issue and the decision made is

in the following sections.

3.3.5. Design Architecture

The team examined two architecture options. First, simply no architecture

and second the N-tier architecture. The author had been involved in several

software development efforts that resulted in applications consisting of 50,000 plus

lines of code. The development teams delivered each of these projects over

budget, beyond the expected schedule, and in one case with a reduced feature

set. The author examined each project and realized that there had never been

any thought given to the architecture used in the design. The design was simply

the result of the implementation. Next, the team considered the N-tier architecture.

Using an N-Tier design approach has several significant advantages

according to Martin Fowler who states:

• “You can understand a single layer as a coherent whole without knowing

much about the other layers.

• You can substitute layers with alternate implementations of the same basic

services.

• You minimize dependencies between layers. Layers make good places for

standardization.

Access Control 18

• Once a layer is built it can be used for many higher-level services.” (2003)

The design team considered these stated advantages, several small applications

that were designed with the N-tier architecture and the lessons learned from the

previous application development efforts the author was involved in and decided

that utilization of the N-tier architecture would benefit the project and the

application design.

The design team subdivided the project into four significant layers, first the

user interface, second the business logic required, third the communication

services and finally the data objects required. Next, the team divided each layer

into the classes of objects that would implement each of the required features of

the system. Figure 3 - High Level Design reflects the layered architecture of the

application.

Access Control 19

Presentation Business

Service
Integration

Data or Domain

Figure 3 - High Level Design

3.3.6. Implementation Language

The next issue the team addressed was the programming language that

would be used during the implementation phase of the project. Programming

languages abound, certainly tens and probably hundreds of languages have been

developed and promoted in the industry throughout the years. The design of many

of these languages focused on very specific programming situations while the

target of others was as general-purpose languages. Many of these languages

would have been suitable for the implementation of this application. However, the

application should be robust, once completed. Rob Sjodin, a professor in the

Regis MSCIT program, described robustness as “a measure of how well the

Access Control 20

system addresses: availability, scalability, maintainability, adaptability, extensibility,

interoperability, understandability, usability/operability, reliability, manageability and

securability” (July & August 2005). The team considered each of these attributes

when it chose a programming language.

The language chosen will influence the robustness of the finished

application in several ways. First, the language needs to include all of the required

external interfaces, to a database, Active Directory and the event log service.

Second, because of the required external interfaces, it needs to provide error

handling and recovery. If these interfaces and error handling did not exist natively

in the language, the implementation team would need to implement them as part

of this project. This increased the coding effort and the risk of the project. Finally,

the language needs to promote a structured implementation.

The first consideration was whether to use a procedural language such as

Cobol, C or even Basic or an object-oriented (OO) language such as C++, Java®

or C#® (pronounced C Sharp). The team discarded a procedural language

because of their inherent lack of structure. An object-oriented (OO) programming

language was preferred for the following reasons: encapsulation, polymorphism

and inheritance, the three cornerstones of an OO language (Dr. D. Hart, personal

communication, September 2005). An application implemented with these

attributes will tend to be more robust than one that is not. The implementation of

any of these languages can be a very non-OO style if the developer does not use

the inherent features of the language. Regular reviews of the code with specific

Access Control 21

attention on the structure of the implemented code ensured that the team adhered

to OO model. The team examined each of these languages for its suitability for

this application and a discussion of each one is in the following sections.

3.3.7. C++

C++ was one of the early object-oriented languages. It included the

required interface mechanisms and error handling. C++ is an extension to the C

language with the added OO constructs. Because of this heritage, C++ includes

the ability to allocate and use memory directly, with it the responsibility to release

the memory when the application is finished using it. C++ also includes the ability

to use pointers and pointer arithmetic. These provide a very powerful mechanism

in the appropriate situation. However, it is very easy to abuse the power of

pointers and system crashes are the usual result. The team decided that neither

of these two features would be necessary for this application.

3.3.8. Java

Java does not include the memory handling requirements or the ability to

use pointers, as does C++. It is an OO language with a very structured class

hierarchy and it included all of the required interface mechanisms and error or

exception handling. One requirement of Java is to download and install the Java

Virtual Machine (JVM) from Sun Microsystems. The JVM is freely available and

there are versions that will run under the Windows operating system. Java will

also run on almost every other operating system currently in use. This project

targeted a Windows operating system. Therefore, the cross platform functionality

Access Control 22

was not a requirement. In all other respects, Java would have been a suitable

choice.

3.3.9. C#

Microsoft, as part of their new programming paradigm, recently introduced

the .NET framework and C# as a new programming language. The intent of the

.NET framework is to isolate one application from all of the others and very closely

monitor the use of system resources by the application. Microsoft refers to this

approach as “managed code” (Abrams, 2004). C# is fully an object-oriented

programming language with very strict class hierarchy and many Microsoft

implemented support classes (Robinson et al, 2003). It relies on garbage

collection to clean up unused memory, removing the responsibility from the

developer. The managed code aspect addresses the ability to reference un-

initialized memory by the application. Ferracchiati states, “.NET introduces

assemblies to replace the traditional DLL and COM components hosted in DLLs or

EXEs” (2001). Traditional DLLs have introduced many serious support issues

resulting one application’s installation rendering another application inoperable.

The industry has referred to this situation as DLL HELL for many years. Microsoft

introduced assemblies to address this issue. The team judged that these were

positives for the choice of C#. However, C# is a relatively new programming

language, introduced only in the last few years. The team judged this as neither a

positive nor a negative.

Access Control 23

3.3.10. Implementation Language Summary

After careful consideration of the design goals and system requirements,

the team made a decision to use C# as the language used to implement the

application. The team could have selected either of the other languages or even

one of the many not considered. However, one of the author’s personal goals was

to learn C#; therefore, the team selected C#. The next consideration was the

implementation methodology. The programmers would employ the methodology

during the implementation phase and it would have a significant impact on the

robustness of the finished application.

