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Abstract  

The flexibility of a service oriented architecture (SOA) is compared to that of the classic 

data warehouse across three categories: (1) source system access, (2) integration and 

transformation, and (3) end user access.  The findings suggest that an SOA allows better upgrade 

and migration flexibility if back-end systems expose their source data via adapters.  However, 

the providers of such adapters must deal with the complexity of maintaining consistent 

interfaces.  An SOA also appears to provide more flexibility at the integration tier due to its 

ability to merge batch with real-time source system data.  This has the potential to retain source 

system data semantics (e.g., code translations and business rules) without having to reproduce 

such logic in a transformation tier. Additionally, the tight coupling of operational metadata and 

source system data within XML in an SOA allows more flexibility in downstream analysis and 

auditing of output .  SOA does lag behind the classic data warehouse at the end user level, 

mainly due to the latter’s use of mature SQL and relational database technology.  Users of all 

technical levels can easily work with these technologies in the classic data warehouse 

environment to query data in a number of ways.  The SOA end user likely requires developer 

support for such activities.  
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Executive Summary  

The classic data warehouse model has remained largely unchanged over the  past 20 

years.  A data warehouse typically resides outside of the transactional system environment.  Data 

are periodically fed from source systems to the warehouse in batches, where transformation, 

tagging, and integration processes are performed. Business users utilize the data warehouse 

database for a variety of tasks, including ad hoc querying, data analysis, and standard reporting.  

A key advantage of this architecture is that the complexities of back-end systems have all been 

done away with; users have access to everything on a homogeneous platform. 

The evolution and adoption of Web services over the past few years, enabled in part by 

standards such as SOAP and XML, have greatly enhanced the ability of disparate information 

systems to communicate with one another using common formats.  An architectural concept 

called service oriented architecture (SOA) has subsequently evolved that allows organizations to 

utilize such standards to expose their systems to the outside world in a uniform fashion.  The 

flexibility of an SOA is apparent in business-to-business (B2B) communications because 

organizations no longer have to use proprietary technologies in order to communicate with one 

another. 

Research was conducted in order to assess whether the flexibility of an SOA is applicable 

to the classic data warehouse.  It was found that an SOA provides more flexibility for source 

system data extractions than the classic warehouse, at the cost of complexity on part of the 

source system data providers themselves.  An SOA also enhances the capability of combining 

online and batched source system data, allowing end-users more flexibility in combining real-

time queries with historical data.  Additionally, the non-rigid nature of the XML storage format 
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allows a more cohesive coupling of metadata with source system output, thereby enhancing 

flexible analysis of integration and transformation processes. 

An SOA was found to lack the front-end flexibility of the tools found in the classic data 

warehouse environment.  Specifically, users in the classic environment have access to 

summarized data tables and easy-to-use query tools based on SQL.  Users of an SOA are more 

likely to require developer support in order to access back-end data.  This likely precludes an 

SOA from being used as a front-end architecture for ad hoc purposes, thereby relegating it to the 

back-end processing tiers for the foreseeable future.  
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Chapter 1 – Introduction  

1.1 Problem Statement  

This research project was initiated due to the need of a small fixed-income investment 

firm to phase out and replace the majority of its data warehouse code over the course of the next 

four years.  The current codebase is written in Microsoft Visual Foxpro (VFP), an Xbase 

language that was widely used in the 1980’s and 1990’s.   The vendor will discontinue extended 

support for the language in April, 2014. 

The initial analysis of a replacement language soon led to fundamental questions about 

the data warehouse architecture itself and its ability to handle an increasingly complex number of 

application providers and data integration needs.  The current investment warehouse is based on 

the classic warehouse paradigm, whereby source system data structures are periodically 

imported, transformed and integrated within a homogeneous database platform.  This 

methodology has remained virtually unchanged since the widespread adoption of the warehouse 

model in the 1980’s. 

A number of technological advances have emerged in the intervening years as a result of 

the phenomenal growth of the World Wide Web.  Web Services standards such as XML, SOAP 

and WDSL, supported by the HTTP and TCP/IP transport protocols, allow for an unprecedented 

level of flexibility in how disparate systems can interact with one another.  The concept of a 

service-oriented architecture (SOA) has also gained traction as a means of making such 

interactions easier to deploy and manage, independent of the configuration of the participating 

systems.  Although the SOA is today primarily used for integrating enterprise applications, it 

shows potential for improving flexibility in the new investment data warehouse. 
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1.2 Project Proposal  

The research project will consist of two major phases.  The first phase will be to conduct 

an in-depth study of the SOA, its underlying technologies, standards, and current vendor 

implementations.  The primary sources for the data collection will be academic journals and 

other published literature.  Vendor-biased literature such as white papers will be avoided, as well 

as web sites that provide non-substantiated opinions.  A review will also be conducted of current 

data warehouse methodologies and will utilize data collection methods similar to those used in 

the SOA research.   

The second,  and primary, phase of the research project will be to develop a number of 

SOA prototype adapters that provide services commonly found in the classic data warehouse 

environment.  A project plan will be developed that outlines the implementation of these 

services.  The three primary layers of the data warehouse environment (extraction, 

transformation/load, and reporting) will serve as the guideline for developing these adapters.  

The flexibility of the adapters will be compared to similar functionality found in the legacy 

environment.   

The feasibility of the research project is high.  The fixed-income firm has licensed copies 

of Windows 2003 servers, as well as an MSDN license that includes Microsoft Visual Studio 

2008.  Microsoft’s Windows Communications Foundation (WCF) appears to support the major 

components associated with an SOA architecture and will likely be used to deploy the SOA 

adapters.  Most importantly, the management team at the fixed-income firm supports the 

research project as a means of not only replacing the legacy codebase but also of potentially 

improving the flexibility of data reporting and analysis. 
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1.3 Significance  

A number of important contributions to the information technology and business fields 

will result from this project.  First, it will be determined if a service-oriented approach to data 

extraction provides better flexibility than that found in traditional warehouse implementations.  

Classic data warehouse extraction routines are typically tightly bound to the schemas of the 

systems with which they interact.  The black-box, response-request paradigm of the SOA may 

help to abstract such interfaces so that back-end upgrades have a lower impact on downstream 

extractions. 

Another contribution of this research project will be to explore whether an SOA approach 

to extraction-transaction-load (ETL) allows static and real-time interfaces to coexist with one 

another.  The traditional data warehouse ETL process is primarily batch-oriented.  Data are 

imported from source systems in timed intervals, transformed in some way, and then stored in 

the warehouse repository.  This research project will assess how well SOA can manage ETL in a 

more fluid manner.  This is an important consideration for organizations that need the flexibility 

to tap into source systems in non-uniform time intervals.  Furthermore, the exposure of ETL 

processes as services likely allows for a better abstraction of source systems, thereby facilitating 

the integration of heterogeneous systems. 

Finally, this research project will explore the notion that data warehouses must reside in a 

relational, homogeneous database environment that is accessed via structured query language.  

The request-response nature of the SOA might provide more flexibility for warehouse developers 

and end-users alike because of its higher emphasis on the functional, rather than non-functional, 

aspects of data retrieval and reporting. 
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1.4 Thesis Statement  

Utilizing a service-oriented architecture in the redesign of a legacy investment data 

warehouse produces a system architecture that is more flexible than that found in a traditional 

implementation.  
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Chapter 2 – Review of Literature and Research 

2.1 Overview of the Secondary Research   

A thematic literature approach was conducted to identify and compare flexibility 

categories for both classic data warehousing and the SOA .  This review not only helped the 

researcher to draw some initial conclusions but was also beneficial in understanding the technical 

aspects of the newer architecture.   

2.2 Classic Data Warehousing vs. SOA  

Classic Data Warehousing  

According to Inmon (2005, chap. 1), a properly implemented data warehouse solves a 

number of problems traditionally related to corporate data analysis and reporting.  These include 

(1) data quality, (2) reporting productivity, and (3) transformation from data to information.  The 

issue of data quality often arises when the source data from multiple systems need to be 

combined with one another.  Unless these systems all share an integrated data dictionary, it is 

likely that their naming conventions and coding schemes for data elements will differ from one 

another.  For example, one system may store a customer or supplier address in one character 

field while another system has normalized the distinct address elements into separate fields.  

Such differences are accounted for in the data warehouse through parsing and cleansing 

software.  

Reporting productivity in a data warehouse environment is enhanced by virtue of having 

integrated, cleansed data in a single data repository.  The onus is no longer on the user to 
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determine how to link data from multiple systems, or to access systems which reside on different 

platforms.  Such functionality is taken care of by means of the extraction, transformation, and 

load (ETL) services in the warehouse environment.  User productivity is also enhanced by means 

of having all integrated data in a homogeneous repository.  This repository typically consists of 

one or more relational or star schema structures and is accessible via SQL.  Ample query tools 

exist with which even the most novice end- user can quickly obtain information from such data 

stores.  Kimball, et al. (2008) notes that the majority of users will end up running pre-written, 

parameterized reports that exist as part of a business intelligence repository (chap 11).  

