

Kettering University Digital Commons @ Kettering University

Business Administration Presentations And Conference Materials

Business Administration

8-3-2016

How Lean Product and Process Development Can Improve Your R&D Results

Lawrence J. Navarre *Kettering University*, lnavarre@kettering.edu

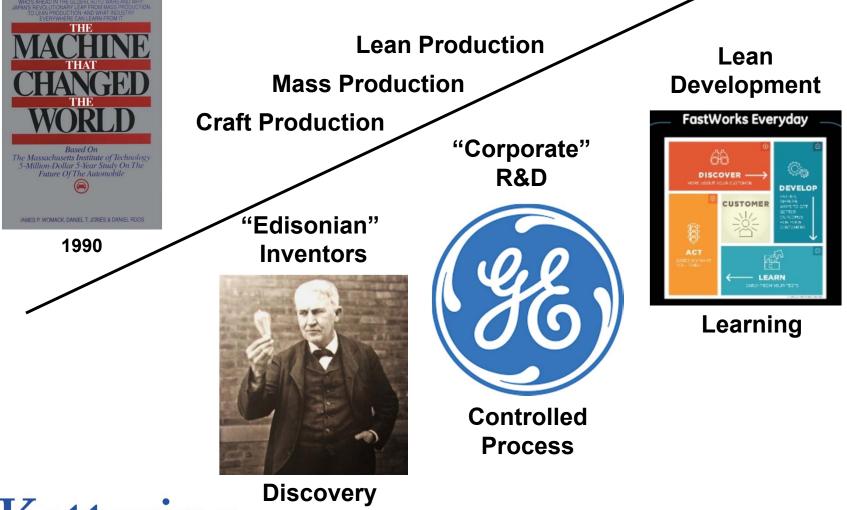
Follow this and additional works at: https://digitalcommons.kettering.edu/ business_administration_conference

Part of the <u>Business Commons</u>

Recommended Citation

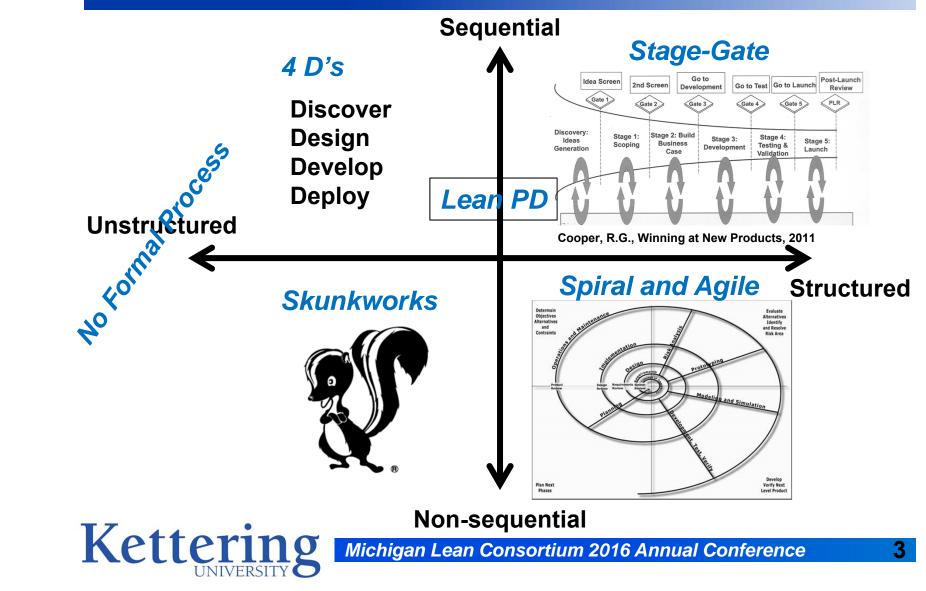
Navarre, Lawrence J., "How Lean Product and Process Development Can Improve Your R&D Results" (2016). *Business Administration Presentations And Conference Materials*. 1. https://digitalcommons.kettering.edu/business_administration_conference/1

This Conference Proceeding is brought to you for free and open access by the Business Administration at Digital Commons @ Kettering University. It has been accepted for inclusion in Business Administration Presentations And Conference Materials by an authorized administrator of Digital Commons @ Kettering University. For more information, please contact digitalcommons@kettering.edu.


