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Acoustic testing and modeling: An advanced undergraduate laboratory

Daniel A. Russella) and Daniel O. Ludwigsenb)

Physics Department, Kettering University, Flint, MI 48504

(Dated: June 3, 2011)

This paper describes an advanced laboratory course in acoustics, specifically targeted for students
with an interest in engineering applications at a school with a strongly integrated industrial co-op
program. The laboratory course is developed around a three-pronged approach to problem solving
that combines and integrates theoretical models, computational models, and experimental data. The
course is structured around modules that begin with fundamental concepts and build laboratory
skills and expand the knowledge base toward a final project. Students keep a detailed laboratory
notebook, write research papers in teams, and must pass laboratory certification exams. This paper
describes the course layout and philosophy, and shares personal experience from both faculty and
student perspectives.

PACS numbers: 01.50.Qb, 01.40.Qb, 43.58.+z, 43.10.Sv

I. INTRODUCTION

The opportunity to study acoustics beyond a super-
ficial introduction to the field is an experience most of-
ten reserved for graduate students. Most undergraduate
physics students are not exposed to acoustics beyond an
introduction to wave phenomena as might be encoun-
tered in a freshman mechanics course, and the situation
is not that different in undergraduate engineering pro-
grams which might offer an elective noise control course.
There are quite a few schools offering physics of sound
courses as electives for undergraduate students in non-
technical degrees, but while these provide a broad ex-
posure to acoustics topics, they can hardly be considered
an in-depth experience. However, while the vast majority
of acoustics education takes place at the graduate level,
undergraduate acoustics education has been a concern
of members of the Acoustical Society of America for at
least 45 years.1 Kettering University is one of a handful
of schools with several advanced undergraduate courses
in acoustics,2–4 and offers an academic minor in acous-
tics for physics and engineering students. The laboratory
course described in this paper provides an in-depth ex-
posure to acoustics far beyond what most undergraduate
students would likely experience, but one which is tai-
lored to student needs in our unique academic environ-
ment. In this paper we will provide a brief description of
the academic setting that allows for an in-depth under-
graduate exposure to acoustics, and then we will describe
in some detail the laboratory course that serves as a cap-
stone to this experience. The most important feature of
this laboratory course involves a three-fold approach to
investigating an acoustic phenomenon synthesizing theo-
retical models, computational models and experimental
data.

Kettering University is a small private undergradu-
ate school focusing on engineering, applied sciences, and

a)Electronic address: drussell@engr.psu.edu
b)Electronic address: dludwigs@kettering.edu

business disciplines. Though the school has undergone
many changes5 since its inception in 1919, the one thing
that has always set Kettering apart is the complete in-
tegration of classroom teaching and co-op work experi-
ence with industrial sponsors. Kettering’s student body
consists of two separate student populations who respec-
tively alternate between 11 week academic terms in the
classroom and 11 week stints working at a co-op job twice
each year. At the end of a 5 year program, each student
earns a Bachelor’s degree and has 2.5 years of industrial
work experience. The industrial hands-on experience is
considered part of the education process, beginning in
each student’s freshman year and culminating in a senior
thesis that describes the student’s solution to a problem
for their co-op employer. Because of this industrial co-op
emphasis, all degree programs including physics have a
strong application to real-world problems.

The acoustics minor at Kettering consists of four
courses starting with a junior level course (differential
equations pre-requisite) entitled “Vibration, Sound, and
Light” – required for both the acoustics and optics mi-
nor – that introduces students to the fundamentals of
oscillation, of acoustic waves in mechanical media, and
of electromagnetic waves. The second acoustics course,
“Acoustics in the Human Environment” exposes students
to topics and applications of acoustics encountered in in-
dustrial and consulting settings. The third course toward
the acoustics minor is either a course in digital signal
processing or vibration control, depending on a student’s
pre-requisite background and degree area. The advanced
laboratory course “Acoustic Testing and Modeling” de-
scribed herein serves as the culmination of the acoustics
minor. This course also serves as the advanced labora-
tory course for all majors in applied physics majors and
engineering physics.

