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Abstract 

Information in any modern organization is a very important topic.  A 

company’s information is arguably the single most important asset a company owns.  

Loss or compromise of the corporate information assets can lead to serious financial 

impact on a company’s bottom line.  Currently most corporate information is stored 

on network storage devices.  These storage devices provide quick and easy access 

to the information from anywhere in the world.  These same storage devices can 

also expose the information to its greatest vulnerability, attack by a hostile entity.  

The current network security best practice calls for a strategy named ‘Defense in 

Depth’.  This strategy uses a series of defensive layers to secure the network and 

the data it contains.  There is a realization that no single defensive technology is one 

hundred percent effective.  Samples of external looking defenses include firewalls, 

anti-virus gateways, proxy servers, virtual private networks (VPN), and complex 

passwords.  The design of these protective measures serves to protect the network 

from attack by parties outside of the local area network.  In additional to the external 

defenses, there are also internal defense mechanisms as well.  These include 

locking the server room door, complex passwords, file encryption, network access 

restrictions, and keeping the user database up to date. 

One often overlooked technology when designing the network security 

system is physical access to the company’s facilities.  The goal of physical access 

control is to manage who goes where within an organization and when they go 

there.  In addition, a physical access control system can provide physical intrusion 

detection and notification to the appropriate security personnel.  If a specific 

 

 



individual is not within the facility, he/she should not be attempting to log in to the 

network. 

This project developed and demonstrated a non-typical approach to the 

management architecture for a physical Access Control System (ACS).  It examines 

the minimum set of requirements necessary to manage an access control system as 

well as focuses on using a user interface (UI) that a network administrator is familiar 

with.  It is felt that removing the “unknown and complex” interface normally 

associated with physical access control software, companies will be more willing to 

add this additional layer of defense to their network security design. 

The project utilizes Microsoft® Active Directory (AD) as the primary user 

interface.  It also utilizes the Windows® event logging service to provide the user 

with event and alarm messages in a human readable format.  A data store 

consisting of Microsoft SQL Server database dedicated to the management of the 

hardware sub-system.  
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1 Introduction 

1.1 Problem Statement 

Corporate information has immeasurable value to a company.  Loss or 

corruption of this information can lead to serious financial consequences for the 

stockholders, employees, suppliers, and customers of the company.  The need to 

protect this information has become increasingly apparent to the executive boards 

of most major corporations.  The software industry has developed numerous 

defense mechanisms to combat information loss.  These include firewalls (both 

software and hardware), anti-virus gateways, patch management applications, file 

encryption techniques, and data backup solutions.  No single defensive measure is 

one hundred percent impenetrable.  The SANS institute has recommended a 

“Defense in Depth” strategy when designing and implementing the defense of 

corporate information assets to mitigate the risks to corporate data (2005).  To 

accomplish this goal, the IT professional places a series of defensive mechanisms 

around the company’s data storage and networks.  The attacker must breach all of 

the layers before the information is vulnerable.  Each additional layer provides an 

additional barrier to the information.  However, each additional layer incurs costs 

associated with the purchase, implementation, and maintenance of the product.  In 

addition, each layer can add additional bandwidth requirements to the network that 

will influence the access speed of the data. 
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A layer of defense that is often overlooked, particularly in small businesses 

is an Access Control System (ACS).  The primary function of the ACS restricts the 

access of individuals to the facility and therefore the physical data network.  The IT 

professional uses this additional layer of protection to limit potential periods of 

vulnerability.  However, typical ACS applications are complex and the user must 

address many details to keep the system effective. 

Regular administration of the typical ACS package is often difficult.  To an 

over worked IT professional it is another job that may only get erratic attention or 

be setup so everyone has access to all the areas of the company at any time.  

This is not a very effective policy. 

1.1.1. Access Control System (ACS) Overview 

Who goes Where and When! 

These words sum up the purpose of any access control system (ACS).  To 

accomplish its task successfully, an ACS usually has a physical component and a 

software component.  The design of these two components is typically uses a 

proprietary protocol.  Therefore, they will only work with each other. 

The physical component of the ACS requires that control of each door 

through some mechanism, usually electro-mechanical locks on doors, and/or door 

position monitoring hardware.  The next requirement of the ACS is the 

identification of each user to the system.  The accomplishment of this requirement 

is through some mechanism, usually a card, keypad, or biometric reader.   
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The establishment of the identity of the user is with a token (typically a card or key 

fob), a Personal Identification Number (PIN), or a biometric identifier (iris, 

fingerprint, or hand geometry).  Each mode of identification will result in an 

identification number that is unique to each user.  The ACS evaluates the access 

privileges of the user based on the following criteria: the assigned privileges, the 

door, and the time of the presentation.  Either the door is unlocked to allow the 

user to enter or the door remains locked based on the result of the evaluation of 

this set of criteria.  The software component receives a report is made of the result 

of the access decision through a messaging mechanism from the hardware.  The 

software component displays these messages to the system administrator.  

Provisioning the system provides effective oversight and manageability.  

The ACS software component organizes users and doors into groups and then 

assigns the user privileges based on a schedule.  Provisioning typically occurs in 

two distinct phases.  First, is the initial provisioning occurs when the hardware is 

first in the facility.  The second phase of provisioning is an ongoing process 

throughout the life of the ACS system. 

Initial provisioning includes the assignment of a physical address and a 

name to each door in the system.  It may also include setting of specific device 

attributes in the system.  There are both software and hardware attributes.  An 

example of a software attribute is the address of the host PC that will be controlling 

or monitoring the system.  An example of a hardware attribute might be the type of 

switch installed on a specific door.  Provisioning a typical access control system 

will include several hundred of these attributes. 
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The ongoing provisioning includes updating the card database when adding 

a user to the system, removing a user from the system, or changing his/her 

privileges in the system.  These events can occur rarely or on a daily basis 

depending on the size and complexity of the system and the granularity of the 

control established by the system administrator.  The design of the ACS software 

component must provide an efficient interface in either extreme.  Often systems 

become overly complex in order to handle all of the potential scenarios that a 

system must address. 

In addition to providing oversight and provisioning, the ACS software 

component must also provide methods for controlling various functions and 

devices within the system (H. Knight, personal communication January 25, 2006).  

A well-planned ACS system provides significant benefits to an organization.  

First, it can provide convenience to users by allowing access without requiring 

them to remove a key from a purse or pocket.  At the same time, it will secure the 

facility reducing the possibility of unwanted eyes wandering into a sensitive area.  

Next, it can provide an easy to verify form of identification of employees, 

contractors or guests by simply wearing the badge on the outside of the users 

clothing.  Next, it can save the property owner money by reducing the cost of 

managing physical door locks and keys in a facility.  Lost keys can add to up 

significant cost and windows of vulnerability to a company.  Next, it can provide 

evidence of entry and exit through a log of user activity, showing when and where 

a specific user has been as well as who used which door and when. 
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However, ACS systems also have some drawbacks, these include a single 

vendor providing both the hardware and software components.  Typically, these 

systems include a proprietary interface between the hardware and software.  This 

has locked the end user into a single vendor for life of the entire access control 

system.  If either the hardware or software becomes outdated, the owner must 

replace the entire system.  This also restricts the functionality available to that set 

of functionality the system vendor has provided in the system. 

Finally, the ACS software component may contain 20 or more screens with 

numerous sub screens, presenting a very complex interface to the system 

administrator.  Often, the system administrator may only need to perform some 

limited subset of the system functionality to achieve effect control.  The system 

complexity and steep learning curve inhibit the use of the system. 

1.1.2. ACS and the Data Defense Strategy 

Network connections are typically not accessible outside of a building.  

Controlling the authorized access to a building limits the vulnerability of the 

corporate network to attack from the inside.  The attacker must first gain physical 

access to the building and then access to a network connection. 