How Lean Product and Process Development Can Improve Your R&D Results

Larry Navarre, Lecturer

Department of Business, Kettering University


Lean Thinking to LPPD

Michigan Lean Consortium 2016 Annual Conference

LPPD and Development Processes

LPPD Origin

- Toyota Motor Corporation
 - Studies by University of Michigan faculty
 - Observed that, like Lean Manufacturing, Toyota was doing something dramatically different in product development

LPPD Origin

- 1980's-1990's
 - Study of why Japanese car companies were successful led to only one company with a difference – Toyota
 - Toyota's development process performance:
 - 30% faster using
 - 50% fewer resources
 - Award winning products
 - Steady market share growth
 - In short, better cars faster and cheaper

The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster;
Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995Michigan Lean Consortium 2016 Annual Conference5

LPPD Origin

- Lean Development is very "new" (circa 1995)
 - Original Documented Research
 - The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster, MIT Sloan Management Review, April 15, 1995; Ward, Liker, Cristiano, Sobek
 - Product Development for the Lean Enterprise
 - 2003 by Michael Kennedy, NCMS, Ann Arbor, MI

 Forward by Dr. Allen Ward
 - 2008 revised as *Ready, Set, Dominate: Implementing Toyota's...* Forward by Dr. Durward Sobek
 - Lean Design Guidebook
 - 2004 by Ronald Mascitelli, Technology Perspectives, Inc.
 - Revised in 2011 as Mastering Lean Product Development
 - The Toyota Product Development System
 - 2006 by James Morgan and Jeffrey Liker
 - Lean Product and Process Development
 - 2007/2014 by Allen Ward and Durward Sobek

What is LPPD?

- Lean Product and Process Development
 - The application of Lean principles to the business process of product and service development
 - LPPD is quite different from Lean Manufacturing
 - But the principles of Lean Enterprise are very relevant and applied appropriately
 - LPPD "translates" Lean to Product Development

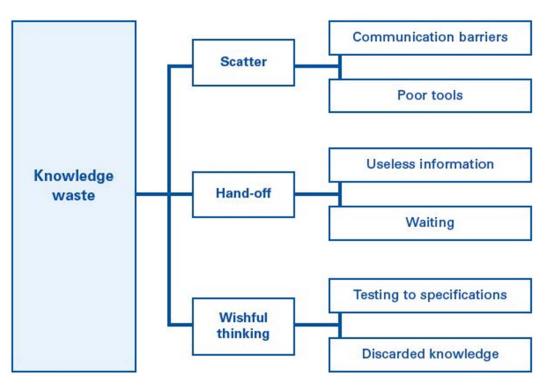
What is LPPD?

Kettering

LPPD applies Lean Thinking to the process of development

Lean Education Body of Knowledge, Chapter 4, (pending 2016)

Michigan Lean Consortium 2016 Annual Conference


What is LPPD?

- The Basic Secret
 - Traditional PD is about following formal process
 - Formal steps in a sequential order with regular management approvals
 - Lean Development is about Learning
 - Learning fast how to make good products
 - Success through the goal of knowledge-based, learning-based development

- Eliminating Waste
 - At the core, Lean is eliminating waste
 - Every principle of Lean appears to be a countermeasure against waste
 - Let's "translate" waste in Lean Enterprise to LPPD

• Since NPD is mainly information transfer, the source of waste in NPD is Knowledge Waste

Ward, Sobeck; Lean Product and Process Development, Lean Enterprise Institute, 2014Michigan Lean Consortium 2016 Annual Conference11

- Communication Barriers
 - Engineers are physically, socially separated from production
 - Lack methods to turn data into usable knowledge
- Poor Tools
 - Traditional product development has few Lean tools
 - LPPD has simple tools to reuse knowledge and schedule work
- Useless Information
 - Requiring useless information to "control the process"
 - Best engineers are doing admin, not engineering

- Waiting
 - Conventional project management scheduling causes the waste of waiting
 - Leave responsibility to schedule work to the people delivering the knowledge
- Testing to Specifications
 - Nothing is learned by validating the spec
 - The job of Testing is to break the product
- Discarded Knowledge
 - Most companies file it and forget it
 - Engineers must turn data into usable knowledge for future projects

What is "Value" in NPD?

