
Regis University
ePublications at Regis University

All Regis University Theses

Summer 2006

Building a Robust Web Application
Eric Filonowich
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Filonowich, Eric, "Building a Robust Web Application" (2006). All Regis University Theses. 322.
https://epublications.regis.edu/theses/322

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217365246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/322?utm_source=epublications.regis.edu%2Ftheses%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

TTaabbllee ooff CCoonntteennttss __
Abstract ...7

Acknowledgement ...8

Chapter I – Introduction/Executive Summary ..9

Problem: “What is Robust?” ...9

The Prototype: “Better Tracking and Feedback” ...10

Project Goals ...11

Project Scope...11

Chapter II - The Model ..12

“Robustness” Philosophy...12

The n-Tier Architecture ...14

Adaptability ...14

Extensibility...16

Flexibility ..17

Scalability..17

Understandability...18

Model Design Architecture ..18

Presentation Tier (Layer) ...20

Services “Business Logic” Tier (Layer) ...20

Integration Layer ...21

Chapter III - Research & Analysis ...23

The Project Goals ..23

Requirements / Overview of the Application..23

Quick Overview of Prototype...24

Use Cases ..25

Chapter IV - Systems Design...33

Database Implementation...33

Design HTML Front End Templates..34

Design Class and Concept Models ...36

Implementing the Robust Architecture...40

Adding Efficiency to the Presentation Layer ..44

Getting the Data To and From the Presentation Layer ..51

Robust Services / Integration Layers ..59

Conclusions ...68

Appendix – References..75

Page 5 of 82

TTaabbllee ooff FFiigguurreess

Figure 1 - Excel Spreadsheet tracking ..24

Figure 16 - Sample Using Tiles Insert (Malani, 2002)..48

Figure 17 - Tiles Template sample (Malani, 2002)...49

Figure 2 - Use Case Diagram...25

Figure 3 - Full Schema ..33

Figure 4 - HTML mock up of log in page ..35

Figure 5 - HTML mock up of Join page...35

Figure 6 - Welcome.jsp system page..36

Figure 7 - System Data Class Diagram...37

Figure 8 - Services Classes model..38

Figure 9- Collection object in Java...40

Figure 10 - Trail.java class snippet...41

Figure 11 - Collection class modified with new collection container type42

Figure 12 - Collection example in C# ..43

Figure 13 - JSP/Struts Presentation Layer example ..45

Figure 14 - Code snippet from interfaceTop.jsp ...46

Figure 15 - ASP.Net Example..47

Figure 18 - Applying Tiles Template (Malani, 2002) ...49

Figure 19 - Index.jsp for Java/Struts implementation ...52

Figure 20 - Struts Form Bean Definition ..53

Figure 21 - Struts configuration file ...54

Figure 22 - Struts Form JavaBean for login (index.jsp) ..54

Figure 23 - Struts Login Action (index.jsp action) ...55

Figure 24 - Visual Studio .NET HTML view of index.aspx ...56

Figure 25 - onclick command to login button in index.aspx ...57

Figure 26 - index.aspx.cs Login_ServerClick method ..57

Figure 27 - Sample C# Manager class..60

Figure 28 - Factory.java code snippet ..62

Figure 29 - Implementing the Factory with ImplMap.txt..63

Figure 30 - Database Service using Interface in Java..64

Figure 31 - IDatabaseService interface in Java...65

Figure 32 - Java implementation of Manager class...66

Figure 33 - Web.config file in C# / ASP.NET implementation of Factory......................66

Figure 34 – Factory in C# ..67

Page 6 of 82

AAbbssttrraacctt

Change is inevitable. Software applications must be prepared for that inevitable

moment by following structured robust software design and architecture. Utilizing

popular n-tier architectures and robust philosophies in web applications enables

developers to implement robust systems that are prepared for the unknown future.

This project highlights and demonstrates robust software development techniques in a

prototype web application using an n-tier architecture. The examples are designed to

provide a robust philosophy that can be applied to similar robust solutions for other

development efforts.

Page 7 of 82

AAcckknnoowwlleeddggeemmeenntt

I would like to thank my family, Danica, Dominick, and Pyper for their support

and willingness to put up the seemingly endless hours put into this project. Your

patience and love cannot be measured. Thank you.

I would also like to thank Rob Sjodin, Joe Gerber, and all who have offered words

of wisdom and comments. Rob, your advice, comments, and aid throughout the

process, as well as willingness to help whenever needed are greatly appreciated. Joe,

your inspiring comments and support helped push me when I most needed it. To all,

thank you sincerely.

Page 8 of 82

CChhaapptteerr II –– IInnttrroodduuccttiioonn//EExxeeccuuttiivvee SSuummmmaarryy

PPrroobblleemm:: ““WWhhaatt iiss RRoobbuusstt??””
It is a bad plan that admits of no modification.

— Publilius Syrus, First Century BC

Computers and computer software have become synonymous with nearly

everything modern man uses to function on a daily basis. It becomes increasingly

difficult to imagine something in the modern world that isn’t in some manner

controlled via a computer and software (or hardware). And as soon as that

technology becomes en vogue, it is replaced by a newer, better version, or a

completely different piece of technology. In this rapid-paced environment how are

software developers supposed to keep up with the changing demands of not only that

technology but also each and every one of the users that must adapt to this pace each

day?

Arthur Schopenhauer, a German 18th Century philosopher, once said “change

alone is eternal, perpetual, immortal.” This is very similar to the definition of

dynamic, which is defined as “changeable; fluid; not steady; in motion.” (Wiktionary,

2006) The concept of dealing with change, essentially creating dynamic software, is

one of the key components to constructing a robust system. The Linux Information

Project (2005) states that a robust system is one that “that performs well not only

under ordinary conditions but also under unusual conditions that stress its designers'

assumptions.” Such a system needs to be “general code that can accommodate a wide

range of situations and thereby avoid having to insert extra code into it just to handle

Page 9 of 82

special cases.” (2005, The Linux Information Project) Essentially, this describes a

dynamic, thinking, almost living entity.

If the famous entertainer, Pearl Bailey’s quote, “we must change in order to

survive” is any indication, then robust software is essential to survival in the

marketplace. Michael Huhns of a University of South Carolina study suggests that

“as software developers, we would like the systems we construct to be robust and not

crash. But we can’t make them more robust simply by adding more code, as we add

more bricks or steel to make a physical structure stronger.” (2002, Huhns, p. 1)

Throwing more code into the mix might indeed fix the problem, but will ultimately

result in a jumble of fixes and patches of unrelated and poorly functioning code,

whereas a quality design must be rather “heavily influenced by a system’s package

relationships [by being] loosely coupled and highly cohesive.” (Knoernschild, 2003)

Using a code-independent model based upon robust software design principles,

represents an opportunity to analyze the effectiveness of that model and the robust

software concept. Implementing a prototype with an effective robust architecture

based upon the aforementioned model allows for the study of a foundation for a

robust development philosophy.

TThhee PPrroottoottyyppee:: ““BBeetttteerr TTrraacckkiinngg aanndd FFeeeeddbbaacckk””
The prototype is a proposed, TrailTracker, which offers a fully customizable

approach to tracking any type of running or riding activity. It is designed to

specifically offer a trailer runner the ability to track only the data they wish to track,

and receive the precise feedback they require. This online system can used to track

personal data, and also view other’s data on similar trails. The prototype itself will

Page 10 of 82

only be completed to a point for the purpose of analysis. Following the completion of

the project, the system could be potentially finished and used for “real life” exercise

tracking and comparison.

PPrroojjeecctt GGooaallss
This project includes research and design of a code-independent structure and

model of the proposed online application for TrailTracker, plus analysis of the robust

architecture techniques applied. Java development will be built with Java/JSP/Struts

application utilizing Eclipse and run on an Apache Tomcat server. Additionally,

.NET development will be built with ASP.NET using C# utilizing Microsoft Visual

Studio .NET and run on an IIS test server (Windows XP, Service Pack 2). For the

purposes of testing and development, the backend database will be MySQL, version

4.0.20a.

PPrroojjeecctt SSccooppee
The scope of this project will include demonstration of various robust techniques

in a prototype application in an effort to begin developing a robust philosophy. The

implementation of the “robust” model into multiple languages will allow for

additional in-depth analysis of the applied techniques versus potential changes

without inherently affecting every aspect of the code base.

Page 11 of 82

CChhaapptteerr IIII -- TThhee MMooddeell

““RRoobbuussttnneessss”” PPhhiilloossoopphhyy
Wikipedia defines robustness as “the ability of the software system to maintain

function even with the changes in internal structure or external environment.”

(Wikipedia, 2006) It further expands that in the computer software world this

robustness is the “resilience of the system, especially when under stress or when

confronted with invalid input.” The popular website continues with this definition by

including terminology such as “system integrity,” “clean design,” and “careful

coding.” An example is presented where “an operating system is considered robust if

it operates correctly when it is starved of memory or storage space, or when

confronted with an application that has bugs or is behaving in an illegal fashion - such

as trying to access memory or storage belonging to other tasks in a multitasking

system.”

Robust, as defined by Merriam Webster Online (www.m-w.com, 2006), is

“having or exhibiting strength” or “strongly formed or constructed.” This is similar

and supportive of Vance T. Holderfield and Michael N. Huhns’ research in “A

Foundational Analysis of Software Robustness Using Redundant Agent

Collaboration” where they define robustness “as strong and stoutly built, able to

withstand the rigors of normal wear and tear.” (2006, p. 2) In essence, defining

robust is almost as if one were defining perfection, which, although unlikely, is and

should be the design intent of any system. The intent of this project is to develop a

model by which the system could be developed with the same robustness.

The concept of robustness relies on a great deal of work prior to developing and

designing a system that is able to think and react while maintaining system integrity.

Page 12 of 82

http:(www.m-w.com

Rob Sjodin from Regis University identifies three key strategies in developing a large

scale system to be:

 User-driven Requirements

 Architecture-centric Design

 Iterative Processes

(2005, p. 3)

The user-driven requirements equate out to defining the system’s functionality, or

“building the right thing.” The second bullet item relates to the correct definition of

the solution’s form, or better said “building the thing right.” The final item identifies

the incremental approach of “making it happen.” (Sjodin, 2005, p. 3)

An architecture-centric design is a primary key to achieving a robust product.

Granted, without the proper identification of what the system should accomplish, then

regardless of correct and robust design the system will fail. Likewise, without an

iterative process in place to correctly gauge the development process the ultimate

product might be completely out-of-line with the intent of those requesting the system

to begin with. Still, “building the thing right” is the absolute essence of arriving at a

robust deliverable that will be “strongly formed [and] constructed.”

As simple as it is to state that a system needs to be robust, creating one is much

move involved. Several “quality factors” are inherently involved in arriving at a

robust product when development is finally complete. Robustness is not only an ideal

deliverable as a product, but it is a course of action throughout the process. The

following factors need to be thoroughly designed and implemented to achieve the

final goal of a robust product:

 Adaptability

 Extensibility

Page 13 of 82

 Flexibility

 Scalability

 Understandability

(Sjodin, 2005, p. 5)

TThhee nn--TTiieerr AArrcchhiitteeccttuurree
A system that fits the robustness definition must be dynamic. A dynamic system

must be adaptable, extensible, flexible, scaleable, and ultimately understandable in

order to be robust. The concept of a multi-tier, or n-tier, architecture is a common

structure that “is executed by more than one distinct software agent, [such as] an

application that uses middleware to service data requests between a user and a

database.” (Wikipedia, 2006) The multi-tier architecture allows for software

modularity by separating out the functionality of objects and classes into multi-tiered

groups of common use. These groups (or tiers) such as “user interface, functional

process logic (‘business rules’), data storage and data access are developed and

maintained as independent modules.” (Wikipedia, 2006) The power lies within the

fact that each of these modules can use and be used by any number of other modules

within and between the different tiers, but can be modified, upgraded, or replaced

independently without directly affecting any of the other modules. This allows for

new functionality to be implemented without the worry of causing system wide

stoppage or down times. This low-coupled approach adheres strongly to the “robust”

requirements of this project.

AAddaappttaabbiilliittyy

Adaptability is the ability “to make fit (as for a specific or new use or situation)

often by modification.” (http://www.m-w.com/, 2006) Since change is inevitable, the

more dynamic the application is at modifying and changing the better. Code that is

Page 14 of 82

(http://www.m-w.com/

written for a single purpose within a very tight scope might have its uses, but if that

code must be completely redone each time requirements change then the lack of

adaptability of that code exhibits inefficiency.

