

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217364901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARTICIPATION IN THE ENVIRONMENTAL INFORMATION EXCHANGE

NETWORK USING THE NATIONAL EMISSION INVENTORY DATAFLOW

Kent M. Thomas

Regis University

School For Professional Studies

Masters of Science in Computer Information Technology

1

Abstract

The US Environmental Protection Agency (EPA) and state environmental agencies have

implemented a large nationwide system termed the Environmental Information Exchange

Network, intended to consolidate and standardize the mechanism in which environmental data is

exchanged between states, EPA, and other environmental organizations. The Exchange Network

infrastructure is based on XML, Web services, and the Internet. The State of Alaska Department

of Environmental Conservation (DEC) has an interest in participating in the Exchange Network.

This project involves creation of software to extract, transform, validate, and submit DEC’s air

emissions data to EPA through the Exchange Network. Development of this software also

represents a case study of the viability, benefits, and problems when transitioning an existing

data exchange to a Service Oriented Architecture (SOA).

2

Acknowledgements

For Stephanie, Henry and Emma.

Many thanks to Dr. Doug Hart, Don Ina, and Joe Gerber for their valuable guidance and insights.

3

Contents

1. Chapter One: Introduction... 10

1.1. Problem/opportunity to be addressed... 10

1.2. Relevance, significance or need for the project ... 12

1.3. Project goal... 12

1.4. Barriers and/or issues (risks) .. 13

1.4.1. Forthcoming NEI regulation changes ... 13

1.4.2. Forthcoming NEI data specification changes ... 14

1.4.3. Forthcoming Exchange Network infrastructure technology changes 14

1.4.4. Large Alaska NEI dataset ... 15

1.4.5. Complex project; uncharted territory for DEC ... 15

1.5. Elements, hypotheses, theories, or questions to be discussed / answered...................... 16

1.6. Limitations/scope of the project ... 17

1.6.1. Test submittal only.. 17

1.6.2. NEI dataflow only... 17

1.6.3. No modifications to source database .. 18

1.6.4. Node client only.. 19

1.7. Definition of terms and acronyms.. 19

1.8. Summary .. 23

2. Chapter Two: Review of Literature / Research ... 25

4

2.1. Literature and research that is specific / relevant to the project..................................... 25

2.1.1. Service Oriented Architecture... 25

2.1.2. XML.. 27

2.1.3. Web services ... 29

2.1.4. Environmental Information Exchange Network... 31

2.1.4.1. Exchange Network origin and participation.. 31

2.1.4.2. Exchange Network data exchanges... 32

2.1.4.3. Pre-Exchange Network data exchange mechanisms... 34

2.1.4.4. Exchange Network connectivity ... 35

2.1.4.5. Exchange Network security .. 37

2.1.4.6. Exchange Network Node 2.0 .. 38

2.1.5. National Emission Inventory .. 38

2.1.6. DEC AirTools application and source database ... 40

2.1.7. DEC existing NEI export program ... 42

2.1.8. EPA NIF to XML converter ... 43

2.2. The contribution this project will make to the field ... 44

2.3. Summary .. 44

3. Chapter Three: Methodology / Plan .. 46

3.1. Life cycle model to be followed... 46

3.2. Specific procedures .. 47

5

3.2.1. AEIS evaluation .. 47

3.2.2. AirTools database ... 48

3.2.3. NEI data elements ... 48

3.2.4. Development tools .. 48

3.2.5. Source control ... 49

3.2.6. Software engineering paradigm .. 49

3.2.7. Application architecture.. 50

3.2.8. Coding comments ... 52

3.2.9. Testing... 52

3.3. Formats for presenting results/deliverables.. 53

3.4. Review of deliverables ... 53

3.5. Resource requirements ... 55

3.6. Outcomes.. 56

3.7. Summary .. 56

4. Chapter Four: Project History ... 57

4.1. How the project was managed ... 57

4.2. Significant project milestones/events... 58

4.3. Changes to the project plan .. 59

4.4. Evaluation of whether or not the project met project goals ... 60

4.5. What went right .. 60

6

4.6. What went wrong ... 61

4.7. Findings/Results ... 65

4.8. Summary .. 67

5. Chapter Five: Lessons Learned and Future Project Evolution.. 68

5.1. Conclusions .. 68

5.2. Project Evolution / Recommendations... 70

5.3. Summary .. 72

References... 73

7

List of Tables

Table 1. Planned DEC dataflows .. 18

Table 2. SOA design principles .. 25

Table 3. SOA benefits... 26

Table 4. Types of Exchange Network data exchanges ... 33

Table 5. Sampling of historical (non-Exchange Network) state to EPA data exchanges............. 34

Table 6. NEI source types... 39

Table 7. Project deliverables... 53

Table 8. Planned project schedule .. 55

Table 9. Actual project schedule / milestones .. 59

Table 10. Project difficulties... 62

Table 11. Project recommendations.. 70

8

List of Figures

Figure 1. XML address example... 27

Figure 2. Basic Network diagram ... 36

9

1. Chapter One: Introduction

1.1. Problem/opportunity to be addressed

Since humble beginnings in the mid 20th century, information technology (IT) has rapidly grown

and spread throughout the world. With this rapid change and expansion, a complex and daunting

array of IT technologies, platforms, tools, and techniques has emerged. As organizations

increasingly rely on IT, the need to manage this complexity, gain efficiencies, and swiftly adapt

to change is greater than ever. As the number of systems continues to grow, the need for

standardized and efficient interactions between different systems has become increasingly

prevalent, making application and data integration one of the foremost IT concerns today.

Vast quantities of environmental data are transferred between various entities in the US every

day. Yet, prior to 2003, no national standard or infrastructure for exchanging environmental data

existed, and many disparate mechanisms and formats emerged (Environmental Information

Exchange Network, 2006). For example, water quality data has historically been submitted to

the US Environmental Protection Agency (EPA) as an Oracle export file via file transfer, air

emissions data as text files via a website upload, and facility enforcement data as text files via a

mainframe upload. Similar varieties of exchange mechanisms have emerged for environmental

data transfers not involving EPA. Custom data validation programs for each type of

environmental data have also necessarily been built and maintained. The predictable result of

this lack of standardization has been inefficient data exchange, poor data availability, poor data

timeliness, fragile data integration, and high cost (Environmental Information Exchange

Network, 2006).

10

As common focal points of environmental data transfer, EPA and state environmental agencies

initiated a collaborative effort in 1998 to standardize environmental data flows. The

Environmental Information Exchange Network (Exchange Network) is the culmination of this

collaboration, promoting timely, cost-effective, and standardized environmental data exchange.

Designed as a Service Oriented Architecture (SOA), and based on XML, Web services, and the

Internet, the Exchange Network supports environmental data exchanges between diverse

partners. With a formal launch in 2003, Exchange Network participation has gradually increased

as support for specific environmental dataflows is added. To promote and facilitate a transition

to the Exchange Network, EPA continues to provide funding to integrate partner systems. The

State of Alaska Department of Environmental Conservation (DEC) is committed to participating

in the Exchange Network, and has implemented a base Exchange Node, but no specific

environmental dataflows have yet been developed.

All states must periodically submit National Emission Inventory (NEI) data to EPA, detailing

emissions of air pollutants from various sources. This regulatory requirement has been in place

for many years, preceding the existence of the Exchange Network. To date, DEC has fulfilled

this requirement via a process that starts by exporting NEI data out of an Oracle database into a

series of fixed length text files. These text files are validated using EPA’s Basic Format and

Content Checker utility, compressed, and manually uploaded using the EPA Central Data

Exchange website (CDX Web). The current process to extract, transform, validate, and submit

NEI data is slow, cumbersome, loosely integrated, and must be repeated for several NEI source

data types. With the availability of the Exchange Network, an opportunity exists for

11

development of efficient and integrated software to process NEI data, as well as providing a

basis for development of further Exchange Network dataflows.

1.2. Relevance, significance or need for the project

The Exchange Network offers a universal solution to the problem of disparate environmental

data transfer mechanisms, supporting exchanges of all types of environmental data, via common

data exchange definitions, XML, Web services, and the Internet. The potential benefits of using

the Exchange Network are many, including reduced cost, improved data quality, flexibility to

support new data exchanges, and access to real time data. These benefits are attractive to DEC,

which is presently burdened with several disparate environmental data transfer mechanisms.

Although development of NEXT specifically applies to the Exchange Network, it also represents

a case study in assessing the viability, benefits, and problems when transitioning an existing

business process to an SOA implementation. Given that SOA has recently been the subject of

considerable interest and debate in the general IT community, such a case study can provide

useful insights for a broad spectrum of organizations considering use of an SOA.

1.3. Project goal

The Exchange Network provides a standardized and flexible framework for streamlining all

environmental dataflows, one of which is the NEI. The goal of this project is to demonstrate the

viability, benefits, and problems of transitioning an existing business process to an SOA

12

implementation, by developing software that implements an Exchange Network NEI dataflow

from DEC to EPA. To this end, this project will involve development of a Microsoft C#

program and set of supporting Oracle stored procedures, collectively named the NEI Exchange

Toolkit (NEXT). NEXT will extract and transform NEI data into the NEI XML format.

Resulting XML data will be validated using appropriate schema languages, and submitted to

EPA’s CDX Test Node (EPA’s point of presence on the Exchange Network) through a series of

published Web services. NEXT will perform the extract, transform, validate, and submit

functions in an automated fashion, requiring minimal user interaction.

1.4. Barriers and/or issues (risks)

1.4.1. Forthcoming NEI regulation changes

The Consolidated Emission Reporting Rule (CERR) mandates periodic submission of air

emission inventory data to EPA by states and a few other environmental entities. The most

recent version of this rule was enacted in 2002. In 2006, EPA proposed an updated version of

the CERR, where the primary change is shortened reporting timeframes. As of this writing,

proposed changes do not appear to affect NEI data elements or the mechanics of the NEI

Exchange Network dataflow. However, the proposed rule has not yet been finalized or formally

enacted.

Global warming has become a front-line issue with many policy makers and the public, and

assessing emissions of greenhouse gases is a corresponding concern. While greenhouse gases

are not pollutants in the traditional sense, the NEI can be used to store and report greenhouse gas

13

emissions. Given this capable and existing infrastructure, NEI regulations may be updated in the

near future to require the inclusion of greenhouse gas emissions.