3.3.11. Implementation Methodology

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

formalized design patterns as an implementation strategy in a book in the early

1990s. Since they published their book, many other authors have referred to

these authors as the “Gang of Four” and have expanded on their original work

(Cooper, 2003). Other authors have expanded the original twenty-three patterns

addressed by the Gang of Four to include several hundred in the current literature

(Cooper, 2003).

Design patterns offer a structured way to address recurring needs in the

application development environment. This application presented several of the

programming situations directly addressed by design patterns including the

abstract factory pattern, the façade pattern, and the singleton pattern.

Access Control 24

The implementation of the design uses a series of design patterns. The

team did a careful analysis of each class to assess which design pattern best fit its

usage and implementation requirements. The implementation of each class

followed the identified design pattern. The sections that describe each object in

the various layers will also discuss the specific design pattern applied to each

class.

3.3.12. Persistent Data Storage

One design consideration was whether to include a persistent data store

within the application. One significant design requirement was that the formatting

of the event messages be in a human readable form when presented to the user.

The message needed to include the name of a cardholder and the name of the

door as part of the message presented to the user. The access control hardware

has no knowledge of the name of a cardholder or the name of the door, only the

cardholder number, or the doors hardware address. To the system user the

cardholder number or the hardware address has little meaning. There are

numerous examples of this type of data translation required in any access control

application. Additionally, each event message would need to be stored for

possible future use by the administrator. The system can generate hundreds of

events per day.

The VertX hardware platform-provisioning interface is an ASCII text file

interface (except two card data files). The host software must push down the

entire configuration file as a single unit. There is no mechanism to edit these files,

Access Control 25

at least through a host software interface, once they pushed to the hardware

platform. This type of interface requires that all the data required to form a

particular configuration file must be available at one time within the host

application.

The VertX hardware platform has over thirty configuration files that could

require configuration. These store information such as the host computer’s

address, the configuration of the doors and the readers associated with each door.

Most of these files are relatively static; however, several require changes as the

administrator changes a user’s access permissions. Of these files, the schedules

and access groups file will need regular updating.

These requirements lead to an investigation of various techniques to store

persistent data on the computer. The team considered several different options to

meet this data store requirement, this included Active Directory, a series of flat files

and a database. The following sections discuss each of the options and the issues

associated with each.

3.3.13. Microsoft Active Directory

First, the team considered Active Directory as a possible persistent data

store. The design called for AD as the user interface. Microsoft states in the Best

Practices discussion that, “The schema is neither a database nor a file system.

Don't treat it as such. It is better to place references in the directory that point to

other data stores than to use the directory for something for which it was not

designed” (n.d.). The design of AD, as a write once and read many type of data

Access Control 26

store precludes it from serving as the persistent data store for this application.

3.3.14. Flat Files

The team considered a series of flat files as another possible data store.

These offer the simplicity of implementation and ease of use. However, they do

not provide any referential integrity by themselves. Referential integrity is an

important consideration in the design goals. The implementation team would have

to build it into the application code. This added a level of effort and complexity to

the application, which the design team deemed to be undesirable.

3.3.15. Database

Finally, the team considered database as the data store. They provide a

proven and well-accepted means of storing data and with some of the new

functionality offered in modern programming languages they are almost as easy to

interface with as flat files. Databases inherently offer the required referential

integrity. Some databases are available free, Oracle 10g Personal Edition for

example. Others, much as Microsoft Access, are included in a suite of business

tools that nearly every company running the Windows operating system has

installed. In addition, it is common for a company to have standardized on a

specific database product for all of their corporate data storage needs. The design

team viewed the flexibility to use a number of different vendor’s database product

as a positive.

Access Control 27

3.3.16. Persistent Data Storage Summary

After careful consideration of the relevant issues, the team decided to store

persistent data used by the application in a database. Access to the data is via the

database interface class of the communication services layer isolating the

database interface from the rest of the code. The database design evolved after

an analysis of the data required by both the access control application’s user

interface as well as the data required by the hardware sub-system. The section

titled “Detailed Database design” addresses the specifics of the data base design.

3.3.17. Design Tools

Software systems easily grow to an unmanageable size. In addition, during

development, the software application requirements will change. The larger the

scope of the application the greater the potential that the application requirements

will change before the application finished much less deployed. The team

understood these problems and decided that a visualization tool would help

manage the project. The tools purpose would be to document and communicate

the project requirements to various audiences throughout the project life cycle.

There are numerous tools available to help manage the scope and design of a

software application. Software vendors target many of these tools at the large

enterprise type of project. These tools were not suitable for this project. The

Unified Modeling Language (UML) serves a means to effectively communicate

architecture and design details of a software development project. The

visualization tool chosen for this project was Microsoft Visio.

Access Control 28

The team used Visio to create the design documentation used to control the

project. These diagrams included use case diagrams, sequence diagrams, class

diagrams and entity relationship diagrams. Each type of diagram served to

represent a specific aspect of the project.

The first diagram created was a use case diagram. This diagram served to

identify the actors that would interact with the system and the processes each

actor would require from the system. Each identified unit of functionality or

process represented a single use case. The team developed several of the more

complex use cases into “fully developed” use cases. The work required to expand

each use cases served to identify and qualify the pre-conditions, stakeholders, flow

of events, exception conditions, and post-conditions of the system. Figure 5 -

Application Use Cases show the simple use case diagram developed during this

project.

After the team identified the use cases, the team developed a series of

sequence diagrams to document the flow of information to achieve a specific

purpose. They served to identify the public methods that would be required by the

various objects in the system. The code team used these diagrams during the

implementation phase of the project. The following is an example of one of the

sequence diagrams that the team developed. It documents the data flow when the

application receives an event message from the hardware sub-system.

