
Regis University
ePublications at Regis University

All Regis University Theses

Fall 2012

Data Integration: a Case Study in the Financial
Services Industry
Louis Epie
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Epie, Louis, "Data Integration: a Case Study in the Financial Services Industry" (2012). All Regis University Theses. 221.
https://epublications.regis.edu/theses/221

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217364968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/221?utm_source=epublications.regis.edu%2Ftheses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Disclaimer

DATA INTEGRATION: A CASE STUDY IN THE FINANCIAL SERVICES
INDUSTRY

A THESIS
SUBMITTED ON 14TH OF December, 2012

TO THE DEPARTMENT OF INFORMATION SYSTEMS

OF THE SCHOOL OF COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN

SOFTWARE ENGINEERING AND DATABASE TECHNOLOGIES

BY

Louis Epie

APPROVALS

Darl Kuhn

Faculty of Record

Ranked Faculty Name

Abstract

Current economic conditions result in banks participating in multiple mergers and

acquisitions. This results in banks inheriting silo and heterogeneous systems. For banks to

remain competitive, they must create a strategy to integrate data from these acquired systems

in a dynamic, efficient, and consumable manner. This research considers a case study of a

large financial services company that has successfully integrated data from different sources.

In addition this research investigates endeavors that experts in the field have undertaken to

develop architectures that address the problems with data integration and appropriate

solutions.

Acknowledgements

To my wife Augusta and daughter Alicia – Thank you for your support, understanding and

sacrifice for the last two years.

To my thesis supervisor and facilitator, Darl Kuhn and Prof. Donald Ina, for their advice and

guidance throughout the development of this thesis.

To Pioneer Investments IT staff for giving me the opportunity to work with some of the best

minds and technologies in the financial industry.

To the staff and students of both NUI Galway and Regis University’s MScSIS program 2010

– 2012 for giving me the opportunity to learn

Table of Contents

Table of Figures ...v

Chapter 1 - Introduction ...1

Types of Data Integration ..1

Extract, Transform, Load (ETL). ...3

Service-Oriented Architecture (SOA)..3

Reasons for the Challenges of Data Integration ..4

Thesis Statement ..5

Scope ..7

Significance of the Study ...5

Research Methodology ..5

Success Criteria ..6

Chapter 2 Literature Review ..7

An Overview of the Operation of Investment Banks...7

Front Office. ...7

Middle Office ...8

Back Office ..8

The Data Situation in Investment Bank ...9

Data Integration Architectural Approaches ...10

Web Services and Enterprise Information Integration Architectures.10

Model Driven Architectures ..12

Data Delivery in a Service Oriented Architecture ...15

A Business Object Model Integration. ...19

A Business Object Model Integration ..22

Summary ..24

Chapter 3 Research Methodology ..25

A Data Integration Case Study ..25

Technical Setting ...25

The Challenge ..26

Proposed Solution ..26

TIBCO Messaging Service ..26

Solution Implementation ..27

Justification of Case Study...29

Chapter 4 Observation ...31

Pattern of Encountered Issues ..31

Characteristics of Solutions ...31

Chapter 5 Conclusion ...32

Summary of Contributions ...32

Lessons Learned...32

Unexpected Results and Issues ..32

Recommendations for Future Research ...32

References ..34

Appendix A ..36

List of Tables

Table 1. Definitions ...36

Table of Figures

Figure 1. EAI Data Integration Architecture ...2

Figure 2. Federated Data Integration Architecture ...2

Figure 3. ETL Data Integration Architecture ...3

Figure 4. SOA View of the IT World. ..4

Figure 5. Multiple Data Sources ..5

Figure 6. Data Supporting Buy & Sell Side of an Investment Bank9

Figure 7. Data Stuck In Silos ..10

Figure 8. Data Integration Architecture ...11

Figure 9. MCMS System Overall Architecture ...13

Figure 10. MDDI Modeling Phases..14

Figure 11. Transformation and Models for MDA Based on MDDI Modeling Phases.....14

Figure 12. Physical Data Services..16

Figure 13. Design View of Customer Profile Data Service ..17

Figure 14. Implementation of Master Data Services Layer ...18

Figure 15. A Data Services Layer Supporting SDO ...19

Figure 16. Refactoring Services Wrap Service as Activity ...20

Figure 17. Refactoring by Restructuring ..21

Figure 18. Refactoring by Synthesising ..22

Figure 19 Information Integration Using SCORE...23

Figure 20. EROCS Overview ..24

Figure 21. Elements of a Research Project ..25

Figure 22. TIBCO EMS Server Using a Queue ..27

Figure 23. TIBCO EMS Server Using a Topic ...27

Figure 24. IDDF Schema Definition ..28

Figure 25. Pioneer Enterprise Service Bus ..29

1

Chapter 1 Introduction

Data integration is the set of procedures, techniques, and technologies used to design

and build processes that extract, restructure, move and load data either in operational or

analytical data stores either in real time or in a batch mode. Financial services spend a great

deal of money and time in data integration, combining data from different sources and

enhancing the quality of data consumed. Data integration has been frequently cited as being

one of the most expensive challenges for information technology companies. “Market-

Intelligence firm IDC estimates that the market for data integration and access software

(which includes the key enabling technology for information integration) was about $2.5

billion in 2007 and is expected to grow to $3.8 billion in 2012” (Bernstein & Haas, 2007).

Data integration could take the form of moving data from one application database to

another, translating messages between businesses and providing access to structured data.

To address the issues surrounding data integration, various types of data integration

methods will be investigated including works done at an architectural level by experts in the

field. A case study is introduced in Chapter 3 to look at a data integration project that was

taken in a financial institution showing how integration was achieved, which is the outcome

of this project and analysis.

Types of Data Integration

There are many forms of data integration architectures in existence today with many

companies and vendors looking at better ways of improving the data integration process.

However, most of these architectures have either evolved from traditional integration

approaches such as silo architectures or from a combination of modern architectural

approaches to data integration. Listed next are some examples of data integration

architecture types.

2

Enterprise application integration (EAI). EAI provides the possibility to integrate

transactional data from disparate system sources. In a perfect world, EAI would have a

simple architectural pattern. An application will create a transaction, review and update the

data for the transaction and commit these transactions. These application environments will

consist of enterprise resource planning (ERP) package applications from vendors such as

SAP and Oracle to name a few, including internally developed custom applications. Because

many companies will have multiple ERP applications internally developed, the act of

creating, populating, and committing a transaction is a complex event. EAI is so complex

because of the need to bring together disparate technologies to work efficiently together.

Figure 1 shows an example of an EAI architecture consisting of a SAP general ledger

application, an Oracle order entry application for order entries all sitting on an IBM server.

Figure 1.EAI Data integration architecture. From “Data Integration Blueprint and Modeling

Techniques for a Scalable and Sustainable Architecture” by A. Giordano, 2011. Copyright

2011 by IBM.

3

Integration by Federation. Federation is a data integration pattern that has been

used in the industry since the 1980s. In Federation, disparate data is combined into a

common logical data structure called a virtual database. This virtual database created by

federation does not contain the data itself but contains information about where the actual

data resides. Federation is advantageous in the sense that it provides a means of integrating

an organization’s data that is stored off site or that is stored with a third party such as a cloud

service provider. Figure 2 below shows an example of a federated architecture with order

information hosted on an Oracle database and customer information hosted on a DB2

database.

Figure 2. Federated data integration architecture. From “Data Integration Blueprint and

Modeling Techniques for a Scalable and Sustainable Architecture “by A. Giordano, 2011.