1.4.2. Forthcoming NEI data specification changes

Prior to the implementation of the Exchange Network, state NEI data submissions to EPA were

formatted according to the National Emission Inventory Input Format (NIF), which represents a

proprietary text or Microsoft Access file format. The most recent version of the NIF is version

3.0, released in 2003. The NIF is still an acceptable format for states that have not yet

implemented an NEI Exchange Network dataflow. In 2005, a NIF version 4.0 was in

development, which included significant changes from prior versions. However, in 2006,

development of version 4.0 was suspended to allow states to focus on implementing an NEI

dataflow in the Exchange Network. While the Exchange Network uses XML and not the NIF,

the NEI XML schemas are closely based on the NIF. As such, when NIF 4.0 is released,

corresponding changes will also be implemented to the NEI XML schemas. While EPA has not

announced a specific date in which NIF 4.0 will be introduced, this will likely occur in the near

future.

1.4.3. Forthcoming Exchange Network infrastructure technology changes

Intended for implementation in 2008, the Node 2.0 specification updates the Exchange Network

infrastructure to utilize current Web services standards. These changes are primarily intended to

make development of Exchange Network software easier, and enable continued support from

14

software vendors. The specification is not finalized yet, but the latest specification draft includes

changes to Web service call mechanisms, which will require NEXT coding alterations.

1.4.4. Large Alaska NEI dataset

The dataset that comprises Alaska’s emission inventory for a given year is substantial, containing

over 15,000 data records. It is not presently known to what extent DEC’s existing NEI data

meets the Exchange Network’s XML validation criteria. If a sizeable number of validation

errors are discovered during this project, it may be difficult to achieve a fully validated dataset,

given an aggressive completion timeframe. Because an invalid dataset cannot be submitted to

the Exchange Network, if an excessive number of validation errors occur, use of a small subset

of test data will be necessary. However, using a small subset of test data would leave open the

possibility of program anomalies in processing data outside this subset.

1.4.5. Complex project; uncharted territory for DEC

This project involves a complex set of data elements, transformations, and remote Web service

references. Most other states have hired contractors to perform Exchange Network-related

development, and most often using one of a handful of firms that specialize in this area. The

NEI dataflow software will be developed by the author, and represents DEC’s first Exchange

Network dataflow. While the process of participating in the Exchange Network is well

documented, this project represents new territory for DEC. Because of this uncertainty,

unforeseen issues or project delays may occur.

15

1.5. Elements, hypotheses, theories, or questions to be discussed / answered

NEI data is sent through the Exchange Network via Web service calls. Since the amount of data

to be sent can be substantial, the ability of Web services to be able to handle such calls is a

concern (MacDonald, 2003). However, states with far larger datasets than Alaska are using the

Exchange Network, and it is presumed that this consideration has been sufficiently addressed.

The exact mechanism to handle large Web service calls in a robust manner is not known at the

outset of this project, but mechanisms such as compression or asynchronous calls may be

utilized.

A key aspect of this project is writing NEI data to an XML format. Most modern development

tools and databases provide features for working with XML, including both reading and writing.

At DEC, the software development environment is Microsoft Visual Studio 2005 and C#, and the

database that stores the source NEI data is Oracle 10g. Either C# or Oracle PL/SQL can write to

XML. Determining the optimal language in which to write XML is a fundamental design

decision for this project. Determining how and where XML should be validated is an equally

important design consideration.

Given the large amount of NEI data and anticipated processing involved, a set of Oracle PL/SQL

stored procedures is likely necessary to ensure optimal performance in extracting appropriate

NEI data (Feuerstein & Pribyl, 1997). Using C# and ADO.NET to perform many calls to the

database would generally follow the same design pattern as DEC’s legacy non-XML NEI extract

program (see 2.1.7), and would thus likely result in poor performance.

16

1.6. Limitations/scope of the project

1.6.1. Test submittal only

Formal NEI submittals are due to the EPA CDX by June 1 of each year (either the CDX Web for

non-Exchange Network submittals, or the CDX Production Node for Exchange Network

submittals). The formal submittal is preceded by a substantial data entry effort at DEC to obtain

air emissions source data from various sources. Given the significance of this effort, the formal

NEI submittal has historically occurred just before June 1. Use of the Exchange Network only

addresses submission of NEI data that is already obtained and stored in state databases— it does

not address the time involved in obtaining emission data from industry to populate source

databases. Because this project will start in early August, and conclude by October 21, a

production NEI submittal cannot occur. Nonetheless, a successful submittal to EPA’s CDX Test

Node will occur as part of this project.

1.6.2. NEI dataflow only

The Exchange Network supports many types of environmental dataflows, and the number of

supported dataflows is anticipated to increase in the future as EPA alters its many legacy systems

to utilize the Exchange Network (Environmental Information Exchange Network, 2002). While

DEC does not currently participate in any dataflow, DEC is considering implementing the

dataflows noted in Table 1.

17

Table 1. Planned DEC dataflows

ID Description

NEI National emission inventory

FRS Facility registry system

ICIS – NPDES Water quality and discharge data

SDWIS Safe drinking water info system

While the dataflows noted in Table 1 are currently supported by the Exchange Network, DEC

must implement them in order to use them. Development of NEXT will represent DEC’s first

dataflow to the Exchange Network, and will implement the NEI dataflow only.

1.6.3. No modifications to source database

The DEC data center houses two Oracle 10g database servers, one for production, and another

for development. For this project, the NEI data in the development database will be

synchronized with the production database to ensure that a full and complete dataset is used.

This project will exclusively work with the Oracle development database. The NEI data stored

in DEC’s Oracle databases is directly used by DEC’s existing AirTools application, for

management of air permits and other functions. Because the database is tightly coupled to

AirTools, the existing database structure will not be altered in any way as part of this project.

This project is limited to extracting data from this existing AirTools database, transforming to

XML, validating, and submitting to EPA’s CDX Test Node.

18

1.6.4. Node client only

This project will involve creation of a Node Client only, which represents an independent

program that can connect to Exchange Network Nodes. While DEC has an installed Exchange

Node where NEXT functionality could be integrated, such an approach is problematic due to the

complexity involved and lack of available support by the contractor that built DEC’s Node.

Moreover, DEC has a regulatory requirement to submit NEI data to EPA annually, which can be

wholly fulfilled with a Node Client. Use of the DEC Node would primarily serve to publish NEI

data to other parties, or retrieve NEI data from other states. Yet DEC has no present knowledge

of a need for such optional services. Integration of the NEI dataflow into the Exchange Node

may occur in a future evolution of NEXT.

1.7. Definition of terms and acronyms

Term/acronym Definition

ADO.NET A set of data access components incorporated into the Microsoft

.NET Framework, used to query and manipulate data in a variety

of data sources (most often a relational database).

BCL .NET Base Class Library. A library of .NET classes available to

all .NET languages, performing common programming tasks

such as file reading, file writing, rendering, database interaction,

etc.

BFCC Basic Format and Content Checker. A Visual Basic 6 utility

19

program provided by EPA to validate NIF data files (either text

or Microsoft Access).

C# Microsoft’s C# Programming Language. A general purpose,

object-oriented programming language introduced in 2001,

particularly suited to developing Windows and web applications

based on the .NET Framework.

CDX web EPA Central Data Exchange web portal. A website that acts as

EPA’s central “gateway” for environmental data submittals

(non-Exchange Network based).

CDX node EPA Exchange Network Node. EPA’s central point of presence

on the Exchange Network. Both a test and production node are

available.

CERR Consolidated Emission Reporting Rule. The federal law that

mandates submission of emission inventory data to EPA, and

specifies what data must be included and when it must be

submitted (40 CFR 51, subpart A, and 40 CFR 51.122).

DEC Alaska Department of Environmental Conservation. As the

Alaska state environmental agency, DEC is tasked to “Conserve,

improve, and protect Alaska’s natural resources and the

environment and control water, land, and air pollution, in order

to enhance the health, safety, and welfare of the people of the

state and their overall economic and social well being.”

Dataflow A type of environmental data that can exchanged on the

20

Exchange Network between two or more partners (also termed a

“Data Exchange.”) The dataflow is defined using a Flow

Configuration Document (FCD), XML Schema, and Data

Exchange Template (DET).

DET Data Exchange Template. A document that outlines the XML

Schema for a particular dataflow, with validation rules and

example content. The purpose of this template is to provide a

more human readable version of an XML Schema.

DIME Direct Internet Message Encapsulation. A mechanism for

including binary attachments to Web service calls.

EPA U.S. Environmental Protection Agency.

Environmental Information

Exchange Network (aka

Exchange Network)

An XML and Web services network, intended to streamline and

standardize the mechanism in which environmental data is

transferred between states, EPA, and other environmental

organizations.

FCD Flow Configuration Document. A document that details the

rules governing a particular Exchange Network dataflow, using

text, diagrams, and examples.

MTOM Message Transmission Optimization Mechanism. A

mechanism for including binary attachments to Web Service

calls.

NAAS Network Authentication and Authorization Service. A

centralized service that maintains a list of valid Exchange

21

Network users and their associated privileges.

Network node (aka Node) A Web services-based server maintained by Exchange Network

partners, responding to requests from other Nodes and

submitting data to other Nodes.

Node client A service or application that communicates directly with a Node.

NEI National Emission Inventory. An EPA database that tracks

emissions of various air pollutants around the nation. In a

Exchange Network context, represents the dataflow that states

use to populate this EPA database.

NEXT NEI Exchange Toolkit. The name of the software created in this

project, consisting of both C# and PL/SQL code. This software

will extract, transform, validate, and submit DEC’s air emissions

data to EPA using the NEI dataflow.

Oracle RDBMS Oracle relational database management system.

PL/SQL Oracle Procedural Language/Structured Query Language.

Oracle’s extension to the SQL language, providing procedural

programming constructs. PL/SQL is commonly used to write

Oracle stored procedures and triggers.

Schematron A type of XML schema language that extends the validation that

can be performed by other schema languages.

SOA Service Oriented Architecture. A flexible and adaptable

software architecture based on loosely coupled services,

descriptions, and messages.

