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Chapter 1
 

Codes and Cubes
 

1.1 Origins of Cryptography 

Cryptography, the art or science of writing messages in code to disguise the content, 
has been a source of interest for millenia. Those who exchange secret messages do so 
through the medium of a cryptosystem, a single set of devices used in order to encrypt 
plaintext and decrypt ciphertext. Encrypting involves changing plaintext, a message in 
an intelligible state, into ciphertext, the message in an unreadable form. The ciphertext 
confuses adversaries, but by using the properties of the cryptosystem, the receiver can 
decrypt the ciphertext back into the original message. 

For thousands of years, humans have tried to devise methods of hiding messages 
from enemies. Secure communication prevents other nations from intercepting sensitive 
material, and the use of codes and cryptography continue to assist in maintaining security 
of personal information. Originally, the exchange of messages occurred via horseback or 
foot. Now in the 21st century, however, the technological advances allow us to correspond 
with computers, phones, and other devices. 

1.2 The Caesar Cipher 

One of the earliest forms of cryptosystems to be historically-documented is the Caesar 
cipher. This cipher found application in times of war, where military officers could transfer 
messages between eachother. The advantages of sending such correspondences are obvi­
ous. The scheme involved changing a plaintext message by shifting the letters a specific 
distance, by consequence creating a message that was unreadable. Below, the message 
“THEDIEHASBEENCAST” can be shifted by a specific letter (e.g. “S”). The letters of 
the alphabet can be represented as numbers, with A = 0, B = 1, C = 2, etc. Adding the 
letter pairs together, we see a new cipher-letter. Notice that there is a wrap-around that 
occurs when two letters near the end of the alphabet add up to a number greater than 
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3 CHAPTER 1. CODES AND CUBES 

25, or ‘Z’. When a ‘S’ is added to another ‘S,’ the result is ‘K.’ This wrap-around results 
from modular arithmetic. In addition modulo 26, 16 added to 20 is equivalent to 10 since 
36 divided by 26 has a remainder of 10. Every multiple of 26 is equivalent to zero. Other 
cryptosystems will use modular arithemetic in the encryption process. 

Figure 1.1: A Caesar Shift Cipher. Shift = ‘S’. 

This shift cipher has a well-known weakness. Since there are only 26 letters in the 
English alphabet, three of these letters not even existing at the time of the Romans, an 
ancient cryptanalyst would have little difficulty decrypting the ciphertext. Brute force, an 
attack on a cryptosystem that employs trying every possible “option” for the plaintext, 
can take a matter of minutes with this particular system. An attacker can reverse the 
shift of the ciphertext by “subtracting” to find the plaintext. If the adversary is lucky, he 
or she will find the plaintext before exhausting all shift possibilities. 

1.3 Necessary Components to a Cryptosystem 

Those who exchange secret messages use a key. A key in cryptography is any exchanged 
word or clue known by both the sender and receiver that assists in the decrypting a cipher­
text. In the example above, the key would simply be the letter ‘S’. In other cryptosystems, 
the key might be a word or phrase that signals a change to the plaintext or a clue about 
how to read a ciphertext in order to decrypt the message. 

Keys are exchanged between two individuals. For our example we will call these two 
Antony and Caesar. An adversary, Brutus, will often attempt to get in the way of the 
message exchange, and will do anything in his power to intercept the message and exploit 
its contents. Due to the potentiality of the message falling into the hands of Brutus, 
Antony and Caesar must share a secret key to prevent the reading of the message by 
Brutus or another enemy. 

The security of the key is vital. If an adversary were to discover the key, as well as the 
decryption method of the cryptosystem, then all communication between two parties using 
this system can be deciphered. Kerckhoffs’ principle, one of the most important published 
principles for military ciphers created in the late 19th century, explains the significance of 
the key in cryptography: 

“The cipher method must not be required to be secret, and it must be able to fall 
into the hands of the enemy without inconvenience.” [4] 

This says that there is no requirement for the encryption scheme to be secret, but 
rather just the key, k. Kerckhoffs intended the actual scheme itself to be secure enough 
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so that the secrecy of the key would suffice in maintaining security despite an adversary 
having knowledge of the system’s algorithms. We must always assume the enemy knows 
the method of encryption and decryption. With this in mind, the key k must be protected. 

Three arguments support Kerckhoffs’ principle. First, it is easier for communicating 
parties to exchange and remember a short key than maintain the secrecy of a large and 
complicated algorithm. It is quite difficult and cumbersome to secretly share and store 
a program that is thousands of times larger than a key stream. The second argument 
explains that in the hypothetical situation that a key is lost or leaked to dishonest parties, 
the individuals trying to maintain secrecy can refresh a key. Replacing an entire algorithm 
and its software is an unwieldy burden. The third argument supports the use of multi­
ple keys amongst numerous individuals in an organization; without multiple programs or 
algorithms, a variety of keys instead facilitates communication exchange. 

Kerckhoffs wasn’t alive to share this insight with Julius Caesar. Since the substitution 
cipher has only 26 different shifts, brute force attack could crack any code in a matter of 
minutes by hand. Cryptanalysts with a purpose have the motivation to break these codes, 
and for this reason, substitution is hardly ever used in the real world. 

