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In this paper we study a k-out-of-n reliability system in which a single un-

reliable server maintains n identical components. The reliability system is
studied under the (N, T) policy. An idle server takes a vacation for a ran-
dom amount of time T and then attends to any failed component waiting
in line upon completion of the vacation. The vacationing server is recalled
instantaneously upon the failure of the Nth component. The failure times
of the components are assumed to follow an exponential distribution. The
server is subject to failure with failure times exponentially distributed. Re-
pair times of the component, fixing times of the server, and vacationing
times of the server are assumed to be of phase type. Using matrix-analytic
methods we perform steady state analysis of this model. Time spent by a

failed component in service, total time in the repair facility, vacation time
of the server, non-vacation time of the server, and time until failure of the
system are all shown to be of phase type. Several performance measures
are evaluated. Illustrative numerical examples are presented.
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1. Introduction

When dealing with critical systems such as aircrafts, space shuttles, nuclear plants,
satellites, electric generators, and computer systems, it is imperative that redundancy
be in the system. The redundancy is in the form of multiple (often identical) compon-
ents connected in such a way that when on component fails the others not only keep
the system functioning but share the increased load due to fewer operating compon-
ents. Also, redundancy is highly cost effective in achieving a certain reliability level
of the system. A common form of redundancy is a k-out-of-n system in which at
least k components of n must be functioning for the system to be operational, k-out-
of-n reliability systems have been studied extensively in the context of computing the
reliability, optimization of the system, common cause failures, and repair facility
availability for fixing failed components [1-4, 7-10, 13-18, 20, 21]. Though there are

many papers on such systems, very few papers address load-sharing k-out-of-n sys-
tems [12, 19]. Load-sharing systems are natural and very useful in dealing with sys-
tems such as nuclear plants, aircraft engines, electric generators, computer systems,
suspension bridge cables and other workload balancing systems.
When analyzing the reliability of systems with a repair facility to fix failed com-

ponents (or machines), a review of past work on machine repairman problems shows
two distinct areas of research"

(1) systems with reliable servers and
(2) systems with unreliable servers

Most of the research addressing machine repairman problems has focused on reliable
servers Research work dealing with unreliable servers is limited in the literature [6,
11, 22-29]. Recently a comparative analysis of steady state performance measures

under a variety of distributions for repair times and service times for a 1-out-of-n reli-
ability system with a single unreliable repairman was given in Chakravarthy and
Agarwal [6].

In this paper, we will extend the work of [6] for a k-out-of-n system in which
(a) the server is unreliable,
(b) the failed server is fixed by a repair facility,
(c) the server goes on vacation for a random amount of time whenever the

system is functioning with all n components,
(d) upon completing a vacation, the server goes for another vacation of random

duration when there are no failed components waiting to be fixed, and
(e) the vacationing server is recalled instantaneously when the number of failed

components reach a predetermined threshold N assumed to be less than or

equal to n- k.
We consider a k-out-of-n system that can be cold, warm, or hot.

This paper is organized as follows. In Section 2, we describe the model under
study and give a brief review of PH-distributions. The Markov chain description of
the three reliability systems is presented in Section 3. The steady state analysis of
the systems is presented in Section 4. The performance measures for studying the
qualitative behavior of the reliability systems are developed in Section 5, and a few re-

presentative numerical examples are discussed in Section 6.
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2. Model Description

We consider a k-out-of-n load-sharing reliability system with n identical components
which can fail independently of each other, and a single unreliable server that attends
to failed components. The system will be functional if and only if there are k or

more working components. Failure times of the components are assumed to be
exponential with a parameter that depends on the number of working components.
That is, if there are working components, then the failure times are exponential
with parameter ,ki"

Upon failure, a component enters into repair facility and the repair times follow a

PH-distribution with representation (/1,$1) of of order rn1. When the server is busy
or when the server is unavailable, the failed component joins the queue. Once
repaired, the component is returned back to the system as new.

It is assumed that the server is subject to failure and the failure times of the server
are assumed to follow an exponential distribution with parameter #SF" The fixing
times of the server follow a PH-distribution with representation (fl:t, S2) of order
Once fixed, the server resumes the work of failed component at the stage where it left
servicing the failed component.