22

SOAP A standard protocol for transmitting XML messages when using

Web services.

SQL Structured Query Language. A language that consists of

commands for querying and manipulating data and objects in a

relational database.

Trading partner An organization with an Exchange Network Node that is able to

exchange data with another partner on the Exchange Network.

Web service A web Application Programming Interface (API) that

communicates using XML messages.

W3C World Wide Web Consortium. The primary international

standards body for the World Wide Web.

WSDL Web services description language. Provides a model for

describing Web services.

XML Extensible Markup Language. An extensible, user-definable

data format that is typically used to facilitate data exchange

between heterogeneous systems.

XML Schema W3C XML Schema. A formal definition of the required

structure and format of a particular XML document.

1.8. Summary

IT is growing increasing complex, and one of the foremost issues facing IT today is application

and data integration. The Exchange Network is an ambitious effort to standardize exchange of

environmental data nationwide. While still evolving, the Exchange Network offers a host of

23

potential benefits today, including reduced cost, more timely data, higher quality data, and

greater interoperability. This project will evaluate the viability, benefits, and problems of

participating in an SOA implementation. As a case study, software named NEXT will be created

to extract NEI data from an existing DEC database, transform this data as XML, validate the

XML, and finally submit the XML to the CDX Test Node. Changes to NEI regulations, data

formats, and the Exchange Network infrastructure are forthcoming, which introduces uncertainty

in this project. This project will involve creation of a Node Client only, utilizing DEC’s

development Oracle database.

24

2. Chapter Two: Review of Literature / Research

2.1. Literature and research that is specific / relevant to the project

2.1.1. Service Oriented Architecture

In a Service Oriented Architecture (SOA), complex enterprise systems are decomposed into

smaller, logical building blocks as a means to enhance flexibility, adaptability, and

interoperability. Each individual building block provides a logical encapsulation of some unit of

work, typically representing certain business logic. Building blocks are fully autonomous and

self-contained, and may be invoked by other programs or other building blocks. Such building

blocks are known as services. Services are formally described using standardized service

descriptions, which minimally describe the service identity (name), data expected, and data

returned. Services communicate using standardized messages. An SOA must adhere to several

design principles when shaping services, descriptions, and messages (Erl, 2005), as noted in

Table 2. An SOA paradigm can offer several benefits, as noted in Table 3. Most SOA benefits

will not manifest themselves fully until SOA principles become established within the SOA

implementation context, however (Erl, 2005).

Table 2. SOA design principles

Principle Description

Loose coupling Service-to-service and program-to-service dependencies are minimized.

Contract Services adhere to a standardized and technology-independent

communication agreement (i.e. interface), as specified in service

descriptions.

25

Discoverability Services can be found by potential requesters.

Reuse Services are designed to promote reuse by requesters.

Abstraction Only service interfaces are exposed to requesters, whereas the internal

service logic (i.e. implementation) is hidden.

Autonomy Services are independent, maintaining control over the logic they

encapsulate.

Statelessness Service communications minimize retention of information specific to an

activity.

Aggregation Collections of services can be assembled to form composite services.

Table 3. SOA benefits

Benefit Description

Improved integration Application integration is less costly and more efficient, due to

intrinsic consistency and interoperability.

Enhanced solution

architectures

Automation, consistency, and reduced processing requirements

reduce cost and increase efficiency.

Leverage existing

assets

Business logic in existing applications and systems can be exposed

using services.

Inherent reuse Services are designed for reuse, reducing the cost and effort of

building solutions (although initial development effort is increased).

Standardized data

representation

Standards-based data representation facilitates interoperability,

reducing cost and increasing efficiency.

26

Improved The cost and effort to adapt and respond to business or technology

organizational agility changes is reduced.

2.1.2. XML

Markup languages are used to combine text and text descriptions, and include Standardized

General Markup Language (SGML), Hypertext Markup Language (HTML), Extensible Markup

Language (XML), Extensible Hypertext Markup Language (XHTML), and others. XML is a

general-purpose markup language that is extensible because it supports creation of custom tags

(Ray, 2003). XML carries data (or content) between custom-defined tags, specified within

brackets. Every element with some data must contain a start and end tag. In the XML example

noted in Figure 1, street is one element, where the street element tags (<street> and </street>)

surround the content (123 Main St.).

Figure 1. XML address example

<?xml version="1.0"?>

<address>

<street>123 Main St.</street>

<city>Anchorage</city>

<state>AK</city>

<zip>99516</zip>

</address>

27

Developed by the World Wide Web Consortium (W3C) in the mid 1990s, XML has become the

de-facto standard for data exchange over the Internet, primarily due to its wide acceptance and

flexibility (Ray, 2003). Like HTML, XML emerged from SGML, as a smaller, leaner language

well suited to the bandwidth sensitive Internet. Unlike HTML, XML predefines no tags, and has

strict syntax requirements.

An XML document consists of a set of XML elements and other markup together in a package.

An XML document exhibits two levels of integrity: well formed and valid. An XML document

is well formed if all elements have proper starting and ending tags, and some other basic syntax

rules are followed. A valid check is stricter than well-formed check, and provides further quality

control assurance for the XML document. An XML document is considered valid if its structure

and elements conform to a particular specification, which is defined using a particular schema

language. Several different types of schema languages exist, with varying advantages and

disadvantages. The Document Type Definition (DTD) contains a collection of rules that define

elements and other markup objects. The XML Schema extends the DTD, by allowing

specification of valid document content and data patterns. RELAX NG specifies patterns that

define the structure of an XML document, using simple and elegant syntax. Schematron is a

general and flexible schema language that uses XPath to reach portions of source XML

documents. Schematron is of limited value by itself, but is powerful when used to augment

another schema language.

28

XML can store documents (such as word processing documents), or data. XML is well suited to

store diverse types of data, although it works best for small data sets and data that only needs to

be sequentially searched. XML can additionally be transformed to present data (in a format such

as HTML), when coupled with a stylesheet (CSS or XSL). XML is not a panacea, however. An

oft-cited problem with XML is its generally large file size, when compared with binary formats

that store the same information. For large XML files, traditional file compression tools such as

ZIP or GZIP are sometimes used to reduce the file size.

2.1.3. Web services

Middleware is software that connects (or integrates) applications or components, most often

between different machines distributed on a network (Britton & Bye, 2004). Many different

types of middleware exist, including Remote Procedure Call (RPC), Distributed Component

Object Model (DCOM), Common Object Request Broker Architecture (CORBA), Enterprise

JavaBeans (EJB), messages queues, and various remote database access technologies. Web

services are a newer form of middleware unlike other types in their use of open standards and

decoupling from particular languages, platforms, and vendors. Several core specifications define

Web services, including XML, SOAP, WSDL, and UDDI; these specifications are maintained by

the W3C.

Web services communicate using the SOAP protocol. Typically working with either HTTP or

HTTPS as the transport mechanism, SOAP defines an XML envelope that contains requests to

and responses from a Web service. Use of SOAP and XML abstracts Web service

29

implementation and deployment technologies. For example, a Java program running on a Solaris

UNIX box can call a Web service on a Windows box that was written in VB.NET.

To allow unambiguous use by a service requester, distributed computing services must provide a

formal service description, generically created using an Interface Definition Language (IDL).

The syntax associated with invocation and response of a Web service is described using Web

Services Description Language (WSDL). In particular, WSDL defines what the service does,

how the service is accessed, and where the service is located. WSDL is itself an XML document

that conforms to the WSDL XML Schema.

The Universal Description, Discovery, and Integration (UDDI) protocol provides a standard,

interoperable way for Web services to be advertised, discovered, and searched by potential

requesters. UDDI allows the creation of different registries, which can serve different purposes

in different contexts (for example, a UDDI registry might be created for Web services related to

automotive repair). Using UDDI registries, service providers can advertise their services, and

potential service requesters can search registries for areas of interest. While conceptually useful,

UDDI registries have generally not yet achieved widespread usage.

Due to their design characteristics, Web services are well suited to implement an SOA (use of

Web services does not necessarily result in a true SOA implementation, however). Using HTTP

as a transport protocol, Web services are also well suited for use over the ubiquitous Internet.

30

Use of HTTP enables free flow of Web services traffic through most firewalls, and likewise

supports use of an encrypted channel for additional security (HTTPS). Using XML and HTTP,

Web services offer several benefits, including:

•	 Standardized, flexible application integration mechanism

•	 Avoidance of vendor lock-in (Web services are an open standard)

•	 Low cost of entry (simple technology that enjoys wide support)

•	 Built in, standardized mechanism to describe Web services using WSDL.

•	 Reside on top of web servers (IIS, Apache), gaining caching, security, session

management, and scalability features.

2.1.4. Environmental Information Exchange Network

2.1.4.1. Exchange Network origin and participation

Driven by a growing hodgepodge of mechanisms to exchange environmental data, and a desire

to build national, cohesive, and coherent environmental information systems, EPA and states

formed the State/EPA Information Management Workgroup (IMWG) in 1998. The

Environmental Information Exchange Network (Exchange Network) emerged from the work of

the IMWG, as a unified mechanism to improve the exchange of environmental data between

EPA, states, and other parties, using XML, Web services, and the Internet. Implemented in

2003, the Exchange Network is intended to enable better environmental decision-making by:

•	 Harnessing economies of scale through shared infrastructure and tools, thereby reducing

costs

31

•	 Increasing data usage and integration among exchange partners

•	 Improve data quality through standardized, efficient data validation, while emphasizing

early error detection

•	 Improved data availability and timeliness through automation

•	 Fostering new exchanges among states, EPA, and other partners

To support a wide variety of backend computing infrastructures in use by states, the Exchange

Network is fully standards-based, with XML and Web services as foundation technologies.

Since the implementation of the Exchange Network in 2003, states have gradually increased their

participation in the Exchange Network (participation is presently voluntary). To encourage

participation in the Exchange Network, EPA has provided over $98 million in grants to states

and other environmental agencies, which has been instrumental in the success of the Exchange

Network. Many states have also invested their own funds to participate in the Exchange

Network.

2.1.4.2. Exchange Network data exchanges

The Exchange Network supports not only traditional data exchanges from states to EPA, but also

between states, within states, and from EPA to states.