In creating a new cryptosystem, security is a primary concern. The intercepting party 
may want to either read a particular message, find the key to read all transferred mes­
sages, corrupt the message before it gets to its receiver, or pretend to be the sender and 
communicate with the receiver without his or her knowledge. Depending on the situation, 
the security may become even more important. Efficiency of the cryptosystem, on the 
other hand, is not necessarily essential to security of the system, but there a cryptosystem 
that does not require much effort to encipher and decipher is preferred to one that is 
inconvenient for both parties. Knowing what security means in the world of cryptography 
can provide assistance in creating the cryptosystem. “A cryptographic scheme for a given 
task is secure if [and only if] no adversary of a specified power can achieve a specified 
break” [4]. This definition, however, does not make any assumptions on the strategy of 
the individual or “power.” Additionally, there is no assumption being made about how the 
abilities are implemented. 

1.4 The Substitution Cipher 

Substitution systems are not strong enough to confuse a creative adversary. Even the 
substitution of letters in the message for other letters in the alphabet (e.g. ‘A’ representing 
‘F,’ ‘B’ representing ‘Z’, etc) is not difficult to crack. There are 26! ways (4.0329 × 1026) 
of selecting the arrangements of the substitutions, but for those readers familiar with 
Cryptoquotes in the newspaper, we can see that knowledge of common words provides 
assistance in breaking the cipher relatively quickly. 

The Cryptogram in Figure 1.2 is not too difficult to solve, especially since the words 
are broken up with spaces. Words like “LITTLE,” “THE,” and “ONE” can be deduced 
from the grouping of letters. In the real world, however, spaces might not be present, and 
thus knowledge of vocabulary cannot be used to decipher the message. Therefore, we 
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Figure 1.2: Cryptoquote. Can you solve it? 

must utilize another method: frequency analysis. Frequency analysis is an attack on the 
system which exploits the fact that certain letters of the alphabet appear more often than 
others in literature. A frequency table breaks down the letters by probability of occurrence 
in any message. 

Using this information, we can count the number of occurrences of a particular char­
acter in the ciphertext, and substitute the letter occurring most often with an ‘E’ or a 
‘T.’ Continuing down the table (Figure 1.3), we can find other common letters in the 
ciphertext until all are replaced. Sometimes, it is necessary to substitute letters that don’t 
always have as common of occurrence as those in the ciphertext, but certainly this process 
is not as difficult as brute force with the checking of 26! permutations. 

1.5 The Transposition Cipher 

A transposition cipher is a system that relies on the use of the same letters between 
the plaintext and ciphertext, but the ciphertext scrambles the letters in order to hide a 
message. Instead of a permutation of the letters as in the substitution cipher, there is 
rather a permutation of placement in this system. Often, transposition ciphers will take 
a portion of the plaintext and fit it to a rectangular block (i.e. 5 × 5, 6 × 9, etc), and 
then order the letters in a the block for instance with the message written horizontally. 
An example would look like Figure 1.4. 

Notice that the transposition block uses a forward and reverse key, which is a set 
of numbers describing the order of the columns. The forward key from the figure, “2 
5 1 3 4,” will create the ciphertext. The ‘2’ over the first column moves this column 
to the second ciphertext column, the ‘5’ over the second plaintext column situates this 
column at the furthest right side of the transposition block of the ciphertext. The chosen 
method of organizing the ciphertext for this example is by rearranging the columns first, 
and then reading left to right, first row, then second row, etc. The message, “IFMATH­
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Figure 1.3: Frequency Table 

EMATICSISTHEWAYOFLIFEDONTFORGETTHETHEOREMS” will be jumbled to the 
ciphertext, “MIATF MHATE SIISC ETWAH FYLIO DFONE OTRGF TEHET ETORH 
SEXXM”. An adversary who knows the sending and receiving parties well might guess 
that the message has something to do with “mathematics” due to the prevalence of ‘M’s’, 
‘A’s’ and ‘T’s’ in the ciphertext. 

In deciphering the code back the the original plaintext message, the decoder will place 
the columns in the order that the reverse key denotes. For the example above, the ‘1’ 
column will be moved to the far left, and then the ‘2’ column moved next to the first until 
the five columns are situated in the original block ordering. The problem with this strategy, 
though, is that cryptanalysis can break this code in a matter of seconds. The columns 
being split and rearranged back to the original order would create intelligible plaintext in 
one out of 5! ways. It most likely wouldn’t take all 120 tries, even working with a pad 
and paper, as the pairings of letters noticed by the cryptanalyst would significantly narrow 
the permutations. 
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Figure 1.4: Transposition Cipher; Plaintext and Ciphertext 

1.6 The Rubik’s Cube and Its Magical Potential 

Erno Rubik, a Hungarian teacher of architecture and design from Budapest, devised a toy 
that could rotate around three axes and create over 43 quintillion permutations for its 
3×3×3 patent. By 1975, the toy was completed, intriguing the world. The Cube, due to 
its sizeable number of permutations of states, as well as its inherent group properties, has 
potential to be used for cryptography. The individual squares of the face, called “cubies”, 
are perfect locations for the placement of plaintext letters. With enough twists and turns 
of the well-known cube, ciphertext can be created. 

The Rubik’s Cube continues to have application in group theory due to its puzzle-
like properties. The faces, each with a different color, are broken up into nine different 
“cubies”, one central cubie which serves as a rotational axis, and eight outer cubies that 
can be moved and manipulated to alter the cube’s state from the solved, or “start” 
position. 