1.2 Review of Existing Situation 

ACS software is a very complex application.  Most ACS applications have 

hundreds of configurable parameters.  This configurability leads to a complex user 

interface consisting of as many as twenty screens with numerous options of each 

 

 



Access Control  6 

screen.  Often, the administrator may only need to perform some limited subset of 

the overall system functionality to achieve effective access control.  The system 

complexity and steep learning curve inhibits the use of the system. 

The designs of all of the current access control systems on the market 

include a high degree of coupling between the hardware system and the software 

application using proprietary protocols.  The current access control purchaser can 

expect to use the same system for ten years before replacing it.  As new ACS 

requirements are recognized, the end user must modify their system to address 

each new requirement.  This assumes the system provider has also modified their 

system to address the new requirements.  There is often a delay in this 

development effort while the vendor evaluates the market to ensure there is a wide 

enough demand for the new functionality to justify the cost of development and 

deployment.  This delay exposes the user to some period of increased vulnerability 

that the new functionality would address. 

Typically, access control vendors tend to market their products to several 

different market segments.  These segments are divided by the feature set each 

segment has determined are required to meet its specific access control needs.  

These segments span the range from the centrally managed enterprise wide 

installation to a single office installation managed by an off-site contracted service.  

The ACS vendors include the complete suite of functionality even if the target 

market segment does not require some features.  This increases the complexity of 

the software component of the system. 
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1.3 How will this Project Address the Existing Situation 

This project will demonstrate that a software vendor could write an access 

control application with a familiar set of User Interface (UI) screens.  The hardware 

sub-system used in this project includes several hundred configurable parameters.  

The system designers included this configurability to allow the adoption of the 

hardware by as many different ACS vendors as possible.  This configurability 

includes a serious drawback; the system can be very complex to initially setup.  

This configurability has allowed the adoption of this hardware platform by software 

development partners that target their products to all segments of the ACS market.  

This project addresses this issue by focusing on a single potential market 

segment.  With this restriction, the number of configurable parameters that the 

installer or user needs to change is significantly reduced. 

In addition, the design of the hardware’s software interface is an “open” 

application programming interface (API).  The corporate policy is to make the API 

available to any software development partner that wishes to implement a software 

product that will interface with the hardware.  The software vendor does not need 

to sell the hardware to qualify as a software partner.  The intent is to provide as 

much flexibility to the end user of the hardware as possible.  The implication is that 

a customer could change software vendors without changing the field hardware.  A 

situation that is not currently available with the current access control products. 
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1.4 Goals of the Project 

The goal of this project is develop a “familiar” user interface to an access 

control system.  Familiar means a minimum number of configuration screens and 

familiar interface designs to provide the basic required functionality.  The project 

will use existing user interfaces wherever possible.  If more than one option exists, 

a preference will be toward an interface that is familiar to a typical Windows® 

information technology (IT) professional. 

There are several basic requirements for an access control system.  First, 

the user must be able to enter new users or change existing users in the system.  

Second, the user must be able to monitor system activity.  Which card user 

accessed which door and when as well as the ability to monitor basic system 

performance.  Finally, the user should be able to add new schedules and very 

rarely new doors to the system. 

1.5 Barriers and/or Issues 

A significant barrier to the successful completion of the project is to identify 

an interface that will handle the users and doors of the company facilities.  This 

interface must be able to export new or changed data to another application in a 

timely manner and in a standard format.  In addition, this interface must be 

extendable to include the identification number associated with each user and 

handle the doors and door groups that will be required.
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There must also be a mechanism for reporting events to the user.  These 

events must be a human readable format, not cryptic numbers usually associated 

with ACS messages.  The IT administrator must be able to review these messages 

when it is required.  The system must provide an archival feature for these 

messages for some time before deleting the message from the system. 

A basis of acceptable system performance is the perceived speed at which 

a user can gain access after adding the user to the system.  The application must 

meet the following arbitrary time constraint.  A new user must be able to gain 

access to a door within five seconds after adding the user to the system. 

1.6 Scope of the Project 

The scope of this project is limited to a demonstration of the key concepts 

required to implement an access control application.  These include the ability to 

manage a cardholder and view events generated by the access control system.  

These two features are two of the three primary functions a typical user will need 

to perform on a regular basis (H. Knight, personal communication January 25, 

2006).  The first phase will not address the control functionality requirement; this 

discussion of this requirement will be in the conclusion section. 

The intention of this phase of the project is not to be a marketable version of 

the application, nor is it to be a complete access control application.  The author 

acknowledges that there is functionality missing from this version.  Addressing this 

functionality must occur before the application would be a marketable product.
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2 Project Research Methodology 

2.1 Research Methods Used 

The hardware manufacturer conducted a series of investigations into the 

currently available access control hardware and software systems.  These 

investigations consisted of reviews of company web sites, viewing demonstration 

software and software demonstrations at trade shows.  The company collected 

and collated the information as market research for a new product development 

effort.  The company that funded the research effort views the information as 

confidential so no further discussion of the specific information is included in this 

document. 

Because of the research however, it became apparent that no current ACS 

vendor targeted the very small system user.  These users would have one or two 

doors that needed control as well as a very small number of cardholders (less than 

100).  The cost to the vendor of support for these users was a significant factor in 

their decision not to address this segment of the market.  The complexity of the 

software application was the leading cause of the cost factor.  The user would 

need to call the support service due to infrequent use of the system.  If the vendor 

charged enough revenue to cover the cost of this service, the market price of the 

product would be too high.
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3 Project Methodology 

3.1 System Development Life-Cycle Model Followed 

This project development methodology was a combination of the waterfall 

and iterative software design methodologies.  The team divided the project into the 

following phases: conceptual design, detailed design, implementation, and then 

evaluation.  Within each of these phases, the team applied an iterative approach to 

the tasks.  The team would perform some amount of work and then review the 

work before the performance of additional work.  This methodology subdivided the 

application into manageable pieces for a resource limited development team.  The 

following sections will address the different project phases.  

3.2 Conceptual Design Phase 

The original idea for the project developed from several years of 

development work on a new hardware platform offering by HID Corporation.  It 

became obvious that the HID product would not gain acceptance in the market 

until the software application developers wrote software that addressed this new 

platform.  The software application providers had made considerable investment 

in the current hardware platforms and the cost to migrate was generally 

prohibitive.  From this came the idea of attempting to use any existing interface 

mechanisms instead of writing new ones.  
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The original conception of the application was similar to a “middleware” 

application.  Middleware applications typically connect two disparate systems.  

These could be applications running on two different hardware platforms or two 

different applications running on the same hardware platform.  The middleware 

application performs some type of translation to the data as it moves between the 

two systems.  This application fits that conceptual model. 

 

Figure 1 - Conceptual Design 

At this point, a search began for the potential interface applications.   

For the small business, there are two operating systems on the market, 

Windows and Linux.  Although Linux may have several advantages over 

Windows servers, in 2005 Windows is still the clear choice for most businesses 

(DiDio).  For several years, Microsoft has striven to present one look and feel to 

 

 



Access Control  13 

the computer user.  This is most evident in the Microsoft Office suite of 

applications.  Microsoft has also encouraged third party application developers to 

adopt a similar look and feel to their applications.  The model used to develop the 

controls in Visual Basic promotes this similar look and feel.  The first time a user 

interacts with a new application, the familiar look and feel reduces the users' 

learning curve.  This philosophy has served Microsoft well as indicated by their 

market share numbers.  The “familiar look and feel” was a significant factor 

during the search for user interface mechanisms. 

A review of the Microsoft literature indicated that Active Directory could be 

“extended” to add new attributes to the object definitions (n.d.).  Active Directory 

already had the concept of users and resources (computers and printers) as well 

as groups of users and resources.  An access control system’s software 

component uses the same concepts.  The team decided to attempt to extend 

Active Directory to meet the needs of the project. 