Whenever there is no component waiting for repair, the server takes a vacation for
a random time T having a Ph-distribution with representation (/?3, 5’3) of order rrt3.
We consider a k-out-of-n reliability system that is cold, warm, or hot. By a cold

system, we mean a reliability system in which the individual components cease to fail
upon system failure. Note that the system failure occurs as soon as the number of
functioning components drops below k. By a warm system, we mean a system in
which the individual components continue to fail, but with a smaller failure rate,
even after a system failure. In a hot system, individual components continue to fail
at the same rate after a system failure.

In the sequel, we will assume that the failure rate of components is inversely
proportional to the number of functioning components. That is, if there are

functioning components, then ,ki- ,k/i. Note that for a cold system, ,ki- ,k/i, for
l_<i_<n-k, ,ki-0, for n-k+l_<i_<n. For a warm system, ,ki-,k/i, for 1_<
i<_n-k, ,ki-O/i, for n-k+l_<i_<n, where 0<. In the case of hot system,
,ki- ,k/i, for 1 _< _< n. For the sake of simplicity, we will make this assumption,
though the model is valid for the general case of the failure rate. In the following, e

and I will represent a column vector of l’s, and the identity matrix of appropriate
dimensions, respectively. The notation (R) will stand for the Kronecker product of
two matrices. Thus, irA is an rnxn matrix and ifBis a pxq matrix, then A(R)B
will denote arnp x nq matrix whose (i, j)th block matrix is given by aijB. For more
details on Kronecker products, we refer the reader to [5].

Before we describe the Markov chain of the repairman model, we present a review
of PH-distributions.

Phase type distributions: Poisson arrival processes and exponential service time
distributions have mathematical properties that make queueing models very attrac-
tive and tractable. However, in applications these assumptions are highly restrictive.
To remove some of the restrictions, Neuts [13] developed the theory of PH-distribu-
tions and related point processes. In stochastic modeling, PH-distributions lend them-
selves naturally to algorithmic implementation and have nice closure properties with
a related matrix formalism that make them attractive for practical use. In this sec-

tion we review continuous-time PH-distributions.
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Continuous-time PH-distributions: Consider a finite Markov chain (MC) with m
transient states and one absorbing state with the infinitesimal generator Q
partitioned as

Q-
0 0

where S is a matrix of order m and 5 is a column vector such that Se + S- 0.
The vector e is a column of l’s. It is necessary and sufficient that S be nonsingular
for eventual absorption into the absorbing state, starting from any initial state.
Suppose that the initial state of the MC is chosen according to the probability vector

(,flm+ 1) and let X denote the time until absorption. Then X is a continuous
random variable on nonnegative values with a probability distribution function F(x)
given by F(x) 1-/3eSXe for x >_ 0.

Note that
(a) the th component of the vector eSXe is the probability that starting in state

i, absorption has not occurred by time x;
(b) the (i, j)th component of the matrix (-S)-1 is the conditional expected

total time spent in state j before absorption given that the initial state is i.
The function F(. has a jump m +1 at the origin, but in most cases, F(0)- 0-
/m +l" Such a probability function constructed from a finite MC with a single
absorbing state is a continuous PH-distribution. The pair (,S) of order m is said to
be a representation of the PH-distribution.

The transition matrix P(x) eQx is of the form

eSx e eSxe ]eQx
0 1

suggesting that the density f(x) of F(x) is either identically 0 or strictly positive for
all x > 0 (see [5]). In the latter case, f(x) is given by f(x)- eszS, for x >_ 0. The
kth noncentral moment of F(x) is given by

When m- 1, S--A, the underlying PH-distribution becomes exponential. A
generalized Erlang distribution of order m is a PH-distribution with representation

/3 (1,0,...,0) and S-

’1 ’1 0

0 A2 A2

0 0 0

0 0 0

A hyperexponential distribution of order m is a PH-distribution with representation
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fl (ill’ f12"" tim) and S

--z1 0 0 0

0 -A2 0

0 0 0

0

0 0 0 A.
For any PH-distribution, there exist infinitely many different representations. For

example, if u where u is the left eigenvector of S (with u normalized to be a

probability vector) corresponding to the eigenvalue -r of maximum real part, then
the representation (u,S) of order rn is an exponential distribution with parameter r.

