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Optimizing Production Schedule with Energy Consumption and Demand 
Charges in Parallel Machine Setting  

 

Farnaz Ghazi Nezami • Mojtaba Heydar • Regina Berretta 

Abstract Environmental sustainability concerns, along with the growing need for electricity and 
associated costs, make energy-cost reduction an inevitable decision-making criterion in 
production scheduling. In this research, we study the problem of production scheduling on non-
identical parallel machines with machine-dependent processing times and known job release 
dates to minimize total completion time and energy costs. The energy costs in this study include 
demand and consumption charges. We present a mixed-integer nonlinear model to formulate the 
problem. The model is then linearized and its performance is tested through numerical 
experiments. 

1 Introduction 

This paper proposes a new energy-aware parallel-machine production scheduling model in 
order to minimize total production completion time, energy consumption costs and peak power 
charges. The industrial sector uses 266 quadrillions BTU of energy, which accounts for 51% of 
total energy consumption in the world1. The breakdown of global energy consumption data 
reveals that 22% of the total amount of energy used in the industrial sector is electrical energy 
[1]. In the past 50 years, industrial electricity consumption has doubled [2]. In addition, the US 
Energy Information Administration (EIA) reports that the price of electricity is expected to 

                                                            
1 https://www.eia.gov/tools/faqs/faq.cfm?id=447&t=1 
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increase by 18% by 20402. Currently, the cost of electricity for manufacturing in the United 
States exceeds 100 billion dollars [2], and this number will continue to increase the in future. 

The surge in energy prices, along with the scarcity of natural sources, the growth of public 
awareness of environmental concerns, and the establishment of sustainability-based standards 
magnify the necessity of incorporating energy consumption and associated costs into planning 
and scheduling decisions at manufacturing facilities. The increase in energy demand causes 
difficulty for electrical energy providers, who must keep up with demand, which is particularly 
difficult during peak-demand periods. Time-of-Use (TOU) tariffs implemented by utility 
companies aim to shift demand from the expensive peak periods to less-expensive non-peak 
hours in order to flatten the load curve and decrease the deficit risks in supply. 

In general, electricity charges can be categorized into two types: consumption charges and 
demand charges. Consumption charges are calculated according to the total amount of electrical 
energy consumed by a company during a given period, based on kilowatt-hour, and may vary 
throughout the day to motivate a shift of consumption away from peak hours. Demand charges 
try to address the overhead expenses that utility companies bear to provide the service. This 
charge is based on the highest level of power demanded over a given period of time during the 
billing period and is usually calculated as the highest “average fifteen-minute demand” for a 
month. Energy demand is measured in kilowatts (kW) and often represents a significant 
percentage of charges on utility bills for the industrial user.  

Most of the existing research on energy-aware job scheduling does not differentiate 
between these two types of energy costs. In addition, in the majority of energy-aware job 
scheduling studies, the impact of various machine operating modes on decision making output 
is not considered. In a typical manufacturing system, the machines may be running idle for a 
significant amount of time waiting for the next job to arrive and be processed. One study showed 
that in a machining process, 85% of total energy consumption is used when the machine is idling, 
and only 15% is applied to the actual machining process [3]. The idle energy is used to run the 
auxiliary components. Therefore, it is critical to study the impact of various operating states on 
the production schedule, energy requirements, and cost planning. In the past few years, the 
number of studies investigating the energy-aware production scheduling has increased 
significantly. A literature survey of studies on energy efficiency in manufacturing companies is 
provided by [4]. This survey presents a breakdown of studies based on energy coverage 
(production system, internal and external conversion system), energy supply, energy demand 
(processing and non-processing energy demand), objective criteria (monetary, non-monetary), 
the system of objectives (multi/single objectives), the manufacturing model (single machine, 
parallel machines, flow shop, job shop/project scheduling, or hoist scheduling), the model type 
(linear, mixed integer linear, mixed integer quadratic constrained, mixed integer non-linear 
programing, queuing theory and simulation, and other analytical models such as Markov 
decision model), and solution approach (heuristic, exact, standard solver). To integrate energy 
concerns into classic scheduling problems, [5] investigated a single machine problem to 
minimize total energy consumption and maximum tardiness, with the possibility of machine 
shut-down between consecutive jobs following the break-even period. They considered only 
processing and idle energy consumption in their model. A bi-objective optimization problem to 
minimize weighted tardiness and non-process (idle and switch) energy consumption in a job-
shop setting is proposed in [6]. Their model also allows for switching off a machine if the idle 
time is long enough, considering a breakeven time, and they solved the problem using Genetic 
Algorithm (GA). In another study, a job-shop scheduling problem with machine speed scaling 
to minimize makespan and energy consumption using GA was proposed by [7]. A job-shop 
problem with energy threshold and makespan minimization was investigated by [8] using a 
mixed integer linear model. They considered extra energy consumption at the beginning of the 
operation, and energy consumption was divided into “peak” and “processing” categories. An 
energy-aware scheduling model with tool selection and operation sequencing was introduced by 
[9]. Their bi-objective model minimized total energy consumption (idle, setup, and process 