1.7 Counting the Permutations of the Cube 

Initially, it appears that the counting of the cube can be a simple multiplication of facto­
rials, using the fact that each cubie may have a certain orientation and possible position. 
However, we will see this not to be the case. There are eight corner cubies. Selecting 
one out of the eight for one corner, and then one out of the remaining seven in the 
next corner, and so on until the corners are all filled, will have an initial counting of 8! 
arrangements of the corners. Moreover, each of the corner cubies can be oriented in one 
of three ways. The reason that there are not six orientations of the corners is due to the 
fact that the cubies cannot have the stickers removed to create more permutations. Any 
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Figure 1.5: The Rubik’s Cube in Its Solved State 

rotation around the axis will have an order of three. Using the corner cubie below, if one 
were to rotate the cubie clockwise, the yellow face would move to the spot where the red 
face is located, and the red to the blue, etc. There are only three rotations possible. 

From the basic counting strategy, using this factor of three orientations for eight 
cubies, giving an additional multiplier of 38 . On top of that, the permutations of the 12 
edge cubies, 12!, and then the two orientations for each of the 12 edge cubies (those in 
between the corners) would multiply the number of permutations by 212 . The total number 
of permutations using these calculations would be: 8! × 38 × 12! × 212 ≈ 5.1902 × 1020 . 
Because the Cube is a closed system, we cannot assume that every orientation can be 
attained with the given cubies. There is a relationship between the rest of the cubies that 
require the number of permutations to be re-evaluated, and even reduced further. 

When orienting the cube and selecting the states, one can position seven of the eight 
corners in any orientation. However, the last cubie is determined in one position, with 
one orientation. This reduces the estimate by a factor of three. The edge cubies operate 
similarly: 11 out of the 12 edge pieces can be positioned with either orientation, but this 
determines the orientation of the final cubie. This reduces the estimate by a factor of 
two. Lastly, “there is one final constraint on the permutations of cubies (disregarding 
their orientations) that says you can place all but two of them wherever you want but 
the last two are forced” [3]. This further reduces the estimate by a final factor of two. 
Dividing the initial number, 5.1902 × 1020 by 12, we get the final number of permutations 
of the 3 × 3 × 3 Rubik’s Cube: 43,252,003,274,489,856,000. If the every cube state was 
represented in a column of cubes, this collection would span 250 light years. So at first 
glance, 43 quintillion might seem like a large number, but in actuality in the world or 
cryptography and computer technology, this figure is quite insignificant. Even brute force 
would have the capability of cracking codes with a keyspace of this size. 

Practically, the Cube is perfect. At an airport, would security suspect the cube of being 
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anything but a toy? The Cube is not suspicious, as it comes across as merely a puzzle, 
not a spy tool. Due to this, transporting it as a cryptic device can be easily disguised. 
There is some merit in using the Cube for cryptography, even with the relatively small 
number of permutations possible. 



Chapter 2
 

The Vigenère and A One-Time Pad
 

2.1 The Vigenère Cipher 

The Vigenère Cipher dates back to the 16th century. This particular system is also called a 
“polyalphabetic shift cipher” due to the fact that the plaintext characters can be mapped 
to several different ciphertext letters by means of a specific shift, or keyword. A keyword 
is an grouping of characters, often an actual word, that is employed in the system to alter 
the plaintext to an unreadable ciphertext. Instead of a single letter altering the plaintext, 
as in the regular shift cipher, the keyword changes the message in the Vigenère cipher. For 
example, a given plaintext could read: “GREETINGSMATHEMATICIANS”. A keyword 
of a certain length would be “added” to the plaintext to create a new message. If the 
keyword was “HELLO,” for instance, we would add this to the given plaintext, repeating 
if necessary until all the letters were altered to create a ciphertext. Below is the resulting 
ciphertext using this example. 

G R E E T I N G S M A T H E M A T I C I A N S
 
H E L L O H E L L O H E L L O H E L L O H E L
 
O W Q Q I Q S S E B I Y T Q B I Y U O X I S E 

Table 2.1: Plaintext; Keyword Added; Ciphertext 

The keyword is represented as a vector. It is customary to have the vector with numbers 
corresponding to the letters of the alphabet. With the numbers 0 to 25, (a = 0, b = 1 . . . ), 
the keyword k for this example would be the vector (7, 4, 11, 11, 14). The choice of word 
and length should be known only by those exchanging the ciphertext. If the security of 
these two pieces of information was ever compromised, the system would easily be broken. 

10
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2.2 Cracking the Vigenère Cipher 

Cracking of the Vigenère cipher is not quite trivial, especially if the keyword is particu­
larly long. After several hundred years of being considered an “unbreakable cipher,” the 
Vigenère cipher was finally broken. 

Breaking the Vigenère cipher can be somewhat complicated, but certain details about 
the system facilitate the cryptanalytic attack. Often, a cryptanalyst will only have the 
ciphertext to read. The first step in deciphering requires the knowledge of the key length. 
The process involves first taking two copies of the ciphertext and displacing both (one 
above the other) by a specified number of places. Below is an example of a displacement 
of three: 

O W Q Q I Q S S E B I Y T Q B I . . . 
O W Q Q I Q S S E B I Y T Q B I Y U O . . . 