When the authors were designing the current acoustics
minor course sequence, and especially the advanced lab
course described in this paper, several influences came to
bear. First was the observation that many of the compa-
nies hiring Kettering co-op students use a blend of theory,
computer models, and experimental data to solve prob-
lems. A second influence was a series of editorials in the
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acoustics industrial trade magazine Sound & Vibration8

which drew attention to perceived deficiencies in engi-
neering undergraduates now entering the workplace.9–17

Some editorials decried students’ lack of ability to cor-
relate models with test data and complained about stu-
dents who cannot determine whether or not a model re-
sult is viable. Others noticed that students who demon-
strated an ability to solve clearly defined textbook prob-
lems often had considerable difficulty when faced with
the more realistic real-world problems that are often less
clearly defined and may involve messy or noisy data.
Still others expressed a need for improved communica-
tion skills related to report writing and technical presen-
tations. A third influence came from the simultaneous
development of a new computational physics course by
one of the authors. The interplay between theoretical,
experimental and computational scientists,18 and the ne-
cessity of providing a context to assess the validity of a
computational result guided the integration of computa-
tional and experimental activities.

II. OVERVIEW OF THE ACOUSTIC TESTING AND
MODELING COURSE

The academic minor in acoustics at Kettering Univer-
sity is supported by a well-equipped laboratory capable
of providing an advanced experimental experience. This
1160 sq-ft (108m2) laboratory facility has been equipped
through generous donations from several industrial spon-
sors, and is used for teaching as well as for faculty and
student research. Equipment includes five stand-alone
two-channel FFT analyzers (with FFT, octave band,
swept sine, and cross-correlation features), and an as-
sortment of high quality microphones, sound level me-
ters, and two sound intensity probes. Seven computer
workstations run MATLAB and LabVIEW for data pro-
cessing, and COMSOL Multiphysics6 for finite element
modeling of acoustics and structural mechanics problems.
Multiple small PCB accelerometers and force-impact
hammers along with two computers with STAR Modal
experimental modal analysis software7 support experi-
mental modal analysis testing. Other equipment includes
two binaural heads, mechanical shakers, impedance head
transducers, DAT recorder, various loudspeakers and mi-
crophones, and a collection of musical instruments and
other objects for testing. A 3.5m×3.5m×3.0m anechoic
room is available for testing of sound sources. In addi-
tion to several workbench areas, there is a conference area
where 8-10 students can sit around a table and discuss
their work; this space is also used for lecture activities
when needed.

The Acoustic Testing and Modeling course is offered
twice a year during 11-week Winter and Spring academic
terms, typically to 5-8 students at a time. The course
counts for 4 academic credit hours, and meets three times
a week for two hours each session during an academic
term lasting 11 weeks. Only a handful of class meetings
involve what might be called a traditional lecture, and
then mainly on a just-in-time basis when specific a theo-
retical background is necessary for students to develop a

physical model of a problem. The rest of the class time is
split between experimental data collection and analysis
and computer modeling and interpretation of results.

The overall structure of the course consists of two mod-
ules each lasting approximately 5-1/2 weeks, to fit within
11-week academic terms. The modular approach allows
for variety in the course from term to term, and allows for
the potential to tailor the experimental topics to accom-
modate student interests. To date we have implemented
two modules, one each for air-borne sound and struc-
tural vibration and are in the process of developing two
more. Each module culminates in a specific project and
a group research paper. Currently the air-borne sound
module ends with students measuring the vector sound
intensity radiated by a tuning fork and comparing mea-
sured data with theoretical and computer models. The
structural vibration module ends with students compar-
ing computational models of a structure of interest with
experimentally determined mode shapes and frequencies
of the actual structure. A future air-borne sound module
involves an investigation of acoustic impedance and its
applications to extracting sound absorption coefficients
and the design of acoustic filters and mufflers. A planned
structural acoustics module includes an exploration of
the circuit anologies between electrical, mechanical and
acoustic systems, the design and performance of vented
boxed loudspeakers, and the radiation of sound from vi-
brating surfaces.

Throughout each module, as they progress toward the
final project, students gradually build up their skills and
knowledge base. They learn how to use the laboratory
equipment they will need, and gain practice analyzing
data. They gain experience building simple computer
models of the systems they are testing. All through the
course students maintain a detailed laboratory notebook,
journaling their research experience. At the end of each
module, they work in teams to write a research paper
synthesizing the results form the three approaches, drawn
from the contents of their laboratory notebooks.

