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Abstract: Students encounter cavity resonance
and waveguide phenomena in acoustics courses
and texts, where the study is usually limited to
cases with simple geometries: parallelepipeds,
cylinders, and spheres. Long-wavelength
approximations help with situations of more
complexity, as in the classic Helmholtz
resonator. At Kettering University, we are
beginning to employ finite element modeling in
our acoustics classes to help undergraduates
better understand the acoustic modes of actual
structures. This approach to the time-
independent wave equation (the Helmholtz
equation) was first used in a research and
measurements class to investigate two classic
resonance problems. The first problem was a
study of resonance in bottles of various shapes.
The second problem, a standard application of
the Helmholtz resonator, aimed to control noise
in a duct at a single “problem frequency.”
Students employed swept-sine tests with their
structures to determine acoustic mode
frequencies. For some of the bottles, pressure
mode shapes were also measured by moving a
small microphone. The measurements were then
compared to results from a time-harmonic finite
element model, and when possible, to predictions
based on simplified models (the Helmholtz
resonator and cylinders). The dependence of the
mode shape on varying cross-section enriched
the understanding that the textbooks could
deliver. In the noise control problem with a duct
and resonator, the interaction of the resonator
with standing waves of the duct was made clear
through visualization. In particular, the model
could simulate an infinite duct—not available in
our lab!—to clarify the effect of the Helmholtz
resonator. Measurements and models from
student work will accompany discussion, and
ideas for future implementation in courses will
be mentioned.

Keywords: acoustic modes, cavity resonance,
Helmholtz resonator

1. Introduction

The Applied Physics program at Kettering
University currently offers three courses in
acoustics to upper-level undergraduates, with a
possible minor or concentration in the topic. The
first is a survey of topics in sound, while the
second course consists of topics in vibration. The
third consists of a series of intensive laboratory
exercises. The minor may be constructed with an
appropriate additional course from either
Mechanical or Electrical engineering. In lieu of
the laboratory course, students occasionally elect
to pursue an ongoing research topic through
independent study, working individually with a
faculty member. This opportunity gave rise to
the present work combining fundamental
concepts of resonant cavities with complex
geometry through finite element modeling.

Projects involving two students are presented
in this work. Both employed the acoustics
application mode in FEMLAB 3.1. The time-
independent wave equation, known as the
Helmholtz equation, governs this application.
Eigenvalue or eigenfrequency analysis was used
to determine the mode frequencies and mode
shapes of the pressure function, while the time-
harmonic analysis provides a computational
analog to the swept-sine test used in the
laboratory. Boundary conditions were typically
straightforward; most enclosures provided
sufficiently rigid boundaries. Open ends were
considered pressure release (p = 0) boundaries,
neglecting the mass load that leads to end
corrections. In one case the “radiation” boundary
condition was used to simulate an infinite duct.
All solid modeling was accomplished in
FEMLAB, as well as post-processing.

2. Resonances in bottles

Several bottles of various geometries were
studied through finite element models and in the
laboratory. The classic shape of a glass Coca-
Cola™ bottle provides an excellent example of
these investigations. The profile of the cavity
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was determined by filling the bottle to known
depths, and measuring the mass (and thereby, the
volume) of the water. This profile was rotated
around the axis to create the 3-d interior of the
bottle.

To explain the acoustic behavior of a bottle,
the analytical model is typically either a cylinder
or a Helmholtz resonator (a neck with inertia and
a cavity with compliance).1 The Helmholtz
resonator has a single resonance as if it were a
mass on a spring. The cylinder model is based on
a closed/open pipe, with its series of
harmonically-related modes.

2.1 Mode shapes and frequencies

With the interior geometry of the glass Coca-
Cola™ bottle modeled in FEMLAB, an
eigenvalue analysis provided insight into the
possible modes of that shape. Parameters were
set to typical room values (density 1.2 kg/m3 and
speed of sound 344 m/s), and the mesh was
created with the default settings. Figure 1 gives
selected modes with their frequencies.