* 

Table 2.2: A Displacement of Three 

We notice that there is a point where the corresponding letters in a column match. 
This is called a coincidence. In order to determine the key length, we count the number 
of coincidences at every displacement. The message here is not quite long enough to 
provide us with a substantially different number of coincidences at varying displacements, 
but with a long enough message this soon becomes apparent. The maximum number of 
coincidences will occur at a particular shift, and multiples thereof. This information will 
yield the key length. 

Once the key length is known, we can implement a method to break the Vigenère 
cipher. Using the above example and the assumption that the key length is 5 – without 
knowledge of the actual characters which comprise the key itself – we can determine the 
actual key. Frequency analysis helps determine the ciphertext. 

Trappe highlights the process. The first step in finding the keyword is to place the 
frequencies of English letters into a vector, A0 = [P(A), P(B), . . . ] where P(α) is the 
probablility of the occurence of a letter, α: 

A0 = (0.082, 0.015, 0.028, . . . , 0.020, 0.001). 

We can let Ai be a new vector when A0 shifts i spaces to the right. For instance, 

A1 = (0.001, 0.082, 0.015, . . . , 0.020). 

We can take the dot product of A0 with itself. This yields: 

A0 · A0 = (0.082)2 + (0.015)2 + . . . (0.001)2 = 0.066. 
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Any Ai · Ai will be equal to 0.066, since the sum of the products is identical, with 
just a different starting term. When i � ·= j for Ai Aj , the dot products are much lower. 
The dot product depends on only |i − j|, and so it is only necessary to compute up to 
|i − j| = 13 (half the distance between 0 and 26, the number of letters in the English 
alphabet). 

When we have shifts i and j, the probablility that we have a coincidence (from Table 
2.2) is equal to Ai · Aj . In particular, we will select a displacement of 5, so i = 0, and 
j = 5. The probability that the letters are the same when |i − j| = 5 is found by the dot 
product A0 · A5 , which is equal to: 

A0 · A5 = [P(A)][P(F)] + [P(B)][P(G)] + . . . + [P(Z)][P(E)]. 

When i = j, the shift of each letter is the same amount during encryption. This 
occurs when the displacement is equal to key length, k. The dot product will be 0.066 
in this case. Multiplying the number of comparisons (the actual key length displacement 
subtracted from the total number of letters in the ciphertext) by the dot product 0.066, 
e.g. with key length 5, we calculate 23 × 0.066 ≈ 1.5 coincidences. The actual number 
of coincidences is 4 for our message example, but with longer messages, the margin of 
error is much less. As in the table, the calculation of coincidences will be close to the 
number of ‘*’s. 

We can create a vector, W = [P(A), P(B), . . . , P(Z)], where the probabilities of a 
particular α are equal to the number of occurrences of a letter in the ith position, the 
(i + k)th position, the (i + 2k)th position, etc divided by the total number of counted 
letters. The frequencies of the letters are given by this vector, W, which approximates 
Ai, i being the shift of the first element of the key. 

The dot products can be calculated for W · Aj for 0 ≤ j ≤ 25. The maximum dot 
product will be when j = i. The largest value will be equal to W · Aj . From above, we 
can summarize the steps to finding the key, k with length, n: 

1. Compute the letter frequencies in positions i mod n, and form the vector, W. 
2. Compute W · Aj . 
3. Have ki = j0 provide the max{W · Aj }. 

The key will most likely be {k1, . . . , kn }. 

2.3 Keystream for One-Time Pad with the Cube 

2.3.1 One is the Loneliest Number 

The one-time pad or OTP, patented as Vernam’s Cipher in 1917, can obtain perfect 
secrecy. This cipher contains a keylength that is as long as the plaintext message being 
encoded. In 1917, perfect secrecy was an unknown concept, but this changed when C.E. 
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Shannon demonstrated 25 years later that a one-time pad can indeed achieve the level of 
perfect security. 

A one-time pad can be used for any message, but the length of the key must be 
as long as the message itself. To explain the concept of the one-time-pad, we take the 
bitwise exclusive-or (XOR) a ⊕ b, where a and b are binary strings. If a = a1, . . . , ak and 
b = b1, . . . , bk, we would then have a ⊕ b = a1 ⊕ b1, . . . , ak ⊕ bk. We can then define the 
one-time pad with the following information: 

1. Let l ∈ Z+, where l > 0. A message space, M, a keyspace K, and ciphertext 
space C are all equal to {0, 1}l, this being the set of binary strings with length, l. 

2. The algorithm Gen for generating keys works by selecting a string from K = {0, 1}l 

according to a uniform distribution. Each of the 2l strings in the space is selected as a 
key with probablility of 2−l . 

3. Given a key k ∈ {0, 1}l and message m ∈ {0, 1}l, encryption creates the output 
c := k ⊕ m. 

4. Given a key k ∈ {0, 1}l and ciphertext c ∈ {0, 1}l,, decryption creates original 
message m := k ⊕ c. 

When a binary stream of 1’s and 0’s represents the message, using the iterated XOR 
scheme will create a new message. Analagously, we can use a one-time pad with letters 
mod 26 instead of binary bits mod 2. The Caesar cipher and the Vigenère cipher can be 
viewed as a version of an OTP, but one with a non-random keystream. 