Access Control 29

Figure 4 - Event Message Sequence Diagram

The sequence diagram proved to be the most useful to the development team

during both the design as well as the implementation phases of the project.

 During the design phase, the team developed a series of class diagrams

that documented the objects and the relationships between the objects within the

system. In addition to the relationships, the class diagrams also served to

document the attributes and methods, both public and private, of each object.

When the implementation phase started, these were the first diagrams that the

implementation team used to code the class definitions. The class diagrams are

included in the Project Detailed Design and Implementation section of the paper to

Access Control 30

illustrate the classes that compose each layer of the N-tier architecture used in the

project.

 The final diagram that the

team developed was an entity

relationship diagram (ERD).

The team used the ERD to

provide a diagrammatic

documentation of the tables,

attributes, relationships, and

constraints in the database.

This shows a small portion of

the ERD, the complete diagram

is included as Appendix 3 on

page Error! Bookmark not

defined.. Once the team designed the initial ERD, the team normalized the

design to remove any data integrity anomalies that might exist. Data anomalies

are the cause of referential integrity issues that can result in “bad or corrupt data”.

Corrupt data is not only valueless to a company it can actually cause serious

mistakes in judgment when used in the decision making process. Once this

diagram was developed, the team then converted it into the scripts that created the

database tables.

 A serious drawback of many of the UML tools is the complexity of the

application. The learning curve can be very steep for some of the tools. Visio

Access Control 31

proved to be a very straightforward and easy to use visualization tool. It proved to

be a good choice to document and design a project of this size.

3.4 Summary of the Project Implementation Issue Decisions

The design team made the following decisions regarding the detailed

design and implementation phases would use. First, Microsoft Active Directory

and the Windows event logging service would provide the system user interface.

The application’s detailed design would employ an N-tier architecture approach

using design patterns where appropriate. The implementation of the application

would use the C# programming language from Microsoft. The application would

include a database and the interface to the database is through a dedicated

interface class. The hardware interface is via a Dynamically Linked Library (DLL)

supplied by the hardware manufacturer and the application would employ a

hardware interface class. With these decisions made, the project was ready to

move to the detailed design phase.

Access Control 32

4 Project Detailed Design and Implementation

4.1 Introduction

One of the artifacts of the conceptual design phase was a series of “Use

Cases.” These use cases where the starting points of the detailed design

phase of the project.

Application Administrator

Access Control Middleware System

Configure System

Process Event
Messages

Update Hardware
Configuration

Update Card Holder
Configuration

Log System Messages

CRUD User

CRUD Door

CRUD Door Group

CRUD New Schedule

Subscribe to XML
Messages

Forward XML Message

*

*

*

*

*

*

*
*

* *
*

*

**

**

* **

*

**

Log In

«uses»

Windows
Event Logger

<<Actor>>

<<Actor>>

XML Consumers

1. T&A System
2. Video Monitoring
3. Building Services
 3.1 HVAC
 3.2 Lighting

Active
Directory

<<Actor>>

ACS
Hardware

<<Actor>>
«uses»

«uses»

CRUD Access Group

* *

Write File to VertX
«uses»

«uses»

«uses»

«uses»

*

*

DBFacade

1 1

Figure 5 - Application Use Cases

Access Control 33

4.2 Project Detailed Design Phase

The output of the design phase was a design composed of classes in

distinct layers. The implementation team implemented each set of classes

that comprised a layer as a separate scope of work. One of the stated

advantages of an N-tier design is the loose coupling between layers. This

served to demonstrate this advantage because a different team of

programmers could just as well have implemented each layer without

affecting the success of the project. The following sections discuss the

system architecture that was developed and implemented in the application.

4.2.1. User Interface Layer

4.2.1.1 Overview

The User Interface (UI) of the application provides the interface mechanism

between the user and the application. One of the primary design goals was to

implement a UI that was “familiar” to a Windows IT professional. During the

conceptual design phase, the design team had determined that Microsoft provided

two suitable interface mechanisms. Microsoft Active Directory and the Windows

event log service. The following sections describe the object concepts that the

user would be required to understand.

Access Control 34

4.2.1.2 Users and User Groups

The user and user groups in Active Directory correlate to users and groups

of users within an access control system. It was an obvious extension to add the

card number to the user attributes of Active Directory. The team accomplished this

with a script file that interfaced with the Active Directories Service Interface (ADSI).

The user concept is the ‘who’ of an access control decision.

4.2.1.3 Doors and Door Groups

Another central object in an access control system is the concept of a door

and a door group. The computer in Active Directory is similar but it was

determined that it is not close enough to be extended to represent a door. One of

the extensions to the project is to develop a series of scripts or a separate DLL that

will create a door object in Active Directory and define the required attributes to

reflect the configurable parameters of the door in an access control system. An

ACS uses the door concept to represent the ‘where’ of an access control decision.

4.2.1.4 Schedules

Active Directory included the concept of schedules. Schedules may be

associated with users, user groups, and computers within AD. Active Directory

exports the schedules to the application for use by the access control system.

This presented the user with a familiar concept that is often very complex in the

ACS software application. The ACS uses the schedule concept to identify the

‘when’ of an access control decision.

Access Control 35

4.2.1.5 Event Reporting

Network administrators use a built-in Windows event logging service to view

application, security, and system activity. The logging service is available under

the Control Panel, Administrative Tools, and Event Viewer options. Applications

running on the system can write events to the default application log or may extend

the event logger to include new log files used by a specific application. As an

application logs an event, it classifies them in one of three severity levels,

information, warning, or error. As the system presents events to the user, each

different type of event includes a different icon. This provides the user with a

method to easily to identify the different types of events. Windows event viewer

provides the ability to filter the events by event type.