- The output of NPD is Usable Knowledge
 - NPD is mainly the development of knowledge, or information
 - But customers don't pay for knowledge
 - Customers pay for products and services, therefore...

Ward, Sobeck; Lean Product and Process Development, Lean Enterprise Institute, 2014Michigan Lean Consortium 2016 Annual Conference14

What is "Value" in NPD?

- Value in NPD is transferring Usable Knowledge into Operational Value Streams
 - An operational value stream is the part of the organization that delivers the product or service
 - Operations is the customer of Development

Profitable Operational Value Streams

Ward, Sobeck; Lean Product and Process Development, Lean Enterprise Institute, 2014Michigan Lean Consortium 2016 Annual Conference15

What is "Value" in NPD?

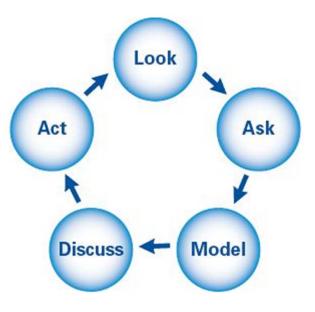
"Toyota had it easy... they handed off design to the best process development in the world"

Jim Womack, PhD, Professor at MIT

Co-author of the Machine that Changed the World and Lean Thinking

Founder of Lean Enterprise Institute

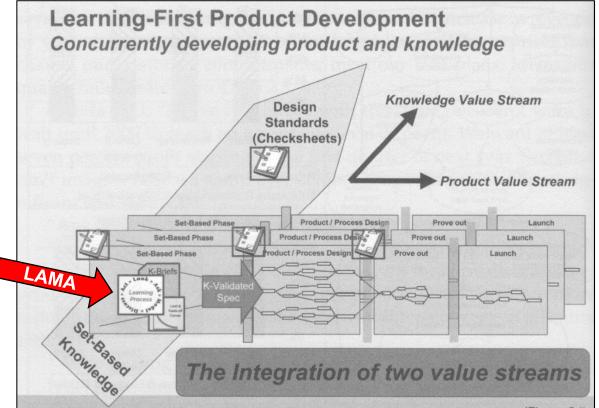
Presenting at Lean Product and Process Development Exchange, 9/23/2014


Womack's Insights:

- The Toyota production system is the creator of Lean Manufacturing, arguably the world's best manufacturer
- Most organizations don't have such a capable production capability, so "Creating Operational Value Streams" is an important part of development

• LAMDA

- Look go see for yourself
- Ask get to the root cause
- Model use analysis, simulation, prototypes
- Discuss with peers, mentors, and developers of interfacing sub-systems
- Act test your understanding experimentally



Then Look again! The difference of Lean PD is in focusing on knowledge value "because problems almost always arise because of a gap between what we think we understand and reality" – John Shook

- LAMDA
 - Competitive advantage is derived from discovering new principles specific to your products, and obtainable only from your experience
 - The LAMDA cycle enables knowledge creation
 - Turning data into usable knowledge as stored in Trade-off Curves, Knowledge Briefs, and Design Checklists

 LAMDA generates learning which is recorded in Knowledge **Briefs and formalized in Design Standard Checklists**

Ready, Set, Dominate – Implement Toyota's Set-Based Learning for Product Development; Michael Kennedy, Kent Harmon, Ed Minnock; 2008 **Ketterin**

Michigan Lean Consortium 2016 Annual Conference

- Integration of Two Value Streams
 - Knowledge Value Stream
 - Turning data into usable knowledge as stored in Trade-off Curves, Knowledge Briefs, and Design Checklists
 - Reused from project to project, continuously improved over time
 - Product Value Stream
 - Using the Knowledge Value Stream as applied to each specific project
 - Adding more knowledge to the Knowledge Value Stream

The Four Cornerstones of LPPD

- Entrepreneurial System Designer
 - A "heavyweight" project leader with strong market and product knowledge is accountable for project success
- Cadence, Flow, and Pull
 - Key principles of Lean Manufacturing applied to the management of NPD projects
- Teams of Responsible Experts
 - Functional representatives that develop deep expertise through learning and knowledge management

Set-Based Concurrent Engineering (SBCE)