The lowest of these modes (309 Hz) can be
interpreted as a Helmholtz resonator mode. This
lumped-element view requires wavelengths that
are much great: the pressure in the cavity will be
acceptably uniform, and the air in the neck will
oscillate as a single mass. As the bulk of the
bottle is red, there is fairly uniform pressure. The
neck has gently sloping “shoulders”, and is more
difficult to distinguish. However, the only
significant component of pressure gradient
(related to particle velocity) occurs in the neck.

The modes at 1339 and 4468 Hz (the second
and fifth for this bottle) represent a series of
cylinder-type modes which match the boundary
conditions. These have pressure variation on the
bottle (x) axis, primarily, and nodal surfaces are
nearly cross-section planes. Where the profile of
the bottle is steeply sloped, those nodal surfaces
curve to remain perpendicular to the wall. This
may be seen in the 4468 Hz mode, near the
sloping shoulders of the bottle. Also, where the
cross-sectional area decreases, pressure
amplitude increases compared to a cylinder.

The mode at 4850 Hz is a combination of the
lowest cylinder-type mode and the lowest cross
mode (at 4697 Hz). Cross modes feature a nodal
plane along the bottle axis, as well as degeneracy
in the y and z directions.

Figure 1. Selected modes of the bottle model. Note:
color maps are different for each plot.

The results of this eigenvalue analysis
confirm the typical analytical approaches. At the
same time, there are subtleties revealed by the
finite element approach.

2.2 Experimental verification

To measure the bottle’s response in a swept-
sine test, a speaker was placed near the bottle to
drive its mouth. A reference microphone (a
lavaliere electret mic, Radio Shack 33-3013) was
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placed near the speaker, and a similar test
microphone was placed inside the bottle, near the
bottom. The driving frequency was swept
through 100 to 6500 Hz, and the result was a
clear series of peaks in the magnitude of the
frequency response (the ratio of the test mic
signal to the reference mic signal). These well-
defined peaks at least 30 dB above the
background lie below about 4500 Hz. Above that
frequency, the results seemed very noisy or
corrupted. This corruption occurred at different
frequencies for bottles of different geometries.

The lower distinct peaks could be matched to
eigenfrequencies. For example, the lowest was at
256 Hz (at a temperature of 71° F). This is well
below the 309 Hz from the lowest mode of the
eigenvalue analysis, but the discrepancy may be
due to the missing end correction. The radius of
the neck is a significant fraction of its length, so
the end correction would also be significant.
There may be additional effects related to the
pressure variation discussed below.

The problems encountered in the laboratory,
around 4500 Hz for the Coca-Cola™ bottle, are
due to the appearance of cross modes in that
frequency range. Driving the mouth with a
uniform pressure will not readily excite these,
and if the test microphone is near the axis of the
bottle, it sits at a pressure node and will not give
a worthwhile response. Different bottles will
have the lowest cross modes at very different
frequencies, explaining the variation in the result
for different cross-section geometries.

For the axial modes, it is possible to compare
axial pressure functions from FE results to
measurements made with the test microphone
fixed on the axis at various depth. Figure 2
presents is comparison for three of the modes in
Figure 1. The vertical axis in each plot is self-
normalized; only relative measurements were
important. The frequencies used in the lab were
those of the peak response magnitudes.

The match between the laboratory and FE
results is worst for the lowest Helmholtz mode.
The FE results show a nearly uniform pressure in
the bottle until the neck contracts at about 15 cm.
In contrast, the narrowed “waist” of the bottle
seems to decrease rather than increase the
pressure measured in the lab. This unexpected
pressure variation as yet lacks a reasonable
explanation. The Helmholtz resonator may not
be an accurate model for this lowest mode of the
familiar bottle shape.

Figure 2. Comparison between laboratory
measurements of on-axis pressure (circles) and FE
pressure from post-processing (solid line). Data are
individually normalized to the result at 0 cm. Data
corresponds to lab/FE frequencies, respectively from
the top, 256/309, 1274/1339, and 3980/4468 Hz.

3. Noise control application

The Helmholtz resonator combines an
acoustic inertia and compliance which can be
used to support oscillation at its resonance
frequency, as in the bottle. Alternatively, when
added as a branch off a duct, it can be used to
control noise at that resonance frequency, given
in Eq. (1).

  
f

0
= c

2π
S

V ′l
(1)

Here c  is the speed of sound, S  the cross-
sectional area of the neck, V is the volume of the
cavity, and l’ is the effective length of the neck
(including end corrections). At that frequency,
the resonator returns energy to the duct out of
phase with the original wave traveling down the
duct.2 Through the visualization power of the
post-processed finite element model, this
interaction of the Helmholtz resonator and the
duct can be understood more fully.