Being able to make modifications without affecting every segment of the system

code is very powerful. The system itself is adaptable because it can change

requirements independently without a complete system re-write or system shut down.

The removal of the “hard coding” and tight integration amongst the pieces directly

relates to high-coupling1 versus the low-coupled approach of an n-tier architecture.

Mohamad Fayad says in his article, “Aspects of Software Adaptability,”

 “In today’s rapidly changing business environment, adaptability is a

critical weapon for survival. Businesses must be adaptable in order to

meet increasingly narrow market windows. This need for adaptability at

the business level has changed the focus in many businesses from

efficiency to opportunity, from reducing costs to generating revenue. For

example, an efficient but inflexible system might reduce costs, but might

also make it impossible for the business to engage in a new revenue-

generating opportunity.” (1996, p. 58)

The importance of adaptable applications cannot be overstated. Adaptability itself

can be presented in many ways within even a single application. Software can be

“self-adaptive [where it] modifies its own behavior in response to changes in its

operating environment.” (Subramanian, 2002, p. 52) That same software may be

adaptable primarily because of the simplicity with which a change for a new

requirement may be made. Additionally, the software must be able to adapt to

potential need for new technologies such as adding a new middleware web service to

1 Wikipedia defines coupling as “the degree to which each program module relies on each other module.
With low coupling, a change in one module will not require a change in the implementation of another
module.” (http://en.wikipedia.org/wiki/Coupling_(computer_science))

Page 15 of 82

(http://en.wikipedia.org/wiki/Coupling_(computer_science))

the Integration layer (see the Integration Layer section) or upgrading the access

technology to the “back-end” database. If the entire system is adversely affected by

such a modification or addition then that software is not easily adaptable.

Adaptable software development further reinforces the theory of robustness by

emphasizing that “it is no longer acceptable if a software system is correct and solves

the problem for which it was designed.” (Fayad, 1996, p. 58) The software must

almost be able to see into the future and “grow and change to solve slightly different

problems over time [corresponding] to the three stages of the evolution of software

development: Build the right thing, build the thing right, and support the next thing.”

(Fayad, 1996, p. 58)

EExxtteennssiibbiilliittyy

Extensibility relates very closely to adaptability. Where adaptability is the ability

to change according to necessity in the future, extensibility is the “system design

principle where the implementation takes into consideration future growth. It is a

systemic measure of the ability to extend a system and the level of effort required to

implement the extension.” (Wikipedia, 2006) “Extensible describes something, such

as a program, programming language, or protocol that is designed so that users (or

later designers) can extend its capabilities.” (TechTarget.com, 2006) Extensibility is a

strong factor in determining the adaptability of a given system. It is the ability to

extend that given system is based upon “the addition of new functionality or through

modification of existing functionality […] while minimizing impact to existing

system functions.” (Wikipedia, 2006)

Page 16 of 82

http:(TechTarget.com

FFlleexxiibbiilliittyy

Flexibility is defined by Merriam Webster Online as “characterized by a ready

capability to adapt to new, different, or changing requirements.” (2006) The concept

of being a flexible application easily relates to both adaptability and extensibility. An

application that can “change with the times” could be termed flexible. Fayad

describes flexibility as “easy to change [a] system’s capabilities in kind. For example,

taking something that was a graphical system and making it sensory- or sound based.”

(1996, p. 59) The flexibility must be inherent and not “on-the-fly,” or the changes

made become less adaptable and risk reducing the application’s robustness.

Constantly making software more flexible by means that do not fit into the adaptable

mold risks becoming more like “feature creep” than flexibility; which is why Fayad

expresses concern, stating that “flexibility is often harder than extensibility, especially

when on-the-fly changes are desired.” (1996, p. 59)

SSccaallaabbiilliittyy

Scalability refers to a systems ability to grow and expand. The term itself is

defined as “capable of being scaled.” (Merriamwebster.com, 2006) By taking a

closer look at scaled, one notices the use of terms such as “adjust” and “surmount.”

The scalability of a system is measured by its capability “to increase total throughput

under an increased load.” (Wikipedia, 2006) A system can expand (or scale) to meet

future requirements such as a larger or more efficient database, or perhaps “contract

its resource pool to accommodate heavier or lighter loads.” Other possible

dimensions of scalability beyond the “load scalability” might be “geographic” in

nature such as maintaining a powerful system despite large distances between users,

Page 17 of 82

http:(Merriamwebster.com

or “administrative scalability” that can share many vastly different task in a single

system that is simple and easy to use and manage. (Wikipedia, 2006)

UUnnddeerrssttaannddaabbiilliittyy

Understandability can be seen as the ability for a user of a system to understand

and use the system, or from the opposing view as the ability of a developer (or new

developer) to understand and modify that system. The key term is “use.” Whereas a

user must be able to use the system or they will not use that system, a developer must

be able to understand the system in order to maintain and/or modify it when changes

are required. Despite the fact that a system might be able to perform many great and

wonderful tasks, if it is not usable then the user won’t use it and those great attributes

will never been seen or utilized. This is very similar from the perspective of a

developer. As is typically the case in most areas, too much of a good thing is exactly

that, too much. Building a robust product that results in very complex and difficult to

understand code can produce the exact opposite result, and create a very inefficient

upgrade effort when the time comes to do so.

MMooddeell DDeessiiggnn AArrcchhiitteeccttuurree
Software architecture is defined on Wikipedia (2006) as “the external interfaces

among the system's software entities, and between the system and its external

environment.” This definition is pushed further in regards to robust software

architecture being defined as “one that exhibits an optimal degree of fault-tolerance,

backward compatibility, forward compatibility, extensibility, reliability,

maintainability, availability, serviceability, usability, and such other ilities as

necessary and/or desirable.” (Wikipedia, 2006) The model design for a multi-tiered

Page 18 of 82

application such as the web-based prototype for TrailTracker will be a system

consisting of several different programmatic levels. Since the prototype will be “an

application delivered to users from a web server over a network such as the Internet

or an intranet,” a method of delivery must be through a web-based portal. (Wikipedia,

2006) A standard browser, such as Internet Explorer, Firefox, or Netscape, allows for

easy access to the Internet and everything it has to offer, including the common

language of HTML. Using these browsers as a client (thin client) makes web

applications a popular choice because of “the ubiquity of the web browser as a client,

sometimes called a thin client, [and the] ability to update and maintain web

applications without distributing and installing software on potentially thousands of

client computers.” (Wikipedia, 2006)

An n-tier model has several advantages, but can also have disadvantages as well.

Advantages of an n-tier model range from modifying Business logic “without making

changes to either the user interface or the database,” to business objects being used by

multiple interfaces, to isolating “the knowledge required in any given tier to that tier.”

(Booth, 2006) Additionally, because a system is divided into multiple layers, many

developers can code on same project simultaneously since the boundaries are defined,

as are the interfaces. On the flip side, an n-tier model introduces a more complex

system design, as well as potentially increasing the “memory footprint of the

application.” (Booth, 2006) N-tier systems are designed to “share the load,” using

already existing modules and systems to create efficient and effective complete

systems. This “sharing” relates directly to several concepts of robustness such as

adaptability, flexibility, and extensibility defined earlier.

Page 19 of 82

PPrreesseennttaattiioonn TTiieerr ((LLaayyeerr))

The Presentation layer is the first thing the user sees when using your application.

It is the ‘front line.’ Bad design on the front-end results in a poor user experience and

can ultimately doom a system before the user even begins the process of actually

using the system. This tier, “which displays the graphical user interface to the end

user,” must be clean, intuitive, and fully functional. (Roman, 2002, p. 475)

The Presentation tier for a web-based application is typically created using an

HTML based interface, using a scripting language and/or server based language

backend to communicate data effectively between the user and the layers that

“actually do the work.” The web browser is commonly the portal to the first tier.

SSeerrvviicceess ““BBuussiinneessss LLooggiicc”” TTiieerr ((LLaayyeerr))

The Services layer is the initial Business logic layer that “services” the user

requests. In other words it delivers, manipulates, and sets up the data for the system;

preparing that data for what needs to be done with that data in order to return the

necessary data to the user based upon that data received by the Services layer. This

“Business logic” layer is an “an engine using some dynamic web content technology

(e.g., CGI, PHP, Java Servlets or Active Server Pages)” that allows the “logic” to be

acted upon. (Wikipedia, 2006) The boundary of an application is roughly defined

by the services it offers through a “set of available operations from the perspective of

interfacing client layers.” (Stafford, 2006) This layer “encapsulates the application's

Business logic, controlling transactions and coordinating responses in the

implementation of its operations.” (Stafford, 2006) The Services layer’s role roughly

“boils down to policy-driven message routing and monitoring.” (Wainewright, 2005)

The actions of the tier itself are moving and preparing the data from the ‘front-end’ to

Page 20 of 82

the ‘back-end,’ “brokering” that data to the “shape it should take in a standards-based,

loosely coupled, services-oriented architecture.” (Wainewright, 2005) This bridge

from the user entry point to the “back-end” is designed based upon the rules and

policies under which the business operation must run.

IInntteeggrraattiioonn LLaayyeerr

Where the Services layer is the servicing and preparation of the data as it travels

and is handled from the front-end to the back-end, the Integration layer is the glue

that holds the front-end and back-end together. The integration is the silent in-

between that allows different internal systems to operate in a seemingly seamless

manner to external observer. Microsoft’s MSDN website identifies the Integration

layer as “abstracting one system's internals from other systems allows you to change

one system without affecting the other systems.” (msdn.microsoft.com, 2006) By

“abstracting” the connection of multiple systems an application is given the “ability to

limit the propagation of changes is a key consideration for integration solutions where

connections can be plentiful and making changes to applications can be very

difficult.” (msdn.microsoft.com, 2006) The Integration layer brings together

potentially un-related systems, creating a simulated working relationship, allowing

“pluggable modules across a network to create distributed, composite applications,”

aiming to “connect together pre-existing, self-sufficient applications.” (Bradley,

2003)

Integration is a fine line. Adaptability, as defined above, allows for the re-use of

segments of code, or entire systems. Integrating together these pieces is not always a

simple prospect, nor is it always the best practice. As Microsoft puts it:

A fully integrated enterprise seems to be any CIO's idea of perfection.

Complex interactions between systems are orchestrated through precisely

Page 21 of 82

http:(msdn.microsoft.com
http:(msdn.microsoft.com

modeled business process definitions. Any data format inconsistencies are

resolved through the Integration layer. Relevant summary data is

presented to executive dashboards with up-to-the-minute accuracy. Such

visions are surely enticing, but should every enterprise set out to build

such a comprehensive and inherently complicated solution?

(msdn.microsoft.com, 2006)

There comes a point in time where integrating existing systems and applications

together becomes more of a hassle than a benefit. How much to integrate is a

question that must be asked, and must be answered when “deciding how far to go is

[the] important step [of] planning an integration solution.” Despite the benefits that

could be ultimately achieved through integration of two systems to avoid inconsistent

business practices, the effort and delays may override the benefits.

(msdn.microsoft.com, 2006) Loosely coupling the applications together through solid

integration can create a powerful system based upon systems that are not dependent

upon one another and can therefore evolve independently. A complete

understanding of the total system for purposes such as debugging can also become

very unmanageable and difficult as well.

Page 22 of 82

http:(msdn.microsoft.com
http:(msdn.microsoft.com

CChhaapptteerr IIIIII -- RReesseeaarrcchh && AAnnaallyyssiiss

TThhee PPrroojjeecctt GGooaallss
The ultimate goal of this project is to demonstrate robust architecture techniques

through the development of a prototype web-based application using an n-tier

architecture. An idea for this prototype web-based application must exist that will

provide enough of a structure to challenge implementation. The application in

question, the TrailTracker system, will be designed to track an athlete’s training for

any type of time-based exercise for the purpose of general tracking and/or data

comparison. The robust techniques used in the development of this prototype are not

all inclusive nor do they represent every possible solution or technology available, but

rather will demonstrate a philosophy which can be potentially carried on for other

future development projects.

RReeqquuiirreemmeennttss // OOvveerrvviieeww ooff tthhee AApppplliiccaattiioonn
Despite the fact that the TrailTracker system will be the prototype utilized to

create the base for which to “see the architecture in action,” the entire project will not

need to be completed fully to do so. Attempting to build out a complete, fully

functional system is far too time-consuming for the scope of this demonstration and

analysis. This examination requires enough of the prototype to be constructed to

demonstrate and analyze the robust architecture so therefore not all of the use cases in

the next section will be completed; only the number of use cases necessary to

accurately demonstrate and analyze the necessary robust development concepts will

actually be used.

