
Regis University
ePublications at Regis University

All Regis University Theses

Spring 2011

The Best Nix for a Combined Honeypot Sensor
Server
Stephen M. Rodriguez
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Rodriguez, Stephen M., "The Best Nix for a Combined Honeypot Sensor Server" (2011). All Regis University Theses. 632.
https://epublications.regis.edu/theses/632

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217365225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/632?utm_source=epublications.regis.edu%2Ftheses%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

THE BEST NIX FOR A COMBINED HONEYPOT SENSOR SERVER

A PROJECT

SUBMITTED ON 13 OF APRIL, 2011

TO THE DEPARTMENT OF INFORMATION TECHNOLOGY OF THE SCHOOL OF

COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN

COMPUTER INFORMATION TECHNOLOGIES

BY

Stephen M. Rodrugez

APPROVALS

Advisor Name, [Thesis/Project] Advisor

Douglas I. Hart

Shari Plantz-Masters

Project Paper Revision/Change History

Date Project Status or Change
04/22/ 2008 Initial Project Meeting with ILB Project Lead (Jeff Brown)
04/25/ 2008 Decided on Solaris 10 for Honeypot sensor server on a Sun E-450
04/29/ 2008 Began hardware/ OS software configuration on Sun E-450
05/21/ 2008 Completed hardware, OS software, and network configuration of Sun E-450
06/04/ 2008 Submitted formal Idea document with the initial Annotated Bibliography
06/17/ 2008 Began installation of Honeypot sensor server software
07/12/ 2008 Submitted formal Project Statement of Work (SOW)
08/21/ 2008 Worked with sancp developer on compiling issue with Solaris 10
09/17/ 2008 Determined pads component would not compile on Solaris 10
10/23/ 2008 Determined needed tcl and tclx versions were not compatible on Solaris 10

Abandoned Sun Solaris 10 as workable solution for Honeypot sensor server
11/04/ 2008 Began installing Honeypot sensor software on HP running Red Hat Linux
11/21/ 2008 Submitted Thesis and Chapter 1 for Review
11/28/ 2008 Completed Honeypot sensor software install
12/03/ 2008 Revised Thesis statement based on shift in project scope
12/11/ 2008 Sucessfully tested Honeypot sensor server via remote Honeypot client software
1/15/ 2009 Began data collection/ compilation
6/5/2009 Began drafting paper
12/29/2009 Completed final draft
1/7/ 2010 Completed final edits
11/1/2010 Administrative Review and Return for edits
3/14/2011 Final Draft Submitted
4/13/2011 Format Corrections

The Best NIX for a Combined Honeypot Sensor Server 6

Abstract

The paper will examine (through case-study) the usability of open source operating systems

software for a combined Honeypot sensor server. The study will scrutinize the use of two Unix

variants, Linux Red Hat and the Sun Solaris operating systems as candidates for deployment of a

combined Honeypot sensor server. Appropriate unbiased metrics, such as extensibility,

reliability, ease of install and use, will be employed as a likely criterion to evaluate the operating

systems for the role of hosting Honeypot sensor server software.

7

Acknowledgements

It has been a privilege to attend an institution based in the Christian ethos of service to

the community and the Lord. On many occasions at Regis University, I have seen the Spirit in

action. I have seen instructors, students, and faculty give generously of their time, knowledge,

and their kindness towards a stranger’s success. As that stranger, I am grateful and honored to

have partook of this blessing. In particular, I would like to thank Daniel Likarish, Jeffrey A.

Brown, Todd Edmands, and Annette Argo without whose contributions, this project would have

been a success.

I thank my family for their support over these many years of study. As a family, may we

enjoy the benefits of this shared success. The goal has always been the freedom and opportunity

that knowledge bestows. In closing, may we know God’s love, light, and eternal peace…

8

Table of Contents

Abstract .. 6
Acknowledgements ... 7
List of Figures .. 9
List of Tables ... 10

Chapter One: Introduction and Project Background Summary ... 11
Problem Statement.. 12
Qualitative Case Study ... 14
Relevance of Project ... 15
Project Barriers ... 16
Proposal and Scope ... 16
Risks ... 16
Document Organization ... 17
Definition of Acronyms... 18

Chapter Two: Research .. 20
Honeypot Overview .. 20
Honeypot Components ... 22
Heart of the Honeypot: The Sensor ... 22
The Choice of the Honeypot Sensor Server OS.. 24
Criteria for OS Analysis ... 25

Chapter Three: Configuration... 28
Hardware Configuration .. 28
Software Configuration .. 36

Chapter Four: Wrapping it Up ... 40
Results .. 40
Summary .. 45
Recommendations ... 45

Bibliography .. 47

9

List of Figures

Figure 1: Logical network diagram of an… (Rodriguez, 2008)……………………………...12

Figure 2: Honeypot Data Lifecycle (Rodriguez, 2009)……………………………………… 21

Figure 3: Example Honeypot sensor network configurations (Rodriguez, 2008)………….. 23

Figure 4: OS Version Information (Rodriguez, 2008)……………………………………….. 24

Figure 5: Combined Honeypot Sensor Server OS Criterion (Rodriguez, 2009)…………… 25

Figure 6: Disk Layout and Partitions (Rodriguez, 2009)……………………………………. 36

10

List of Tables

Table 1: Simplified OS Decision Matrix (Rodriguez, 2008)…………………………… 13

Table 2: Sun Enterprise[tm] 450 Server Hardware Spec…(Rodriguez, 2009)………. 33

Table 3: HP ProLiant DL380 G5 Server series…(HP, 2009)…………...……………… 36

Table 4: Sguil Software Components (Bianco, 2008)…………………………………... 39

Table 5: Extensive OS Decision Matrix (Rodriguez, 2009)……………………………. 40

11

Chapter One: Introduction and Project Background Summary

This project encompassed the development, configuration, test, and verification of an

Internet-facing Honeypot sensor server that can be used within a future Regis University

Information Assurance (IA) lab or within the curriculum. Although, this project began with a

grander scheme of examining the veracity of a completely functional Internet Facing Honeypot

Network, the project shifted to determining the best operating system to host a combined

Honeypot sensor server software suite, based on the technical difficulties encountered using an

established Unix vendor as the “first-choice” operating system.

The development of the Internet-facing combined Honeypot sensor sever would reinforce

concepts, methods, and techniques taught at different levels of IA coursework through education,

awareness, and hands-on training. The Honeypot sensor server is only part of a larger Honeypot

system, so the expectation is that this initiation project will be followed by future Regis SEAD

students that will continue to build out the remaining Honeypot system. The choice of the

operating system for the sensor sever is critical for the Honeypot system success; this paper will

attempt to demonstrate the pros and cons of two flavors of popular server operating systems.

Figure 1 is a logical network diagram of an Internet-facing Honeypot system (Rodriguez, 2008).