Copyright 2011 by IBM.

Extract, Transform, Load (ETL). ETL is the aggregation and the collection of

transactional data. In ETL data is extracted from multiple sources and captured in a database

for reporting and analytics. The complexity and cost of data integration in ETL occurs in the

bulk of data movement. ETL has had a growth explosion in the past 15 years (Giordano,

2011). In the mid 1990s processing 40GB of data a month was considered significant, but

such a volume is nothing as compared to what is happening in the 21st century where

4

processing a terabyte of data a day is commonplace. Apart from flat files and relational data

formats, the integration environments in ETL should be able to process XML and

unstructured data formats.

ETL also has its complexities, for example integrating data from different source

systems with different batch processing times makes it difficult to extract or capture such data

after the batch run causing latency issues. In addition traditional ETL designs had just a

single data integration process for extracting, integrating, validating, and loading data causing

synchronization issues. ETL architectures are best for non-real-time transactional data

especially where there is a lag between the times when transactions are needed and when they

are created. Figure 3 shows ETL integration architecture from the extraction of customer

information and to when it is loaded and combined.

Figure 3. ETL Data integration architecture. From “Data Integration Blueprint and

Modeling Techniques for a Scalable and Sustainable Architecture “by A. Giordano, 2011.

Copyright 2011 by IBM.

Service-Oriented Architecture (SOA). Service-Oriented Architecture (SOA) is a

transactional data integration architecture in which messages are routed to instantiate objects

that will perform at different levels, offering services on a common network interface called a

service bus (Hurwitz, 2007). These objects are usually representations of functional business

components usually instantiated at different levels of granularity (Rosen, 2008). SOA

provides a set of guidelines used during systems development and integration. SOA is an

5

architecture that packages functionality as a service. These services can be used by other

organizations even when their client systems are substantially different, this architecture is

depicted in Figure 4 showing services being extensible in the service bus.

Figure 4. SOA view of the IT world. From “Service Oriented Architectures For Dummies”

by J.Hurwitz, 2007. Copyright 2007 by Wiley Publishing.

Reasons for the Challenges of Data Integration

Data integration is one of the most complex disciplines in the financial industry. This

complexity is a result of having to combine multiple and distinct source systems into a single

and consistent data store for the use of the business and technology users. Fundamental

changes in the financial markets industry is the main cause for the challenges of integrating

data in the banks. Some of these challenges include the following:

 The Issuance of New Securities: Because of the need for investment banks to offer

compelling products to their clients, many financial securities have been created.

There are currently more than eight million securities each requiring timely, accurate,

and detailed information. These financial securities and their complexity are a

6

challenge for managers of financial information in these institutions (IBM.com,

2004).

 Changes in the Market: The market of today has so many participants executing

trades both on the buy and the sell side. Many of these firms use trading and other

algorithmic execution models. Decimalization and program trading has led to a high

reduction in trade size with a corresponding high volume, these factors have led to a

strain on data management platforms because they require delivery of a high volume

of data (IBM.com, 2004).

 Regulation and Compliance: Regulation and compliance considerations have forced

banks to place a high priority on the production of accurate, timely data to feed the

internal risk management systems. Because of this institutions are now forced to meet

a more stringent and fiduciary responsibility to provide correct data to regulatory

agencies.

 The Expanding Role of Data Vendors: Vendors of data such as Bloomberg, Reuters

and Factset are now providing disparate security attributes and pricing information to

investment banks as a result of a need for more attributes and analytics from these

banks who are in need of more insight into the markets. However, managing multiple

sources of data by these banks creates cost and consistency issues that must be

addressed. These challenges have created significant stress on data management

systems resulting in technological changes and business processes.

 Similar Data Platforms: Most banks historically have built and maintained their own

security and client master database in isolation from other market participants. As

these banks have expanded through mergers or organic growth, data silos have

emerged that match each line of business. These data platforms are similar in style

and content across the bank, they are maintained through a combination of automated

7

data feeds from external data vendors, in-house applications and manual entries and

adjustments.

 Difficulty in Data Cleansing: Most often, the approach to cleansing data is to

compare data from multiple vendors or data sources. This process is tedious due to

the lack of standards across the financial industry. Every data provider has a

proprietary way of representing data due to the lack of standards to govern data

presentation. These difficulties have resulted in a high probability of data error as

these errors can occur at the original source, the data vendor or any number of in-

house data applications (Zins, 2009). Figure 5 below shows an architecture with

multiple data sources.

Figure 5. Multiple data sources. From “Transforming Data Management in the Financial

Markets Industry” by IBM Business Consulting Services, 2009. Copyright 2009, by Author.

Thesis Statement

Integrating data in the financial industry presents complex challenges from a

technical, design, and operational perspective that requires expertise to implement a system

that collects and centralizes information in a manner that can be efficiently leveraged by the

business users.

8

Scope

Integrating and managing data is an activity that almost every industry that relies on

data must undertake. The scope of this work is limited only to the integration and

management of data between the back, middle, and front office of an investment bank.

Significance of the Study

Successfully managing and integrating data plays an important role in investment

banks as this gives them the ability to compare data from numerous sources and choose the

best, latest, and most up to date data thus yielding higher investment returns.

Research Methodology

This thesis uses a two-phase approach. Phase one will examine existing literature in

the general IT domain and the financial industry domain. This literature review will examine

existing academic and industry research, books in the field of data quality, master data

management, IT architecture and reference data systems.

Phase two will examine the design, implementation and ongoing operations in a

financial services company with respect to integrating data.

Success Criteria

This paper will provide an overview of data integration issues in the financial industry

and architectures currently used in integrating and managing data. It will also explore the

benefits of utilizing these methods and technologies and how such an exercise was achieved

within an investment bank in the sample case study.

9

Chapter 2 Literature Review

Financial institutions particularly investment banks have always been in need for the

best source of information and data in order to provide customers and clients with the optimal

service to increase profitability and to outperform competitors. This need for higher profits, a

better customer service, and a need to outperform competitors has led to enormous pressure

on the IT department of these institutions in the area of data integration.

The purpose of this chapter is to look at research and studies that has been done in the

area of data integration architectures in the financial industry and in similar industries and

how this can be incorporated by financial institutions particularly investment banks. More

specifically, this chapter will explore what data integration is, the operations of financial

institutions around data, the issues affecting data integration, the available data integration

architectures and data store houses.

An Overview of the Operation of Investment Banks

Large global investment banks are typically composed of several business units,

these include: Investment Banking which is concerned with advising public and private

corporations; Research is concerned with producing reports on the valuation of financial

products; and Sales & Trading, which is more concerned with the buying and selling of

products on behalf of the bank and the client's of the bank. Banks make money by

undertaking risk through proprietary trading, which is done by traders of the bank and they

seek to maximize profitability for a given amount of risk.

Investment banks are split into three main areas, these are the Front Office, Middle

Office and Back Office with the Front Office considered to have the highest-calibre

employees and the Back Office having the least (Essvale, 2006).

10

Front office. This department of an investment bank helps customers raise funds in

the Capital Markets and advises on mergers and acquisitions. Investment bankers in the

Front Office prepare ideas which they bring to meetings with their clients with the hope that

their efforts will help secure clients in a particular investment opportunity. Once such an

investment opportunity has been agreed upon, the bank prepares all the documents necessary

for the execution of such a deal, this may involve subscribing investors to the issue of a new

security, negotiating with a merger or coordinating with bidders.

Financial Markets are split into four main divisions: sales, trading, research, and

restructuring.

