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Abstract 

Data is a fundamental and necessary element for businesses.  During their operations they 
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project investigates the different stages of such a database, namely, the planning, analysis, 
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Chapter 1 – Introduction 

1.1 Statement of the problem 

In Malta, there are a number of establishments that provide the rental, booking and 

selling of DVDs and movies. In some of these shops, all business operations are performed 

through the manual filling of paper forms. This method of managing data is not very 

efficient, and sometimes it creates inconsistent data. 

To be successful, a business needs to remain competitive.  Data is a valuable asset in 

any business.  When, and if it is used wisely, it can help the business improve its services, be 

more competitive, and in the end increase its profits. The use of an information system, 

whereby the data is stored in an effective and efficient database, may provide many benefits 

to a business.  Such a system offers shorter processing time frames than a manual one, and 

consequently provides quicker and better services.  One can retrieve data quickly and 

generate reports, providing the management team with current information regarding the 

running of the business.  As a result the management and/or directors of a business may 

immediately view the reports, and use this valuable information when making important 

decisions. 

Databases are a collection of organized data, and structured in such a way as to 

retrieve the data easily and quickly.  Well maintained databases lead to the consistency and 

integrity of the stored data.  This is of crucial importance for the generation of reliable 

reports. These are only some of the advantages that databases have over manual methods for 

storing data. Meanwhile, one of the weaknesses of such manual methods is the time spent in 

gathering and retrieving the data.  Documents or files may be duplicated, or not validated.  

This may lead to invalid reports, which ultimately may adversely affect the business itself.  

The use of a database reduces the time spent in gathering and retrieving the data, avoids 
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duplication of documents or files, validates the documents or files, and provides accurate 

information to both owners and users of a business. 

The introduction and use of a database system in these establishments will expedite 

their daily operations.  It will provide better services to their clients, and precise and current 

information to the owners of these businesses.  This in turn will result in better customer 

satisfaction, an increased turnover, and thus higher profits. Such a system would be highly 

beneficial, especially if these stores wanted to expand into more outlets. 

In such a movie rental and sale business, data is important and vital throughout the 

different sectors of the business hierarchy. For example, in the rental section of the 

establishment, the employee asks for the customer’s information to check out whether the 

customer is registered as a regular client, and if so, he also checks whether the client has any 

pending movies that  still have to be returned. 

Another relevant operation which is performed manually, but could easily be 

performed by the system is to check whether a particular movie is at the store or rented out.  

If an item is not available, the customer may reserve it to be picked up when it becomes 

available.  The management may also benefit from the data collected, especially when it 

comes to the checking of rented and/or sold items, as well as of non-returned items, and the 

calculation of the daily amount of profit from rentals and sales. 

Similarly, in the sales division of such a rental and selling business, the attendant at 

the cash register may require information regarding the item, as well as providing its price or 

cost for renting or selling it. When it comes to stock taking, the responsible employee may be 

able to view the remaining available quantities of particular items in stock, as well as decide 

on the number that should be ordered.  Finally, the information which is gathered from the 

sales operation can help management to obtain a clearer idea of the preferences of their 

clientele with regards to the types of items which are most sought after.  Consequently, the 
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management would be in a better position to administer the stock of items, especially that of 

unpopular ones. 

The decision to expand into different outlets in various locations brings with it 

different requirements besides those described above.  The management needs to be able to 

view reports that concern all the sites regarding their performance, as well as their stock.  The 

employees working in different locations need to know and share information regarding the 

renting, and selling of the items that are in different sites.  These employees need this 

information especially when customers request a particular item that is no longer available at 

their location. In order to satisfy the customer, these employees need to know in real time 

whether the sought item is available at any other location, and to put this item on hold for the 

customer to pick it up. Such a system will provide better customer services. 

In such a scenario, the database has to be structured in such a way that all data can be 

shared by all.  A distributed database is the ideal solution for such a situation. 