The transformation of data to information occurs when extracts from multiple systems are 

integrated with one another and uniform code semantics are applied to the output.  It is also 

likely that subsequent data loads into the warehouse will form the basis of a historical, time-

variant view of source system data.  This is one of the key aspects of a data warehouse which 

differentiates it from a real-time system.  While the latter is primarily concerned with providing 

transactional services in a low latency environment, the data warehouse system exists to provide 

ad-hoc analytical or standard reporting services to the business analyst.  It should be noted that 

more modern information systems, especially ERP’s, have come a long way in allowing ample 

historical data to co-reside in the production system environment.   However, as Inmon (2005) 

notes, there exists no consistency in how much historical data each system maintains (chap. 1).  

The data warehouse can fill such a void by applying normalized time stamping as source data are 

imported.  This provides a rich historical repository over time.  

Service Oriented Architecture 
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The efficient alignment of business and IT objectives has been a core challenge since the 

early days of computing.  An SOA approach to managing application deployment is seen as a 

positive step towards better integrating business processes with their technological 

implementation. As Kamoun (2007, p. 1) notes, the decades-old concept of business process 

management may now have an enabling technical counterpart.  A key benefit of SOA can 

therefore be seen in its ability to deliver application services in a diverse business environment.  

As Dan, Johnson, and Carrato (2008) note, this provides many benefits to an organization, 

including (1) agile solution deployment, (2) reductions in cost through the avoidance of 

duplication of effort, and (3) reduced risk because of the reuse of well-tested code and run-time 

environments (p. 25).  Deployment agility is gained through the ability of an SOA to provide 

access to multiple system software components at runtime in the form of middleware services.  

The loosely coupled nature of these services allows them to be more easily orchestrated in ways 

that are customized to meet the needs of the business process chain. (Schepers, Iacob, and Eck, 

2008, p. 1055).  Developers of such solutions can choose what services they need and then 

combine these into custom applications.  The input parameters and output specifications for the 

services are available via a service registry. 

The potential for cost reduction through an SOA is realized by the consolidation of 

service interfaces into a uniform repository.  Existing business semantics can be discovered and 

reused in a consistent manner throughout the organization. The alternative to this is to duplicate 

business logic across applications, which will likely prove costly and difficult to manage.  Marks 

& Bell (2006) claim that IT costs can in fact be reduced up to 80% through the application of an 

SOA, not only by reducing duplication of coding effort but also in the savings realized though 

reduced hardware, licensing, and integration fees (chap. 9).  Reduced risk through an SOA can 
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be seen as a byproduct of utilizing source systems which are part of stable, well supported 

production environments.  It is important to note that SOA as such is not so much about code 

development as it is about leveraging existing code bases.  Legacy systems are natural candidates 

for integration into an SOA, owing to the key role they play in the delivery of core business 

functionality.  Early SOA implementations have in fact been primarily oriented towards such 

systems. (Dan, Johnson, and Carrato, 2008, p. 25).  

2.3  How do the Architectures Bridge the Business/Technical Divide?   

An important aspect of a flexible system architecture lies in its ability to convey business 

semantics to end users.  This section will explore the ways in which data warehousing and the 

SOA bridge the technical-to-business divide..  

Classic Data Warehousing 

The integrated data warehouse repository provides the primary link between business 

users and the information contained in on-line applications.  Fundamental to this concept is that 

the data warehouse is separated from the source systems from which it draws its data.  Inmon 

(2005) contends that this architecture provides a number of advantages for the business user, 

including (1) an integrated and reconciled analytic environment, (2) a subject, rather than 

functional, view of data, and (3) a level of granularity sufficient to conduct a wide range of 

decision support activities (chap. 2).  The data warehouse ETL process provides the functionality 

required to integrate data from multiple source systems into the homogeneous warehouse 

environment.  A key aspect of the ETL phases is to provide the data translation and 

reconciliation logic necessary for maintaining and expanding the semantics of the source system 
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repositories.   Kimball & Caserta (2004) refer to this as the “cleaning and conforming” phase of 

data transformation (chap. 4). 

The conforming of incoming data is perhaps the most challenging part of the ETL 

process because it requires that output structures are modeled in a way that will meet diverse 

end-user needs.  These structures, whether OLAP-oriented star schemas or a quasi relational 

operational data store (ODS), make available the subject, rather than functional, semantics of 

source systems to business users.  The warehouse is not an application-oriented environment; its 

purpose is primarily to expose the underlying discrete data elements which cross-cut source 

production systems.  For example, the insurance business user of a data warehouse is more likely 

to think in terms of customer and claims rather than auto and property (Inmon, 2005, chap. 2).   

The level of granularity of the warehouse determines how flexible it will be for its user 

base.  In general, a finer grained repository will provide more reporting opportunities to the 

business user, albeit at the cost of increased structural complexity.  As mentioned previously, 

much of this complexity can be mitigated by implementing a business intelligence portal 

containing prewritten reports.  Silvers (2008) contends that the use of static metadata is integral 

to this process because it provides users insight into the meaning and origin of data  (chap 9).  

The metadata repository might be something as simple as a data dictionary stored in an Excel 

spreadsheet or part of a comprehensive system in which run-time ETL processes, user access 

rights, and context-based reporting are managed.  

Service Oriented Architecture 

An SOA usually consists of decoupled middleware services that are bound to core 

production systems.  These services make key components of the application environment 
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directly available to business processes and end-user applications.  An SOA can be seen as 

providing the means for business users to easily interact with back-end systems.  The benefits of 

such an approach are realized when new business processes need to be developed from legacy 

software systems.  Braun (2007) contends  that an SOA-based enterprise model can link process, 

software, and application layers within the overall computing architecture, thereby providing 

flexible support for business processes (p. 1218). 

An SOA is more application/process than subject/data oriented.  Within the context of 

decision support, such functionality allows the business user to obtain source system data in 

which semantics already conform to established business rules.  The need for an intermediary 

processes such as an ETL sub-system might therefore be regarded as superfluous in some cases.  

A particular advantage to the SOA approach is that changes to underlying source system 

structures or platforms are abstracted via stable interfaces within the SOA services layer.  A user 

of the SOA can then interact with services in a consistent manner, free from the burden of 

knowing the underlying system’s schemas. 

The key aspect of such functionality lies in the contractual nature of the SOA runtime 

environment.  The SOA service catalogue is a formal contract that specifies what a service 

provides.  It lets a consumer know what they can do and the constraints that govern how the 

service is delivered.  The consumer can review the contract to determine both the functional and 

non-functional properties of the service.  Service contracts typically fall under an overall SOA 

governance structure within the organization and are deployed via Web services.  Similar to the 

data warehouse ETL processes, SOA service contracts are driven by metadata.  Efforts over the 

past few years have brought forth SOA-based metadata standards such as SOAP and Web 

Services Description Language (WSDL).  Organizations who publish their services using such 
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standards may be better positioned to integrate their business processes with other service 

providers, without incurring significant integration costs. 

2.4  How Accessible are the Architectures?   

The degree of flexibility in accessing data within the data warehouse and SOA 

architectures can be assessed by evaluating (1) how open the architectures are to users of various 

technical skill levels and job functions, (2) what language constructs are available for interacting 

with the architectures, and (3) how well current technologies and standards promote flexible data 

access within the architectures.  

Classic Data Warehousing  

The data warehousing environment is meant to be accessed directly by end-users in a 

number of ways, including query tools, canned reports, and business intelligence applications.  

The end-users themselves are apt to be more business than technically oriented.  Both Inmon 

(2005) and Kimball (2008) identify a few classes of end users, including business specialists and 

operational personnel.  The former are more likely to interact with the warehouse in an ad hoc 

manner, while the latter usually run predefined reports from the system.  A few factors enable 

business users flexible access to the data warehouse environment.  First, the data warehouse 

environment of today is almost exclusively hosted on some form of relational database 

management system (RDBMS).  The primary access mechanism for the data stored therein is 

SQL.  Codd (1970) correctly predicted that a “n-ary “ relational data store, in conjunction with a 

high level query language, would someday provide business users with direct access to corporate 

data stores.  
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Another reason warehouse data are readily available to most users is that software tools, 

SQL language constructs, and networking standards have matured over the past two decades.  

High level software tools such as Microsoft Access and Excel have built in query-by-example 

(QBE) interfaces that allow even novice users to easily join tables and apply filtering logic.  The 

SQL language itself has undergone ANSI standardization, and is supported by most vendors.  

Additionally, high-level data access interfaces such as ODBC, JDBC, ADO, and OLEBD 

provide an easy and flexible means for users to connect to back-end databases.  Finally, the 

emergence of TCP/IP as the predominant industry-wide networking protocol provides a uniform 

communication medium between computers on both local and distributed networks. 

