
Regis University
ePublications at Regis University

All Regis University Theses

Spring 2010

Assessing the Flexibility of a Service Oriented
Architecture to that of the Classic Data Warehouse
Michael Pastore
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Pastore, Michael, "Assessing the Flexibility of a Service Oriented Architecture to that of the Classic Data Warehouse" (2010). All Regis
University Theses. 447.
https://epublications.regis.edu/theses/447

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217364572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/447?utm_source=epublications.regis.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

THE SOA AND CLASSIC DATA WAREHOUSING ii

Abstract

The flexibility of a service oriented architecture (SOA) is compared to that of the classic

data warehouse across three categories: (1) source system access, (2) integration and

transformation, and (3) end user access. The findings suggest that an SOA allows better upgrade

and migration flexibility if back-end systems expose their source data via adapters. However,

the providers of such adapters must deal with the complexity of maintaining consistent

interfaces. An SOA also appears to provide more flexibility at the integration tier due to its

ability to merge batch with real-time source system data. This has the potential to retain source

system data semantics (e.g., code translations and business rules) without having to reproduce

such logic in a transformation tier. Additionally, the tight coupling of operational metadata and

source system data within XML in an SOA allows more flexibility in downstream analysis and

auditing of output . SOA does lag behind the classic data warehouse at the end user level,

mainly due to the latter’s use of mature SQL and relational database technology. Users of all

technical levels can easily work with these technologies in the classic data warehouse

environment to query data in a number of ways. The SOA end user likely requires developer

support for such activities.

THE SOA AND CLASSIC DATA WAREHOUSING iii

Acknowledgements

I’d like to first of all thank my wife Ramona and children Sophia, Michael, and Andrew

for giving me the impetus to continually improve myself both personally and professionally. I

love you all. Secondly, I’d like to thank my thesis advisor, Professor Rob Sjodin, for all your

guidance these past 15 months or so. Your thorough edits and frank assessments kept me on

track with my research. Finally, I’d like to thank all the staff and students at Regis University

and the National University of Ireland, Galway with whom I interacted over the past few years.

Your professionalism and support were instrumental in making my learning experience both

challenging and rewarding.

THE SOA AND CLASSIC DATA WAREHOUSING iv

Table of Contents

Abstract ... ii
Acknowledgements ..iii
Table of Contents ... iv
List of Figures .. vi
List of Tables...vii
Executive Summary .. 1
Chapter 1 – Introduction ... 3

1.1 Problem Statement .. 3
1.2 Project Proposal... 4
1.3 Significance... 5
1.4 Thesis Statement ... 6

Chapter 2 – Review of Literature and Research ... 7
2.1 Overview of the Secondary Research ... 7
2.2 Classic Data Warehousing vs. SOA.. 7
2.3 How do the Architectures Bridge the Business/Technical Divide? 10
2.4 How Accessible are the Architectures?.. 13
2.5 How do the Architectures Handle Data Volatility? ... 17

Chapter 3 – Methodology.. 25
3.1 Approach ... 25
3.2 Project Plan ... 25
3.3 Flexibility Benchmarks ... 26
3.4 Prevention of Bias ... 27

Chapter 4 – Project Analysis and Results ... 28
4.1 Summary of Findings .. 28
4.2 WCF Proof of Concept.. 28
4.3 Source System Adapters.. 36
4.4 Integration Adapter ... 47
4.5 End-user Access .. 53

Chapter 5 – Project History... 58
5.1 Project Origins... 58
5.2 Scope ... 58
5.3 Project Management.. 58
5.4 Milestones ... 59
5.5 Changes to the Plan ... 59
5.6 Evaluation.. 59
5.7 Summary ... 60

Chapter 6 – Conclusions ... 61
6.1 Statement of Findings.. 61
6.2 Major Themes Uncovered... 61
6.3 Research Limitations... 62
6.4 The Project in Hindsight ... 62
6.5 Research Opportunities ... 62

THE SOA AND CLASSIC DATA WAREHOUSING v

References ... 64
Appendix A – Revision History.. 67
Annotated Bibliography .. 68

THE SOA AND CLASSIC DATA WAREHOUSING vi

List of Figures

Figure 1: WCF Test Client Interface... 30
Figure 2: WCF Request/Response Test .. 31
Figure 3: SOAP request .. 32
Figure 4: SOAP response .. 32
Figure 5: The IIS Host Environment... 33
Figure 6: Access to WSDL Metadata.. 33
Figure 7: Adding a WCF Service Reference... 34
Figure 8: The XML Method Interface... 34
Figure 9: Consumer Access to the WCF Remote Service .. 35
Figure 10: The Investment Data Warehouse Environment... 36
Figure 11: Security Issuer/Issue Relations .. 39
Figure 12: SMF Adapter and Consumer Interface .. 40
Figure 13: The Underlying SOAP Message Packets. ... 41
Figure 14: The WCFAccounting Class Diagram .. 42
Figure 15: The PricingVendor01 Class Diagram.. 44
Figure 16: Proprietary HTTP Price Request Post .. 44
Figure 17: The Object-Based Approach.. 45
Figure 18: The Transformation Activity Diagram .. 49
Figure 19: The Transaction Cube Adapter Class .. 50
Figure 20: Kimball’s Consumer Mode Stratification.. 54
Figure 21: The Data Warehouse and SOA Tiers... 55
Figure 22: User Integration of SOA Services ... 57

THE SOA AND CLASSIC DATA WAREHOUSING vii

List of Tables

Table 1: Summary of Findings.. 28
Table 2: Source System Extraction Flexibility Criteria .. 37
Table 3: Source System Extraction Flexibility Synopsis .. 46
Table 4: Data Transformation/Integration Flexibility Criteria.. 47
Table 5: Data Transformation/Integration Flexibility Synopsis ... 53
Table 6: Thesis Revision History .. 67

THE SOA AND CLASSIC DATA WAREHOUSING 1

Executive Summary

The classic data warehouse model has remained largely unchanged over the past 20

years. A data warehouse typically resides outside of the transactional system environment. Data

are periodically fed from source systems to the warehouse in batches, where transformation,

tagging, and integration processes are performed. Business users utilize the data warehouse

database for a variety of tasks, including ad hoc querying, data analysis, and standard reporting.

A key advantage of this architecture is that the complexities of back-end systems have all been

done away with; users have access to everything on a homogeneous platform.

The evolution and adoption of Web services over the past few years, enabled in part by

standards such as SOAP and XML, have greatly enhanced the ability of disparate information

systems to communicate with one another using common formats. An architectural concept

called service oriented architecture (SOA) has subsequently evolved that allows organizations to

utilize such standards to expose their systems to the outside world in a uniform fashion. The

flexibility of an SOA is apparent in business-to-business (B2B) communications because

organizations no longer have to use proprietary technologies in order to communicate with one

another.

Research was conducted in order to assess whether the flexibility of an SOA is applicable

to the classic data warehouse. It was found that an SOA provides more flexibility for source

system data extractions than the classic warehouse, at the cost of complexity on part of the

source system data providers themselves. An SOA also enhances the capability of combining

online and batched source system data, allowing end-users more flexibility in combining real-

time queries with historical data. Additionally, the non-rigid nature of the XML storage format

THE SOA AND CLASSIC DATA WAREHOUSING 2

allows a more cohesive coupling of metadata with source system output, thereby enhancing

flexible analysis of integration and transformation processes.

An SOA was found to lack the front-end flexibility of the tools found in the classic data

warehouse environment. Specifically, users in the classic environment have access to

summarized data tables and easy-to-use query tools based on SQL. Users of an SOA are more

likely to require developer support in order to access back-end data. This likely precludes an

SOA from being used as a front-end architecture for ad hoc purposes, thereby relegating it to the

back-end processing tiers for the foreseeable future.

THE SOA AND CLASSIC DATA WAREHOUSING 3

Chapter 1 – Introduction

1.1 Problem Statement

This research project was initiated due to the need of a small fixed-income investment

firm to phase out and replace the majority of its data warehouse code over the course of the next

four years. The current codebase is written in Microsoft Visual Foxpro (VFP), an Xbase

language that was widely used in the 1980’s and 1990’s. The vendor will discontinue extended

support for the language in April, 2014.

The initial analysis of a replacement language soon led to fundamental questions about

the data warehouse architecture itself and its ability to handle an increasingly complex number of

application providers and data integration needs. The current investment warehouse is based on

the classic warehouse paradigm, whereby source system data structures are periodically

imported, transformed and integrated within a homogeneous database platform. This

methodology has remained virtually unchanged since the widespread adoption of the warehouse

model in the 1980’s.

A number of technological advances have emerged in the intervening years as a result of

the phenomenal growth of the World Wide Web. Web Services standards such as XML, SOAP

and WDSL, supported by the HTTP and TCP/IP transport protocols, allow for an unprecedented

level of flexibility in how disparate systems can interact with one another. The concept of a

service-oriented architecture (SOA) has also gained traction as a means of making such

interactions easier to deploy and manage, independent of the configuration of the participating

systems. Although the SOA is today primarily used for integrating enterprise applications, it

shows potential for improving flexibility in the new investment data warehouse.

THE SOA AND CLASSIC DATA WAREHOUSING 4

1.2 Project Proposal

The research project will consist of two major phases. The first phase will be to conduct

an in-depth study of the SOA, its underlying technologies, standards, and current vendor

implementations. The primary sources for the data collection will be academic journals and

other published literature. Vendor-biased literature such as white papers will be avoided, as well

as web sites that provide non-substantiated opinions. A review will also be conducted of current

data warehouse methodologies and will utilize data collection methods similar to those used in

the SOA research.

The second, and primary, phase of the research project will be to develop a number of

SOA prototype adapters that provide services commonly found in the classic data warehouse

environment. A project plan will be developed that outlines the implementation of these

services. The three primary layers of the data warehouse environment (extraction,

transformation/load, and reporting) will serve as the guideline for developing these adapters.

The flexibility of the adapters will be compared to similar functionality found in the legacy

environment.

The feasibility of the research project is high. The fixed-income firm has licensed copies

of Windows 2003 servers, as well as an MSDN license that includes Microsoft Visual Studio

2008. Microsoft’s Windows Communications Foundation (WCF) appears to support the major

components associated with an SOA architecture and will likely be used to deploy the SOA

adapters. Most importantly, the management team at the fixed-income firm supports the

research project as a means of not only replacing the legacy codebase but also of potentially

improving the flexibility of data reporting and analysis.

THE SOA AND CLASSIC DATA WAREHOUSING 5

1.3 Significance

A number of important contributions to the information technology and business fields

will result from this project. First, it will be determined if a service-oriented approach to data

extraction provides better flexibility than that found in traditional warehouse implementations.

Classic data warehouse extraction routines are typically tightly bound to the schemas of the

systems with which they interact. The black-box, response-request paradigm of the SOA may

help to abstract such interfaces so that back-end upgrades have a lower impact on downstream

extractions.

Another contribution of this research project will be to explore whether an SOA approach

to extraction-transaction-load (ETL) allows static and real-time interfaces to coexist with one

another. The traditional data warehouse ETL process is primarily batch-oriented. Data are

imported from source systems in timed intervals, transformed in some way, and then stored in

the warehouse repository. This research project will assess how well SOA can manage ETL in a

more fluid manner. This is an important consideration for organizations that need the flexibility

to tap into source systems in non-uniform time intervals. Furthermore, the exposure of ETL

processes as services likely allows for a better abstraction of source systems, thereby facilitating

the integration of heterogeneous systems.

Finally, this research project will explore the notion that data warehouses must reside in a

relational, homogeneous database environment that is accessed via structured query language.