32

Table 4. Types of Exchange Network data exchanges

Exchange Type Examples

State to EPA Air emissions data to NEI

Air quality data to AQS

Hazardous waste data to RCRAInfo

Drinking water data to SDWIS

Facility data to FRS

EPA to State Toxics data submissions

Substance and chemical data

State to State Common airshed data

Common watershed data

Intrastate Local government to state

Drinking water labs to state

Data exchanges are also known as dataflows, representing a particular type of environmental

data. The Exchange Network presently supports 19 production dataflows, and 13 additional

dataflows are under development. In addition to the Exchange Network dataflows currently in

development, several potential future dataflows are under consideration. The process for

creation of a new Exchange Network dataflow involves formation of a Flow Development

Group, which creates a XML Schema, Data Exchange Template, Flow Configuration Document,

and several other documents. When complete, the documentation package is submitted to the

Network Technology Group, which ensures conformance with Exchange Network design rules

and conventions.

33

All Exchange Network dataflows occur with XML, which is validated according to the particular

XML Schema that applies to the dataflow. All dataflows must include both an XML payload

and header. The payload represents the source data that is specific to the particular dataflow.

The header is generic, identifying the dataflow type, sender, contact information, submittal

comments, and other supplemental information.

2.1.4.3. Pre-Exchange Network data exchange mechanisms

In the absence of the Exchange Network, many disparate environmental data exchange

mechanisms evolved nationwide (Environmental Information Exchange Network, 2002). Due to

this disparity and lack of standardization, participating in data exchanges was often costly,

inefficient, and involved custom development of new transfer mechanisms for each type of data

exchange. Moreover, transfers often involved manual processing and redundant data entry,

resulting in inaccuracies and outdated data. Tight coupling of backend systems to transfer

mechanisms further hampered standardized data exchange.

Table 5. Sampling of historical (non-Exchange Network) state to EPA data exchanges

Data Type Transfer Mechanism Transfer Destination

NEI Flat text files or MS Access database Manual upload to CDX Web

STORET Oracle export file Email or FTP to EPA

34

AFS Flat text files Upload to EPA mainframe using

terminal emulator

SDWIS Flat text files Manual upload to CDX Web

Historical, non-Exchange Network transfer mechanisms necessarily required custom validation

programs to verify the format and content of environmental data. To provide data quality

assurance, EPA would often provide states with custom executable programs to pre-validate

submittals, and would periodically update these programs, as well as provide support for them.

Yet given the high cost of creating and maintaining a wide array of proprietary validation

programs (each type of environmental data required a separate, proprietary program), EPA

would sometimes simply accept any submissions and validate it internally using database scripts.

As both the number of environmental exchanges and data volume increased, creating and

maintaining such validation programs became burdensome and inefficient, for both EPA and

states. The Exchange Network provides an elegant solution, with a universal and standardized

method to validate all types of data submittals using XML Schemas and Schematron. Moreover,

submitters can validate their own XML data using the appropriate XML Schema, or utilize

EPA’s CDX validation Web service.

2.1.4.4. Exchange Network connectivity

States connect to the Exchange Network by first establishing a Exchange Network Node (Node),

which represents the state’s main point of presence on the Exchange Network. This Node is a

web server exposed to the Internet, providing an encrypted channel using SSL. Using Web

35

services that conform to Exchange Network specifications, the Node listens and responds to data

requests from other Nodes, and likewise submits data requests to other Nodes. In addition to

providing a public interface, the Node is connected to various internal state databases to retrieve

data needed for various dataflows. Each dataflow supported by the Node must be custom

developed to “plug in” to the state’s specific storage mechanism for the type of data in that

dataflow.

Figure 2. Basic Exchange Network diagram

When a Node responds to data requests, the necessary data typically resides in a state relational

database. Complex queries are often necessary to extract appropriate data from these databases,

and must be converted to XML, which can involve significant overhead and result in poor

response time. To improve performance, staging databases are sometimes used, where data has

36

been “pre-transformed” and “pre-joined.” An XML database (such as Software AG’s Tamino

XML Server) is sometimes used for this purpose.

Since Exchange Network communications are based on standard Web services, any software

program capable of calling Web services can communicate with a Node. Such programs are

known as Node Clients. While a Node Client can request data from a Node or submit data to a

Node, it cannot listen and publish data like a Node can, however.

2.1.4.5. Exchange Network security

Security is an important consideration in the Exchange Network. Traffic to all Nodes is

encrypted using SSL, providing secure transport. For the purposes of authentication and

authorization, the Exchange Network provides a central Network Authentication and

Authorization Service (NAAS), which maintains information about all Exchange Network users

and the privileges associated with each account. Prior to communication with any Node, a

NAAS account ID and password must be passed to the Node, which in turn passes this account

ID and password to NAAS for authentication. Use of NAAS alleviates the need to create custom

authentication schemes, and enables single sign-on for the Exchange Network. Upon successful

authentication, NAAS issues a token, which is passed to the Node for all action invocations

during the session; this token expires after 10 minutes of inactivity.

37

2.1.4.6. Exchange Network Node 2.0

The specification for the next generation of the Exchange Network is presently under

development, entitled Node 2.0. Primarily driven by vendor support issues and keeping the

Exchange Network up-to-date with Web services standards, Node 2.0 will implement the

following underlying technology changes:

•	 Message attachments will use Message Transmission Optimization Mechanism (MTOM)

in place of Direct Internet Message Encapsulation (DIME).

•	 The SOAP 1.2 protocol will be used in place of SOAP 1.1.

•	 WSDL will use document/literal in place of RPC-encoded to define available services.

An implementation of Node 2.0 is expected to occur in 2008, with support for the present Node

specification continuing through at least 2010.

2.1.5. National Emission Inventory

One of the dataflows supported by the Exchange Network is the National Emission Inventory

(NEI), a conduit to EPA’s massive NEI database with air pollution data from all 50 states, the

District of Columbia, Puerto Rico, and the Virgin Islands. Primary (a.k.a. criteria) pollutants

tracked in the NEI include carbon monoxide (CO), nitrogen oxides (NOX), sulfur oxides (SOX),

volatile organic compounds (VOC), lead (Pb), ammonia (NH3), and particulate matter (PM).

The data in the NEI database is used by various entities for air dispersion modeling, tracking

emission trends, regional strategy development, and regulatory decision-making. Table 6 notes

the five types of NEI emission sources.

38

Table 6. NEI source types

Source Type Description

Point Specific air emissions from large facilities, such as power plants and oil

refineries. Emissions are reported for each stack at the facility. Point

source data comprises most of the data in a typical full NEI submittal.

Area Aggregate air emissions from small individual sources, such as residential

heating/cooling systems, lawnmowers, and fireplaces.

Onroad Mobile Aggregate air emissions from automobiles.

Nonroad Mobile Aggregate air emissions from motorized off-road mobile sources, such as

aircraft, boats, and trains.

Biogenic Aggregate air emissions from natural sources, such as forests, volcanoes,

and wildfires.

States must submit NEI data for high emitting (“type A”) point sources to EPA annually. NEI

data for low emitting point sources (“type B”) and all other non-point source types must be

submitted every three years. A matrix in the CERR defines the various pollutant thresholds that

distinguish between type A and type B point sources. Presently, there is a 17-month window for

states to submit NEI data to EPA. For example, NEI submittals that covered the calendar year

2005 were due by May 31, 2007. EPA further has an 18-month period in which to process state

NEI data and publish finalized, aggregate NEI data for public use to its web site at

http://www.epa.gov/ttn/chief/eiinformation.html. This nearly 3 year delay in publishing NEI

data is being accelerated over the next few years, as stipulated in the CERR.

39

http://www.epa.gov/ttn/chief/eiinformation.html

NEI data can presently be submitted to EPA in three forms: text files, Microsoft Access MDB, or

XML. The NIF specifies the required format for text files and Microsoft Access. EPA’s Basic

Format and Content Checker (BFCC) utility is a proprietary Visual Basic 6 application that can

be used to validate text file and Microsoft Access NEI datasets. NEI XML files must be

submitted to the CDX Exchange Network Node, and are validated using the NEI XML Schema

and Schematron. With the implementation of the Exchange Network, EPA is encouraging a

transition from the NIF to XML for NEI data submittals.

2.1.6. DEC AirTools application and source database

DEC’s Oracle AirTools database serves as a data store for the AirTools application, a custom-

built C# Windows Forms application used by DEC Air Division personnel for air permit

tracking, compliance, emission inventory, and various other functions. The AirTools database

contains a broad array of data, including all NEI source data. To populate NEI data in the

AirTools database, DEC requests point source data from industry six to eight months prior to the

NEI submittal deadline, receiving this data most often as paper and spreadsheets. Non point

source data (area, non-road mobile, on-road mobile, and biogenic) are obtained through internal

data modeling and data acquisition from various third parties. Both point and non-point NEI

data are manually entered through the AirTools application by DEC data entry personnel, and

stored in the AirTools database. This process occurs every year, where NEI submittals for large

point sources must occur annually, and all others must occur every three years.

40

Running over the Red Hat Enterprise Linux ES 4 operating system, the Oracle 10g AirTools

database consists of 156 tables, where 29 of these tables are pertinent to NEI data. Seven of the

29 tables related to NEI are core data tables, whereas the other 22 tables are secondary lookup

and utility tables (see Appendix 1).

The AirTools database is accessible using Oracle SQL*Net, and ADO.NET, but only from

within the state wide area network (WAN). NEXT will reside on a workstation within the state

WAN with the Oracle client software installed, and will thus have direct access to the AirTools

database. A specific NEI Oracle account has been created for the purposes of this project, which

provides read only (i.e. SQL SELECT) access to the emission inventory tables. Appropriate

permissions have also been granted to create needed stored procedures under this NEI Oracle

account.

The AirTools database generally adheres to relational database best practice design principles.

Numeric primary keys are defined for all tables, with appropriate foreign keys to ensure

referential integrity. To ensure data integrity, all tables are organized into third normal form

(3NF). Several table indexes have been created to enhance query performance, based on reviews

of AirTools usage by DEC’s Oracle database administrator (DBA). Moreover, all tables and

columns in the AirTools database include textual comments describing the data they store.