Although the data warehouse has benefited by the standardization of its underlying 

technologies, no overarching warehouse standard per se has ever gained traction.  TheW3C 

Common Warehouse Metamodel (CWM) was developed by a consortium of users in an attempt 

to provide a standard through which data can be traced and shared within the warehouse 

environment.   As Hartman (2008) notes however, the standard's complexity is a major factor in 

its not gaining wide-spread adoption industry-wide (p. 52).   Inmon and Kimball themselves 

disagree upon what logical structure the data warehouse should be, with the former arguing for a 

normalized data store and the latter for an OLAP-friendly star schema (Drewek, 2005).  

Architectural disparities such as these may challenge the user who is well versed in only one of 

the data warehouse models if they attempt to migrate to another one. 

Also noteworthy is that the major RDBMS’ have proprietary language constructs in their 

SQL offerings.  This is due in part to vendors having already implemented portions of SQL prior 

to the formal standards being agreed upon.  Database vendors also tend to introduce language 

enhancements over time in order to increase developer productivity and make their product 
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offerings more marketable.  A data warehouse user in the Oracle environment is therefore likely 

to generate SQL code that cannot port to the MS SQL Server environment.  Arvin (2009) 

provides examples of the disparities between commercial vendor’s SQL dialects and the ANSI 

standard itself. Such differences will challenge a developer who is attempting to write portable 

data warehouse code.  

Service Oriented Architecture  

In contrast to the classic data warehouse, SOA has from the beginning been primarily 

about enabling communications between backend systems.  The technologies of the Web (e.g., 

HTTP, TCP/IP, SOAP, and XML) allow for disparate systems to interact with one another in a 

loosely coupled manner across a wide area network.  Access to the SOA environment however is 

still largely the domain of the software developers; business user access is mainly accomplished 

through software applications which hide the underlying complexities of backend data fetches.  

Limited user access can be attributed in part to the relative newness of the SOA and its 

only gradual adoption by major software vendors.  There are also indications that the sheer 

complexity of the architecture can pose significant challenges in training both technical and 

business users in how to utilize it.  For instance, Im, Guimaraes, and Hoganson (2004) found that 

although the individual components of middleware technology may be easy to grasp, assembling 

them all to create a N-tier solution can be a large task.  Such complexities, at least in the short 

run, will likely keep the SOA out of the domain of the casual business user.  Lopez, Casallas, and 

Villalobos (2007) also express concern that the SOA may not be adequately covered in the IT 

curriculum at many universities.  This may put recent IT graduates at an initial disadvantage, and 

slow the adoption of SOA by technically-oriented users. 
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Access to the SOA environment is accomplished using a “request-response” paradigm.  

A client application or component, acting as a consumer, sends a request to a middleware service 

which in turn sends back a response.  This approach is analogous to distributed component 

models such as DCOM and CORBA.  These older technologies however tend to be harder to 

configure due to the tighter coupling of their runtime environments.  Scribner and Stiver (2000) 

contend that the “heaviness” of such architectures cause them to be expensive to set up and 

maintain (chap. 1).   An SOA in contrast can capitalize on the text-based, open standards 

afforded by Web-based technologies such as HTTP, XML, and SOAP.  These light-weight 

components provide a higher degree of flexibility in both deploying and accessing the SOA 

across a wide range of platforms.  

The request-response mode of communication of an SOA is similar in some respects to 

the object-based programming model seen in most modern 4GL’s. A client application is apt to 

make a number of object-based calls via the SOAP message protocol to middleware services.  

The corresponding SOAP responses are then assembled by the client in order to create the 

desired output.  An object-based approach to programming can have some advantages over 

declarative languages such as SQL.  For instance, the user does not have to be concerned with 

the underlying logical schema of the system with which they are interacting.  The SQL user on 

the other hand needs to express relations; a change in the schema requires a change in client 

code.  The nature of object-based calls also lend themselves to a more natural business-like 

process description.  This has the potential to allow more business-oriented users to assemble 

applications using SOA services.   

The W3C standards that support SOA strongly favor its flexible use across platforms.  As 

mentioned previously, Web-oriented protocols such as HTTP and TCP/IP, as well as standards 
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such as XML and SOAP, promote interoperability amongst systems.  The XML format, like 

HTML, is a simplified subset of the SGML standard.  An inherent strength of XML lies in its 

structural flexibility.  This allows for the formatting of data in a large number of ways, such as 

hierarchical tree structures or normalized relational formats similar to those found in RDBM’s.  

In contrast to a SQL based repository, which returns a cursor of rows and columns, a service 

utilizing XML as its transport format can return data in a number of formats, which Sperberg-

McQueen (2005) aptly terms “semi-structured data”.  The W3C XQuery standard for performing 

SQL-like operations on XML files provides users with a more abstract way of interacting with 

such documents.  As Seeley (2007) notes, this will help speed development and simplify access 

to XML files.  Prior to this developers had to rely on proprietary parsing mechanisms, or the less 

flexible XSLT standard. 

2.5  How do the Architectures Handle Data Volatility?  

Decision support architectures need to have mechanisms in place so that the user can 

understand the meaning and context of the information contained therein.  The resiliency of these 

systems can be challenged when changes introduce semantic data conflicts in the reporting 

environments.  Common scenarios include (1) changes to source data schemas, (2) ambiguities 

between source data values and definitions, and (3) changes to the reporting data 

schemas/services themselves.    

Classic Data Warehousing 

Changes to Source System Schemas  

Changes to source data schemas will impact the data warehouse ETL processes that 

directly access them.  For instance, the renaming of a table or field that is accessed by a data 
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import process will cause an error to occur during runtime processing.  One workaround is to 

have source systems produce an intermediary file (typically in delimited text format) that 

represents a de-normalized, schema-neutral representation of the source data.  The data 

warehouse ETL process will then import and parse the flat file, without having to deal with the 

relationships within the backend schema from which it came.  Additionally, the use of text as a 

transport medium allows the ETL processes more leeway in the interpretation of data types.  For 

example, a source system might change a salary field from data type float to double, or change 

the decimal precision from two to four digits.  The representation of these values in the 

intermediary file will be type neutral, allowing for greater flexibility in how they are handled 

downstream.  Kimball and Caserta (2004) list other advantages to using flat files, such as the 

ability to use FTP as a transport medium and faster bulk load times (chap. 3).  

There are cases however in which source systems are incapable of producing an extract 

file for the data warehouse.  In these situations a data warehouse programmer must either make 

direct changes to code within the ETL processes or implement a metadata tool that provides 

schema mapping services at compile or runtime.  The more traditional approach to ETL within 

the warehouse has been to maintain schema awareness within the code itself.  A programmer 

utilizes a 3GL or 4GL language to hard code all extract routines against a known schema.  The 

growth of relational databases in the late 1980’s, along with the use of embedded SQL in source 

code, has greatly simplified this process.  Although the use of schema-aware source code is 

likely to provide the fastest runtime performance, it is likely to be less resilient to change than 

processes that link to metadata mapping files.  

A metadata mapping repository can be used to store the physical and logical aspects of 

the source data repositories feeding the data warehouse system.  The advantage of this approach 
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is that a transparent, language independent view of all feeder systems is maintained outside of a 

static code base.  The ETL programmer can then write processes which link to the metadata at 

run-time to build dynamic SQL statements.  Changes to backend schemas then require (in theory 

at least) a change to the metadata repository only, not the code.  A more detailed metadata file 

will likely contain actual fields which are joined to create output.  A variety of vendor metadata-

based tools exist in the marketplace for these purposes.  The more sophisticated of these allow 

for rules-based metadata that are compiled into languages such as Java, C, or Visual Basic.  In 

this scenario, a change to a backend schema will precipitate a change to the metadata repository, 

and subsequent recompiling of code.  The compiled code is likely to provide better runtime 

performance than the on-the-fly dynamic SQL approach, albeit with potentially less flexibility on 

the part of programmer.  

Source Data Ambiguities 

The reconciliation of source system data conflicts during the ETL process is perhaps the 

most challenging part of providing quality information in the classic data warehouse.  This issue 

is apt to be compounded as more source feeder systems are added, particularly if these systems 

intersect one another in terms of business functionality.  For instance, an auto parts retailer may 

utilize a number of different wholesalers for their supplies.  It is likely that the wholesalers will 

have different coding schemes for the same products.  This will require the designers of the 

retailer’s data warehouse to implement metadata crosswalk structures for reconciling coding 

inconsistencies.  

A more vexing integration challenge can arise when data semantics between source 

systems differ from one another.  For instance, a student records system at one university may 
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list a different date of birth for a student as another university.  One school might also define full 

time and part times students differently, thereby making it difficult to define these terms when 

the student records from each source are integrated in the data warehouse. Bleiholder and 

Naumann (2008) specify the three categories of data semantic conflicts as schematic, identity, 

and data (p. 7). 