 Many ideas are evaluated to gain knowledge of design trade-offs before commitment to the final design

a Pause to Stretch Before Exercise

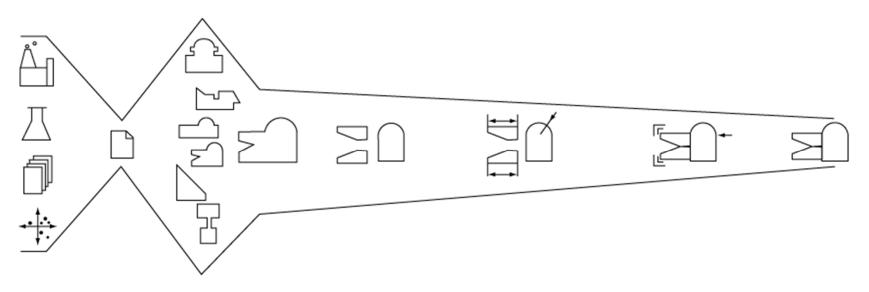
- The "Second Paradox"
 - The first paradox was the dramatic difference of Lean Production from Mass Production
 - The second paradox was the dramatic difference in Toyota's development process from all other automakers
 - Although other aspects of the Toyota development process were logical, the process of SBCE appeared inefficient

The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster;
Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995Michigan Lean Consortium 2016 Annual Conference23

The "apparent inefficiency" of SBCE

- 1. Delay Design Decisions
- 2. Multiply Prototypes
- 3. Less Structured Process

Normal Concurrent Engineering	Set-Based Concurrent Engineering
Seek to freeze specifications quickly	Delay design decisions and choose hard specifications late in the process
Reduce the prototypes needed due to concurrency	Multiply prototypes, to what appears an absurd degree
Highly structured, detailed project process	Less structured process focused on meeting milestones

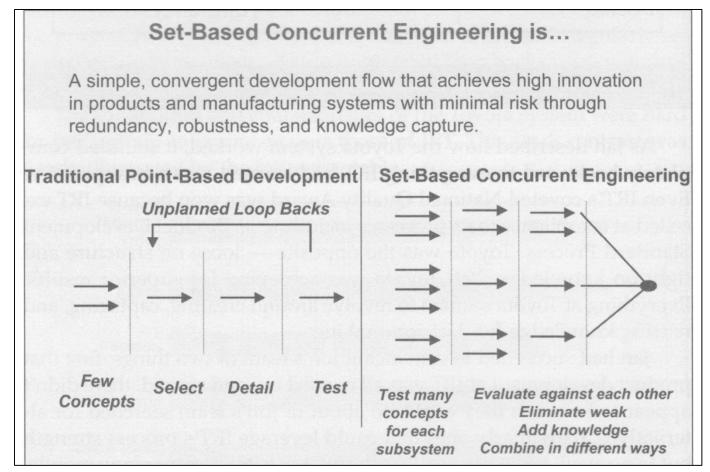

The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster; Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995 Kette

Michigan Lean Consortium 2016 Annual Conference

The Traditional Design Process

- Rapidly converge to a concept, then test
 - A narrowing process of a wide range of product concepts to a reliably producible product
 - "Design-then-Test"

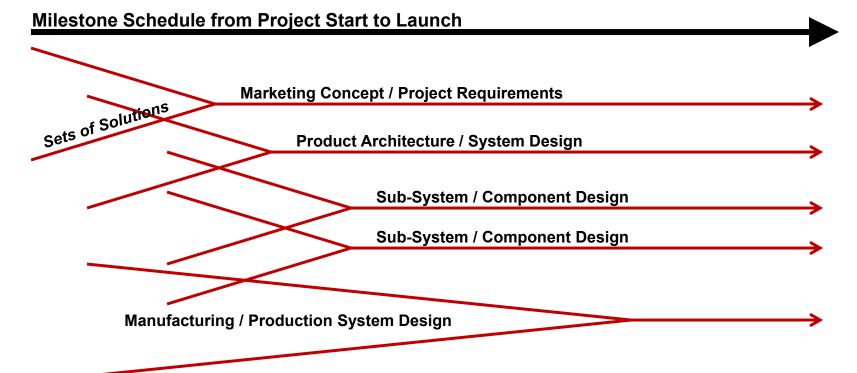
Ketterin


Ulrich/Eppinger, Product Design and Development, pp.13-14 <u>Michigan Lean Consortium 2016 Annual Conference</u> 25