With perfect security comes drawbacks. The limitation around the keylength of the 
one-time pad makes this system–and any other “perfectly-secret” system–virtually unus­
able. An additional issue is the fact that generating truly random keystreams is nearly 
impossible using a computer. Some creative ways to attempt at generating random num­
bers include connecting a geiger counter to a computer to transcribe motion of tectonic 
plates into numerical representation. Nevertheless, in most settings, including commercial 
ones, a one-time pad is not an option. 

2.3.2 The Cube’s Keystream 

With the 4.3 quintillion permutations of the 3 × 3 × 3 Cube, it is natural to think that 
there is quite some potential for its use as a keystream generator for possible use with the 
Vigenère cryptosystem. While there is indeed merit in the size of the keystream that could 
be generated using the cubies, that is length 54, the keystream will not be able to be 
completely random. The Cube is held to the properties of group theory, and there is the 
finite number of permutations to generate a keystream for a one-time-pad. A one-time 
pad follows the rules of the Vigenère algorithm, but there is no repetitious pattern to the 
keyword or keystream as in the Vigenère system. If one were to create a keystream by 
mixing up the Cube with the various letters written on the cubies, it would require that 
there is some adjustment of the Cube’s state at each 54-character block. Otherwise, the 
keystream mimics the Vigenère cipher completely with the keyword being of length 54. 
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One weakness of using the Cube for a generator of a one-time-pad is the consistency 
of the letters of the center faces on the Cube. If a keystream for the first 54-character 
block looked like the following: “AHEOF MECUGNWPLTY...,” the letters in italics would 
not change as long as the keystream blocks were read off in the same order every time 
during the encoding process. 

OTP’s present practical disadvantages, and are therefore unreliable in most cases. The 
length of the key must span the entire message to be completely secure, and using the 
key a second time is out of the question. Additionally, the weakness of key negotiation 
between the two communicating parties presents another concern; transferring the key 
over great distances must involve cryptological remedies to avoid interception. 

2.3.3 Size of Keyspace 

For a cryptosystem to be secure and efficient, it is often important to have a large keyspace. 
This means that the number of different keys in a given system, without overlap, will be a 
sufficiently large number. Fast computers do have capabilities of solving the ciphertext and 
attacking the system when certain pieces of information are known, following Kerckhoffs’ 
Principle. From what we know about the permutations of the Rubik’s Cube, it is obvious 
that the 3 × 3 × 3 Cube will not provide an adequately sized keyspace. 43 quintillion 
keys would not be large enough for a computer to attack with much difficulty. Therefore, 
a new algorithm must be devised if the Cube is to hold merit as an integral part to a 
cryptosystem. 



Chapter 3
 

The Mitchell Cryptosystem
 

Douglas W. Mitchell, a professor of Economics at West Virginia University submitted 
a proposal cipher system utilizing the Rubik’s Cube toy to the mathematical magazine, 
Cryptologia, in 1992. Known primarily for research in theoretical macroeconomics and 
monetary economics, Mitchell diverted to cryptography. His interest in creating a trans­
position cipher inspired the article. The system, according to the article’s abstract, “is 
secure against brute force attacks; since it permits a different scrambled ordering of letters 
for each letter block enciphered, it is also secure against multiple anagramming” [6]. 

Substitution and transposition encipherment are the two most basic forms for en­
coding and decoding messages. Mitchell explains that brute force attacks to find the 
”correct” ordering of the plaintext will be insufficient and unsuccessful. Those who are 
interested in creating a cipher system with the Cube should take into consideration the 
weaknesses presented with the shuffle algorithm when the Cube is not shuffled adequately. 
A cryptanalyst, when seeing a particular-length block of letters might think to use multiple 
anagramming in attempts to decrypt the message, but as explained later, these efforts 
would be in vain. 

In general, using mechanisms for transposition ciphertext creation are not efficient in 
generating letters in a manner necessary for encoding and decoding. Such systems are 
designed to apply polyalphabetic substitution, the permutation of the alphabet, rather 
than polygraphic substitution, or the permutation of position. Mitchell’s paper proposes 
and outlines an encryption device with the Rubik’s Cube that hopefully provides fast 
encryption and decryption. Of course the meaning of “fast” is relative in this context, 
as computers have the capabilities of encoding and decoding much more quickly than 
human hands, and with the assistance of a program, Mitchell’s system could work at a 
faster rate. 
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3.1 The Mechanics that Apply to Mitchell’s System 

The original Rubik’s Cube, a 3 × 3 arrangement of 27 mini-cube faces, has six sides, with 
nine cubies each. The rotation of the cube allows for movement about the three axes 
such that a turn of a face by a multiple of π/2 will set the Cube back to its original shape, 
but with an alteration of the cubies. The Cube’s portability aids in the encipherment 
process as well. As a game, the Cube is a puzzle. The solved state is unique in that the 
color of each face is solid. “From this initial configuration, various rotations are randomly 
performed so as to jumble the colors; the object of the game is to restore the cube to 
the initial configuration with one color per cube face” [6]. Although the colors are not 
drastically important in the ciphersystem for Mitchell’s purposes, it helps to keep the 
sides distinguished. The ciphersystem suggested by Mitchell with the Rubik’s Cube has 
immediate appeal due to the shuffling potential. Undoubtedly, the obvious qualities that 
stand out attract the eye of cryptologists. 