This project extended the event log structure to include two additional log

files, the Access Control log, and the ACS-CreateDB log. An access control

system generates many events in the course of normal operation as well as

numerous events when an abnormal event occurs. The ACS application classifies

these different types of events into one of the three pre-defined classes of the

event log service. The ACS hardware platform also provides a mechanism to

define events into three classifications as well. Three event classifications is the

industry standard for event classification. The Windows provided event log service

included all the required functions of an event reporting system for an access

control system. This produced a nice fit between what the access control industry

expects and what this application delivers.

Access Control 36

Event messages include normal activity such as a user gaining access

through a door, updating the system time or when escorting a visitor through a

door. Abnormal activity such as the system denying a user access at a particular

door or a door remains open for an extended period. Finally, there are severe

events that need immediate attention. These may be an alarm generated by a

motion detector or a task in the access control system that restarts. Error!

Reference source not found.Appendix 2 shows a screen shot of each of the

different types of event messages generated by the system.

4.2.2. Business Logic Layer

The business logic statement of an Access Control System can be

summarized as the need to “control Who goes Where and When”. The hardware

platform utilized in this project contains the required logic to make these decisions.

This project provides a mechanism to configure the hardware’s configuration files

with the required data and provide a mechanism to update that data when

changes are required. Changes may be required when an employee is added or

leaves the company or when an employee’s work assignment changes. There

may also be changes to the physical layout of the facility that the ACS must reflect.

Access Control 37

Figure 6 - Business Logic Layer Classes

This project focused on the requirement to manage the changes to the ACS

hardware and only issue relevant changes. To accomplish this objective, a

database was included in the design. The hardware platform includes a database

in its design. It was determined that the time to query the hardware database each

time there is a potential change would take too much time and might actually

impact the performance of the access control system. This also requires that the

hardware be in constant communication with the host computer. This is not

always the case and is in fact, not required by the hardware system chosen. The

Active Directory application also includes a database, however Microsoft explicitly

describes it as a read many write once type of database. The intent is not to be a

repository of transactional data.

The database in this application is used for two purposes, first provide a

Access Control 38

backup of the data on the access control hardware, and second provide a fast

mechanism to validate any changes to the hardware based database. As the user

makes changes to users, doors and schedules in the Active Directory GUI, AD

forwards these changes to the application for further processing. AD forwards any

change to an object, many of these are not relevant to the access control system.

The middleware application must sort through all the changes and only pass the

relevant changes to the hardware sub-system.

The business logic makes the determination of the relevancy of any

changes forwarded to it. The application logs changes into the database and

forwards them to the hardware sub-system. This mechanism makes the

application database the backup data repository for the access control application.

The application designers intended it to run on a computer running on the network

and expected that the IT policy will include accurate and timely data backups of the

database contents.

One significant function of an ACS is to format an event message in a

human readable format. The business layer provides this functionality. Event

messages from the hardware system consist of a series of tokens that are abstract

representations of the information. These generally are integer values and not

readily understood by the system administrator.

Access Control 39

4.2.3. Communication Services Layer

The communication services layer implements the application’s interfaces

to other program units. This layer does not include the User Interface. This

application uses the following interfaces: hardware sub-system, Microsoft Active

Directory, Windows event logger, XML message consumers, and a database

interface. The implementation of each of these interfaces is as a class that

contains any required data members and the entire set of associated interface

functions.

Figure 7 – Communication Service Layer Class Relationships shows the relationship

between the interface layer classes.

+getService(in serviceName : int) : IService

Factory

Data

IService

+register() : bool
+rcvMsg(in newMsg : ADMessage)

-connected : bool = False
IDirectorySvc

+LogMsg(in msgPriority : int, in msgData : string) : bool

ILoggerSvc

+updateVertX(in msgData : string) : bool
+rcvMsg(in msgData : string) : bool
+connect(in macAddress : string) : bool
-updateVertX()

-macAddress : string
IHardwareSvc

+registerSubscriber(in subcriberData : object) : bool
+rcvMsg(in msgData : XMLEventMsg) : bool
-sendMsg()
-storeMsg(in msgData : XMLEventMsg) : bool
-retrieveMsg() : XMLEventMsg

-subscribers[] : object
IXMLConsumerSvc

+Connect() : bool
+getHardwareConfig() : HardwareConfiguration
+updateHardwareConfig(in newConfig : HardwareConfiguration) : bool
+getUserByID(in userID : int) : CardHolder
+addNewUser(in userData : CardHolder) : bool
+updateUser(in userData : CardHolder) : bool
+getDoorByID(in doorID : string) : Door
+addNewDoor(in doorData : Door) : bool
+updateDoor(in doorData : Door) : bool
+getScheduleByID(in scheduleID : int) : Schedule
+addNewSchedule(in scheduleData : Schedule) : bool
+updateSchedule(in newData : Schedule) : bool
+getAGByID(in agID : int) : AccessGroup
+addAG(in newData : AccessGroup) : bool
+getDGByID(in dgID : int) : DoorGroup
+addDG(in newData : DoorGroup) : bool
+addEventMsg(in newData : EventMessage) : bool
+getEventMsgByDate(in startDate : Date, in endDate : Date) : EventMessage

-connected : bool = False
IDataBaseSvc

+rcvMsg(in dataType : int, in newData : object) : bool
-processMsg()

-hardware : IHardwareSvc
IACSSvc

Figure 7 – Communication Service Layer Class Relationships

Access Control 40

The team implemented the communication services layer with a Factory

design pattern (Gamma, 1994). With this design, the factory returns an object of

type IService to the caller. The caller knows the exact type of the class so it can

then use the returned object appropriately. The Factory does not know the type or

capabilities of the object it creates. By using this design pattern, the

implementation team can extend the application to include additional behavior with

very little impact on the current application.