3. The Markov Process

The model outlined in Section 1 can be described by a Markov process. The state
space of the Markov process depends on whether the system is cold, warm or hot. In
the case of a cold reliability system, the state space is ac -{{{(i, J3): 1 _< J3-< m3},
0_<i_<N-1}U{(i, jl, j2)’l <_jl<_ml, 1 <_j2<_rn2},l_<i_<n-k+l}U {{{(i, jl):
l_<jl_<ml}, l_<i_<n-k+l}}. For the other two cases, the state space isfwh=
{{{(i, j3):l<-ja<-rna},0<-i<-N-1}U{(i,jl,j):l<-j<-m, l<_j<_m2}, l<_i
_< n} U {{{(i, jl):l_<jl_<ml}, l_<i_<n}}. The sets of states i*-{(i, j3): 1_<
J3 <- m3} corresponds to the case where components are under repair and the server

is on vacation in phase J3" The set of states i’- {(i,j,j2): 1 _< Jl -< ml, 1 _< J2 -<
m2} corresponds to the case where components and the server are under repair, the
server repair in phase J2, and the server failed while attending a failed component in
phase Jl" The set of states i- {(i, Jl): 1 _< Jl -< ml} corresponds to the case where
components are under repair and the current service is in phase Jl"

The Markov process for a cold k-out-of-n reliability system has the infinitesimal
generator Qc given by

B11 B12 0

BI B2 #SF(I (R) f12)

0 I (R) S Bc
33

(1)

where

BI
0

0

AI 0 0 0

S3 AI AI 0 0

0 0 S3 AI AI

0 0 0 S3 AI

(2)
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0 0 0 0 0

s o o o o
o Sl o o o

0 0 0 0 0
00 0 0 S3fl ,e31

0 0

0 0

0 0

0 0

0 0

(3)

s& o o
0 0 0

0 0 0

0 0 0

A1 AI 0

SlO/I A1 /I

0 $1/1 A1

0 0 0

0 0

0 0

S10/1 Aa + AI

(4)

with

A2 AI 0 0

0 A2 AI 0

0 0 0 AI

0 0 0 A2+AI

A1 A2 (A + #SF)I and A2 I (R) S2 AI. (6)

The Markov process for a warm k-out-of-n reliability system has the infinitesimal

BI BlW2 0

Qw B2W B2W2 #SF(I (R)/32) (7)
0 I (R) S B3Wa

where the Bij’s are such that BlW2 and B2W are of the form B2 and Bl except that
the dimensions of these matrices are, respectively, Nma x nmI and nmi x Nma. The
matrices B2W2 and BaWa are given by

generator Qw given by
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WB22

0

0

AI 0 0 0 0 0

A AI

S/31 A1

0 0 S/31 A3 01 0

0 0 0 S A3 OI

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0 0

0 0

0 0

S A3 + OI

(8)

B3W3

with

AI 0 0 0 0 0 0A2

0 A2 AI 0 0 0 0 0

0 0 A2 0 0 0 0 0

0 0 0 A4 OI 0 0 0

0 0 0 0 A4 OI 0 0

0 0 0 0 0 0 0 A4 +OI

(9)

A3 S (0 -+- #SF)I and A4 I S2 0I. (10)

The Markov process for a hot k-out-of-n reliability system has the infinitesimal
generator Qh given by

o
Qh Bh21 Bh22 #SF(I (R) /32)

0 I (R) S Bh33
(11)

where Blh2 Bh21,Bh22 and Bh w w w w
33 are of the form B12, B21 B22 and B33 except that 0 in

these matrices is replaced by A.

4. The Steady-State Analysis

In this section we will present the steady-state analysis of the reliability system
discussed above.
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4.1 The Steady-State Probability Vector for the Cold System

The steady-state equations are obtained by solving xQc 0, and xe 1. By
partitioning x (Uo, Ul,... uN 1, vl, v2," Vn- k + 1,wl, w2"" ", Wn k + 1), where the
vectors u are of dimension m3, the vectors v of dimension m1 and w of dimension

rnlrn2 are further partitioned into w (wi(1),...,wi(ml)) of dimension m2. The
steady-state equations can be written in terms of matrices of lower dimension suitable
for numerical implementation as follows:

0 v(1 0Uo[S3 + $3/3a -AI] + )$1/33 0, (12)