3.2 The System and How it Works 

Mitchell’s ciphersystem involves some sneaky steps in order to fix the plaintext. He 
suggests coating the Rubik’s Cube in order to use ink on the faces for the transposition 
algorithm iterated later. The first step in the process requires one to write the numeral 
“1” on the upper left square of a cube face. The number “2” can be on an arbitrarily 
chosen square on another face, and so on until all six sides have a characteristic numeral 
as its representative identifier. Taking the top row, one may then write the plaintext 
(the first 48-letter chunk) on the remainder of the cube faces starting at the top row 
and writing left to right. Below is the first cube that would be written with the quote 
“IFMATHEMATICSISTHEWAYOFLIFEDONTFORGETTHETHEOREMS”. 

Figure 3.1: Mitchell Initialization
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An important feature of the Cube is that the message chosen can be encrypted in a 
large number of ways. Because of this, the system “defends against multiple anagramming 
attacks” [6]. After the first side is labeled with a “1”, there are 5! ways to select the order 
of the remaining faces with the numbering system stated above. The locations of the 
remaining plaintext letters (for the 3 × 3 × 3 cube, the 9th through 48th letters) depends 
on which of the 120 options are picked to complete the ordering of the Cube. The next 
aspect of the ordering is the ordering of the nine individual cubies, and the placement 
of the remaining 8 letters after the number for orientation has been placed. After that, 
the orientation of the number on the square will change the orientation of the remaining 
letters distributed on the cube face. Figure 3.1 demonstrates this. 

The general solution to transposition algorithms according to Kahn is indeed multiple 
anagramming. This technique encorporates utilizing multiple ciphertext blocks of the same 
length, enciphered by the same key. Multiple anagramming can be utilized by placing both 
messages one on top of the other on paper, then the strips are cut and placed side by 
side in a new order until both messages show plaintext. This technique relies on a one-
to-one mapping from the location in the original plaintext to the ciphertext. The system 
proposed does not have this feature. Mitchell notes that his system allows for a plaintext 
encryption using any of the 120 orderings of the faces of the Cube, with the orientation 
being one of four possibilities. Both messages would have to use the same cube face 
ordering and the same set of Cube face orientation for multiple anagramming to even be 
successful. Mitchell states that “multiple anagramming can be thwarted by simply varying 
the plaintext initialization from one block of 48 letters to the next” [6]. These changes 
are “self-keyed” so no communication of the initialization is required, and the rotation 
key may be held constant. By keeping a record of all initializations and limiting the use 
of similar initialization, one can maintain a decent level of security. 

The rotation sequence performed must have the “1” in the top left hand corner of the 
face selected, knowing that the color does not matter for the first cube face selected. This 
will serve as the reference point for the rotation sequence. Due to the point mentioned 
above, we can count that there are a total of “120 × 95 × 45>7.25 billion different ways of 
initializing a given plaintext” [6]. A single rotation key has more than 7.25 billion different 
encryptions due to the ways the plaintext can be initialized. Successful attacks cannot 
occur because of a lack of frequently repeated plaintext passages. Multiple anagramming 
as an attack would also be unreliable because this attack relies on the repeated use of the 
same ordering of the transposition. Different initializations of the plaintext correspond to 
various transpositions, and this in turn thwarts multiple anagramming. 

Mitchell proposes an additional technique to increase the possibilities of the initial 
plaintext created: “the use of arbitrary numbers of nulls [or blank spaces]” [6]. Mitchell 
describes how much change occurs when just a single null is substituted into one of the 9th 

through 48th spaces of the Cube: this “will change the column of every plaintext letter, 
change the row of about one third of them, and change the cube face of one eighth of 
them” [6]. Apparently, the changes will appear to be random with the addition of a single 
null. With even more nulls, this could multiply the number of permutations of the keys 
created. The locations of these nulls could also vary by key. 
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Rotation keys are used to create the generated “mixing.” In essence, this scrambles 
the Cube in such a way that the letters and numbers are mixed up even more and create 
a “new” state of the Cube. Holding the number “1” in place (towards the user) three 
categories of rotations, by row, by column, and by level, can be twisted to count as a 
move in the mixing up of the Cube. The outside one or two rows, columns, or levels are 
able to be moved by π/2, π, or 3π/2 (2π results in the identity, as if the cube was never 
moved at all). The row, column, and level rotations follow Figure 3.2. 

Figure 3.2: Row, Column, Level 

The number of possible rotations can be counted by which column, row, or level is 
turned. Since one can twist one or two of these layers, and there are three sizes of 
rotations, and three axes on which one can twist, the total number of different twists is 
2 × 3 × 3 = 18 possibilities of moves. 

When making a rotation key, the axis upon which the twist is performed must change 
at every iteration in order to provide a key that is unique. For example, a row twist by 
π/2 and then a second row twist by π will be equivalent to a single row twist of 3π/2. 
After the first twist, then, only 15 options of twists remain. Mitchell explains that the 
creation of a rotation key can take less than five minutes with thirty, ten-second twists. 