Schematic conflicts can likely be resolved by maintaining a metadata crosswalk or 

mapping table.  Identity conflicts are likely to require more work, because each system is 

providing its own version of the truth for the same element of information.  Moreover, one of the 

systems might be the more authoritative source depending on the context of the report being run 

in the data warehouse.  In such cases, metadata mapping back to discrete source system data 

elements is likely necessary.  Users of the warehouse can then choose which source value to use 

based on their specific needs.  Fritz (2006) refers to this technique as atomic data source 

mapping, and contends that it should be done during the design of the semantic data model.  

Data conflicts occur when semantic differences cannot be resolved based on context.  

Although outright data errors will likely have to eventually be resolved (e.g. in the case of 

conflicting student ages or gender classifications), there are instances in which the original 

values must both be maintained in the warehouse due to ambiguity about which value is correct.  

This situation might occur when two different bond rating agencies differ in their credit 

assessment of a financial security.  In this case, both ratings are represented in the data 

warehouse repository.  The cube structures found in the OLAP-type warehouse provide an 

efficient means of storing data in this manner. As Bleiholder and Naumann (2008) note, SQL 

unions can be used to load records from the different systems into the cube, thereby retaining 

source system semantics (p. 20). 
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Changes to the Data Warehouse Repository  

The data warehouse, like the source systems which feed it, is apt to undergo upgrades 

during its lifetime.  Changes relating to new data structures, whether fact tables or cubes, are to 

be expected as new reporting requirements surface and additional source systems are integrated 

into the warehouse repository.  Existing interfaces to the data warehouse structures are unlikely 

to be impacted by such additive changes.  However, changes to the legacy schemas within the 

warehouse itself can cause problems.   

Such reorganizations have the potential to break BI applications and user queries that 

have been developed using the older schema.  This exposes a fundamental weakness of the data 

warehouse; like the operational systems that feed it, it exposes its underlying logical schema to 

end users.  Changes to this schema require that an impact analysis be done in order to assess 

downstream risk.  This can be a rather large task, depending on the scope of the changes and the 

number of existing interfaces to the legacy schema.  Rainardi (2008) suggests treating such 

changes as one would an upgrade request for a production system, utilizing formal processes and 

conducting an impact analysis (p. 501).  Another approach for handling such changes is to 

maintain the legacy schema in parallel with the new schema, thereby providing end-users ample 

time to recode their data access routines.  The legacy schema is then taken off line after a 

sufficient grace period has expired.    

Service Oriented Architecture 

Changes to Source System Schemas 
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An SOA that utilizes a contractual mechanism such as SOAP is apt to be less vulnerable 

to schema changes in backend source systems.  This is because the request/response paradigm of 

the SOA deals with discrete data element fetches that are independent of the logical schema from 

which they originate.  The XML schema within the SOAP message may however contain 

specific field data type definitions.  An outright change of a source system field data type can 

therefore cause the same problems as in the traditional relational model.  

Source Data Ambiguities  

Resolving provider data ambiguities within the SOA is vital if the architecture is to be 

used for decision support purposes.  As with classic data warehousing, the data that feeds the 

SOA will be drawn from a variety of sources.  The SOA however will likely not follow the 

traditional batch-oriented paradigm when pulling this data, opting instead for real-time access to 

on-line systems.  This scenario runs contrary to traditional assumptions that data cleansing will 

be done in a homogeneous data warehouse environment (Agosta, 2006).  The SOA is therefore 

faced not only with resolving data ambiguities (schematic, identity, and data conflicts) common 

to the classic decision support environment, but also with orchestrating ETL services in a 

dynamic systems environment.  As noted by Dreibelbis, et al., (2008), this paradigm shift can 

lead to poor data quality because the SOA by nature has always been more about data mapping 

than data reconciliation (chap. 2).  

The concept of master data management (MDM) has arisen over the past few years as a 

means to address data quality issues.  The MDM paradigm goes beyond implementing a static 

metadata repository for data cross-walking data and reconciliation.  It is a service unto itself, 

fully integrated with other services, both real-time and static, which co-exist with it in the SOA.  
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This service layer wraps the functionality of various systems (including legacy data warehouses) 

into a logically homogeneous, metadata driven view of the enterprise.  The advantage of this 

approach is that data semantics do not have to be duplicated between source systems and the 

ETL processing environment.  A change to operational metadata is automatically utilized by 

decision support metadata.  

While the MDM does appear to address how an SOA can implement ETL functionality in 

support of decision support services, the question remains as to how source system data 

ambiguities are handled.  Berson & Dubov (2007, chap. 15), use customer data integration (CDI) 

as the backdrop for explaining how a MDM-enabled SOA can resolve such issues.  They explain 

that a customer entity can have a variety of meanings, depending on the context in which they 

are interacting with a particular service within an SOA.  It is expected that a customer’s 

attributes will mean different things at different times under different conditions.  A so-called 

identity hub is utilized to handle such nuances.  The hub provides mediation services for data 

synchronization activities between all components of the SOA.   

Changes to the SOA Repository  

Changes that might occur within an SOA repository include deprecation of interfaces, 

changes to existing interfaces, and URL changes.  The deprecation of interfaces occurs when 

new business functionality is applied that either supersedes or supplements old functionality.  For 

example, a financial analysis might need to assess an investment portfolio’s performance over a 

twelve month period.   Later on it may be necessary to provide both fiscal and calendar year 

performance returns.  Users who elect to use the deprecated interface will still get the calendar 

year performance by default.  Method parameter overloading within the service will likely be 
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implemented for such scenarios.  In order to provide explicit support for both calls the response 

SOAP message should contain metadata that explains the context of the returned data.    

Outright changes to interfaces within the SOA are somewhat akin to the schema changes 

discussed previously in the classic data warehouse section.  The addition of new interfaces, like 

the addition of new tables or fields, is likely to have little or no impact on BI interfaces to the 

SOA.  However actual changes to known interfaces will require the same level of change control 

analysis that one would undertake with a schema change in the warehouse.  This scenario is not 

unlikely, as an interface library is apt to become bloated over time, requiring refactoring of 

deprecated functionality.  This is normally done in order to avoid confusion and potential 

misinterpretation of data.  URL changes will likely occur if services are moved to another 

provider.  This might happen after a merger or acquisition, and should be relatively easy to 

manage via metadata at both the requester and service provider levels. 
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Chapter 3 – Methodology  

3.1 Approach  

A design science methodology has been chosen as the approach for conducting primary 

research.  The research project will consist of the design and development of SOA software 

adapters for the extraction and transformation/integration tiers of the data warehouse ETL 

environment.  The flexibility of the SOA adapters will be compared to the legacy software 

modules used in the current data warehouse.  Although the assessment of flexibility will for the 

most part be subjective, based on observations made by the researcher, benchmarks will be 

established in order to present findings in a consistent manner.  Section 3.3 provides more details 

on what benchmarks will likely apply to each tier of the development project. 

3.2 Project Plan   

The project will be undertaken in a series of phases.  These are: 

1. Planning. 

a. Estimating project scope. 

b. Assessing feasibility. 

c. Assessing resource needs. 

d. Assessing time and cost. 

2. Analysis. 

a. Define the data warehouse tiers. 

b. Establish benchmarks for each tier. 

c. Research the SOA and determine a development approach. 
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3. Design 

a. Design the SOA tiers. 

b. Conduct a proof-of-concept prototype. 

c. Assess approach and make modifications. 

4. Coding 

a. Develop the extraction tier. 

b. Develop the transformation/load tier. 

c. Assess the consumer business intelligence tier. 

5. Analysis of Results 

a. Assess SOA functionality compared to classic warehouse code base. 

b. Tabulate and record results. 

c. Conduct further testing as necessary. 

3.3 Flexibility Benchmarks 

The flexibility benchmarks will be driven by the requirements within each tier of the data 

warehouse environment.   

1. Extraction Tier: 

a. The ability to interact with heterogeneous back-end systems. 

b. The ability to maintain backend schema abstraction. 

c. The ability to handle data volatility from back-end systems. 

d. The ability to extend the backend systems . 

2. Integration Tier: 

a. The ability to integrate disparate data sets. 

b. The ability to reconcile source ambiguities. 
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c. The ability to summarize and tag incoming data. 

3. Consumer Tier  

a. A comparison of end-user access to the classic and SOA architectures. 