Aui-1 + ui[S3 AI] 0,1 <_ < N- 1, (13)

0tlS3fl + viA1 q" v2S1 -[" Wl[I S] O, (14)

uiSl + )vi- 1 - viA1 + vi + 1S1fll -+- wi[I S] O, 2

_ _
N 1,

,zN le/1 -t- AVN 1 - VNA1 + VN + 1S10/1 + WN[I S] O,

/Vi- 1 -}- viAi+ vi + 1S1 + wi[I (R) S] O, N + 1 <_ <_ n- k,

AVn k + Vn- k + I[A1 + AI] + wn k + 1[I (R) S] O,

(15)

(16)

(17)

(18)

#SFVl[I (R) 32] 4- WlA2 O, (19)

ItSFVi[I (R) f12] +Awi- 1 "[- wiA2 O, 2 <_ <_ n k, (20)

#SFVn k + 1[I (R)/32] + "wn k at- Wn- k + l[A2 +AI] 0. (21)

4.2 The Steady-State Probability Vectors for the Warm and Hot Systems

The steady-state equations for the warm and hot systems have more equations than
those of the cold system. Suppose that vector x is partitioned as x (Uo, Ul,...
UN- 1, Vl, v2,"’, vn, Wl, w2,"., wn) to account for the extra states resulting from
components failing when the system is down. But first, note that equations (12)
through (17), (19) and (20) are common to all three systems. Equations (18) and
(21) are replaced with the following set of equations for warm and hot systems found
by letting r- 0 for the warm system equations and letting 7- A and 0- A in A3
and A4 for the hot system:

o oAvn- k + Vn- k + 1A3 4- vn_ k + 2S1/1 4" wn_ k + 2

rvi-1 + viA3 + vi + lSl131+ wi[I (R) S] O, n- k + 2 <_ <_ n-1,

7"Vn- 1 "[- vn[A3 -[- 7"1] ’t- wn[I (R) S] O,

(lSa)

(18b)

(18c)

#SFVn k + 1[1 (R)/32] + Awn k + Wn k + 1A4 0, (21a)
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#sFvi[I (R) 2] + rwi- 1 - wiA4 O, n k + 2 <_ <_ n 1, (21b)

SFVn[I @ f12] q- 7"Wn- q wn[A4 + rI] O. (21c)

Before we state the main results, we need the following lemmas.
Lemma 1"

n-k+1

#2

_
wie- #SF

i=1
-1where #2 -/2S le"

Proof: Adding equations (19), (20)and
immediately.
Lemma 2:

n-k+l

i=1

(21), the stated result follows

N-1

"ltN-le q- E i30 V110"
i--1

Proof: This result follows immediately by adding the equations (12) and (13).
Lemma 3:

(23)

n-k+1 n-k+1
1 $10, (24)

i=1 i=1
-1 4 :-- 1 e.where #1 --/’11

Proof: The stated result follows by adding equations (14) through (18), and using
Lemma 2 with the fact that

n-k+l n-k+1

i=1 i=1

v

Let X denote the time to repair a failed component from the point when the
component enters into service. We then have the following result.

Theorem 1: The random variable X is of phase type with representation ((,,U) of
order (m2 + 1)mI where

--(1,0) and U

Proof: This result follows immediately by noting that
(a) the initial phase of the repair is chosen according to the probability vector

c;
(b) an absorption from this set of mI states corresponds to the completion of

the repair without any failure on the part of the repairman;
(c) if the repairman fails during the repair time, the Markov chain enters into

the set of mlm2 states that represent the service time to fix the repairman.
The mean time spent in the repair facility by a failed component isCorollary:

given by
(25)

where 1 is the mean repair time of a failed component and #2 is the mean time to

fix the failed server.
Proof: The proof is obtained by using the fact that #- (rU) -1, where U is
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such that Ue+ U- O, and is the solution to r(U + U()- 0, and re-1. By
partitioning r (rl, r2) and using the special structure of U, it can easily be verified
that

7r2 #SFTrl(I (R) f12( $2)- 1) and 71" 1 Cfll S1)- 1, (26)

where c is the normalizing constant such that rle+r2e-1. The stated result
follows immediately.

Remark: Note that the mean time spent in the repair facility depends only on the
failure rate of the server, the mean service time of the unit, and the mean repair time
of the server.