III. MODULE #1: VECTOR INTENSITY RADIATED BY
A TUNING FORK

At the beginning of the air-borne sound module stu-
dents are introduced to different types of microphones.
They learn how to calibrate a microphone using the com-
parison calibration technique and a pistonphone, how to
determine the sensitivity (in V/Pa) of a microphone, and
how to set up a microphone-FFT analyzer system to mea-
sure sound pressure levels accurately. They also learn
some basic operations using a FFT analyzer to observe
microphone output in both time and frequency domains.
The usefulness of the decibel scale is discovered exper-
imentally during the introduction to the FFT analyzer.
The first major experiment students conduct is to mea-
sure the sound pressure (in Pa) and sound pressure level
(in dB) as a function of distance from a simple source
consisting of a small boxed loudspeaker producing white
noise. Students are given general guidelines, but are ex-
pected to figure out the parameters of the experiment by
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themselves. One group of students takes measurements
in our anechoic chamber, while another group takes mea-
surements in the laboratory classroom. The expectation
is that the sound pressure level will drop −6 dB (corre-
sponding to a halving of the pressure amplitude) each
time the distance from the source doubles, and this is
what the group in the anechoic room finds. Upon com-
paring data sets, the group taking measurements in the
open lab space discovers that beyond a certain distance
their sound pressure levels no longer drop by the expected
−6 dB per doubling of distance, and may even remain rel-
atively constant. This leads to a discussion of the critical
distance, and allows for a definition of the free-field and
reverberant field. Further discussion of the theory for
spherical waves introduces the parameter kr (product of
wavenumber and distance from the source) and distin-
guishes between the near-field and far-field of a source.

This first hands-on experience is followed by a brief
theoretical discussion of sound source models and the
important quantity ka, where k is the wavenumber as-
sociated with the sound wave and a is an appropriate di-
mension of the source.19 The class is split into two groups,
with one group experimentally measuring the sound radi-
ation from a 10-cm diameter boxed loudspeaker at multi-
ple frequencies while the other group begins learning how
to model the radiation of sound from simple sources us-
ing finite element software. The two groups switch tasks,
but are expected to share information to aid in refin-
ing the model and/or experimental parameters. Figure
1 compares student experimentally measured directivity
patterns (top) for the sound radiated by the 10-cm boxed
loudspeaker at frequencies of 100 Hz (ka < 1) and at
5000 Hz (ka ≈ 10) with the predicted directivity patterns
for the same frequencies obtained from a 2-D computer
model of the sound radiation sound source consisting of
a box with three rigid walls and one surface with a spec-
ified pressure amplitude. The conclusion students reach
is that a sound source may be treated a “simple source”
as long as ka < 1. When building this computer model,
students encounter issues regarding mesh size and wave-
length, and must learn to compromise the size of their
model to match the available computational power.

At this point it should be pointed out that emphasis of
the computer modelling approach in this course is not an
attempt to teach students all of the details and features
of the modeling software or the theory behind the com-
putational method, but rather the emphasis is on having
students gain familiarity with the steps required to cre-
ate a valid finite element model (drawing geometry, set-
ting the physics, meshing, and post-processing) and the
practice of using experimental data and theoretical ex-
pectations to refine and improve a computer model. An
oft-repeated complaint expressed in several Sound and
Vibration editorials9–17 was a frustration with students’
inability to determine whether or not a computer model
results are correct, or even reasonable. Undergraduate
students often display a tendency to trust the results of
a model simply because it was produced with computer
software, with no validation that the model parameters
were appropriate for the problem in question. The em-
phasis on using computer models in this course is to fo-

FIG. 1. (Color online) Student data showing the directivity of
a 10-cm diameter boxed loudspeaker: experimental data for
(a) 100 Hz and (b) 5000 Hz, compared to a student computer
model prediction of the directivity for (c) 100 Hz and (d) 5000
Hz. The orientations of the speaker for the experimental data
and model are not the same.

cus on the choices made while constructing a model and
to encourage students to continually refine their model
based on experimental results and theoretical expecta-
tions.