Page 23 of 82

QQuuiicckk OOvveerrvviieeww ooff PPrroottoottyyppee

In 1997, Chikkinlegs Solutions founders, the author, Eric Filonowich and his

running “buddy,” Jason Vale, encountered their first “trail running experience” in the

mountains just west of Golden, Colorado. That initial trek ignited a passion for the

rugged style of running. Although their initial efforts were designed to improve

health, fitness, and performance in other sporting interests, both became infatuated

with the sheer challenge and exhilaration they enjoyed while trail running.

By 2001, both men had finished in the top third of the infamous Pikes Peak

Ascent2. A burning desire to improve and eventually master the Pikes Peak Marathon

pushed the running duo to a more intense training regimen. Their “pencil and paper”

tracking data was immediately translated into an Excel Spreadsheet3, but they quickly

discovered the need for a more sophisticated data tracking system.

Figure 1 - Excel Spreadsheet tracking

2 http://www.pikespeakmarathon.org/
3 Microsoft Excel (*.xls)

Page 24 of 82

http://www.pikespeakmarathon.org/

UUssee CCaasseess

The use case diagram in Figure 2 encompasses the requirements of the web-based

application that is intended for the TrailTracker system. The diagram itself allows

for a quick, high-level overview of the potential uses of the system. The different

paths are each individually broken down in greater detail in the tables following the

diagram. The use cases and diagram will become the basis for the front-end interface,

via the web and HTML, to the TrailTracker system.

Runner/Rider

System

Create New Trail

Edits Trail

Enter Data into
existing trail

Find Trails

Authenticate User

View Trails

«uses»

Database

«uses»

Log In

«extends»

«uses»

«extends»

«extends»

«extends»

Edits Data

«extends»

Find Data

«uses»

«uses»

Compare Data

«extends»

«uses»

Create New Segment

«extends»

Create New Split

«extends»

Figure 2 - Use Case Diagram

Page 25 of 82

User logs into system

Use-Case Diagram TrailTracker System
Use Case Name User logs into system
Actor(s) User, Database
Use Case Description User logs into TrailTracker web application
Initiated by/when When user arrives at TrailTracker index web page
Terminated by/when When user successfully enters username and password
Normal Course 1. User arrives at index page of TrailTracker site

2. User enters username
3. User enters password
4. User successfully logs in

Alternate Course(s) NA

Pre-condition(s)
Post Condition(s) User successfully enters system
Assumptions

User creates new password and username

Use-Case Diagram TrailTracker System
Use Case Name User creates new password and username
Actor(s) User, Database
Use Case Description User creates new password and username to be able to

log into TrailTracker web application
Initiated by/when When user arrives at TrailTracker index web page
Terminated by/when When user successfully creates new user information
Normal Course 1. User arrives at index page of TrailTracker site

2. User selects to create new user
3. User enters information
4. User submits information
5. User successfully logs in

Alternate Course(s) NA

Pre-condition(s)
Post Condition(s) User successfully enters system
Assumptions

User enters data into existing trail

Use-Case Diagram TrailTracker System
Use Case Name User enters data into existing trail

Page 26 of 82

Actor(s) User, Database
Use Case Description User selects an existing trail and enters a date and data

for that trail.
Initiated by/when User selects option to enter data
Terminated by/when When user is notified that data has been successfully

entered.
Normal Course 1. User selects option to enter data

2. User selects trail
3. User enters split information
4. User repeats #3 until all split information filled.
5. User submits data
6. User notified submission successful

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) Data successfully entered into system
Assumptions

User creates new trail

Use-Case Diagram TrailTracker System
Use Case Name User creates new trail
Actor(s) User, Database
Use Case Description User selects option to create new trail
Initiated by/when User selects option to create new trail
Terminated by/when When user is notified that new trail has been

successfully created.
Normal Course 1. User selects option to create new trail

2. User selects name for new trail
3. User adds split/segments information
4. User repeats #3 until all split/segments

information filled.
5. User submits new trail
6. User notified submission successful

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) New Trail successfully added to system
Assumptions

Page 27 of 82

User creates new segment

Use-Case Diagram TrailTracker System
Use Case Name User creates new segment
Actor(s) User, Database
Use Case Description User selects option to create new segment
Initiated by/when User selects option to create new segment
Terminated by/when When user is notified that new segment has been

successfully created.
Normal Course 1. User selects option to create new segment

2. User selects name for new segment
3. User adds start split
4. User adds end split
5. User submits new segment
6. User notified submission successful

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) New Segment successfully added to system
Assumptions

User creates new split

Use-Case Diagram TrailTracker System
Use Case Name User creates new split
Actor(s) User, Database
Use Case Description User selects option to create new split
Initiated by/when User selects option to create new split
Terminated by/when When user is notified that new split has been

successfully created.
Normal Course 1. User selects option to create new split

2. User selects name for new split
3. User adds split information
4. User submits new split
5. User notified submission successful

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) New Split successfully added to system
Assumptions

Page 28 of 82

User edits trail (only one that they created)

Use-Case Diagram TrailTracker System
Use Case Name User edits trail that they created
Actor(s) User, Database
Use Case Description User selects an existing trail that they created and edits

trail information
Initiated by/when User selects option to edit existing trail
Terminated by/when When user is notified that trail has been successfully

modified.
Normal Course 1. User selects option to edit existing trail

2. User selects trail that they created
3. User selects what they would like to edit

a. Trail information
b. Splits/segments

4. If 3a:
a. Users modifies trail information

5. If 3b:
a. User adds or deletes split/segments
b. User repeats #4a until all split/segments

edited
6. User submits data
7. User notified submission successful

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) Trail edits successfully added to system.
Assumptions There are trails that user created to edit.

User creates new trail based upon one created by another user

Use-Case Diagram TrailTracker System
Use Case Name User creates new trail based upon one created by

another user.
Actor(s) User, Database
Use Case Description User selects option to create new trail based upon

existing trail
Initiated by/when User selects option to create new trail based upon

existing trail
Terminated by/when When user is notified that new trail has been

successfully created.
Normal Course 1. User selects option to create new trail based

upon existing trail.
2. User names new trail
3. User continues through Use Case “User edits

Page 29 of 82

trail (only one that they created)”

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) New Trail successfully added to system.
Assumptions There are trails created to copy.

User Views Trails

Use-Case Diagram TrailTracker System
Use Case Name User view trails
Actor(s) User, Database
Use Case Description User selects option to view existing trails.
Initiated by/when User selects option to view existing trails.
Terminated by/when Web page displaying trails loads.
Normal Course 1. User selects option to view existing trails.

2. Web page displays all existing trails.

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) Web page displaying all existing trails.
Assumptions There are trails to display.

User views/compares data

Use-Case Diagram TrailTracker System
Use Case Name User
Actor(s) User, Database
Use Case Description User selects option to view/compare data.
Initiated by/when User selects option to view/compare data.
Terminated by/when When results are displayed.
Normal Course 1. User selects option to view/compare data

2. User selects Comparison Type:
a. Trail History
b. Segment Comparison
c. Split Comparison

3. User selects User Base:
a. User Only
b. All Users
c. Specific Users

4. If User selects 2a & 3a:
a. User selects trail.

Page 30 of 82

b. User goes to #13
5. If User selects 2a & 3b:

a. User selects trail
b. User goes to #13

6. If User selects 2a & 3c:
a. User selects trail
b. User selects users to be included in

results
c. User goes to #13

7. If User selects 2b & 3a:
a. User selects Segment
b. User goes to #13

8. If User selects 2b & 3b:
a. User selects Segment
b. User goes to #13

9. If User selects 2b & 3c:
a. User selects Segment
b. User selects users to be included in

results
c. User goes to #13

10. If User selects 2c & 3a:
a. User selects Split
b. User goes to #13

11. If User selects 2c & 3b:
a. User selects Split
b. User goes to #13

12. If User selects 2c & 3c:
a. User selects Split
b. User selects users to be included in

results
c. User goes to #13

13. User selects date range for results
14. User views results

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) Web page displays results
Assumptions There is data to compare on an existing trail.

User edits data

Use-Case Diagram TrailTracker System
Use Case Name User edits data
Actor(s) User, Database
Use Case Description User selects a date on a specific trail to edit the data.

Page 31 of 82

Initiated by/when User selects a date on a specific trail to edit the data.
Terminated by/when When data is successfully updated on system.
Normal Course 1. User selects option to edit data.

2. User selects trail.
3. User selects date.
4. User edits data for each split/segment
5. User submits
6. User receives feedback that data has been

updated.

Alternate Course(s) NA

Pre-condition(s) Successful login
Post Condition(s) User successfully enters system
Assumptions Assumes there is data to edit, and trails for which there

is data to edit.

The use cases above are just the beginning in developing a robust system. By

analyzing the users and how each might interact with the system that system begins to

come to life. The analysis presents the desired interaction and reaction with the

application and begins to identify the potential path of the data as well as exactly

what that data might be. Although perhaps viewed as tedious use cases are an

excellent medium with which to bring the developer of the system and those wishing

to have the system created onto the “same page.” Nothing can truly be considered

less robust than developing the wrong system to begin with. The use cases give a

high-level overview of how the application will be used by the end users. Hashing

out the “way the system must work” is an essential primary step in developing a

robust system. Based upon the study of the above use cases the true system design

can begin to take shape.

Page 32 of 82

CChhaapptteerr IIVV -- SSyysstteemmss DDeessiiggnn

The system model is the key to this entire project. The better the model itself is

designed, the better the n-tier system will operate and demonstrate the concepts of

robustness defined earlier. Three key areas comprise the complete system: the

database, the HTML interface, and the class model.

DDaattaabbaassee IImmpplleemmeennttaattiioonn
A robust system would not be so without a robust backend database. The process

of normalization has been applied to the 3rd normal form as best as possible. A quick

description of the normalization and construction of the database is described in this

section.

The database behind the TrailTracker system must really be split into two areas,

based upon the data identified in the previous section. The schema for the database is

illustrated in Figure 3.

PERSONAL_INFO

PK PERS_ID

PERS_First_Name
PERS_Last_name
PERS_Email
PERS_Age
PERS_Locality
PERS_State
PERS_Zip
PERS_Country_Code
PERS_UserName
PERS_Password

TRAIL

PK TRAIL_ID

TRAIL_Name
TRAIL_Description
TRAIL_Distance

FK1 TRAIL_CreatedBy_PERS_ID
TRAIL_IsMetric

SPLIT

PK SPLIT_ID

SPLIT_Name
SPLIT_Description
SPLIT_Picture
SPLIT_GPS
SPLIT_Elevation

SEGMENT

PK SEGMENT_ID

FK1 Start_SPLIT_ID
FK2 End_SPLIT_ID

SEGMENT_Distance

TRAIL_SEGMENTS

PK TRAIL_SEGMENT_ID

FK1 SEGMENT_ID
TRAIL_ItemNum

FK2 TRAIL_ID

DATE

PK DATE_ID

DATE_ActualDate
FK1 PERS_ID
FK2 TRAIL_ID

DATE_Conditions
DATE_EnergyLevel
DATE_Temperature

DATA

PK DATA_ID

FK1 DATE_ID
DATA_Time
DATA_HR
DATA_Speed

FK2 TRAIL_SEGMENT_ID

Figure 3 - Full Schema

Page 33 of 82

The first area is the actual trail information, such as trail description and location,

splits, and the combination of splits that make up a specific trail. The second is the

data related to the actual running or riding of a specific trail on a specific date. The

two areas are related because a trail is obviously required in order to run it, yet they

must be kept separate in order to reduce duplication of standard trail descriptive

information; and ultimately the sharing of data amongst users must be kept at a level

that allows for sharing only a trail itself, or allowing for other users to view actual

run/ride data as well.

By delineating between SPLITS, SEGMENTS, and TRAILS a user can create

new TRAILS based upon already existing SEGMENTS, and likewise new

SEGMENTS can be created by using already existing SPLITS. Separating out the

granular levels also will allow for better comparisons, as users will be able to not only

compare between runs at the trail level, they can then also compare across

SEGMENTS or SPLITS even if those SEGMENTS and/or SPLITS reside in

completely different TRAILS or SEGMENTS.