12

Figure 1: Logical network diagram of an Internet-facing Honeypot system (Rodriguez,
2008)

Problem Statement

The study will document and provide metrics to determine the usability of open source

operating systems software for a combined Honeypot sensor server. It is purposed that the study

will examine the use of two Unix variants, Red Hat Linux and the Sun Solaris operating systems

as candidates for deployment of a combined Honeypot sensor server. Suitable unbiased metrics,

such as extensibility, reliability, ease of install and use, will be examined as a likely criterion to

evaluate the operating systems as a viable Honeypot sensor server candidate.

Potential Solutions

Due to the importance of the Honeypot sensor server to the Honeypot network, the choice

of a suitable operating system is paramount to the success of the system. The Honeypot software

chosen for this exercise, purported to support a myriad of Unix and Linux variant (Visscher,

2007). At the time of the project’s commencement, the choice of suitable hardware was limited,

which tended to limit the OS selection for the sensor server.

13

Sun Solaris and a variety of Linux distributions were considered as the OS of choice, for

the combined Honeypot sensor sever (Brown, 2008). The OS determination was made, based

on the hardware available, the reputation of a proven operating system, individual familiarity,

and the access to a variety of support mechanisms (see Table 1).

Operating

System (OS)

Hardware

Support

Database

Support

Software Support Individual

Experience

Solaris YES (NATIVE) YES (NATIVE) YES YES

Red Hat NO YES YES YES

Ubuntu YES YES YES NO

Gentoo NO UNKNOWN UNKNOWN NO

Table 1: Simplified OS Decision Matrix (Rodriguez, 2008)

Initally, Sun was selected, based hardware support, familiarity, native database support,

and other qualifying criteria (see Figure 2. Simplified Decision Matix). Sun is a stalwart in the

Unix industry having contributed heavily to the Unix computing environment, with solutions

such as NFS, NIS, Java, etc.(Sun Microsystems, Inc., 2008). Since Regis had recently received

a donation of Sun equipment and its operating system was being offered as a free download, it

seemed a reasonable candidate to host the combined Honeypot sensor server software. Though

Sun Solaris was initially decided on as the OS of choice for the Honeypot sensor server, it was

abandoned after months of failed attempts to compile all the needed software components for the

system.

Red Hat is one of the premier providers for enterprise class Linux distributions. Since its

first release in 1994, Red Hat has continued to grow and win numerous awards (Red Hat, 2008).

Ultimately, Red Hat Linux was used and successfully supported this project.

14

Qualitative Case Study

 This project will present a qualitative case study of the configuration of a Honeypot

sensor server, employing a research methodology that utilizes an evidence-based analysis. The

research methodology chapter, demonstrates the types of evidence observed and measurables

identified. The study will attempt to remove the subjective (e.g., individual experience with a

product) and place value on empirical research, though it is acknowledged that a totally objective

analysis is not feasible when considering factors such as ease of install, use, supportability, etc.

15

Relevance of Project

The criticality of information assurance (IA) in an organization continues to gain greater

importance in the enterprise. With this, comes the ever-increasing challenge for educational

institutions to output quality graduates able to meet the task. New threats and risks to an

enterprise’s IA posture are continually being developed and exploited. One educational solution

to this ongoing threat to enterprise information assurance is to provide students with a real-world

environment, where threats are constantly evaluated and risk mitigation actively explored. As has

been empirically demonstrated, a student’s learning is enhanced through hands-on experience,

experimentation, and in-depth labs (Fisher, 2004). The intent of this project is to deliver an

operational Internet-facing, combined Honeypot sensor server that will provide a learning

environment where students can exercise new and existing IA skills. The student will

accomplish this, by analyzing current threats and develop techniques to minimize risks to the

organization.

 The selection, configuration, and delivery of the Honeypot sensor server is the

foundation for this project’s current and ongoing relevance, key to this success is the choice of

operating system for the sensor. An operating system/ network operating system (OS/ NOS) is

the basis for the security triad of confidentiality, integrity, and availability (Dulaney, 2009). In

the absence of a secure OS, the Honeypot’s worth would be diminished, if not completely

negated. Besides affording an interface to the hardware and a command execution environment,

today’s secure network operating systems also provide authentication, accounting, and

availability (Bovet & Cesati, 2006):

16

Project Barriers

As with any low-funded and understaffed educational endeavor, there are many barriers

that accompany such a project. The first challenge was acquiring suitable software and hardware

to support the project. Because of budgetary constraints, open source and freely available

software was utilized. The hardware requirements are dictated by software and yet, still need to

be robust enough to handle the traffic that will traverse a fully operational, Internet-facing

Honeypot sensor server. Thus, the hardware available at the time of project commencement, had

a direct correlation on the software selected.

Proposal and Scope

There are four phases of the project work in this case study:

Phase I: Hardware selection, installation, configuration, and verification.

Phase II: Operating System selection, installation, configuration, and verification.

Phase III: Honeypot sensor server software selection, installation, configuration, and

verification.

Phase IV: Final Honeypot sensor server verification and testing.

Risks

 In the end, this project strives to increase security within the organization/ enterprise. As

Lance Spitzner states, “security is all about reducing risk” (Honeypots : tracking hackers, 2003,

p. 321). This project presents some technical risks to Regis University by placing the Honeypot

system within the organization’s infrastructure and exposing it to the Internet. Spitzner identifies

three risk factors with Honeypot systems (Honeypots : tracking hackers, 2003):

1. Level of Interaction: hackers are given full access to the system and can possibly

compromise system beyond configuration restraints.

17

2. Complexity: the Honeypot system is comprised of many complex elements (firewalls,

rulesets, access control lists, etc.) and requires competent system/ network administration

controls.

3. Network exposure: the Honeypot system is Internet accessible and can provide a means

for hackers to access an organization’s internal network.

Document Organization

The remainder of document will address the following topics:

 Research: data and information collection/ dissemination concerning this project.

 Configuration: setup and configuration of the hardware and software in support of this

project.

 Results/ Recommendations: finding and final determinations of this project.

 Summary: project synopsis and review.

18

Terms

Definition of Acronyms

Acronym
CERT Not an acronym. CERT term is owned by Carnegie Mellon University,

and is part of the Software Engineering Institute
CPU Central Processing Unit
DoD Department of Defense
GUI Graphical User Interface
HPC High Performance Computing
IA Information Assurance
IDS Intrusion Detection System
IEEE Institute of Electrical and Electronic Engineers
IETF Internet Engineering Task Force
IPS Intrusion Prevention System
LAN Local Area Network
MAC Media Access Control
NIC Network Interface Card
NIDS Network Intrusion Detection System
NOS Network Operating System
OS Operating System/s
RAID Redundant Array Of Independent Disks
ROI Return On Investment
RPM Red Hat Package Manager
SANS SysAdmin, Audit, Network, Security Institute
SCSI Small Computer System Interface
SQL Structured Query Language
TCO Total Cost of Ownership
US-CERT United States Computer Emergency Readiness Team
WAN Wide Area Network
WWW World Wide Web