41

http:ADO.NET

The DEC data center houses both a production and development Oracle database, on different

physical servers. In support of ongoing development work, AirTools tables and data are

periodically replicated from the production database to the development database, as needed. A

production to development replication for all 2005 NEI data was recently performed by the

Oracle DBA, ensuring that a real world set of data can be used for development work on this

project. To ensure no adverse impact on the production AirTools database, this project will

exclusively reference the development AirTools database.

2.1.7. DEC existing NEI export program

Since 1999, DEC’s existing custom-built Alaska Emission Inventory System (AEIS) software

has been used to extract AirTools NEI data and transform it into the NIF text format. AEIS was

written using Borland Delphi 5, and DEC has retained all the source code. AEIS serves as the

first step in the existing NEI extract, transform, validate, and submit process:

1.	 Extract NEI data from the AirTools database and transform it into the NIF text format

using DEC’s AEIS.

2.	 Validate resulting NIF text file format and content using EPA’s BFCC utility. If errors

are reported, correct the appropriate AirTools database source data, and start over at step

1.	 The BFCC cannot validate biogenic source type NIF files.

3.	 Name NEI data file according to CDX requirements, and compress using ZIP format.

4.	 Logon to CDX Web, fill in NEI submittal information, and upload validated and

compressed NEI data file.

This process is repeated for each of the five different NEI source types.

42

In terms of technical architecture, AEIS is a client/server Windows application, and uses native

Oracle drivers to improve performance (Allround Automations’ Direct Oracle Access product).

Despite the highly data-intensive nature of this application, the AEIS database interface is

inefficient, consisting exclusively of client-side SQL calls (no stored procedures are used).

Moreover, SQL statements are dynamically constructed in the application, and lack bind

variables. This approach requires hundreds of SQL calls that cannot utilize Oracle’s statement

cache, resulting in runtimes in excess of 15 minutes for an NEI point source export for a typical

year. While a 15-minute run time is not problematic for a single run, it becomes highly

problematic when several runs need to be performed as validation errors are discovered and

corrected. To ensure usability and efficiency, NEXT should extract and transform all NEI point

source data for a given calendar year to XML within three minutes. Upon successful

implementation of NEXT into the production environment, AEIS will be retired.

2.1.8. EPA NIF to XML converter

To assist with the transition to use of XML, EPA provides a free executable utility that is

intended to convert NEI NIF text or Microsoft Access files to NEI XML. Written for the .NET

Framework 1.1, this utility is presently in beta, and was last updated in September 2005. This

converter is not considered as a viable alternative to this project, because it has no programmatic

interface, and cannot submit NEI data to EPA. Nonetheless, the software was tested for its

potential value as a comparative product. An initial evaluation uncovered several problems,

most seriously when the software was unable to process two sample Alaska NIF text files,

aborting with an unhandled (and non-descript) exception. Upon contacting EPA regarding these

43

problems, the author discovered that no source code is available for the utility, and EPA has

suspended its development due to its general inapplicability to state NEI Exchange Network

integration efforts. As a result, this utility was not used for this project beyond the initial

evaluation.

2.2. The contribution this project will make to the field

This project will comprise a full software development project, from requirements analysis to

implementation, and can serve to inform and enlighten others in several respects. In general IT

terms, this project will represent a useful case study about the viability, benefits, and problems

when developing an adapter to allow an existing application to participate in an SOA. Moreover,

moving data efficiently between disparate systems (both internal and external) is a significant

concern in many organizations, and this project can provide valuable insights when considering

XML for this purpose. This project is also of specific interest to those organizations planning or

considering utilizing the Exchange Network. As the first Exchange Network dataflow at DEC,

this project will be of particular interest as DEC determines whether those additional dataflows

will be pursued.

2.3. Summary

Generic, core technologies pertinent to this project include XML and Web services, which are

open technologies used for data integration. As an SOA, the Environmental Information

Exchange Network is a unified mechanism to improve the exchange of environmental data

44

between EPA, states, and other parties, using XML, Web services, and the Internet. The

Exchange Network supports various dataflows (different types of environmental data), one of

which is the National Emission Inventory (NEI). DEC has a legacy NEI transfer program that

generates text files, but does not validate this data or submit it to EPA. The existing AirTools

database will provide all needed NEI data for NEXT. This project will provide a valuable case

study for participating in an SOA, as well as using XML for data exchange.

45

3. Chapter Three: Methodology / Plan

3.1. Life cycle model to be followed

The software development life cycle to be generally followed on this project is the Sashimi

Model (aka Waterfall with Overlapping Phases Model). The pure Waterfall Model consists of

requirements analysis, design, construction, testing, and implementation phases, where these

phases are disjoint and completed sequentially -- the work in one phase is fully completed before

starting the next phase. The Sashimi Model allows for overlap between adjacent phases, which

allows more flexibility as the project progresses (McConnell, 1996). While the goal and

requirements of this project are clear, some flexibility in project phases is desirable to address

emergent issues as design and development work proceeds.

During the requirements analysis phase, the problem domain will be investigated in depth, to

include review of pertinent Exchange Network documentation, the existing AirTools database,

XML, and corresponding XML Schema. Because the project feasibility, scope, and resource

commitment have already been established, these aspects will not be considered during

requirements analysis. The design phase will address application architecture, integration into the

existing DEC computing infrastructure, database interfaces, user interfaces, and error handling.

The software will be built in the construction phase, followed by the testing and implementation

phases. The Waterfall Model also traditionally includes a post-delivery maintenance phase.

However, since the project does not involve deployment to the production server, the

maintenance phase is excluded (a subsequent production deployment will naturally have a

maintenance phase, however).

46

While alternative life cycle models such as Rapid Application Development (RAD), Extreme

Programming (XP), Agile, and Spiral were considered, the Sashimi Model was ultimately

selected as the optimal life cycle on a project of this nature, for the following reasons:

•	 The desired application functionality is unambiguous.

•	 The application scope is fairly small.

•	 The application requirements are largely defined in the Exchange Network NEI

documentation, in particular the NEI Flow Configuration Document, NEI Data Exchange

Template and NEI XML Schema.

•	 The Sashimi Model offers a sequential phase progression, and allows for some overlap

between adjacent phases, which provides desirable flexibility.

3.2. Specific procedures

3.2.1. AEIS evaluation

The project will begin with an evaluation of the existing AEIS program and transfer code. Built

in 1999, AEIS transforms data from the AirTools database into a fixed length text format that

conforms to the NEI NIF specification (see section 2.1.5). No system documentation exists for

AEIS, so this evaluation will consist of a review of Borland Delphi source code and forms. A

key goal of this evaluation is to identify appropriate columns, indexes, and queries that comprise

NEI data. In conjunction with this effort, EPA’s document that details mappings between NEI

NIF data elements and the corresponding NEI XML Schema elements will be referenced.

47

3.2.2. AirTools database

The existing AirTools Oracle 10g relational database will be referenced by NEXT as the sole

source repository for all necessary NEI data. Since the AirTools database is used by the existing

AirTools application (see 2.1.6), this database will not be modified in any way as part of this

project. Pertinent documentation of the AirTools database will be extracted using Microsoft

Visio, which can create an Entity Relationship Diagram (ERD) using its reverse engineering

capability. NEI related tables and columns are also fully commented using Oracle’s object

comment capability. If Visio cannot extract these comments, they will be extracted using

appropriate queries against the Oracle data dictionary.

3.2.3. NEI data elements

All NEI data elements are characterized as either mandatory, necessary, or optional. Mandatory

data elements are required; an NEI submittal without these data elements will be rejected by

EPA. Necessary elements are desirable, but EPA will plug in modeled values for these data

elements if they are not provided. Optional data elements are fully optional. This project will

only address mandatory and necessary data elements.

3.2.4. Development tools

A Microsoft Visual Studio 2005 C# Windows Forms project will be used to build the NEXT

front-end. EPA provides a .NET Client Toolkit, which provides example C# code for various

Exchange Network Node Web service calls. This toolkit will be used an important point of

48

reference in the development of NEXT, as well as a source of code reuse. Allround

Automations’ PL/SQL Developer will be used for creation of PL/SQL back-end Oracle stored

procedures.

3.2.5. Source control

An existing DEC Microsoft Visual Source Safe 2005 (VSS) source control system will be used

for the project. Although only a single developer will be coding for the project (that is, the

author), use of VSS will provide full versioning, history, and backup of all source code changes.

The actual VSS repository is stored on a DEC file server, which is also available via a VPN for

remote development work. The Visual Studio 2005 C# project will connect using built-in VSS

plug-in capability. The PL/SQL Developer project will use a third party plug-in to reference the

same VSS repository.

3.2.6. Software engineering paradigm

The author is a strong proponent of object-oriented analysis, design, and programming, as an

object-oriented approach can offer a host of benefits (Schach, 2005). However, the nature of this

particular application is not well suited to full object-orientation. A key function of NEXT is

extraction of a large set of data elements from a relational database and transformation to XML.

Given stringent performance requirements (see 2.1.7), NEXT must incur minimal overhead, and

the process of reading from the database, transforming, and writing to XML must be direct and

efficient. Inserting an intermediary layer of classes/objects between the database and XML

49

would not only result in performance degradation, but increased application complexity.

Moreover, significant NEXT processing will occur within PL/SQL stored procedures, which

negates the ability to represent business rules there as operations within objects. As such, the

extract and transform functionality in NEXT will generally be designed and built using a

classical, rather than object-oriented paradigm. The validate and submit functionality in NEXT

will be designed and built using an object-oriented paradigm, however.

3.2.7. Application architecture

In accordance with software design best practices, NEXT will be logically partitioned into a

structural framework, consisting of the following logical layers (Fowler, 2003):

•	 Presentation— user interface (implementation is Windows Forms)

•	 Domain— objects that describe the problem domain (excludes objects that directly map

to NEI database tables)

•	 Business— business rules (in addition to internally defined rules, will reference business

rules defined in PL/SQL)

•	 Integration— database access (implementation is Oracle RDBMS)

Layers will be implemented as distinct and appropriately named folders within the NEXT Visual

Studio Project. NEXT will be physically partitioned onto two tiers: client (workstation) and

server (database).

50

NEXT layers and application components within layers will adhere to the following general best

practice design principles (IEEE Computer Society Professional Practices Committee, 2004):

•	 Encapsulation— Entity elements and internal details are packaged, such that those details

are hidden.