It is also important for students to realize that there is
often more than one way to obtain a valid result. For ex-
ample, when constructing a 2-D finite element model of
an acoustic dipole source using COMSOL Multiphysics,
there are several approaches one could use. One could
enclose a dipole type source element within a geometric
subdomain. Or, one could create two identical monopole
sources, each consisting of a monopole type source el-
ement within a geometric subdomain, but with oppo-
site phases. As yet another alternative, one could create
a surface element and assign opposite polarity pressure
boundary conditions to create a dipole source. Students
are encouraged to be creative, and often end up com-
peting with each other. Some students produced very
detailed models of sources that closely approximate the
physical dimensions and shape of the loudspeakers used
in the experiment. The bottom line is that students are
required to compare the model results to experimental
data and theoretical expectations and make modifica-
tions where necessary to bring the two into as close agree-
ment as is possible in the time allowed.

Dipole sources are followed by quadrupole sources, and
this necessitates a bit of just-in-time lecturing because
the theoretical models become somewhat complex. Ex-
panding the experimental investigations and computer
models to include acoustic dipole and quadrupole sources
follows.19 Four identical loudspeakers, connected to a 4-
way switch box allowing for individual level control and
switches for reversing polarity, rotate on a turntable while
the resulting directivity is measured with a stationary mi-
crophone. After students have conducted an experimen-
tal measurement and computer model of the directional
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FIG. 2. Results from a student’s finite element model showing
a 2-D map of the vector intensity in one quadrant in the
horizontal plane of the region surrounding a tuning fork. The
tuning fork tines are aligned to vibrate in the x-direction

characteristics of dipole and quadrupole sound sources,
they investigate the behavior of a large tuning fork. Us-
ing a strobe light to examine its motion while vibrating in
its fundamental mode20 students discover that a tuning
fork vibrates as a linear quadrupole source,21 a conclu-
sion which is validated by experimental measurements of
the tuning fork directivity pattern. Experimental data
is used to fine tune computer models of the sound field
radiated by a longitudinal quadrupole source.

At this point the students are almost ready to begin
working on their first major project. A class meeting
is devoted to discussions of theoretical and experimen-
tal approaches to sound intensity, and then students are
set free to explore the vector sound intensity around a
tuning fork using the theoretical, experimental and com-
putational skills they have developed. Depending on the
number of students in the course, the class might be sep-
arated into two teams, one to work on developing a com-
puter model of the vector sound intensity radiated by the
tuning fork while the other group experimentally mea-
sures the vector intensity using an intensity probe and a
turntable apparatus. Splitting the class has the advan-
tage of requiring the two teams to talk to each other to
share data and results to create a single report. Student
teams collaborate to write a research paper summariz-
ing and comparing their theoretical, computational and
experimental results for the tuning fork intensity.

This tuning fork project is interesting for a number of
reasons. First, the sound field and the vector intensity
radiated by a tuning fork is surprisingly complex, with
a very clear distinction between near-field and far-field
regions in the vicinity of the fork tines. Students are
able to learn a considerable amount of acoustics from a
seemingly simple object. Figure 2 shows the result from
a student’s finite element model of the normalized vector

intensity map in one quadrant of the sound field around
a tuning fork. The vector intensity plot shows significant
circulation of the sound energy in the near-field, including
a point on the x-axis where the direction of the intensity
vector reverses. The features of this computer model are
in good general agreement with theory22 as well as with
the experimental data the students collect.23 However,
the location point on the x-axis where the intensity vec-
tor reverses direction is found to be 13.5 cm from the fork
axis according to the computer model, while both mea-
sured data and theory show the turning to be 18.0 cm
from the fork axis.24 This disparity between model and
measurement provides an opportunity to teach students
some important lessons about realistic research problems.
Many students are content to state that their experimen-
tal results and computer models are “close” without fur-
ther elaboration. Some students just chalk the differences
up to “human error” and ignore them. Other students
are bothered by the differences, but don’t know how to
discuss or explain them. Students need to know that not
all problems, even seemingly simple ones, don’t always
have nice tidy answers, and that when models and ex-
periments don’t agree we need to start questioning why.