19

Definition of Terms

Term Definition
Authentication Authentication requires users to prove their identity
Extensibility
Framework Frameworks provide structure and guidelines
Information
Assurance

Measures that protect and defend information systems by ensuring their
availability, integrity, authentication, confidentiality, and non-repudiation.
These measures include providing for restoration of information systems by
incorporating protection, detection, and reaction capabilities. (National
Information Assurance Glossary)

Information
Security (IS)

Protecting information and information systems from unauthorized access,
use, disclosure, disruption, modification, or destruction. Information security
is concerned with confidentiality, integrity, and availability. (CITE)

Measurement In this study, the data collections are both internal and external to the
environment

Model Models are conceptual, and do not provide any direction or guidelines

Protocol A protocol is an agreed upon format for transmitting data between two
devices

Reliability A data collection strategy in qualitative study that requires stability and the
creation of creatable procedures which is accomplished with a formal case
study

Security Security is described through the accomplishment of some basic security
properties, namely confidentiality, integrity, and availability of information.
(Kotzanikolaou and Douligeris)

Security
Architecture

The design artifacts that describe how the security controls are positioned and
how they relate to the overall IT architecture. These controls serve the
purpose to maintain the system’s quality attributes, among them
confidentiality, integrity, and availability. (CITE, 2008)

Standards Written definition or rule approved for compliance by consensus or by
authoritative groups

20

Chapter Two: Research

Honeypot Overview

 Much can be found in print and online, detailing research and proving the concepts of

Honyepot systems. "A honeypot is an information system resource whose value lies in

unauthorized or illicit use of that resource" (Spitzner, 2003). In essence, a Honeypot network is

an intentionally designed, security-flawed network, composed of a variety of vulnerable sub-

systems and computers. Its objective is to delay, divert, and draw attackers to a central point by

the use of subterfuge. It can be used to as a means of legal entrapment against would-be hackers

(Dulaney, 2009). Oftentimes, the Honeypot contains false data (e.g., spreadsheets, employee

lists, accounting information, etc.) that is left within the vulnerable system.

At this point, it makes sense to define the difference between the terms Honeynet and

Honeypot. A Honeynet is a high-interaction implementation of a Honeypot (Spitzner, 2002).

However referenced, both are considered a NIDS (Network Intrusion Detection System) and

play a role as part of the network security paradigm.

A Honeypot can directly support the SecSDLC (The Security Systems Development Life

Cycle) and as a result, an organization’s security policy. Furthermore, a Honeypot accomplishes

this by supplying a means for investigation, analysis, design, implementation, maintenance, and

change (Whitman & Mattord, 2005). Similarly, figure 4 depicts the Honeypot data lifecycle,

from the threats entry into the Honeypot, to the final desired effect (knowledge).

21

Figure 2: Honeypot Data Lifecycle (Rodriguez, 2009)

Honeypot Advantages

The Honypot’s ultimate benefit is that of knowledge and experience. Unless the

organization is building products off the information gathered, it generally does not provide any

production value to an organization. Honeypots, when effectively utilized (Whitman & Mattord,

2005):

 Can obtain useful information on the methods of attackers, hackers, and intruders.

 Can be used to identify network risks and vulnerabilities.

 Can be used to identify current methods and techniques employed by hackers.

 Can be used to aid in incident response, forensics, and legal prosecution of computer/

network espionage.

22

Honeypot Disadvantages

Honeypots do have their limitations. First, Honeypots are not reliable countermeasures

for enterprise security, meaning, they are not an IPS (Intrusion Prevention System). In addition,

they can have the effect of taunting attackers and result in an increase in the severity of attacks

on the enterprise. Lastly, they expose a part of the organization’s network to intruders and may

compromise an organization’s security strategy, or provide inadvertent information on a further

means of attack. For example, if the sensor or other network device is compromised, it may

provide a backdoor to an organization’s intranet (Whitman & Mattord, 2005).

Honeypot Components

 As can be derived from Figure 3, the Honeypot is composed of distinct components or

modules. The system can be simplified into three sections, the Honeypot sensor, the server, and

the client (Visscher, 2007). The the sensor monitors and collects network packets. In addition,

the sensor identifies data based on rules, also known as signature-based monitoring (Dulaney,

2009). The server has the ability to log, store (archive), or discard the data. The server contains

the database component of the Honeypot system and facilitates the auditing capability of the

product. Lastly, the client provides a means for the human element, where the Honeypot user/

administrator can turn raw data into actionable information and ultimately gain knowledge.

Heart of the Honeypot: The Sensor

As previously conveyed, the focus of this writing is towards the configuration of the

sensor server (consolidation of first two sections of the Honeypot system). The sensor is the

heart of the Honeypot network. Its job is to capture and monitor packets traversing the Honeypot

network. The Honeypot sensor can be setup in various network configurations: directly in-band

to the traffic path (as a type of pass-through router), out-of-band on a network switch (port

23

monitoring), or as another node on the Honeypot network (packet sniffer). See figure 4 for the

respective configuration examples.

Figure 3: Example Honeypot sensor network configurations (Rodriguez, 2008)

Due to its mission, the sensor (or combination sensor server) should be robust

enough to support this type of role. The sensor software dictates the minimum

hardware requirements, as does most software. Many of today’s server class

computers, can be adequately configured for this purpose. Common to most Honeypot

servers, is the need for (Hoepers & Steding-Jessen, 2006):

 A highly robust multi-tasking, multi-processor server.

 RAID disk arrays to store the large amounts of data collected, availability, and provide

for the necessary through-put of high traffic scenarios.

 Depending on configuration, at least one high-speed network interface (see Figure 4).

 Suitable hardware to support the requirement for a database server.

There are many suitable Honeypot software suites/ packages. Many are freely available and

based on open source software license agreements. They can be compiled to run on a variety of

24

hardware platforms and operating systems. A sampling of Honeypot software, can be found at

The Honeynet Project: http://project.honeynet.org/project.

The Choice of the Honeypot Sensor Server OS

The focus of this paper’s research is centered on the choice of OS, for a combined

Honeypot sensor server. The selection of the OS is driven by the need to combine analogous and

disparate software modules that can be compiled, to become the Honeypot system. The OS

needs to support an open environment, in the sense that from developers to end-users, the OS

should not impede the success of the project.

Two established operating systems were considered for the implementation of the

combined Honeypot Sensor Server: Sun Solaris 10 and Red Hat Enterprise Linux 4.1.2. Both

operating systems are leaders in their industry and good Unix and Linux representatives. Both

are innovative and have contributed to the continuing strength and success of the Unix and Linux

operating systems. The intent of this study is not to determine what OS is necessarily better, but

to identify the OS that was better suited for this specific project. The parameters of this study

were limited to one particular Honeypot software suite and which OS was more readily suited to

support the success of this project. See figure 5 for the command outputs that display OS version

information (for Red Hat Linux and Sun’s OS, respectively).