- Exploring sets of solutions, then slowly converge to a concept
 - A learning process of extensive prototyping
 - "The manager's job is to prevent people from making decisions too quickly"
 - Toyota GM of Body Engineering
 - "Test-then-Design"

 The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster;

 Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995


 Michigan Lean Consortium 2016 Annual Conference
 26

Ready, Set, Dominate – Implement Toyota's Set-Based Learning for Product Development; Michael Kennedy, Kent Harmon, Ed Minnock; 2008 **Ketterin**

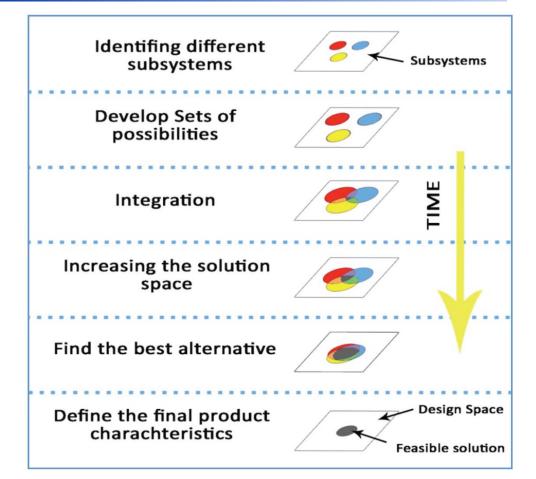
Michigan Lean Consortium 2016 Annual Conference

 Testing solution sets then converging by the milestone deadline for each subsystem

Adapted from: The Second Toyota Paradox: How Delaying Decisions Can Make Better CarsFaster; Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995; Figure 3Michigan Lean Consortium 2016 Annual Conference28

Why SBCE works

A simple example. Picking a meeting time.


Normal Meeting Approach	SBCE Meeting Approach
Pick a time, invite attendees	Collect all available meeting times of participants
One person can't make that time, mutually agree to new time	Intersect the <i>set</i> of all meeting times to pick a time when everyone is available
Another person can't make new time, reiterate process	
Alternatively, mandate time and require attendees to change schedules or have a meeting to schedule a meeting	

The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster; Ward, Liker, Cristiano, Sobek; MIT Sloan Management Review, April 15, 1995 Kettei

Michigan Lean Consortium 2016 Annual Conference

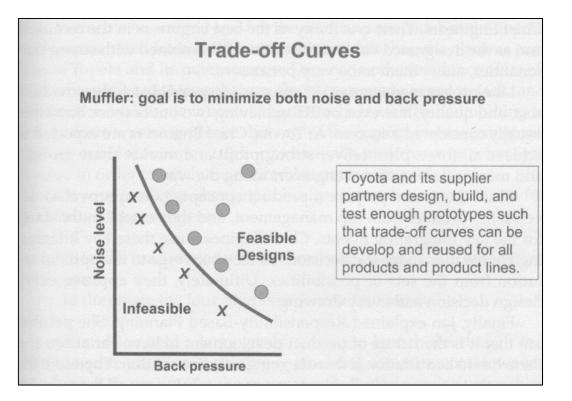
A Process for SBCE

- **Define System** 1.
- 2. **Define Sets**
- 3. Concurrent Engineering
- **Converge Slowly** 4.
- 5. **Define Solution**

Assessing Principles of SBCE Using a Design Game, Thesis of Francesc Carbó Roma, Chalmers Institute of Technology, Gothenburg Sweden, Figure 2 Kett