The request-response nature of the SOA might provide more flexibility for warehouse developers

and end-users alike because of its higher emphasis on the functional, rather than non-functional,

aspects of data retrieval and reporting.

THE SOA AND CLASSIC DATA WAREHOUSING 6

1.4 Thesis Statement

Utilizing a service-oriented architecture in the redesign of a legacy investment data

warehouse produces a system architecture that is more flexible than that found in a traditional

implementation.

THE SOA AND CLASSIC DATA WAREHOUSING 7

Chapter 2 – Review of Literature and Research

2.1 Overview of the Secondary Research

A thematic literature approach was conducted to identify and compare flexibility

categories for both classic data warehousing and the SOA . This review not only helped the

researcher to draw some initial conclusions but was also beneficial in understanding the technical

aspects of the newer architecture.

2.2 Classic Data Warehousing vs. SOA

Classic Data Warehousing

According to Inmon (2005, chap. 1), a properly implemented data warehouse solves a

number of problems traditionally related to corporate data analysis and reporting. These include

(1) data quality, (2) reporting productivity, and (3) transformation from data to information. The

issue of data quality often arises when the source data from multiple systems need to be

combined with one another. Unless these systems all share an integrated data dictionary, it is

likely that their naming conventions and coding schemes for data elements will differ from one

another. For example, one system may store a customer or supplier address in one character

field while another system has normalized the distinct address elements into separate fields.

Such differences are accounted for in the data warehouse through parsing and cleansing

software.

Reporting productivity in a data warehouse environment is enhanced by virtue of having

integrated, cleansed data in a single data repository. The onus is no longer on the user to

THE SOA AND CLASSIC DATA WAREHOUSING 8

determine how to link data from multiple systems, or to access systems which reside on different

platforms. Such functionality is taken care of by means of the extraction, transformation, and

load (ETL) services in the warehouse environment. User productivity is also enhanced by means

of having all integrated data in a homogeneous repository. This repository typically consists of

one or more relational or star schema structures and is accessible via SQL. Ample query tools

exist with which even the most novice end- user can quickly obtain information from such data

stores. Kimball, et al. (2008) notes that the majority of users will end up running pre-written,

parameterized reports that exist as part of a business intelligence repository (chap 11).

The transformation of data to information occurs when extracts from multiple systems are

integrated with one another and uniform code semantics are applied to the output. It is also

likely that subsequent data loads into the warehouse will form the basis of a historical, time-

variant view of source system data. This is one of the key aspects of a data warehouse which

differentiates it from a real-time system. While the latter is primarily concerned with providing

transactional services in a low latency environment, the data warehouse system exists to provide

ad-hoc analytical or standard reporting services to the business analyst. It should be noted that

more modern information systems, especially ERP’s, have come a long way in allowing ample

historical data to co-reside in the production system environment. However, as Inmon (2005)

notes, there exists no consistency in how much historical data each system maintains (chap. 1).

The data warehouse can fill such a void by applying normalized time stamping as source data are

imported. This provides a rich historical repository over time.

Service Oriented Architecture

THE SOA AND CLASSIC DATA WAREHOUSING 9

The efficient alignment of business and IT objectives has been a core challenge since the

early days of computing. An SOA approach to managing application deployment is seen as a

positive step towards better integrating business processes with their technological

implementation. As Kamoun (2007, p. 1) notes, the decades-old concept of business process

management may now have an enabling technical counterpart. A key benefit of SOA can

therefore be seen in its ability to deliver application services in a diverse business environment.

As Dan, Johnson, and Carrato (2008) note, this provides many benefits to an organization,

including (1) agile solution deployment, (2) reductions in cost through the avoidance of

duplication of effort, and (3) reduced risk because of the reuse of well-tested code and run-time

environments (p. 25). Deployment agility is gained through the ability of an SOA to provide

access to multiple system software components at runtime in the form of middleware services.

The loosely coupled nature of these services allows them to be more easily orchestrated in ways

that are customized to meet the needs of the business process chain. (Schepers, Iacob, and Eck,

2008, p. 1055). Developers of such solutions can choose what services they need and then

combine these into custom applications. The input parameters and output specifications for the

services are available via a service registry.

The potential for cost reduction through an SOA is realized by the consolidation of

service interfaces into a uniform repository. Existing business semantics can be discovered and

reused in a consistent manner throughout the organization. The alternative to this is to duplicate

business logic across applications, which will likely prove costly and difficult to manage. Marks

& Bell (2006) claim that IT costs can in fact be reduced up to 80% through the application of an

SOA, not only by reducing duplication of coding effort but also in the savings realized though

reduced hardware, licensing, and integration fees (chap. 9). Reduced risk through an SOA can

THE SOA AND CLASSIC DATA WAREHOUSING 10

be seen as a byproduct of utilizing source systems which are part of stable, well supported

production environments. It is important to note that SOA as such is not so much about code

development as it is about leveraging existing code bases. Legacy systems are natural candidates

for integration into an SOA, owing to the key role they play in the delivery of core business

functionality. Early SOA implementations have in fact been primarily oriented towards such

systems. (Dan, Johnson, and Carrato, 2008, p. 25).

2.3 How do the Architectures Bridge the Business/Technical Divide?

An important aspect of a flexible system architecture lies in its ability to convey business

semantics to end users. This section will explore the ways in which data warehousing and the

SOA bridge the technical-to-business divide..

Classic Data Warehousing

The integrated data warehouse repository provides the primary link between business

users and the information contained in on-line applications. Fundamental to this concept is that

the data warehouse is separated from the source systems from which it draws its data. Inmon

(2005) contends that this architecture provides a number of advantages for the business user,

including (1) an integrated and reconciled analytic environment, (2) a subject, rather than

functional, view of data, and (3) a level of granularity sufficient to conduct a wide range of

decision support activities (chap. 2). The data warehouse ETL process provides the functionality

required to integrate data from multiple source systems into the homogeneous warehouse

environment. A key aspect of the ETL phases is to provide the data translation and

reconciliation logic necessary for maintaining and expanding the semantics of the source system

THE SOA AND CLASSIC DATA WAREHOUSING 11

repositories. Kimball & Caserta (2004) refer to this as the “cleaning and conforming” phase of

data transformation (chap. 4).

The conforming of incoming data is perhaps the most challenging part of the ETL

process because it requires that output structures are modeled in a way that will meet diverse

end-user needs. These structures, whether OLAP-oriented star schemas or a quasi relational

operational data store (ODS), make available the subject, rather than functional, semantics of

source systems to business users. The warehouse is not an application-oriented environment; its

purpose is primarily to expose the underlying discrete data elements which cross-cut source

production systems. For example, the insurance business user of a data warehouse is more likely

to think in terms of customer and claims rather than auto and property (Inmon, 2005, chap. 2).

The level of granularity of the warehouse determines how flexible it will be for its user

base. In general, a finer grained repository will provide more reporting opportunities to the

business user, albeit at the cost of increased structural complexity. As mentioned previously,

much of this complexity can be mitigated by implementing a business intelligence portal

containing prewritten reports. Silvers (2008) contends that the use of static metadata is integral

to this process because it provides users insight into the meaning and origin of data (chap 9).

The metadata repository might be something as simple as a data dictionary stored in an Excel

spreadsheet or part of a comprehensive system in which run-time ETL processes, user access

rights, and context-based reporting are managed.

Service Oriented Architecture

An SOA usually consists of decoupled middleware services that are bound to core

production systems. These services make key components of the application environment

THE SOA AND CLASSIC DATA WAREHOUSING 12

directly available to business processes and end-user applications. An SOA can be seen as

providing the means for business users to easily interact with back-end systems. The benefits of

such an approach are realized when new business processes need to be developed from legacy

software systems. Braun (2007) contends that an SOA-based enterprise model can link process,

software, and application layers within the overall computing architecture, thereby providing

flexible support for business processes (p. 1218).

An SOA is more application/process than subject/data oriented. Within the context of

decision support, such functionality allows the business user to obtain source system data in

which semantics already conform to established business rules. The need for an intermediary

processes such as an ETL sub-system might therefore be regarded as superfluous in some cases.

A particular advantage to the SOA approach is that changes to underlying source system

structures or platforms are abstracted via stable interfaces within the SOA services layer. A user

of the SOA can then interact with services in a consistent manner, free from the burden of

knowing the underlying system’s schemas.

The key aspect of such functionality lies in the contractual nature of the SOA runtime

environment. The SOA service catalogue is a formal contract that specifies what a service

provides. It lets a consumer know what they can do and the constraints that govern how the

service is delivered. The consumer can review the contract to determine both the functional and

non-functional properties of the service. Service contracts typically fall under an overall SOA

governance structure within the organization and are deployed via Web services. Similar to the

data warehouse ETL processes, SOA service contracts are driven by metadata. Efforts over the

past few years have brought forth SOA-based metadata standards such as SOAP and Web

Services Description Language (WSDL). Organizations who publish their services using such

THE SOA AND CLASSIC DATA WAREHOUSING 13

standards may be better positioned to integrate their business processes with other service

providers, without incurring significant integration costs.

2.4 How Accessible are the Architectures?

The degree of flexibility in accessing data within the data warehouse and SOA

architectures can be assessed by evaluating (1) how open the architectures are to users of various

technical skill levels and job functions, (2) what language constructs are available for interacting

with the architectures, and (3) how well current technologies and standards promote flexible data

access within the architectures.

Classic Data Warehousing

The data warehousing environment is meant to be accessed directly by end-users in a

number of ways, including query tools, canned reports, and business intelligence applications.

The end-users themselves are apt to be more business than technically oriented. Both Inmon

(2005) and Kimball (2008) identify a few classes of end users, including business specialists and

operational personnel. The former are more likely to interact with the warehouse in an ad hoc

manner, while the latter usually run predefined reports from the system. A few factors enable

business users flexible access to the data warehouse environment. First, the data warehouse

environment of today is almost exclusively hosted on some form of relational database

management system (RDBMS). The primary access mechanism for the data stored therein is

SQL. Codd (1970) correctly predicted that a “n-ary “ relational data store, in conjunction with a

high level query language, would someday provide business users with direct access to corporate

data stores.

THE SOA AND CLASSIC DATA WAREHOUSING 14

Another reason warehouse data are readily available to most users is that software tools,

SQL language constructs, and networking standards have matured over the past two decades.

High level software tools such as Microsoft Access and Excel have built in query-by-example

(QBE) interfaces that allow even novice users to easily join tables and apply filtering logic. The

SQL language itself has undergone ANSI standardization, and is supported by most vendors.

Additionally, high-level data access interfaces such as ODBC, JDBC, ADO, and OLEBD

provide an easy and flexible means for users to connect to back-end databases. Finally, the

emergence of TCP/IP as the predominant industry-wide networking protocol provides a uniform

communication medium between computers on both local and distributed networks.

Although the data warehouse has benefited by the standardization of its underlying

technologies, no overarching warehouse standard per se has ever gained traction. TheW3C

Common Warehouse Metamodel (CWM) was developed by a consortium of users in an attempt

to provide a standard through which data can be traced and shared within the warehouse

environment. As Hartman (2008) notes however, the standard's complexity is a major factor in

its not gaining wide-spread adoption industry-wide (p. 52). Inmon and Kimball themselves

disagree upon what logical structure the data warehouse should be, with the former arguing for a

normalized data store and the latter for an OLAP-friendly star schema (Drewek, 2005).

Architectural disparities such as these may challenge the user who is well versed in only one of

the data warehouse models if they attempt to migrate to another one.