During the design phase, a review of the communications service classes

revealed that each class would always interface to one and only external object. In

1994, Eric Gamma stated that the intent of the singleton pattern is to “Ensure that

a class only has one instance, and provide a global point of access to it.” To

ensure that multiple instances did not attempt to access the same external

resource, it was a decided to implement each of the classes as a singleton. A

description of each different interface class is in the following sections.

4.2.3.1 VertX Hardware System Interface

This project utilizes access control hardware provided by the HID

Corporation of Irvine California. The manufacturer designed this system interface

as an “open” platform that a variety of ACS providers would use in their products.

The intent of the product design was to remove the dependency that currently

exists between the hardware and software elements of an access control system.

HID Corporation does not provide the software component of an access control

Access Control 41

system, only the hardware.

The interface to the hardware is through a Dynamically Linked Library (DLL)

provided by the hardware manufacturer. The DLL provides a “C style” function call

interface. This application implemented that interface in its design. The hardware

interface object acts as the single point of contact between this application and the

under-lying hardware system. This interface has proven to be robust and easy to

implement. As the hardware system interface changes any required changes are

isolated to this single class increasing the maintainability of the application.

This class provides a function call interface to the business logic layer that

handles all data translation and communication with the hardware. The class

provides functions to connect to the hardware, handle cardholder maintenance as

well as system configuration and to receive the event and alarm messages

generated by the system.

4.2.3.2 Microsoft Active Directory Interface

This interface class provides the communication channel between the

Active Directory application and the project’s business layer classes. It includes

the register function to notify Active Directory that this application is interested in

receiving messages. It also includes the receive message function that is passed

to Active Directory.

Access Control 42

4.2.3.3 Windows Event Log Interface

This class exposes a single function to the business layer, a receive

message function. When the class receives a message from the hardware it will

format and forward the message to the Windows event log service for storage and

retrieval by the system administrator. The system administrator may view the

messages at his/her convenience and the messages are stored for reference later.

4.2.3.4 XML Message Consumer Interface

Computer applications generate large amounts of data that other

applications may use. Data generated on one type of hardware or operating

system may not be usable on another hardware or operating system. The cause

of this interoperability situation is differing data types used in the application and a

multi byte number storage artifact referred to as Big or Little Endian (Verts, 1996).

The World Wide Web consortium (W3C) has adopted eXtensable Markup

Language (XML) as a standardized mechanism to address the problem of data

interoperability. Typically, a middleware application formats the data to match the

XML schema before transporting it between applications and computer systems.

XML transports the data in as string data in ASCII format. In this form, applications

running on different hardware or software can use the data.

XML has received a lot of publicity, not only in the technical press but also

in the popular press. A recent Google search returned 2.2 billion hits for the term

“XML.” Senior company management has read much of this press prompting

discussions about how XML can solve their particular problems. The access

Access Control 43

control industry’s management has also read this press and asked the same

questions of their technical staff.

Within the access control industry, there is an attempt to exchange data

with other building automation or enterprise applications. XML has been at the

forefront of the efforts to make access control generated data available to these

other applications. Unfortunately, there is has not been any effort by the industry

to adopt an XML standard and at this time, the industry has not even proposed an

XML ACS standard. This project includes the design of a proposed XML schema

for access control messages.

This class provides a simple XML interface to other applications. At this

time, the team has not demonstrated the class as there is no current consumers of

the data available. Appendix 1 on page 60 shows the XML Schema (XSD) for this

XML design.

4.2.3.5 Database Interface

The database within this application provides a store for persistent data.

The application replicates the configuration data that is stored on the hardware

sub-system to the database for redundancy as well as speed. The time to retrieve

data from the hardware is significantly longer than the time to retrieve data from a

database application. In addition, the data stored on the hardware is not stored in

a table format or in a normalized form. This increases the complexity of the logic

required to use the hardware as a data store.

Access Control 44

The data base interface class provides all of the required functionality to

connect to, store, and retrieve information from a database. This design provides

a single interface point for data storage and retrieval.

The database chosen for this application is Microsoft’s SQL Server. The

implementation of the class includes the required syntax for this database. If

another database is needed changes are only required in this class.

4.2.4. Data Objects Layer

The data objects or domain objects represent the “things” that exist in the

problem domain. The data object things are typically the nouns in the use cases.

When the implementation team implements these objects, they generally contain

data but little or no associated functionality. In application design, the application

creates and populates these objects in the communication services layer and then

passes them to the business logic layer. The business logic layer then uses the

data within each object as it processes the business logic.

An analysis of access control requirements revealed the following objects

are required to provide an adequate representation the problem domain:

cardholder, door, and a group of doors, access level, access group, a schedule,

and events. The implementation of each of these objects followed the Domain

Model design pattern (Fowler, 2003).

Figure 8 - Data Layer Class Relationships shows the relationships between the

various classes in the data layer.

Access Control 45

+NewCardHolder() : bool
+UpdateAccessGroup() : bool

-ID : int
-CardNumber : string
-Name : string

CardHolder

+NewDoor() : bool
+Operator=() : bool

-DoorID : byte
-Address : string
-Name : string

Door

+NewSchedule() : string
+Operator=() : bool

-ScheduleID : int
-OpenInterval() : string

Schedule

-MsgID : int
-MsgType : byte
-Priority : byte
-TaskID : byte
-MsgCode : int
-Date/Time : string
-msgTokens[] : string

EventMessage

-XMLData : string
XMLEventMsg

-HRData : string
HREventMsg

+UpdateInfo() : bool

-MAC_Address : string
-IPAddress : string
-HostName : string

HardwareConfiguration

*

1

1

0..1

+Operator=() : bool
+AddAccessGroup() : bool

AccessGroup

+Operator=()
-DoorGroupID : byte

DoorGroup

*
*

*

*

*1

+Convert() : XMLEventMsg

XMLEventConverter

+Convert() : HREventMsg

HREventConverter

26 different event types
each having different
parameters

These converter
classes work on the
event message and

generate XML and HR
Event Message Classes

+operater=() : bool
+date(in year : int = 2005, in month : int = 01, in day : int = 01)

-year : int = 2005
-month : int = 01
-day : int = 01

Date

Figure 8 - Data Layer Class Relationships

A discussion of each of these objects is in the following sections.