Let Y denote the time it takes a failed component to return to working condition
for a cold system Note that Y includes the time, if any, a failed component spends
in the queue of the repair facility. We then have the following theorem.

Theorem 2: The random variable Y is of phase type with representation (,R) of
order Nm3 + (n- k + 1)[rn1 + m2] where the vector (al,... aN 1, bl,"
bn k 4. 1’ O, c2,... cn k 4- 1) is such that a du 1, 1 <_ <_ N 1, bI duN le,
bi-dvi, 2<i<n-k+l, and ci-dwi_1, for 2<_i<_n-k+l, with d-[1-
Vn k 4- le- wn k 4- 1el 1. The matrix R is of the form

where the entries of R are

S3-AI
0

Rll

Rll R12 0

0 R22 #SF(I (R),32)
0 I (R) S2 R33

R22

AI 0 0 0

S3 AI AI

0 0

0 0 0

R12

0 0 0

0 0 0 0

0 0 0 0

AI 0 0

S3-AI

A1 AI 0 0

S/ A AI 0

0 $1/31 A, 0

o o o

AI

S3 AI

0

0

AI +AI
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A2 AI 0 0

A AI 0

0 0

0 0 0 A2+AI
Proof: The theorem follows by noting that a failed component will see the server

either
(a) on vacation with (1 <_i_< N) components (including the current one)

waiting for repair (note that when i- N the server will be recalled from
vacation instantaneously), or

(b) busy with (1 _<i_< n-k + 1) components (including the current one)in
repair facility,

(c) is under repair with (1 _< _< n- k + 1) components (including the current

one) in the repair facility.
Since failure times of the components are exponential, the probability vector ( is just
a scalar multiple of the relevant probabilities at an arbitrary time.

Let Z denote the time it takes the system to fail starting with all functioning
components. First note that the probability density function of Z is identical for all
three systems (cold, warm, hot). The following theorem shows that Z is of phase
type.

Theorem 3: The random variable Z is of phase type with representation (,L) of
order Nrn3 + (n- k)[mI + m2] where - (f13, 0) and the matrix L is of the form

Lll L12 0

L21 L22 #SF(I (R) f12)
0 I (R) S2 L33

where Lll- BI and L12 is of the form B2 with dimension Nm3 x (n-k)m and

L21 is of the form BI with dimension (n- k)mI x Nm3, and

A1 AI 0

S11 A At

L22 0 101 A1

0 0 0

A2 AI 0

0 A2 AI

L33
0 0 0

0 0 0

0 0

0

0

0

AI

A2
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Proof: The results follow immediately by noting that the set of states (n-k + 1)
and (n-k + 1)’ correspond to the system failing, and then, combining these into one

absorbing state.
Suppose V1 denotes the vacation duration of the server. Then we have
Theorem 4: The random variable V1 is of phase type with representation (,BI)

of order Nm3, where the vector (/33, 0).
Proof: This follows by noting the vacation period of the server starts when all

components are in functioning state and returns according to (N, T)-policy.
Remark: Note that, as is expected, the random variable V1 depends only on the

components’ failure rate A and the server’s vacation time T.
Corollary: The mean vacation period of the server is given by

N-1

uie
#?_A i=o (27)’0e

where the steady-state probabilities, ui, 0 <_ < N- 1, are as given in (12)-(14).
Proof: The result is obtained by using the fact that #/- (rB) -1, where B is

such that Ble + B O, and r is the solution to r(B2 + B) 0, and re 1.
Partitioning r (r0, rl,... rN 1), and noting that r dui, 0 < _< N- 1 with d is
such that re 1, the stated result follows immediately.

Suppose that V2 denotes the non-vacation duration of the server. Note that this
duration includes the time the server is busy fixing failed components as well as the
time the server is being repaired. Then we have:

Theorem 5: The random variable V2 is of phase type with representation
((R)/31,M) of order (n-k+l) [m1 +m2] where the vector - (1,...,N,0,
O) is given by

i- duiS, 1 < < N- 1, and ON- dUN-1e,

where d is the normalizing constant and the matrix M is

B2 #SF(I(R)fl2) ]I (R) S Bc
33

where B2 and B3 are as given in (4) and (5).
Proof: This result follows by noting that the non-vacation period of the server

starts with at least one failed component waiting for repair and with the return of the
server under (N, T)-policy.