3.4 Prevention of Bias 

The foregoing benchmarks will require that a certain degree of subjectivity be used when 

assessing the flexibility of each architecture.  It is incumbent on the researcher to approach each 

assessment with no pre-conceived notions about what the outcomes should be.  Although the 

results of the secondary research do show some advantages of each architecture over the other in 

certain tiers, these initial findings should not and will not drive the direction of the development 

project and subsequent analysis.  Rather, the requirements of the warehouse itself, together with 

the predefined flexibility benchmarks, will guide the research effort.      
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Chapter 4 – Project Analysis and Results 

4.1 Summary of Findings   

The findings presented in the following table indicates that an SOA provides diminishing 

flexibility in comparison to the classic data warehouse as one moves from the back-end tiers to 

the user interface tier.   The maturity of the SOA over time, by means of increased vendor 

support and toolsets, will likely increase flexibility on the front end.   

Classic Data Warehousing SOA 
Source System 
Access 
Flexibility 

It depends on vendor implementation. 
An SQL back-end schema provides 
access flexibility, at the cost of 
upgrade complexity.  A proprietary 
vendor data access approach detracts 
from flexibility. 

A uniform approach to data 
access allows focus to remain 
more on the “what” than “how”, 
thus promoting flexibility. The 
onus is on the vendor to maintain 
interface integrity however. 

Integration 
Flexibility 

The warehouse load process is batch-
oriented, which typically precludes 
real-time integration of data.  
Transformation logic is usually done 
in a top-down fashion, which reduces 
transparency. 

The use of adapters on the back-
end promotes real-time, as well 
as batch, integration.  The use of 
XML allows for tighter coupling 
of run-time metadata with output, 
which promotes transparency. 

End User Access 
Flexibility 

The maturity of RDBMS and SQL 
technologies promotes better ad hoc 
flexibility. 

SOA is still nascent, developer 
support is needed. Interfaces can 
be cumbersome to work with.   

Table 1: Summary of Findings  

4.2 WCF Proof of Concept 

A “proof of concept” SOA adapter was developed using Microsoft’s Windows 

Communication Foundation (WCF) architecture.  The purpose of the development was to 

confirm that SOA adapters could be developed and utilized in a stable manner in the target 

environment.  The adapter was successfully deployed and tested, thereby assuring that the 

primary research could be conducted using WCF as the SOA platform. 
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The pricing SOA adapter provides an abstraction layer for fetching security prices from 

an external pricing provider.  The vendor currently provides two means for fetching prices from 

its systems:  (1) via a Windows GUI and (2) via HTTP requests.  The SOA adapter was designed 

as a means of wrapping this functionality within a uniform service interface. 

The functionality inherent to price requests lends itself well to the request-response 

paradigm of the SOA.  The basis components of a price request are: 

1. The requester’s credentials. 

2. The security identifier to be priced, typically in CUSIP identifier format. 

3. The effective date to be priced.  This usually represents the end-of-day market close 

date. 

As previously mentioned, users have two options for fetching prices from the vendor.  The 

Windows GUI is used by business-oriented users to fetch prices. The HTTP method is a 

programmer-oriented tool that allows for more flexible automation of price fetches. 

This development and deployment environment for the pricing adapter consisted of the 

following components: 

1. Service and client UI development language: C#, under Visual Studio 2008. 

2. Runtime environment:  .NET Framework 3.5. 

3. SOA architecture:  Microsoft Windows Communications Foundation (WCF), utilizing 

HTTP, SOAP, and XML. 

4. SOA service host environment: Windows 2003 running IIS 6. 

The first step was to create a WCF service adapter to provide prices.  The adapter uses the HTTP 

post approach, which requires a vendor-specific request string.  The method getPrice() was 
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developed as a wrapper for such functionality.  The .NET IDE allows for run-time testing of 

services. The following figure shows the test client interface used during debugging. 

 

Figure 1: WCF Test Client Interface  

The next figure shows the input parameters for the getPrice() method.  The developer enters the 

parameters manually and then invokes the method.  The response shows a returned price for the 

date of 2/12/2010.  Note that sensitive information has been blotted out in green, as this service 

is accessing a production pricing data provider.   
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Figure 2: WCF Request/Response Test  

The developer also has the ability to analyze the actual SOAP request/response envelope via the 

test client IDE.  The next two figures show the request and response from the test conducted in 

the previous illustration.  Again, sensitive data have been blotted out in green.  
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Figure 3: SOAP request  

The response header section meta data has been omitted, as it is not relevant to this example.   

 

Figure 4: SOAP response  

After the client adapter was developed and tested it was deployed to a IIS host running on a 

Windows 2003 server.  A new Web site called “PricingVendor01” was created to host the 

service:  
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Figure 5: The IIS Host Environment  

The web site publishes the service metadata via WSDL.  This metadata can be queried by 

navigating to the .svc file that was generated by the client adapter project discussed earlier.  This 

file will later be used by consumers of the service in order to create proxy stubs to it.  The 

following figure shows a web page that can be used to gain access to the service’s WSDL 

metadata.

 

Figure 6: Access to WSDL Metadata  

A client consumer application was developed in order to access and test the pricing adapter.  A 

rudimentary C# Windows form application sufficed for this task.  A proxy service stub was 

created by accessing the service’s .svc file via the IIS URI.  The next figure shows the add 

service dialogue.  This functionality can also be accomplished via a app.config file at run-time, a 

more realistic approach in a production environment.    
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Figure 7: Adding a WCF Service Reference  

The pricing UI now has access to the services provides by the pricing adapter on remote server.  

As expected, the adapter’s interface metadata exists in XML format on the client UI side. The 

following figure shows the interface information for the GetPrice() method.  

 

Figure 8: The XML Method Interface 
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The client can now interact with the remote service in a COM-like manner.  The next figure 

shows a price request being done via a Windows form.  Sensitive data has been blotted out in 

green. 

 

Figure 9: Consumer Access to the WCF Remote Service 
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4.3 Source System Adapters   

The first flexibility assessment involved comparing source system extractions between a 

classic data warehouse implementation and two SOA adapters.  The current data warehouse 

serves primarily as a reporting and decision support environment for investment analysts and 

fixed-income bond traders.  It is also provides investment performance reports for clients.  The 

primary data providers for the data warehouse are: 

1. An externally managed trading system. 

2. An internally managed accounting system. 

3. An externally managed bond pricing system. 

The following figure shows a high level diagram of these providers in the investment data 

warehouse. 

 

Figure 10: The Investment Data Warehouse Environment  
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As can be seen in the preceding diagram, access to data providers is done in a few different 

ways.  The trade feed FTP/flat file paradigm is probably the most common method used in 

today’s data warehouse environment.  The ASCII format is portable across platforms and easy to 

parse and read using any number of tools.  The use of ODBC to access a relational backend, as 

seen with the accounting system, has also become a common approach to data warehouse 

extractions over the past few decades.  The HTTP approach is a bit more cryptic, because it 

involves formatting and parsing strings in an application-specific manner.  

Both the ODBC and HTTP interfaces were chosen for conversion to SOA adapters as a 

means of assessing their flexibility to those of the current warehouse.  The following benchmarks 

were used to judge flexibility between the classic warehouse and SOA approaches:  

Criteria Comment 
Data Access How flexibly can data be obtained? 

Schema abstraction Is one architecture more flexible in its logical/conceptual 
schema than the other? 

Back-end changes Are back-end changes more flexibly managed in one 
architecture vs. the other? 

Extensibility Does the architecture allow providers and/or consumers 
ample opportunity to extend functionality? 

Table 2: Source System Extraction Flexibility Criteria  

The Accounting System Adapter  

The current data warehouse extraction process for accounting data is ODS in nature; it 

basically copies the source accounting table schemas to the data warehouse repository via ODBC 

SQL calls.  The returned records are stored in delimited text format and then loaded into the data 

warehouse tables using import tools native to that environment.  This approach is fairly flexible 
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from both a real time and batch perspective.  As long as the backend database engine is available 

the data contained therein can be obtained.  

The accounting system schema is documented by the vendor in a HTML data dictionary.  

This approach suffices for query development purposes.  One can easily search for keywords in 

the data dictionary and determine relationships between tables.  However, minimal metadata 

exists at runtime that can be used to query the meaning of fields and their relationship to one 

another.  A QBE tool like MS Access might be able to derive some relationships based on 

primary/foreign key names, but other metadata is not available to query tools.  

Vendor upgrades have at times required that deprecated and/or new tables and fields are 

accounted for, and that queries are re-coded to account for such changes.  The vendor has also 

upgraded their SQL data engine, in this case Btrieve, a few times over the years.  This has 

created few issues with the queries in use in the data warehouse.  However, a future change to 

another backend engine such as Oracle or Microsoft SQL server would likely require a wholesale 

recoding of SQL extraction code.    

The foregoing analysis of the accounting system shows that it is flexible in terms of data 

accessibility.  A client application requires only the proper permissions and ODBC software in 

order to transport backend data tables into the data warehouse environment.  It is incumbent on 

the developer of such queries however to analyze the data dictionary in order to determine the 

context and usage of source data, as well as data table’s relationships to one another.  