Also noteworthy is that the major RDBMS’ have proprietary language constructs in their

SQL offerings. This is due in part to vendors having already implemented portions of SQL prior

to the formal standards being agreed upon. Database vendors also tend to introduce language

enhancements over time in order to increase developer productivity and make their product

THE SOA AND CLASSIC DATA WAREHOUSING 15

offerings more marketable. A data warehouse user in the Oracle environment is therefore likely

to generate SQL code that cannot port to the MS SQL Server environment. Arvin (2009)

provides examples of the disparities between commercial vendor’s SQL dialects and the ANSI

standard itself. Such differences will challenge a developer who is attempting to write portable

data warehouse code.

Service Oriented Architecture

In contrast to the classic data warehouse, SOA has from the beginning been primarily

about enabling communications between backend systems. The technologies of the Web (e.g.,

HTTP, TCP/IP, SOAP, and XML) allow for disparate systems to interact with one another in a

loosely coupled manner across a wide area network. Access to the SOA environment however is

still largely the domain of the software developers; business user access is mainly accomplished

through software applications which hide the underlying complexities of backend data fetches.

Limited user access can be attributed in part to the relative newness of the SOA and its

only gradual adoption by major software vendors. There are also indications that the sheer

complexity of the architecture can pose significant challenges in training both technical and

business users in how to utilize it. For instance, Im, Guimaraes, and Hoganson (2004) found that

although the individual components of middleware technology may be easy to grasp, assembling

them all to create a N-tier solution can be a large task. Such complexities, at least in the short

run, will likely keep the SOA out of the domain of the casual business user. Lopez, Casallas, and

Villalobos (2007) also express concern that the SOA may not be adequately covered in the IT

curriculum at many universities. This may put recent IT graduates at an initial disadvantage, and

slow the adoption of SOA by technically-oriented users.

THE SOA AND CLASSIC DATA WAREHOUSING 16

Access to the SOA environment is accomplished using a “request-response” paradigm.

A client application or component, acting as a consumer, sends a request to a middleware service

which in turn sends back a response. This approach is analogous to distributed component

models such as DCOM and CORBA. These older technologies however tend to be harder to

configure due to the tighter coupling of their runtime environments. Scribner and Stiver (2000)

contend that the “heaviness” of such architectures cause them to be expensive to set up and

maintain (chap. 1). An SOA in contrast can capitalize on the text-based, open standards

afforded by Web-based technologies such as HTTP, XML, and SOAP. These light-weight

components provide a higher degree of flexibility in both deploying and accessing the SOA

across a wide range of platforms.

The request-response mode of communication of an SOA is similar in some respects to

the object-based programming model seen in most modern 4GL’s. A client application is apt to

make a number of object-based calls via the SOAP message protocol to middleware services.

The corresponding SOAP responses are then assembled by the client in order to create the

desired output. An object-based approach to programming can have some advantages over

declarative languages such as SQL. For instance, the user does not have to be concerned with

the underlying logical schema of the system with which they are interacting. The SQL user on

the other hand needs to express relations; a change in the schema requires a change in client

code. The nature of object-based calls also lend themselves to a more natural business-like

process description. This has the potential to allow more business-oriented users to assemble

applications using SOA services.

The W3C standards that support SOA strongly favor its flexible use across platforms. As

mentioned previously, Web-oriented protocols such as HTTP and TCP/IP, as well as standards

THE SOA AND CLASSIC DATA WAREHOUSING 17

such as XML and SOAP, promote interoperability amongst systems. The XML format, like

HTML, is a simplified subset of the SGML standard. An inherent strength of XML lies in its

structural flexibility. This allows for the formatting of data in a large number of ways, such as

hierarchical tree structures or normalized relational formats similar to those found in RDBM’s.

In contrast to a SQL based repository, which returns a cursor of rows and columns, a service

utilizing XML as its transport format can return data in a number of formats, which Sperberg-

McQueen (2005) aptly terms “semi-structured data”. The W3C XQuery standard for performing

SQL-like operations on XML files provides users with a more abstract way of interacting with

such documents. As Seeley (2007) notes, this will help speed development and simplify access

to XML files. Prior to this developers had to rely on proprietary parsing mechanisms, or the less

flexible XSLT standard.

2.5 How do the Architectures Handle Data Volatility?

Decision support architectures need to have mechanisms in place so that the user can

understand the meaning and context of the information contained therein. The resiliency of these

systems can be challenged when changes introduce semantic data conflicts in the reporting

environments. Common scenarios include (1) changes to source data schemas, (2) ambiguities

between source data values and definitions, and (3) changes to the reporting data

schemas/services themselves.

Classic Data Warehousing

Changes to Source System Schemas

Changes to source data schemas will impact the data warehouse ETL processes that

directly access them. For instance, the renaming of a table or field that is accessed by a data

THE SOA AND CLASSIC DATA WAREHOUSING 18

import process will cause an error to occur during runtime processing. One workaround is to

have source systems produce an intermediary file (typically in delimited text format) that

represents a de-normalized, schema-neutral representation of the source data. The data

warehouse ETL process will then import and parse the flat file, without having to deal with the

relationships within the backend schema from which it came. Additionally, the use of text as a

transport medium allows the ETL processes more leeway in the interpretation of data types. For

example, a source system might change a salary field from data type float to double, or change

the decimal precision from two to four digits. The representation of these values in the

intermediary file will be type neutral, allowing for greater flexibility in how they are handled

downstream. Kimball and Caserta (2004) list other advantages to using flat files, such as the

ability to use FTP as a transport medium and faster bulk load times (chap. 3).

There are cases however in which source systems are incapable of producing an extract

file for the data warehouse. In these situations a data warehouse programmer must either make

direct changes to code within the ETL processes or implement a metadata tool that provides

schema mapping services at compile or runtime. The more traditional approach to ETL within

the warehouse has been to maintain schema awareness within the code itself. A programmer

utilizes a 3GL or 4GL language to hard code all extract routines against a known schema. The

growth of relational databases in the late 1980’s, along with the use of embedded SQL in source

code, has greatly simplified this process. Although the use of schema-aware source code is

likely to provide the fastest runtime performance, it is likely to be less resilient to change than

processes that link to metadata mapping files.

A metadata mapping repository can be used to store the physical and logical aspects of

the source data repositories feeding the data warehouse system. The advantage of this approach

THE SOA AND CLASSIC DATA WAREHOUSING 19

is that a transparent, language independent view of all feeder systems is maintained outside of a

static code base. The ETL programmer can then write processes which link to the metadata at

run-time to build dynamic SQL statements. Changes to backend schemas then require (in theory

at least) a change to the metadata repository only, not the code. A more detailed metadata file

will likely contain actual fields which are joined to create output. A variety of vendor metadata-

based tools exist in the marketplace for these purposes. The more sophisticated of these allow

for rules-based metadata that are compiled into languages such as Java, C, or Visual Basic. In

this scenario, a change to a backend schema will precipitate a change to the metadata repository,

and subsequent recompiling of code. The compiled code is likely to provide better runtime

performance than the on-the-fly dynamic SQL approach, albeit with potentially less flexibility on

the part of programmer.

Source Data Ambiguities

The reconciliation of source system data conflicts during the ETL process is perhaps the

most challenging part of providing quality information in the classic data warehouse. This issue

is apt to be compounded as more source feeder systems are added, particularly if these systems

intersect one another in terms of business functionality. For instance, an auto parts retailer may

utilize a number of different wholesalers for their supplies. It is likely that the wholesalers will

have different coding schemes for the same products. This will require the designers of the

retailer’s data warehouse to implement metadata crosswalk structures for reconciling coding

inconsistencies.

A more vexing integration challenge can arise when data semantics between source

systems differ from one another. For instance, a student records system at one university may

THE SOA AND CLASSIC DATA WAREHOUSING 20

list a different date of birth for a student as another university. One school might also define full

time and part times students differently, thereby making it difficult to define these terms when

the student records from each source are integrated in the data warehouse. Bleiholder and

Naumann (2008) specify the three categories of data semantic conflicts as schematic, identity,

and data (p. 7).

Schematic conflicts can likely be resolved by maintaining a metadata crosswalk or

mapping table. Identity conflicts are likely to require more work, because each system is

providing its own version of the truth for the same element of information. Moreover, one of the

systems might be the more authoritative source depending on the context of the report being run

in the data warehouse. In such cases, metadata mapping back to discrete source system data

elements is likely necessary. Users of the warehouse can then choose which source value to use

based on their specific needs. Fritz (2006) refers to this technique as atomic data source

mapping, and contends that it should be done during the design of the semantic data model.

Data conflicts occur when semantic differences cannot be resolved based on context.

Although outright data errors will likely have to eventually be resolved (e.g. in the case of

conflicting student ages or gender classifications), there are instances in which the original

values must both be maintained in the warehouse due to ambiguity about which value is correct.

This situation might occur when two different bond rating agencies differ in their credit

assessment of a financial security. In this case, both ratings are represented in the data

warehouse repository. The cube structures found in the OLAP-type warehouse provide an

efficient means of storing data in this manner. As Bleiholder and Naumann (2008) note, SQL

unions can be used to load records from the different systems into the cube, thereby retaining

source system semantics (p. 20).

THE SOA AND CLASSIC DATA WAREHOUSING 21

Changes to the Data Warehouse Repository

The data warehouse, like the source systems which feed it, is apt to undergo upgrades

during its lifetime. Changes relating to new data structures, whether fact tables or cubes, are to

be expected as new reporting requirements surface and additional source systems are integrated

into the warehouse repository. Existing interfaces to the data warehouse structures are unlikely

to be impacted by such additive changes. However, changes to the legacy schemas within the

warehouse itself can cause problems.

Such reorganizations have the potential to break BI applications and user queries that

have been developed using the older schema. This exposes a fundamental weakness of the data

warehouse; like the operational systems that feed it, it exposes its underlying logical schema to

end users. Changes to this schema require that an impact analysis be done in order to assess

downstream risk. This can be a rather large task, depending on the scope of the changes and the

number of existing interfaces to the legacy schema. Rainardi (2008) suggests treating such

changes as one would an upgrade request for a production system, utilizing formal processes and

conducting an impact analysis (p. 501). Another approach for handling such changes is to

maintain the legacy schema in parallel with the new schema, thereby providing end-users ample

time to recode their data access routines. The legacy schema is then taken off line after a

sufficient grace period has expired.

Service Oriented Architecture

Changes to Source System Schemas

THE SOA AND CLASSIC DATA WAREHOUSING 22

An SOA that utilizes a contractual mechanism such as SOAP is apt to be less vulnerable

to schema changes in backend source systems. This is because the request/response paradigm of

the SOA deals with discrete data element fetches that are independent of the logical schema from

which they originate. The XML schema within the SOAP message may however contain

specific field data type definitions. An outright change of a source system field data type can

therefore cause the same problems as in the traditional relational model.

Source Data Ambiguities

Resolving provider data ambiguities within the SOA is vital if the architecture is to be

used for decision support purposes. As with classic data warehousing, the data that feeds the

SOA will be drawn from a variety of sources. The SOA however will likely not follow the

traditional batch-oriented paradigm when pulling this data, opting instead for real-time access to

on-line systems. This scenario runs contrary to traditional assumptions that data cleansing will

be done in a homogeneous data warehouse environment (Agosta, 2006). The SOA is therefore

faced not only with resolving data ambiguities (schematic, identity, and data conflicts) common

to the classic decision support environment, but also with orchestrating ETL services in a

dynamic systems environment. As noted by Dreibelbis, et al., (2008), this paradigm shift can

lead to poor data quality because the SOA by nature has always been more about data mapping

than data reconciliation (chap. 2).