                                                            
2 http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf 
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energy) and makespan in a flexible job-shop system. To incorporate TOU policy on energy 
aware scheduling, [10] minimized total electricity cost and number of machines based on TOU 
pricing in a uniform parallel-machine problem. In another study, [11] performed a job-machine 
assignment and scheduling in an unrelated parallel machine setting in order to minimize total 
energy costs according to TOU policy. In 2016, [12] minimized total energy consumption using 
TOU via job scheduling for a single machine problem. 

In the existing research studies on energy-aware scheduling problem, the concurrent 
integration of operating mode-based energy consumption, TOU policies, and peak power 
demand is not well investigated in a parallel machine environment. The main contribution of 
this paper is to propose a new comprehensive framework to minimize total completion time, as 
well as time-dependent energy consumption and peak power charges simultaneously in a non-
homogenous parallel-machine manufacturing system. 

The remainder of this paper is organized as follows: Section 2 introduces the underlying 
assumptions of the model and presents the mathematical model. An illustration of the problem 
is presented via a case study in Section 3. Section 4 presents our numerical experiments as well 
as the results. Our conclusions are discussed in Section 5. 

2 Problem Definition and Mathematical Modeling  

This section describes the mathematical formulation proposed for a parallel machine 
scheduling problem where the total completion time of jobs, energy consumption, and power 
demand charges are minimized through determining the optimum sequence of jobs, job-machine 
assignment, and machine operating schedule. The proposed mixed-integer nonlinear 
programming (MINLP) model is built on the following underlying assumptions: 

 Job processing times are known and the processing is non-preemptive. 
 The machines are not identical, i.e., each machine has its own energy profile, and job 

processing times are machine-dependent. In other words, the processing time of a given 
jobs might vary on different machines.  

 Machine energy consumption varies during different modes (states). 
 Only one job can be processed on a given machine in each period. 
 If there is no job to process on a machine in any given period, the machine will be idle 

and consuming idle energy. Idle mode is a very low-energy consuming mode. 
 At the beginning of the scheduling horizon, the machines are off and might be turned 

on in an anticipation of an arriving job. The first job might arrive at the current period, 
or any other upcoming periods.  

 The time to turn on the machines is assumed to be insignificant; therefore, it does not 
impact energy consumption significantly. However, the average power demand during 
the period at which the machine is turned on increases and is represented by OP.  Note 
that OP is the average energy demand in the period at which the machine is turned on, 
accounting for power surge during the turn-on (start) process. 

 When a machine switches to processing mode from idle, there will be a spike in power 
draw, called switch power (SP). The time to switch is assumed to be insignificant. As 
a result, when a switch to processing mode occurs in a given period, there will be an 
excess power demand during that period. 