The team next addressed the mechanism to view events.  Two events 

aided in the decision to use the existing Windows event log service.  First, a 

previous project had used the Windows event log service to record application 

events and present to the user without the application itself providing this 

function.  It proved to be quick to implement and easy to use.  Second, while 

observing the network administrator troubleshoot a problem he first used the 

same event service to review the messages from the suspect application.  A brief 

discussion revealed that he considered it a primary tool he used to administer the 

network.  These two things made the decision to use the Windows event log 
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service an obvious one. 

These two decisions addressed two of the three access control software 

features.  The third, control of the system, was not included in the phase of the 

project.  The section of this paper titled “Future Application Development” 

addresses this item.  At this point, it was time to consider the detailed design of the 

application. 

3.3 Project Implementation Issues 

Before the project team could perform any of the detailed design work, the 

team had to address several issues.  First, there were several issues related to 

the detailed design that needed to be resolved.  The team must address several 

issues before the implementation phase could begin. 

The first set of issues that the team needed to address were, what 

changes to Active Directory and the Windows event log service would be 

required.  Next, the team needed to address the implementation phase issues; 

these included the design architecture, programming language, and 

implementation methodology.  Finally, the team needed to address the data 

storage issue. 

The detailed design broke the project into two distinct areas of 

development.  First was the design of any modifications to either of the two 

existing UIs that were chosen and the second was the design of the middleware 

application that would tie the existing UIs to the hardware sub-system. 
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3.3.1. Modifications to Existing User Interfaces 

The decision to use AD and the Windows event log service required an 

analysis of each of them.  The analysis focused on what, if any, modifications 

each UI required before it was usable for the new purpose.  The team examined 

each of the UI mechanisms separately and a description of the results of these 

examinations is in the next two of sections. 

3.3.2. Microsoft Active Directory 

Research revealed that is was straightforward to modify Microsoft’s 

directory service, Active Directory, to add additional attributes to the existing 

objects.  This addressed the cardholder management requirement of the project.  

There are three different techniques to make these modifications.  Robbie Allen 

lists the following three methods; first, is with a graphical user interface (GUI) 

such as ADSI Edit, second, with a command line interface (CLI) such as the ds 

utilities and, third through a scripting language such as VBScript (2003).  The 

design team decided that the scripting technique offered the solution that could 

be migrated to a real product the easiest.  The programmer created a series of 

scripts that added the needed attributes to the user object in AD.  For this project, 

the script added a single attribute (Employee Card Number) to AD to 

demonstrate the concept.  Shown in Figure 2 is an example of the type of script 

that the programmer created to add the attribute to the user object.
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Dim oemployeeCardNumber 
Dim oUser3  
Dim temp3  
Set oemployeeCardNumber = Wscript.Arguments  
Set oUser3 = GetObject(oemployeeCardNumber(0))  
temp3 = InputBox("Employee-Card Number: " & oUser3.employeeCardNumber & _ 
  vbCRLF & vbCRLF & "If you would like enter a new number or modify 
the existing number," & _ 
  " enter the new number in the textbox below")  
if temp3 <> "" then oUser3.Put "employeeCardNumber",temp3  
oUser3.SetInfo  
Set oUser3 = Nothing 
Set oemployeeCardNumber = Nothing 
Set temp3 = Nothing  
WScript.Quit 

Figure 2 – VBScript to Add Card Number to an Active Directory User Object 

 

3.3.3. Windows Event Log Service 

The use of the Windows event log service did not require any modification.  

The team decided to add two additional log files to separate out the routine event 

messages and any events created because of the database resource.  This 

would serve to reduce the time the administrator would take to review the ACS 

events.  The programmer wrote two scripts in VBScript to create these two 

additional files. 

3.3.4. Middleware Application Design Architecture 

The detailed design of the middleware application required several issues 

be addressed, first the design architecture, second the language used to 

implement the design and third the design implementation philosophy.  These 

three issues are common to any software development effort.  In some 

organizations, the design team makes a conscious decision about each issue.  In 

other organizations, the design team never specifically addresses these issues.  
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This design team made the decision to address each issue after a thoughtful and 

thorough research effort.  A discussion of each of issue and the decision made is 

in the following sections. 

3.3.5. Design Architecture 

The team examined two architecture options.  First, simply no architecture 

and second the N-tier architecture.  The author had been involved in several 

software development efforts that resulted in applications consisting of 50,000 plus 

lines of code.  The development teams delivered each of these projects over 

budget, beyond the expected schedule, and in one case with a reduced feature 

set.  The author examined each project and realized that there had never been 

any thought given to the architecture used in the design.  The design was simply 

the result of the implementation.  Next, the team considered the N-tier architecture.   

Using an N-Tier design approach has several significant advantages 

according to Martin Fowler who states:  

• “You can understand a single layer as a coherent whole without knowing 

much about the other layers.   

• You can substitute layers with alternate implementations of the same basic 

services.   

• You minimize dependencies between layers.  Layers make good places for 

standardization.   
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• Once a layer is built it can be used for many higher-level services.”  (2003) 

The design team considered these stated advantages, several small applications 

that were designed with the N-tier architecture and the lessons learned from the 

previous application development efforts the author was involved in and decided 

that utilization of the N-tier architecture would benefit the project and the 

application design.  

The design team subdivided the project into four significant layers, first the 

user interface, second the business logic required, third the communication 

services and finally the data objects required.  Next, the team divided each layer 

into the classes of objects that would implement each of the required features of 

the system.  Figure 3 - High Level Design reflects the layered architecture of the 

application. 
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Figure 3 - High Level Design 

 

3.3.6. Implementation Language 

The next issue the team addressed was the programming language that 

would be used during the implementation phase of the project.  Programming 

languages abound, certainly tens and probably hundreds of languages have been 

developed and promoted in the industry throughout the years.  The design of many 

of these languages focused on very specific programming situations while the 

target of others was as general-purpose languages.  Many of these languages 

would have been suitable for the implementation of this application.  However, the 

application should be robust, once completed.  Rob Sjodin, a professor in the 

Regis MSCIT program, described robustness as “a measure of how well the 
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system addresses: availability, scalability, maintainability, adaptability, extensibility, 

interoperability, understandability, usability/operability, reliability, manageability and 

securability” (July & August 2005).  The team considered each of these attributes 

when it chose a programming language. 

The language chosen will influence the robustness of the finished 

application in several ways.  First, the language needs to include all of the required 

external interfaces, to a database, Active Directory and the event log service.  

Second, because of the required external interfaces, it needs to provide error 

handling and recovery.  If these interfaces and error handling did not exist natively 

in the language, the implementation team would need to implement them as part 

of this project.  This increased the coding effort and the risk of the project.  Finally, 

the language needs to promote a structured implementation.   

The first consideration was whether to use a procedural language such as 

Cobol, C or even Basic or an object-oriented (OO) language such as C++, Java® 

or C#® (pronounced C Sharp).  The team discarded a procedural language 

because of their inherent lack of structure.  An object-oriented (OO) programming 

language was preferred for the following reasons: encapsulation, polymorphism 

and inheritance, the three cornerstones of an OO language (Dr. D. Hart, personal 

communication, September 2005).  An application implemented with these 

attributes will tend to be more robust than one that is not.  The implementation of 

any of these languages can be a very non-OO style if the developer does not use 

the inherent features of the language.  Regular reviews of the code with specific  
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attention on the structure of the implemented code ensured that the team adhered 

to OO model.  The team examined each of these languages for its suitability for 

this application and a discussion of each one is in the following sections. 

3.3.7. C++ 

C++ was one of the early object-oriented languages.  It included the 

required interface mechanisms and error handling.  C++ is an extension to the C 

language with the added OO constructs.  Because of this heritage, C++ includes 

the ability to allocate and use memory directly, with it the responsibility to release 

the memory when the application is finished using it.  C++ also includes the ability 

to use pointers and pointer arithmetic.  These provide a very powerful mechanism 

in the appropriate situation.  However, it is very easy to abuse the power of 

pointers and system crashes are the usual result.  The team decided that neither 

of these two features would be necessary for this application.   