3.3 Deciphering Mitchell’s Cryptosystem 

Using the ciphertext, one can read the letters off the cube in a prearranged order, starting 
with the initial “1” on the Cube. To provide some extra “randomness”, the encryption 
key can have information about how to read off the squares at the beginning of the 
ciphertext. According to a fixed system, one could orient the Cube in such a way, all 
the while denoting each face as a particular letter (with A = top face, B = bottom face, 
etc), that a key extension, or set of extra letters placed at the beginning of the exchanged 
rotation key, would hint at the order of reading off the ciphertext. Mitchell describes a 
six-letter extension such as “AFDEBC” which would tell the receiving party to read off 
the text on the Cube top face first, then the face denoted ‘F’, etc until it was copied down 
onto paper. 
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Additionally, Mitchell proposed having the order of letters being read to be signaled by 
an additional letter in the key extension: “suppose X stands for reading left-to-right, top 
row first, middle row second, bottom row last, while Y stands for reading top-to-bottom, 
left column first, then center column, then right column, and so forth” [6]. After this is 
created, the decipherment is simple. The decoder would copy the ciphertext onto a cube 
in the order of the key extension. The key for the rotation would be read backwards, 
which would involve substitution of the right for left and down for up. The plaintext can 
be read off of the face labeled “1”, then ”2”, etc. Mitchell points out that the orientation 
of the faces after the first will be one of four possibilities, the correct one reading off 
intelligible plaintext. For the rotation key, we can use the following standard: 

R = Row, C = Column, and L = Level. 
1, 2, 3 will represent the clockwise rotation of a face by a muliple of π/2. 
4, 5, 6 will represent the outside two layers being twisted a multiple of π/2. So 

with the above standards, a possible rotation key, with an extension would look like the 
following: 

ADCEBFX-R3-L2-C4-L6-R5-C1-R3-L4-R1 

From this rotation key, the sender would twist the cube like such: the bottom outer 
row 3π/2 radians clockwise, π radians for the outer level, a π/2 twist for the outer right 
two columns, 3π/2 radian twist for the outside two levels, etc until the process was 
complete. At this point, the decoder would read off the ciphertext in the order of faces, 
“ADCEBF” and follow the top-to-bottom, left-to-right pattern and write these down in 
that order. This method, however, does not necessarily address the orientation of the face 
when recording the resulting ciphertext. 

Mitchell claims that “if the technique is used properly-i.e. with different message 
blocks enciphered using different random drawings from these billions of possibilities-
attacks based on frequently-occurring phrases should be unsuccessful” [6]. In attempts 
to try all the possible 48 letter chunks, there would be 48! transpositions to check. This 
equates to a huge 1.2 × 1061 possibilities. Using brute force, one would have to check 
through 18×15(k−1) keys, where k is the number of moves per rotation sequence. Having 
the addition of the key extension would multiply the number of options by 720 (6!). If 
k = 30, as in the example suggested by Mitchell, we see there is about 2.3×1035 different 
keys. The actual length of k is unknown, and thus a large k value would make the search 
even that much more difficult. 

Although this may be the case, Mitchell did not take Kerckhoffs’ Principle into account. 
With knowledge of the Cube’s properties, and the fact that the Cube is responsible for 
the algorithms, not every permutation of the 48 characters is possible using rotations of 
the Cube. Also, since there are only 26 letters of the alphabet, there are bound to be 
repeated characters in the ciphertext, which further decreases the practical size of the 
keyspace. Computers have calculated that every state can be reached in fewer than 20 
moves: “The median optimal solution length appears to be 18 moves” [5]. 
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When two types of systems are combined, there is additional strength and security 
present. According to Mitchell, “Pre-ciphering the plaintext with a simple (and thus fast) 
substitution cipher should make cryptanalysis immeasurably harder, since for instance a 
brute force computer attack could no longer be designed to terminate when words from 
a computer’s dictionary are encountered” [6]. Adding a substitution cipher is problematic 
because a simple substituition can be stripped using basic frequency analysis. In order to 
avoid using a second layer which can easily be stripped, it might be helpful to consider a 
cipher that will strengthen the system rather than provide no additional security. 

Mitchell’s system seems to have some merit. However, if the technique was known 
and anything was discovered around the actual system, such as the key with its rotations, 
further efforts in attempting to secure the messages would be necessary. If the message 
is discovered, or somehow multiple anagramming proves to work, the cryptanalysis would 
prove effective and the interception would ruin all hopes of secrecy. 



Chapter 4
 

The Trans-Composite Cryptosystem 
Revealed 

With several cryptosystems and ciphers at our fingertips, there is potential for the creation 
of a new system. A lesson that Johnathan Katz, a cryptography author, warns us is that 
“Designing secure ciphers is a hard task.” Complexity does not necessarily imply security. 
According to Katz, “it is very hard to design a secure encryption scheme, and such design 
should be left to experts.” Most cryptographers find that “No one these days uses the 
Vigenère for secure communications” [2]. Alone, this system does have weakness, but 
can it be applied to another system, like Mitchell advises, in order to strengthen the 
cryptosystem? This sounds like a challenge worth pursuing. 

4.1 Vigenère Finds a Friend 

To compensate for the weaknesses of both the Vigenère and the Mitchell Cryptosystem, 
we must attempt to find a new cryptosystem that will prevent the attacks of multiple 
anagramming and frequency analysis. Often when an algorithm for encoding is repeated, 
there is no additional security. Repeating an encryption step often produces a ciphertext 
equivalent to a single encryption with a different key. 

Combining two different algorithms, the Mitchell and the Vigenère, we have a more 
complex algorithm with the weaknesses balanced out. The proposed system will incorpo­
rate both ciphers to create a system that is more difficult to attack. 