[srodri506@centaur ~]$ uname -a
Linux centaur.vlab.us 2.6.18-92.1.22.el5 #1 SMP Tue Dec 16 12:03:43 EST 2008 i686 i686 i386
GNU/Linux
[srodri506@centaur ~]$ cat /proc/version
Linux version 2.6.18-92.1.22.el5 (mockbuild@builder16.centos.org) (gcc version 4.1.2
20071124 (Red Hat 4.1.2-42)) #1 SMP Tue Dec 16 12:03:43 EST 2008
root:sensor# uname –a
SunOS sensor 5.10 Generic_137111-08 sun4u sparc SUNW,Ultra-4
Figure 4: OS Version Information (Rodriguez, 2008)

25

Criteria for OS Analysis

As the study proceeds in the following chapters, a set of OS characteristics will be

presented that were found to be pertinent to the development and configuration of the combined

Honeypot sensor server. Figure 6, is a pictorial representation of the OS characteristics that were

found valuable in the successful deployment in the Honeypot project. The elements of the

pyramid (Figure 6) are categorized into: ease of install, extensibility, reliability, and

performance.

Figure 5: Combined Honeypot Sensor Server OS Criterion (Rodriguez, 2009)

26

Ease of install is a relative determination of the ease in which the OS was installed, based on

a familiarity with current and past OS installations over a 20 year period. Both Solaris 10 and

Red Hat 4 possessed equally intuitive install GUIs that made installation of the OS

straightforward and problem-free. Ease of install is important to the Honeypot, due to the fact

that Honeypot systems are meant to be attacked, compromised, and rebuilt.

Extensibility is the degree in which a system can be modified to adopt to future requirements,

while maximizing an organization’s ROI (Cornish, et. al., 2003). Since 2000, Red Hat has not

officially supported Sun’s Sparc CPU, which equates to a decrease in platform support

(Shankland, 2000). Sun’s has continued to ink important hardware partnerships, IBM longtime

cooperation with Sun being one of many examples (Vaughan-Nichols, 2007). With Oracle’s

acquisition of Sun, Solaris is poised to expand its market share. Sun ultimately has the

advantage in this area, by supporting more types of architectures and platforms (Babcock, 2008).

Extensibility is important to the longevity and resilience of the Honeypot project.

Reliability is a measure of the product’s dependability, to ensure system uptime. Both

Solaris 10 and Red Hat are mature operating systems with successful track records of enterprise

support. Reliability supports the Honeypot ‘s availability. The Honeypot’s effectiveness is

directly related to its uptime.

Performance is the efficiency, resource effectiveness, and comparative speed of the operating

system to its competitiors. There is very little definitive research giving one operating system an

overall performance advantage over the other. For example, looking at Sun’s own research

comparing their latest ZFS file system to other common Linux file systems, results in the all-too-

common, “depending on the application” commentary (Sun, 2007). Also, many of the

comparisons seemed to be testing systems that were just too different in hardware configurations,

27

thus nullifying the results (Principled Technologies, 2007). Performance is important to the

Honeypot system, because of the resources (CPU, memory, and I/O) required to handle the load

of a network-based attack. For example, a DOS (denial of service) attack is based on

bombarding a network ed computing device with data packes, to the point the system becomes

unusable.

OS Support is the ability and the cost related to software maintenance. Though Sun argues

that their overall TCO is less than Red Hat, it is undeniable that an open OS affords more

avenues to support than the traditional software model. The findings of this project were that Red

Hat was more prevalent and maintainable. With the advent of OpenSolaris, this result may

change in the future with Sun’s participation of the open source movement. Open source

software benefits from a community of free developers and testers. Redhat has better leveraged

this model through the use of its beta OS’. The supportablity of the OS is directly related to the

longevity of the project.

Sustainment is the ongoing ability to support a project in a cost-effective manner. Where

supportablity addresses the technical issues of maintaining the project, sustainability tackles the

logistics of what it would take to maintain the project from a personnel/ resource point of view.

For example, Solaris system administrators wear very specialized suits, as Sun continues to bring

their own brand of uniqueness and innovation to the table (e.g., RBAC, Zones, Dtrace, etc.). Red

Hat’s innovations (e.g., RPM) have been quickly adopted by the Linux community, thus

avoiding the “members only” mentality or the requirement for specialized training.

The database houses all the data, needed for the operation of the Honeypot. The data is

mined, analyzed, and signatures built on traffic patterns, so database support is a principal

consideration. Database support is the ability to maintain and support the required database for

28

the Honeypot system. Sun is owned by Oracle, a leading database provider. And, with Sun’s

acquisition of MySQL in 2008, Sun now has the ability to bundle MySQL with their OS as a

low-cost alternative to Orac le suite of database products (MySQL.com, 20008).

Security is the ability for the system/ OS to provide confidentiality, integrity, and availability

(Dulaney, 2009). Being able to secure the Honeypot server is critical for this project to provide a

viable environment for study, testing, and learning. Back in 1995, Sun released its first version

of what it termed “Trusted OS” (Brunette, 2006). Sun has continued to improve the security

within the Solaris platform with a myriad of tools and concepts on access, auditing, accounting,

allocation controls. (Sun, 2009). For example, through zoning, Sun allows easily built and

secured virtual environments. Again, Linux is not far behind, but Sun has a slight lead in this

area (Babcock, 2008).

Software Compatibility is the OS’ ability to support the required Honeypot software. The

majority of the Honeypot software packages were easily configured with Red Hat; whereas,

trying to compile the needed packages and versions on Sun was difficult, and some cases not

possible at the time of this study (April 2008- October 2008). Examples of install and

configuration can be found in the appendices.

The result of this study (based on the selected Honeypot software) was conclusive. Red

Hat provided a more suitable OS for this project. As figure 6 demonstrates, both operating

systems have their advantages, but on the more critical issues of software compatibility,

software/ OS support, and ongoing sustainability, Red Hat is clearly the OS of choice. Lastly,

Sun has only a slight advantage over Red Hat in the areas of security and database support.

Chapter Three: Configuration

Hardware Configuration

29

Since the project focused on the configuration of an Internet-facing combined Honeypot

sensor sever, the type of hardware chosen would have to fulfill an important role. The hardware

would require significant disk space to host the possibly massive log collection and database

growth. The system would need sufficient resources to handle the data bursts that could

accompany a malicious network attack. Of course the system would need multi-processing/

multi-tasking capability to address all the software requirements.

Sun Enterprise[tm] 450 Server

The Sun Enterprise[tm] 450 Server debuted in September of 1997. Although outdated by

today’ standards, the server met the minimum requirements and was a good candidate to handle

the load. The sever also had adequate storage capabilities and potential for expansion (via built-

in SCSI adapters). More importantly the hardware was readily available for this project.