The concept of master data management (MDM) has arisen over the past few years as a

means to address data quality issues. The MDM paradigm goes beyond implementing a static

metadata repository for data cross-walking data and reconciliation. It is a service unto itself,

fully integrated with other services, both real-time and static, which co-exist with it in the SOA.

THE SOA AND CLASSIC DATA WAREHOUSING 23

This service layer wraps the functionality of various systems (including legacy data warehouses)

into a logically homogeneous, metadata driven view of the enterprise. The advantage of this

approach is that data semantics do not have to be duplicated between source systems and the

ETL processing environment. A change to operational metadata is automatically utilized by

decision support metadata.

While the MDM does appear to address how an SOA can implement ETL functionality in

support of decision support services, the question remains as to how source system data

ambiguities are handled. Berson & Dubov (2007, chap. 15), use customer data integration (CDI)

as the backdrop for explaining how a MDM-enabled SOA can resolve such issues. They explain

that a customer entity can have a variety of meanings, depending on the context in which they

are interacting with a particular service within an SOA. It is expected that a customer’s

attributes will mean different things at different times under different conditions. A so-called

identity hub is utilized to handle such nuances. The hub provides mediation services for data

synchronization activities between all components of the SOA.

Changes to the SOA Repository

Changes that might occur within an SOA repository include deprecation of interfaces,

changes to existing interfaces, and URL changes. The deprecation of interfaces occurs when

new business functionality is applied that either supersedes or supplements old functionality. For

example, a financial analysis might need to assess an investment portfolio’s performance over a

twelve month period. Later on it may be necessary to provide both fiscal and calendar year

performance returns. Users who elect to use the deprecated interface will still get the calendar

year performance by default. Method parameter overloading within the service will likely be

THE SOA AND CLASSIC DATA WAREHOUSING 24

implemented for such scenarios. In order to provide explicit support for both calls the response

SOAP message should contain metadata that explains the context of the returned data.

Outright changes to interfaces within the SOA are somewhat akin to the schema changes

discussed previously in the classic data warehouse section. The addition of new interfaces, like

the addition of new tables or fields, is likely to have little or no impact on BI interfaces to the

SOA. However actual changes to known interfaces will require the same level of change control

analysis that one would undertake with a schema change in the warehouse. This scenario is not

unlikely, as an interface library is apt to become bloated over time, requiring refactoring of

deprecated functionality. This is normally done in order to avoid confusion and potential

misinterpretation of data. URL changes will likely occur if services are moved to another

provider. This might happen after a merger or acquisition, and should be relatively easy to

manage via metadata at both the requester and service provider levels.

THE SOA AND CLASSIC DATA WAREHOUSING 25

Chapter 3 – Methodology

3.1 Approach

A design science methodology has been chosen as the approach for conducting primary

research. The research project will consist of the design and development of SOA software

adapters for the extraction and transformation/integration tiers of the data warehouse ETL

environment. The flexibility of the SOA adapters will be compared to the legacy software

modules used in the current data warehouse. Although the assessment of flexibility will for the

most part be subjective, based on observations made by the researcher, benchmarks will be

established in order to present findings in a consistent manner. Section 3.3 provides more details

on what benchmarks will likely apply to each tier of the development project.

3.2 Project Plan

The project will be undertaken in a series of phases. These are:

1. Planning.

a. Estimating project scope.

b. Assessing feasibility.

c. Assessing resource needs.

d. Assessing time and cost.

2. Analysis.

a. Define the data warehouse tiers.

b. Establish benchmarks for each tier.

c. Research the SOA and determine a development approach.

THE SOA AND CLASSIC DATA WAREHOUSING 26

3. Design

a. Design the SOA tiers.

b. Conduct a proof-of-concept prototype.

c. Assess approach and make modifications.

4. Coding

a. Develop the extraction tier.

b. Develop the transformation/load tier.

c. Assess the consumer business intelligence tier.

5. Analysis of Results

a. Assess SOA functionality compared to classic warehouse code base.

b. Tabulate and record results.

c. Conduct further testing as necessary.

3.3 Flexibility Benchmarks

The flexibility benchmarks will be driven by the requirements within each tier of the data

warehouse environment.

1. Extraction Tier:

a. The ability to interact with heterogeneous back-end systems.

b. The ability to maintain backend schema abstraction.

c. The ability to handle data volatility from back-end systems.

d. The ability to extend the backend systems .

2. Integration Tier:

a. The ability to integrate disparate data sets.

b. The ability to reconcile source ambiguities.

THE SOA AND CLASSIC DATA WAREHOUSING 27

c. The ability to summarize and tag incoming data.

3. Consumer Tier

a. A comparison of end-user access to the classic and SOA architectures.

3.4 Prevention of Bias

The foregoing benchmarks will require that a certain degree of subjectivity be used when

assessing the flexibility of each architecture. It is incumbent on the researcher to approach each

assessment with no pre-conceived notions about what the outcomes should be. Although the

results of the secondary research do show some advantages of each architecture over the other in

certain tiers, these initial findings should not and will not drive the direction of the development

project and subsequent analysis. Rather, the requirements of the warehouse itself, together with

the predefined flexibility benchmarks, will guide the research effort.

THE SOA AND CLASSIC DATA WAREHOUSING 28

Chapter 4 – Project Analysis and Results

4.1 Summary of Findings

The findings presented in the following table indicates that an SOA provides diminishing

flexibility in comparison to the classic data warehouse as one moves from the back-end tiers to

the user interface tier. The maturity of the SOA over time, by means of increased vendor

support and toolsets, will likely increase flexibility on the front end.

Classic Data Warehousing SOA
Source System
Access
Flexibility

It depends on vendor implementation.
An SQL back-end schema provides
access flexibility, at the cost of
upgrade complexity. A proprietary
vendor data access approach detracts
from flexibility.

A uniform approach to data
access allows focus to remain
more on the “what” than “how”,
thus promoting flexibility. The
onus is on the vendor to maintain
interface integrity however.

Integration
Flexibility

The warehouse load process is batch-
oriented, which typically precludes
real-time integration of data.
Transformation logic is usually done
in a top-down fashion, which reduces
transparency.

The use of adapters on the back-
end promotes real-time, as well
as batch, integration. The use of
XML allows for tighter coupling
of run-time metadata with output,
which promotes transparency.

End User Access
Flexibility

The maturity of RDBMS and SQL
technologies promotes better ad hoc
flexibility.

SOA is still nascent, developer
support is needed. Interfaces can
be cumbersome to work with.

Table 1: Summary of Findings

4.2 WCF Proof of Concept

A “proof of concept” SOA adapter was developed using Microsoft’s Windows

Communication Foundation (WCF) architecture. The purpose of the development was to

confirm that SOA adapters could be developed and utilized in a stable manner in the target

environment. The adapter was successfully deployed and tested, thereby assuring that the

primary research could be conducted using WCF as the SOA platform.

THE SOA AND CLASSIC DATA WAREHOUSING 29

The pricing SOA adapter provides an abstraction layer for fetching security prices from

an external pricing provider. The vendor currently provides two means for fetching prices from

its systems: (1) via a Windows GUI and (2) via HTTP requests. The SOA adapter was designed

as a means of wrapping this functionality within a uniform service interface.

The functionality inherent to price requests lends itself well to the request-response

paradigm of the SOA. The basis components of a price request are:

1. The requester’s credentials.

2. The security identifier to be priced, typically in CUSIP identifier format.

3. The effective date to be priced. This usually represents the end-of-day market close

date.

As previously mentioned, users have two options for fetching prices from the vendor. The

Windows GUI is used by business-oriented users to fetch prices. The HTTP method is a

programmer-oriented tool that allows for more flexible automation of price fetches.

This development and deployment environment for the pricing adapter consisted of the

following components:

1. Service and client UI development language: C#, under Visual Studio 2008.

2. Runtime environment: .NET Framework 3.5.

3. SOA architecture: Microsoft Windows Communications Foundation (WCF), utilizing

HTTP, SOAP, and XML.

4. SOA service host environment: Windows 2003 running IIS 6.

The first step was to create a WCF service adapter to provide prices. The adapter uses the HTTP

post approach, which requires a vendor-specific request string. The method getPrice() was

THE SOA AND CLASSIC DATA WAREHOUSING 30

developed as a wrapper for such functionality. The .NET IDE allows for run-time testing of

services. The following figure shows the test client interface used during debugging.

Figure 1: WCF Test Client Interface

The next figure shows the input parameters for the getPrice() method. The developer enters the

parameters manually and then invokes the method. The response shows a returned price for the

date of 2/12/2010. Note that sensitive information has been blotted out in green, as this service

is accessing a production pricing data provider.

THE SOA AND CLASSIC DATA WAREHOUSING 31

Figure 2: WCF Request/Response Test

The developer also has the ability to analyze the actual SOAP request/response envelope via the

test client IDE. The next two figures show the request and response from the test conducted in

the previous illustration. Again, sensitive data have been blotted out in green.

THE SOA AND CLASSIC DATA WAREHOUSING 32

Figure 3: SOAP request

The response header section meta data has been omitted, as it is not relevant to this example.

Figure 4: SOAP response

After the client adapter was developed and tested it was deployed to a IIS host running on a

Windows 2003 server. A new Web site called “PricingVendor01” was created to host the

service:

THE SOA AND CLASSIC DATA WAREHOUSING 33

Figure 5: The IIS Host Environment

The web site publishes the service metadata via WSDL. This metadata can be queried by

navigating to the .svc file that was generated by the client adapter project discussed earlier. This

file will later be used by consumers of the service in order to create proxy stubs to it. The

following figure shows a web page that can be used to gain access to the service’s WSDL

metadata.

Figure 6: Access to WSDL Metadata

A client consumer application was developed in order to access and test the pricing adapter. A

rudimentary C# Windows form application sufficed for this task. A proxy service stub was

created by accessing the service’s .svc file via the IIS URI. The next figure shows the add

service dialogue. This functionality can also be accomplished via a app.config file at run-time, a

more realistic approach in a production environment.

THE SOA AND CLASSIC DATA WAREHOUSING 34

Figure 7: Adding a WCF Service Reference

The pricing UI now has access to the services provides by the pricing adapter on remote server.

As expected, the adapter’s interface metadata exists in XML format on the client UI side. The

following figure shows the interface information for the GetPrice() method.

Figure 8: The XML Method Interface

THE SOA AND CLASSIC DATA WAREHOUSING 35

The client can now interact with the remote service in a COM-like manner. The next figure

shows a price request being done via a Windows form. Sensitive data has been blotted out in

green.

Figure 9: Consumer Access to the WCF Remote Service

THE SOA AND CLASSIC DATA WAREHOUSING 36

4.3 Source System Adapters

The first flexibility assessment involved comparing source system extractions between a

classic data warehouse implementation and two SOA adapters. The current data warehouse

serves primarily as a reporting and decision support environment for investment analysts and

fixed-income bond traders. It is also provides investment performance reports for clients. The

primary data providers for the data warehouse are:

1. An externally managed trading system.

2. An internally managed accounting system.

3. An externally managed bond pricing system.

The following figure shows a high level diagram of these providers in the investment data

warehouse.

Figure 10: The Investment Data Warehouse Environment

THE SOA AND CLASSIC DATA WAREHOUSING 37

As can be seen in the preceding diagram, access to data providers is done in a few different

ways. The trade feed FTP/flat file paradigm is probably the most common method used in

today’s data warehouse environment. The ASCII format is portable across platforms and easy to

parse and read using any number of tools. The use of ODBC to access a relational backend, as

seen with the accounting system, has also become a common approach to data warehouse

extractions over the past few decades. The HTTP approach is a bit more cryptic, because it

involves formatting and parsing strings in an application-specific manner.