IV. MODULE #2: MODAL ANALYSIS OF A VIBRATING
STRUCTURE

The structural vibration module begins with a brief
theoretical review of single-degree-of-freedom vibration,
and a hands-on experiment with a nonlinear oscillator
with a stiffening spring and hysteresis effects. A short
theoretical introduction to multiple-degree-of-freedom
oscillators is followed by an experimental investigation
of mode shapes and frequencies for multi-DOF systems,
ending in an experimental investigation of standing waves
on a string. The professor then leads students through
the theory for standing waves on a string, especially pay-
ing attention to various types of boundary conditions.
This is followed by construction of computational mod-
els of a steel string with fixed and mass-loaded boundary
conditions.

Students then spend several class periods measuring
the vibrational mode shapes and frequencies of a rectan-
gular beam using several different methods. First, they
attach a small NeFeB magnet to one corner of the beam
and use an electromagnetic coil to drive the beam into
vibration.25 A small microphone is used to scan the pres-
sure right next to the vibrating surface, and changes in
the phase of the Lissajous pattern between the driving
signal and the microphone response indicates the cross-
ing of a nodal line.26 This scanning technique allows stu-
dents to map out several bending and torsional modes,
and plotting frequencies versus the number of nodal lines
identifies differences in the frequency ratios of the two
types of vibration. The exploration of beam vibrations
continue as students learn how to use a force-impact ham-
mer, accelerometer and a two-channel FFT analyzer to
produce a frequency response function consisting of the
ratio of acceleration to force. They explore the effect of
hammer tip stiffness, hammer mass, impact location and
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the principle of acoustic reciprocity.27 The amplitude of a
peak at a specific frequency for the imaginary part of the
frequency response function (consisting of the ratio of ac-
celeration to force) represents the mode shape amplitude
for that specific location at that frequency.28 Recording
the amplitudes of the peak in the imaginary part of the
frequency response function at a specific frequency as the
hammer impact location moves along the length of the
beam constitutes a “poor man’s modal analysis” and al-
lows one to sketch the mode shape corresponding to that
frequency.29

After this initial experimental introduction to the vi-
brational behavior of flexing beams, time is spent devel-
oping the theory of the fourth-order differential equation
of motion and the solutions for flexural bending waves in
a beam, paying special attention to the effects of bound-
ary conditions. Students are given a homework assign-
ment to determine the frequencies and plot mode shapes
for a free-free beam with the dimensions and approximate
material properties of the beam they have been study-
ing experimentally. Subsequent class periods are devoted
to having students work through a complete experimen-
tal modal analysis of the free-free beam using the STAR
Modal software package for extracting mode shapes and
frequencies from the frequency response functions. Fi-
nally, they create a finite element model of the free-free
beam and compare the mode shapes and frequencies with
experimental data and theory. Examples of student ex-
perimental data are shown in in Fig. 3, and computer
model results in Fig. 4. The data shown in includes the
first three bending modes and the first torsional mode for
the free beam.

Students quickly discover that the computer model
predicts a number of mode shapes that are not observed
experimentally nor predicted theoretically. The experi-
mental and theoretical results only account for transverse
flexural bending waves in one direction while the com-
puter model predicts flexural waves in other directions
as well as longitudinal and torsional modes as well. The
material properties (Young’s modulus and density) of the
beams used for experimental data are not exactly known,
so students must use their experimental data to fine-tune
the parameters of their computer model and theoretical
calculations. This is another point where it is possible
to stress the importance of comparing and synthesizing
data from several viewpoints, discussing the similarities

FIG. 3. Student data (scanned from a laboratory notebook)
showing mode shapes for a free-free bar as obtained through
experimental modal analysis. Frequencies for the first three
bending modes are 140.75Hz, 381.7Hz, and 760.17Hz.

FIG. 4. (Color online) Student data (scanned from a labo-
ratory notebook) showing mode shapes for a free-free bar as
predicted from a finite element computer model. Frequencies
for the first three bending modes are 137.8 Hz, 380.2Hz, and
746.1Hz.

and differences between mode shapes and frequencies ob-
tained through different methods and to weigh the va-
lidity of different results. Students are not specifically
told what to do, though well-timed hints are provided.
Few students, on their own, think to construct a table
in their lab notebook comparing the frequencies or node
locations from the five different approaches they have
used to study the same beam. Most students are satis-
fied to state that the results from different methods are
“close” without any further elaboration. This laboratory
approach encourages students to synthesize results from
multiple approaches into a single coherent description of
structural vibration.