3.3.8. Java 

Java does not include the memory handling requirements or the ability to 

use pointers, as does C++.  It is an OO language with a very structured class 

hierarchy and it included all of the required interface mechanisms and error or 

exception handling.  One requirement of Java is to download and install the Java 

Virtual Machine (JVM) from Sun Microsystems.  The JVM is freely available and 

there are versions that will run under the Windows operating system.  Java will 

also run on almost every other operating system currently in use.  This project 

targeted a Windows operating system.  Therefore, the cross platform functionality 
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was not a requirement.  In all other respects, Java would have been a suitable 

choice. 

3.3.9. C# 

Microsoft, as part of their new programming paradigm, recently introduced 

the .NET framework and C# as a new programming language.  The intent of the 

.NET framework is to isolate one application from all of the others and very closely 

monitor the use of system resources by the application.  Microsoft refers to this 

approach as “managed code” (Abrams, 2004).  C# is fully an object-oriented 

programming language with very strict class hierarchy and many Microsoft 

implemented support classes (Robinson et al, 2003).  It relies on garbage 

collection to clean up unused memory, removing the responsibility from the 

developer.  The managed code aspect addresses the ability to reference un-

initialized memory by the application.  Ferracchiati states, “.NET introduces 

assemblies to replace the traditional DLL and COM components hosted in DLLs or 

EXEs” (2001).  Traditional DLLs have introduced many serious support issues 

resulting one application’s installation rendering another application inoperable.  

The industry has referred to this situation as DLL HELL for many years.  Microsoft 

introduced assemblies to address this issue.  The team judged that these were 

positives for the choice of C#.  However, C# is a relatively new programming 

language, introduced only in the last few years.  The team judged this as neither a 

positive nor a negative. 

 

 

 



Access Control  23 

3.3.10. Implementation Language Summary 

After careful consideration of the design goals and system requirements, 

the team made a decision to use C# as the language used to implement the 

application.  The team could have selected either of the other languages or even 

one of the many not considered.  However, one of the author’s personal goals was 

to learn C#; therefore, the team selected C#.  The next consideration was the 

implementation methodology.  The programmers would employ the methodology 

during the implementation phase and it would have a significant impact on the 

robustness of the finished application. 

3.3.11. Implementation Methodology 

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides 

formalized design patterns as an implementation strategy in a book in the early 

1990s.  Since they published their book, many other authors have referred to 

these authors as the “Gang of Four” and have expanded on their original work 

(Cooper, 2003).  Other authors have expanded the original twenty-three patterns 

addressed by the Gang of Four to include several hundred in the current literature 

(Cooper, 2003).   

Design patterns offer a structured way to address recurring needs in the 

application development environment.  This application presented several of the 

programming situations directly addressed by design patterns including the 

abstract factory pattern, the façade pattern, and the singleton pattern. 
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The implementation of the design uses a series of design patterns.  The 

team did a careful analysis of each class to assess which design pattern best fit its 

usage and implementation requirements.  The implementation of each class 

followed the identified design pattern.  The sections that describe each object in 

the various layers will also discuss the specific design pattern applied to each 

class. 

3.3.12. Persistent Data Storage 

One design consideration was whether to include a persistent data store 

within the application.  One significant design requirement was that the formatting 

of the event messages be in a human readable form when presented to the user.  

The message needed to include the name of a cardholder and the name of the 

door as part of the message presented to the user.  The access control hardware 

has no knowledge of the name of a cardholder or the name of the door, only the 

cardholder number, or the doors hardware address.  To the system user the 

cardholder number or the hardware address has little meaning.  There are 

numerous examples of this type of data translation required in any access control 

application.  Additionally, each event message would need to be stored for 

possible future use by the administrator.  The system can generate hundreds of 

events per day. 

The VertX hardware platform-provisioning interface is an ASCII text file 

interface (except two card data files).  The host software must push down the 

entire configuration file as a single unit.  There is no mechanism to edit these files, 
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at least through a host software interface, once they pushed to the hardware 

platform.  This type of interface requires that all the data required to form a 

particular configuration file must be available at one time within the host 

application.   

The VertX hardware platform has over thirty configuration files that could 

require configuration.  These store information such as the host computer’s 

address, the configuration of the doors and the readers associated with each door.  

Most of these files are relatively static; however, several require changes as the 

administrator changes a user’s access permissions.  Of these files, the schedules 

and access groups file will need regular updating. 

These requirements lead to an investigation of various techniques to store 

persistent data on the computer.  The team considered several different options to 

meet this data store requirement, this included Active Directory, a series of flat files 

and a database.  The following sections discuss each of the options and the issues 

associated with each. 

3.3.13. Microsoft Active Directory 

First, the team considered Active Directory as a possible persistent data 

store.  The design called for AD as the user interface.  Microsoft states in the Best 

Practices discussion that, “The schema is neither a database nor a file system.  

Don't treat it as such.  It is better to place references in the directory that point to 

other data stores than to use the directory for something for which it was not 

designed” (n.d.).  The design of AD, as a write once and read many type of data 
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store precludes it from serving as the persistent data store for this application.  

3.3.14. Flat Files 

The team considered a series of flat files as another possible data store.  

These offer the simplicity of implementation and ease of use.  However, they do 

not provide any referential integrity by themselves.  Referential integrity is an 

important consideration in the design goals.  The implementation team would have 

to build it into the application code.  This added a level of effort and complexity to 

the application, which the design team deemed to be undesirable. 

3.3.15. Database 

Finally, the team considered database as the data store.  They provide a 

proven and well-accepted means of storing data and with some of the new 

functionality offered in modern programming languages they are almost as easy to 

interface with as flat files.  Databases inherently offer the required referential 

integrity.  Some databases are available free, Oracle 10g Personal Edition for 

example.  Others, much as Microsoft Access, are included in a suite of business 

tools that nearly every company running the Windows operating system has 

installed.  In addition, it is common for a company to have standardized on a 

specific database product for all of their corporate data storage needs.  The design 

team viewed the flexibility to use a number of different vendor’s database product 

as a positive. 
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3.3.16. Persistent Data Storage Summary 

After careful consideration of the relevant issues, the team decided to store 

persistent data used by the application in a database.  Access to the data is via the 

database interface class of the communication services layer isolating the 

database interface from the rest of the code.  The database design evolved after 

an analysis of the data required by both the access control application’s user 

interface as well as the data required by the hardware sub-system.  The section 

titled “Detailed Database design” addresses the specifics of the data base design. 

3.3.17. Design Tools 

Software systems easily grow to an unmanageable size.  In addition, during 

development, the software application requirements will change.  The larger the 

scope of the application the greater the potential that the application requirements 

will change before the application finished much less deployed.  The team 

understood these problems and decided that a visualization tool would help 

manage the project.  The tools purpose would be to document and communicate 

the project requirements to various audiences throughout the project life cycle.  

There are numerous tools available to help manage the scope and design of a 

software application.  Software vendors target many of these tools at the large 

enterprise type of project.  These tools were not suitable for this project.  The 

Unified Modeling Language (UML) serves a means to effectively communicate 

architecture and design details of a software development project.  The 

visualization tool chosen for this project was Microsoft Visio. 
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The team used Visio to create the design documentation used to control the 

project.  These diagrams included use case diagrams, sequence diagrams, class 

diagrams and entity relationship diagrams.  Each type of diagram served to 

represent a specific aspect of the project. 

The first diagram created was a use case diagram.  This diagram served to 

identify the actors that would interact with the system and the processes each 

actor would require from the system.  Each identified unit of functionality or 

process represented a single use case.  The team developed several of the more 

complex use cases into “fully developed” use cases.  The work required to expand 

each use cases served to identify and qualify the pre-conditions, stakeholders, flow 

of events, exception conditions, and post-conditions of the system.  Figure 5 - 

Application Use Cases show the simple use case diagram developed during this 

project. 