Both the ODBC and HTTP interfaces were chosen for conversion to SOA adapters as a

means of assessing their flexibility to those of the current warehouse. The following benchmarks

were used to judge flexibility between the classic warehouse and SOA approaches:

Criteria Comment
Data Access How flexibly can data be obtained?

Schema abstraction Is one architecture more flexible in its logical/conceptual
schema than the other?

Back-end changes Are back-end changes more flexibly managed in one
architecture vs. the other?

Extensibility Does the architecture allow providers and/or consumers
ample opportunity to extend functionality?

Table 2: Source System Extraction Flexibility Criteria

The Accounting System Adapter

The current data warehouse extraction process for accounting data is ODS in nature; it

basically copies the source accounting table schemas to the data warehouse repository via ODBC

SQL calls. The returned records are stored in delimited text format and then loaded into the data

warehouse tables using import tools native to that environment. This approach is fairly flexible

THE SOA AND CLASSIC DATA WAREHOUSING 38

from both a real time and batch perspective. As long as the backend database engine is available

the data contained therein can be obtained.

The accounting system schema is documented by the vendor in a HTML data dictionary.

This approach suffices for query development purposes. One can easily search for keywords in

the data dictionary and determine relationships between tables. However, minimal metadata

exists at runtime that can be used to query the meaning of fields and their relationship to one

another. A QBE tool like MS Access might be able to derive some relationships based on

primary/foreign key names, but other metadata is not available to query tools.

Vendor upgrades have at times required that deprecated and/or new tables and fields are

accounted for, and that queries are re-coded to account for such changes. The vendor has also

upgraded their SQL data engine, in this case Btrieve, a few times over the years. This has

created few issues with the queries in use in the data warehouse. However, a future change to

another backend engine such as Oracle or Microsoft SQL server would likely require a wholesale

recoding of SQL extraction code.

The foregoing analysis of the accounting system shows that it is flexible in terms of data

accessibility. A client application requires only the proper permissions and ODBC software in

order to transport backend data tables into the data warehouse environment. It is incumbent on

the developer of such queries however to analyze the data dictionary in order to determine the

context and usage of source data, as well as data table’s relationships to one another.

Furthermore, a significant change to the backend schema or database engine type may require

substantial recoding of data warehouse interfaces.

An SOA adapter was developed in order to determine if an object-based approach to

extracting accounting data yields more benefits in terms of flexibility. The previous section

THE SOA AND CLASSIC DATA WAREHOUSING 39

contains details on how adapters are developed using Microsoft .NET and the WCF architecture.

The steps used to create, deploy, and consume services are covered there. It is important to note

that in the upcoming examples deployment is being done from the perspective of the accounting

vendor, not the data warehouse developer. Obviously an SOA adapter developed in-house

would be subject to all the same back-end vagaries as that of traditional SQL code modules (e.g.

schema changes, deprecation of data elements). Therefore, the question being framed is whether

a data provider allows more flexibility to its consumers if the interfaces provided are object

rather than SQL-based.

The WCFLibAccounting adapter that was developed contains methods for fetching

security master file (SMF) and transaction data from the accounting system. The two parts of the

an SMF record are its issuer and issue components. The “issue” is the security itself, which

consists of the issue’s CUSIP, name, and miscellaneous accounting information. The “issuer”

information relates to what entity issued the security. A one-to-many relationship exists between

issuers and issues:

Figure 11: Security Issuer/Issue Relations

THE SOA AND CLASSIC DATA WAREHOUSING 40

The WCFLibAccounting.getSMF() method provides an interface to issuer and issue

records. By default it fetches all current SMF’s from the accounting system. A related method,

getSMFByCusip(string cusip), allows for discrete SMF fetches. Interestingly, WCF does not

allow for overloaded method calls, which will limit implementation flexibility for that particular

architecture. The getSMF*() methods wrap the SQL in an object-based interface. The code on

the left side of the following figure is accessed by the adapter’s consumer in a more abstract

manner. A test client interface can be seen on the right side of the figure.

Figure 12: SMF Adapter and Consumer Interface

The WCFLibAccounting.getTransaction method is similar to the .getSMF() method, except that

it allows for date filtering. The investment data warehouse pulls daily and month-end transaction

data. The daily data is more operationally oriented because it provides cash balances needed by

bond traders, while the month-end data pulls support client performance reporting. It is

THE SOA AND CLASSIC DATA WAREHOUSING 41

important to recognize that SOAP and XML underlie all communications between the consumer

and the service. The following figure shows the actual SOAP request and response messages

involved in a getTransaction() call:

Figure 13: The Underlying SOAP Message Packets.

The following diagram shows the classes and interface that make up the accounting system

adapter:

THE SOA AND CLASSIC DATA WAREHOUSING 42

Figure 14: The WCFAccounting Class Diagram

A few observations can be made at this point relative to the flexibility of the SOA

approach to that of direct SQL calls. As the preceding examples show, the SOA adapters hide

the backend logical schema from the data consumer. This will provide more flexibility to the

consumer if the backend schema undergoes a significant structural change in future releases.

The onus is on the provider to ensure that the interfaces are maintained. On the other hand, one

can argue that an object-based access to backend data might constrain an experienced SQL

developer who is more than capable of fetching data in a number of ways. The stove-piping of

data via strict interfaces might prove more of a hindrance to such people. However, as

mentioned previously the accounting system is fed to the data warehouse using the operational

data store principle, which basically consists of copying one schema to another. Subsequent

complex SQL joins are more apt to be done in the data warehouse environment after initial

extractions from source systems have been done.

Another observation regarding flexibility is that the XML return sets reflect the data

classes defined in the adapters. This allows for a fair degree of structural flexibility over that of

THE SOA AND CLASSIC DATA WAREHOUSING 43

SQL data sets. For instance, metadata can be added to classes in order to better explain the

context of the data being returned from the source system. Such data can be co-located with data

rows or can be associated with all or part of the returned dataset. This data in turn can be used

downstream in the data warehousing process in a number of ways, including data cleansing,

transformation, auditing, and error checking. Obviously such functionality can be incorporated

into traditional SQL feeds via customized metadata. However, the use of object-based access to

backend data allows for a level of cohesiveness not inherent to the row and column paradigm of

traditional SQL-based systems.

A final observation is that flexibility for the consumer in the SOA environment does not

necessarily equate to flexibility for the provider. As stated earlier, the examples in this section

use the premise that the vendors themselves provide the adapters. This requires them to maintain

interfaces to their underlying data stores, an approach that might seem anything but flexible to

the developers who have to support such an architecture. It could be argued that a well

documented SQL repository should suffice for the needs of most data consumers. A counter-

argument is that clients are apt over time to develop custom applications around an open vendor

schema. This may cause upgrade troubles if the clients have used database-specific approaches

such as PL-SQL for Oracle, and the vendor later decides to switch to Microsoft SQL Server. In

this light the development and maintenance of SOA adapters might provide for more flexible

migrations from the consumer perspective.

The Pricing System Adapter

THE SOA AND CLASSIC DATA WAREHOUSING 44

The PricingVendor01 adapter developed in section 4.2 is now used to further illustrate

SOA wrapper functionality for the pricing vendor services. The following class diagram depicts

this adapter:

Figure 15: The PricingVendor01 Class Diagram

Prices are fetched daily for a sub-set of investment securities and at month-end for all

holdings. In contrast to the accounting system, the pricing vendor provides data via HTTP

requests. The requests themselves use a somewhat obfuscated calling mechanism. The

following figure shows an example of a price request for two securities for the date 2/11/2010:

Figure 16: Proprietary HTTP Price Request Post

THE SOA AND CLASSIC DATA WAREHOUSING 45

As seen in this example, the vendor provides additional data such as security descriptions (des1,

des2) and additional prices notes (prcnote). A SOA adapter can abstract such complexity via an

object-based interface. The following figure shows the client code for a similar request:

Figure 17: The Object-Based Approach

The flexibility of an SOA using HTTP in the foregoing example is somewhat clearer than in the

SQL example. The vendor has implemented an obscure way of fetching data via a proprietary

implementation. An abstraction layer on top of this allows the data warehouse consumer to

focus more on the “what” than on the “how” of data fetching. Furthermore, consider if the

vendor later decides that HTTPS is a more appropriate mechanism for transporting sensitive

pricing data over the Web. This would require the consumer to recode their interfaces. A SOA

middleware adapter on the other hand provides a suitable means for hiding connectivity issues

from the data consumer, who can continue to use regular HTTP.

This same line of reasoning can be applied to other non-relational file structures such as

fixed length text or vendor proprietary formats. A structural change to these inputs can introduce

subtle data quality issues in the downstream data warehouse processes. For example, the trading

system illustrated earlier provides a nightly fixed length text feed to the data warehouse via FTP.

Various investment security types exist within the same file, each with its own fixed length

format. One line in the file might be parsed in a particular manner because it is a commercial

mortgage, while a corporate security is handled in another way. Additionally, data elements

might get added to the end of lines as users request new information from the vendor. In this

THE SOA AND CLASSIC DATA WAREHOUSING 46

scenario the parsing burden is shifted to the data warehouse extraction process. It can be argued

that a SOA adapter employing an interface would allow more flexible, if not safer, access to such

data.

Recap

Returning to the benchmarks outlined in table at the beginning of this section, a few

conclusions can be made regarding the flexibility of classic data warehousing and the SOA in the

extraction layer of a decision support environment.

Classic Data Warehousing SOA
Data Access It depends on the implementation.

Relational DB's are good, proprietary
access methods can be challenging for
the consumer.

The interface is always object-
based, which provides
consistency in how data elements
are accessed.

Schema
abstraction

The consumer is more bound to the
logical back-end schema. This can be
good if the developer is well-versed in
the language being used and how
relationships exist on the back-end.

The consumer is buffered from
the back-end schema. This
allows the focus to be more on
the "what" than the "how" of data
access.

Back-end
changes

The consumer is apt to be affected by
substantial schema changes on the
back-end, especially by dialect
changes due to database migrations.

The back-end changes will not
affect the consumer, as long as
the provider maintains the same
interfaces.

Extensibility Access to an open schema, especially
a relational one, provides a lot of
flexible approaches to data extraction.

The consumer is locked into a
specific interface. This can
detract from flexibility in terms
of data extraction. Also, the data
provider has to do a lot of work
in order to develop and maintain
data flexible access to data.

Table 3: Source System Extraction Flexibility Synopsis

THE SOA AND CLASSIC DATA WAREHOUSING 47

4.4 Integration Adapter

This section compares the flexibility of the SOA to classic data warehousing for

transforming and integrating source system data. The following benchmarks were established

for this purpose:

Criteria Comment
Data Integration Does the architecture allow for flexible integration of

disparate data sources?
Data Reconciliation Does the architecture have mechanisms for reconciling

incoming data?
Data Transformation Does the architecture flexibly perform transformation

tasks such as data tagging and summarization?

Table 4: Data Transformation/Integration Flexibility Criteria

The Integration Adapter

The current investment data warehouse utilizes an operational data store, into which

source system data are imported, transformed, and merged. The data are also summarized and

stored in system tables, which are then used as the basis for queries and reports. An integration

SOA adapter was developed in order to assess its flexibility the to that of the legacy processes.

The accounting and pricing system adapters were used as the inputs to the integration adapter.