 The unit price of energy varies during peak/off-peak periods (TOU tariff). Demand 
charge is also a function of TOU and varies in different periods. 

 The planning horizon is broken into T periods, such that the length of each period is the 
same as the interval used in energy demand charge calculations. 

The parameters considered in the MINLP are as follows: 

Pjm Processing time of job jJ on machine m M 
t

mIP  Power consumption of machine mM in idle mode during period t  T 
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t
mPP  Power consumption of machine mM in processing mode during period t  T 
t

mOP  Power consumption of machine mM during turn-on process in period t  T 
t

mSP  Power consumption of machine mM during switch process from idle to 
processing mode in period t  T 

CP Cost of maximum power demand 
CEt Cost of energy consumption during period t  T 
L Duration of each period 
Fi Objective function i, i = 1, 2, 3 

The decision variables considered in the MINLP are as follows: 

Pmax Maximum power demand 
t
jmX  1 if job jJ processing started on machine mM at period t  T; zero otherwise 

t
jmW

 
1 if job jJ is being processed on machine mM at period t  T; zero otherwise 

t
mZ  1 if machine mM is turned on from off mode at period t  T; zero otherwise 
t

mY  1 if machine mM is idle at period t  T; zero otherwise 
t
mU  1 if machine mM is switched from idle mode to processing mode at period t  T; 

zero otherwise 
 

The following is the proposed mixed-integer nonlinear programming model: 
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In the proposed multi-objective model, the objective function (1) aims to minimize the total 

completion time. The second and third objective functions aim to minimize the cost of time-
based energy consumption and maximum power demand, respectively. 

Constraint set (4) – (9) are the job scheduling-based constraints: constraints (4) and (5) 
show that in a given period only one job can be “started” on each machine. Based on constraint 
(6), each machine can “process” at most one job in a given period. In other words, based on 
these constraints, there is a one-to-one assignment between job and machine. Note that a job can 
be processed after it is started, and based on constraint (7), the total number of processing periods 
for a job is determined by the job processing time. Constraints (8) and (9) show that the job 
processing is non-preemptive once started [13]. 

Constraint set (10) – (17) are machine-based constraints and address machine operation 
and energy planning: constraint (10) indicates that each machine is turned on (from the off mode) 
at most once during the planning horizon. Constraint (11) indicates that if a job processing is 
started on a machine in a given period, the machine might have been turned on either during that 
period or in any other prior periods. It is worth mentioning that for energy demand reduction 
purposes, a machine might be turned on in a period when there is no job to be processed. This 
strategy is helpful to flatten the overall peak power demand in parallel machine setting. 
Constraints (12) and (13) show that if a machine is on, with no job to process, it is in idle mode. 
According to constraint (14), a machine can be idle if it has been turned on in any of the previous 
periods. Constraint (15) explains the switch process from idle to processing mode between 
periods. Constraint (16) indicates that in a given period, either a switch or turn-on process occurs. 
Constraint (17) is the power demand capacity constraint and accounts for the power demand 
during processing and idle modes, and spikes during turn-on and switch process. There is an 
upper bound on total amount of power consumption to prevent supply shortage and over 
charging. The last term on the left hand side of constraint (17) is nonlinear, which leads to a 
nonlinear constraint. This equation can be linearized using the following set of constraints: 
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3 Model Validation: Illustrative Case Study 

 This section presents an eight-job three-machine scheduling example with a planning 
horizon of 16 periods (Table 1) to illustrate the model performance. The unit price of energy 
($/kWh) fluctuates in different periods and is given as follows {0.04, 0.04, 0.2, 0.04, 0.04, 0.2, 
0.04, 0.2, 0.2, 0.2, 0.2, 0.04, 0.2, 0.04, 0.2, 0.2}. The duration of each period is assumed to be L 
= 0.5 hour. The machines are not identical, i.e., they have different power consumption amounts, 
and the job processing times vary on different machines. Since the machines have different 
capabilities, the job processing times can be different even though the processing power 
consumptions are the same. Table 1 shows the machines’ power specifications and machine-
based job durations. The IP, PP, OP, SP are power consumption in kW, and job processing times 
are given in periods. The model is solved using a weighted approach [15], as described in the 
next section, where, wi represents the weight of each objective function.  
 