Processor

Number From one to four processor modules

Architecture
250-, 300-, 400- or 480-MHz UltraSPARC[tm]-II modules with onboard E-
cache

Cache memory

16-KB I-cache, 16-KB D-cache per processor

1-MB external cache per processor with 250-MHz CPU

2-MB external cache per processor with 300-MHz CPU

4-MB external cache per processor with 400-MHz CPU

Datapath

Two independent, buffered 144-bit UPA buses; 128 bits data, 16 bits ECC;
two processors per bus

UPA operates at 100-MHz with 300-MHz or 400-MHz processors

Main Memory

Capacities 16 DIMM module slots; four banks of four slots

30

Accepts 32-, 64-, 128-MB or 256-MB DIMMs

128 MB to 4 GB total memory capacity

Memory type 144-pin 5V 60-ns memory modules

Datapath
576 bits wide; 512 bits data, 64 bits ECC

Up to 1.78-GB/sec throughput

Standard Interfaces

Ethernet
One ethernet/fast ethernet (10BASE-T/100BASE-T) twisted-pair standard
connector (RJ-45) or one MII for external transceiver connection, autoselect
port

Keyboard and
mouse

One standard keyboard/mouse port (mini DIN-8)

Parallel One Centronics compatible, bidirectional, EPP port (DB25)

PCI

Ten slots compliant with PCI specification version 2.1:

 Three slot operating at 33- or 66-MHz, 32- or 64-bit data bus width,
3.3 volt

 Four slots operating at 33-MHz, 32- or 64-bit data bus width, 5 volt
 Three slots operating at 33-MHz, 32-bit data bus width, 3.3 volt

SCSI
One 20MB/sec, 68-pin, Fast/Wide SCSI-2
One, three, or five 40-MB/sec, UltraSCSI-3 buses for internal disks

Serial Two RS-232D/RS423 serial ports (DB25 , requires a Y-type splitter cable)

Internal Mass Storage

Disks

Up to twenty 4.2-GB, 9.1-GB, 18.2-GB, or 36.4-GB (3.5- x 1-in.) hot-swap
UltraSCSI-3 drives

Disk bays: Four, twelve, or twenty hot-swap disk bays
Disk controllers: One, three, or five 40-MB/sec UltraSCSI-3 channels;
maximum four drives per channel

CD-ROM SunCD[tm] 12x or 32x 644-MB SCSI CD-ROM (standard)

Floppy 1.44-MB 3.5-in. floppy drive (standard)

Tape
One bay available for optional 5.25- x 1.6-in. SCSI tape drive; 8-mm or 4-
mm DDS-3, or SLR

31

Power Supplies

Type
One, two, or three modular, N+1 redundant, hot swap, universal input (two
supplies standard)

Output
1210W maximum, 605W maximum each supply
1120W maximum, 560W maximum each supply (before October 1997)

Power bus Common, load-sharing

Environment

AC Input 100 - 240 VAC, 47 - 63 Hz, 13.8 A(max)

Input Power 1664 W

Heat Output 5680 BTU/hr

Temperature1
Operating: 5° C to 35° C (41° F to 95° F)
Nonoperating: -20° C to 60° C (-4° F to 140° F)

Humidity
Operating: 20% to 80% relative humidity, noncondensing
Nonoperating: 5% to 93% relative humidity, noncondensing

Altitude
Operating: 3000 m (10,000 ft.)
Nonoperating: 12,000 m (40,000 ft.)

Acoustic noise
Operating: 6.9 bels
Idling: 6.3 bels

Vibration
Operating: 0.2G peak, 5 - 500 Hz, 3 perpendicular axes
Nonoperating: 1G peak, 5 - 500 Hz, 3 perpendicular axes

Shock
Operating: 4G peak, 11 milliseconds half-sine pulse
Nonoperating: 30G peak, 11 milliseconds half-sine pulse

Number of cords 1

1 The front and rear doors of the cabinet must be 63% open for adequate airflow.

Regulations
Meets or exceeds the following requirements:

Safety
UL 1950 and CB-scheme EN60950 with Nordic Deviations, CUL C22.2 No.
950, TUV EN60950

RFI/EMI
FCC Class B, Industry Canada Class B, EN55022/CISPR22 Class B, VCCI
Class B

Immunity EN50082-1/IEC1000-4-2, IEC1000-4-3, IEC1000-4-4, IEC1000-4-5

Harmonics EN61000-3-2/IEC1000-3-2

32

X-ray DHHS 21 Subchapter J, PTB German X-ray Decree

Dimensions and Weights

Height 58.1 cm (22.87 in.)

Width 44.8 cm (17.64 in.)

Depth 69.6 cm (27.40 in.)

Weight 94.0 kg (205 lb.)

Power Cord 2.5 m (8.2 ft.)

Clearance and Service Access

Front1 36 in. (91.44 cm.)

Rear1 36 in. (91.44 cm.)

Right1 36 in. (91.44 cm.)

Left1 36 in. (91.44 cm.)

Top1 36 in. (91.44 cm.)

Airflow

33

1 These specifications refer to a sytem that is fully extended from the rack for service. When in
normal operation, there are no side clearance requirements for the server as the air flow is from
the front to rear. However, make sure that any front or back cabinet doors are 63% open to allow
adequate airflow. This can be accomplished by removing the doors, or ensuring that the doors
have a perforated pattern that provides a 63% open area.

Rack Mounting

The Sun Enterprise 450 can be mounted in a standard 19-in. rack. The optional rackmounting kit
consists of a depth-adjustable, slide-mounted shelf and retaining bracket.

Table 2: Sun Enterprise[tm] 450 Server Hardware Specifications (Rodriguez, 2009)

34

HP ProLiant DL380 G5 Server

Following a number of unsuccessful attempts to install the Honeypot software on the Sun

system (not hardware related), an HP ProLiant DL380 G5 Server was used. One of the major

advantages of the HP ProLiant line of servers is the embedded hardware RAID controller, which

minimized configuration requirements. In comparison, the Sun Enterprise[tm] 450 Server

required the configuration of a slower software-based RAID controller.

Processor & Memory

Processor Type Intel® Xeon® 5400 series
Intel® Xeon® 5300 series
Intel® Xeon® 5200 series

Processor Quad-Core Processors
Intel® Xeon® processor X5470 (3.33 GHz, 1333MHz,
120W)
Intel® Xeon® processor X5460 (3.16 GHz, 1333MHz,
120W)
Intel® Xeon® processor X5450 (3.00 GHz, 1333MHz,
120W)
Intel® Xeon® processor E5450 (3.00 GHz, 1333MHz, 80W)
Intel® Xeon® processor E5440 (2.83 GHz, 1333MHz, 80W)
Intel® Xeon® processor E5430 (2.66 GHz, 1333MHz, 80W)
Intel® Xeon® processor L5430 (2.66 GHz, 1333MHz, 50W)
Intel® Xeon® processor E5420 (2.50 GHz, 1333MHz, 80W)
Intel® Xeon® processor L5420 (2.50 GHz, 1333MHz, 50W)
Intel® Xeon® processor E5410 (2.33 GHz, 1333MHz, 80W)
Intel® Xeon® processor L5410 (2.33 GHz, 1333MHz, 50W)
Intel® Xeon® processor E5405 (2.00 GHz, 1333MHz, 80W)
Intel® Xeon® processor X5365 (3.00 GHz, 1333MHz,
120W)
Intel® Xeon® processor X5355 (2.66 GHz, 1333MHz,
120W)
Intel® Xeon® processor E5345 (2.33 GHz, 1333MHz, 80W)
Intel® Xeon® processor L5335 (2.00 GHz, 1333MHz, 50W)
Intel® Xeon® processor E5335 (2.00 GHz, 1333MHz, 80W)
Intel® Xeon® processor E5320 (1.86 GHz, 1066MHz, 80W)
Intel® Xeon® processor L5320 (1.86 GHz, 1066MHz, 50W)
Intel® Xeon® processor E5310 (1.60 GHz, 1066MHz, 80W)