 Sales and Trading: This is the most profitable area in an investment bank as it

responsible for most of the revenue. Traders in this division will buy and sell

financial products with the goal of making an incremental amount of money on each

successful trade. The function of the sales team in this division is to call on

institutional and high-net-worth investors, suggesting trading ideas to them, and

taking orders. Sales desks then send forth their clients' orders to appropriate trading

desks to price and execute trades.

 Research: This division reviews the prospects of other companies and gathers reports.

Although this division does not generate any revenue, their resources are used in

assisting traders in trading, suggesting ideas to the sales force in other to capture the

interest of clients. In the last few years the relationship between investment banking

and research has become highly regulated reducing the importance it once had to

investment banks (Essvale, 2006).

 Structuring: This is a relatively new division for investment banks with the

emergence of Derivative products. This division of investment banks employs highly

11

technical and numerate employees who create complex structured products that offer

greater margins and returns.

Middle office. This division houses the risk management team which is responsible

for analyzing the risk taken by traders when conducting their daily trades, in addition they

are also responsible in making sure that their balances are in order on the balance sheet. This

division is also responsible for making sure that traders have the right amount of capital to

trade in order to prevent “bad” trades having a detrimental effect on the bank.

Back office. The operations in this division involve checking the data of trades that

have been conducted over a certain period of time, making sure that they are not erroneous

and that the required transfers are transacted correctly. The operations in this division will

move smoothly if data from both external and internal sources are well integrated together. It

is this area of the bank where the majority of data integration work is done. Figure 6 shows a

layout of the Front, Middle and Back offices.

12

Figure 6. Data supporting buy & sell side of an investment bank. From “An Introduction to

Trading in the Financial Markers Technology: Systems, Networks, and Data” by R. T.

Williams, 2011. Copyright 2011 by Academic Press.

The Data Situation in Investment Bank

The changing landscape of the trading of securities in investment banks has put issues

surrounding data management in the spotlight. With the advent of electronic trading, there

has been high-speed and high volume of data for almost everything, from market quotes to

the confirmation of payments. Increased regulations have put pressure on market participants

to store large volumes of data for reporting and auditing.

Data accuracy has always been very important at every stage of the trading lifecycle,

from transaction flows, analytics and risk management, accounting and reporting affecting

13

every part of the front, middle, and back offices. In the past, issues with data have created

bottlenecks in workflows, with data being inaccurate, untimely, and inaccessible.

“According to a survey published by Tower Group in 2005 institutions reported that

9% of all trades failed automated processing routines. Inaccurate reference data was

the cause of 36% of these failed trades (or it caused fails in 3.3% of all trades), and

poor data management processes led to an additional 43% of failed trades”.

Due to competition and shrinking profits, investment banks cannot afford the cost that

comes from data error and are rethinking the importance they have traditionally put on data

as an asset. Data is now looked upon as a key revenue and profit generation in the firm.

These days it is common to find titles such as CEO (Chief Executive Officer), CFO (Chief

Financial Officer), CIO(Chief Information Officer) and the Chief Data Officer (CDO) who

have been given the task to provide accurate integrated data that is accessible in real-time,

24/7, from anywhere in the world (Khanna, 2008). Despite changes in the market and the

creation of roles and titles to manage the data that is being influenced by these market

changes, the industry is still struggling to create a coherent strategy for data management

requirements and is ill prepared to meet the recent challenges in the market.

For many years these banks have haphazardly tried to accommodate new demands to

accommodate large volumes of data types, with more applications needing access to this data

and the need for greater speed to access this data. Databases have been added in an ad hoc

manner to serve the needs of specific departments even when the data already exists in some

other locations. Some firms have been known to have over 50 databases storing the same

data in different formats with varying levels of accuracy. Others have created their own

databases, taking data from various and multiple data vendors such as Bloomberg, Telekurs

and Reuters. Because there is no industry standard for representing reference data, data

14

vendors have been known to supply data in disparate formats using different naming

conventions.

Apart from having redundant data and the costs associated with redundancy, data

vendors sometimes provide different and incomplete data for the same record of information

(Loshin, 2011). This means that for a particular security, two distinct values could be held

for it in different databases in the same firm, in addition to that if one of the vendors had

provided an incomplete record, it is most likely to be completed by the Middle Office

manually which brings in the possibility of human error.

For decades, most investment banks have had decentralized and fragmented reference

data acquisition and storage processes containing poor quality reference data which is

inconsistent among its data stores. Figure 7 below depicts an architecture with data stuck in

silos systems.

Figure 7. Data stuck in silos. From “Straight Through Processing For Financial Services.

The complete Guide.” By A.Khanna, 2008. Copyright 2008 Academic Press.

Due to the prior mentioned issues affecting data, especially its architecture, it is worth

looking at the various architectural approaches that are central to the creation of a robust data

integration solution.

15

Data Integration Architectural Approaches

There are many architectures that have been used for data integration not only within

the financial industry but in other industries such as the pharmaceutical industry, the motor

industry, and telecommunications industry. Due to these various and varying architectures it

was worth reading up on some of these architectures to have an understanding of the various

methodologies available for data integration.

Web services and enterprise information integration architectures. Pan and Vina

(2004) considered an alternative architecture that has already been deployed in several cases.

Their architecture is based on two emerging paradigms in the industry, which are Web

services and Enterprise Information Integration (EII). According to Pan and Vina, Web

services are becoming the de facto standard for the interoperation between different software

applications. EII systems are based on a wrapper-mediator architecture, where data from

various sources is transformed into a new central repository. This means data always remains

at the source and the EII system provides users with a unified virtual view of the source data.

When a query is received by the mediator, the query is decomposed into sub-queries from the

data sources, which are then executed in real time and the integrated sub-query results is

obtained to form a global unified query result set. Figure 8 depicts an architecture with a

wrapper creator at its core.

16

Figure 8. Data integration architecture. From “An Alternative Architecture for Financial

Data Integration” By A.Pan and A.Viña 2004, Communications of the ACM, 47(5), 37-40.

Copyright 2004 by ACM.

This proposed data integration architecture is based upon EII wrappers and Web

Services as shown in Figure 8. The sources of data in the above architecture are internal

databases, proprietary applications, systems from partner companies or from other

departments accessible through Web services and autonomous Web sites from external

organizations. In this architecture, the physical layer is comprised of wrappers that make data

sources conform to a common model. Wrappers that are easily configurable, Web services,

and popular back-office applications are included as standard components for this

architecture.

Despite the benefits of this architecture, the disadvantage with it is that integrating

data from external Web sources requires screen-scraping techniques that can be error prone.

The integration layer of this architecture provides a unified view over data from sources that

17

could be queried using a database-like language such as XQuery or SQL. This allows users

to obtain answers to queries that are similar to conventional databases.

The prior architecture proposed by Pan and Vina (2004) has a number of advantages

over traditional integration techniques:

 Data is retrieved from the sources at query time, which allows for real-time data

integration and is an asset to financial institutions.

 This architecture is inexpensive to build and less difficult to maintain as compared to

a central repository. They can be scaled up to a large number of sources, which can

be ideal when a fast deployment is needed for a unified system after a merger or

acquisition of a bank.

 External data sources can be easily dealt with since data resides with the external

sources and the owner of the source data can decide which data can be accessed.

 Using Web wrapper techniques gives the user the illusion that data from the external

websites is stored in a local database.

Despite the prior advantages, it is hard to judge the performance of an application

because no mention is made of performance times in any particular setting. It would also be

good to know how this architecture will perform in a batch publishing setting because most

financial institutions rely on batch jobs running at various times of the day.