4.2.4.1 Card Holder Object

The cardholder represents the user of the system. The system

administrator grants access privileges to the cardholder object. An access

privilege consists of a door and time that the user has permission to use that door.

An associated card number identifies the cardholder to the system. The system

administrator assigns each cardholder a unique card number to accurately track

Access Control 46

the user’s use of the system. Each user is issued a token encoded into this token

is a card number. Through the card number user association, the application

generates reports the user’s activity or in-activity. The data included about a user

includes the user’s name, card number, associated access groups, and the status

of the cardholder (active or in active). Each of these data points represents data

that is required somewhere in the system.

4.2.4.2 Door Object

The door in an access control application represents the ‘where’ of the

system. It may represent either the physical portal used by the cardholder or an

area controlled by the portal. Within this application, a door represents the portal

used by the cardholder to gain access to physical resources. When the installer

installs hardware, he assigns each door a unique address to identify the door to

the system. When the user presents an access control token to the system, the

system uses the door address and card number to determine the cardholder

privileges at the specific door. The data included about a door includes the door

ID, door address, and door name.

4.2.4.3 Schedule Object

The schedule in an access control application represents the ‘when’ of the

system. A schedule defines the in and out periods. The in period (in-schedule)

defines when the resource is available and the out period (out-schedule) defines

when the resource is not available. When the user presents their token to the

system, the current time is associated with the card presentation event. The

Access Control 47

system uses this time and door ID when it determines if the door is unlocked or

not. A schedule includes a name, days of the week, holidays, and one or more

intervals for each day.

4.2.4.4 Door Group Object

To ease the burden of administering the system, the administrator groups

doors into door groups. It is common for several doors to serve similar purposes.

For example, at most facilities, the front, and back are commonly referred to the

“perimeter or outer doors” and the user would have the same rights to either of the

doors. These two doors would then be associated into a door group.

There are situations were the administrator decides to manage each door

individually. This application is able to deal with doors in this manner when

indicated by the administrator. A simple assignment of one door to a door group

provides this level of management control.

4.2.4.5 Access Level Object

An access level is the association of a door group with a schedule. The

system administrator will grant users privileges to doors with similar purposes

during the same time period. If a cardholder has permission to enter the facility

through the front door at 8:00 am then the cardholder would generally have the

same privilege at the rear door.

Access Control 48

4.2.4.6 Access Group Object

An access group is an association of one or more access levels. The

administrator assigns the cardholder object one or more access groups that

represent the accumulated access privileges granted to the specific cardholder.

4.2.4.7 Event Objects

Event Objects represent one single event that occurred with in the access

control application. When the system generates an event, the VertX hardware

prioritizes the event and then passes it up to the host application as an event

message. The application converts each of the event messages from the VertX to

an event class object. The application uses these objects to move data between

the different objects that use event data. These include the conversion classes

that generate the human readable message and the XML formatted message.

A review of the VertX event message structures revealed that there are

twenty-six different message structures. Each structure requires slightly different

processing. The implementation team implemented the event message objects

using an inheritance model to minimize the common data elements in each of the

classes. The design team identified a base or parent class that included the

common data elements and functions and each of the twenty-six separate event

classes then inherited that class. This approach reduces the code implementation

requirements, increasing the maintainability of the code. If a change is required to

one of the common functions, changes are limited to a single place in the

application. All of the child classes then inherit these changes.

Access Control 49

4.2.4.8 Hardware Configuration Object

The final domain object in the application holds the specific hardware

configuration parameters needed by the application. These include the MAC

address, IP address and the host name. The application uses these parameters

when communicating with the hardware platform.

4.3 Detailed Database Design

4.3.1. Database Schema Design Process

The design team used a multi-step process when designing the database

schema. First, the design team created a data dictionary with the data required by

the hardware configuration files and then the team created an Entity Relationship

Diagram (ERD). Next, the team added the data required to transform the event

messages into a human readable format to the ERD. A review of the XML

formatted message structure revealed that no additional data was required to

generate this type of message. The final step was a normalization of the data

using standard database practices. The target was third normal form. Third

normal form generally provides the best tradeoff between performance and data

redundancies or data anomalies (Rob and Coronel, 2004).

Once the ERD was completed, a series of SQL statements were generated

that would create the tables and with the referential integrity constraints required to

store and maintain the validity of the data. Finally, the team generated a series of

SQL statements that populated the tables with the “factory default” data that is

included with the hardware.

Access Control 50

The implementation team initially validated these SQL statements on an

Oracle 9i database. Next, the implementation team executed the same set of

statements on a Microsoft SQL Server database and a couple of minor changes

were required. These SQL statements are now capable of creating and populating

the required tables with either an Oracle or a SQL Server database. The team

could extend the application, with localized changes (to the database scripts and

the database interface class) to operate with other relational database

applications.

4.3.2. Factory Default Data

VertX hardware includes many configuration parameters that are set at the

factory. The installer or provisioner of the system does not need to change these

parameters to get a functioning access control system for most users. By

including the default data, an initial data load by the software is not required.