1.2 Relevance, significance or need for the project 

The design and implementation of a distributed database is beneficial for such a DVD 

and movie rental and sale business. This type of database is to incorporate three services, 

namely, the renting, booking and sales of movies by this business. In order to cater for data 

within three different outlets, a projected distributed database is considered. 

1.3 Difficulties and limitations 

This project is undertaken on a theoretical level in the sense that no particular request 

from any such business was addressed to the author.  The author had to analyze of his own 

accord the daily process of a business similar to the one in question. The knowledge of the 
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business requirements is essential, since these determine which data is to be stored, how it is 

stored, and which reports may be created.  

The second difficulty was to find information about distributed databases, and the 

different types available. This helped the author to compare and contrast various database 

solutions, and to choose the best software for this company. 

The first limitation of this project is that the database was not actually installed in a 

rental/selling DVD and movie business.  Hence, the full benefits of this project could not be 

evaluated.  The evaluation of this project was done mainly by the testing of the database. 

Another limitation is that this project deals only with the database design and 

implementation. In order to have a fully functional system, a web or software application is 

needed in order to help the users to populate, edit the data and also to generate reports from 

the database. Furthermore, the actual use of this application could help the author to identify 

more issue to fine tune the database design. 

1.4 Project scope 

Small businesses are becoming more conscious of the fact that proper storage and 

quick retrieval of valuable information can help them in their work. These requirements were 

identified for a DVD and movie rental/selling business leading to the design of a database to 

address these needs. Since such a business may have different outlets in different locations, a 

distributed database also needed to be designed. An evaluation of the different database 

management software was made in order to select the best software for such a business. The 

final goal of the project is to provide the most suitable distributed database for this business. 



                                                                                                                  

 

 

  

  

 

  

 

 

 

 

 

       5     Designing and implementing of

1.5 List of definitions 

Database – “A shared collection of logically related data, and a description of this 

data, designed to meet the information needs of an organization”(Connolly & Begg, 2005). 

Distributed Database – A distributed database is a logically interrelated collection of 

shared data (and a description of the data) physically distributed over a computer network. 

Entity – “Is a distinct object (a person, place, thing, concept, or event) in the 

organization that is to be represented in the database” (Connolly & Begg, 2005). 

Report – In computer systems, it is referred to as the output generated, especially 

printed, containing the business information. 

Structured Query Language (SQL) – “An industry-standard language for creating, 

updating and querying relational database management systems” (Dictionary.com, n.d.) 

SQL Script – A document containing the SQL commands to be executed. 

1.6 Summary of the project 

The project began by the author’s observation that a movie rental business was using 

paper files for logging in the data in its daily business. A database was created in order to 

solve the problems encountered with the paper system. First, the possible requirements of this 

business were deducted by analyzing its daily processes, and later the needed requirements 

were determined. Then, different database software solutions were evaluated, to select the 

best one for this business. Consequently, the database for this business was designed to cater 

for all the data needed in its daily process flow, and the possible reports to be used. During 

the design, the distribution of the data was also given special consideration. 

The installation of the selected database was set on different computers representing 

the computers of the different outlets. Afterwards, the script for the database creation was 

developed and executed for the computers of the different outlets.  Furthermore, the required 

http:Dictionary.com
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settings were also configured in order to set up a distributed database among the different 

databases. 

Finally, the three databases were loaded with dummy data which represented the data 

found in a similar business. This was followed by the testing of the database by querying it 

and analyzing the results. 

Chapter 2 – Review of Literature and Research 

2.1 Overview of all literature and research sources on the project 

In this chapter, databases will be defined, as well as distributed databases and the 

underlying database management system (DBMS).  Also in this section, some of the 

advantages and disadvantages of a distributed database will be discussed and compared with 

those of a centralized database.  Furthermore, a comparison of the different types of 

distributed systems and their architectures will be introduced. This chapter will also include 

the extra design consideration one has to take when building a distributed database. 

Additionally, the various DBMS which are available on the market, in order to construct a 

distributed database for a small business, will also be compared. 