After the team identified the use cases, the team developed a series of 

sequence diagrams to document the flow of information to achieve a specific 

purpose.  They served to identify the public methods that would be required by the 

various objects in the system.  The code team used these diagrams during the 

implementation phase of the project.  The following is an example of one of the 

sequence diagrams that the team developed.  It documents the data flow when the 

application receives an event message from the hardware sub-system. 
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Figure 4 - Event Message Sequence Diagram 

 

The sequence diagram proved to be the most useful to the development team 

during both the design as well as the implementation phases of the project.   

 During the design phase, the team developed a series of class diagrams 

that documented the objects and the relationships between the objects within the 

system.  In addition to the relationships, the class diagrams also served to 

document the attributes and methods, both public and private, of each object.  

When the implementation phase started, these were the first diagrams that the 

implementation team used to code the class definitions.  The class diagrams are 

included in the Project Detailed Design and Implementation section of the paper to 
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illustrate the classes that compose each layer of the N-tier architecture used in the 

project.  

 The final diagram that the 

team developed was an entity 

relationship diagram (ERD).  

The team used the ERD to 

provide a diagrammatic 

documentation of the tables, 

attributes, relationships, and 

constraints in the database.  

This shows a small portion of 

the ERD, the complete diagram 

is included as Appendix 3 on 

page Error! Bookmark not 

defined..  Once the team designed the initial ERD, the team normalized the 

design to remove any data integrity anomalies that might exist.  Data anomalies 

are the cause of referential integrity issues that can result in “bad or corrupt data”.  

Corrupt data is not only valueless to a company it can actually cause serious 

mistakes in judgment when used in the decision making process.  Once this 

diagram was developed, the team then converted it into the scripts that created the 

database tables.   

 A serious drawback of many of the UML tools is the complexity of the 

application.  The learning curve can be very steep for some of the tools.  Visio 
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proved to be a very straightforward and easy to use visualization tool.  It proved to 

be a good choice to document and design a project of this size. 

3.4 Summary of the Project Implementation Issue Decisions 

The design team made the following decisions regarding the detailed 

design and implementation phases would use.  First, Microsoft Active Directory 

and the Windows event logging service would provide the system user interface.  

The application’s detailed design would employ an N-tier architecture approach 

using design patterns where appropriate.  The implementation of the application 

would use the C# programming language from Microsoft.  The application would 

include a database and the interface to the database is through a dedicated 

interface class.  The hardware interface is via a Dynamically Linked Library (DLL) 

supplied by the hardware manufacturer and the application would employ a 

hardware interface class.  With these decisions made, the project was ready to 

move to the detailed design phase. 
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4 Project Detailed Design and Implementation 

4.1 Introduction 

One of the artifacts of the conceptual design phase was a series of “Use 

Cases.”  These use cases where the starting points of the detailed design 

phase of the project. 
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Figure 5 - Application Use Cases 
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4.2 Project Detailed Design Phase 

The output of the design phase was a design composed of classes in 

distinct layers.  The implementation team implemented each set of classes 

that comprised a layer as a separate scope of work.  One of the stated 

advantages of an N-tier design is the loose coupling between layers.  This 

served to demonstrate this advantage because a different team of 

programmers could just as well have implemented each layer without 

affecting the success of the project.  The following sections discuss the 

system architecture that was developed and implemented in the application.   

4.2.1. User Interface Layer 

4.2.1.1 Overview 

The User Interface (UI) of the application provides the interface mechanism 

between the user and the application.  One of the primary design goals was to 

implement a UI that was “familiar” to a Windows IT professional.  During the 

conceptual design phase, the design team had determined that Microsoft provided 

two suitable interface mechanisms.  Microsoft Active Directory and the Windows 

event log service.  The following sections describe the object concepts that the 

user would be required to understand. 
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4.2.1.2 Users and User Groups 

The user and user groups in Active Directory correlate to users and groups 

of users within an access control system.  It was an obvious extension to add the 

card number to the user attributes of Active Directory.  The team accomplished this 

with a script file that interfaced with the Active Directories Service Interface (ADSI).  

The user concept is the ‘who’ of an access control decision. 

4.2.1.3 Doors and Door Groups 

Another central object in an access control system is the concept of a door 

and a door group.  The computer in Active Directory is similar but it was 

determined that it is not close enough to be extended to represent a door.  One of 

the extensions to the project is to develop a series of scripts or a separate DLL that 

will create a door object in Active Directory and define the required attributes to 

reflect the configurable parameters of the door in an access control system.  An 

ACS uses the door concept to represent the ‘where’ of an access control decision. 

4.2.1.4 Schedules 

Active Directory included the concept of schedules.  Schedules may be 

associated with users, user groups, and computers within AD.  Active Directory 

exports the schedules to the application for use by the access control system.  

This presented the user with a familiar concept that is often very complex in the 

ACS software application.  The ACS uses the schedule concept to identify the 

‘when’ of an access control decision. 
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4.2.1.5 Event Reporting 

Network administrators use a built-in Windows event logging service to view 

application, security, and system activity.  The logging service is available under 

the Control Panel, Administrative Tools, and Event Viewer options.  Applications 

running on the system can write events to the default application log or may extend 

the event logger to include new log files used by a specific application.  As an 

application logs an event, it classifies them in one of three severity levels, 

information, warning, or error.  As the system presents events to the user, each 

different type of event includes a different icon.  This provides the user with a 

method to easily to identify the different types of events.  Windows event viewer 

provides the ability to filter the events by event type. 

This project extended the event log structure to include two additional log 

files, the Access Control log, and the ACS-CreateDB log.  An access control 

system generates many events in the course of normal operation as well as 

numerous events when an abnormal event occurs.  The ACS application classifies 

these different types of events into one of the three pre-defined classes of the 

event log service.  The ACS hardware platform also provides a mechanism to 

define events into three classifications as well.  Three event classifications is the 

industry standard for event classification.  The Windows provided event log service 

included all the required functions of an event reporting system for an access 

control system.  This produced a nice fit between what the access control industry 

expects and what this application delivers. 
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Event messages include normal activity such as a user gaining access 

through a door, updating the system time or when escorting a visitor through a 

door.  Abnormal activity such as the system denying a user access at a particular 

door or a door remains open for an extended period.  Finally, there are severe 

events that need immediate attention.  These may be an alarm generated by a 

motion detector or a task in the access control system that restarts.  Error! 

Reference source not found.Appendix 2 shows a screen shot of each of the 

different types of event messages generated by the system. 

4.2.2. Business Logic Layer 

The business logic statement of an Access Control System can be 

summarized as the need to “control Who goes Where and When”.  The hardware 

platform utilized in this project contains the required logic to make these decisions.  

This project provides a mechanism to configure the hardware’s configuration files 

with the required data and provide a mechanism to update that data when 

changes are required.  Changes may be required when an employee is added or 

leaves the company or when an employee’s work assignment changes.  There 

may also be changes to the physical layout of the facility that the ACS must reflect.   
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Figure 6 - Business Logic Layer Classes 

This project focused on the requirement to manage the changes to the ACS 

hardware and only issue relevant changes.  To accomplish this objective, a 

database was included in the design.  The hardware platform includes a database 

in its design.  It was determined that the time to query the hardware database each 

time there is a potential change would take too much time and might actually 

impact the performance of the access control system.  This also requires that the 

hardware be in constant communication with the host computer.  This is not 

always the case and is in fact, not required by the hardware system chosen.  The 

Active Directory application also includes a database, however Microsoft explicitly 

describes it as a read many write once type of database.  The intent is not to be a 

repository of transactional data.   

The database in this application is used for two purposes, first provide a 
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backup of the data on the access control hardware, and second provide a fast 

mechanism to validate any changes to the hardware based database.  As the user 

makes changes to users, doors and schedules in the Active Directory GUI, AD 

forwards these changes to the application for further processing.  AD forwards any 

change to an object, many of these are not relevant to the access control system.  

The middleware application must sort through all the changes and only pass the 

relevant changes to the hardware sub-system. 