Additionally, distribution of the hardware could occur through the channels that are

currently in place, reducing the cost to the end user. The hardware is available

through a warehouse distribution system that makes it available to anyone

interested in deploying it.

Access Control 51

5 Conclusions

5.1 Did the Project Meet Initial Expectations

The project did meet the initial set of project goals. This included using

Active Directory as a user interface mechanism, using existing Windows

functionality to handle event reporting and to implement the application in C#

using an N-tier design approach.

The project design phase spanned several of the classes at Regis

University. The data base design occurred during the MSCD 600 and 610

courses; the initial software design occurred during MSCS 600 and then refined

during MSCS 630. The majority of the implementation phase occurred during

MSCS 680 and 682. This focused the classroom knowledge on a specific and

identifiable real world problem, aiding in assimilating the knowledge from the

classroom, and moving forward on the project.

5.2 Lessons Learned

Takuya Katayama, of the Japan Advanced Institute of Science and

Technology, in a presentation to the Tenth Asia-Pacific Software Engineering

Conference in 2003 stated:

It (software) has to change as its infrastructure has been changed. It

has to change as its functionality has to change. It has to change as

new algorithms are found which will increase its performance. There

are a lot of reasons why it has to change and only software that can

Access Control 52

stand for the change can survive.

To address this continual need for change, the design team utilized the N-tier

architecture, a database, design patterns, and C# in the design and

implementation of the application. A discussion of each of these decisions is in

detail in the following sections.

5.2.1. N-Tier Architecture

This design philosophy has proven to provide flexible implementation that is

changeable as the needs of the product change. One of the keys of managing the

expected changes is a design that lends itself to change. N-Tier Architecture has

proven itself modifiable as a project progresses with minimal impact of the rest of

the application.

Reflecting on the quote by Mr. Katayama, the N-tier architecture confines

many of these changes to a single layer. These changes might include a different

database implementation or a new communication protocol. To implement these

changes the team must only make changes to the technology layer class that

addresses that specific part of the overall system. If the stakeholders defined

different business rules or application functionality requirements, the team would

confine the changes to the business layer class that defines the application

functionality.

In a well-designed and implemented system, changes to any of these layers

Access Control 53

will not affect the implementation of the other layers; many times recompilation of

these other layers will not be required. This enables the software to change as the

needs of the users of the software change while minimizing the impact on the

system as a whole.

5.2.2. Database Design

 The implementation team has two choices when converting a data base

design to the actual implementation, the tables, and data in the tables. First, you

instantiate the tables in the data base with all of the required attribute fields. Next,

you “load” the data into the tables. Finally, you “turn on” the referential integrity

constraints and correct any errors reported by the Referential Database

Management System (RDMS).

 The second method involves creating the database tables with all of the

referential integrity constraints in place and then adding the data. This project

team chose to employ this option for several reasons. First, it reinforced the

referential relationships in the database design as the design evolved. Next,

because a script inserted the initial data, the implementation team modified the

script to comply with all of the constraint requirements. It is felt that this method

provided a deeper understanding of the impact of the referential integrity

constraints on the design.

Access Control 54

5.2.3. C#

One of the stated project goals was to implement this application in C# as

means to increasing the author’s knowledge of and skill with the language.

Previously the author’s primary skill set was limited to Visual Basic 6.0 with a

very limited exposure to C++. With this as a foundation, the migration to C#

proved to be a straightforward process. C# includes a wide range of built in

classes that abstract the underlying Windows API. Not only does this ease the

learning process it also provides a built-in mechanism to enhance program

reliability.

5.2.4. Design Patterns

The decision to attempt to evaluate each class and apply a design pattern to

implementation proved to be a very worthwhile exercise. This approach forced

the design team to design and review each class prior to the implementation of

the class. The modification of several of the class designs during the review

process saved valuable time during the implementation phase of the project. In

addition to the time saving the review process also tended to increase the

robustness of the over-all design of the application.

5.3 What Would I Have Done Differently

The one area that needed additional attention was the use of Active

Directory. The author believes that extensions to AD could include the concepts of

doors and access levels. The author needs to do further research and education

to utilize the extensibility and this should have done earlier in the project.

Access Control 55

5.4 Future Application Development

5.4.1. Where the Project Can Go

The next sections address specific extensions to the project. Included are

several changes to Active Directory, additional control functionality, XML message

changes, and finally changes to the database. Each of these would add

functionality that would enhance the application.

5.4.2. Active Directory Extensions

Active Directory is a Directory Service, meaning that it will authenticate a

log in and password from a user to grant access to system resources. A very

interesting extension to this project would be to add to the AD algorithm a check to

ensure the user has “badged in” to the access control system. This would require

that the ACS application pass back to AD all of the successful grant access

decision that are made. This message would include the date and time of the

access as well as the door where the access event occurred. Active Directory

would use this additional information when it made the decision to grant access to

other system resources. This enhancement would tie the access control decision

to granting of resource privileges providing further control of the network and the

data stored on the network.

Access Control 56

5.4.3. Control Requirement

The one required piece of functionality not addressed in this project is

control of the system. This includes the ability to open a door on command, reset

an alarm point, or lock a door. The VertX interface class includes the ability to

send the required commands; the missing piece is the user interface. One option

would implement a screen from within the application. This would require that the

implementation team design, implement and test a GUI. One of the design goals

was not to implement any new user screens. Another alternative that bears further

investigation is to extend Active Directory to include a screen that handles the user

input for this function. This would probably require that a DLL be created that

handled the screen and commands.

Another aspect that bears investigation is to extend Active Directory to

present the concept of a “door” to the user as simply another of the resources

managed by AD. This would require that some additional design work to identify

exactly which data be required to represent a door without including extraneous

data. This would also probably require the team develop an additional DLL.