2.2 Research methods used in investigating the problem and support of thesis statement 

The sources of this research paper were obtained mainly from online sources and a 

number of publications.  These sources include journals and papers which concern databases, 

mainly distributed databases, and its advantages/disadvantages, architectures, components, 

and also its design considerations. 
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2.3 Literature and research relevant to the project 

2.3.1 Research on databases 

As stated by Calero, Piattini, and Ruiz (2003), a known fact is that databases are “the 

centre of today’s information,” and are increasing in importance “judging by the huge 

business that they generate” (p. 48). Databases are extremely important since they “are the 

nucleus” of most systems, especially management systems (Calero, Piattini, & Ruiz, 2003, p. 

48). A database is a system which is used as a repository for the user’s data. Apart from 

storing the user’s data, it is also responsible for structuring this data in an efficient manner. In 

order to achieve this efficient structuring of the data, information about the actual data, 

known as  metadata, is needed (Rob & Coronel, 2004). 

Not only should a system be able to store data in a structured manner, but it should 

also be able to maintain the data consistently. For this purpose, the DBMS is used for 

“managing and accessing large amount[s] of data consistently and efficiently” (Franklin, 

Halvey, & Maier, 2005, p. 27). This helps the system programmers to focus more on specific 

tasks regarding their applications, rather than focusing on the actual managing of the user 

data. The DBMS is also responsible for providing “rich data manipulation and query 

processing with well-understood, strong semantics” while at the same time guaranteeing that 

these data manipulations are concurrent and persistent (Franklin, et al., 2005, p. 27). In order 

for the DBMS to provide all these functionalities, it requires the data to be “under the control 

of a single administrative domain and to conform to a single schema” (Franklin, et al., 2005, 

p. 27). 

There exist two main forms of database systems (DBS), known as centralized and 

decentralized database systems. The main distinction between these two is in reality the 

location of the data. Centralized database systems support data located at a single location. 
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On the other hand, a decentralized or distributed database system (DDS) supports data which 

is distributed in different locations (Rob & Coronel, 2004). 

2.3.2 Research on distributed database systems 

The need to access data from different data sources, a process known as data 

integration, has advanced in the industry market, reaching key decision makers within 

enterprises. Data integration “provides a competitive advantage to business” due to 

“provid[ing] a unified view of the data regardless of differences in data format, data location 

and access interfaces” (Mattos, 2003). Due to this increase in demand for data integration, 

application vendors have enhanced their applications accordingly. One possibility of data 

integration can be by using a DDS (Mattos, 2003). 

A DDS is a “logically interrelated collection of shared data (and a description of the 

data) physically distributed over a computer network” (Connolly & Begg, 2005, p. 689). This 

means that a DDS resides at each site and each one shares its own data with other sites via a 

network. Therefore in a distributed database, a user/application is allowed to access data not 

found at the local site without actually  knowing that the data is physically in another location 

(Shanker, Misra, & A.K., 2008). This is called distribution transparency because “any design 

complexity” such as the allocation, replication and partitioning of the data is hidden to the 

user (Martyn, 2000, p. 48). The software which makes this “distribution transparent to the 

users” is called distributed database management system (DDBMS) (Talwadker, 2003, p. 6). 

C.J Date (2003), in his book “An Introduction to Database systems”, mentions twelve 

rules which a DDBMS must possess. C.J Date states that apart from having distributed 

transparency, a distributed database should be locally autonomous, meaning that all 

operations of each site should be locally managed. He states that a DDBMS should not rely 

on a central site and the system must be failure independent, meaning that it is in continuous 
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operation. Another important aspect mentioned is that a DDBMS should possess distributed 

query processing; that is, a query should be able to reference more than one site. Another 

point mentioned is that the database integrity should be maintained during distributed 

transactions. The final requirement considered by Date is that a DDBMS should be able to 

run on various hardware and operating system platforms using any possible communication 

network and also made up of different local DBMS. In a nutshell, according to C.J Date, a 

distributed database should be exactly like a centralized database within the user’s 

perspective.       