Michigan Lean Consortium 2016 Annual Conference

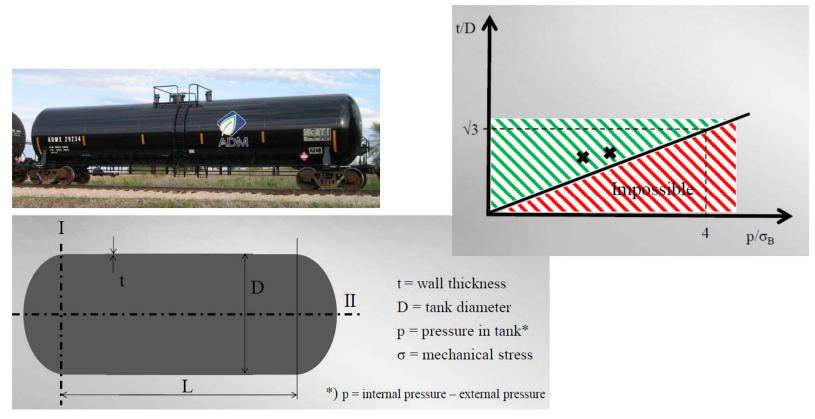
Summary Principles of SBCE


1. Evaluate Multiple Alternatives

- A single design concept is highly risky
- Invest heavily in prototyping
- 2. Tradeoff Curves
 - Maintain Tradeoff Curves that define relationships of prototype tests
- 3. Solution Convergence
 - Prototype, Test, Learn, Combine, Narrow
- 4. Redundancy
 - Have a backup design for subsystems, typically an existing design

Source:Product Development for the Lean Enterprise, Michael Kennedy, 2003Michigan Lean Consortium 2016 Annual Conference31

What is a Trade-off Curve?


Generalizing knowledge for reuse in current and future projects

Ready, Set, Dominate – Implement Toyota's Set-Based Learning for Product Development; Michael Kennedy, Kent Harmon, Ed Minnock; 2008 Ketterii

Michigan Lean Consortium 2016 Annual Conference

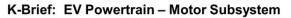
Trade-off Curve Example

If the mechanical stress in the tank equals the fracture stress σB , we can derive the non-dimensional relationship t/D = $(\sqrt{3}/4) \cdot p/\sigma B$

Trade-off Curves and Feasible Regions; Göran Gustafsson, M.Sc., Ph.D.; Chalmers University of Technology, Gothenburg, Sweden

Michigan Lean Consortium 2016 Annual Conference

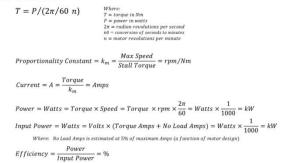
What is a Knowledge Brief?


- Knowledge Brief
 - a.k.a. "K-Brief"
 - A highly summarized documentation of learning from prototyping and other experimentation
 - Used to communicate solutions sets during SBCE
 - Typically only A3 size (11x17")
 - An adaptation of the "A3" Problem Solving tool

Knowledge Brief Example

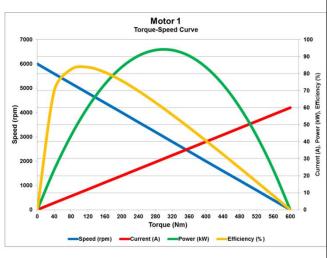
Elements:

- Parameters
- Guidelines
- Calculations
- Trade-off Curves
- Examples


Design Parameters

- Torque of a motor is a function of power input and Speed (rpm) output
 Torque and Speed are inversely proportional and assumed to be
- linear (actual measurement is very close). • Torque Current and Output Power can be calculated given Maximum (Stall) Torque and Maximum Motor Speed
- (Stall) lorque and Maximum Motor Speed Input Power can be estimated given No Load amperage and Torque Current
- Efficiency of motor output is simply Output Power divided by Input
 Power resulting in a percentage

Design Guidelines


- Given the design parameters provided above, a Torque-Speed curve can
 be prepared to give the designer a range of operating conditions
- Maximum Power is achieved at half of the motor speed
 However, maximum efficiency is achieved typically between 70-90% of motor maximum speed
- Therefore, maximum power is achieved near 50% motor speed. However, efficient operation will be at higher Speed with lower Torque.

Calculations

K-Brief: EV Powertrain – Motor Subsystem

Trade-off Curves

Examples

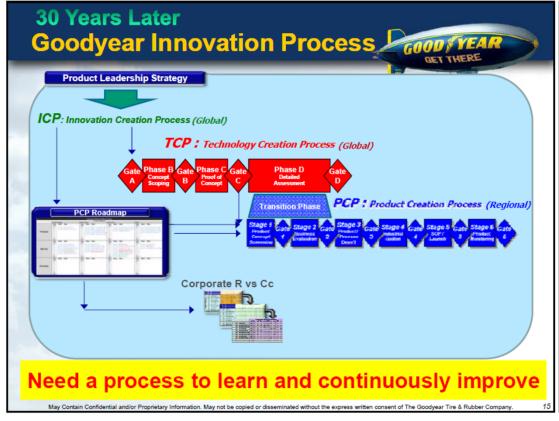
Source of Torque-Speed Curve Formulas and Instructions: http://www.micromo.com/lechnical-library/dc-motor-tutorials/motor-calculations