The business logic makes the determination of the relevancy of any 

changes forwarded to it.  The application logs changes into the database and 

forwards them to the hardware sub-system.  This mechanism makes the 

application database the backup data repository for the access control application.  

The application designers intended it to run on a computer running on the network 

and expected that the IT policy will include accurate and timely data backups of the 

database contents. 

One significant function of an ACS is to format an event message in a 

human readable format.  The business layer provides this functionality.  Event 

messages from the hardware system consist of a series of tokens that are abstract 

representations of the information.  These generally are integer values and not 

readily understood by the system administrator. 
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4.2.3. Communication Services Layer  

The communication services layer implements the application’s interfaces 

to other program units.  This layer does not include the User Interface.  This 

application uses the following interfaces: hardware sub-system, Microsoft Active 

Directory, Windows event logger, XML message consumers, and a database 

interface.  The implementation of each of these interfaces is as a class that 

contains any required data members and the entire set of associated interface 

functions.   

Figure 7 – Communication Service Layer Class Relationships shows the relationship 

between the interface layer classes. 

+getService(in serviceName : int) : IService

Factory

Data

IService

+register() : bool
+rcvMsg(in newMsg : ADMessage)

-connected : bool = False
IDirectorySvc

+LogMsg(in msgPriority : int, in msgData : string) : bool

ILoggerSvc

+updateVertX(in msgData : string) : bool
+rcvMsg(in msgData : string) : bool
+connect(in macAddress : string) : bool
-updateVertX()

-macAddress : string
IHardwareSvc

+registerSubscriber(in subcriberData : object) : bool
+rcvMsg(in msgData : XMLEventMsg) : bool
-sendMsg()
-storeMsg(in msgData : XMLEventMsg) : bool
-retrieveMsg() : XMLEventMsg

-subscribers[] : object
IXMLConsumerSvc

+Connect() : bool
+getHardwareConfig() : HardwareConfiguration
+updateHardwareConfig(in newConfig : HardwareConfiguration) : bool
+getUserByID(in userID : int) : CardHolder
+addNewUser(in userData : CardHolder) : bool
+updateUser(in userData : CardHolder) : bool
+getDoorByID(in doorID : string) : Door
+addNewDoor(in doorData : Door) : bool
+updateDoor(in doorData : Door) : bool
+getScheduleByID(in scheduleID : int) : Schedule
+addNewSchedule(in scheduleData : Schedule) : bool
+updateSchedule(in newData : Schedule) : bool
+getAGByID(in agID : int) : AccessGroup
+addAG(in newData : AccessGroup) : bool
+getDGByID(in dgID : int) : DoorGroup
+addDG(in newData : DoorGroup) : bool
+addEventMsg(in newData : EventMessage) : bool
+getEventMsgByDate(in startDate : Date, in endDate : Date) : EventMessage

-connected : bool = False
IDataBaseSvc

+rcvMsg(in dataType : int, in newData : object) : bool
-processMsg()

-hardware : IHardwareSvc
IACSSvc

 
Figure 7 – Communication Service Layer Class Relationships 
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The team implemented the communication services layer with a Factory 

design pattern (Gamma, 1994).  With this design, the factory returns an object of 

type IService to the caller.  The caller knows the exact type of the class so it can 

then use the returned object appropriately.  The Factory does not know the type or 

capabilities of the object it creates.  By using this design pattern, the 

implementation team can extend the application to include additional behavior with 

very little impact on the current application.   

During the design phase, a review of the communications service classes 

revealed that each class would always interface to one and only external object.  In 

1994, Eric Gamma stated that the intent of the singleton pattern is to “Ensure that 

a class only has one instance, and provide a global point of access to it.”  To 

ensure that multiple instances did not attempt to access the same external 

resource, it was a decided to implement each of the classes as a singleton.  A 

description of each different interface class is in the following sections. 

4.2.3.1 VertX Hardware System Interface 

This project utilizes access control hardware provided by the HID 

Corporation of Irvine California.  The manufacturer designed this system interface 

as an “open” platform that a variety of ACS providers would use in their products.  

The intent of the product design was to remove the dependency that currently 

exists between the hardware and software elements of an access control system.  

HID Corporation does not provide the software component of an access control 
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system, only the hardware. 

The interface to the hardware is through a Dynamically Linked Library (DLL) 

provided by the hardware manufacturer.  The DLL provides a “C style” function call 

interface.  This application implemented that interface in its design.  The hardware 

interface object acts as the single point of contact between this application and the 

under-lying hardware system.  This interface has proven to be robust and easy to 

implement.  As the hardware system interface changes any required changes are 

isolated to this single class increasing the maintainability of the application. 

This class provides a function call interface to the business logic layer that 

handles all data translation and communication with the hardware.  The class 

provides functions to connect to the hardware, handle cardholder maintenance as 

well as system configuration and to receive the event and alarm messages 

generated by the system. 

4.2.3.2 Microsoft Active Directory Interface 

This interface class provides the communication channel between the 

Active Directory application and the project’s business layer classes.  It includes 

the register function to notify Active Directory that this application is interested in 

receiving messages.  It also includes the receive message function that is passed 

to Active Directory.   
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4.2.3.3 Windows Event Log Interface 

This class exposes a single function to the business layer, a receive 

message function.  When the class receives a message from the hardware it will 

format and forward the message to the Windows event log service for storage and 

retrieval by the system administrator.  The system administrator may view the 

messages at his/her convenience and the messages are stored for reference later. 

4.2.3.4 XML Message Consumer Interface 

Computer applications generate large amounts of data that other 

applications may use.  Data generated on one type of hardware or operating 

system may not be usable on another hardware or operating system.  The cause 

of this interoperability situation is differing data types used in the application and a 

multi byte number storage artifact referred to as Big or Little Endian (Verts, 1996).  

The World Wide Web consortium (W3C) has adopted eXtensable Markup 

Language (XML) as a standardized mechanism to address the problem of data 

interoperability.  Typically, a middleware application formats the data to match the 

XML schema before transporting it between applications and computer systems.  

XML transports the data in as string data in ASCII format.  In this form, applications 

running on different hardware or software can use the data.  

XML has received a lot of publicity, not only in the technical press but also 

in the popular press.  A recent Google search returned 2.2 billion hits for the term 

“XML.”  Senior company management has read much of this press prompting 

discussions about how XML can solve their particular problems.  The access 
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control industry’s management has also read this press and asked the same 

questions of their technical staff. 

Within the access control industry, there is an attempt to exchange data 

with other building automation or enterprise applications.  XML has been at the 

forefront of the efforts to make access control generated data available to these 

other applications.  Unfortunately, there is has not been any effort by the industry 

to adopt an XML standard and at this time, the industry has not even proposed an 

XML ACS standard.  This project includes the design of a proposed XML schema 

for access control messages. 

This class provides a simple XML interface to other applications.  At this 

time, the team has not demonstrated the class as there is no current consumers of 

the data available.  Appendix 1 on page 60 shows the XML Schema (XSD) for this 

XML design. 

4.2.3.5 Database Interface 

The database within this application provides a store for persistent data.  

The application replicates the configuration data that is stored on the hardware 

sub-system to the database for redundancy as well as speed.  The time to retrieve 

data from the hardware is significantly longer than the time to retrieve data from a 

database application.  In addition, the data stored on the hardware is not stored in 

a table format or in a normalized form.  This increases the complexity of the logic 

required to use the hardware as a data store.   
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The data base interface class provides all of the required functionality to 

connect to, store, and retrieve information from a database.  This design provides 

a single interface point for data storage and retrieval. 

The database chosen for this application is Microsoft’s SQL Server.  The 

implementation of the class includes the required syntax for this database.  If 

another database is needed changes are only required in this class. 

4.2.4. Data Objects Layer 

The data objects or domain objects represent the “things” that exist in the 

problem domain.  The data object things are typically the nouns in the use cases.  

When the implementation team implements these objects, they generally contain 

data but little or no associated functionality.  In application design, the application 

creates and populates these objects in the communication services layer and then 

passes them to the business logic layer.  The business logic layer then uses the 

data within each object as it processes the business logic. 