The following test scenario was established to assess the flexibility benchmarks shown in the

preceding table:

Using the WCFLibAccounting.Transaction service contract, fetch all transactions for a

monthly period.

Scan all rows of the return data set and make the following transformations:

- For sales-type transactions (transaction type starts with “2”) tag the transaction as

“SALE”. For purchase-type transactions (“1*”) tag the transaction as “PURCHASE”.

THE SOA AND CLASSIC DATA WAREHOUSING 48

Tag the month and year of the transaction (e.g. “1/2/2010” will get tags “01” and

“2010”).

- Fetch the associated issuer/issue information via the

WCFLibAccounting.SecurityMaster data contract, based on the transaction CUSIP.

If an issuer cannot be found flag apply “UNKNOWN” for the issuer name and apply

a metadata “MISSING_ISSUER_NAME” flag. Do the same for the issue name. If

the issue tax code contains (20,21,30,31) flag it as “TAX_EXEMPT”, else flag it as

“TAXABLE”. If no issue was found, default the issue tax status to “UNKNOWN”.

- Fetch the associated closing price from the PricingVendor01.IPricing service

contract, based on the transaction CUSIP and date. If a price is not returned from the

pricing adapter, default to 0 and apply a metadata tag called

“MISSING_CLOSE_PRICE” to the data row.

The following diagram expresses the preceding logic in UML activity diagram format:

THE SOA AND CLASSIC DATA WAREHOUSING 49

Figure 18: The Transformation Activity Diagram

An SOA adapter called dwTxnToCube was developed in order to implement the

preceding logic. The adapter utilizes the services of both the WCFAccounting and

PricingVendor01 SOA adapter interfaces for fetching data. The integration of these adapters was

done using the same techniques discussed in section 4.2. Data transformations are made within

methods of the integration service itself. The adapter’s output is a structure (txnCube) that

represents the summarized data in cube format. The following diagram illustrates the

relationships between the source adapters and the cube output.

THE SOA AND CLASSIC DATA WAREHOUSING 50

Figure 19: The Transaction Cube Adapter Class

The development of the SOA integration adapter was helpful in determining the

flexibility of such an approach to that of classic data warehousing. In terms of data integration,

the SOA once again benefits from the use of source system interfaces rather than vendor-specific

data access methods. This allows, for instance, the merging of the accounting transactions and

their associated security master data without having to know the underlying source system

schema. The developer is not completely shielded from the relations within the accounting

system however. For example, the accounting system utilizes the CUSIP identifier for

internally-defined numeric codes, while the primarySecurityID identifier contains the industry-

recognized identifier. The latter ID is used to fetch prices from the IPricing interface.

THE SOA AND CLASSIC DATA WAREHOUSING 51

Despite such semantic challenges, one can see that the txnCube interface provides the

consumer convenient access to an integrated cube structure. It can be argued that the classic data

warehouse provides such functionality already via cube tables in the warehouse repository.

Additionally, SQL views can be created that perform back-end joins for the user, thereby

performing similar abstract integration services to those found in the SOA adapter. The SOA

adapter however provides the user the flexibility of real-time, as well as, historical access to

integrated data. In fact, it is likely that the ITxnCube interface will be used to both load

warehouse data tables on a recurring basis, as well as to provide direct access to back-end

production systems. The user need not be aware of the difference.

Data reconciliation within the SOA adapter is not different than that of the code modules

within the classic data warehouse. Data anomalies are identified, tagged, and recorded. The

SOA’s use of XML may provide some structural flexibility over that of the classic approach. As

seen in the previous diagram every txnCube instance has an associated 1:M txnCubeMeta

instance. The metadata class allows for storage of data exceptions, as well as other information

regarding the extraction. The classic data warehouse approach can utilize similar techniques.

For instance, during the creation of a cube structure all exceptions can be written to a log file or

log table, which contain pointers back to the cube’s rows. The SOA approach will also do this if

the adapter is being used to populate a data repository. The use of classes in the SOA however

provides the opportunity to serialize and deserialize object instances in and out of a repository.

This provides the flexibility of retaining the original object relations and hierarchies.

Data transformation is probably the most important step in the ETL process. The classic

data warehouse traditionally does this through a top-down program code module. Raw data are

brought into a temporary schema and integrated. The data are then scanned and tagged based on

THE SOA AND CLASSIC DATA WAREHOUSING 52

transformation rules stored either in program code or in metadata structures such as cross-walk

tables. More modern transformation processes might utilize object-based tagging routines. This

technique allows for more flexibility in tagging data because transformation semantics are not

reproduced in many different modules. The SOA class utilizes such an approach. A consumer

who wishes to know whether a transaction is a purchase or sale will use the services of the

ITxnCube adapter. The adapter might also contain metadata that explains the rationale for a

transaction being tagged a specific way (i.e. [TRANTYPE >= 100 and TRANTYPE <= 199] =

“PURCHASE”).

The example used in this section provides only a simplified view of such transformation

logic. A more robust ITxnCube interface would contain a method for each type of

transformation used to create the cube. This allows a greater degree of flexibility than the classic

approach because consumers are directly exposed to the inner workings of how data

transformations occur, supporting Inmon’s view of the data warehouse as the information hub of

the enterprise. The classic data warehouse on the other hand normally consists of a static data

dictionary and perhaps a crosswalk diagram.

Recap

Returning to the benchmarks outlined in table at the beginning of this section, a few

conclusions can be made regarding the flexibility of classic data warehousing and the SOA in the

integration layer of a decision support environment.

Classic Data Warehousing SOA
Data Integration Back-end schemas are more likely to

be exposed, complicating joins. Data
are batched to a static repository.
Real-time access to data is typically
done outside of the warehouse,

Use of adapter interfaces
simplifies joining systems.
Semantic issues can still exist,
however. The output can be
static or real-time, allowing for

THE SOA AND CLASSIC DATA WAREHOUSING 53

requiring integration to be duplicated. flexible access.

Data
Reconciliation

Data anomalies are typically written
to logs, which can be cumbersome for
audit purposes.

The use of classes and object
serialization allows for tighter
integration of metadata and
warehouse data.

Data
Transformation

Typically done in a top-down fashion.
Users normally do not have access to
internal logic, except through offline
data dictionaries.

Transformation logic can be
made more granular via class
methods, allowing the user more
insight into how data are tagged.

Table 5: Data Transformation/Integration Flexibility Synopsis

4.5 End-user Access

The previous sections dealt with the back-end mechanics of how data are fetched,

integrated and transformed. Such activities fall in the realm of the source system and data

warehouse processing tiers. Obviously, the data warehouse exists for the end-user. As Kimball

(2008) shows, the end-user, or consumer, interacts with the data warehouse in a number of ways:

THE SOA AND CLASSIC DATA WAREHOUSING 54

Figure 20: Kimball’s Consumer Mode Stratification

As the previous figure shows, four of the five consumer tiers are accessed via canned reports or

preconfigured BI applications. A data warehouse software developer will typically configure

these applications for the user, either using vendor-specific tools or a software development

environment such as .NET or Java. The consumer then uses a parameterized GUI or Web form

to query the underlying data, unaware of the actual structure of the warehouse repository.

The ad hoc/strategic consumer of the data warehouse however interacts with the data

warehouse in a less structured manner. These so-called power-users utilize query tool and drill-

down tools in order to analyze data stored in data warehouse ODS or star schema structures. The

question is whether an SOA will help or hinder such users to flexibly access and query such data.

The criterion for this section is whether the classic ODS and/or star schemas provide more

flexibility than the more abstract, object-based SOA.

THE SOA AND CLASSIC DATA WAREHOUSING 55

As the following diagram shows, user access to the classic data warehouse and SOA

architectures differ significantly from one another:

Figure 21: The Data Warehouse and SOA Tiers

The middle tier of the classic data warehouse contains static database tables. These may either

mimic the source database system’s schema or be summarized in a star schema dimensional

model. There are a number of advantages to this approach from a flexibility perspective. A

finely grained warehouse schema allows ad hoc approaches to querying and integrating data. A

business user who is well versed with the semantics of the backend systems can become very

productive in a short period of time. Most query tools allow the user to view underlying schemas

and to generate fairly complex SQL via a GUI interface. Users can also integrate the contents of

the data warehouse repository with their own data repositories using ODBC or data import tools,

thus expanding the reporting environment to meet their own needs.

THE SOA AND CLASSIC DATA WAREHOUSING 56

The SOA on the other hand presents the user with interfaces to the underlying data.

While this can prove expedient for the untrained user, it might in fact hinder the productivity of

the experienced data warehouse user. For example, the ITxnCube developed in the previous

section contains a method called GetTxnCube() that returns a cube structure for a specific

transaction time period. A power user may find this method cumbersome to use if they wish to

apply additional filters on the cube, such as tax code type. The data set must first be requested

and then further filtered in another processing environment (probably a temp folder on the server

or the user’s desktop). The user will also likely find it awkward to join returned data with other

data sets. For instance, the user of the GetTxnCube() method might want to query prior month-

end prices in order to report on month-to-date price swings. To do this, the classic data

warehouse user simply drags another table alias into the QBE and does a join. The SOA user

however has to do post-data querying in another environment such as MS Excel, or request that

additional methods be added to the ITxnCube service.

This is not to say that the SOA approach is inflexible for ad hoc operations. It does

require however that the classic warehouse user accept a paradigm shift in how they interact with

the data. Less technical users may in fact like the request/response approach for fetching data.

The SOA method calls resemble the function calls one sees with macro-enabled tools like

Microsoft Excel. An Excel user might for instance utilize a macro call to populate the

spreadsheet (via a shim .DLL) and then utilize parameter-based macro calls to the IPricing

interface to bring in prior month pricing data (again, via a shim .DLL):

THE SOA AND CLASSIC DATA WAREHOUSING 57

Figure 22: User Integration of SOA Services

The “join” between the initial return set and the price object takes place via explicit method calls

to the macroPrice() function. This technique is fairly unambiguous and has the advantage of

hiding the underlying schemas from the user. Significant developer support will likely be

needed to accomplish this however.

Recap

The classic data warehouse appears to provide more flexibility for the power user who

needs to perform ad hoc and analytical queries on the underlying schema. The SOA on the other

hand requires a certain degree of programming know-how in order to consume the services of

backend systems. However, the flexibility of the SOA can be seen in its ability to shield the end

user from the back-end schema of the warehouse itself.

THE SOA AND CLASSIC DATA WAREHOUSING 58

Chapter 5 – Project History

5.1 Project Origins

The primary driver for this project was the phasing out of vendor support for the current

software language used to manage an investment data warehouse. A review of the .NET

architecture revealed opportunities to revamp the approach to accessing, integrating, and

deploying financial data using an SOA. An initial analysis of this approach revealed that the use

of an SOA was not so much a question of feasibility as it was of flexibility. In other words,

would the SOA help or hinder the operational aspects of managing the warehouse process

compared to the classic data warehouse approach? This research project set out to answer that

question.

5.2 Scope

The project scope was framed by the three primary tiers of the classic data warehouse

environment: (1) data extraction, (2) data integration/transformation, and (3) data access. The

secondary research conducted as part of the literature review helped to uncover trends that could

be further explored and validated in the primary research.

5.3 Project Management

The project consisted of two major phases, secondary research and primary research.

The secondary research involved a literature review of both the classic data warehouse and the

SOA, from which initial conclusions were drawn regarding flexibility. The primary research

project was undertaken in a waterfall manner. A feasibility study was conducted using

THE SOA AND CLASSIC DATA WAREHOUSING 59

Microsoft’s WCF/.NET architecture. The three tiers of the classic data warehouse were then

analyzed and developed and/or assessed.