Furthermore, a significant change to the backend schema or database engine type may require 

substantial recoding of data warehouse interfaces.  

An SOA adapter was developed in order to determine if an object-based approach to 

extracting accounting data yields more benefits in terms of flexibility.  The previous section 
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contains details on how adapters are developed using Microsoft .NET and the WCF architecture.  

The steps used to create, deploy, and consume services are covered there.  It is important to note 

that in the upcoming examples deployment is being done from the perspective of the accounting 

vendor, not the data warehouse developer.  Obviously an SOA adapter developed in-house 

would be subject to all the same back-end vagaries as that of traditional SQL code modules (e.g. 

schema changes, deprecation of data elements).  Therefore, the question being framed is whether 

a data provider allows more flexibility to its consumers if the interfaces provided are object 

rather than SQL-based.  

The WCFLibAccounting adapter that was developed contains methods for fetching 

security master file (SMF) and transaction data from the accounting system.  The two parts of the 

an SMF record are its issuer and issue components.  The “issue” is the security itself, which 

consists of the issue’s CUSIP, name, and miscellaneous accounting information.  The “issuer” 

information relates to what entity issued the security.  A one-to-many relationship exists between 

issuers and issues:   

 

Figure 11: Security Issuer/Issue Relations  
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The WCFLibAccounting.getSMF() method provides an interface to issuer and issue 

records.  By default it fetches all current SMF’s from the accounting system.  A related method, 

getSMFByCusip(string cusip), allows for discrete SMF fetches.  Interestingly, WCF does not 

allow for overloaded method calls, which will limit implementation flexibility for that particular 

architecture.  The getSMF*() methods wrap the SQL in an object-based interface. The code on 

the left side of the following figure is accessed by the adapter’s consumer in a more abstract 

manner.  A test client interface can be seen on the right side of the figure. 

  

Figure 12: SMF Adapter and Consumer Interface  

The WCFLibAccounting.getTransaction method is similar to the .getSMF() method, except that 

it allows for date filtering.  The investment data warehouse pulls daily and month-end transaction 

data.  The daily data is more operationally oriented because it provides cash balances needed by 

bond traders, while the month-end data pulls support client performance reporting.  It is 
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important to recognize that SOAP and XML underlie all communications between the consumer 

and the service.  The following figure shows the actual SOAP request and response messages 

involved in a  getTransaction() call:  

 

Figure 13: The Underlying SOAP Message Packets.  

The following diagram shows the classes and interface that make up the accounting system 

adapter:  
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Figure 14: The WCFAccounting Class Diagram   

A few observations can be made at this point relative to the flexibility of the SOA 

approach to that of  direct SQL calls.  As the preceding examples show, the SOA adapters hide 

the backend logical schema from the data consumer.  This will provide more flexibility to the 

consumer if the backend schema undergoes a significant structural change in future releases.  

The onus is on the provider to ensure that the interfaces are maintained.  On the other hand, one 

can argue that an object-based access to backend data might constrain an experienced SQL 

developer who is more than capable of fetching data in a number of ways.  The stove-piping of 

data via strict interfaces might prove more of a hindrance to such people.  However, as 

mentioned previously the accounting system is fed to the data warehouse using the operational 

data store principle, which basically consists of copying one schema to another.  Subsequent 

complex SQL joins are more apt to be done in the data warehouse environment after initial 

extractions from source systems have been done.  

Another observation regarding flexibility is that the XML return sets reflect the data 

classes defined in the adapters.  This allows for a fair degree of structural flexibility over that of 
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SQL data sets.  For instance, metadata can be added to classes in order to better explain the 

context of the data being returned from the source system.  Such data can be co-located with data 

rows or can be associated with all or part of the returned dataset. This data in turn can be used 

downstream in the data warehousing process in a number of ways, including data cleansing, 

transformation, auditing, and error checking.  Obviously such functionality can be incorporated 

into traditional SQL feeds via customized metadata.  However, the use of object-based access to 

backend data allows for a level of cohesiveness not inherent to the row and column paradigm of 

traditional SQL-based systems.  

A final observation is that flexibility for the consumer in the SOA environment does not 

necessarily equate to flexibility for the provider.  As stated earlier, the examples in this section 

use the premise that the vendors themselves provide the adapters.  This requires them to maintain 

interfaces to their underlying data stores, an approach that might seem anything but flexible to 

the developers who have to support such an architecture.  It could be argued that a well 

documented SQL repository should suffice for the needs of most data consumers.  A counter-

argument is that clients are apt over time to develop custom applications around an open vendor 

schema.  This may cause upgrade troubles if the clients have used database-specific approaches 

such as PL-SQL for Oracle, and the vendor later decides to switch to Microsoft SQL Server.  In 

this light the development and maintenance of  SOA adapters might provide for more flexible 

migrations from the consumer perspective.   

The Pricing System Adapter  
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The PricingVendor01 adapter developed in section 4.2 is now used to further illustrate 

SOA wrapper functionality for the pricing vendor services.  The following class diagram depicts 

this adapter: 

 

Figure 15: The PricingVendor01 Class Diagram  

Prices are fetched daily for a sub-set of investment securities and at month-end for all 

holdings.  In contrast to the accounting system, the pricing vendor provides data via HTTP 

requests.  The requests themselves use a somewhat obfuscated calling mechanism.  The 

following figure shows an example of a price request for two securities for the date 2/11/2010: 

 

Figure 16: Proprietary  HTTP Price Request Post  
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As seen in this example, the vendor provides additional data such as security descriptions (des1, 

des2) and additional prices notes (prcnote).  A SOA adapter can abstract such complexity via an 

object-based interface.  The following figure shows the client code for a similar request: 

 

Figure 17: The Object-Based Approach  

The flexibility of an SOA using HTTP in the foregoing example is somewhat clearer than in the 

SQL example.  The vendor has implemented an obscure way of fetching data via a proprietary 

implementation.  An abstraction layer on top of this allows the data warehouse consumer to 

focus more on the “what” than on the “how” of data fetching.  Furthermore, consider if the 

vendor later decides that HTTPS is a more appropriate mechanism for transporting sensitive 

pricing data over the Web.  This would require the consumer to recode their interfaces. A SOA 

middleware adapter on the other hand provides a suitable means for hiding connectivity issues 

from the data consumer, who can continue to use regular HTTP.  

This same line of reasoning can be applied to other non-relational file structures such as 

fixed length text or vendor proprietary formats.  A structural change to these inputs can introduce 

subtle data quality issues in the downstream data warehouse processes. For example, the trading 

system illustrated earlier provides a nightly fixed length text feed to the data warehouse via FTP.  

Various investment security types exist within the same file, each with its own fixed length 

format.  One line in the file might be parsed in a particular manner because it is a commercial 

mortgage, while a corporate security is handled in another way.  Additionally, data elements 

might get added to the end of lines as users request new information from the vendor.  In this 
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scenario the parsing burden is shifted to the data warehouse extraction process.  It can be argued 

that a SOA adapter employing an interface would allow more flexible, if not safer, access to such 

data.  

Recap  

Returning to the benchmarks outlined in table at the beginning of this section, a few 

conclusions can be made regarding the flexibility of classic data warehousing and the SOA in the 

extraction layer of a decision support environment.   

Classic Data Warehousing SOA 
Data Access It depends on the implementation.  

Relational DB's are good, proprietary 
access methods can be challenging for 
the consumer. 

The interface is always object-
based, which provides 
consistency in how data elements 
are accessed. 

Schema 
abstraction 

The consumer is more bound to the 
logical back-end schema.  This can be 
good if the developer is well-versed in 
the language being used and how 
relationships exist on the back-end. 

The consumer is buffered from 
the back-end schema.  This 
allows the focus to be more on 
the "what" than the "how" of data 
access. 

Back-end 
changes 

The consumer is apt to be affected by 
substantial schema changes on the 
back-end, especially by dialect 
changes due to database migrations. 

The back-end changes will not 
affect the consumer, as long as 
the provider maintains the same 
interfaces. 

Extensibility Access to an open schema, especially 
a relational one, provides a lot of 
flexible approaches to data extraction. 

The consumer is locked into a 
specific interface.  This can 
detract from flexibility in terms 
of data extraction.  Also, the data 
provider has to do a lot of work 
in order to develop and maintain 
data flexible access to data. 

Table 3: Source System Extraction Flexibility Synopsis  
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4.4 Integration Adapter 

This section compares the flexibility of the SOA to classic data warehousing for 

transforming and integrating source system data.  The following benchmarks were established 

for this purpose: 

Criteria Comment 
Data Integration Does the architecture allow for flexible integration of 

disparate data sources? 
Data Reconciliation Does the architecture have mechanisms for reconciling 

incoming data? 
Data Transformation Does the architecture flexibly perform transformation 

tasks such as data tagging and summarization? 