An analysis of access control requirements revealed the following objects 

are required to provide an adequate representation the problem domain: 

cardholder, door, and a group of doors, access level, access group, a schedule, 

and events.  The implementation of each of these objects followed the Domain 

Model design pattern (Fowler, 2003).   

Figure 8 - Data Layer Class Relationships shows the relationships between the 

various classes in the data layer. 
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+NewCardHolder() : bool
+UpdateAccessGroup() : bool

-ID : int
-CardNumber : string
-Name : string

CardHolder

+NewDoor() : bool
+Operator=() : bool

-DoorID : byte
-Address : string
-Name : string

Door

+NewSchedule() : string
+Operator=() : bool

-ScheduleID : int
-OpenInterval() : string

Schedule

-MsgID : int
-MsgType : byte
-Priority : byte
-TaskID : byte
-MsgCode : int
-Date/Time : string
-msgTokens[] : string

EventMessage

-XMLData : string
XMLEventMsg

-HRData : string
HREventMsg

+UpdateInfo() : bool

-MAC_Address : string
-IPAddress : string
-HostName : string

HardwareConfiguration

*

1

1

0..1

+Operator=() : bool
+AddAccessGroup() : bool

AccessGroup

+Operator=()
-DoorGroupID : byte

DoorGroup

*
*

*

*

*1

+Convert() : XMLEventMsg

XMLEventConverter

+Convert() : HREventMsg

HREventConverter

26 different event types
each having different 
parameters

These converter 
classes work on the 
event message and 

generate XML and HR 
Event Message Classes

+operater=() : bool
+date(in year : int = 2005, in month : int = 01, in day : int = 01)

-year : int = 2005
-month : int = 01
-day : int = 01

Date

 
Figure 8 - Data Layer Class Relationships 

A discussion of each of these objects is in the following sections. 

4.2.4.1 Card Holder Object 

The cardholder represents the user of the system.  The system 

administrator grants access privileges to the cardholder object.  An access 

privilege consists of a door and time that the user has permission to use that door.  

An associated card number identifies the cardholder to the system.  The system 

administrator assigns each cardholder a unique card number to accurately track 
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the user’s use of the system.  Each user is issued a token encoded into this token 

is a card number.  Through the card number user association, the application 

generates reports the user’s activity or in-activity.  The data included about a user 

includes the user’s name, card number, associated access groups, and the status 

of the cardholder (active or in active).  Each of these data points represents data 

that is required somewhere in the system. 

4.2.4.2 Door Object 

The door in an access control application represents the ‘where’ of the 

system.  It may represent either the physical portal used by the cardholder or an 

area controlled by the portal.  Within this application, a door represents the portal 

used by the cardholder to gain access to physical resources.  When the installer 

installs hardware, he assigns each door a unique address to identify the door to 

the system.  When the user presents an access control token to the system, the 

system uses the door address and card number to determine the cardholder 

privileges at the specific door.  The data included about a door includes the door 

ID, door address, and door name.   

4.2.4.3 Schedule Object 

The schedule in an access control application represents the ‘when’ of the 

system.  A schedule defines the in and out periods.  The in period (in-schedule) 

defines when the resource is available and the out period (out-schedule) defines 

when the resource is not available.  When the user presents their token to the 

system, the current time is associated with the card presentation event.  The 
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system uses this time and door ID when it determines if the door is unlocked or 

not.  A schedule includes a name, days of the week, holidays, and one or more 

intervals for each day.   

4.2.4.4 Door Group Object 

To ease the burden of administering the system, the administrator groups 

doors into door groups.  It is common for several doors to serve similar purposes.  

For example, at most facilities, the front, and back are commonly referred to the 

“perimeter or outer doors” and the user would have the same rights to either of the 

doors.  These two doors would then be associated into a door group.   

There are situations were the administrator decides to manage each door 

individually.  This application is able to deal with doors in this manner when 

indicated by the administrator.  A simple assignment of one door to a door group 

provides this level of management control. 

4.2.4.5 Access Level Object 

An access level is the association of a door group with a schedule.  The 

system administrator will grant users privileges to doors with similar purposes 

during the same time period.  If a cardholder has permission to enter the facility 

through the front door at 8:00 am then the cardholder would generally have the 

same privilege at the rear door.  
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4.2.4.6 Access Group Object 

An access group is an association of one or more access levels.  The 

administrator assigns the cardholder object one or more access groups that 

represent the accumulated access privileges granted to the specific cardholder. 

4.2.4.7 Event Objects 

Event Objects represent one single event that occurred with in the access 

control application.  When the system generates an event, the VertX hardware 

prioritizes the event and then passes it up to the host application as an event 

message.  The application converts each of the event messages from the VertX to 

an event class object.  The application uses these objects to move data between 

the different objects that use event data.  These include the conversion classes 

that generate the human readable message and the XML formatted message. 

A review of the VertX event message structures revealed that there are 

twenty-six different message structures.  Each structure requires slightly different 

processing.  The implementation team implemented the event message objects 

using an inheritance model to minimize the common data elements in each of the 

classes.  The design team identified a base or parent class that included the 

common data elements and functions and each of the twenty-six separate event 

classes then inherited that class.  This approach reduces the code implementation 

requirements, increasing the maintainability of the code.  If a change is required to 

one of the common functions, changes are limited to a single place in the 

application.  All of the child classes then inherit these changes. 
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4.2.4.8 Hardware Configuration Object 

The final domain object in the application holds the specific hardware 

configuration parameters needed by the application.  These include the MAC 

address, IP address and the host name.  The application uses these parameters 

when communicating with the hardware platform. 

4.3 Detailed Database Design 

4.3.1. Database Schema Design Process 

The design team used a multi-step process when designing the database 

schema.  First, the design team created a data dictionary with the data required by 

the hardware configuration files and then the team created an Entity Relationship 

Diagram (ERD).  Next, the team added the data required to transform the event 

messages into a human readable format to the ERD.  A review of the XML 

formatted message structure revealed that no additional data was required to 

generate this type of message.  The final step was a normalization of the data 

using standard database practices.  The target was third normal form.  Third 

normal form generally provides the best tradeoff between performance and data 

redundancies or data anomalies (Rob and Coronel, 2004). 

Once the ERD was completed, a series of SQL statements were generated 

that would create the tables and with the referential integrity constraints required to 

store and maintain the validity of the data.  Finally, the team generated a series of 

SQL statements that populated the tables with the “factory default” data that is 

included with the hardware.   
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The implementation team initially validated these SQL statements on an 

Oracle 9i database.  Next, the implementation team executed the same set of 

statements on a Microsoft SQL Server database and a couple of minor changes 

were required.  These SQL statements are now capable of creating and populating 

the required tables with either an Oracle or a SQL Server database.  The team 

could extend the application, with localized changes (to the database scripts and 

the database interface class) to operate with other relational database 

applications. 

4.3.2. Factory Default Data 

VertX hardware includes many configuration parameters that are set at the 

factory.  The installer or provisioner of the system does not need to change these 

parameters to get a functioning access control system for most users.  By 

including the default data, an initial data load by the software is not required.  

Additionally, distribution of the hardware could occur through the channels that are 

currently in place, reducing the cost to the end user.  The hardware is available 

through a warehouse distribution system that makes it available to anyone 

interested in deploying it.
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5 Conclusions 

5.1 Did the Project Meet Initial Expectations 

The project did meet the initial set of project goals.  This included using 

Active Directory as a user interface mechanism, using existing Windows 

functionality to handle event reporting and to implement the application in C# 

using an N-tier design approach.   

The project design phase spanned several of the classes at Regis 

University.  The data base design occurred during the MSCD 600 and 610 

courses; the initial software design occurred during MSCS 600 and then refined 

during MSCS 630.  The majority of the implementation phase occurred during 

MSCS 680 and 682.  This focused the classroom knowledge on a specific and 

identifiable real world problem, aiding in assimilating the knowledge from the 

classroom, and moving forward on the project. 