For the project phase of this module, students are given
the opportunity to study the vibrational characteristics
of a relatively simple object. Some opt to study the
vibration of the same tuning fork for which they stud-
ied the intensity in first module while others often chose
to explore a sports implement, such as a baseball bat,
hockey stick or golf club. A preliminary computer model
of the structure is made, and experimentally obtained
mode shapes and frequencies from a complete experi-
mental modal analysis of the actual structure are used
to refine the parameters of the computer model. De-
pending on the size of the class, students are sometimes
split into teams, with one team focusing on developing
the computer model while the other team was conduct-
ing the experimental modal analysis. Finally the various
student teams collaborate to write a research paper com-
paring the results of the experimental and computational
investigation of their particular structural object.
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V. STUDENT DELIVERABLES

A. Laboratory Notebooks

The core component of this laboratory course, both
in terms of student effort as well as grades, is the lab-
oratory notebook. Students are required to continually
maintain and update a bound laboratory notebook that
contains all class notes; any homework; summaries of
assigned reading materials; descriptions, photos and/or
sketches of all experimental apparatus; details descrip-
tions of computer models; detailed descriptions of ex-
perimental procedures; data and results from computer
models and experiments, presented through tables and
plots; discussion of results comparing experiment with
theory and computer models; and evidence of cross refer-
encing through citations linking back and forth between
related material throughout the notebook. The lab note-
book is essentially a journaled scrapbook of a student’s
entire experience during the course. The lab notebook
also serves as the primary source of information for the
two research papers the students write at the culmination
of each project.

Significant time during the first class period is spent
discussing the role that the notebook will play, as well
as for sharing some guidelines for maintaining a good lab
notebook.30 The practice of maintaining detailed labora-
tory notebooks is the personal practice of both authors of
this paper. However additional justification for requiring
laboratory notebooks is supported by a recent survey of
experimental practices in industry which revealed that
the practice of maintaining a detailed laboratory note-
book seems to be in sharp decline in industry and gov-
ernment labs, with some detrimental consequences.31,32

From an educational perspective, a laboratory notebook
serves two very important purposes. First it provides stu-
dents with a complete history of a research project from
start to finish, including all of the dead ends and wrong
turns along the way, as well as the breakthroughs and
bursts of insight. Secondly, maintaining a detailed note-
book greatly aids in the comparison of theoretical and
computational models with experimental results, which
is a primary goal of this laboratory course.

Lab notebooks are collected four times throughout the
term, and are graded according to a rubric. Points are
awarded in four categories: Navigation (table of con-
tents, citations linking back and forth between related
material), Clarity (legible writing and layout, profes-
sional looking tables and plots, identification of different
types of material), Completeness (are all components
present: theory notes, homework, reading summaries, de-
scriptions of experimental setups and apparatus, exper-
imental data, results with discussion, computer model
parameters and results), and Thoroughness (minor el-
ements: apparatus sketches are labeled, units for data,
comments provided to explain mathematical derivations,
correct bibliographies, margin notes indicating revision,
review, and updating content). Each category has five
levels of performance, and the grade is a sum of scores in
each category. Plenty of allowance is given for individ-
ual style and personal preference. For example, students

FIG. 5. (Color online) Scanned page from a student lab note-
book showing experimental directivity patterns for monopole,
dipole, and quadrupole sources.

are not required use the same method for distinguish-
ing different types of material, or for indicating citations
linking to related material, but those two features must
be present and easily identified. When deficiencies are
found, students are encouraged to go back and add ma-
terial before the next time notebooks are graded.