Table 4: Data Transformation/Integration Flexibility Criteria  

The Integration Adapter  

The current investment data warehouse utilizes an operational data store, into which 

source system data are imported, transformed, and merged.  The data are also summarized and 

stored in system tables, which are then used as the basis for queries and reports.  An integration 

SOA adapter was developed in order to assess its flexibility the to that of the legacy processes.  

The accounting and pricing system adapters were used as the inputs to the integration adapter.  

The following test scenario was established to assess the flexibility benchmarks shown in the 

preceding table:  

Using the WCFLibAccounting.Transaction service contract, fetch all transactions for a 

monthly period.   

Scan all rows of the return data set and make the following transformations: 

- For sales-type transactions (transaction type starts with “2”) tag the transaction as 

“SALE”.  For purchase-type transactions (“1*”) tag the transaction as “PURCHASE”.  
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Tag the month and year of the transaction (e.g. “1/2/2010” will get tags “01” and 

“2010”). 

- Fetch the associated issuer/issue information via the 

WCFLibAccounting.SecurityMaster data contract, based on the transaction CUSIP.  

If an issuer cannot be found flag apply “UNKNOWN” for the issuer name and apply 

a metadata “MISSING_ISSUER_NAME” flag.  Do the same for the issue name.  If 

the issue tax code contains (20,21,30,31) flag it as “TAX_EXEMPT”,  else flag it as 

“TAXABLE”.  If no issue was found, default the issue tax status to “UNKNOWN”. 

- Fetch the associated closing price from the PricingVendor01.IPricing service 

contract, based on the transaction CUSIP and date.  If a price is not returned from the 

pricing adapter, default to 0 and apply a metadata tag called 

“MISSING_CLOSE_PRICE” to the data row. 

The following diagram expresses the  preceding logic in UML activity diagram format:  
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Figure 18: The Transformation Activity Diagram  

An SOA adapter called dwTxnToCube was developed in order to implement the 

preceding logic.  The adapter utilizes the services of both the WCFAccounting and 

PricingVendor01 SOA adapter interfaces for fetching data.  The integration of these adapters was 

done using the same techniques discussed in section 4.2.  Data transformations are made within 

methods of the integration service itself.  The adapter’s output is a structure (txnCube) that 

represents the summarized data in cube format.  The following diagram illustrates the 

relationships between the source adapters and the cube output. 
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Figure 19: The Transaction Cube Adapter Class   

The development of the SOA integration adapter was helpful in determining the 

flexibility of such an approach to that of classic data warehousing.  In terms of data integration, 

the SOA once again benefits from the use of source system interfaces rather than vendor-specific 

data access methods.   This allows, for instance, the merging of the accounting transactions and 

their associated security master data without having to know the underlying source system 

schema.  The developer is not completely shielded from the relations within the accounting 

system however.  For example, the accounting system utilizes the CUSIP identifier for 

internally-defined numeric codes, while the primarySecurityID identifier contains the industry-

recognized identifier.  The latter ID is used to fetch prices from the IPricing interface. 
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Despite such semantic challenges, one can see that the txnCube interface provides the 

consumer convenient access to an integrated cube structure.  It can be argued that the classic data 

warehouse provides such functionality already via cube tables in the warehouse repository.  

Additionally, SQL views can be created that perform back-end joins for the user, thereby 

performing similar abstract integration services to those found in the SOA adapter.  The SOA 

adapter however provides the user the flexibility of real-time, as well as, historical access to 

integrated data.  In fact, it is likely that the ITxnCube interface will be used to both load 

warehouse data tables on a recurring basis, as well as to provide direct access to back-end 

production systems.  The user need not be aware of the difference. 

Data reconciliation within the SOA adapter is not different than that of the code modules 

within the classic data warehouse.  Data anomalies are identified, tagged, and recorded.  The 

SOA’s use of XML may provide some structural flexibility over that of the classic approach.  As 

seen in the previous diagram every txnCube instance has an associated 1:M txnCubeMeta 

instance.  The metadata class allows for storage of data exceptions, as well as other information 

regarding the extraction.  The classic data warehouse approach can utilize similar techniques.   

For instance, during the creation of a cube structure all exceptions can be written to a log file or 

log table, which contain pointers back to the cube’s rows.  The SOA approach will also do this if 

the adapter is being used to populate a data repository.   The use of classes in the SOA however 

provides the opportunity to serialize and deserialize object instances in and out of a repository.  

This provides the flexibility of retaining the original object relations and hierarchies. 

Data transformation is probably the most important step in the ETL process.  The classic 

data warehouse traditionally does this through a top-down program code module.  Raw data are 

brought into a temporary schema and integrated.  The data are then scanned and tagged based on 
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transformation rules stored either in program code or in metadata structures such as cross-walk 

tables.  More modern transformation processes might utilize object-based tagging routines.  This 

technique allows for more flexibility in tagging data because transformation semantics are not 

reproduced in many different modules.  The SOA class utilizes such an approach.  A consumer 

who wishes to know whether a transaction is a purchase or sale will use the services of the 

ITxnCube adapter. The adapter might also contain metadata that explains the rationale for a 

transaction being tagged a specific way (i.e. [TRANTYPE >= 100 and TRANTYPE  <= 199] = 

“PURCHASE”). 

The example used in this section provides only a simplified view of such transformation 

logic.  A more robust ITxnCube interface would contain a method for each type of 

transformation used to create the cube.  This allows a greater degree of flexibility than the classic 

approach because consumers are directly exposed to the inner workings of how data 

transformations occur, supporting Inmon’s view of the data warehouse as the information hub of 

the enterprise.  The classic data warehouse on the other hand normally consists of a static data 

dictionary and perhaps a crosswalk diagram.  

Recap  

Returning to the benchmarks outlined in table at the beginning of this section, a few 

conclusions can be made regarding the flexibility of classic data warehousing and the SOA in the 

integration layer of a decision support environment.   

Classic Data Warehousing SOA 
Data Integration Back-end schemas are more likely to 

be exposed, complicating joins.  Data 
are batched to a static repository.  
Real-time access to data is typically 
done outside of the warehouse, 

Use of adapter interfaces 
simplifies joining systems.  
Semantic issues can still exist, 
however.  The output can be 
static or real-time, allowing for 
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requiring integration to be duplicated. flexible access. 

Data 
Reconciliation 

Data anomalies are typically written 
to logs, which can be cumbersome for 
audit purposes. 

The use of classes and object 
serialization allows for tighter 
integration of metadata and 
warehouse data. 

Data 
Transformation 

Typically done in a top-down fashion.  
Users normally do not have access to 
internal logic, except through offline 
data dictionaries. 

Transformation logic can be 
made more granular via class 
methods, allowing the user more 
insight into how data are tagged.  

 

Table 5: Data Transformation/Integration Flexibility Synopsis  

4.5 End-user Access  

The previous sections dealt with the back-end mechanics of how data are fetched, 

integrated and transformed.  Such activities fall in the realm of the source system and data 

warehouse processing tiers.  Obviously, the data warehouse exists for the end-user.  As Kimball 

(2008) shows, the end-user, or consumer, interacts with the data warehouse in a number of ways:  
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Figure 20: Kimball’s Consumer Mode Stratification  

As the previous figure shows, four of the five consumer tiers are accessed via canned reports or 

preconfigured BI applications.  A data warehouse software developer will typically configure 

these applications for the user, either using vendor-specific tools or a software development 

environment such as .NET or Java.  The consumer then uses a parameterized GUI or Web form 

to query the underlying data, unaware of the actual structure of the warehouse repository.  

The ad hoc/strategic consumer of the data warehouse however interacts with the data 

warehouse in a less structured manner.  These so-called power-users utilize query tool and drill-

down tools in order to analyze data stored in data warehouse ODS or star schema structures.  The 

question is whether an SOA will help or hinder such users to flexibly access and query such data.    

The criterion for this section is whether the classic ODS and/or star schemas provide more 

flexibility than the more abstract, object-based SOA.  



THE SOA AND CLASSIC DATA WAREHOUSING        55

  
As the  following diagram shows, user access to the classic data warehouse and SOA 

architectures differ significantly from one another: 

 

Figure 21: The Data Warehouse and SOA Tiers  

The middle tier of the classic data warehouse contains static database tables.   These may either 

mimic the source database system’s schema or be summarized in a star schema dimensional 

model.   There are a number of advantages to this approach from a flexibility perspective.  A 

finely grained warehouse schema allows ad hoc approaches to querying and integrating data.  A 

business user who is well versed with the semantics of the backend systems can become very 

productive in a short period of time. Most query tools allow the user to view underlying schemas 

and to generate fairly complex SQL via a GUI interface.  Users can also integrate the contents of 

the data warehouse repository with their own data repositories using ODBC or data import tools, 

thus expanding the reporting environment to meet their own needs. 
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The SOA on the other hand presents the user with interfaces to the underlying data.  