Model driven architectures. Model driven architecture is another method

considered for data integration by Kim, Zhang, Oussena and Clark (2009). This approach

of data integration utilizes metadata across the data integration process. By having data

and metadata decoupled by using a Model Driven Data Integration (MDDI), the

complexity involved in data integration is eliminated according to this study.

A case study adopted by (Kim et al., 2009) looked at adopting Meta Data

Architecture (MDA) technology as a framework for data merging and data customization

18

in data mining. This case study was done for the Mining Course Management Systems

(MCMS) Project. In the case study, 3 years of institutional and historical data was

collected to build a data warehouse to predict individual student performances and the

dropout rate as well. The data source for this study included the following:

 A student record system that has held information about students’ background,

examination results, and course enrollment.

 An Online Learning System, which has allowed tracing students’ activities in a virtual

class, included the downloading of class materials and joining online group

discussions.

 A library system, which has provided information on student loans on academic

material and associated literature.

 A reading list system has been hosted on the library system server in with a separate

database. This is to help track how often students borrow books from the

recommendation list.

 An online resource system to store student logs of access to online resources such as

e-books and online journals.

 A specification document to provide information on the course. Text Ming was

applied to find out the title of the course, the methods of teaching and much more.

 A text data source, which has provided information on the module study guide. All

details of the modules were contained therein.

 A course marketing system for marketing the course.

 An online test system, which has enabled students to take an online entrance skill

check.

The overall architecture of this case study can be seen in Figure 9.

19

Figure 9. MCMS system overall architecture. From “A case study on model driven data

integration for data centric software development”. By Kim et al.,2009. DSMM '09

Proceedings of the ACM first international workshop on Data-intensive software

management and mining, 1, 1-6.

The data integration process of this project was divided into four phases, which

were as follows:

1. Analyzing and understanding of data: In this phase business requirements were

gathered, the quality of these requirements were assessed and associated with the

source system across multiple other systems. Data models were gathered from

each data source systems.

2. Data collection and extraction: The gap between available data and its quality

based on the requirements of the business were assessed in this step. For this the

data extraction models for each data source was defined using a UML class

diagram.

20

3. Data merging and cleansing: These merging models were designed to combine

each data extraction model into a unified model while considering data cleansing

at the same time.

4. Data customization: This was the final step, and was designed according to an

application scenario.

The prior four phases are depicted in Figure 10.

Figure 10. MDDI modelling phases From “A case study on model driven data integration for

data centric software development”. By Kim et al.,2009. DSMM '09 Proceedings of the

ACM first international workshop on Data-intensive software management and mining, 1, 1-

6.

The transformation of the logical models provided guidance on how to integrate

actual data and an automated generation of real code for execution from an MDA viewpoint.

Most of the data was derived from real data sources through automated reverse

transformation using Rational Data Architect (RDA) in this project. Figure 11 shows the

transformation of these logical models.

21

Figure 11. Transformation and models for MDA based on MDDI modelling phases, From

“A case study on model driven data integration for data centric software development”. By

Kim et al.,2009. DSMM '09 Proceedings of the ACM first international workshop on Data-

intensive software management and mining, 1, 1-6.

To achieve data merging, relationships were defined between elements from different

models at the conceptual level. This enabled data mapping from each source data to the

target data. This case study showed a very rigid and successful process of integrating data

using data modelling techniques. However, it would be fair to question how such an

approach will work in a fast-paced environment where there could be 20 to 40 or more

heterogeneous systems or applications at any one time. A modelling approach may be time

consuming resulting in such an architectural approach having to compete with other

approaches that are not as model intensive as the above-mentioned architecture. Also most

off-the-shelf data integration products these days will have their four modelling phases

already integrated into their applications as functions, with institutions having only to

understand the functionality of such an integration product before purchasing it as a solution.

Data delivery in a service oriented architecture. Service Oriented Architecture

(SOA) has been a trend the enterprise that has excited the IT world. Carey’s (2005), in his

study, using the BEA AquaLogic Data Services platform, explored the opportunities

created by the emergence of Web Services and XML standards for enterprise application

22

integration. BEA leverages the W3C XML, XML Schema and XQuery recommendations

to deliver a standard based foundation for data services.

The BEA AquaLogic Data Services Platform (ALDSP) is aimed at developers of

composite applications that need to access information from a range of enterprise data

sources. These data sources include Web services, relational databases, packaged

applications, views, delimited files, and Java-fronted custom data sources. ALDSP looks at

data from a service-oriented point of view and models an enterprise from a set of interrelated

data services. Each data service provides a set of service calls that an ALDSP client can use

to access data with most of these services being made up of a mixture of read and write

methods.

To show how a service is built using ALDSP, suppose there is a need to build a

logical data service that enables applications or other services to access customer information

and that this information resides in several different enterprise information sources. Now

imagine that one relational database contains the CUSTOMER and ORDER table and the

other database contains CREDIT CARD information. Although there is a WEB service

hosted within the enterprise that provides credit rating information, Figure 12 shows the

physical data service model because of having ALDSP introspect these data sources and

make them available by creating a composite data service.

23

Figure 12. Physical data services. From “Data Delivery in a Service-Oriented World: The

BEA AquaLogic Data Services Platform” by M. Carey, 2005, Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data, pp. 695-705. Copyright 2006

by ACM.

Central to this service are instances of the customer data, order data, nested credit card

data and the credit rating for a given customer. The left hand design view lists the read

methods which include getProfile(), to get integrated profile for all customers,

geProfileById() to get the profile of a customer by customer id, getProfileByName() to get

the integrated profile of all customers with a specified name and getProfileByRating() to get

profiles for all customers with a specified credit rating. The design view of the physical data

services is depicted in Figure 13 below showing the ALDSP design view of the integrated

customer profile data service

24

Figure 13. Design view of customer profile data service. From “Data Delivery in a Service-

Oriented World: The BEA AquaLogic Data Services Platform” by M. Carey, 2005,

Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,

pp. 695-705. Copyright 2006 by ACM.

The aim of ALDSP is to make it possible for developers to develop data services

which can be developed once and reused anywhere and everywhere for data integration.

However, for this to happen, the following criteria needs to be met:

 Every data service needs to be efficient once executed; it needs to be efficient as

naturally written code.

 Any data service call which is based on XQuery needs to be efficient with a runtime

price not being negligible.

 A query or data service call that uses only a subset of its results from an underlying

logical data service call must still be efficient.

Only when these assurances are actually provided will developers be able to use

ALDSP to build data services in a fashion that offers the greatest benefits in integrating

data.

25

The thought of having an application such as ALDSP being used by developers to

build services once as a set of functionality to be used anywhere seems to be an approach

worthy of consideration when integrating data (Dong, Halevy, & Yu 2009). The reason for

this is other applications or clients that are consumers of data may only have to subscribe to

these services for the consumption of their data. This approach definitely seems to be less

model intensive as compared to that considered by the Model Driven Architecture and easy to

implement giving the scale of applications that are found in most financial institutions.

A master data model integration using SOA. Service-oriented architecture (SOA)

represents a model where automation logic can be decomposed into smaller distinct units of

logic (Erl, 2005). It is also a model that allows for the integration of other data sources as

services to other applications or systems thereby allowing for data integration in a

heterogeneous environment.