One has to be careful not to confuse distributed databases with distributed processing. 

The latter is a system by which a centralized database “can be accessed over a computer 

network” (Connolly & Begg, 2005, p. 691). A widely-used architecture which uses 

distributed processing is the client-server architecture which implies that “multiple user[s] 

access to one data server” (Vokorokos, Balaz, Adam, & Petrik, 2005). The data is stored and 

processed on one server, located in a single site. However, the data can be accessed and 

manipulated from different clients over the network. This architecture was used by database 

vendors to indicate distributed capabilities and used to provide a distributed database, but this 

architecture “by itself does not constitute a distributed DBMS” (Connolly & Begg, 2005, p. 

60). 

One also needs to distinguish between a distributed and a parallel DBMS. A parallel 

DBMS is “implemented on a tightly coupled multiprocessor” (Talwadker, 2003, p. 6). There 

are three main types of parallel DBMS, namely, shared nothing, shared memory, and shared 

disk. The shared nothing is where “each processor has its own main memory and disk units” 

(Talwadker, 2003, p. 6). The shared memory allows that “every processor has access to any 

memory module or disk unit through a high speed interconnection” (Talwadker, 2003, p. 6). 

The shared disk architecture derives from the architectures of both shared nothing and shared 
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memory parallel DBMS where the processors “have their own individual main memory space 

but they share a common global disk storage” (Talwadker, 2003, p. 6). 

The main difference between distributed and parallel DBMS is “that distributed 

DBMSs assume loose interconnection between processors that have their own operating 

systems and operate independently” (Talwadker, 2003, p. 6). On its part a parallel DBMS 

uses multi-processor architectures. Because of this, the latter is used to build highly available 

and highly efficient database servers. Apart from this difference, distributed DBMS and 

parallel DBMS do share some common elements. 

The first similarity is that in a distributed database, each DBMS connects and operates 

in parallel with other DBMSs found on other sites. Similarly, a parallel DBMS connects in 

parallel with other processors. The designing techniques for parallel and distributed DBMS 

are also similar. While in parallel DBMS, “tables are partitioned (fragmented) and allocated 

to different disk devices,” in distributed database data is partitioned on different sites 

(Martyn, 2000, p. 49). 

2.3.3 Advantages and Disadvantages of Distributed Databases 

The main advantage that distributed database systems have over a centralized 

database system is the ability to distribute the data among several sites. Organizations tend to 

grow and databases became an important “component of everyday life in modern society” 

(Shanker, et al., 2008, p. 128). This data distribution allows the organization to segregate the 

data among all the sites (Dumitriu & Cretu, 2002). 

Another advantage of DDS is performance improvement. This is mainly due to two 

factors.  The first is that “local queries and transactions accessing data at a single site are 

much faster since the local database is smaller”; the second is that “transactions involving 
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different sites can be processed concurrently, reducing execution and response time” 

(Corcoran & Hale, 1994, p. 248). 

A third advantage is that a DDS does not have a single point of failure. If a single site 

fails it does not result in a complete system failure as is the case with a centralized database 

system. Thus, DDS has “improved reliability and availability” (Corcoran & Hale, 1994, p. 

248). 

On the other hand, a major disadvantage of a DDS is its complexity. Its design includes 

deciding on the fragmentation type, replication strategy, integrity, and concurrent transaction 

strategies, which are more complex to maintain especially when compared to a centralized 

database system.  Due to its highly intricate complexity, the costs to maintain a DDS are 

higher. Extra hardware is also needed to build up the network and to facilitate communication 

between the different sites (Connolly & Begg, 2005). 

In addition to its complexity, security is another disadvantage. The DDBMS have to 

secure the data in all sites as well in the network by which the sites communicate (Dumitriu 

& Cretu, 2002). 