The second side of the data within the TrailTracker system uses the Trail ID to

identify the trail for that specific run/ride. The ID is used to retrieve the

TRAIL_SEGMENTS for the specific Trail. For each TRAIL_SEGMENT instance a

line item will be added to the DATA table with the appropriate tracking data.

DDeessiiggnn HHTTMMLL FFrroonntt EEnndd TTeemmppllaatteess
The initial graphic design of the template for the TrailTracker website is as seen

in Figure 4 below. The screen is designed to fit into a 1024x768 browser window

with 800x600 of free space to work with for forms and information. All efforts will

Page 34 of 82

be made to maintain a “scroll bar” free website to avoid unnecessary scrolling, and

hopefully maintain better usability. The initial entry point of the TrailTracker

site/application will be the index page. This front-end will allow the user to either log

in, or if not a current user, give the user a link to join.

Figure 4 - HTML mock up of log in page

If a user does not already have a user name and password, the link below the Log

In button gives the user a chance to join. After clicking the link, the user is prompted

to enter information (see Figure below) to “join” the site, and to choose a login user

name and password.

Figure 5 - HTML mock up of Join page

Page 35 of 82

Once a user logs in or creates a new user they will be guided to the welcome page.

For the sake of this the ultimate goal of this project, the welcome will do nothing

more than be a simple welcome and display the user’s first name and last name as

double-check of the database functionality. The simple page can be seen in Figure 6

below.

Figure 6 - Welcome.jsp system page

These pages will build the Presentation Layer look and feel by which the system

will begin to demonstrate the concepts of robust architecture and development

defined in the previous chapter.

DDeessiiggnn CCllaassss aanndd CCoonncceepptt MMooddeellss
Based upon the database designs, the essential data will be captured in classes

seen in the diagram below (see Figure 7). The classes represented in the diagram

nearly mimic the database schematic with the exception of the Collection classes.

Although all of the data is encapsulated in the classes, without a collection type

container a developer might run across a situation where two (or more) types of

containers might be in use and thus represent differing methods of accessing the data

within those collections. By “hard coding” in method calls (like Add or Remove) to a

Page 36 of 82

specific type of container, the code becomes more highly coupled and thus more

likely to cause a larger code change if that container is changed.

-Distance
-SegmentCollection
-GenericDBInfo

Trail
-StartSplit
-EndSplit
-GenericDBInfo

Segment
-Picture
-GPS
-Elevation
-GenericDBInfo

Split

-Date
-Trail_ID
-Conditions
-Temperature
-EnergyLevel
-DataCollection

Date

contains contains

-Segment_ID
-Time
-HR
-Speed

Data

contains

-FirstName
-LastName
-Email
-Age
-Locality
-State
-Zip
-CountryCode
-UserName
-Password

Personal

1

1

1

1

1

1

1

1

Created by Created by

Created by

Created by

-Segment[]
SegmentCollection

contains

-Data[]
DataCollection

contains

1

1

1

1

contains

1
11

1

contains

1

1

1 1 1 2..* 1 2

contains

1 1 1 2..*

contains
-Name
-Description
-CreatedBy
-IsMetric
-ID

GenericDBInfo

contains

Figure 7 - System Data Class Diagram

By creating an encapsulating collection class as seen in the diagram above,

standard accessing methods can be created, and the actual collection class “behind the

scenes” becomes irrelevant. This type of black box approach allows for the type of

container within the collection class to be changed without any apparent modification

to the “outside.” An example might be a using an array of Trail objects versus

utilizing the more robust collection encapsulation. If, for any number of reasons, the

usage of the array is frowned upon or needs to be changed to something like a Java

Vector class instead; each location where the code resides will need to be modified.

All instances of the array will need to be changed to the Vector object instead, as also

Page 37 of 82

will the access methods and calls. Utilizing the robust model instead, the actual

collection type within the collection class can be changed from an Array to a Vector.

Only the internal structure of that class would need modified. Externally (outside of

the black box), all other objects attempting to access the data would continue doing so

in the same manner and notice no difference.

Similarly, the service classes for the system (as seen in the Figure below) utilize

the concepts of the robust architecture by separating (or encapsulating) the

functionality of each class so as to maintain a low coupling yet high cohesion.

+confirmLogin()
+addTrail()
+addNewUser()

Manager

+AuthenticateUser()

AuthSvcMYSQLImpl

+getTrails()
+setTrail()
+createNewUser()

DBSvcImpl

+getImplName()
+getService()

Factory

1

1

Uses

1

0..*

Gets

1

1

+getTrails()
+setTrail()
+createNewUser()

IDatabaseService

<<interface>>

1

1
Creates

1

0..* +AuthenticateUser()

IAuthenticationService

1 1

<<interface>>

1

1
Creates

Returns
Impls

Gets

+initializeConnection()
+QueryDBase()
+UpdateDBase()
+CloseDBase()

MySQLConnection

Figure 8 - Services Classes model

Using a Factory pattern, the Manager class calls the Factory object and is

returned the correct database connection object required to communicate with the

current database system. The Manager class itself does not know any of the details of

the type of database being used. The Factory uses encapsulated code within itself to

generate the connection to whichever database is required and returns that object,

Page 38 of 82

acting as a “factory” of creating database objects. Similar to the data objects above, if

the database is swapped out and a different database is being utilized, only the actual

database service class will know. The Factory will return the type of object needed

based upon the type requested. The Manager class will expect an IDatabaseService

interface class and will use the same method calls regardless of if it gets the MySQL

implementation class currently in use (see above), or if a new implementation to an

Oracle or SQLServer database is returned. The Manager class and the Factory will

not be affected in any manner.

Page 39 of 82

CChhaapptteerr VV -- MMooddeell IImmpplleemmeennttaattiioonn

This section demonstrates the implementation of the robust model developed in

the previous chapter through code snippets and the examination of potential changes

made to the system. The techniques identified are by no means the only possible

solutions, nor do they represent every potential technology or methodology available.

They are meant to create a robust philosophy that can be potentially used in future

development efforts.

IImmpplleemmeennttiinngg tthhee RRoobbuusstt AArrcchhiitteeccttuurree
As mentioned above in Figure 7, tying the type of collection into other code

increases the coupling instead of de-coupling acting instead in the exact opposite

manner of the robust definition.

Figure 9- Collection object in Java

Page 40 of 82

A better implementation is to encapsulate the collection classes and control the

data access, as well as “hide” the collection type. The Collection classes are designed

to encapsulate the type of collection used to store the Splits, Segments, or Trails, and

therefore any type of collection can be used without actually surfacing the type

collection to the remainder of the code. This low-coupling approach will enable the

implementation to utilize whichever collection type might be more appropriate or

more powerful. An example of the SegmentCollection class is presented in Figure 9

above.

Figure 10 - Trail.java class snippet

Notice, in Figure 10 above, how the getSegments() method in the Trail class

simply returns the SegmentCollection object. This is essentially a custom collection

Page 41 of 82

type that is utilizing an unknown collection container “underneath the hood.” In the

code example above in Figure 9 that collection container is a Vector class, but it

could just as easily be an array, hash table, or whatever type of collection class is

desired and most effective.

Figure 11 - Collection class modified with new collection container type

Changing and modifying that collection class within the SegmentCollection has

no effect upon the object accessing and using the SegmentCollection class itself. As

seen in Figure 11 above, modifying the type of collection object from a Vector class

to an ArrayList has no bearing on any of the classes external to the SegmentCollection

class itself. The “Add” method still appears identical to any object attempting to

Page 42 of 82

access an instance of a SegmentCollection object, but underneath the hood the type of

collection object could be any type.

Using an example of the same project implemented in C# (see Figure 12 below),

the SegmentCollection class appears to be identical from an outside class. Each of

accessing methods on the collection class are identical to those in Figure 11, but upon

closer inspection note the different container object is a CollectionBase upon which

the entire class is inherited.

Figure 12 - Collection example in C#

Although the external appearance of the class interface is the same, the internal

“workings” are different but completely unknown by the user. This black box

approach allows for all of the code surrounding and using these collection classes to

Page 43 of 82

operate independent of the type of collection container within those collection classes.

This results in an adaptable and flexible class, because a change whether major or

minor, to the type of collection object contained with the collection class requires no

modification to external code. This type of low-coupling provides more efficient

coding resulting in a more robust implementation.

AAddddiinngg EEffffiicciieennccyy ttoo tthhee PPrreesseennttaattiioonn LLaayyeerr

Robust development doesn’t only fall into the bulk of the code in the Service and

Integration layers, but can also be practiced in the Presentation layer. One of the

primary underlying commonalities of a robust architecture is efficiency. Very similar

to the way the collection classes above allowed for the type of collection container to

be changed without necessitating changes throughout the code, the Presentation layer

code can act in the same manner. The power of the n-tier architecture is in its design

to separate out functionality amongst the individual layers. Yet, just by separating

out each of the tier’s responsibilities doesn’t automatically infer that an application is

robust. Since the HTML interface is in each page that code is thus duplicated,

resulting in duplication of effort and the reverse of efficiency. A better method is

required in order to encapsulate the interface design code into a single unit rather than

have duplicated code spread across each and every page in the system. As seen in

Figure 13 below, the interface HTML code has been removed from the system

HTML/JSP code, and is included using the JSP include directive tags.

Page 44 of 82

Figure 13 - JSP/Struts Presentation Layer example

The top interface and bottom interface code is no longer duplicated, but rather

placed into two separate JSP pages, interfaceTop.jsp and interfaceBottom.jsp, where

they can each be imported into each of the system pages using the <%@ include

file=XXXX %> include directive. Each page, therefore, only contains the HTML

code and elements that are necessary for that specific page (in the case of the Figure

above, the initial login form). The interface code of the Presentation Layer is

encapsulated into the two, interfaceTop and interfaceBottom pages, as seen in Figure

14 below. Instead of placing the exact same HTML code for the interface graphics

and functionality in each and every page that code resides in a single entity. The

table tag <TD> at the bottom of Figure 14 is the beginning of the table location where

Page 45 of 82

all system specific operations will be built into the HTML/JSP pages; whereas the

closing </TD> tag is located in the interfaceBottom.jsp file. This implementation

makes modifications to the interface much more efficient and controlled because they

are in a single location.

Figure 14 - Code snippet from interfaceTop.jsp

Breaking up the interface in this manner allows for the interface and actual system

code to be independent of one another. A simple modification to a graphic, link,

button, or whatever change required in the interface can be done quickly in a single

file and instantly reflected throughout the system without the need for modifying

every file. This type of robust architecture can easily be applied to any type of server

side scripting. The example in Figure 15 demonstrates the same functionality except

in C# and ASP.NET.

Page 46 of 82

http:ASP.NET

Figure 15 - ASP.Net Example

Although the method used in the Presentation Layer above are effective, there are

also other options that a developer can take advantage of that are perhaps even more

effective. Prakish Malani writes in his JavaWorld article, “UI design with Tiles and

Struts,” that the example above using the include directive aids in the robust

development, because of the “need to change common view components once.”

(2002)

[This] solution greatly eliminates HTML and JSP code repetition,

significantly improving application maintainability. It increases the page

number a bit, but drastically reduces the tight coupling between common

view components and other pages. On the complexity scale, this solution is

simple and readily implemented on many real-world applications.

Page 47 of 82

However, it has one major drawback: if you change how and where you

organize the view components (i.e., by changing the component layout),

then you would need to update every page -- resulting in an expensive and

prohibitive change.” (Malani, 2002)

If, for any reason, the table structure in the template is modified, then the solution

becomes more tightly coupled, thus requiring modifications to nearly every file. An

even better solution might be through the use of Tiles technology. One option

suggests utilizing the Tiles insert method with the Tiles tag library, as seen in the

Malani’s example in Figure 16 below.

Figure 16 - Sample Using Tiles Insert (Malani, 2002)

The example above presents a very similar solution to the samples earlier with the

exception of using Tiles. By further expanding on Tiles, the JSP solution earlier

could expand to using similar techniques as seen in Figure 16 using the <jsp:include>

tag to contain the body code in a separate JSP page. This solution allows for “reuse

of the bodies in other places, eliminating the need for repetition and duplication, [and

thus further diminishing] the coupling between common view components and other

application components.” (2002, Malani) The power of Tiles can be seen in their

use of templates to control nearly the same exact concept as presented in this project.

Page 48 of 82

By defining a template for pages as seen in the figure below, the structure of the

pages is defined through the use of placeholders.