5.2 Lessons Learned 

Takuya Katayama, of the Japan Advanced Institute of Science and 

Technology, in a presentation to the Tenth Asia-Pacific Software Engineering 

Conference in 2003 stated:  

It (software) has to change as its infrastructure has been changed.  It 

has to change as its functionality has to change.  It has to change as 

new algorithms are found which will increase its performance.  There 

are a lot of reasons why it has to change and only software that can 
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stand for the change can survive.   

To address this continual need for change, the design team utilized the N-tier 

architecture, a database, design patterns, and C# in the design and 

implementation of the application.  A discussion of each of these decisions is in 

detail in the following sections. 

5.2.1. N-Tier Architecture 

This design philosophy has proven to provide flexible implementation that is 

changeable as the needs of the product change.  One of the keys of managing the 

expected changes is a design that lends itself to change.  N-Tier Architecture has 

proven itself modifiable as a project progresses with minimal impact of the rest of 

the application.   

Reflecting on the quote by Mr. Katayama, the N-tier architecture confines 

many of these changes to a single layer.  These changes might include a different 

database implementation or a new communication protocol.  To implement these 

changes the team must only make changes to the technology layer class that 

addresses that specific part of the overall system.  If the stakeholders defined 

different business rules or application functionality requirements, the team would 

confine the changes to the business layer class that defines the application 

functionality.   

 

In a well-designed and implemented system, changes to any of these layers 
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will not affect the implementation of the other layers; many times recompilation of 

these other layers will not be required.  This enables the software to change as the 

needs of the users of the software change while minimizing the impact on the 

system as a whole.  

5.2.2. Database Design 

 The implementation team has two choices when converting a data base 

design to the actual implementation, the tables, and data in the tables.  First, you 

instantiate the tables in the data base with all of the required attribute fields.  Next, 

you “load” the data into the tables.  Finally, you “turn on” the referential integrity 

constraints and correct any errors reported by the Referential Database 

Management System (RDMS). 

 The second method involves creating the database tables with all of the 

referential integrity constraints in place and then adding the data.  This project 

team chose to employ this option for several reasons.  First, it reinforced the 

referential relationships in the database design as the design evolved.  Next, 

because a script inserted the initial data, the implementation team modified the 

script to comply with all of the constraint requirements.  It is felt that this method 

provided a deeper understanding of the impact of the referential integrity 

constraints on the design. 
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5.2.3. C# 

One of the stated project goals was to implement this application in C# as 

means to increasing the author’s knowledge of and skill with the language.  

Previously the author’s primary skill set was limited to Visual Basic 6.0 with a 

very limited exposure to C++.  With this as a foundation, the migration to C# 

proved to be a straightforward process.  C# includes a wide range of built in 

classes that abstract the underlying Windows API.  Not only does this ease the 

learning process it also provides a built-in mechanism to enhance program 

reliability. 

5.2.4. Design Patterns 

The decision to attempt to evaluate each class and apply a design pattern to 

implementation proved to be a very worthwhile exercise.  This approach forced 

the design team to design and review each class prior to the implementation of 

the class.  The modification of several of the class designs during the review 

process saved valuable time during the implementation phase of the project.  In 

addition to the time saving the review process also tended to increase the 

robustness of the over-all design of the application. 

5.3 What Would I Have Done Differently 

The one area that needed additional attention was the use of Active 

Directory.  The author believes that extensions to AD could include the concepts of 

doors and access levels.  The author needs to do further research and education 

to utilize the extensibility and this should have done earlier in the project. 

 

 



Access Control  55 

5.4 Future Application Development 

5.4.1. Where the Project Can Go 

The next sections address specific extensions to the project.  Included are 

several changes to Active Directory, additional control functionality, XML message 

changes, and finally changes to the database.  Each of these would add 

functionality that would enhance the application. 

5.4.2. Active Directory Extensions 

Active Directory is a Directory Service, meaning that it will authenticate a 

log in and password from a user to grant access to system resources.  A very 

interesting extension to this project would be to add to the AD algorithm a check to 

ensure the user has “badged in” to the access control system.  This would require 

that the ACS application pass back to AD all of the successful grant access 

decision that are made.  This message would include the date and time of the 

access as well as the door where the access event occurred.  Active Directory 

would use this additional information when it made the decision to grant access to 

other system resources.  This enhancement would tie the access control decision 

to granting of resource privileges providing further control of the network and the 

data stored on the network. 
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5.4.3. Control Requirement 

The one required piece of functionality not addressed in this project is 

control of the system.  This includes the ability to open a door on command, reset 

an alarm point, or lock a door.  The VertX interface class includes the ability to 

send the required commands; the missing piece is the user interface.  One option 

would implement a screen from within the application.  This would require that the 

implementation team design, implement and test a GUI.  One of the design goals 

was not to implement any new user screens.  Another alternative that bears further 

investigation is to extend Active Directory to include a screen that handles the user 

input for this function.  This would probably require that a DLL be created that 

handled the screen and commands. 

Another aspect that bears investigation is to extend Active Directory to 

present the concept of a “door” to the user as simply another of the resources 

managed by AD.  This would require that some additional design work to identify 

exactly which data be required to represent a door without including extraneous 

data.  This would also probably require the team develop an additional DLL. 

The current implementation simply uses the schedules as defined with 

Active Directory and forwarding them to the hardware.  A better approach would 

be to allow the creation of a separate access control schedule.  Typically, these 

would provide some additional time to allow the worker to arrive early and prepare 

for the workday before they would actually have privileges on the network.  

Finally, the current implementation does not provide a mechanism that 
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allows the user to change the name of the various access control output points.  

The design team defaulted these parameters to what it considered would work in 

most situations.  It also would require the hardware installer to wire the system in a 

pre-defined way.  Although this is practical for most installations, some the team 

should do some additional investigation to achieve this flexibility. 

5.4.4. XML Message Service 

A significant advantage to newer access control applications is the ability to 

“interface” with other applications running in the environment.  The access control 

industry considers an interface as the ability to receive some well-formatted data, 

typically from a database system or outputting a message.  An access control 

application that is more than a few years old will not have the ability to either 

import or export data. 

The team could implement this service in several different ways including a 

Windows message queue, in traditional client-server architecture or using 

asynchronous messages.  A complete solution would be an implementation all of 

the identified methods providing the greatest interoperability of the application.  

The first option would be to implement a Windows message queue.  The 

receiving application would have to implement a message interface to receive the 

messages sent by the ACS.  This has the advantage that the receiver does not 

need to be on-line all of the time.  The ACS would send the messages to the 

queue were they would be stored until the receiving application came on-line.  

When the receiver application comes on-line, the message queue forwards any 
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stored messages to it.   

The next option would be traditional client-server design.  In this design, the 

ACS application would be the client and send messages to the receiving 

application.  The receiving application would need to implement a server to listen 

for the asynchronous messages from the ACS.  The ACS system would need to 

store undeliverable messages and forward them when the server was ready to 

receive them.   

Finally, the team could implement an asynchronous message scheme 

through a callback mechanism.  In this design, both the sender and receiver must 

be on-line at the same time to transfer messages just like the client-server design.  

The ACS would need to store undelivered messages.  In addition, there could 

potentially be a requirement that part of the receiver implementation include un-

managed code.   

Each of these options has both advantages and disadvantages.  The 

design team would need to perform an analysis of each to provide the correct 

solution of each potential user. 

5.4.5. Database Extensions 

There are many popular databases beyond Oracle and Microsoft SQL 

Server.  The team should test the ‘create and populate’ database scripts against 

these other databases.  In addition, the team would need to develop additional 

database interface classes to interface with the database.    
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A true low cost system could be implemented using Microsoft Access or 

Oracle Personal Edition databases.  In either case, the only cost to the user would 

be the hardware and installation costs.  This would be a very attractive option for 

most companies employing 100 or fewer employees. 
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