Dual-Core Processors
Intel® Xeon® processor X5270 (3.50 GHz, 1333MHz, 80W)

35

Intel® Xeon® processor X5260 (3.33 GHz, 1333MHz, 80W)
Intel® Xeon® processor L5240 (3.00 GHz, 1333MHz, 40W)
Intel® Xeon® processor E5205 (1.86 GHz, 1066MHz, 65W)

Processor Cores Dual and Quad

Cache memory Up to 12MB L2 cache (2 x 6MB)

Sockets 2

Max front side bus 1333MHz

Memory Type PC2-5300 DDR2 FB DIMMs

Standard memory 2GB
(2GB base models; 4GB performance models)

Max Memory 64GB

Memory protection Advanced ECC; Mirrored Memory; Online Spare

Storage

Storage type Hot plug 2.5-inch SAS
Hot plug 2.5-inch SATA

Max Drive Bays Up to 8: SFF Hot plug to support Serial-attached SCSI (SAS)
and Serial ATA (SATA) drives

Storage controller Performance Models: HP Smart Array P400/512MB BBWC
Controller (RAID 0/1/1+0/5/6)
High Efficiency and Base Models: HP Smart Array
P400/256MB Controller (RAID 0/1/1+0/5)
Entry Models: HP Smart Array E200/64MB Controller
(RAID 0/1/1+0)

Expansion Slots 4 total slots

Deployment

Form factor Rack

Rack height 2U

Networking Two (2) Embedded NC373i Multifunction Gigabit Network
Adapters with TCP/IP Offload Engine

Remote
management

Integrated Lights-Out 2

Power supply type Standard on performance models, optional on entry and base

36

models

System fans Hot plug fully redundant

Warranty - year(s)
(parts/labor/onsite)

3/3/3

Table 3: HP ProLiant DL380 G5 Server series – specifications and warranty (HP, 2009)

 As previously stated, the system required a fair amount of disk space and built-in

reliability. The operating system disk was mirrored, utilizing a RAID 1 configuration. The data

was striped across multiple disks, utilizing a RAID 5 configuration for redundancy. Figure 10

provides a pictorial representation of the disk layout and partition requirements.

Figure 6: Disk Layout and Partitions (Rodriguez, 2009)

Software Configuration

 Sguil (pronounced sgweel) was developed by network security analysts for network

security analysts (Visscher, 2007). Sguil is a suite of modular applications that utilizes some of

the best open source software available to comprise a network collection and monitoring security

system. It is agile enough to incorporate new and better applications as they are developed and

can be deployed on a number of different hardware and software platforms. Sguil provides the

37

functionality of an IDS, along with a myriad of data collection, and real-time monitoring tools.

The Squil database allows for simple to complex SQL queries that can be completed in the

shortest amount of time. All these tools and abilities are consolidated within the Squil GUI,

which is the command center of the Honeypot system. In addition, Sguil provides an

environment to develop, test, and analyze security tools and methodologies.

 Both the Sun and Red Hat Sguil installs used the Sguil on RedHat HOWTO as an

installation guide (Bianco, 2008). Though this particular website focuses on Red Hat, the

processes and software components needed to install and configure Sguil are the same,

regardless of the platform OS. The basic install steps were:

 Identify the needed software package/s.

 Download the source code

 Compile and install the software package/s

 Test and verify install

A list of the needed software components for Sguil can be found below:

Software Version Location Download Location Notes

MySQL 5.x Server http://dev.mysql.com/downloads/mysql
4.1.x versions
also work

Libpcap 0.9.7 Sensor http://www.tcpdump.org/

Libnet 1.0.2a Sensor http://www.packetfactory.net/libnet/

Neither newer
nor older
versions may
be used.

Snort
2.6.1.5
(or
newer)

Sensor http://www.snort.org/dl/

You will also
need to
register for a
free snort.org
account in
order to
download
IDS rules

38

SANCP 1.6.1d Sensor http://www.metre.net/sancp.html

1.6.2 versions
don't seem to
work
correctly for
Sguil yet, but
the developer
is working on
this.

Barnyard 0.2.0 Sensor http://www.snort.org/dl/barnyard/

PADS 1.2 Sensor
http://demo.sguil.net/downloads/pads-1.2-sguil-
mods.tar.gz

You must use
the version
with the built-
in Sguil
modifications.
The standard
PADS
version will
not work.

P0f 2.0.8 Server http://lcamtuf.coredump.cx/p0f.shtml

Tcpflow 0.21 Server http://www.circlemud.org/~jelson/software/tcpflow/

Tcltls 1.5.0
Server,
Client

http://tls.sourceforge.net/

Provides for
an encrypted
data channel
between the
sguil server
and the
analyst
consoles or
sensors

Mysqltcl 3.03 Server http://www.xdobry.de/mysqltcl/

Tcllib 1.9 Server http://tcllib.sourceforge.net/

Sguil 0.7.0
Server,
Sensor,
Client

http://www.sguil.net/

Note: 0.7.0 is
currently in
test release,
so you'll need
to fetch the
CVS version.

Sguil
startup
scripts

0.7.0
Server,
Sensor

http://instantnsm.sourceforge.net/

I've put
together a set
of
prepackaged
startup scripts
for the

39

various
components.
These files
come with the
InstantNSM
distribution.

Table 4: Sguil Software Components (Bianco, 2008)

Due to Sun’s prevalence, many of the required software components were found online,

pre-compiled and ready for install (Christensen, 2009). Though, the Solaris 10 install of Sguil

also required many software prerequisites that are not listed in Table 4. For example, TclX is a

base component needed for Sguil and not part of the Solaris 10 full install. In the end it was a

TCL version mismatch that forced the move to another OS. Since, TCL/ TclX are Sguil

foundation modules, it became evident that the TCL mismatch might force a recompile/ reinstall

of all the Sguil components. In addition, there were packages that would not compile on Solaris

10, the PADS application being one example (Meissner, 2008). Due to the unknown variables,

lack of support from Sun/ Solaris community, and project time constraints (4 months were

exhausted on the attempted Solaris Sguil install), Solaris 10 was abandoned (See Appendix A:

Project Communications).