2.3.4 Research on different distributed database architectures and their components 

It is useful to distinguish at this point the difference between heterogeneous and 

homogeneous distributed database systems. A homogenous distributed database system is a 

“network of two or more databases that reside on one or more machines that uses, locally, the 

same DBMS product” (Dumitriu & Cretu, 2002, p. 425). On the other hand, in a 

“heterogeneous system, sites may run different DBMS products, which need not be based on 

the same underlying data model” (Dumitriu & Cretu, 2002, p. 425). 

There exist several architecture implementations that can be used to build a 

homogeneous or heterogeneous distributed database. An architecture can be described in 
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terms of three different approaches which are based on components, functions and data. 

Furthermore, several implementations of DDBMS exist based on autonomy, distribution, and 

heterogeneity (Ozsu & Valduriez, 1999). 

A possible DDBMS implementation is the client-server system. As mentioned earlier, 

the client-server makes use of distributed processing, by which the requests are generated 

from the client, while the processing and data manipulation is done at the server side. This 

type of system is tightly integrated and the entire “database is available to any user who 

wants to share the information” (Ozsu & Valduriez, 1999, p. 83). Different forms of client 

server implementation exist. One particular form is called multiple client-multiple server. In 

this sophisticated client-server architecture, a client sends a request to a server which 

connects to other servers if required.  

According to Donald Kossmann (2000), in his paper “The state of the art in 

distributed query processing”, a client-server system known as the peer to peer architecture is 

also available. In this type of architecture “every site can act as a server that stores parts of 

the database and as a client that executes application programs and initiates queries” 

(Kossmann, 2000, p. 437). Therefore a peer to peer database system (PDBS) “is conceived as 

a collection of autonomous local repositories which interact (e.g., establish correspondences 

or exchange queries and updates requests) in a peer to peer style” (Bonifati, P.K., A.M, & K., 

2008, p. 5). Therefore this type of architecture is considered as fully distributed when 

compared to client-server architecture (Ozsu & Valduriez, 1999). Meanwhile the client-server 

architecture and the PDBS architecture share the same architecture from the data logic 

perspective (Ozsu & Valduriez, 1999). They are composed of the local schema which is 

“expressed in the local data model schema” and the export schema which contains the 

elements which “a peer wants to share with the outside world” (Bonifati, et al., 2008, p. 6). 
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Another possible architecture is a federated distributed database system (FDBS). It is 

made up of logically related “DBSs in which operations can be applied to multiple 

component DBSs in a coordinated manner” (Bonifati, et al., 2008, p. 6). This type of 

architecture “allows users or global applications to access data stored in multiple local 

database systems (LDBSs), each of which is autonomously operated” (Sohn & Moon, 2000, 

p. 687). The federate architecture is composed of four layers. At the bottom we find the local 

schema. On the local schema there is the component schema “which is possibly a translation 

of the data model of the local DBS in a canonical model” (Bonifati, et al., 2008, p. 6). This 

schema contains “those elements of the component schema that the local DBS is willing to 

share with others” (Bonifati, et al., 2008, p. 6). Then there is also the export schema and the 

final topmost layer is known as the federated schema which is the “actual global schema that 

contains information on distribution and allocation of internal exports schema” (Bonifati, et 

al., 2008, p. 6). A similar but distinct architecture is the multi-database system (MDBS). The 

key distinction between FDBS and MDBS is their “method of integrating the component 

DBSs and their assumptions about the autonomy of these components. That is to say, a FDBS 

“rel[ies] on a single global federated schema” whereas “multiple federated schemas may 

coexist in MDBSs between the different cooperating component DBSs, allowing thus partial 

and controlled data sharing” (Bonifati, et al., 2008, p. 6). 

As previously stated, architectures can also be described by the components they use. 