Figure 5 shows a page scanned from a student note-
book summarizing results, from the air-borne sound
module, of the sound radiated by monopole, dipole and
quadrupole sound sources. The notebook contains pho-
tographs showing the experimental setup (a detailed
written description of the setup was on the previous page
of the notebook), along with results from the experi-
ment, and discussion of those results. In this case, the
quadrupole directivity data did not turn out as cleanly
as expected, and the student drew a sketch of what the
expected results should have looked like. The yellow
highlighted page numbers link to related material (data,
theory and computer models) elsewhere in the notebook.
Another page from the same student’s notebook is shown
in Fig. 6 and summarizes the experiment to measure the
bending and torsional mode shapes for a free-free beam
using the microphone scanning technique. This student
used different color pens to identify different types of
content (black for theory discussions or explanations of
experimental setups, blue for measurements and data,
and green for discussion of results). Margin notes on the
left side of the page were added later when the student
was going back through the material. Yellow highlights
link to other pages in the notebook containing related
material, including theoretical predictions, the computer
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FIG. 6. (Color online) Scanned page from a student lab note-
book showing experimental mode shapes and frequencies for
a free-free beam with the microphone scanning method.

model results shown in Fig. 4 and experimental results
in Fig. 3.

B. Homework and Reading Assignments

Most of the content in the laboratory notebook comes
from activities conducted during the laboratory class pe-
riod, in the form of theoretical derivations, data col-
lection and analysis of model and experimental results.
However, several times during the term students are as-
signed materials to be read and summarized in their lab-
oratory notebooks. For example they might be asked
to read a short journal paper or excerpt from a text-
book that pertains to a specific topic under investigation.
A few additional brief homework assignments help stu-
dents practice presentation skills (i.e. making graphs), or
guide students in the development of the theoretical mod-
els. Summaries of reading assignments are expected to
have complete bibliographic entries, detailed enough that
it would be possible to quickly find the original source
from the citation alone. Homework involving any kind of
mathematical derivation is expected to have accompany-
ing written comments explaining the mathematical steps
and the meaning of results.

C. Research Papers

Each of the modules culminates in a research paper,
written in a style and format similar to those published

in Am. J. Phys. or J. Acoust. Soc. Am. The papers are
a group effort, with two to four students collaborating
to write a summary of the project. Each paper places
specific emphasis on explaining and comparing the theo-
retical model, computer model, and experimental results.
The first drafts of each paper are submitted anonymously
and are reviewed, using a process similar to that used for
this journal, by the professor teaching the course and one
other faculty member not associated with the course. Re-
viewer comments are returned to the students, who then
have the option of making changes to their paper before
submitting the final version.

D. Certification Exams

Twice during the term, before approaching the ma-
jor project portion of each module, students are given a
certification exam to check whether they have each in-
dividually learned to properly use laboratory equipment
and to carry out experimental techniques. Students ro-
tate through a number of specific experimental tasks in
a round-robin setting. Students are allowed to use their
lab notebooks (hence the importance on keeping a good
record of experimental procedures) and are expected to
perform tasks such as calibrating a microphone, setting
up an FFT analyzer to record a specific type of measure-
ment, recording a frequency response function, building
a simple computer model, plotting a set of data, and
recording a specific set of data for an experiment.

VI. SUMMARY

In this paper we have described an advanced under-
graduate laboratory course in acoustics, a field which is
not often encountered in any depth at the undergraduate
level. The approach taken with this laboratory course is
very appropriate for Kettering University students given
the nature of the co-op program and the industrial em-
phasis of the school’s undergraduate education. The
combination of fundamental theoretical models, compu-
tational models, and experimental results as a means of
studying a problem is intended to prepare students for
real world problem solving. The emphasis on team col-
laboration and dialogue between computational and ex-
perimental teams is similar to what many of our students
encounter when they go to industry or to graduate school.
The requirement of keeping a detailed laboratory note-
book work is good preparation for any future research
experience. And, the use of a certification exam to verify
that students know how to use specific lab equipment or
to perform certain important experimental tasks mimics
practices in the real world and would be applicable to
any field.

We should make it clear that this approach to a labora-
tory course involves a significant sacrifice of topical mate-
rial that students can be exposed to during an academic
term. This active learning approach focuses on fewer
topics in greater depth, and places more of the responsi-
bility to design the experiment, develop models, analyze
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the results and synthesize information on the students
themselves. The focus is not so much on teaching stu-
dents everything there is to know about the field of acous-
tics, but rather to use acoustics as an avenue to provide
students with the laboratory and critical thinking skills
necessary for careers in both industry and academia.
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