Krizenvick and Juric (2010) showed how a Master Data Model (MDM) is used in

SOA architecture to achieve data integration. In their study, the main idea of an MDM is to

be able to isolate key data from existing applications into a centralized repository that will

provide a full data management and a set of services by which applications can access and

manage these data. One of their main goals was first to build a data service layer which is a

main requirement in adopting a SOA architecture. Krizenvick and Juric discovered that

implementing master data services is usually very complicated since changing master data is

usually restricted with the use of policies. Using SOA architecture provided the needed

flexibility for the building of a master data service because of the following functionalities:

 The ability of message routing

 Easy Transformation of data formats and communication protocols

 Adapters for accessing data from heterogeneous data sources.

 Human workflows for multi-level confirmation of master data changes.

26

 The availability of mechanisms for monitoring and managing SLA and (Quality of

Service) of data services.

With such an approach based on SOA architecture, key business data (master data)

was stored in the MDM repository. The existence of an Enterprise Service Bus (ESB)

provided useful functionalities such as message routing, conversion between transport

protocols and data formats and much more. There was also the flexibility of implementing

complex master data services using Business Processing Extraction Language (BPEL). This

approach hid the complexity of the MDM architecture and provided a “virtualized golden

record” at the business level. Figure 14 shows the implementation of a master data services

layer.

Figure 14. Implementation of master data services layer. From “Improved SOA Persistence

Architecture Model,” by M. Krizenvick and M. Jurik, 2010, ACM SIGSOFT Software

Engineering Notes, 35(3), 1. Copyright 2011 by ACM.

27

A unified data access from various heterogeneous data sources is provided at the

service layer in this architecture. It is built in such a way that tight coupling between the

business level and data sources are avoided using Service Data Objects (SDO).

SDO is a data programming architecture and an API for data application development

(Krizenvick & Juric, 2010). With SDO there is no need to be familiar with a technology

specific API such as (JAXB, DOM or JPA) to access data. All operators need to know is the

SDO API, which allows them to work with data from multiple data sources including

relational databases, entity EJB components, Web services, and XML pages (Yoder &

Johnson, 2006).

Figure 15. A Data services layer supporting SDO. From “Improved SOA Persistence

Architecture Model”, by M. Krizenvick and M. Jurik, 2010, ACM SIGSOFT Software

Engineering Notes, 35(3), 1. Copyright 2011 by ACM.

As can be seen in Figure 15, the data services and business services exchange data

using SDO data graphs are envelopes around the data object. This makes it easier building

data services because there is a uniform way of transferring and using heterogeneous data,

regardless of the data source.

28

This proposed architecture will no doubt sit well in a banking environment where data

is sourced from so many systems having various formats, and kept in a central repository as a

“Golden Copy” before being published to other applications. However, the proposed

architecture as mentioned by the author comes with a few challenges such as architecture

complexity, higher start-up cost, difficulty in calculating the Return on Investment (ROI),

which could be a put-off when considering such an architectural approach as a data

integration solution.

A business object model integration. Refactoring patterns are also an alternative to

achieving data integration. Refactoring patterns look at business object models of external

data sources and find out how these could be integrated into a process driven architecture.

Henritch & Zdun (2006) looked at three main refactoring patterns: Wrap Service As

Activity, Restructuring Specific Business Model and Synthesize Business Object Models.

According to Henritch and Zdun, these three refactoring processes explained alternatives for

refactoring a single business object model into a process-oriented architecture. However,

they mentioned that for large systems it is important to consider multiple refactoring of the

business object models and their interdependencies.

Wrap service as activity. Sometimes the external data source systems do not have

the requirements for a process driven architecture. With most banking architectures being

SOA oriented nowadays it is often difficult to integrate an external data source if the

interfaces it offers are fixed state interfaces, or if the required communication protocol is not

supported by the external system. Flexible interfaces to external systems are inevitably

required in such scenarios to assemble processes involving external system invocations from

within a process design tool. However, loose coupling would be difficult to achieve if the

external system is hard code dependent on fixed interfaces.

29

Hentrich & Zdun (2006) suggested refactoring the external systems and process

driven SOA architecture by defining one or two services for each entity in the external

system, and defining a special service activity type in the process engine that will wrap

invocations to external services. The main function of the service will be to translate all

service based invocations into the interface of the external system and to also translate the

response back into a service based reply. Figure 16 below shows refactoring using Wrap

Service as Activity.

Figure 16. Refactoring services wrap service as activity. From “Patterns for Business Object

Model Integration in Process-Driven and Service-Driven Architectures,” by C. Hentrich and

U. Zdun, Proceedings of the 2006 Conference on Pattern Languages of Programs, No. 23.

Copyright 2010 by ACM.

Restructuring specific business object models. Wrap Service as Activity should be

the first step when integrating systems into a process-driven architecture. However, this will

not always work as the external legacy system may not be structured in a suitable way to

allow for an object model through services. Also, the business process may require an

integration of data from two or more business object models that are application specific and

30

the service access is not good enough to deal with problems of integration. When faced with

two external systems that are not compatible it is better to opt for restructuring rather than

performing individual mappings.

For restructuring to take place, one has to make sure that the evolution of the system

is non-intrusive as much as possible. Existing client code should not be broken and

substantial portions of the system should remain unchanged. If such an assessment is

positive then the application specific business model of the external system can be

restructured by evolving the system to meet the new requirements of the process-oriented

architecture. Once this is done, service interfaces can be offered so that the business process

can access the evolved external system.

Figure 17. Refactoring by restructuring. From “Patterns for Business Object Model

Integration in Process-Driven and Service-Driven Architectures,” by C. Hentrich and U.

Zdun, Proceedings of the 2006 Conference on Pattern Languages of Programs, No. 23.

Copyright 2010 by ACM.

Figure 17 illustrates a refactoring based on the construction of an application-specific

business object model. Refactoring is achieved by having one monolithic entity being split

into a number of entities with some of them being split as services. There are other ways the

restructuring process can be achieved. The aim, however, is to preserve existing code as

much as possible.

31

Although the above refactoring process described by Henritch & Zhun sounds easy to

execute, it is difficult to see how this restructuring will fare when it involves a variety of

heterogeneous systems or applications with hundreds of entities. Therefore, the task of

having each monolithic entity reviewed and split will be a very daunting task, prone to error,

and time consuming when dead lines have to be met. However it may be feasible when the

entities involved are minimal.

Synthesize business object models. This process of refactoring occurs when using

Wrap Service as Activity fails because of data integration issues and the restructuring of

Business Object Models proves to be infeasible or difficult to achieve. To begin the process

of synthesizing the business object models the following steps must be followed, design a

synthesized business object model that consolidates the structures of the involved business

model, map relevant application specific business object models into a synthesized business

object model, then perform the task of data integration at a global level.

Application specific business object models that have services are usually integrated

into a process flow using Wrapper Services and are invoked by activities in the process flow.

Figure 18 shows a business process design and two applications that can be accessed via a

service interface, assuming that the two applications cannot be changed and there are data

integration issues, the diagram illustrates a refactoring process using synthesized business

object models.

32

Figure 18. Refactoring by synthesizing. From “Patterns for Business Object Model

Integration in Process-Driven and Service-Driven Architectures,” by C. Hentrich and U.

Zdun, Proceedings of the 2006 Conference on Pattern Languages of Programs, No. 23.

Copyright 2010 by ACM.

The various refactoring patterns mentioned offers alternatives for refactoring design

decisions for the integration of specific business models. These patterns will work only when

there is an existing SOA based architecture already in place. With an SOA-based

architecture in place, the advantage is having endless possibilities of patterns that could be

used in integrating other applications or systems. However, the use of a Service Data Object

(SDO) as discussed by Krizenvick and Juric (2010) seems to be a much more appealing than

having to manipulate the business object model as the process of integration leaves the

current business model as they are. The business model also in the financial industry does

not change that much to warrant a manipulation of it, it could also be time consuming

needing the skill set of a business analyst.