•	 High cohesion— Entity elements and internal details are all strongly related, contributing

to a single purpose.

•	 Low coupling— An entity has few dependencies on other entities.

•	 Modularity— Large entities are compartmentalized and decomposed into smaller

independent entities.

Wherever possible, appropriate architectural and design patterns will be implemented in NEXT,

to utilize proven, tested designs for common object-oriented design problems. In particular, the

following architectural and design patterns will be considered (Fowler, 2003):

•	 Separated Interface— Defines an interface separately from its implementation.

•	 Abstract Factory— Provides an interface for creating related objects without specifying

their concrete classes.

•	 Plugin— Links classes during configuration rather than compilation.

•	 Façade— Provides a simplified interface to a larger, complex body of code.

Since NEXT will not implement an object layer as an intermediary between the source data and

XML (see 3.2.6), datasource-related architectural patterns will not be used in the integration

layer (such as Table Data Gateway, Row Data Gateway, Active Record, and Data Mapper).

51

3.2.8. Coding comments

The author will be responsible for writing all code for the project, including both C# and

PL/SQL. To ensure clarity upon subsequent reviews, all code will be thoroughly and completely

documented using in-code comments. In C#, each class, method, and property will be

documented using the XML comments feature (invoked using a triple forward slash). In

PL/SQL, each procedure will be commented immediately above the procedure header. All

comments will include a general description of the item, along with parameter descriptions and

data types. Additional comments within methods or procedures will be liberally added, as

necessary.

3.2.9. Testing

Appropriate NEXT unit tests will be created using the NUnit open source unit-testing

framework. Unit tests will be created that have a reasonable probability of catching an error,

based on the judgment of the author (Kaner, Falk, & Nguyen, 1999). While the CDX Validation

Web service provides an official validation assessment, unit tests can provide further assurances

that NEI data is being properly extracted from the AirTools database. All errors discovered

during informal and unit testing will be logged into DEC’s web based bug tracking system.

Best practices indicate that software development and testing should be conducted by different

individuals or groups (Kaner, Falk, & Nguyen, 1999). Beta testing by end users is often

desirable as well. However, individuals other than the author will probably not be enlisted to

52

assist with testing on this project, due to the nature of the application. NEXT is a utility program

with a very specific purpose and limited user interface (likely consisting of simple Exchange

header data entry and a “Go” button). Given this, the most useful and meaningful tests for

NEXT are automated tests, particularly unit tests and calls to the CDX validation Web service.

3.3. Formats for presenting results/deliverables

The C# project application will be provided as a Microsoft Visual Studio 2005 solution,

consisting of all appropriate solution folders and full source code. PL/SQL will be provided in a

SQL script that will create the PL/SQL within a self-contained Oracle package. System

documentation and logs will be provided as Microsoft Word files. Performance testing results

will be provided in a Microsoft Excel spreadsheet.

3.4. Review of deliverables

As noted in Table 7, this project will culminate with six specific deliverables.

Table 7. Project deliverables

Number Item

1 Microsoft Visual Studio 2005 C# Windows Forms solution for the NEXT front end

(see Appendix 2 for application screenshots). NEXT must extract NEI data from

the AirTools database, transform this data into XML, validate the XML, and finally

submit the XML to the CDX Test Node. NEXT must process all five NEI data

53

source types (point, area, onroad mobile, nonroad mobile, and biogenic). NEXT

must also consider non-functional quality factors, including reliability, usability,

maintainability, extensibility, and adaptability.

2 Oracle PL/SQL script to create stored procedures utilized by deliverable #1.

3 Application documentation (requirements specification, ERD, class diagram, and

sequence diagrams)

4 Log of a failed (invalid) NEI submittal to the CDX Test Node. XML validation

errors should be explicitly shown in the log (see Appendix 4).

5 Log of a successful NEI submittal to the CDX Test Node for all Alaska’s 2005 air

data, to include all five source types (point, area, onroad mobile, nonroad mobile,

and biogenic).

6 Performance testing results for Alaska 2005 point source NEI data, to include

extract (query) time, XML write time, compress time, validation time, and submit

time. The extract + XML write time must not exceed three minutes, and tests will

be conducted on the author’s development laptop.

The project schedule noted in Table 8 spans a 77-day period, from August 6 to October 21.

Although the final task is scheduled to be completed by 10/14, the project completion deadline is

officially October 21, which leaves seven days of slack to cover potential task extensions.

54

Table 8. Planned project schedule

Task

ID

Task Description Estimated

Work Effort

(hours)

Start Date End Date

1 Exchange Network Research and
Requirements Analysis

25 8/6 8/26

2 Application design 15 8/27 9/9

3 Application development 90 9/10 10/7

4 Application testing & submit data to
CDX Test Node

15 10/8 10/14

3.5. Resource requirements

Hardware requirements include a Dell Dimension D620 Laptop (2GB RAM, Intel T7400 CPU)

and a Dell PowerEdge Server (4GB RAM, Dual Intel Xeon CPUs, RAID5 drive array).

Software requirements include Oracle 10g relational database, Microsoft Visual Studio 2005,

Altova XMLSpy, Microsoft Windows XP, Microsoft Visio, Microsoft Word, and Microsoft

Excel. The development Oracle 10g database resides on the Dell PowerEdge Server (the

production Oracle database will not be used for this project). All the required hardware and

software is already available, having been purchased by DEC for use on other projects.

Personnel resource requirements include the author, along with potential limited assistance from

other DEC personnel and EPA CDX support personnel.

55

3.6. Outcomes

The principal functional outcome of this project is custom software capable of successfully

extracting, transforming, validating, and submitting Alaska NEI data to the Exchange Network

CDX Node. Supplemental nonfunctional outcomes include suitable performance (maximum of

three minutes to extract and write point source one year of NEI data), and completion prior to the

project deadline (October 21). Collectively, these outcomes comprise the project success

criteria. If successful, this project will form the basis for development of further dataflows at

DEC. If not successful, an assessment of failures and potential remedies may occur, or DEC

initiatives in support of the Exchange Network may be withdrawn entirely.

3.7. Summary

This project will utilize the Sashimi Life Cycle model, as an appropriate approach based on

project characteristics, while providing increased flexibility from the pure Waterfall Model. The

project will include an evaluation of the existing NEI transfer mechanism, namely AEIS, the

AirTools database, and NEI data elements. Microsoft Visual Studio will be used to develop the

Windows Forms NEXT front end, and PL/SQL Developer will be used to develop back end

Oracle PL/SQL. Best practice software engineering principles will be implemented when

developing NEXT, including layering and integrated unit testing. To ensure optimal application

performance, NEXT will be developed using a hybrid object-oriented and classical paradigm. At

the end of a 77-day project work schedule, NEXT will be delivered as a software product

capable of submitting Alaska NEI data to the CDX Test Node.

56

4. Chapter Four: Project History

4.1. How the project was managed

This project was generally managed using Traditional Project Management (TPM) techniques

(Wysocki & McGary, 2003). The author wore many hats on this project, including project

manager, developer, tester, and technical writer. Much of the basis for managing this project

was derived from the project objectives and deliverables. With a clear purpose and unambiguous

deliverables, the scope of the project was well defined. Known project risks (described in

section 1.4) were also clearly identified at the outset of the project, and continuously monitored

throughout the project. Fortunately, no risks related to format or regulatory changes manifested

themselves during the project, which allowed the project to be completed within schedule.

The project plan consisted of identification of project activities, timelines, and resources

requirements. While project activities were clearly defined, activity work effort was difficult to

determine, because a project of this nature had not been performed at DEC before. An educated

guess was essentially provided, based on the experience of the author, review of EPA’s example

C# .NET Client Toolkit, and brief discussions with other states agencies that have participated in

the Exchange Network. The project schedule made a distinction between task work effort and

duration, which provided a more accurate assessment of task work, given that the author had

other non-project related responsibilities during this time.

To track specific coding tasks and desired fixes, TODO tags were used in both Visual Studio and

PL/SQL Developer. Use of these tags provided a handy way to track coding changes and work

57

tasks remaining. With several thousand resulting lines of PL/SQL and C# project code

(excluding auto-generated code, comments and blanks), this capability proved to be essential.

Visual Source Safe was also used to track aggregate source code changes, and the author

referenced prior code versions in VSS on several occasions.

To close out the project, documentation was finalized, and the project deliverables were created

and stored on a designated location on the DEC file server. A project summary report was also

created and distributed to various DEC IT personnel with potential interest in use of the

Exchange Network.

4.2. Significant project milestones/events

The actual project progression generally followed the scheduled plan, but deviated on task #3,

which was intended to be completed by 10/7, but was not completed until 10/15, due to various

technical difficulties (see section 4.5). The actual work effort was also correspondingly higher

for task #3, being 112 hours instead of the planned 90 hours. Nonetheless, as noted in Table 9,

the project was still completed prior to the 10/21 deadline, due to the inclusion of slack time in

the original project schedule.

58

Table 9. Actual project schedule / milestones

Task ID Task Description Actual Work

Effort

(hours)

Completed

Date

1 Exchange Network Research and Requirements
Analysis

19 8/26

2 Application design 18 9/9

3 Application development 112 10/15

4 Application testing & submit data to CDX Test
Node

16 10/20

4.3. Changes to the project plan

The primary change to the project plan was the extension of the task #3 completion date by eight

days, due to various difficulties encountered during development. Yet, even with this change,

slack time in the project schedule allowed completion by the October 21 deadline.

Project deliverable #5 required the demonstration of successful data submittals for all NEI source

types to the CDX Test Node, based on 2005 NEI data in the AirTools database. Prior to any

submit operation, a successful validate operation must first occur. However, initial validation

runs indicated some 250 problems with source data, which were mostly either “out of range” or

“invalid code.” To correct this and proceed to submit operations, the author manually adjusted

all reported errors to known valid values using the AirTools application front end, along with

59

direct AirTools database SQL update statements. This data correction effort consumed a

significant amount of time, and was not part of the project plan. While this possibility was

considered as a risk factor (see 1.4.4), the effort involved was not quantifiable prior to the project

outset.

4.4. Evaluation of whether or not the project met project goals

The project met its primary goal of developing software with a demonstrated ability to

successfully submit Alaska NEI data to the CDX Test Node, including all five NEI source types.