Figure 17 - Tiles Template sample (Malani, 2002)

Malani ties the Tiles template into the Presentation layer in Figure 18 below using

the “put” tag into the template defined in Figure 17 above. This could potentially

push the robust design of the prototype for this project to an even higher level

because “it encapsulates the layout scheme or mechanism, drastically reducing the

coupling between common view components and other content bodies.” (Malani,

2002) The problem that immediately comes to mind is the higher level of

complexity involved in generating and understanding the Tiles implementation as

seen below versus the relatively simplistic original version.

Figure 18 - Applying Tiles Template (Malani, 2002)

Page 49 of 82

Even though the above examples are in the Presentation Layer and do not reflect

the “meat” of the coding for the system, applying the Robustness concepts from

Chapter II leads to more efficient development and control. Any of the solutions

allow graphic or navigational modifications to be made quickly in a single location,

instantly being reflected throughout the entire system. When compared to modifying

the potentially large number of individual files and risking errors the potential for

introducing bugs into the system because of a change increases dramatically. Adding

even more robustness to the design with Tiles brings up a question of complexity

versus implementation. The benefit must constantly be weighed against the

understandability in order to maintain an efficient balance. Simply pushing the

envelope of robust development without any type of analysis of gains can quickly

shift the effectiveness of the solution away from the ultimate goal of creating

efficiency. Additionally, simply by implementing an n-tier architecture does not

instantly create a robust system. In their study of architecture-based software

development, Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor

determine that although “software architectures provide a promising basis for

supporting software evolution[,] improved evolvability cannot be achieved simply by

focusing solely on architectures,” (1999, p. 52) They conclude that just a “new

programming language cannot by itself solve the problems of software engineering,

[because it] is only a tool that allows (but does not force) developers to put sound

software engineering techniques into practice. Similarly, one can think of software

architectures […] as tools that also must be supported with specific techniques to

achieve desired properties.” (1999, p. 52) The techniques presented in the prototype

alone provide a simple solution, but the potential non-robust behavior of breaking the

Page 50 of 82

HTML tables out amongst the top and bottom interface and the content presents a

concern. Implementing the Tiles samples would apply robust techniques that would

allow the Presentation Tier to operate in an efficient manner that could be quickly

updated and modified, but would also add more complexity to the code. If the

solution is too complex, all of the robust techniques and the n-tier architecture are

nothing more than fancy, complicated, unworkable solutions that do more harm than

good.

GGeettttiinngg tthhee DDaattaa TToo aanndd FFrroomm tthhee PPrreesseennttaattiioonn LLaayyeerr

Remembering what the primary purpose of the Presentation Layer is immediately

brings to light two distinct sides of the system. The Presentation Layer is the visual

“front” of the system itself, the face of the application. This is the graphical user

interface to the data and how that data is manipulated. When it comes to creating an

inviting and satisfying web environment the “look and feel” play a very important

part in the user experience. Typically, this is the job of graphic designers and not

programmers. Likewise, the application coding and system architecture is the place

of programmers and not graphic designers; hence, the two distinct sides of the

system.

Referring back to the definition of robust development and the n-tier architecture,

in order to maintain adaptable, extensible, and flexible code that is scaleable the

lowest degree of coupling is generally ideal. When it comes to the Presentation

Layer, low coupling is essential in maintaining the “two sides” of the system. Using

server side scripting languages like ASP, ASP.NET, JSP, PHP or most others, it is

quite simple to integrate “code” into the HTML page itself. Using JSP, simply typing

the scripting braces “<% . . . %>” and Java code directly into the HTML code is a

Page 51 of 82

http:ASP.NET

simple “all in one” approach. This, unfortunately, violates the earlier arrived upon

definition of a robust architecture. Granted, in a single-man type shop this merging of

HTML, graphics, and scripting code isn’t as inefficient, but as the system grows and

pages begin to build upon pages, that system and the code interspersed throughout the

HTML code becomes unwieldy and unorganized, not to mention very difficult to

understand.

Fortunately, many programming languages have developed simple and easier

solutions to the highly coupled code problems described above. Implementing a

Model View Controller Pattern in Java Struts, or Java Server Faces (JSF), or in

ASP.NET allows for very robust development solutions. A Struts implementation on

the Tomcat Apache server is relatively painless. Each field in the HTML form is

named, for example, the User Name field is named username, or the Password field

is named password. Adding a simple modification to the form action which calls a

Struts action (notice the *.do extension in the form action in Figure 19 below) is all

that is needed to tie the form to Struts.

Figure 19 - Index.jsp for Java/Struts implementation

For each input form that will be used in the system, an entry must be made into

the struts-config.xml file to map the form submission to a specific Struts action. The

Page 52 of 82

initial entry is seen in Figure 20 below. The Form Bean Definition creates a map of a

Java bean based upon the page’s form data, in the case of the join.asp page the

<form-bean> below labeled “loginForm” maps directly to a Struts bean in the struts

namespace called LoginForm.

Figure 20 - Struts Form Bean Definition

The name attribute in the <form-bean> maps to an action item in the Action

Mapping Definitions in the same struts-config.xml file (see in Figure 21). The action

ties to the submit form tag seen in Figure 20 above. The action attribute calls the type

“LoginAction” which maps to the path attribute “/login” in the Action Mapping

Definitions, which is determined based upon the “login.do” form action when the

HTML form is submitted.

Based upon the Struts configuration file (seen below) the JavaBean is tied to the

action class for that JavaBean. In the case of the index.jsp page, the loginForm is tied

to the type “struts.LoginAction” which is the action for that bean.

Page 53 of 82

Figure 21 - Struts configuration file

The LoginAction class extends the Struts Action class. Upon submitting the form

and calling the appropriate “*.do” Struts action on the server, the form’s data is

automatically added to the LoginForm bean based upon the “sets” and “gets” in the

bean itself (see Figure 22 below). Struts automatically maps the LoginForm bean to

the submitting page’s form based upon the action and bean definitions in the struts-

config.xml. The code snippet below shows the names of the form fields pre-pended

with a ‘get’ and a ‘set.’ This data is added to the LoginBean object.

Figure 22 - Struts Form JavaBean for login (index.jsp)

Page 54 of 82

The execute method is then call on the LoginAction class where the login data is

extracted from the LoginForm bean (see line 42 in the Figure below). Through this

execute the code gets into the “meat” of the system.

Figure 23 - Struts Login Action (index.jsp action)

The JSP/Struts implementation of the index page (index.jsp) is simple. The only

two tags that are specific to JSP are the directive tags at the top and bottom. None of

the actual form elements are affected, other than the action URL pointing to the

“*.do” location to initialize the Struts. The separation from the actual Java code is

relatively seamless and simple when distinguishing between perhaps a pure graphic

designer and a java code writer. The data is automatically added to an existing

JavaBean through the ActionForm interface.

As indicated in the Adding Efficiency to the Presentation Layer section earlier,

additional technologies can easily be used to push the robust design of a system.

Again, Tiles allows for even more efficient operation but potentially at the cost of

simplicity. Struts and Tiles can be tied together in a manner utilizing the template

samples above. Using the combined power of Struts in addition to the increased

Page 55 of 82

robustness offered by Tiles could create an even more robust system design in the

prototype.

An ASP.NET implementation in C# is also quite simple and likewise offers low-

coupling, although it is more operation system specific. Whereas Struts allows for

data beans created that match the form’s data items’ names, the .NET utilizes the

server side controls to get the data by mapping the controls to an object on the server.

This is simply done by right clicking the element in Visual Studio in the HTML

visual view and making it server-based (see below).

Figure 24 - Visual Studio .NET HTML view of index.aspx

Submitting the data is different than the automatic nature offered in Struts. By

making the page control server-based (notice the green arrow in the upper left of the

text boxes below indicating the control is server-based), the data is made accessible to

the code when the form is submitted. Adding the onclick command to the login

button on the form in the figure above (see figure below for HTML code) and adding

the runat=”server” code make the form ready to submit the data to a method in the

index.aspx.cs code class.

Page 56 of 82

Figure 25 - onclick command to login button in index.aspx

Whereas the data in the Struts implementation ends up in the JavaBean and then

enters the Struts Action code, the C# works similar yet without having to write a bean

class. The Login_ServerClick() method acts in exactly the same way as the Struts

Action implementation. When each HTML form element is assigned as “server-side”

in Visual Studio, their data is made available. In the Figure below, notice the line

“lb.Username = this.username.Value;” where the data from the form item containing

the user name is made available and ultimately placed into the LoginBean class for

later use.

Figure 26 - index.aspx.cs Login_ServerClick method

Page 57 of 82

Other than the few modifications, the HTML code was void of any C# code, thus

successfully adhering to low-coupling. Each of the form’s items is submitted and can

be easily seen and utilized when creating essentially a “bean” object of data. Their

respective data can then simply be extracted into the system and used from there.

Both systems (either the C# example of Java/Struts example) offer similarly low-

coupled solutions for the web application Presentation Tier.

Struts creates a relatively simple implementation by using the “.do” call to the

server for easily getting the data from the submitting page and into the actual object

structure. The implementation is very unobtrusive to the HTML environment. No

complex coding is required. In the case of keeping a low-coupled environment, a

graphic designer without any coding experience (other than HTML) could easily

build the necessary pages and then point the form’s submission to the Struts location.

The page itself could easily be developed in an external HTML IDE such as

Macromedia Dreamweaver or Microsoft FrontPage. The page itself could easily be

modified in Eclipse as well.

The ASP.NET server side calls to automatically add the submitted objects to the

server for easy retrieval is very simple as well.. Much of the code generation can be

done with an easy click of a button. Tying the code and the form together is very

painless.

Both samples demonstrate adaptability by keeping the ASP.NET or JSP coding

separate from the HTML interface to the system. This type of separation creates a

low-coupled environment that promotes and extensible and flexible system that can

be modified independently of the “other half.” The use of the Model View Controller

pattern with the n-tier architecture maintains the necessary separation and both

examples provide the implementation to keep that separation. Additional

Page 58 of 82

technologies such as Tiles’ tight implementation with Struts could add further

robustness to the system. Overall, keeping this low coupling keeps the development

more efficient because of its separation. Again, the focus on robust design must be

balanced against added complexity that could interfere with the efficiency of further

development efforts due to higher levels of confusion.

RRoobbuusstt SSeerrvviicceess // IInntteeggrraattiioonn LLaayyeerrss

When it comes to the Services Tier it is even more apparent that robust

architecture is very important when maintaining efficient updates for the inevitable

change. Two areas immediately come to mind when dealing with and updating the

code in the system. First, when (not if) changes are required, the less code that must

be affected the better; each class that is affected must be recompiled and the more

classes that must be changed the more potential for errors and the introduction of

bugs into the system. Second, if the code can be written in a dynamic manner as to

completely avoid being recompiled at all, why not?

In the previous section the Presentation Tier was examined and examples showed

how a robust architecture enabled the efficient and low-coupled system to be

implemented. Yet, once the data itself was pulled from the front-end interface and

either sat in JavaBean in Struts or in a similar object in the C#/ASP.NET system that

code must be managed or the risk of duplicating efforts across each page of the

interface is a dire reality. In the Struts Action implementation for the Login Form

(see Figure 23 above), the data has been moved from the HTML form and into a

JavaBean and now the system must act upon that data. A common step might be to

begin using all of the individual system classes and objects directly in this Integration

layer. Unfortunately, this type of approach can quickly lead to duplicated efforts

Page 59 of 82

across each of the forms where data is moved from that respective page. Any type of

change that will be required in the future would ultimately demand changes to each

and every one of those Struts Action implementations. This would instantly reduce

the robustness of the system because of the inefficiency of operating on so many

places within the system in order to complete a single change.

Using a Facade type pattern, which is defined as enabling a system to “use a

complex system more easily, either to use just a subset of the system or use the

system in a particular way,” a manager type class provides a robust solution. (2002,

Shalloway & Trott, p. 89) This manager class, similar to the C# example seen in

Figure below, aptly called Manager provides the “door” or interface to the Business

logic within the system.

Figure 27 - Sample C# Manager class

Page 60 of 82

Instead of performing all of the code operations within the Struts Action in Java

or the Server_Click method in C# to determine the user information based upon the

information retrieved from the login form, the example in Figure 26 earlier

demonstrates the use of the confirmLogin() method seen in Figure 27 above. Rather

than implementing specific Business logic code directly in the Integration layer in

multiple locations, the responsibility now falls upon the Manager class to be the entry

point to that Business logic. This further delineates the tiers and emphasizes the

requirements defined earlier for robust architecture.