There are a slew of resources documenting the success of running Sguil on the Red Hat

operating system. The benefit of being the more established Linux variant, clearly had a positive

effect on the support available via news, forums, and user groups. Furthermore, the RPM

package install utility was found to be much easier to navigate than Sun’s “package add” utility

for loading the additional software on the system. The Sguil software modules compiled and

installed with much less user intervention (e.g., modifications to config/ make files) than on the

comparable Solaris installation. As observed during this project, the hardware, software, and

40

application configurations were found to be more effective and time efficient using the Red Hat

Operating System.

Chapter Four: Wrapping it Up

Results

This document studied the most adaptable Unix-like operating system for use as a

combined Honeypot sensor server. From the plethora of operating systems considered, both Sun

Solaris and Redhat Linux were selected for the study. In the end, Redhat Linux was better suited

to accomplish the task of running a combined Honeypot sensor server. Previously in this paper,

the evaluated OS criterion was represented pictorially (reference Figure 5: Combined Honeypot

Sensor Server OS Criterion). Table 5 provides a more detailed examination of the OS

comparison results.

 Operating Systems

Sun
Solaris

Redhat
Linux

 E
valu

ated
 C

h
aracteristics

Ease of Install X

Extensibility X

Reliability X

Performance X

OS Support X

Application Sustainment X

Database Support X

Security X

Software Compatibility X

Hardware Flexibility X

Market Prevalence X

Requirement for Additional Training X
Table 5: Extensive OS Decision Matrix (Rodriguez, 2009)

41

Like Figure 5, the Extensive OS Decision Matrix (Table 5), illustrates the superior

attributes of Redhat Linux over Sun Solaris. Table 5, was developed based on the need for a

conclusive determination of OS characteristics, regardless of how slight the advantage of one OS

over the other. In some cases the conclusion was based on real-world experience, survey, and

perspective; not necessarily extensive empirical study. The reason for this is based on the fact

that some characteristics are entirely relative to experience (e.g., ease of install). The following

will review the main points that gave the prevailing OS the edge over the other and provide

justification for the conclusion.

Ease of install is important to the Honeypot, due to the fact that Honeypot systems are

designed to be attacked, compromised, and rebuilt. Though both OS were similarly easy to

install, Redhat provided a slightly more user friendly interface based on its more Windows like

interface. Again, both install interfaces were straight-forward, but from the perspective of a

novice user, Redhat had a very slight edge.

Extensibility is important to the flexibility of the Honeypot project, since it will provide the

foundation of where/ and what the Honeypot software can be installed. Development is directly

related to overall platforms fielded. With Oracles commitment to maintain Suns hardware

development/ deployment strategy, Sun has the opportunity to maintain its overall lead in CPU

types that will support Sun Solaris (Finkle, 2009).

Reliability corresponds to the Honeypot ‘s availability or the uptime of the enviornment. The

Honeypot’s effectiveness will be serverly disabled, if the system is not deemed reliable. Solaris

has a slight edge by the means of having the more mature operating system and experience in the

enterprise with clustering, security, and less agile software releases. Although agile software

42

development is a benefit within some applications, the Honeypost system would benefit from

Suns more structured model of delivery.

Performance the speed and efficiency in which Honeypot system can do its job, measured in

terms of hardware resource use: CPU, memory, and I/O. Though this study did not complete a

side by side performance comparison, based on industry research, Linux has clearly dominated

the HPC (High Performance Computing) market in recent years (Meuer, Strohmaier, Dongarra,

& Simon, 2009).

The supportablity of the OS is directly related to the longevity of the project. Technically,

the project needs the best possible support model for its continued existence. Based on

experience gained from this study, Linux is superior in this category, especially since the

majority of Honeypot software was initally developed with the Linux operating system in mind.

Sustainment is the logistics to maintain the project from a personnel and economic

perspective, differing from the technical aspects of supportability. Linux continues to lead in

overall deployments and its growth looks to dwarf future deployments of Sun’s current operating

system model. This continues to lead to an increase in the number of people who know and can

sustain Linux. Linux administrators will be more easily to find and train, than their Sun

counterparts.

The Honeypot system is highly reliant on the collection of large amounts of data. Due to the

necessity for the large collection of data, database integrity is crucial to the system. With

Oracle’s acquisition of Sun and wtih Sun acquiring, Sun seems poised to benefit from these

newfound database partnerships (Finkle, 2009). Sun has a decisive database advantage over its

competitors.

43

Confidentiality, integrity, and availability is core to the security of an operating system (Dulaney,

2009). Sun has a long tradition of providing a secure operating system environment. At least for

the short-term, Sun maintains a slight security advantage over Linux, based on experience and

overall OS maturity.

All things considered, it boils down to whether all the software components that compose the

Honeypot system will work together. The myriad of software applications/ components that

compose the Honeypot softwares suite were quite easily and successfully installed on Redhat.

After numerous attempts, many of components, specific versions, would not compile on the Sun

platform.

Hardware flexibility underlies the ability to opeate the Honeypot system on a wide range of

hardware platforms. While Sun might have an advantage in extensibility or the variance of

CPUs that support Solaris, Redhat is openly supported by more Vendors. Redhat can be

installed on just about any off-the-shelf computer. Redhat has a tremendous advantage over

Solaris in the realm of hardware flexibility.

Market prevalence is a consideration, as the investment in the Honeypot system is

significant. As previously stated, time, money, and other resources are required to maintain a

system and the system should be designed with a healthy lifecycle at the forefront. Sun’s once

strong foothold in the government/ DOD sphere that once gave them an advantage has eroded as

Redhat is now authorized in the U.S. government computing space (Beekman & Abhyankar,

2005). Redhat has continued to grow in number of commercial installs, as well (Kerner, 2009).

Redhat continues to extend into many markets the use to be reserved for the big Unix giants

(Sun, IBM, SGI, etc.).

44

Training requirements for any new system can delay it successful deployment, as teams are

trained to maintain the system. Training and support through the Solaris community was once a

model for others to follow. Many of the those forums (e.g., Sun BigAdmin, SEtookit,

docs.sun.com, etc.) are now retired and all learning locked down to the paying community. As

well, with the latest versions of Solaris, Sun has taken a strategy of foraging a new direction,

separate from traditional Unix and Linux distributions. This strategy unfortunately requires

specialized skills that results in a smaller pool of engineers, developers, and system

administrators that are able to support the systems. A few examples:

o NFS file names are different (e.g., /etc/dfs/dfstab versus the traditional /etc/exports)

o Startup/ RC (run control) scripts are different (e.g., /etc/init.d has been antiquated in

Solaris)

o Services management is different (svcs/ svcamdin versus /etc/config files)

o Network services (e.g., /etc/inetd.conf has been antiquated in Solaris)

45

Summary

From the results of this study, Redhat was the better product for this project. Clearly the

benefits of having a massive pool of software contributors/ developers have given the open

source OS community and edge over the traditional OS manufactures. Specific evidence is

documented in appendicies, showing multiple Honeypot component application developers

conceded that their applications were not being actively tested or developed for current Solaris’

releases. The concessions from the legacy OS vendors (like Sun) to the open source movement

are evident in the fact that every major OS manufacture has jumped onto the open source

bandwagon either by commitment or action. Visit Sun’s open source project at

http://opensolaris.org.