Navarre, L., Kettering University, BUSN 304, Intrapreneurship and Innovation Development, SBCE Exercise

Michigan Lean Consortium 2016 Annual Conference

Time to Exercise

Exemplar Practitioners of LPPD


Since the 1990's realization of LPPD at Toyota, the • following companies have adopted the approach:

Company	Industry	Company	Industry
Toyota	Auto OEM	GE Appliance	Appliances
Denso	Auto Supplier	Teledyne Bathos	Instruments
Delphi	Auto Supplier	Fisher & Paykel	Appliances
Ford	Auto OEM	Goodyear	Tires
Novo Nordisk	Medical Devices	Pratt & Whitney	Aircraft Engines
Steelcase	Furniture	Harley-Davison	Motorcycles

Changing Traditional Processes to Lean

Goodyear transformed its NPD process to LPPD

Copyright 2014, Goodyear Tire Corporation

Presented by Majerus at Lean Product and Process Development Exchange, 9/23/2014

UNIVERSITY

Michigan Lean Consortium 2016 Annual Conference

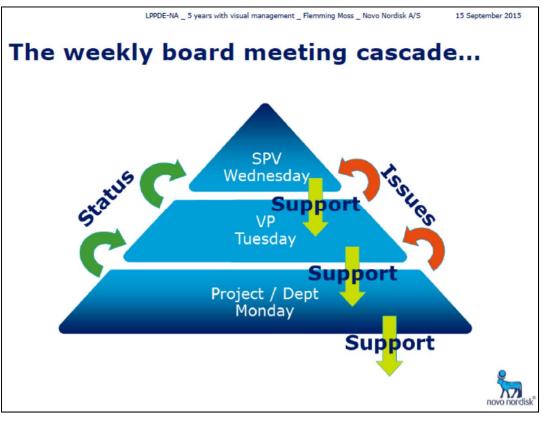
Leadership by the Chief Engineer

Ford consolidated PD leadership to the CE

Copyright 2014, Ford Motor Company

Presented by Pericak, Mustang CE, at Lean Product and Process Development Exchange, 9/23/2014

UNIVERSITY

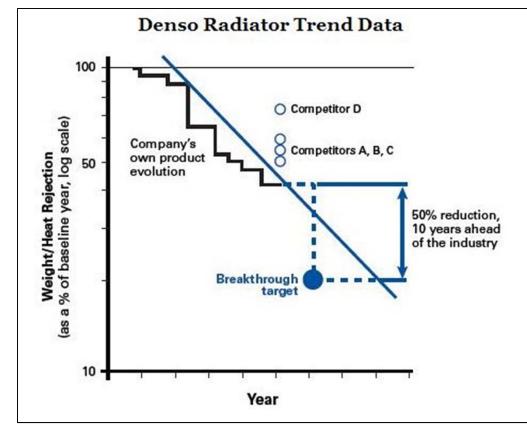

Michigan Lean Consortium 2016 Annual Conference

Using Lean Tools in Development

Novo Nordisk uses Visual Management for Organizational Alignment and Senior Management Support

- Escalate Issues
- Senior Management Involvement and Support
- Senior Management also using VM

UNIVERSITY

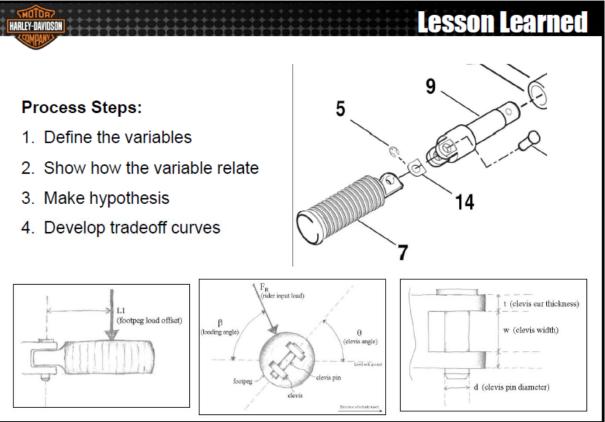


Moss, Fleming; Novo Nordisk; 5 Years with Visual Management, LPPDE 2015 ConferenceMichigan Lean Consortium 2016 Annual Conference