Secondary project goals were met as well, including project completion by October 21, ensuring

the extract and XML writing process for NEI point source data occurred within three minutes,

and satisfaction of all six project deliverables.

4.5. What went right

In retrospect, several aspects of the project contributed to its success. In particular, a clear and

unambiguous project goal, clearly and fully documented project requirements, and an organized

management approach kept the project on track and steadily moving toward the project goal.

The use of programming languages (PL/SQL and C#) that were well known by the author was a

key decision. The project timeframe was aggressive, and if languages unfamiliar to the author

were used, the project could not have been completed within the allotted timeframe. Moreover,

60

use of a comprehensive suite of NUnit unit tests proved to be valuable as a quality assurance tool

as development progressed and various coding changes were implemented (see Appendix 6).

A significant project timesaver proved to be use of EPA’s CDX validation Web service, instead

of attempting to validate XML locally. While validating remotely is distinctly slower than

locally, use of the CDX validation Web service simplified the project by alleviating the need to

write validation code. Additionally, while the .NET Base Class Library includes XML Schema

validation capabilities, it does not include Schematron validation capabilities (although several

open source Schematron validation libraries for .NET do exist).

Use of PL/SQL as the workhorse in extracting NEI data was a further key decision, as the broad

scope of data elements and processing involved became clear. Moreover, by aliasing database

columns to appropriate XML data element names in PL/SQL, the C# portion of NEXT could

focus exclusively on writing out the XML and submitting it to the CDX Test Node.

4.6. What went wrong

No aspects of NEXT development would be appropriately classified as something that “went

wrong.” However, while the overall data transformation process and Web service exchanges

appeared deceptively straightorward at the project outset, several difficulties emerged as

development work delved deeper into specific application details. These difficulties were both

of an administrative and technical nature, as noted in Table 10.

61

Table 10. Project difficulties

Problematic Aspect Description

Node Help Desk

support

EPA’s contractor-run Node Help Desk is the sole provider of Exchange

Network technical assistance. The author attempted to obtain assistance

from the Node Help Desk on several occasions. Unfortunately, obtaining

meaningful help from the Node Help Desk was often a slow, multi-day

process.

Regulatory and data

format

inconsistencies

The CERR is the federal rule that mandates submittal of periodic

emission inventory data to EPA. The CERR lists specific data element

requirements, as does the NEI XML Schema. However, the data

requirements of the CERR and NEI XML Schema are sometimes

inconsistent. In a discussion with EPA regarding this discrepancy, EPA

confirmed that they should be the same. EPA further indicated that

either the CERR or NEI XML Schema should be updated to match in the

near future. Despite this unresolved discrepancy, NEXT will conform to

the NEI XML Schema, as it must in order to create valid NEI submittals.

Web service

attachment

mechanism

The Exchange Network requires transmittal of source data as compressed

(zipped) XML data files. When invoking a Web service submit call, this

zipped data is attached to the SOAP call itself, using DIME (by attaching

binary data outside the SOAP body, costly encoding and decoding is

avoided). However, the BCL does not include support for DIME by

default-- download and installation of Microsoft’s Web Service

Extensions (WSE) was required. Only after considerable troubleshooting

62

did the author discover that an automatically-generated C# Web service

reference file must be manually altered to use DIME (reference.cs).

DIME has since been superseded by MTOM, which is evidently easier to

use and more efficient than DIME. The Node 2.0 specification calls for

use of MTOM.

File compression

format

Prior to initiating an Exchange Network submit Web service call, the

source XML file must be compressed using the ZIP format. While the

.NET BCL includes compression functions, the GZIP format used in the

BCL is incompatible with ZIP format required by the Exchange

Network. As such, an open source compression library that supports the

ZIP format was utilized instead (#ziplib).

Faulty XML

validation criteria

In one instance, the validation provided at the CDX validation Web

service was incorrect. Initial submittals to this service were rejected due

to stack heights that exceeded 100 feet (yet real stack heights often

exceed 100 feet). After informing the Node Help Desk of this problem,

they altered the NEI Schematron validation to permit stack heights up to

1,000 feet.

Submit permissions

problem

Although the author had an established NAAS account that should allow

submission to the CDX Test Node, a permissions error was received the

first time the author attempted to submit NEI data. In contacting the

Node Help Desk, a specific submit permission for NEI data had

improperly not been added to the account.

63

Limited Oracle

column name length

According to the application design, the extracted Oracle column names

would be aliased with appropriate XML element names. For example,

column name FCT_EMISSION_PERIODS.START_DATE was aliased to

EmissionPeriodStartDate. This approach generally worked well.

However, Oracle has a 30-character limit on column names, and some

required NEI XML element names exceeded 30 characters. This

situation necessitated the need to create shorthand column name

components (e.g. Em -> Emission), where the elongation then occurred

in the C# client application just prior to writing the XML. While

somewhat inelegant, Oracle’s limits in this regard do not leave any other

real alternatives.

Null data handling When a particular source database column contains a null value, there are

two different approaches to handling this when writing to XML. The

initial default approach using C# was to write empty tags (e.g.

<EmissionPeriodStartDate>< /EmissionPeriodStartDate>).

However, files with empty elements coded in this manner were rejected

by the CDX validation Web service. It turned out that the CDX

validation Web service requires the alternative approach, which is to

exclude the data element entirely.

Byte order mark All initial XML submittals to the CDX Test Node were rejected for

having an “invalid file format.” After considerable troubleshooting, and

64

using a hex editor, the author discovered that the BCL XmlTextWriter

class by default writes a Byte Order Mark (BOM) in the first three bytes

of the resulting XML file. The CDX validation Web service was

confused by the presence of these three bytes. A specialized call to the

XmlTextWriter constructor was necessary to omit the BOM.

Cryptic validation CDX validation Web service validation reports tend to be fairly cryptic

reports (see Appendix 4). When a validation error report is received, in order to

correct problems, the submitter must map each error in the report to the

appropriate data instance in the source application/database (e.g.

AirTools). With this mapping, the source data can be corrected, and the

extract performed again. However, such mappings can only realistically

be performed by an individual with requisite knowledge of both the

XML and source application/database (as was the case on this project).

4.7. Findings/Results

With the successful submission of Alaska NEI data to the CDX Test Node on October 20, NEXT

achieved the primary project goal (see Appendix 3). Secondary project goals were met as well,

including project completion by October 21, ensuring the extract and XML writing process for

NEI point source data occurred within three minutes (the actual time was less than one minute,

as illustrated in Appendix 5), and satisfaction of all six project deliverables. The success of the

NEXT project represents a promising step towards standardizing DEC’s environmental

dataflows, and gaining the full benefits the Exchange Network offers.

65

The Exchange Network is a necessary and appropriate national solution to the problem of

disparate environmental data transfer mechanisms. Developed over several years as a

collaborative effort between states and EPA, the Exchange Network is a robust and carefully

crafted means to improve environmental dataflows. Moreover, with a technological foundation

based on XML, Web services, and the Internet, partners can universally participate in the

Exchange Network, regardless of their own internal computing infrastructures.

NEXT provides significant improvements over AEIS in processing NEI data. While AEIS

functionality was limited to extract and transform, NEXT provides a fully integrated solution,

including extract, transform, compress, validate, and submit functionality. The Exchange

Network facilitates integration of the validate and submit functions through Web services, while

a NEXT design steeped in software engineering best practices facilitates integration and optimal

processing for the extract, transform, and compress functions. As a result, the extract and

transform process was reduced from over 15 minutes in AEIS to less than one minute in NEXT

(this improvement is unrelated to the Exchange Network, per se). Although the raw XML NEI

files generated from NEXT are considerably larger than the corresponding text files generated

from AEIS, compressing XML files prior to submission reduced their size by over 90%.

While the development of NEXT was ultimately successful, it was more difficult than

anticipated. Several technical difficulties hampered development (in particular tasks relating to

Web service calls), resulting in a delayed project completion date. Some difficulties were likely

exacerbated by the author’s lack of experience in working with XML and Web services, and

66

lacking Exchange Network technical support. While the project was completed nonetheless,

these difficulties do underscore short term Exchange Network cost of entry and learning curve

considerations for new Exchange Network participants such as DEC. However, a key Exchange

Network benefit is achieving economies of scale, which can only be realized over the long term

as Exchange Network participation increases.

4.8. Summary

Using Traditional Project Management techniques, the author wore many hats on this project,

including project manager, developer, tester, and technical writer. Well-documented

requirements and a clear project goal kept the project focused. The project was successfully

completed prior to the project deadline, although the development task was eight days longer

than planned. Use of familiar programming languages, the CDX validation Web service, and

heavy use of PL/SQL proved to be instrumental project success factors. Various technical

difficulties were encountered as NEXT development progressed, although none was

insurmountable. NEXT succeeded in its goal to submit NEI data to the CDX Test Node, and

proved to be a significant improvement over AEIS.

67

5. Chapter Five: Lessons Learned and Future Project Evolution

5.1. Conclusions

Development of NEXT and a successful submission to the CDX Test Node demonstrated the

viability of adapting an existing data exchange process to use XML, Web services, and the

Exchange Network. Although NEXT is a specific, limited example, this generically

demonstrates the viability of developing an SOA service requester (NEXT) that references local

data and connects to an existing SOA service provider (CDX). Moreover, because an SOA is

standards-based, most modern development tools can be used to develop requesters and

providers (for canned enterprise software, adapters are often available as well). Although most

SOA literature addresses implementations where requesters and providers exist within a single

enterprise/organization, SOA is an appropriate architecture for environmental dataflows

nationwide.

All hype and propaganda aside, the promise of SOA is true, offering real benefits (Erl, 2005). In

an increasingly complex and heterogeneous IT environment, SOA provides a consistent

architectural framework where applications can be rapidly developed, integrated, and reused.

The SOA ideal is also achievable. In the development of NEXT, the existing AirTools database

and application were unchanged, leveraging existing technology investments and abstracting

these backend systems from the Exchange Network. The end-to-end automation achieved in

NEXT was compelling, being realized by the ability to reference validation and submit Exchange

Network services. The benefits of reuse and standardization were also plainly evident, as all

states utilize Exchange Network services in the same manner. However, realization of full SOA

68

benefits will only occur as participation increases (Erl, 2005). DEC will further realize

Exchange Network benefits with the implementation of additional Exchange Network dataflows.