Recommendations

Recommendations for this project include:

 The primary use of Redhat or similar Linux distribution for a combined Honeypot

sensor server

 The continued testing of new OS releases as they become available, to verify the

system is current to the market

 The leveraging of virtual computing and its many advantages (i.e., hardware

footprint, savings in HVAC, recovery time, system rebuild/ recovery time, etc.)

 Membership in one of the many international or national Honeypot groups/

alliances to further the organization’s experience, knowledge, and contribution to

ongoing security computing and networking efforts

 An active Honeypot lab, committed to collecting ongoing real-time data and

developing counter-measures/ solutions to real world threats and vulnerabilities

46

 Separation of the Honeypot Server and Sensor to distinct/ individual computing

environments (virtual or physical)

47

Bibliography

Babcock, C. (2008). Sun Shines In Solaris 10, Linux Comparison. Retrieved February 16, 2009

from

http://www.informationweek.com/news/software/linux/showArticle.jhtml?articleID=205

207395

Beekman, M., & Abhyankar, S. (2005). Red Hat and the Federal Enterprise Architecture.

Retrieved June 28, 2009 from http://www.redhat.com/f/pdf/gov/WHP0005US_FEA.pdf

Bianco, D. J. (2008). Sguil on RedHat HOWTO. Retrieved May 2, 2009 from

http://nsmwiki.org/Sguil_on_RedHat_HOWTO

Bovet, D. P., & Cesati, M. (2006). Understanding the Linux Kernel [3rd Ed.]. Sebastopol, CA:

O'Reilly Media.

Brown, J. , A. (2008, 4 24). Personal Communication.

Brunette, G. (2006). There and Back Again – A Solaris Security Tale. Retrieved March 2, 2009

from http://nvd.nist.gov/scap/conf/2006/nist-secauto-solsec-v1.4.pdf

Chapple, M., Shinder, D. L., & Porter, S. (2003). TICSA TruSecure™ ICSA Certified Security

Associate Exam TU0-001. Indianapolis, IN: Que Certification.

Christensen, S. (2009). Sunfreeware.com: Freeware for Solaris. Retrieved May 5, 2009 from

http://sunfreeware.com/

Ciampa, M. (2005). Security+ Guide to Network Security Fundamentals (2nd Edition). Boston,

MA: Thomson Course Technology.

Cornish, R., Moore, T., Pavoni, D., and Rockenbach, E. (2003). Analyzing Requirements and

Defining .Net Solution Architectures Exam Cram™ 2(Exam 70-300). San Diego, CA:

Pearson Education.

48

Dulaney, E. (2009). Comptia security+ study guide (4th Edition). New York: Sybex.

Finkle, J. (2009). Q+A-What are Larry Ellison's plans for Sun Micro? Retrieved August 21,

2009 from

http://www.reuters.com/article/rbssTechMediaTelecomNews/idUSN0740285120090507

Fisher, B. (2004). Seeing, Hearing, and Touching: Putting It All Together. Retrieved October

30, 2008 from http://www.cs.ubc.ca/~fisher/brfisher.work.html

Hewlett-Packard Development Company, L.P. (2009). HP ProLiant DL380 G5 Server series -

Specifications and Warranty. Retrieved March 28, 2009 from

http://h10010.www1.hp.com/wwpc/us/en/sm/WF06a/15351-15351-3328412-241644-

241475-1121516.html

Hoepers, C. & Steding-Jessen, K. (2006). Distributed Honeypots Project: How It’s Being Useful

for CERT.br. Retrieved January 26, 2008 from www.cert.org/archive/pdf/CERTbr-

Honeypots-public.pdf

Kerner, S. M. (2009). Red Hat to Grow Linux Biz Via Partners. Retrieved September 19, 2009

from http://www.serverwatch.com/news/article.php/3835366/Red-Hat--to-Grow-Linux-

Biz-Via-Partners

Meissner, D. (2008). HELP with pads-1.2-sguil-mods on SPARC: msg#00025. Retrieved

September 12, 2008 from http://osdir.com/ml/security.sguil.general/2008-

09/msg00025.html

Meuer, H., Strohmaier, E., Dongarra, J., & Simon, H. (2009). TOP 10 Sites for June 2009.

Retrieved July 17, 2009 from http://www.top500.org/lists/2009/06

MySQL.com (2008). Sun to Acquire MySQL. Retrieved February 28, 2009 from

http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html

49

Principled Technologies, Inc. (2007). WebBench performance on a Red Hat Enterprise Linux 5

Intel processor-based system and a Sun Solaris 10 AMD processor-based system.

Retrieved February 25, 2009 from

http://www.developers.net/intelisdshowcase/view/2559

Red Hat (2008). About Red Hat. Retrieved October 26, 2008 from

http://www.redhat.com/about/companyprofile/history/

Shankland, S. (2000). Red Hat drops Sparc support with new Linux version. Retrieved February

12, 2009 from http://news.cnet.com/2100-1001-249226.html

Spitzner, Lance. (2002). Honeypots : Tracking Hackers. San Diego, CA: Pearson Education.

Spitzner, Lance. (2003). Honeypots: Definitions and Value of Honeypots. Retrieved March 16,

2009 from http://www.tracking-hackers.com/papers/honeypots.html

Sun Microsystems, Inc. (2007). White Paper: SOLARIS™ ZFS AND RED HAT ENTERPRISE

LINUX EXT3 FILE SYSTEM PERFORMANCE. Retrieved February 22, 2009 from

http://www.sun.com/software/whitepapers/solaris10/zfs_linux.pdf

Sun Microsystems, Inc. (2009). About Sun. Retrieved October 25, 2008 from

http://www.sun.com/aboutsun/company/history.jsp

Sun Microsystems, Inc. (2009). Sun Enterprise[tm] 450 Server: Hardware Specifications.

Retrieved March 27, 2009 from

http://sunsolve.sun.com/handbook_pub/validateUser.do?target=Systems/E450/spec

Vaughan-Nichols, S. (2007). IBM, Sun Partner to Bring Solaris to IBM. Retrieved January 15,

2009 from http://www.eweek.com/c/a/IT-Infrastructure/IBM-Sun-Partner-to-Bring-

Solaris-to-IBM-Servers/

50

Visscher, B. (2007). Sguil: The Analyst Console for Network Security Monitoring. Retrieved

March 15, 2009 from http://sguil.sourceforge.net/

Whitman, M. E., & Mattord, H. J. (2005). Principles of Information Security (2nd Edition).

Boston, MA: Thomson Course Technology.

	Regis University
	ePublications at Regis University
	Spring 2011

	The Best Nix for a Combined Honeypot Sensor Server
	Stephen M. Rodriguez
	Recommended Citation

	Microsoft Word - StephenRodriguez_Project_Final.doc