Testing, Learning, Knowledge Reuse

Denso radiator performance vs. competitors and goals

Note the universal metric "weight / heat rejection" and log scale



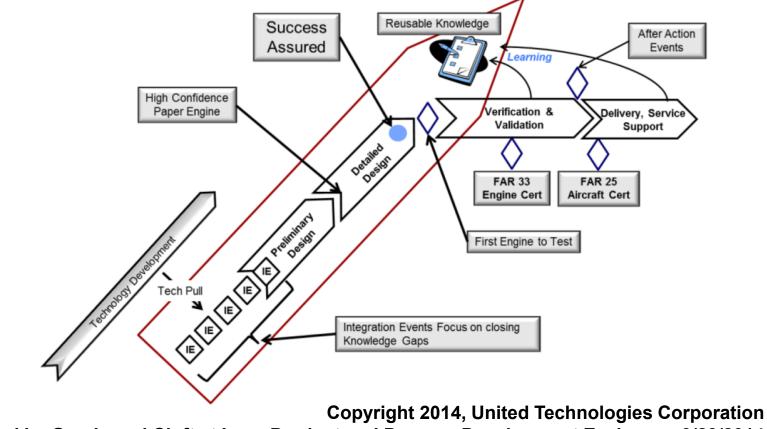
Ward, Sobeck; Lean Product and Process Development, Lean Enterprise Institute, 2014Michigan Lean Consortium 2016 Annual Conference41

Testing, Learning, Knowledge Reuse

Harley-Davidson uses SBCE

UNIVERSITY

Copyright 2015, Harley-Davidson Motorcycles

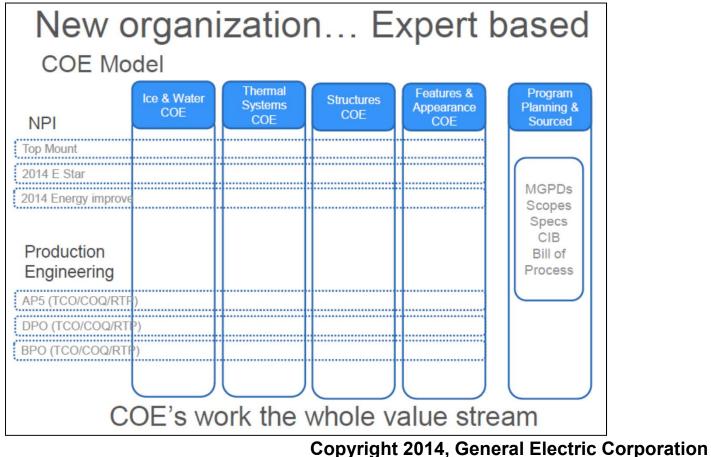

Presented by Wilcox at Lean Product and Process Development Exchange, 9/15/2015 Ke

Michigan Lean Consortium 2016 Annual Conference

A Learning Organization

UNIVERSITY

Pratt & Whitney Aircraft Engines


Presented by Gracis and Cloft at Lean Product and Process Development Exchange, 9/23/2014

Michigan Lean Consortium 2016 Annual Conference

A Lean PD Transformation

JNIVERSITY

GE Appliance reorganized to Centers of Excellence

Copyright 2014, General Electric Corporation Presented by Nolan at Lean Product and Process Development Exchange, 9/23/2014 Michigan Lean Consortium 2046 Annual Oct

Michigan Lean Consortium 2016 Annual Conference

Comments on LPD by Jim Womack

"You have hardly got started!"

Jim Womack, PhD, Professor at MIT Co-author of the Machine that Changed the World and Lean Thinking Founder of Lean Enterprise Institute Presenting at Lean Product and Process Development Exchange, 9/23/2014

Womack's Insights:

- LPD is relatively "new", few practitioners are doing it
- Clearly, the leaders in development are doing it
- LPD is not nearly as visible as Lean Manufacturing, and appears much more difficult
- Reflection: have the courage to experiment with LPD

Thank You !

Contact:

Larry Navarre, Inavarre@kettering.edu