3.1 Verification: experiment and FE

A simple demonstration apparatus shows the
narrow-band filtering of a Helmholtz resonator
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attached to a duct. The laboratory measurements
in this work come from a 2-m duct constructed
of 1/2” medium density fiberboard (MDF). The
square cross-section has sides of 9.8 cm, which
limits the frequency range below about 3500 Hz
to assure only plane waves propagate down the
duct. At the driven end, a small enclosure
containing a 4” speaker (Audax HP100M0) was
coupled to the duct via a wider chamber,
partially stuffed with polyester fiber batting.
Silicone sealant was used to close seams.

The Helmholtz resonator, also constructed of
MDF, consisted of a fixed-geometry neck and a
cavity whose volume varied with a sliding
piston. The square cross-section of the neck had
an area of S = 25.6 cm2 and an physical length of
l = 4.55 cm. The cavity cross-sectional area was
59.3 cm2, and allowed a maximum depth of 13.5
cm. From Eq. (1), the lowest possible Helmholtz
resonance frequency is 322 Hz. The frequency of
the Helmholtz resonator will thus fall in the
midst of a series of peaks, a region where the
transducers respond with reasonable linearity.
The distance from the closed end of the duct to
the speaker cone was 208 cm, so that the duct
resonance frequencies are 83 Hz apart.

Swept sine tests recorded the frequency
response of the duct/resonator combination,
using a spectrum analyzer (Standard Research
Systems 785) and two microphones. The first
(PCB Piezotronics, Inc. U130D20) was mounted
flush with the closed boundary on the far end of
the tube. The reference signal was provided by a
lavaliere microphone (Radio Shack 33-3013)
placed at the entrance to the duct near the driver
to remove the speaker’s response characteristics.

The simulation created in the FEMLAB
environment mirrored the lab apparatus. All
boundaries of the gas volumes were assumed to
be rigid, except the end of the duct nearest the
speaker. A pressure amplitude of 1.0 Pa was
specified across this plane (this corresponds to a
sound pressure level of 94 dB re: 20 µPa).
Density of the gas was 1.20 kg/m3, and the speed
of sound was specified to be 344 m/s.

The mesh for this model was built with the
default settings; element size was appropriate to
the geometry and the wavelengths for sound in
our frequency range. The solver calculated the
pressure at element vertices at each frequency
specified. A transfer function was calculated
between the closed and driven end in the post-

processing environment to replicate the
frequency response measured in the lab.

Figure 3 displays transfer function
magnitudes from both the laboratory apparatus
(solid line) and the finite element simulation
(dashed line). The effect of the filter is clearly
seen in a notch at 530 Hz. The spacing between
the five highest duct resonances is an average of
83.5 Hz, confirming that the series of peaks is
due to standing waves in the duct. The lower
peaks show the effects of the driven boundary
condition; this is not the harmonic series for a
tube closed at both ends, rather, the driven end
‘shifts’ the series. Also, as a practical note, the
speaker is not effective at the lowest frequencies.

The difference in transfer function magnitude
overall is a result of frequency resolution and,
perhaps losses in the laboratory apparatus.
Because the FE transfer function is sampled at
10 Hz intervals, some of the maxima are not
represented in detail. The third peak, for
example, lies quite close to the 210 Hz data point
and its height is better represented. Also, the FE
model includes no losses. The actual duct has
walls with some roughness; the effect of this
could be to broaden the peaks and thereby raise
the minima.

Aside from issues of frequency resolution,
the agreement between laboratory and finite
element results was acceptable. Helmholtz
resonator frequencies varied by an average of 3%
between estimates of the lab and FE notch
frequencies.  For improvement, the model would
be recalculated with smaller frequency steps.