New data integration trends. Although there have been so many architectures that

have been developed and are still being developed regarding data integration, there are

currently a few new architectures that are being explored by major manufactures and vendors

in the IT industry. Mohania and Bhide (2008) looked at a few data integration approaches

currently being studied in the IBM Research lab in India. One of the approaches of data

33

integration they looked at was the Context Oriented Integration Approach. Two of the

studied Context Oriented Integration Approach were SCORE (Symbolic Context Oriented

Information Integration) and EROCS (Entity Integration in the Context of Structured Data).

SCORE. SCORE is an information integration approach with the main purpose of

integrating structured and unstructured data. The retrieving of unstructured data and

structured data by SCORE is achieved by using a SQL query on the structured data which is

then translated into keywords to use in the retrieval of relevant unstructured data. In an

example given by the author and reflected in the diagram below, an application submits a

query asking for the names of a company with the maximum stock price variation in the past

week. With such a query input in the SCORE application, the application looks at the results

of the query including the neighbouring tables that have related information and identifies the

keywords that are most relevant to the profiles of the stock. These keywords are used to

retrieve relevant news and reports from the search engine. Figure 19 shows an integration

process using SCORE.

Figure 19. Information integration using SCORE. From “New Trends in Information

Integration,” by M. Mohania and M. Bhide, 2008, Proceedings of the 2nd International

Conference on Ubiquitous Information Management and Communication , 74-81. Copyright

2008 by ACM.

The challenge faced by SCORE included its handling of numeric data because the

handling of numeric data requires a technique to map numeric input to unstructured text,

34

which poses to be problematic. With such an issue, a few doubts have surfaced about

considering such a solution in an investment bank setting where numeric data is an essential

core to their daily transactions. Therefore, a system that has a problem integrating numeric

data would have no value in any banking environment where numbers are a core to their daily

transactions. Also although the above approach seems to handle unstructured data very well,

the same result also now achievable using XML, which is available in most modern relational

databases such as Oracle 11g.

EROCS. The EROCS integration technique works by linking a given text document

with relevant structured data. Structured data is viewed by EROCS as a predefined set of

entities that best match the entities in a given document. EROCS however goes a step further

by being able to identify an entity in a document even when the relevant entity is not

explicitly given in the mentioned document. EROCS works by taking a document as its input

and then filters it to retain the most relevant terms. The result set, on the other hand, is

viewed as a set of predefined entities with associated context information. Given such an

input like a text document, EROCS matches the context information of the candidate entities

within the document. Figure 20 shows a text document viewed by EROCS.

35

Figure 20. EROCS Overview. From “New Trends in Information Integration,” by M.

Mohania and M. Bhide, 2008, Proceedings of the 2nd International Conference on

Ubiquitous Information Management and Communication , 74-81. Copyright 2008 by ACM.

The major challenges of the EROCS approach is that EROCS assumes the presence of

a template to find the right entity, another issue not presented is how it will handle multiple

templates if provides as an input. A major issue not mentioned about EROCS is how it

integrates data coming from other applications with variant output formats, in other words not

necessarily text since a good data integration application should easily be able to work with

other systems or applications which would either serve as clients or subscriber applications.

Summary

From the literature review, it is evident that there are a countless number of

approaches available to investigate in regards to data integration. However, the one that

stands out the most seems to be implemented using a service orientated approach since the

idea of services and loose coupling between integrated applications seem to appeal to most

organizations (Sunderaraman, n.d).

36

Chapter 3 Research Methodology

This chapter presents the research methodology that will be used in testing the thesis.

These phases are (a) a case study of a data integration project within a major financial

services organization and (b) an examination of the effects and lessons of carrying out such a

project. It would have been ideal to carry out a survey after the project however due to time

constraint and the paper work involved in having an approval for such a survey only the two

phases mentioned above will be examined.

Holter and Kanneberg’s depiction of the attributes of a research as seen in Figure 21

(as cited in Stoveland, 2008) will be adapted to demonstrate the reliability and validity of

the qualitative techniques used in this thesis. The triangulation approach will be used to

confirm the case study findings and to provide correlation between the literature review,

project experience and the case study.

Theory

Literature

Review

Data

Survey

Answers

Case Study

Questions

Thesis

Statement

Figure 21. Elements of a research project. From “Managing Firm-Sponsored Open Source

Communities A Case Study of Novell and the OpenSUSE Project,” by J. F Stoveland, 2008,

Master’s thesis. Copyright 2008 University of Oslo.

A Data Integration Case Study

Pioneer Investments is a global asset management company with headquarters in

Boston, Milan, and Dublin. In December 2011 it was reported to have $209 billion in

assets under management (AUM). The company manages mutual funds and institutional

37

accounts using a global platform for the purchase and sale of securities. Up till about 2004,

each location internationally acted almost independently having separate trading, reporting

systems and processes. As a result, it was a daunting task by managers and project leaders

to collect, identify, and report critical information to meet internal and external mandates.

Technical Setting

Benchmark data in Pioneer Investments was always available to the fund managers

via a Business Objects application. This data was used by the fund managers in order to

measure the performance of their various investments or those of other fund managers. The

benchmark solution had been tailored to capture and collate Index data from various Index

providers in various formats. This data was then stored in the benchmark database prior to

being imported for data merging by an import functionality. This database consisted already

of 45000 index securities. Also available was another system called the FBA (Fund

Benchmark Analytic) system, which was used in processing the weights or compositions of

securities and then blended with index data. The blending of the benchmark data was

processed in such a way that it merged data from both the FBA system and Index data into a

refined benchmark Management Information System (MIS) database.

The Challenge

An integration process between the Benchmarks database and LZ (Latent-Zero) back-

end database system was needed. The infrastructure for the data integration was going to be

built to handle both Index data and FBA data into the Benchmarks database before being

blended and published into LZ. An additional 15000 Index security data was also going to be

handled by this new proposed solution. The solution was potentially going to expand the

possibility of an increased interface from various front-end applications connecting to LZ for

the back-end data.

38

There is going to be a need in future for the Bloomberg POMS (Portfolio Order

Management System) application to source some of this Benchmark data that was fed into the

LZ application. However the focus now is to have this information into LZ as priority as this

was the primary trading application for Pioneer Investments.

Proposed Solution

For this project the decision was to use a product that was in line with a service-

oriented architecture, able to support web services and message-based technologies. This is

because Pioneer Investments had merged with so many companies in the past and had

inherited systems and applications from these companies that were never integrated.

The product of choice for this project was the TIBCO Enterprise Message Service

(EMS). TIBCO was preferred to all other products such as Polar Lake, as it did offer more

return on investment from an IT management point of view. TIBCO was also chosen

because it was able to bring together different IT asset and communications technologies on a

common enterprise backbone to manage real–time flow of information. With TIBCO, logic

could be integrated in the middle tier for all subscribing applications. Some other benefits

that were considered:

1. TIBOC offered a reduced cost to complexity and time to manage and integrate

disparate systems by using a common backbone that supports open standards

existing in IT systems and leading technologies such as Java EE and .Net, which

were all used in Pioneer.

2. TIBCO was thought to be reliable, using a breath of communication protocols and

fine-grained administrative controls. This offered the advantage of having the

development and administrative work to be done in different geographical

locations and also for audit reasons.

39

TIBCO Messaging Service

The TIBCO messaging service supports the Java Messaging Service (JMS) models

which are Point-to-point (Queues), Publish and Subscribe (Topics) and Multicast (Topics.)