 
  Table 1 Illustrative case study data  

IP PP OP SP J1 J2 J3 J4 J5 J6 J7 J8 

M1 0.8 4 8 4.8 3 1 3 4 2 5 2 2 

M2 0.8 4 8 4.8 5 5 1 4 3 3 1 2 

M3 1 5 15 6 5 3 2 4 3 4 5 2 

*. 

 Figure 1 shows the solution output for the given example when the objectives are equally 
weighted. As shown, only M1 and M2 are selected, as they are the lowest-energy consuming 
machines. M1 is turned on in the first period to process J2 and then switches to an idle mode in 
period 2 at which M2 is turned on. M1 switches to an idle mode in period 2, considering the 
spike resulting from M2 during the turn-on process, assisting in reducing peak power demand 
and the associated charges. The equally weighted multi-objective model tries to avoid concurrent 
turn-on processes, as it has a significant impact on peak demand. 
 The model yields Pmax=8.8 kW, total completion time=41 periods (half-hour), and total 
energy consumption charges of $5.04/kWh. It should be noted that in industrial facilities, the 
unit price of power demand ($/kW) is significantly higher than unit energy consumption charges 
($/kWh), and minimizing peak demand leads to considerable savings for companies. High power 
demand can also influence future contracts with utility providers, as sometimes they use the 
previous year peak-power demand data as a default for the power demand during the subsequent 
year. In this example, a weighted sum approach was used to solve the multiple-objective model. 
Without loss of generality, we assume that all three objectives are equally important, meaning 
that all have the same weight in a weighted-sum approach.  
 In order to illustrate the effect of energy-related objectives (i.e. objectives two and three), 
we analyzed the model considering only the first objective. The result is shown in Figure 2. In 
this case, all machines are turned on in the first period, making the completion time as small as 
its minimum value (=26 periods). The peak power is at its maximum, i.e., 31 kW, in the first 
period, which increases power demand charges significantly.  

 
 

 
Figure 1. Solution of illustrative case when all objectives are considered (w1=w2=w3) 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M1 J2 J5 J5 J1 J1 J1 J4 J4 J4 J4

M2 J7 J3 J8 J8 J6 J6 J6

M3

Peak 
load

8 8.8 8.8 8 8 8 8 8 4.5 4.8 4.8 1.6 1.6 1.6 1.6 1.6

Periods

Switch to processingIdleTurn-on
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Figure 2. Solution of illustrative case when only completion time is minimized (w1=1) 

 
 In the next scenario, we considered only the energy consumption charges objective 
function (second objective). The optimal value of the second objective is $3.52. In this case, the 
values of the other two objectives would be deteriorated. In this schedule, as shown in Figure 3, 
the total completion time is 52 periods (1 period = 30 minutes) and Pmax=16 kW, which are 
higher in comparison with the equally weighted scenario. In this case, only two machines are 
utilized. 

 

  

Figure 3. Solution of illustrative case when energy cost (objective 2) is minimized (w2=1) 

 

 Finally, the model is studied considering only the third objective. In this case, the optimal 
value of the objective function is 88 (Pmax = 8.8 kW), and the total completion time is 74 periods 
(Figure 4). Here only two machines are utilized, and the turn-on action and switches between 
modes occur at different periods in order to minimize power demand. It should be noted that in 
this schedule, M2 is turned on in period 2 but it is kept idle until period 6. 
 