3.2 Infinite “virtual” duct

The intent of the work was less focused on
precision and more on understanding through
visualization. Toward that goal, the rigid
termination of the duct was replaced with a
radiation boundary condition to avoid reflections
to return to the Helmholtz resonator. The semi-
infinite duct transfer functions near the
resonance of the Helmholtz device are shown in
Figure 4. The heavy solid curve corresponds to
the type of measurement made with laboratory
apparatus, with a microphone at the far end of
the duct. The notch occurs at 514 Hz, in
agreement with theory, and a peak at 516 Hz. To
determine the nature of the peak, the duct was
lengthened to 2.1 m. The light solid curve is the
result  from  the  longer  semi-infinite  duct.  The
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Figure 3. Comparison of the transfer functions for the
duct with a Helmholtz resonator of moderate volume
(375 cm3). The solid line is laboratory data (sampled 1
Hz) and the dashed line is from the FE model (10 Hz
resolution).

peak frequency was reduced, while the notch
remained in the same place.  This peak is thus
demonstrated to be a resonance of the duct itself.

The dashed curve of Figure 4 shows a
transfer function involving the center of the duct
exactly at the site of the Helmholtz resonator,
rather than the far end. It is evident that for a
“listener” at this location, the resonator reduces
noise at a slightly different frequency; here, the
notch is at 502 Hz. The discrepancy in frequency
motivates a more informative view of the wave
in the duct near the resonator.

The spatial pressure distribution of the semi-
infinite duct and Helmholtz resonator provides
some understanding of the difference in the
notch frequency.  As shown in Figure 5, the
semi-infinite duct has no reflections from the
terminal end. However, there is a standing wave
set up between the source end and the Helmholtz
resonator. The nodes of this standing wave
appear as bands across the duct. Their spacing
and location depend on the wavelength and thus
the frequency of the wave in relation to the
boundary conditions. At 514 Hz, the node
nearest the Helmholtz resonator bends to
incorporate the entire downstream portion of the
duct.

This node does not happen to pass through
the center of  the  duct.  Instead,  at  502  Hz with

Figure 4. Transfer functions for semi-infinite FE duct
with a 6.33-cm Helmholtz resonator, with 1 Hz
resolution.

slightly longer wavelength, the node in fact
passes through the center. It does not extend to
incorporate the rest of the duct, but ends at the
far wall.

3.3 Noise control ramifications

The lumped-element approach is often used
to determine Helmholtz resonator frequencies.
With additional effort in creating a FE model,
greater knowledge of the spatial can inform
design for particular applications. The
cancellation, for example, occurs at a slightly
different frequency downstream than directly at
the center of the duct. Another benefit from this
kind of modeling effort can inform a better
understanding of the standing wave created
upstream of the Helmholtz resonator.

Because the Helmholtz resonator creates a
side branch with its own impedance to wave
propagation, the point to which it is attached
becomes a point of reflection. The Helmholtz
resonator becomes a boundary condition for the
upstream side. Resulting standing waves at
frequencies that match the boundary conditions
are responsible for the nodes and antinodes seen
in Figure 5. The maximum amplitudes, seen at
the cavity of the Helmholtz resonator, vary with
frequency. The peak at 516 Hz for the 2.0-m duct
(1.0 m upstream) is associated with one  of  these
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Figure 5. The pressure distribution (in dB) for the 2.0-
m duct at 514 Hz.

standing waves that matches the boundary
conditions best.

4. Conclusions

Courses in acoustics (and occasionally even
introductory physics) for engineering and science
majors often include the topic of resonance in
simple structures such as Helmholtz resonators
and pipes. Applying these models to real objects
requires serious consideration of the necessary
approximations. By using the accessible
numerical environment offered by FEMLAB and
now COMSOL Multiphysics, students can
visualize the differences that arise when the
model may not quite fit the geometry.

In the work reported here, student projects
investigated how the Helmholtz resonator and
pipe models fit two situations: the classic shape
of a soda bottle, and a demonstration apparatus
for noise control of sound propagating down a
duct. Detailed results of the FE models provided

further insight into the approximations and
assumptions inherent in the analytical models
used in textbook cases. In turn, the students (as
well as their instructor) became more familiar
with the analytical models. Further work will
investigate the variation of pressure in cylinders
of varying cross-section, and attempt to propose
and justify a simple correction to the volume of a
Helmholtz resonator for greater accuracy in
frequency.
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