The current implementation simply uses the schedules as defined with

Active Directory and forwarding them to the hardware. A better approach would

be to allow the creation of a separate access control schedule. Typically, these

would provide some additional time to allow the worker to arrive early and prepare

for the workday before they would actually have privileges on the network.

Finally, the current implementation does not provide a mechanism that

Access Control 57

allows the user to change the name of the various access control output points.

The design team defaulted these parameters to what it considered would work in

most situations. It also would require the hardware installer to wire the system in a

pre-defined way. Although this is practical for most installations, some the team

should do some additional investigation to achieve this flexibility.

5.4.4. XML Message Service

A significant advantage to newer access control applications is the ability to

“interface” with other applications running in the environment. The access control

industry considers an interface as the ability to receive some well-formatted data,

typically from a database system or outputting a message. An access control

application that is more than a few years old will not have the ability to either

import or export data.

The team could implement this service in several different ways including a

Windows message queue, in traditional client-server architecture or using

asynchronous messages. A complete solution would be an implementation all of

the identified methods providing the greatest interoperability of the application.

The first option would be to implement a Windows message queue. The

receiving application would have to implement a message interface to receive the

messages sent by the ACS. This has the advantage that the receiver does not

need to be on-line all of the time. The ACS would send the messages to the

queue were they would be stored until the receiving application came on-line.

When the receiver application comes on-line, the message queue forwards any

Access Control 58

stored messages to it.

The next option would be traditional client-server design. In this design, the

ACS application would be the client and send messages to the receiving

application. The receiving application would need to implement a server to listen

for the asynchronous messages from the ACS. The ACS system would need to

store undeliverable messages and forward them when the server was ready to

receive them.

Finally, the team could implement an asynchronous message scheme

through a callback mechanism. In this design, both the sender and receiver must

be on-line at the same time to transfer messages just like the client-server design.

The ACS would need to store undelivered messages. In addition, there could

potentially be a requirement that part of the receiver implementation include un-

managed code.

Each of these options has both advantages and disadvantages. The

design team would need to perform an analysis of each to provide the correct

solution of each potential user.

5.4.5. Database Extensions

There are many popular databases beyond Oracle and Microsoft SQL

Server. The team should test the ‘create and populate’ database scripts against

these other databases. In addition, the team would need to develop additional

database interface classes to interface with the database.

Access Control 59

A true low cost system could be implemented using Microsoft Access or

Oracle Personal Edition databases. In either case, the only cost to the user would

be the hardware and installation costs. This would be a very attractive option for

most companies employing 100 or fewer employees.

Access Control 60

	Regis University
	ePublications at Regis University
	Summer 2006

	An Access Control Middleware Application
	Gary W. Withrow
	Recommended Citation

	Access Control Middleware
	Abstract
	Table of Contents
	Table of Figures

	1 Introduction
	1.1 Problem Statement
	1.1.1. Access Control System (ACS) Overview
	1.1.2. ACS and the Data Defense Strategy

	1.2 Review of Existing Situation
	1.3 How will this Project Address the Existing Situation
	1.4 Goals of the Project
	1.5 Barriers and/or Issues
	1.6 Scope of the Project

	2 Project Research Methodology
	2.1 Research Methods Used

	3 Project Methodology
	3.1 System Development Life-Cycle Model Followed
	3.2 Conceptual Design Phase
	3.3 Project Implementation Issues
	3.3.1. Modifications to Existing User Interfaces
	3.3.2. Microsoft Active Directory
	3.3.3. Windows Event Log Service
	3.3.4. Middleware Application Design Architecture
	3.3.5. Design Architecture
	3.3.6. Implementation Language
	3.3.7. C++
	3.3.8. Java
	3.3.9. C#
	3.3.10. Implementation Language Summary
	3.3.11. Implementation Methodology
	3.3.12. Persistent Data Storage
	3.3.13. Microsoft Active Directory
	3.3.14. Flat Files
	3.3.15. Database
	3.3.16. Persistent Data Storage Summary
	3.3.17. Design Tools

	3.4 Summary of the Project Implementation Issue Decisions

	4 Project Detailed Design and Implementation
	4.1 Introduction
	4.2 Project Detailed Design Phase
	4.2.1. User Interface Layer
	4.2.1.1 Overview
	4.2.1.2 Users and User Groups
	4.2.1.3 Doors and Door Groups
	4.2.1.4 Schedules
	4.2.1.5 Event Reporting
	4.2.2. Business Logic Layer
	4.2.3. Communication Services Layer
	4.2.3.1 VertX Hardware System Interface
	4.2.3.2 Microsoft Active Directory Interface
	4.2.3.3 Windows Event Log Interface
	4.2.3.4 XML Message Consumer Interface
	4.2.3.5 Database Interface
	4.2.4. Data Objects Layer
	4.2.4.1 Card Holder Object
	4.2.4.2 Door Object
	4.2.4.3 Schedule Object
	4.2.4.4 Door Group Object
	4.2.4.5 Access Level Object
	4.2.4.6 Access Group Object
	4.2.4.7 Event Objects
	4.2.4.8 Hardware Configuration Object

	4.3 Detailed Database Design
	4.3.1. Database Schema Design Process
	4.3.2. Factory Default Data

	5 Conclusions
	5.1 Did the Project Meet Initial Expectations
	5.2 Lessons Learned
	5.2.1. N-Tier Architecture
	5.2.2. Database Design
	5.2.3. C#
	5.2.4. Design Patterns

	5.3 What Would I Have Done Differently
	5.4 Future Application Development
	5.4.1. Where the Project Can Go
	5.4.2. Active Directory Extensions
	5.4.3. Control Requirement
	5.4.4. XML Message Service
	5.4.5. Database Extensions