Once inside of the Business Logic, additional efficiency based implementations

can be designed to further provide a robust architecture. Actual service code could be

implemented into each of the Manager class’ methods such as database connectivity

or web service initialization, but again this type of approach would result in

duplicated code and require multiple code modifications if that database connectivity

were to change from a database such as MySQL to SQL Server, or from a database

connection to perhaps a web service. This is where robust architecture can become

an almost living, breathing, thinking system. In earlier analysis and examples in this

project, the object oriented architecture and the power of encapsulating data within

those objects played a significant role. In the collection based classes earlier, the type

of collection container was encapsulated, but the class itself was always a specific

type. When it comes to answering the second question posed above regarding

avoiding the compilation of code at all in the event of a change, a type of robust

architecture must be applied that allows for the code to essentially adapt “on the fly.”

Using an Abstract Factory pattern methodology the Manager class such as the C#

example shown in Figure 27 above utilizes a factory to generate the necessary objects

when they’re needed, dynamically. This pattern also de-couples the database form

Page 61 of 82

the implementation which is “is relevant from the perspective of portability of the

application to other kinds of databases. For example, it is conceivable the application

may be required to work with relational databases from different vendors.” (Selvaraj,

1997, p. 14) Instead of hard-coding in the type of service required directly into the

Manager and thus requiring a recompilation of code after any of type of change to the

service, the Factory (see a Java example in Figure 28 below) provides an additional

level of abstraction by creating the correct type of service necessary based upon a

simple description.

Figure 28 - Factory.java code snippet

The implementation of the Factory class provides a dynamic, morphing class that

can generate the service necessary for the task required. As seen in the Figure above,

the Java coded class is actually quite simple, but further analysis provides insight into

the power of this approach. The class itself provides only two methods, each with

only a few lines of code. Beginning with the only public method, getService(), the

method requires only a single string object containing the service required as a

parameter. In a less robust manner, a switch case type statement could be added in

Page 62 of 82

this method and depending upon the service name string passed in that type of object

could be returned. Unfortunately, this would not only require additional coding to the

Factory class for each new service that is added, but also create a higher coupling

between the class that is calling the Factory class and the Factory itself. Instead, by

using the getImplName() method and passing in the service name a mapping of that

service name to a namespace and class is returned. Examining the implMap.txt file in

Figure 29 below, the value-equal pairs represent the mappings of the service name to

the namespace and class for that service.

Figure 29 - Implementing the Factory with ImplMap.txt

 Using the namespace description returned from the getImpl() method, the

Factory uses the Java Class object method forName() and creates an instance of the

type of object represented by that namespace. Using an example from Figure 29, if

the service name “IDatabaseService” was passed into the method, then

“trailtracker.service.DBSvcImpl” would be returned and an instance of a DBSvcImpl

object would be created and returned.

Although this type of implementation does accomplish one of the goals defined

earlier by not requiring the class to be recompiled or new code added when a new

service is created there is still potential for higher coupling than necessary if further

steps aren’t taken. A new service can easily be added by simply adding a new value-

equal pair to the text file, but further examination provides even deeper robust

development potential. By examining both the type of class returned from the

Factory and the type of class expected by the calling class (in this case the Manager

Page 63 of 82

class), additional robust behavior becomes notable. Continuing with the example

above, the DBSvcImpl class (see in Figure 30 below) implements the

IDatabaseService interface (see in Figure 31 below). The DBSvcImpl class is an

excellent example of robust architecture in itself apart from its involvement with the

Factory. Through examination earlier in the design process the IDatabaseService

interface creates the “skeleton” by which all database services must abide, but

without actual regard to the exact database that will be implemented underneath. This

allows each database service class implemented off of the interface to individually

determine the type of database without any external knowledge of the exact database

implementation outside of the service class.

Figure 30 - Database Service using Interface in Java

Page 64 of 82

Using the interface implementation enables the different levels of the Service tier

to remain low coupled while creating adaptable and flexible code designed with

changes in mind. The DBSvcImpl class encapsulates the database implementation

behind the system allowing for any changes to the database or the type of database

used to happen without affecting the rest of the system.

Figure 31 - IDatabaseService interface in Java

By analyzing the “front-end” of the class calling the actual Factory the full power

of the Factory pattern and abstraction further demonstrates the robust architecture

design. Through the use of abstraction and the interface in Figure 31 above, the code

in the Manager class below exhibits a high level of flexibility, adaptability, as well as

scalability.

When the Business Logic tier Manager class utilizes the Factory object, the initial

reaction might have been to utilize the actual DBSvcImpl class because at the time the

developer might have known that that specific was the implementation necessary to

access the database. By taking a closer look at the value-equal pairs in the text file in

Figure 29 it would be readily apparent that the IDatabaseService service name would

generate a DBSvcImpl object. Unfortunately, this type of “here and now” thinking

would couple the Manager code tighter with the Factory itself and force less efficient

code development on more classes when a change becomes necessary.

Page 65 of 82

Figure 32 - Java implementation of Manager class

Instead, by casting the returned object from the Factory as the interface class

(IDatabaseService), the abstraction provides a very robust implementation. Rather

than higher coupling with the Factory and type of database service, casting the

returned class as the interface maintains a very low coupling because the actual object

type is ultimately be unknown; any of the method calls made to the IDatabaseService

object in turn call the inherited class implementation that is actually returned by the

Factory.

Figure 33 - Web.config file in C# / ASP.NET implementation of Factory

The exact same type of Factory pattern implementation could be generated with

C# .NET as well. The code snippet in Figure 34 below demonstrates the same

Factory class written in C#. The only real difference is the object method within the

Page 66 of 82

getService() method, System.Activator.CreateInstance(), that generates the returned

object. Additionally, instead of accessing a text file, the C# implementation utilizes

the Configuration Settings XML file as seen in Figure 33 above, which returns a

value based upon a key.

Figure 34 – Factory in C#

Regardless of the language, the suggestions for robust architecture demonstrated

above provide potential for a low-coupled code base, which lends itself to many of

the attributes of robustness. Using encapsulation and abstraction, the code becomes

adaptable, extensible, and flexible while affecting only minor portions of the system

instead of requiring mass change. The use of the Factory pattern and dynamic factory

implementation allows for scalability by enabling new services to added, changed, or

deleted without any code changes or recompilation of code. It does, also, add to the

overall complexity of the code base which could serve as a potential hang up when

modifications are required in the future. The fact that the operation itself relies on

Page 67 of 82

external files and the higher level of abstraction make the code less intuitive at first

glance. As with all solutions, balancing the added complexity versus the benefit

determines the efficiency of that solution. Ultimately, the factory pattern solution’s

“organization of code into such loosely coupled sub-systems provide[s] great

flexibility when it comes to maintenance and evolution of software.” (Selvaraj, 1997,

p. 16)

CCoonncclluussiioonnss
Change begets change. Nothing propagates so fast.

-- Charles Dickens 1812-1870, English novelist

In the very beginning stages of this project the database was constructed and the

organization of that data was determined. The data and organization was examined

and analyzed to create the most efficient setup of tables and relationships. This

process of “evaluating and correcting table structures to minimize data redundancies

[and] therefore helping to eliminate data anomalies” is referred to as normalization.

(Rob & Coronel, 2004, p. 184) Although the process of normalizing the small

database for this project didn’t prove difficult primarily because of its scale, it did

provide an interesting conclusion when demonstrating robust architecture in the

prototype web application.

The ultimate goal of normalizing a database is to reduce data redundancies and

data anomalies. Data that is duplicated in many different locations in a database can

become the bane of the system if, upon changing that data, some of the information is

modified while other information is left untouched. Immediately, the data becomes

Page 68 of 82

invalid because the supposedly consistent data is now different where it should have

been the same in each location. Progressing through the different normal form stages

of normalization incrementally breaks down the data redundancy and potential data

anomalies until the conditions no longer exist.

As with the database and normalizing the data within that database, the bane of

coding is the inevitable change. Coding within a vacuum without any regard to the

future, changes, or planning can be a simple task. Create the code. Test it against the

current situation. Leave it. Forever. But is that truly realistic? Changes are bound to

happen to any type of system for any number of reasons. The fact that changes will

happen isn’t ultimately the problem. The fact that the system hasn’t been designed to

handle those changes elegantly nor efficiently is.

In the world of database normalization, “the higher the normal form, the more

joins are required to produce a specified output and the more slowly the database

system responds to end-user demands.” (Rob & Coronel, 2004, P. 184) The system’s

efficiency might actually suffer because of higher level of normalization. But,

ultimately it does come down to efficiency, just as it does in the world of robust

software architecture. As the system is being designed, special attention must be

paid to the relationships between of the system’s entities just as the relationships

between data is analyzed through normalization.

This project did not try to highlight every possible solution nor every technology

available that might aid in creating a robust architecture. The goal was to analyze

robust solutions for the prototype in an effort to define a philosophy that could be

applied to other development efforts. In the n-tier architecture, identifying the tiers

and their responsibilities and relationships is key point in the development of a robust

system. The Adding Efficiency to the Presentation Layer section above provides an

Page 69 of 82

example of separating the backend system code of the Service and Integration tiers

from the Presentation Layer itself. Although it might seem easier and quicker to

“keep everything in one place” by putting the code directly into the HTML, this type

of approach can just as quickly become very difficult to manage. The code and

service methods, as well as the Business Logic of the system itself becomes very

highly coupled to the Presentation and therefore the responsibilities of that layer

become intermixed with the other tiers. Any type of change to the system could

potentially result in a large scale effort touching multiple files and locations on

multiple tiers. Clearly identifying the tiers and their responsibilities creates a more

efficient environment that reduces the duplication of efforts. Keeping the

Presentation Layer as lowly couple to the Business Logic as possible allows for either

to be changed without affecting the other. Although it may be more difficult to plan

and build out a system in this manner in the early stages, the efficiencies gained in the

later stages when the changes happen is well worth the efforts early on.

There is a caveat to the robust approach. Although normalizing a database to its

highest form might be the ideal state for eliminating data anomalies and redundancy,

an appropriate balance between data organization and the level of normalization must

be examined to keep the most efficient system possible. If the database itself

becomes inefficient then the efforts of normalization have failed to achieve the

desired results. Similarly, robust architecture and development must “walk the fine

line” between creating a code base that is too complex and difficult to not only

understand but maintain versus utilizing the concepts described in this paper to

improve efficiency. One advantage of having code all in a single location and highly

coupled is that everything is laid out right in front of the developer. Granted, it might

be a large block of code and difficult to interpret, but at least it’s all there. Nothing is

Page 70 of 82

hidden. All of the techniques described in this project encapsulate, hide, and separate

out these blocks into more manageable and efficient chunks, but in the process it can

be more cumbersome to quickly identify what is actually happening in the code

because it jumps around. Pushing any of the robust techniques without truly realizing

any benefit, or worse, creating more complexity and less efficiency is not robust

development or architecture. Just as database normalization can go too far and

ultimately create a less efficient system, so too can robust design and architecture just

for the sake of robust design without any consideration for complexity and usability.

Each of the different steps in the Tiles example added a new layer of complexity, all

while creating a more “robust” system in the Presentation Layer, but the code to

implement the Tiles technology becomes spread out amongst several different files

and buried in separate XML files. Someone unfamiliar with the technology may have

a difficult time interpreting the solution and be inefficient in making changes. The

same situation goes for the Factory pattern solution. As the abstraction of the code

solution grows so does the difficulty in understanding precisely what that component

is actually doing. Again, forcing developers to step through code line by line and

trace through the component in order to even begin to understand what might be

happening does not imply a robust environment. Rather, if the robust code solution

becomes too complex for its own good then perhaps taking a step back and applying a

slightly higher coupling in order to maintain understandability would be the better

option.

Any type of repeated code is a candidate for applying a robust methodology.

Object oriented development and encapsulation of code within those objects is very

popular for many reasons, but the ability to maintain a single unit of code and not

have to repeat that same code throughout the system is clearly at the top of the list.