The following interesting result gives an expression for the fraction of time the
server is under repair.

Theorem 6: The fraction of time the server is under repair is given by

PNV#SF (28)P(server is under repair )-
#SF + #2’

where #2 is the repair rate of the failed server, and PNV is the probability that the
server is not on vacation where
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N-1

PNV--1-- uie.
i=0

Proof: This follows immediately from Lemma 1.
Remark: The result (28) can be intuitively explained as follows. First note that

the failure of the server may occur only during a non-vacation period. Since a failed
server is immediately started on a phase type service, the fraction of time the server
is under repair is equal to the product of the probability that the server is not on

vacation and the probability of the server being busy in an M/PH/1 queue with no

waiting room. The arrival rate is given by #sF and the service time is of phase type
with representation (f12, $2)"

Theorem 7: The probability mass function {ai} of the number of failed compon-
ents waiting for repair at the time when the vacationing server returns to the system,
and the conditional probability mass function {bi} of the number of failed components
waiting for repair given that the server returning from vacation finds at least one

component in the repair facility are given by

where

0a gG $3, 0 <_ N- 1,aN $gGN- le,

bi-dai, l<_i<_N,

g 3(’1 ’3)- 1, G ,(I S3)- 1, and d (3Ge)-

(29)

(30)

Proof: First note that uiSdt 1 <_ <_ N gives the steady-state probability that in
a small time interval of width dr, the server finishes the vacation to find
components waiting in the repair facility. The stated result follows from equations
(12) through (14) and Lemma 2.

Remark: Note that the probabilities in (29), as is to be expected, depend only on

the components’ failure rate and the distribution of the server’s vacation period.

5. System Performance Measures

In this section we give a number of system performance measures useful in qualitative
interpretation of the model under study. These measures are for a cold system and
similar measures are obtained for the other two systems. The details are omitted.
However, in the numerical example section we will compare these measures for all

N-1

uie.
i=0

three systems.
(a) The fraction of time the server is on vacation is given by

(c)

n-k+l
The fraction of the time the server is under repair is wie. Note that

i=1
this measure is given in terms of #sF and #2 from equation (28).
The probability mass function of the number of components under repair is
given by

Uoe O,

f(i) uie + vie + wie 1 <_ <_ N- 1

vie + wie N <_ <_ n- k + 1.
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(d)

(f)

The mean and the standard deviation of this probability function can also
be computed.
The fraction of time the system is down is given by un t + I e -4- wn k + e"

The mean time spent in the repair facility by a failed component is given
by (25).
The mean vacation duration of the server is given by (27).
The mean non-vacation period of the server is calculated as ((R)/31)

/)-- le.
The mean number of components waiting for repair when the server returns
from a vacation and the conditional mean number of components waiting
for repair given that the server returning from vacation sees at least one

component in the repair facility can be computed from the probability
functions given in (29).

6. Numerical Examples

In this section we discuss some interesting numerical examples and present an

optimization problem. A Fortran code was developed and tested on a large number
of examples using a Pentium II PC. Particular cases, which reduce to simple models
and internal accuracy checks, such as the one outlined in Section 2 and Lemma 1, are
used to confirm the correctness of the code. Recall that #-/i(- Si)- le, 1 <_ <_ 3,
is the mean of the PH-distribution with representation (i, Si).

For illustrative purpose, we consider the following three PH-distributions for repair
times of the components, for vacation duration of the server, and for the fixing times
of the failed server:

Exponential (10)(EX),
Erlang with 10 phases and with parameter 10 (ER), and
Hyperexponential: 0.90 EXP(100) + 0.09EXP(1) + 0.01EXP(0.1) (HE).

andThe above distributions are normalized so that #1-0.5, #2-0.125,
#-0.25. The other parameters are taken to be n-10, k-4, ,-1, 0-0.3, and

#SF 1. We consider 27 possible combinations for the reliability model under study
by choosing one of these three distributions for the repair times of the components,
one for the fixing times of the failed server and one for the server’s vacation period.
The five performance measures

(a) the mean time to system failure,
(b) the mean vacation period of the server,
(c) the mean non-vacation period of the server,
(d) the probability the server is on vacation and
(e) the mean number of components under repair

are plotted in Figures 1 through 16 as functions of N varying from 1 through
n- k 6. The two performance measures

(f) the probability mass function of the number of failed components seen by
the server returning from vacation, and

(g) the conditional probability mass function of the number of failed
components seen by the returning server given that at least one failed
component in the repair facility,

are plotted in Figures 17 through 18. On examination of these figures, we notice the
following observations.
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The Mean Time to System Failure (Figures 1 through 3):
As expected the mean time to system failure decreases as N increases for
all cases.