5.4 Milestones

The major project milestones were:

a. Completion of the first thesis module and acceptance of the thesis statement by my

advisor.

b. Conducting secondary research.

c. Periodic reviews with my thesis advisor.

d. Completion of secondary research.

e. Completion of the second thesis module.

f. Obtaining .NET developer license and a Windows 2003 server resource.

g. Completion of primary research.

h. Combining, analyzing and summarizing findings.

i. Submitting research to advisor for review.

5.5 Changes to the Plan

The only major change to the plan was the initial timeline. This project was originally

estimated to be completed by October 2009. However, an unexpected software project delayed

work on the thesis for about four months.

5.6 Evaluation

Overall, I am satisfied with how the thesis project went. It is sometimes difficult to

foresee obstacles, both professional and personal, that might interfere with the timeline.

THE SOA AND CLASSIC DATA WAREHOUSING 60

5.7 Summary

The research project generally went according to plan, with the exception of an

unexpected delay due to a large software project at work.

THE SOA AND CLASSIC DATA WAREHOUSING 61

Chapter 6 – Conclusions

6.1 Statement of Findings

An SOA provides flexibility for data warehouse activities in the backend tiers relating to

data access and integration. This flexibility is mainly due to the abstracting of source system

schemas via object-based interfaces. Additionally, the availability of source system SOA

adapters allows for more seamless combining of real-time and batched data in the integration

tier. Flexibility diminishes however as one approaches the end-user tier. A power-user in the

classic data warehouse is likely to have more flexibility because of the relative ease in which

query tools can be used to access relational or star schema data stores in that environment. The

SOA approach requires developer support, mainly due to the relative newness of this technology.

6.2 Major Themes Uncovered

The following themes were uncovered through the primary and secondary research:

1. An SOA, based on the .NET/WCF architecture, is fairly easy to set up and deploy.

2. Source system SOA adapters allow abstraction of source schemas, thereby easing

upgrades, and simplifying interfaces.

3. The use of SOA adapters for real-time system access, combined with warehouse batch

data, can provide the user a more flexible means of concurrently viewing both current

and historical data.

4. The SOAP and XML standards provide an intuitive and extensible way in which to

format request and response messages. Additionally, the semi-structured nature of XML

allows for tighter integration of business data and operational metadata.

THE SOA AND CLASSIC DATA WAREHOUSING 62

5. The classic data warehouse is based on mature technologies and standards. A power-user

with knowledge of the business semantics can approach ad hoc reporting and data

analysis in a flexible manner. The SOA end-user will likely rely on BI applications,

which limit flexibility.

6.3 Research Limitations

The research was conducted using a Windows platform and Microsoft development tools.

Although this reflects the actual production environment at my company, it leaves open the

question of the ability to deploy an SOA in a heterogeneous system environment. For instance,

can a Java developer easily create clients that consume WCF back-end services, and vice-versa?

How about communications between non-Windows and Windows servers? Such questions

provide future research opportunities.

6.4 The Project in Hindsight

The overall project went as planned. I initially attempted to cover too much ground in

the literature review, which ended up leading to a significant rewrite of that section. It is

important to review an outline with one’s thesis advisor before getting too far into a section.

6.5 Research Opportunities

This project revealed the following research opportunities:

1. The interoperability of an SOA across different system platforms.

2. The use of XML as a transport medium for large data sets.

3. The use of a master data management service for real-time data integration and

reconciliation.

THE SOA AND CLASSIC DATA WAREHOUSING 63

4. The use of XML/XQuery as an alternative to RDBMS/SQL for decision support data

storage and reporting.

THE SOA AND CLASSIC DATA WAREHOUSING 64

References

Arvin, T. (2009). Comparison of different SQL implementations. Retrieved June 20, 2009, from

http://troels.arvin.dk/db/rdbms/.

Berson, Alex, and Lawrence Dubov (2007). Master Data Management and Customer Data

Integration for a Global Enterprise. McGraw-Hill/Osborne. Books24x7.

Braun, C. and Winter, R. (2007). Integration of IT service management into enterprise

architecture. ACM Press, New York, NY, 1215-1219. Retrieved May 18th, 2009, from

http://doi.acm.org.

Codd, E. F. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6

(Jun. 1970), 377-387. Retrieved June 14, 2009, from http://doi.acm.org

Drewek, K. (2005). Data Warehousing: Similarities and Differences of Inmon and Kimball.

Retrieved June 12, 2009 from http://www.b-eye-network.com/view/743.

Fritz, David (2006). The Semantic Model: A Basis For Understanding and Implementing Data

Warehouse Requirements. Retrieved August 10, 2009, from http://www.tdan.com/view-

articles/4044.

Hartmann, S. (2008). Überwindung semantischer Heterogenität bei multiplen Data-Warehouse-

http://troels.arvin.dk/db/rdbms/
http://doi.acm.org
http://doi.acm.org
http://www.b-eye-network.com/view/743
http://www.tdan.com/view-
articles/4044

THE SOA AND CLASSIC DATA WAREHOUSING 65

Systemen [Overcoming semantic heterogeneity in multiple data warehouse systems].

University of Bamberg Press. Retrieved June 14, 2009, from http://www.opus-

bayern.de/uni-bamberg/volltexte/2009/160/pdf/StHartmannDiss.pdf

Inmon, W. H. (2005). Building the Data Warehouse, Fourth Edition. John Wiley & Sons.

Books24x7.

Inmon, W. H. (2007). Content versus Semantic Changes. Retrieved August 10, 2009, from

http://www.b-eye-network.com/view/6388.

Kimball, R., Caserta, J. The Data Warehouse ETL Toolkit: Practical Techniques for Extracting,

Cleaning, Conforming, and Delivering Data. (2004). John Wiley & Sons. Books24x7.

Kimball, Ralph. The Data Warehouse Lifecycle Toolkit, Second Edition. (2008). John Wiley &

Sons. Books24x7.

Rainardi, Vincent. (2008). Building a Data Warehouse: With Examples in SQL. Springer-

Verlag, New York, NY. Books.google.com.

Schepers, T. G., Iacob, M. E., and Van Eck, P. A. (2008). A lifecycle approach to SOA

governance. ACM, New York, NY, 1055-1061. Retrieved May 18th, 2009, from

http://doi.acm.org.

http://www.opus-
bayern.de/uni-bamberg/volltexte/2009/160/pdf/StHartmannDiss.pdf
http://www.b-eye-network.com/view/6388
http://doi.acm.org

THE SOA AND CLASSIC DATA WAREHOUSING 66

Scribner, Kennard, and Mark C. Stiver. (2000). Understanding SOAP. Sams. Books24x7.

Seeley, R. (2007). XQuery, the SQL for SOA, wins final W3C approval. Retrieved June 14th,

2009 from

http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1240463,00.html

Sperberg-McQueen, C. M. (2005). XML <and semi-structured data>. Queue 3, 8 (Oct. 2005),

34-41.

http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1240463,00.html

THE SOA AND CLASSIC DATA WAREHOUSING 67

Appendix A – Revision History

Date Comments
5/19/10 8th draft to thesis advisor

- Minor edits.
5/6/10 7th draft to thesis advisor

- Included thesis statement, sub-sections in introduction section.
- Additional APA formatting.

4/18/10 6th draft to thesis advisor
- Complete primary research, chapter 4.
- Completed remaining chapters.
- Shortened chapter 2.

3/20/10 5th draft to thesis advisor for review
- Edited chapter 2, Literature Review.
- Completed chapter 3, Methodology.
- Completed section 4.2 of chapter 4, primary findings, extraction adapter.
- Added Appendix B. Proof of Concept.
- Added Appendix C, Glossary of Terms.
- APA formatting started.
- Added chapter stubs according to template.

10/03/09 4th draft to advisor for review
- Moved fig’s 1 - 4 closer to the text in which they are referred to.
- Figure’s 18a,b show examples more appropriate to a data warehouse
request.
- Expanded on how SOA can better handle backend system changes.
- Changed parent section heading from “Flexibility Criteria” to “Secondary
Research: Flexibility Criteria”. Added Sub-section numbering.
- Started section “Primary Research: A SOA Prototype”

8/24/09 3rd draft to advisor for review
- Flipped illustrations vertically
- Added new section: “How well do the architectures handle data
volatility?”

6/22/09 2nd draft to advisor for review. Changes:
- Added illustrations to existing sections.
- General grammar fixes to existing sections.
- Removed irrelevant sections.
- Added new section: "How accessible are the architectures?"

6/1/09 1st draft to advisor for review.

Table 6: Thesis Revision History

THE SOA AND CLASSIC DATA WAREHOUSING 68

Annotated Bibliography

Kamoun, F. (2007). A roadmap towards the convergence of business process management and

service oriented architecture. Ubiquity 8, 14 (Apr. 2007), 1-1.

The author explores the growing trend towards the convergence of business process management

(BPM) and SOA, and how such a partnership better aligns the business’ goals with that of a

loosely coupled and flexible IT infrastructure. Although challenges exist, including BPM and

SOA vendor service mismatches and in-flux standards, the payoff gained through being able to

provide flexible services to customers makes such a convergence inevitable. Companies should

begin planning for such a future by addressing some key areas, including executive sponsorship,

enforcing a governance model, training, and prototyping.

(Source: ACM Web Site http://doi.acm.org/10.1145/1247272.1247273)

Im, T., Guimaraes, M., and Hoganson, K. (2004). An N-Tier Client/Server course: a classroom

experience. In Proceedings of the 42nd Annual Southeast Regional Conference (Huntsville,

Alabama, April 02 - 03, 2004). ACM-SE 42. ACM Press, New York, NY, 42-45.

The authors describe the outcomes of a graduate level course project they designed that touched

upon various aspects of n-tier development, including a PDA interface, synchronization

middleware, ODBC, and a relational database. An interesting and challenging aspect of the

course project involved the use of Sybase’s Mobilelink and Ultralite products for

synchronization of the backend Oracle database with the front end PDA application. This

required the use of a schema definition that mapped the Oracle data to a smaller middle-tier

http://doi.acm.org/10.1145/1247272.1247273

THE SOA AND CLASSIC DATA WAREHOUSING 69

database that in turn directly communicated with the PDA devices via MobileVB. This article is

relevant to understanding the challenges that arise in implementing an n-tier computing

environment, even when the individual components are fairly high-level and easy to learn.

(Source: ACM Web Site http://doi.acm.org/10.1145/986537.986548)

Silvers, Fon. "Chapter 9 - Metadata". Building and Maintaining a Data Warehouse. Auerbach

Publications. © 2008. Books24x7.

The author explains and illustrates the important role that metadata plays in the maintenance and

usage of a data warehouse. Two types of metadata are discussed, static and dynamic. Static

metadata provides definitions of data dimensions in the warehouse and is primarily aimed at

assisting the business user obtain information. Dynamic metadata contains information relating

to ETL processes and the state of the database itself, thereby making more an operational tool.

Metadata repositories can be modeled in a number of ways, including dimensionally,

relationally, or in a distributed manner. This chapter provides insights into how metadata can be

applied to expose the business and operational semantics of the data warehouse to end users.