Standardization enables SOA. For a Web services SOA implementation, technology standards

include XML, SOAP, WSDL, and UDDI; the underlying transport most often uses TCP/IP.

Widely accepted and open technology standards such as these allow efficient integration and

abstraction of heterogeneous source data systems and tools, be it .NET, Java, Oracle, SQL

Server, etc. SOA services are interoperable, being decoupled from backend technologies,

platforms, and operating environments. In addition to technology standards, data standards are

key to realizing SOA benefits, by laying the groundwork for data integration. In the Exchange

Network, environmental data standards are defined using XML Schemas and Schematron,

providing a consistent means to describe and validate all environmental data.

As with many new paradigms and technologies, the initial costs and learning curve for SOA

participation can be high. Service oriented solutions not inherently simple or easy to build (Erl,

2005). While none was insurmountable, several technical difficulties occurred during NEXT

development, delaying the project completion date. The initial effort and cost to participate in an

SOA will vary depending on the nature of the application or business function intended for SOA

integration, along with the skills and experience of designers and developers. In any case, a

transition to SOA will demand effort, discipline, and time.

69

While SOA has tremendous potential benefits, caution must be exercised when considering

SOA, and quality can vary. A poor quality or ill-conceived SOA implementation can result in

detrimental software architectures (Erl, 2005). Use of services does not negate the need for

software engineering best practices, understanding of underlying business rules and processes, or

common sense. The interoperability gains achieved in an SOA implementation using Web

services do introduce potential performance degradation due to the overhead associated with

XML writing, XML parsing, and transmitting sizeable SOAP messages. For NEXT, the

performance impact was negligible, largely due to ZIP compression of the NEI data XML

attachment, a coarse-grained service interface (the Submit is a single Web service call), and an

asynchronous call design (after the Submit call, processing status is retrieved via a GetStatus

call). Appropriate preparations must also occur to lay the groundwork for SOA. In particular, a

robust, optimized, and interoperable SOA can only be created by first standardizing the manner

in which data is represented, validated, and processed.

5.2. Project Evolution / Recommendations

The successful development of NEXT and submission to the Exchange Network represented the

first phase in an evolving feature set for this software. Five recommendations for furthering the

base that was established in NEXT are noted in Table 11.

Table 11. Project recommendations

Synopsis Description

Deploy to NEXT should be deployed into production in support of the 2006 NEI data

70

production Oracle

database server

submittal, which must occur prior to 5/31/2008. The PL/SQL script must

be executed on the production Oracle server to create the appropriate

packages. The C# application configuration file (app.config) must be

altered to reference the production server.

Implement further

DEC dataflows

NEI is the first Exchange Network dataflow implemented at DEC. Future

potential dataflows include Safe Drinking Water Information System

(SDWIS), Facility Registry System (FRS), and Water Quality and

Discharge (ICIS-NPDES). Still further dataflows may be developed at

DEC as support for new dataflows is added to the Exchange Network.

Automate NEI

point source data

retrieval

All point source NEI data is obtained directly from industry. When

obtained, this data is manually entered into the DEC AirTools application,

which correspondingly fills NEI related tables. This data collection effort

represents a very large data entry burden for DEC each year. A

complementary project would be to develop a system to facilitate

automated submittals of point source NEI data directly from industry.

Large companies may be well suited to provide NEI data directly in the

XML format, whereas smaller companies might be able to utilize a web

site to load this data.

Proactively

address upcoming

regulatory and

technology

changes

The function of NEXT is tied to a dynamic regulatory and technology

environment. Several changes are forthcoming which will affect NEXT, in

particular Node 2.0, NIF 4.0, and CERR. While none of these changes in

their present form will require major NEXT modifications, the status of

these potential changes should be closely monitored and considered as

71

NEXT development proceeds.

5.3. Summary

The successful development of NEXT demonstrated the viability of participating in an SOA, by

developing an adapter as a bridge from an existing system. An SOA offers real benefits,

including the ability to preserve legacy systems, automation, and standardization. SOA quality

can vary, and SOA pitfalls must be well understood prior to embarking on an SOA

implementation. NEXT is recommended to evolve in several respects, including deployment to

production, serving as a basis for further DEC dataflows, automating source data retrieval,

integrating in the DEC Exchange Node, and addressing upcoming regulatory and technology

changes.

72

References

Britton, C., & Bye, P. (2004). IT Architectures and Middleware: Strategies for Building Large,

Integrated Systems (2nd ed.). Boston: Unisys Corporation.

Environmental Information Exchange Network. (2006, August 3). Exchange Design Guidance

and Best Practices for the Exchange Network.

Environmental Information Exchange Network. (2002, February 12). Implementation Plan for

the National Environmental Information Exchange Network.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Upper Saddle

River: Pearson Education.

Feuerstein, S., & Pribyl, B. (1997). Oracle PL/SQL Programming. Sebastopol: O'Reilly.

Fowler, M. (2003). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.

IEEE Computer Society Professional Practices Committee. (2004). SWEBOK 2004 Version.

Kaner, C., Falk, J., & Nguyen, H. Q. (1999). Testing Computer Software. New York: Wiley.

MacDonald, M. (2003). Microsoft .NET Distributed Applications: Integrating XML Web

Services and .NET Remoting. Redmond: Microsoft Press.

McConnell, S. (1996). Rapid Development. Redmond: Microsoft Press.

Ray, E. T. (2003). Learning XML (2nd ed.). Sebastopol: O'Reilly.

Schach, S. R. (2005). Object Oriented and Classical Software Engineering (6th ed.). New York:

McGraw-Hill.

73

Wysocki, R. K., & McGary, R. (2003). Effective Project Management: Traditional, Adaptive,

Extreme (3rd ed.). New York: Wiley.

74

Appendix 1. Core AirTools NEI tables Entity Relationship Diagram (ERD)

FCT_EMISSIONS

PK EMISSION_KEY

FK1 PERIOD_KEY
POLLUTANT_KEY
EMISSION_TYPE_KEY
EMISSION_NUMERIC_VALUE
FACTOR_NUMERIC_VALUE
FACTOR_UNIT_NUMER_KEY
FACTOR_UNIT_DENOM_KEY
FACTOR_CALC_METHOD_CODE
FACTOR_RELIABILITY_KEY
RULE_EFFECTIVENESS
CONTROL_STATUS_CODE
EMISSION_UNIT_NUMER_KEY

FCT_EMISSION_CONTROL_DEVICES

PK CONTROL_DEVICE_KEY

FK1 EMISSION_UNIT_KEY
DEVICE_TYPE_KEY
PRIMARY_CODE
ID
DESCR
PCT_CTL_EFF
PCT_CAPTURE_EFF
TOTAL_CAPTURE_EFF
MANUFACTURER
MODEL_NUM
NEED_CODE
OTHER_NEED_DESCR
EFF_DETERMINATION

FCT_EMISSION_UNITS

PK EMISSION_UNIT_KEY

FK2 FACILITY_KEY
FK1 RELEASE_POINT_KEY

ID
DESCR
MANUFACTURED_YEAR
MANUFACTURER
MODEL_NUM
SERIAL_NUM
PORTABLE_CODE
USE_CODE
OPERATIONAL_USE_CODE
DESIGN_CAPACITY
RETIRED_DATE
INSTALLED_DATE
TAG_NUM
DESIGN_CAP_VALUE
DESIGN_CAP_NUMERATOR
DESIGN_CAP_DENOMINATOR
DESIGN_CAP_MAX_NAMEPLATE
STARTUP_DATE

FCT_EMISSION_PROCESSES

PK PROCESS_KEY

FK1 EMISSION_UNIT_KEY
MATERIAL_KEY
MATERIAL_IO_CODE
DESCR
FUEL_CONS_RATE
PRIMARY_CODE
SOURCE_TYPE_CODE
COUNTY_FIPS_CODE
SCC_KEY

FCT_FACILITIES

PK FACILITY_KEY

AFS_ID
NAME
NAICS_CODE
SIC_CODE
COUNTY_FIPS_CODE
CLASSIFICATION_CODE
COMPLIANCE_CODE
HPV
CEM
PORTABLE
GOVERNMENT_CODE
SPECIAL_AREA_CODE
FILE_NUM
INDIVIDUAL_KEY
CONTROL_REGION_CODE
DESCR
HARDSOURCE
XML_DETAIL

FCT_EMISSION_PERIODS

PK PERIOD_KEY

FK1 PROCESS_KEY
START_DATE
END_DATE
THRUPUT_NUMERIC_VALUE
THRUPUT_UNIT_KEY
PERIOD_DAYS_WEEK
PERIOD_WEEKS_PERIOD
PERIOD_HOURS_DAY
PERIOD_HOURS_PERIOD
HEAT_CONTENT
ASH_CONTENT
SULFUR_CONTENT
WINTER_THRUPUT_PCT
SUMMER_THRUPUT_PCT
SPRING_THRUPUT_PCT
FALL_THRUPUT_PCT
HEAT_CONVENTION_CODE
MAX_HEAT_INPUT
MAX_HEAT_OUTPUT
SULFUR_CONTENT_H2S
DATA_SOURCE_NOTES

FCT_EMISSION_RELEASE_POINTS

PK RELEASE_POINT_KEY

ID
DESCR
STACK_HEIGHT
STACK_DIAMETER
STACK_DATA_SOURCE_CODE
EXIT_GAS_TEMP
EXIT_GAS_FLOW_RATE
EXIT_GAS_VELOCITY
RELEASE_POINT_TYPE_KEY
BASE_ELEVATION
PARAM_UNITS_CODE
FACILITY_KEY
LATITUDE
LONGITUDE
LOCATION_DESCR
COLLECTION_METHOD_CODE
ACCURACY
DATUM_CODE

75

Appendix 2. Screenshot of NEXT form tabs

76

Appendix 3. Screenshot of successful 2005 point source NEI data submit log

Appendix 4. Screenshot of example failed point source NEI data validation log

77

Appendix 5. Screenshot of performance testing results spreadsheet

78

Appendix 6. Screenshot of NUnit tests

79