 

  
 

Figure 4. Solution of illustrative case when Pmax is minimized (w3=1) 

4 Experimental Setup, Results, and Discussion 

To show the effectiveness of the proposed mathematical model, we perform a numerical 
study in this section. For this purpose, instances were generated based on the parameters given 
in Table 2. To solve the generated instances, the mixed-integer linear program was implemented 
using C++, and the MILP solver of IBM ILOG CPLEX 12.53 was called to solve the instances 
on a desktop computer running Windows 64-bit operating system, an Intel i7-4790 CPU with 
eight 3.60 GHz cores, and 16 GB RAM. 

                                                            
3 https://www.ibm.com/bs-en/marketplace/ibm-ilog-cplex 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M1 J2 J5 J5 J1 J1 J1

M2 J7 J3 J6 J6 J6

M3 J8 J8 J4 J4 J4 J4

Periods

Turn-on Idle Switch to processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M1 J8 J8 J5 J5 J2 J1 J1 J1

M2 J7 J3 J4 J4 J4 J4 J6 J6 J6

 M3

Periods

Turn-on Idle Switch to processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M1 J2 J8 J8 J5 J5 J1 J1 J1

M2 J4 J4 J4 J4 J3 J7 J6 J6 J6

 M3

Periods

Turn-on Idle Switch to processing
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For the numerical study, five categories of instances were presented based on the number 
of machines (2 to 6 machines). Then, in each category, four random instances were generated 
based on the number of jobs, where the job durations and machines power consumption were 
generated using Table 2. The instances are solved in two ways. Firstly, each instance is solved 
with one objective at a time, and the optimal values of the objective functions along with the run 
times are reported in Table 3. The optimal values reported in Table 3 are used to find a 
compromise solution. From this numerical experiment, it can be seen that the run time is 
increasing from objective one to objective three, when the problem is solved with one objective 
at a time. This can be justified by the fact that the parallel machine with completion time can be 
solved to optimality in a polynomial time [14], while the Pmax is a min-max objective function 
that increases the problem complexity. 

 
Table 2. Parameters used to generate instances for the numerical study 

Parameters Possible Values 
PP {3, 4, 5, 6, 7, 8, 9} 
IP [0.2, 0.5]×PP 
OP [2, 3]×PP 
SP [1.2, 2] ×PP 
CE Pr (CE = 0.04) = Pr (CE = 0.2) = 0.5 
L 0.5 hour 
CP 10 
Pjm [1, 5] all integers 
M {2, 3, 4, 5, 6} 
J If M=2 or 3, then M + {1, 2, 3, 4}  

If M=4 or 5, then M + {7, 8, 9, 10} 
If M= 6, then M + {13, 14, 15,16} 

T 16 = 8 hr 

  
 

 
Table 3. Results for the first set of experiments 

Instance CPLEX Output 
# M J Completion 

time 
CPU time 

(sec) 
2nd obj. (Energy 

cost) 
CPU time 

(sec) 
3rd Obj. 

Pmax 
CPU time 

(sec) 
1 2 3 9 0 1.64 0 120 0 
2  4 11 0 1.33 0 80 0 
3  5 17 0 2.3 0 100 0 
4  6 24 0 2.18 0 60 0 
5 3 4 11 0 1.43 0 60 0 
6  5 11 0 2.34 0 90 0 
7  6 14 0 2.22 0 90 1 
8  7 15 0 1.9 0 210 0 
9 4 11 29 1 2.58 1 100 1 
10  12 40 1 5.28 1 88 10 
11  13 32 1 4.24 2 142 593 
12  14 39 1 4.48 1 180 7 
13 5 12 23 1 4.14 2 132 8 
14  13 28 1 2.42 1 110 13 
15  14 37 1 7.54 3 100 41 
16  15 37 1 4.28 2 142 9,415 
17 6 19 49 3 9.78 4 180 16 
18  20 51 3 3.58 4 120 38 
19  21 55 3 3.1 3 106 180 
20  22 56 3 6.16 4 180 11 

Average  1  1.5  516.7 

 
In the second approach, the tri-objective model is solved, where the problem is converted 

to a single-objective using the compromised programming approach [15] to find the Pareto 
fronts. In this problem, the single objective is defined as follows:  
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In Eq. (19), Fcp is the single objective, F*

i, i =1, 2, 3 is the optimal value of objective i, and 

wi, i = 1, 2, 3 is the weight of objective i, where 13
1  i iw and 0 ≤ wi ≤ 1. In this numerical study 

we set (w1 = w2 = w3) and the results are given in Table 4.  
 