The first step of the process is to employ the Vigenère cipher. A keyword must be 
selected to change the plaintext to a preliminary ciphertext. For our purposes, this is the 
first layer of the algorithm. Figure 4.1 is an example with the keyword “RUBIKS”. 

Encoding a plaintext message will require a two-step process to create the ciphertext 
message. For the second step, the text will undergo the algorithm of the Mitchell system, 
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I F M A T H E M A T I C S I S T H E W A Y . . . 
R U B I K S R U B I K S R U B I K S R U B . . . 
A A O J E A W H C C T V K D U C S X O V A . . . 

Table 4.1: First Step of the Combined System 

but instead of a readable English text placed on the cubies, the individual encoding would 
place the seemingly-unreadable letters onto the cube and then proceed with the algorithm. 

With the ciphertext on the Cube, the encoding party must begin by writing down the 
characters from the Cube, top to bottom, and left to right. For this particular system, 
instead of following the Mitchell key extension, we have decided to utilize a fixed pattern 
of reading the ciphertext letters prior to writing them down. A specific example of this 
would be the sender selecting a face, writing down the nine characters, rotating the Cube 
to the right for the next nine characters, then down for the next nine characters following 
a right-down-right-down rotation until all are copied. The ciphertext written on paper will 
include both letters and the six numbers placed on the Cube in the initialization process. 

An example would look like the following: 
Keyword: “RUBIKS” 
Plaintext: IFMATHEMATICSISTHEWAYOFLIFE. . . 
Vigenère Layer Ciphertext: AAOJEAWHCCTVKDUCSXOVAXQEAAG. . . 
Mitchell Rotation Key: R3-L2-C4-L6-R5-C1-R3-L4-R1 
Final Ciphertext: 5VCXJOQXGH6AZVAE2WLEAKAACJDN. . . 

4.2 Decoding With the Ciphertext 

The information that must be transferred between the encoder and decoder is the keyword 
for the Vigenère step and the rotation key. With these pieces, the individual decoding the 
ciphertext may proceed through the algorithm and reach the original plaintext message. 

The first step for the decoder will be to select an arbitrary face and copy the ciphertext 
onto the Cube following the right-down-right-down pattern. The next step is to hold the 
Cube with the ‘1’ in the upper left hand corner oriented properly, and following the reverse 
sequence of the rotation key. This requires maintaining the clockwise rotation of all the 
rows, columns, and levels. Additionally, we see that the amount of rotation per move of 
every Cube face will “add up” to 2π. For example, if the last part of the rotation key was 
L4, the first move of the reverse rotation key would be L6 because π/2 + 3π/2 = 2π, 
or a complete rotation. 

After we obtain the Vigenère layer on the Cube, every 8-letter partition of the 48­
character block must be oriented correctly. With the original Mitchell system, the orien­
tation of the Cube face was determined by the intelligible plaintext which could be read. 
However, this layer will not be readable by the decoder, and thus all four orientations 
must pass through the Vigenère step of the algorithm. With the length of the keyword 
known, and the order of the faces still following the 1 through 6 progression, the Vigenère 
step may be utilized for each of the orientations until intelligible plaintext results. 
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4.3 Addressing the Weaknesses 

As isolated systems, the Vigenère system and Mitchell system still have weaknesses. The 
Vigenère cipher system can be broken with frequency analysis, as mentioned earlier. Fre­
quency analysis relies on the fact that corresponding shifts are in known positions. The 
Mitchell system added to this does not allow for the shifting of characters in the same 
positions due to the transposition element. Although the Mitchell system is safe against 
multiple anagramming, the fact remains that all the plaintext letters are present in the 
ciphertext. With the knowledge that the 54-character blocks contain 48 plaintext letters, 
the Mitchell system alone can potentially be exploited through a genetic algorithm imple­
mented by a fast computer. An algorithm like this rearranges the letters of the ciphertext 
looking for a word and checking whether or not the remaining letters can be rearranged 
to form intelligible plaintext. With the extra layer, however, the genetic algorithm would 
be unsuccessful since the original plaintext letters are no longer present. 

For the combined system proposed, the greatest weakness based on the research 
appears to be efficiency. Without a quick means to encode and decode, this presents a 
problem for the communicating parties. On the other hand, using the system with merely 
a Rubik’s Cube, a marker, and a piece of paper is a desirable advantage. 

4.4 Conclusion to the Crypto-Cube 

Cryptanalysis of the proposed system is an interesting prospect. Working on the side of 
the implementation of the system itself, rather than the cryptanalytic perspective creates 
bias. Therefore in going forward, we must ask several questions to probe the possibilities 
of breaking the system. Charles Babbage said in 1864, “Deciphering is an affair of time, 
ingenuity and patience” [1]. He was right. The amount of creativity and mental fortitude 
necessary to figure out some sort of system takes effort, skill, and plenty of hours. 

Pure cryptanalysis, in which a computer is implemented as a means of deciphering the 
cryptotext, may mathematically prove to succeed, but this requires further investigation. 
In the meantime, what can be done to prevent successful cryptanalysis? Bauer suggests 
that “[T]he most important weapon seems to be imagination” [1]. Does the Rubik’s Cube 
combined with the Vigenère algorithm hold enough secrecy in itself? What weaknesses 
does this three-dimensional puzzle possess that prevents it from being a legitimate tool 
for cryptography? Further research may provide more insight. 
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