Point-to-Point: This style of messaging uses a queue to store messages until they are

received. The message producer sends message to the queue, while the message consumer

retrieves messages from the queue and sends acknowledgement once the message is received.

Publish and subscribe. In a publish and subscribe message system, producers

address messages to a topic. In this model the producer is known as a publisher and the

consumer is known as a subscriber.

Multicast. Multicast messaging allows one message producer to send a message to

multiple subscribed consumers simultaneously. As in the publish and subscribe messaging

models, the message producer addressed the message to a topic. Multicast is highly scalable

because of the reduction in bandwidth used to broadcast messages.

In Pioneer Investments a mix of all the above messaging services were used

depending on the number of subscribers. Figure 22 and Figure 23 show the use of the

TIBCO EMS queues and EMS servers.

Figure 22. TIBCO EMS server using a queue

40

Figure 23. TIBCO EMS server using a topic.

Solution Implementation

Pioneer already had an architecture called the Pioneer Enterprise Security Bus

(PESB), which was going to be used by the TIBCO process so that portfolio managers and

system users would be able to gain access to the Benchmarks data using multiple interfaces

such as the LZ and Bloomberg POMS application. Prior to implementation a few schema

definitions were agreed upon, these included the following:

1. A Benchmark Schema Definition: This entailed the business logic for converting

Integrated Data Definition Format (IDDF) to an LZ format with embedded tables

for the translations of certain source fields/values from the Benchmarks to

destination fields in LZ.

2. An IDDF Schema Definition: This was the root node of the IDDF schema

definition for the benchmarkData, containing the header and bechmarkDefintion

defined as “one too many”. The header contained general information which

included the messageType, messageID, dateTime, sourceSystem, schemaVersion

41

and a drilled down consumptionsHints that held regionCode which was a marker

as to the region the message was going to be consumed in. Figure 24 shows a

high level structure of the IDDF schema definition.

Figure 24. IDDF schema definition

The first step was to develop a stored procedure to build a record set of Index data.

An ETL process was also used to extract the Benchmark security data from the Benchmark

database into a new table containing all Benchmark security data. This was then presented

into a PIPE delimited file for publishing. An upload process was written in a UNIX shell

script to upload these files unto the TIBCO integration process environment.

The next step of the process was to configure the TIBCO EMS server to listen for

Benchmark files using a listener. Once these files were available in a PIPE delimited file

format, a few validation checks were done to the files to check if all the securities for the

Benchmarks were received. These validation checks were written in a combination of

XQuery and SQL syntax. Once these files were available, the TIBCO application merged the

two files using XML and then published this out unto a new topic for consumption by the

Latent Zero application. This published Benchmark XML message included a system code

of “LATENTZERO” in the xml message indicating the application the message was going to

be published into.

42

This project in total took four months from inception to completion. The advantage

of this project was that, after 2 months, Benchmark data needed to be integrated with the

POMS application. All that was needed in this case was not re-invent the wheel again by

going through the process of sourcing the Benchmark securities as mentioned above buy by

having the POMS application source this data by subscribing to the Benchmark XML topic.

FBA Index Providers

Benchmark DB

Weights

<<file>>

Index Data

<<file>>

PESB

Benchmark

Listener

Benchmarks

<<file>>

Goldensource

Determine Missing

Securities

Benchmarks

<<file>>

GS Benchmark Security

Creation Share

GS Security Upload File

<<file>>

Create Securities

Securities Added

Notification

<<jms>>

Queue

Merge Security and

Benchmark Info

EDM

Security Info

<<jdbc>>

Topic

Benchmark XML

<<jms>>

Queue Queue

LZ Benchmark

Loader

POMS Benchmark

Loader

LZ

POMS

Error: Missing

Securities

error

error

Subset of benchmarks

<<file>>

Process Benchmarks without

missing securities

Benchmarks

<<file>>

Process Benchmarks with

missing securities

Benchmarks

<<file>>

Benchmarks

<<file>>

Notification

<<jms>>

Benchmarks

<<file>>

Bloomberg

Back Office Only

Security Req/Reply

Figure 25. Pioneer enterprise service bus. Figure depicts the LZ and POMS application

sourcing a merged XML message from the TIBCO topic.

43

Justification of Case Study

This case study represented a typical scenario in a financial institution where a data

integration process was needed in a heterogeneous environment where most of the other

applications had been inherited over time and at different time periods.

This case study proved that the need of having the right architecture and technology

together is at the core of a successful data integration process. In our case the use of XML,

JMS, SQL, XQuery, and Unix Scripts, and an Enterprise Service Bus provided a robust

platform to write integration logic. For example, validation rules at the middle tier and

applications subscribed to published messages using a combination of queues and topics.

When it was time for the POMS application to consume the Benchmark data, the

integration process was straight forward as all that was needed was to have the POMS

application pick up the Benchmark messages from the TIBCO topic which was already

publishing the same message to the LZ application, this was evidence that a SOA architecture

provided a “do once serve many” approach to data integration.

With such an architecture in place, there was no doubt that in future if Pioneer

investments was faced with an acquisition or a merger where other applications were going to

be inherited the process of data integration would not be a daunting task.

44

Chapter 4 Observation

Pattern of Encountered Issues

During this project there were a few issues that were encountered, one of the major

problems was deciding on the elements of what was going to be consumed as a message from

the Benchmark database, for example there was indecision as to the type of identifiers the

messages were going to publish, while some fund managers expected to see identifiers such

as the SEDOL, BBUNIQUE and ISIN in the message some other managers did not need it at

the time, but thought it may be useful to have in the future.

To cater for this sort of issues it was decided to have all identifiers included in the

Benchmark messages that were going into the TIBCO but have some validation where only

the needed XML elements in the TIBCO message were going to be consumed for now but

this could be changed in future when the other identifiers were needed.

There was also a need to distinguish between the messages that were going to be

consumed by LZ and the POMS application, this was achieved by having a code scripted in

the XML message at the header level indicating which application the message was intended

for, for example for the LZ application the XML header contained code “LATENTZERO”

while in the POMS application it had had in it the code “POMS”.

The was also the need on this project of having the right staff with the right skill set,

as it was not only necessary to be able to write code but to be able to translate a business

requirement into a technical solution without any of the requirements being lost in translation.

This was achieved by having those staff who had liaised before with the business section of

the bank to carry on liaising with them as they were used to the business terminologies.

On other data integration projects of which I have had the chance of working on, most

of the challenges have really been on the business requirements and how integration could be

45

achieved without having to redo or visit every integration process that had been done in the

past in a quick and efficient manner using a SOA architecture has proven so far to be the way

forward of achieving this. Also, the process of integrating, merging, or mapping data has

never really been a major focus. This is because so many tools or programs can be written to

achieve this using a programming language of choice or by having the merging process

achieved within a database and then having the content published as an XML message.

Characteristics of Solutions

Most of the difficulties and solutions took the form of mapping data fields by

determining the benchmark fields that needed to be consumed by the LZ and POMS

application, writing validation rules in TIBCO and the creation of XML schemas, queues and

topics and services for the publication of messages.

46

Chapter 5 Conclusion

Summary of Contributions

This thesis shows that data integration could best be achieved with the use of services

in a SOA architecture and a blend of other technologies such as XML, JMS, XQuery, the

usage of pre-packaged vendor products and databases. Such a data integration solution

should be a well thought out process from an architectural perspective or point of view from

the very beginning, if data is to be processed from more than one source: external or internal.