While this can prove expedient for the untrained user, it might in fact hinder the productivity of 

the experienced data warehouse user.  For example, the ITxnCube developed in the previous 

section contains a method called GetTxnCube() that returns a cube structure for a specific 

transaction time period.  A power user may find this method cumbersome to use if they wish to 

apply additional filters on the cube, such as tax code type.  The data set must first be requested 

and then further filtered in another processing environment (probably a temp folder on the server 

or the user’s desktop).  The user will also likely find it awkward to join returned data with other 

data sets.  For instance, the user of the GetTxnCube() method might want to query prior month-

end  prices in order to report on month-to-date price swings.  To do this, the classic data 

warehouse user simply drags another table alias into the QBE and does a join.  The SOA user 

however has to do post-data querying in another environment such as MS Excel, or request that 

additional methods be added to the ITxnCube service.  

This is not to say that the SOA approach is inflexible for ad hoc operations.  It does 

require however that the classic warehouse user accept a paradigm shift in how they interact with 

the data.  Less technical users may in fact like the request/response approach for fetching data.  

The SOA method calls resemble the function calls one sees with macro-enabled tools like 

Microsoft Excel. An Excel user might for instance utilize a macro call to populate the 

spreadsheet (via a shim .DLL) and then utilize parameter-based macro calls to the IPricing 

interface to bring in prior month pricing data (again, via a shim .DLL):  
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Figure 22: User Integration of SOA Services  

The “join” between the initial return set and the price object takes place via explicit method calls 

to the macroPrice() function.  This technique is fairly unambiguous and has the advantage of 

hiding the underlying schemas from the user.  Significant developer support will likely be 

needed to accomplish this however.  

Recap   

The classic data warehouse appears to provide more flexibility for the power user who 

needs to perform ad hoc and analytical queries on the underlying schema.  The SOA on the other 

hand requires a certain degree of programming know-how in order to consume the services of 

backend systems.  However, the flexibility of the SOA can be seen in its ability to shield the end 

user from the back-end schema of the warehouse itself.     
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Chapter 5 – Project History  

5.1 Project Origins   

The primary driver for this project was the phasing out of vendor support for the current 

software language used to manage an investment data warehouse.  A review of the .NET 

architecture revealed opportunities to revamp the approach to accessing, integrating, and 

deploying financial data using an SOA.  An initial analysis of this approach revealed that the use 

of an SOA was not so much a question of feasibility as it was of flexibility. In other words, 

would the SOA help or hinder the operational aspects of managing the warehouse process 

compared to the classic data warehouse approach?  This research project set out to answer that 

question. 

5.2 Scope  

The project scope was framed by the three primary tiers of the classic data warehouse 

environment: (1) data extraction, (2) data integration/transformation, and (3) data access.  The 

secondary research conducted as part of the literature review helped to uncover trends that could 

be further explored and validated in the primary research. 

5.3 Project Management  

The project consisted of two major phases, secondary research and primary research.  

The secondary research involved a literature review of both the classic data warehouse and the 

SOA, from which initial conclusions were drawn regarding flexibility. The primary research 

project was undertaken in a waterfall manner.  A feasibility study was conducted using 
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Microsoft’s WCF/.NET architecture.  The three tiers of the classic data warehouse were then 

analyzed and developed and/or assessed. 

5.4 Milestones 

The major project milestones were: 

a. Completion of the first thesis module and acceptance of the thesis statement by my 

advisor. 

b. Conducting secondary research. 

c. Periodic reviews with my thesis advisor. 

d. Completion of secondary research. 

e. Completion of the second thesis module. 

f. Obtaining .NET developer license and a Windows 2003 server resource. 

g. Completion of primary research. 

h. Combining, analyzing and summarizing findings. 

i. Submitting research to advisor for review. 

5.5 Changes to the Plan   

The only major change to the plan was the initial timeline.  This project was originally 

estimated to be completed by October 2009.  However, an unexpected software project delayed 

work on the thesis for about four months. 

5.6 Evaluation  

Overall, I am satisfied with how the thesis project went. It is sometimes difficult to 

foresee obstacles, both professional and personal, that might interfere with the timeline. 
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5.7 Summary  

The research project generally went according to plan, with the exception of an 

unexpected delay due to a large software project at work.         
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Chapter 6 – Conclusions 

6.1 Statement of Findings   

An SOA provides flexibility for data warehouse activities in the backend tiers relating to 

data access and integration.  This flexibility is mainly due to the abstracting of source system 

schemas via object-based interfaces.  Additionally, the availability of source system SOA 

adapters allows for more seamless combining of real-time and batched data in the integration 

tier.  Flexibility diminishes however as one approaches the end-user tier.  A power-user in the 

classic data warehouse is likely to have more flexibility because of the relative ease in which 

query tools can be used to access relational or star schema data stores in that environment.  The 

SOA approach requires developer support, mainly due to the relative newness of this technology.  

6.2 Major Themes Uncovered 

The following themes were uncovered through the primary and secondary research: 

1. An SOA, based on the .NET/WCF architecture, is fairly easy to set up and deploy.   

2. Source system SOA adapters allow abstraction of source schemas, thereby easing 

upgrades, and simplifying interfaces. 

3. The use of SOA adapters for real-time system access, combined with warehouse batch 

data, can provide the user a more flexible means of concurrently viewing both current 

and historical data. 

4. The SOAP and XML standards provide an intuitive and extensible way in which to 

format request and response messages.  Additionally, the semi-structured nature of XML 

allows for tighter integration of business data and operational metadata. 
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5. The classic data warehouse is based on mature technologies and standards.  A power-user 

with knowledge of the business semantics can approach ad hoc reporting and data 

analysis in a flexible manner.  The SOA end-user will likely rely on BI applications, 

which limit flexibility. 

6.3 Research Limitations 

The research was conducted using a Windows platform and Microsoft development tools. 

Although this reflects the actual production environment at my company, it leaves open the 

question of the ability to deploy an SOA in a heterogeneous system environment.  For instance, 

can a Java developer easily create clients that consume WCF back-end services, and vice-versa?  

How about communications between non-Windows and Windows servers?  Such questions 

provide future research opportunities.  

6.4 The Project in Hindsight  

The overall project went as planned.  I initially attempted to cover too much ground in 

the literature review, which ended up leading to a significant rewrite of that section.  It is 

important to review an outline with one’s thesis advisor before getting too far into a section.   

6.5 Research Opportunities 

This project revealed the following research opportunities: 

1. The interoperability of an SOA across different system platforms. 

2. The use of XML as a transport medium for large data sets. 

3. The use of a master data management service for real-time data integration and 

reconciliation. 
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4. The use of XML/XQuery as an alternative to RDBMS/SQL for decision support data 

storage and reporting. 
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- Complete primary research, chapter 4. 
- Completed remaining chapters. 
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- Completed chapter 3, Methodology. 
- Completed section 4.2 of chapter 4, primary findings, extraction adapter. 
- Added Appendix B. Proof of Concept. 
- Added Appendix C, Glossary of Terms. 
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SOA process value model is presented, which is based on the Soh and Markus IT value model.  

The model is used by the organization to develop a strategy for the creation, consumption, and 

measurement of return value for SOA services.  A series of metrics are presented by which the 

organization can then assess progress towards their strategic objectives.  This chapter supports 

the proposition that SOA can lead to increased cost savings within an organization.  It is 
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products such as application and database servers. 

(Source: ACM Web Site http://doi.acm.org/10.1145/1066157.1066267)   

Dan, A., Johnson, R. D., and Carrato, T. (2008). SOA service reuse by design. In Proceedings of 

the 2nd international Workshop on Systems Development in SOA Environments (Leipzig, 

Germany, May 11 - 11, 2008). SDSOA '08. ACM, New York, NY, 25-28.   

The authors assert that a centralized governance policy for SOA services will better ensure their 
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across business lines.  See Kimball (2008, chap. 2) for more details on the data steward role. 
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The authors explain the importance of the transformation portion of the extract-transform-load 
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for errors and inconsistencies and that sufficient metadata is created for auditing data quality 

issues.  Techniques are presented by which data sets can be sampled for errors through so-called 
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The author describes the role of business intelligence (BI) applications within the data warehouse 

environment. The BI application exists primarily to provide less technically-oriented persons 

access to pre-written, parameterized reports.  The BI report developers are typically persons who 

are comfortable using query tools and who are subject-area experts in a given field.  A BI 

solution can range from strategic portal implementations to tactical operational reports deployed 

via dashboards.  This chapter provides many insights into the applicability of data warehousing 

in meeting the reporting needs of an organization across a wide spectrum or activities.  Of 

particular interest is the discussion relating to portal management and metadata access to 

services.  This is helpful in understanding how data warehouse information can be accessed by 

users.  
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