Page 71 of 82

As seen in the examples above, the database code is encapsulated behind many layers

of objects within the Service tier. Instead of implementing the database connectivity

directly into the Integration and Presentation tiers, all of that knowledge and “power”

is built into the Manager class in the Service Tier. The Business Logic for the system

is controlled in this single location. Within that Business Logic, the Manager object

manages the rules of the system, but again, even the Manager object doesn’t

implement the exact database connectivity. It makes a call to the Factory object,

which does its “black box” magic and returns a database connection which allows

that Manager to now get the necessary data. The type of database or service that is

accessing that data is clearly hidden. The Business logic within the Manager and

Service tier is also clearly hidden from the Presentation and Integration tiers. This

type of robust separation allows for very efficient change. By maintaining a low-

coupled environment within the system, any type of change or modification to any

one part of the system has very little, if no, effect on other components in the system.

Making the change once, instead of multiple times, significantly reduces the chance

for new errors and bugs to be introduced into the system and creates a very efficient

and simple effort in making that change.

Using the robust concepts introduced throughout the project demonstrates an

adaptable and extensible system. Change such as the type of database backend

required or the type of collection objects used to hold the data or expanding the

services within the system all could be handled without a dramatic effect on the

system itself. Changing from a MySQL implementation for the database to a larger

scale Oracle or SQL Server system would be hidden from the majority of the

application. A new Oracle database service class could be implemented using the

interface provided and then a simple change to the text or XML file (depending on

Page 72 of 82

the implementation above in C# or Java) and the application would be using the new

Oracle database rather than the MySQL backend. The effect on the other tiers and

layers would be undetectable because nothing from their perspective would change.

The backend operation of the database, type and/or functionality, is completely

hidden via the encapsulation into the use of the factory and the interface.

Since the changes to the system in the future are nearly impossible to foretell, the

flexibility of that given system is very important. If a change requires major

modification to nearly every aspect of the system then the flexibility of that system

must be questioned. Again, focusing on the Factory pattern example above, a wide

variety of flexibility is provided through the usage of maintaining the actual class

implementation names outside of the code (in text or XML) and through the usage of

the interface. Being flexible is being able to change quickly and efficiently. If that

change requires a different service, then that class can be generated, added to the

system, and then the text or XML file modified without affecting any other code in

the system. If the database system needs to be updated or changed, only a small piece

of the code must be changed, but the bulk of the system will continue operation

without any modification. By breaking the system into distinct segments within the

tiers and layers to maintain low-coupling, the architecture provides the development

team with the ability to make the changes necessary in a very quick and efficient

manner.

In terms of scalability, the system’s ability to add functionality such as new

service, a new backend database, a different type of collection for better memory

management, or a new page into the Presentation layer without major sweeping

changes to the code base is a key important in a robust architecture. Systems will

grow and change. As was presented at the very introduction of this project, change is

Page 73 of 82

inevitable. If so, then preparation is the key. This project and the prototype designed

were not developed nor presented as the “end all, be all” of robust software design

and architecture, but rather presented in a manner to open the door to more efficient

development in the future. This is not a general solution to all poor software design,

merely the beginning of the philosophy and understanding required when attempting

to develop a robust and efficient system and architecture. One key point to the

philosophy is that robust architecture is essential to that preparation. Preparing and

spending the extra effort during the initial design will pay off in the future when that

change happens. If change does in fact “beget change,” and propagates quickly, then

the extra preparation through robust architecture development will be well worth the

effort. The key to the robust architecture is being able to handle the changes and

growth efficiently.

Page 74 of 82

AAppppeennddiixx –– RReeffeerreenncceess

Advice on Management. Retrieved May 29, 2006 from the World Wide Web:

http://www.adviceonmanagement.com/advice_change.html

Ambler, Scott W. (2006, March) Agile Modeling and eXtreme Programming (XP).
Retrieved May 13, 2006 from the World Wide Web:
http://www.agilemodeling.com/essays/agileModelingXP.htm

Ambler, Scott W. (2006, April) UML 2 Class Diagrams. Retrieved May 13, 2006
from the World Wide Web: http://www.agilemodeling.com/
artifacts/classDiagram.htm

Anuganti, Venu, & Reggie Burnett. Exploring MySQL in the Microsoft .NET
Environment. MySQL:Developer Zone. . Retrieved May 13, 2006 from the
World Wide Web: http://dev.mysql.com/tech-resources/articles/dotnet/

Bahar, Abdul (Rajib). (2004, January) MySQL Schema in C#. The Code Project.
January 19, 2004. . Retrieved May 13, 2006 from the World Wide Web:
http://www.codeproject.com/cs/database/AbdMySqlSchema.asp

Booth, Jim. Building Middle Tier Objects in Visual Foxpro. Retrieved May 13, 2006
from the World Wide Web: http://www.jamesbooth.com/n-tier.htm

Bradley, Ronan. (2003, October) Not so simple after all. Loosely Coupled Monthly
Digest. Retrieved May 13, 2006 from the World Wide Web:
http://www.looselycoupled.com/opinion/2003/bradl-esb-infr1013.html

cardinals33 (alias) Using MySQL with .NET – Introduction. Developer Fusion.
Retrieved May 13, 2006 from the World Wide Web: http://www.developerfusion.
co.uk/show/4635/

Chartier, Robert. (2006) Application Architecture: An N-Tier Approach - Part 1. 15
Seconds. Retrieved May 13, 2006 from the World Wide Web: http://www.
15seconds.com/issue/011023.htm

CreateObject Equivalent. .NET 247. Retrieved May 13, 2006 from the World Wide
Web: http://www.dotnet247.com/247reference/msgs/33/166584.aspx

Davis, Malcom. (2001, February) Struts, an open-source MVC implementation:
Manage complexity in large Web sites with this servlets and JSP framework.
Retrieved May 13, 2006 from the World Wide Web: http://www-
128.ibm.com/developerworks/library/j-struts/?dwzone=java

Defining Adaptability. Merriam-Webster Online. Retrieved May 13, 2006 from the
World Wide Web: http://www.m-w.com/dictionary/adapted

Page 75 of 82

http://www.adviceonmanagement.com/advice_change.html
http://www.agilemodeling.com/essays/agileModelingXP.htm
http://www.agilemodeling.com/
http://dev.mysql.com/tech-resources/articles/dotnet/
http://www.codeproject.com/cs/database/AbdMySqlSchema.asp
http://www.jamesbooth.com/n-tier.htm
http://www.looselycoupled.com/opinion/2003/bradl-esb-infr1013.html
http://www.developerfusion
http://www
http://www.dotnet247.com/247reference/msgs/33/166584.aspx
http://www-
http://www.m-w.com/dictionary/adapted

Defining Availability. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Availability

Defining Business Logic. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Business_logic

Defining Computer Software. Wikipedia. Retrieved May 29, 2006 from the World
Wide Web: http://en.wikipedia.org/wiki/Software.

Defining Coupling (Computer Science). Wikipedia. Retrieved May 20, 2006 from
the World Wide Web: http://en.wikipedia.org/wiki/Coupling_(computer_science)

Defining Dynamic. Wiktionary. Retrieved May 29, 2006 from the World Wide
Web: http://en.wiktionary.org/wiki/dynamic.

Defining Extensibility. SearchWebServices.com. Retrieved May 13, 2006 from the
World Wide Web: http://searchwebservices.techtarget.com/
sDefinition/0,,sid26_gci283975,00.html

Defining Extensibility. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Extensibility

Define Extreme Programming. Retrieved May 13, 2006 from the World Wide Web:
http://www.webopedia.com/TERM/E/Extreme_Programming.html

Defining Flexibility. Merriam-Webster Online. Retrieved May 13, 2006 from the
World Wide Web: http://www.m-w.com/dictionary/flexibility

Defining Middleware. Wikipedia. Retrieved June 18, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Middleware.

Defining Model View Controller Pattern. Wikipedia. Retrieved May 29, 2006 from
the World Wide Web: http://en.wikipedia.org/wiki/Model-view-controller.

Defining Multi-tier Architecture. Wikipedia. Retrieved May 13, 2006 from the
World Wide Web: http://en.wikipedia.org/wiki/Multitier_architecture

Defining Reusability. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Reusability

Defining Robustness. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Robustness

Defining Robustness. Merriam-Webster Online. Retrieved May 13, 2006 from the
World Wide Web: http://www.m-w.com/dictionary/robustness

Defining Scalability. Merriam-Webster Online. Retrieved May 13, 2006 from the
World Wide Web: http://www.merriamwebster.com/cgi-
bin/dictionary?va=scalable

Page 76 of 82

http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Coupling_(computer_science)
http://en.wiktionary.org/wiki/dynamic
http:SearchWebServices.com
http://searchwebservices.techtarget.com/
http://en.wikipedia.org/wiki/Extensibility
http://www.webopedia.com/TERM/E/Extreme_Programming.html
http://www.m-w.com/dictionary/flexibility
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Robustness
http://www.m-w.com/dictionary/robustness
http://www.merriamwebster.com/cgi-

Defining Scalability. Wikipedia. Retrieved May 13, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/Scalability

Defining Software Architecture. Wikipedia. Retrieved May 29, 2006 from the
World Wide Web: http://en.wikipedia.org/wiki/Software_Architecture.

Defining Software Development Life Cycle (SDLC). Wikipedia. Retrieved May 13,
2006 from the World Wide Web: http://en.wikipedia.org/wiki/
Software_development_life_cycle

Defining Three Tier Computing. Wikipedia. Retrieved May 13, 2006 from the
World Wide Web: http://en.wikipedia.org/wiki/Three-tier_%28computing%29

Defining Understandability. Wikipedia. Retrieved May 13, 2006 from the World
Wide Web: http://en.wikipedia.org/wiki/Understandability

Defining Web Application. Wikipedia. Retrieved May 13, 2006 from the World
Wide Web: http://en.wikipedia.org/wiki/Web_application

Deitel, H.M., & P.J. Deitel. (2003) Java: How to Program. 5th Edition. Upper
Saddle River: Prentice Hall.

Eclipse Plugin Central. Retrieved May 2, 2006 from the World Wide Web:
http://eclipseplugincentral.com/PNphpBB2+file-viewtopic-t-2011.html

Farley, Jim. (2001, August) Microsoft .NET vs. J2EE: How Do They Stack Up?
Retrieved November, 2005 from the World Wide Web: http://java.oreilly.com
/news/farley_0800.html

Fayad , Mohamed, & Marshall P. Cline. (1996, October) Aspects of Software
Adaptability. University of Nevada, and Paradigm Shift, Inc. Vol. 39, No. 10
COMMUNICATIONS OF THE ACM.

Fox, Daniel L. (2003, December) Using common domain logic patterns in your
.NET applications. Builder.com. Retrieved May 13, 2006 from the World Wide
Web: http://builderau.com.au/architect/sdi/soa/
Using_common_domain_logic_patterns_in_your_NET_applications/0,39024602,
20281590,00.htm

Fowler, Martin. (2005, December) “The New Methodology.” Retrieved May 13,
2006 from the World Wide Web: http://www.martinfowler.com/articles/
newMethodology.html

Hinchcliffe, Dion. Is ASP.NET not measuring up to JSP’s MVC 2 architecture?
Retrieved May 13, 2006 from the World Wide Web: http://hinchcliffe.org/
archive/2005/01/23/158.aspx

Page 77 of 82

http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Software_Architecture
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/Three-tier_%28computing%29
http://en.wikipedia.org/wiki/Understandability
http://en.wikipedia.org/wiki/Web_application
http://eclipseplugincentral.com/PNphpBB2+file-viewtopic-t-2011.html
http://java.oreilly.com
http:Builder.com
http://builderau.com.au/architect/sdi/soa/
http://www.martinfowler.com/articles/
http://hinchcliffe.org/

Holderfield, Vance T. & Michael N. Huhns. A Foundational Analysis of Software
Robustness Using Redundant Agent Collaboration. Department of Computer
Science and Engineering, University of South Carolina. Columbia, SC 29208
USA. Retrieved May 13, 2006 from the World Wide Web:
http://www.old.netobjectdays.org/pdf/02/papers/ws-ages/0906.pdf

Huhns, Michael N., & Vance T. Holderfield. (2002) Robust Software. Retrieved
May 29, 2006 from the World Wide Web:
http://www.cse.sc.edu/research/cit/publications/papers/V6N2.pdf

Huhns, Michael N., & Vance T Holderfield, & Rosa Laura Zavala Gutierrez. Roust
Software Via Agent-Based Redundancy. Retrieved May 29, 2006 from the World
Wide Web: http://www.cs.cmu.edu/~garlan/17811/Readings/ichucednha.pdf

Homer, Alex, & Dave Sussman, & Rob Howard, & Brian Francis, & Karli Watson, &
Richard Anderson. (2004) Professional ASP.NET 1.1. Indianapolis: Wiley.