By fixing the two distributions as El{ and varying the other with one of the
three distributions (El{, EX, or HE), we notice that this measure tends to
decrease with increasing variability. In Figure 1, we plot this performance
measure by varying the server’s vacation period.

The Mean Vacation Period of the Server (Figure 4):
Recall that the mean vacation period of the server depends only on . and
the distribution of the vacation period. As expected, this measure is
identical for all three distributions when N- 1. However, for other values
of N this measure increases with increasing variance of the vacation period
and also with N.
For hyperexponential case, this measure varies significantly as N is varied.
However, for the other two cases, when N >_ 2, the change in this measure

appears to be insignificant.
The Mean Non-Vacation Period of the Server (Figures 5-10):

By varying the repair times of the components with one of the three
distributions (El{, EX, or ItE) and fixing the other two with El{, we notice
that the mean non-vacation period of the server appears to decrease with
increasing variability (see Figure 5). Furthermore, the hyperexponential
distribution appears to yield smaller means for all values of N compared to
the other two cases.

By varying the fixing times of the failed server with one of the three
distributions (El{, EX, or ttE), and fixing the other two with El{, w notice
that this measure decreases with increasing variability (see Figure 6).
Going from N- 1 to N- 2, there is a significant jump in the mean for all
three distributions. For other values of N, there appears to be insignificant
change.
By varying the vacation period with one of the three distributions (El{, EX,
or tIE) and fixing the other two as ER., we notice that this measure
increases with increasing variability (see Figure 7). This observation is in
direct contrast with the previous two observations.
Suppose we use HE instead of El{ to fix the other two distributions and
vary the other with one of El{, EX, or HE. While the behavior (see Figures
8 and 10) of this measure is very similar to the earlier ones in the cases

when the repair times of the components and when the vacation period the
server is varied, an interesting observation (see Figure 9) is seen in the case

when the fixing times of the failed server is varied. Here, we note that this
measure appears to be independent of the distribution.

The Probability that the Server is on Vacation (Figures 11-13):
By varying the repair times of the components with one of the three
distributions (El{, EX, or HE), and fixing the other two as ER., we notice
that the probability that the server is on vacation appears to increase with
increasing variability (see Figure 11). Furthermore, this measure appears to
be independent of the values of N. The same observation holds when the
fixing time of the failed server is varied and the other two fixed to be El{

(see Figure 12).
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In the case when the vacation period of the server is varied with one of the
the three distributions (El, EX, or liE) and fixing the other two as El, we

notice that this measure increases with increasing variance. In the lie case,
we notice that the probability increases as N increases.

The Mean Number of Components Under Repair (Figures 14-16):
here, we look at the three systems: cold, warm, and hot by fixing two of the
three distributions as ER and the other with liE. When the vacation period
is liE, the mean number of components under repair appears to be almost
the same for all three systems (see Figure 16); however, we see a significant
difference in this measure for the other two cases (see Figures 14 and 15).
As expected, this measure is largest for hot system and smallest for the cold
system.

The Probability Functions of the Number of Failed Components (Figures 17-18):
In Figure 17, the probability mass function of the number of failed
components seen by the server returning from vacation, is plotted for the
three distributions for the case when N = 6. We notice that the probability
that the server sees no component waiting for repair is highest for the lie
case. This can be intuitively explained as follows. When the vacation
period is HE, the server will have a large number of small vacation periods
followed by a long vacation period. During the shorter vacation periods,
the server is more likely to see no components waiting for repair.
In Figure 18, the conditional probability mass function of the number of
failed components seen by the returning server, conditional on the fact that
at least one failed component is waiting for repair, is plotted for the case
when N 6. The figure indicates, as expected, that an liE vacation is
more likely to see larger components waiting for repair than the other two
distributions.
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