Table 4. Results of the compromise approach (w1 = w2 = w3)  
Instance CPLEX Output 

# M J Obj 1 Obj 2 Obj 3 CPU time (sec) 
1 2 3 19 3.17 120 0 
2  4 14 2.23 98 0 
3  5 30 3.2 100 0 
4  6 41 2.88 60 0 
5 3 4 21 2.2 100 1 
6  5 28 3.07 90 0 
7  6 24 3.06 96 1 
8  7 26 4.62 250 0 
9 4 11 56 4.29 110 2 
10  12 64 6.8 118 37 
11  13 58 5.56 190 63 
12  14 84 8.76 240 104 
13 5 12 54 9.05 202 120 
14  13 85 6.54 110 200 
15  14 82 9.58 130 160 
16  15 84 6.46 190 162 
17 6 19 92 12.01 270 150 
18  20 117 6.62 170 41 
19  21 118 4.81 180 116 
20  22 119 10.92 240 212 

Average    68.45 

 
 
The comparison of results in Tables 3 and 4 reveals how the trade-offs among these three 

objectives can be made (Figure 5) and how the required time to achieve this can be affected. 
Moreover, by giving different weights to each objective by a decision maker, a set of solutions 
can be obtained. Then, the decision-maker decides which solution is more convenient depending 
on the circumstances and company policies. In addition, as shown in Tables 3 and 4, the solution 
time for the problems of this size, which are meaningful in practice, is negligible. This shows 
the effectiveness and applicability of the proposed model. However, as the dimension of the 
problem expands (larger number of machines, periods, and jobs), a more effective approach such 
as metaheuristics methods like NSGA-II  is required to solve the problems in a more time-
efficient manner. 

A more detailed trade-off between objectives one and three is studied and depicted in 
Figure 5. In this set of experiment, instance 14 is considered as an example to be analyzed. Then, 
each objective one and three is given different combination of weights from a set of weights 
given by (w1, w3) = {(0.8, 0.1), (0.7, 0.2), (0.6, 0.3), (0.5, 0.4), (0.4, 0.5), (0.3, 0.6), (0.2, 0.7), 
(0.1, 0.8)} while w2 is fixed at 0.1. The results in Figure 5 reveals the conflicts between these 
two objectives and shows how improving one will deteriorate the other.  

5 Conclusion 

In this paper, a mixed-integer nonlinear programming model is presented for a non-
identical parallel machine scheduling problem with three objectives: total completion time, total 
energy cost, and maximum power demand charges to be minimized. This is the first study that 
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considers maximum power demand in each period as a decision variable where energy 
consumption is a function of operating modes, and energy costs are following TOU policy. Then, 
in order to find Pareto fronts, the compromise approach is used to help the decision-maker and 
production-scheduler to apply the best schedule. The proposed algorithm handles the practical 
size cases efficiently. 

Different directions can be employed for future work. First, multi-objective techniques can 
be utilized to obtain a set of Pareto optimal solutions. Second, the model can be extended to 
other machine configurations. Third, the model can be modified to address some other 
scheduling objectives, such as makespan or tardiness minimization. Finally, a heuristic approach 
can be proposed to solve the large-scale problems in a more time-efficient manner. 

 
 

 
 

Figure 5. Values of objective one (total completion time) and objective three (Pmax) of instance 14 where w2 = 0.1, (w1, 
w3) = {(0.8, 0.1), (0.7, 0.2), (0.6, 0.3), (0.5, 0.4), (0.4, 0.5), (0.3, 0.6), (0.2, 0.7), (0.1, 0.8)}, and w1 + w3 = 0.9 
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