How to Use the ODBC .NET Managed Provider in Visual C# .NET and Connection
Strings. (2004, July) Retrieved May 13, 2006 from the World Wide Web:
http://support.microsoft.com/kb/310988/en-us

IIS: Notes on Server-Side Includes (SSI) syntax. (2005) Microsoft Help and
Support. Retrieved May 13, 2006 from the World Wide Web: http://support.
microsoft.com/default.aspx?scid=KB;EN-US;Q203064

Integrating Layer. (2004, May) Retrieved May 13, 2006 from the World Wide
Web: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnpag/html/intpatt-ch03.asp

Java Bluprints: Model-View-Controller. Retrieved June 8, 2006 from the World
Wide Web: http://java.sun.com/blueprints/patterns/MVC-detailed.html

Java Connectivity: Java to C# Mapping. Retrieved May 13, 2006 from the World
Wide Web: http://j-integra.intrinsyc.com/support/espresso/doc/
JavaConn/mapping.html

Junhua, Nancy. (2004, April) Developing Struts with Easy Struts for Eclipse.
Retrieved May 13, 2006 from the World Wide Web: http://www-
128.ibm.com/developerworks/library/os-ecstruts/

Kay, Russel. (2003, May) QuickStudy: System Development Life Cycle.
ComputerWorld. Retrieved May 13, 2006 from the World Wide Web:
http://www.computerworld.com/developmenttopics/development/story/0,10801,7
1151,00.html

Knoernschild, Kirk. (2003) Object-oriented design metrics ensure robust software.
Retrieved May 29, 2006 from the World Wide Web:
http://builder.com.com/5100-6386-5035294.html

Page 78 of 82

http://www.old.netobjectdays.org/pdf/02/papers/ws-ages/0906.pdf
http://www.cse.sc.edu/research/cit/publications/papers/V6N2.pdf
http://www.cs.cmu.edu/~garlan/17811/Readings/ichucednha.pdf
http://support.microsoft.com/kb/310988/en-us
http://support
http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://j-integra.intrinsyc.com/support/espresso/doc/
http://www-
http://www.computerworld.com/developmenttopics/development/story/0,10801,7
http://builder.com.com/5100-6386-5035294.html

Leadership Now. Retrieved May 29, 2006 from the World Wide Web:
http://www.leadershipnow.com/changequotes.html

Learn About Java Technology. Java.com. Retrieved May 13, 2006 from the World
Wide Web: http://java.com/en/about/

Learn IT: Software Development. SearchWinIT.com. Retrieved May 13, 2006 from
the World Wide Web: http://searchwin2000.techtarget.com
/sDefinition/0,,sid1_gci936454,00.html

Lewis, John, & William Loftus. (2001) Java Software Solutions: Foundations of
Program Design. 2nd Edition. Reading: Addison-Wesley.

Malani, Prakash. (January 4, 2002). UI design with Tiles and Struts: Several
solutions for organizing your HTML and JSP view components. JavaWorld.
Retrieve June 5, 2006 from the World Wide Web: http://www.javaworld.com/
javaworld/ jw-01-2002/jw-0104-tilestrut.html

Mannadiar, Sabith.V. (2004, February) Connecting to MySQL database from your
.NET applications. The Code Project. Retrieved May 13, 2006 from the World
Wide Web: http://www.codeproject.com/cs/database/ConnectMySQL.asp

Martin, Jeff. (2003, June) Using CollectionBase and DictionaryBase. The Code
Project. Retrieved May 13, 2006 from the World Wide Web: http://www.
codeproject.com/csharp/collection1.asp

Medvidovic, Nenad, & David S. Rosenblum, & Richard N. Taylor. (1999) A
language and environment for architecture-based software development and
evolution. Paper presented at International Conference on Software Engineering,
Los Angeles, California. Retrieved June 7, 2006 from the ACM Digital Library.

Mitchell, Scott. Accessing Common Code, Constants, and Functions in an ASP.NET
Project. 4 Guys from Rolla.com. Retrieved May 13, 2006 from the World Wide
Web: http://aspnet.4guysfromrolla.com/articles/122403-1.aspx

Mortensen, M. Keith, & Rob McGovern, & Charles Liptaak. (2003, December)
ASP.NET and Struts: Web Application Architectures. MSDN. Retrieved May
13, 2006 from the World Wide Web: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnaspp/html/ASPNet-ASPNet-J2EE-Struts.asp

Murphy, Thomas. (2002, September) Battle of the platforms: Java versus .Net.
ZDNet. Retrieved May 13, 2006 from the World Wide Web:
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2881567-2,00.html>

MySQL Connector/ODBC 3.51 Downloads. Retrieved May 13, 2006 from the World
Wide Web: http://dev.mysql.com/downloads/connector/odbc/3.51.html.

MySQL Reference Manual. MySQL.com. Retrieved May 13, 2006 from the World
Wide Web: http://dev.mysql.com/doc/refman/5.0/en/odbc-net-op-c-sharp-cp.html

Page 79 of 82

http://www.leadershipnow.com/changequotes.html
http:Java.com
http://java.com/en/about/
http:SearchWinIT.com
http://searchwin2000.techtarget.com
http://www.javaworld.com/
http://www.codeproject.com/cs/database/ConnectMySQL.asp
http://www
http:Rolla.com
http://aspnet.4guysfromrolla.com/articles/122403-1.aspx
http://msdn.microsoft.com/library/
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2881567-2,00.html>
http://dev.mysql.com/downloads/connector/odbc/3.51.html
http:MySQL.com
http://dev.mysql.com/doc/refman/5.0/en/odbc-net-op-c-sharp-cp.html

Nielsen, Jakob. (2003, August) Usability 101: Introduction to Usability. Retrieved
May 13, 2006 from the World Wide Web: http://www.useit.com/alertbox/
20030825.html>

Note: Interfaces cannot contain fields in the .NET Framework. MSDN. Retrieved
May 13, 2006 from the World Wide Web: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dv_jlca/html/
vberr1045interfacescannotcontainfieldsinnet.asp

Olson, Daniel. Using XML Based Configuration File in Windows Form
Applications. C# Corner. Retrieved May 13, 2006 from the World Wide Web:
http://www.c-sharpcorner.com/Code/2002/April/XMLConfigInWinForms.asp

Particle (alias) (2003, June) Using MySQL with Visual Studio. Planet Source Code.
Retrieved May 13, 2006 from the World Wide Web: http://www.planet-source-
code.com/vb/scripts/ShowCode.asp?txtCodeId=1288&lngWId=10

Quote World. Retrieved May 29, 2006 from the World Wide Web:
http://www.quoteworld.org/quotes/885

Ramasamy, Senthil. Submitting Web Form data from one ASP.NET page to another.
Stardeveloper.com. Retrieved May 13, 2006 from the World Wide Web:
http://www.stardeveloper.com/articles/display.html?article=2003061901&page=1

Rob, Peter, & Carlos Coronel. (2004) Database Systems: Design, Implementation, &
Management. 6th Edition. Boston: Thomson Learning.

Roman, Ed, & Scott W. Ambler, & Tyler Jewell. (2002) Mastering Enterprise
JavaBeans. 2nd Edition. New York: Wiley Computer Publishing.

Robinson, Simon, & K. Scott Allen, & Ollie Cornes, & Jay Glynn, & Zach
Greenvoss, & Burton Harvey, & Christain Nagel, & Morgan Skinner, & Karli
Watson. (2003) Professional C#. 2nd Edition. Indianapolis: Wiley Publishing,
Inc.

Runtime object creation using strings (classname) with dotnet. .NET 247. Retrieved
May 13, 2006 from the World Wide Web: http://www.dotnet247.com/
247reference/msgs/1/5414.aspx

Selvaraj, Asokan R., & Debasish Ghosh. (June 1997) Implementation of a database
factory. ACM SIGPLAN Notices, 32, 14 – 18.

Shalloway, Alan, & James R. Trott. (2002) Design Patterns Explained: A New
Perspective on Object Oriented Design. Boston: Addison-Wesley.

Sheil, Humphrey, & Michael Monteiro. (2002, June) Rumble in the jungle: J2EE
versus .Net, Part 1. How do J2EE and Microsoft's .Net compare in enterprise

Page 80 of 82

http://www.useit.com/alertbox/
http://msdn.microsoft.com/
http://www.c-sharpcorner.com/Code/2002/April/XMLConfigInWinForms.asp
http://www.planet-source-
http://www.quoteworld.org/quotes/885
http:Stardeveloper.com
http://www.stardeveloper.com/articles/display.html?article=2003061901&page=1
http://www.dotnet247.com/

environments? JavaWorld. Retrieved May 13, 2006 from the World Wide Web:
http://www.javaworld.com/javaworld/jw-06-2002/jw-0628-j2eevsnet.html

Shen, Derek Yang. (July 19, 2004). Put JSF to Work. JavaWorld. Retrieved June
18, 2006 from the World Wide Web: http://www.javaworld.com/javaworld/jw-
07-2004/jw-0719-jsf.html

Sjodin, Robert. (2005, September) The Roles of Architecture, Patterns &
Frameworks in Agile System Development. Regis University.

Stafford, Randy. Services Layer. Retrieved May 13, 2006 from the World Wide
Web: http://www.martinfowler.com/eaaCatalog/serviceLayer.html

Stall, Tim. Understanding Interfaces and Their Usefulness. 4 Guys from Rolla.com.
Retrieved May 13, 2006 from the World Wide Web: http://aspnet.
4guysfromrolla.com/articles/110304-1.aspx

Struts. Learntechnology.net. Retrieved May 13, 2006 from the World Wide Web:
http://www.learntechnology.net/struts-lesson-1.do

Subramanian, Nary, & Lawrence Chung. (2002) Software Architecture Adaptability:
An NFR Approach. Applied Technology Division, Anritsu Company and Dept.
of Computer Science, University of Texas, Dallas. Copyright ACM 2002 1-58

The Linux Information Project. (2005) Robust Definition. Retrieved May 29, 2006
from the World Wide Web: http://www.bellevuelinux.org/robust.html

ucblockhead (alias). (2002, June) Language Comparison, C#, C++ and Java
(Technology). Retrieved May 13, 2006 from the World Wide Web:
http://www.kuro5hin.org/story/2002/6/25/122237/078

Ullman, Chris, & John Kauffman, & Chris Hart, & David Sussman, & Daniel
Maharry. (2004) Beginning ASP.NET 1.1 with Visual C#.NET 2003.
Indianapolis: Wiley.

Usability in Website and Software Design. Usability First. Retrieved May 13, 2006
from the World Wide Web: http://www.usabilityfirst.com/

Wainewright, Phil. (2005, October) Loosely Coupled weblog. Retrieved October,
2005 from the World Wide Web: http://www.looselycoupled.com/
blog/lc00aa00121.html

Watson, Karli, & David Espinosz, & Zach Greenvoss, & Jacob Hammer Perdersen, &
Christian Nagel, & Jon D. Reid, & Matthew Reynolds, & Morgan Skinner, & Eric
White. (2003) Beginning Visual C#. Indianapolis: Wiley Publishing, Inc.

Welcome to Apache Struts. The Apache Software Foundation. Retrieved May 13,
2006 from the World Wide Web: http://struts.apache.org/

Page 81 of 82

http://www.javaworld.com/javaworld/jw-06-2002/jw-0628-j2eevsnet.html
http://www.javaworld.com/javaworld/jw-
http://www.martinfowler.com/eaaCatalog/serviceLayer.html
http:Rolla.com
http://aspnet
http:Learntechnology.net
http://www.learntechnology.net/struts-lesson-1.do
http://www.bellevuelinux.org/robust.html
http://www.kuro5hin.org/story/2002/6/25/122237/078
http://www.usabilityfirst.com/
http://www.looselycoupled.com/
http://struts.apache.org/

What’s the equivalent of this in C# (Java). .NET 247. Retrieved May 13, 2006 from
the World Wide Web: http://www.dotnet247.com/247reference/
msgs/11/56932.aspx

Whitten, Jeffrey L., & Lonnie D. Bentley, & Kevin C. Dittman. (2000) Systems
Analysis and Design Methods. 5th Edition. McGraw Hill: Boston.

Page 82 of 82

http://www.dotnet247.com/247reference/

	Regis University
	ePublications at Regis University
	Summer 2006

	Building a Robust Web Application
	Eric Filonowich
	Recommended Citation

	Microsoft Word - 44AC6C23-73B5-2886C8.doc