Therefore, a well thought out data integration process makes it easy for future integration

work. So far, data integration through services seems to minimise the work involved in data

integration but does not eliminate manual intervention as there is always the need to

understand the format and attributes of the data that needs integration.

Lessons Learned

Prior to under taking this research I was not aware of the various approaches of data

integration especially with the use of models. Also through the case study I learnt how to go

about integrating data for the future in other words making blended information ready for the

future as was the case with the POMS application, which was integrated later on.

Apart from the technical aspects of data integration, resources in terms of staff and

finance seem to play a major aspect in data integration. This is because you need the staff

with the right skill set in several technologies and domain knowledge, in our case investment

knowledge.

For example, as in the case study the POMS integration was put off because of

budgeting although most of the work was done when the Benchmark integration work was

done for LZ, during that time period some of the staff who were part of the LZ project were

lost in other words knowledge was lost however because of proper documentation and the

availability of some permanent staff it was easy to integrate data into the POMS application.

47

Unexpected Results and Issues

One of the issues I encountered was in the message consumption of the Benchmark

security data for POMS because the Benchmark security data initially was meant for the LZ

application. Therefore, the security data contained elements not needed by the POMS

application. A filter had to be incorporated in the messages in other to avoid the wrong

messages being consumed by the downstream applications, which are LZ and POMS. For

example the XML header for each application had “LATENTZERO” for the LZ application

and “POMS” for the POMS application in other to ensure that each application consumed the

correct message.

Another issue I encountered was in the consumption of the integrated messages into

the downstream applications (LZ and POMS). Once certain elements were allowed for

consumption the size of the messages became larger thus delaying the consumption of these

messages. A temporal solution was devised to eliminate any message acknowledgement

once it was delivered to the downstream system for consumption. This helped to speed up

the consumption process by two hours although there is a plan to look at other ways of

having an increased rate of consumption while allowing message acknowledgement.

Recommendations for Future Research

There is still a good deal of manual intervention in the integration process of data,

which still constitutes a great cost (Bernstein & Haas, 2008). However, there is possibility of

more automation looking at the behaviour of mapping and being able to identify anomalous

input data and tracing the source of query results.

Most research work on data integration has focused on problems where the goal of

data integration is usually known. However problems exist in other domains, such as in

science and engineering where data integration is an exploratory activity: A user integrates

information, evaluates the results, and then identifies additional information to integrate.

48

Future research in semantic technologies and logic based reasoning engines may help in the

integration task here and is an area where further research will be beneficial.

49

References

Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise.

Communications of the ACM - Enterprise information integration and other tools for

merging data , 41, 72-79. doi:10.1145/1378727.1378745

Carey, M. (2006). Data delivery in a service-oriented world: The BEA AquaLogic Data

Servcies Platform. Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data , pp. 695-705. doi:10.1145/1142473.1142551

Dong, X. A., Halevy, A., & Yu, C. (2009). Data integration with uncertainty. The VLDB

Journal, 18, 469-500. doi: 10.1007/s00778-008-0119-9

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design. Upper

Saddle River, NJ: Prentice Hall Professional Technical Reference.

Giordano, A. (2011). Data integration blueprint and modeling techniques for a scalable and

sustainable architecture. Upper Saddle River, NJ: IBM.

Hentrich, C, & Zdun, U. (2006). Patterns for business object model integration in process-

driven and service-driven architectures. Proceedings of the 2006 Conference on

Pattern Languages of Programs, No. 23.

Hurwitz, J. (2007). Service oriented architecture for dummies. Hoboken, NJ: Wiley

Publishing.

IBM.com/bcs (2005). Transforming data management in the financial markets industry.

IBM Business Consulting Services. Retrieved from

Loshin, D. (2011). The practitioner's guide to data quality improvement. Burlington, MA:

Morgan Kaufmann.

Khanna, A. (2008). Straight through processing for financial services the complete guide.

Amsterdam: Academic Press.

50

Kim, H., Zhang, Y., Ouessena, S., & Clark, T. (2009). A case study on model driven data

integration for data centric software development. DSMM '09 Proceedings of the

ACM first international workshop on Data-intensive software management and

mining , 1, 1-6. Retrieved February 11, 2012, from the ACM Digital Library

database.

Krizevnik, M., & Juric, M. (2010). Improved SOA persistence architecture model. ACM

SIGSOFT Software Engineering Notes, 35(3), 1. doi: 10.1145/1764810.1764821

Mockus, A., Hwang, S., & Kim, S. (2009). A case study on model driven data integration for

data centric software development. Proceedings of the ACM first international

workshop on Data-intensive software management and mining, 9, 1-6.

doi:10.1145/1651309.1651311

Mohania, M., & Bhide, M. (2008). New trends in information integration. Proceedings of

the 2nd international conference on Ubiquitous information management and

communication , 74-81. doi:10.1145/1352793.1352810.

Pan, A. & Vina, A., (2004). “An Alternative Architecture for Financial Data Integration” By

A. Pan and A. Viña 2004, Communications of the ACM, 47(5), 37-40. doi:

10.1145/986213.986235.

Rosen, M. (2008). Applied SOA: Service-oriented architecture and design strategies.

Indianapolis, IN: Wiley.

Stoveland, J. F. (2008). Managing firm-sponsored open source communities A case study of

Novell and the openSUSE project. (Master’s thesis). University of Oslo, Norway.

Retrieved from http://foss.xapient.net/pdf/suse%20community%20research.pdf

Sunderaraman, M. (n.d.). Service oriented architecture in investment banking. Retrieved

from http://www.websesame.co.uk/wp9.pdf

51

Williams, R. T. (2011). An introduction to trading in the financial markers technology--

systems, networks, and data. Amsterdam, The Netherlands: Academic Press.

Yoder, J., & Johnson, R. (2006). Patterns for business object model integration.

Proceedings of the 2006 Conference on Pattern Languages of Programs,

(23).doi:10.1145/1415472.1415499

Zins, C. (2009, March 1). What is the meaning of data, information and knowledge?

Retrieved from http://www.success.co.il/is/dik.html

http://dx.doi.org/10.1145/1415472.1415499

52

Appendix A

Table 1. Definitions

Term or

Abbreviation Definition

AUM Assets Under Management

BBUNIQUE Bloomberg Unique Identifier

Benchmark A standard against which the performance of a security is measured

Counterparty The other party of a financial transaction

CUSIP

An identification assigned to stocks and bonds .Committee on Uniform Securities Identification

Procedures.

ESB Enterprise Service Bus

Financial Instrument A real or virtual document representing a legal agreement involving some sort of monetary value.

Holding The expected time during which an investment is attributable to a particular investor.

Index An imaginary group of securities representing a particular market or a portion of it.

ISIN International Securities Identification Number.

LZ Latent-Zero is a trading application.

PESB Pioneer Enterprise Service Bus

POMS This is a Portfolio Order Management System used for the management of client portfolios

Position Amount of security owned or borrowed by an individual

QUEUE A staging area that containing messages that have been sent and read to be read

Security

A financial instrument ownership position in a publicly-traded corporation (stock), a governmental

body (bond),or rights to an option.

TIBCO An integration server software for enterprises

TOPIC A distribution mechanism for publishing messages to multiple subscribers

Trade A transaction involving the selling and buying of a security

Vendor Seller of financial data or information

	Regis University
	ePublications at Regis University
	Fall 2012

	Data Integration: a Case Study in the Financial Services Industry
	Louis Epie
	Recommended Citation

	CPS Disclaimer
	Epie_SCIS_Thesis
	Signature