This information is also useful in exploring what tools are available to the warehouse designer

and how the reliability and manageability of such an environment can be better ensured.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_26399/book.asp)

Inmon, W. H. (2005). " Chapter 2 - The Data Warehouse Environment". Building the Data

Warehouse, Fourth Edition. John Wiley & Sons. Books24x7.

http://doi.acm.org/10.1145/986537.986548
http://common.books24x7.com.dml.regis.edu/book/id_26399/book.asp

THE SOA AND CLASSIC DATA WAREHOUSING 70

The author presents the fundamental aspects of the data warehouse environment: subject-

oriented, integrated, non-volatile, time-variant. According to the author these factors provide the

user a more stable environment in which to conduct decision support activities. The subject-

oriented nature of the data warehouse contrasts with the primarily functional nature of source

operational systems. The author contends that this makes the job of the data warehouse user

easier than that of the “classical system” user, because data reconciliations have already been

accounted for in the ETL process and the granularity of the data in the warehouse allows for

more thorough analysis. This chapter provides insight into how classic data warehouse

technology provides a link between the business user and source system data. This contrasts

with the user/system relationship in the SOA environment, which in many cases concerns a

direct link to the production data store.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_12458/book.asp)

Lopez, N., Casallas, R., and Villalobos, J. (2007). Challenges in Creating Environments for SOA

Learning. In Proceedings of the international Workshop on Systems Development in SOA

Environments (May 20 - 26, 2007). International Conference on Software Engineering. IEEE

Computer Society, Washington, DC, 9.

The authors contend that the widespread use of SOA requires that academia begin integrating it

college-level course curriculums. The challenges to this include an already full IT curriculum at

most colleges, the complexity of creating course content (i.e. business processes) that supports

SOA training, and the requirement that instructors possess the requisite skills to teach SOA.

Students must also be prepared to learn the theoretical and practical concepts of the SOA

http://common.books24x7.com.dml.regis.edu/book/id_12458/book.asp

THE SOA AND CLASSIC DATA WAREHOUSING 71

framework, as well as being afforded ample lab time in order to apply such concepts. This

article enforces the notion that academia must take a lead in formalizing training in support of

new systems paradigms in order to prepare students for the workforce.

(Source: ACM Web Site http://dx.doi.org/10.1109/SDSOA.2007.3)

Bleiholder, J. and Naumann, F. (2008). Data fusion. ACM Comput. Surv. 41, 1. (Dec. 2008), 1-

41.

The authors explain how a data fusion layer within the data warehouse ETL processing

environment helps to resolve the semantic conflicts which often arise during heterogeneous

source system data integration. Data fusion specifically addresses data conflicts which arise

when one system reports a different value than another (e.g., system “A” reports a student’s date

of birth as 1989, while system “B” reports 1990). The authors present a few strategies that can be

applied in handling such anomalies. These range from ignoring data conflicts altogether all the

way through resolving conflicts through rules-based metadata. A SQL approach to

implementing the approaches is illustrated using JOIN and UNION operators. Finally, the

authors provide a survey of current toolsets in the market and there level of support for fusion

strategies. This article is a useful primer for the ETL analyst who needs to consider what

approach will provide the most efficient means for resolving data conflicts within the warehouse

environment.

(Source: ACM Web Site http://doi.acm.org/10.1145/1456650.1456651)

http://dx.doi.org/10.1109/SDSOA.2007.3
http://doi.acm.org/10.1145/1456650.1456651

THE SOA AND CLASSIC DATA WAREHOUSING 72

Agosta, Lou. (2006). Data warehousing raises the bar on SOA. Information Management

Online, May 18, 2006. Accessed April 16, 2009.

The author asserts that data warehousing must emerge from its traditional data-centric role in

order to better integrate with on-line systems in a SOA environment. A paradigm shift will

occur as services, rather than databases, become the central integration vehicles within an

organization. So-called third generation data warehouses are expected to reside closer to source

operation systems and have lower latency. The author sees the SOA as enabling such

functionality, though he does concede that careful consideration needs to be made as to how

much data volume can reasonably be handled in a service-centric manner. This article provides

insight into the applicability of a SOA in meeting the decision support needs of modern

computing environments. As noted in other readings however, a SOA is still in it nascent

phases; future implementations will likely have to blend classic data warehouse and SOA

methodologies as technologies mature and best practices emerge.

(Source: http://www.information-management.com/news/1055711-1.html)

Liu, Z. H., Krishnaprasad, M., Warner, J. W., Angrish, R., and Arora, V. (2007). Effective and

Efficient Update of XML in RDBMS. SIGMOD '07. ACM, New York, NY, 925-936.

The authors assert that although much headway has been made in optimizing XML query

functionality natively within RDBM’s, work still needs to be done to address concurrency and

other transactional issues associated with DML operations on such data. A number of Oracle

10g XML DML functions are discussed, along with considerations a developer should take into

http://www.information-management.com/news/1055711-1.html

THE SOA AND CLASSIC DATA WAREHOUSING 73

account when designing and implementing XML DML in the database. The nuances of XML

DML are also discussed as they pertain to the underlying storage approach the designer chooses

(i.e. CLOB, object-relational, or hybrid). Additionally, the authors provide an overview of how

the Oracle approach to XML DML compares to the nascent W3C XQuery Update Facility. This

article is relevant for the developer who is considering leveraging a RDBMS such as Oracle in

order to perform ETL operations against XML data within the SOA framework.

(Source: ACM Web Site http://doi.acm.org/10.1145/1247480.1247589)

Dreibelbis, Allen (2008). “Chapter 2 - MDM as an SOA Enabler”. Enterprise Master Data

Management: An SOA Approach to Managing Core Information. IBM Press. Books24x7.

The authors explain how MDM can complement the SOA by providing the means for

maintaining data understanding, trust, and consistency across the organization. An important

aspect of this lies in managing changes that occur as new systems are brought on line and the

semantics (both technical and business) of existing systems change. Information as a Service

(IaaS) is introduced as a means of managing the data inconsistencies which such changes can

bring about. An interesting contrast is made between IaaS and traditional ETL services which

utilize MDM capabilities in a more static sense. The authors argue that the latter approach will

not scale well if an attempt is made to integrate real-time services. This viewpoint supports

Agosta (2006), who sees limitations in classic data warehouse approaches for real-time and

decision support system integration.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_27521/book.asp)

http://doi.acm.org/10.1145/1247480.1247589
http://common.books24x7.com.dml.regis.edu/book/id_27521/book.asp

THE SOA AND CLASSIC DATA WAREHOUSING 74

Marks, Eric A., and Michael Bell. (2006). "Chapter 9 - SOA Business Case and Return on

Investment Model". Service-Oriented Architecture: A Planning and Implementation Guide for

Business and Technology. John Wiley & Sons. Books24x7.

The authors claim that an organization can expect up to 80% savings in IT costs through the

implementation of a SOA. These costs are realized not only in reduced development costs

through software reuse but also in savings in system integration and software licensing costs. A

SOA process value model is presented, which is based on the Soh and Markus IT value model.

The model is used by the organization to develop a strategy for the creation, consumption, and

measurement of return value for SOA services. A series of metrics are presented by which the

organization can then assess progress towards their strategic objectives. This chapter supports

the proposition that SOA can lead to increased cost savings within an organization. It is

important to note that a strategic vision must guide such an endeavor in order to realize this

potential.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_16924/book.asp)

Campbell, D. (2005). Service Oriented Database Architecture: APP server-lite?. In Proceedings

of the 2005 ACM SIGMOD international Conference on Management of Data (Baltimore,

Maryland, June 14 - 16, 2005). SIGMOD '05. ACM Press, New York, NY, 857-862.

The author explains that the loosely coupled nature of SOA requires that SQL Server be able to

act as an independent service for outside requests; this is accomplished by means of

enhancements to the product, including a resident common language runtime (SQLCLR) and

http://common.books24x7.com.dml.regis.edu/book/id_16924/book.asp

THE SOA AND CLASSIC DATA WAREHOUSING 75

HTTP web service in the server memory space, enhanced transactional management via a service

broker, and distributed memory notification process that alerts external caches when relevant

data has been changed. This article shows how SOA as an architectural methodology may

impact how vendors design and enhance their offerings, further blurring the lines between

products such as application and database servers.

(Source: ACM Web Site http://doi.acm.org/10.1145/1066157.1066267)

Dan, A., Johnson, R. D., and Carrato, T. (2008). SOA service reuse by design. In Proceedings of

the 2nd international Workshop on Systems Development in SOA Environments (Leipzig,

Germany, May 11 - 11, 2008). SDSOA '08. ACM, New York, NY, 25-28.

The authors assert that a centralized governance policy for SOA services will better ensure their

reuse and extensibility in the enterprise environment, thus leading to reduced costs for software

development and minimized risk in managing runtime environments. Four key challenges are

identified in regard to governance: (1) establishing common definitions across business lines, (2)

managing service creation, (3) managing discovery of services and access to specific

functionality, and (4) managing service enhancements. The authors agree with Schepers (2008)

that SOA is still in its nascent stage in terms of enterprise-wide deployments. This leads to the

conclusion that the governance policy presented is based at least in part on practices which have

proven successful in other large-scale project methodologies. For instance, the authors propose

that a chain of responsibility be established in order to create a common service language across

the enterprise (p. 26). The concept of stewardship of this sort has strong ties to enterprise data

http://doi.acm.org/10.1145/1066157.1066267

THE SOA AND CLASSIC DATA WAREHOUSING 76

warehouse projects, whereby business stewards are charged with ensuring semantic consistency

across business lines. See Kimball (2008, chap. 2) for more details on the data steward role.

(Source: http://doi.acm.org/10.1145/1370916.1370923)

Kimball, Ralph, and Joe Caserta. (2004). "Chapter 4 - Cleaning and Conforming". The Data

Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and

Delivering Data. John Wiley & Sons. Books24x7.

The authors explain the importance of the transformation portion of the extract-transform-load

(ETL) process within the data warehouse. This process ensures that incoming data are checked

for errors and inconsistencies and that sufficient metadata is created for auditing data quality

issues. Techniques are presented by which data sets can be sampled for errors through so-called

“data quality screens”, which check for reasonableness both in regards to data context and

individual values of data. Data conforming is then undertaking in order to integrate incoming

data and store it into appropriate dimensions within the star schema. This reading provides an

insight into how the data warehouse ETL process creates applies quality management and

integration services so that business users can utilize data. Practical ETL design considerations

are also presented which should be incorporated into the overall warehouse design process.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_11237/book.asp)

Kimball, Ralph. (2008) "Chapter 11 - Introducing Business Intelligence Applications". The Data

Warehouse Lifecycle Toolkit, Second Edition. John Wiley & Sons. Books24x7.

http://doi.acm.org/10.1145/1370916.1370923
http://common.books24x7.com.dml.regis.edu/book/id_11237/book.asp

THE SOA AND CLASSIC DATA WAREHOUSING 77

The author describes the role of business intelligence (BI) applications within the data warehouse

environment. The BI application exists primarily to provide less technically-oriented persons

access to pre-written, parameterized reports. The BI report developers are typically persons who

are comfortable using query tools and who are subject-area experts in a given field. A BI

solution can range from strategic portal implementations to tactical operational reports deployed

via dashboards. This chapter provides many insights into the applicability of data warehousing

in meeting the reporting needs of an organization across a wide spectrum or activities. Of

particular interest is the discussion relating to portal management and metadata access to

services. This is helpful in understanding how data warehouse information can be accessed by

users.

(Source: http://common.books24x7.com.dml.regis.edu/book/id_24441/book.asp)

http://common.books24x7.com.dml.regis.edu/book/id_24441/book.asp

	Regis University
	ePublications at Regis University
	Spring 2010

	Assessing the Flexibility of a Service Oriented Architecture to that of the Classic Data Warehouse
	Michael Pastore
	Recommended Citation

	thesis_draft_pastore_michael_draft8.doc