In a distributed database one can find some general components, such as the DDBMS, local 

DBMS (LDBMS), data communication (DC) component, and global system catalog (GSC) 

(Connolly & Begg, 2005). The LDBMS is basically the local DBMS which is used to control 

the local data in a particular site. The DC is the software that enables all the sites to 

communicate with one another. This usually comes with the DBMS software (Connolly & 

Begg, 2005). Meanwhile the GSC consists of the global, fragmented and allocation schemas. 
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Meghini and Thanos (1991), in their paper “The complexity of operations on fragmented 

relation,” define the global schema as “the definition of the relations constituting the 

database, as if there were no data distribution” (p.59).  Subsequently the fragmentation 

schema contains the relationships between the fragments, and the allocation schema “gives 

the allocation of copies of fragments to the sites of the computer network supporting the 

distributed database“(Meghini & Thanos, 1991, p. 59). 

Having the correct architecture for the distributed database is not enough, the design 

of the actual database is important as well. When developing a centralized system, the 

designer has to ensure that all the entities are normalized and the correct relationships are 

setup between the entities. When considering a DDS, the designer not only has to cater for 

normalization and relationships but also has to consider other aspects. 

2.3.5 Research on Distributed Design considerations 

The distributed database design takes into consideration three main factors, namely, 

fragmentation, allocation and replication. These three factors are important not just to make 

the database transparent to the user but also to augment the performance of the overall 

system. 

Basically, fragmentation is the “division of the database data structures into smaller 

portions, called fragments” (Meghini & Thanos, 1991, p. 59), where each fragment can be 

distributed to several distinct sites (Getahun, Tekli, Atnafu, & Chbeir, 2007). The end result 

is that it enhances the performance of the DDS because fragmentation minimizes the “data 

transferred and accessed during the execution time,” and above all it “reduc[es] the storage 

overheads” (Hababech, Ramachandran, & Bowring, 2007, p. 4). Tim Martyn (2000) states 

that there is “no ideal distributed database” and most DBMS do not provide distributed 
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fragmentation. The database administrator can distribute the data manually, but then the 

application should be aware how the data is fragmented (Connolly & Begg, 2005) . 

There are three fundamental fragmentation strategies possible in a DDS.  These are 

horizontal fragmentation, vertical fragmentation and mixed fragmentation. Horizontal 

fragmentation “divides data tuples into groups”; vertical fragmentation “decomposes data 

attributes into groups that are composed of some attributes with high affinity”; and mixed 

fragmentation is a hybrid fragmentation technique that “mixes the two partitioning methods, 

i.e., vertical partitioning followed by horizontal partitioning or vice versa” (Son & Kim, 

2004, p. 551) . 

Allocation is another aspect which concerns the designer when building a distributed 

database. It refers to “the decisions concerning where to store [the] tables” (Roosta, 2005, p. 

1447) . It is important to highlight that data allocation is done after fragmenting the data in 

different sites (Son & Kim, 2004). It is important that the designer designs the database tables 

to be located at the sites where it would be mostly used so that it will not have a negative 

impact on performance. 

Another aspect to be considered is replication. As the name implies, replication is the 

“process in maintaining multiple copies of data items on different locations called replicas” 

(Plattner & Alonso, 2004). Replication is the “most widely used method for providing high 

availability, fault-tolerance and good performance in distributed system” (Deris, Abawajy, & 

Mamat, 2008, p. 1). This is achieved because when changes occur, these are captured by the 

local database, and sent to the other databases. Therefore this provides the users with fast 

access to shared data. Since several copies exist, if a site becomes unavailable, the other sites 

can still continue thus making the system fault tolerant (Deris, et al., 2008). This conforms 

with Date’s rules. Two types of replication methods exist, namely, synchronous and 

asynchronous. The difference between these two is that synchronous replication “keep[s] the 
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replicas synchronized within transactional boundaries” whereas for asynchronous replication 

“replicas can be updated outside the transaction boundaries” (Plattner & Alonso, 2004). In 

other words, the synchronous method has to wait until the update is successfully executed at 

all the sites. This brings a communication overhead and has to be limited to a small number 

of replicas. On the other hand the asynchronous method does not need to wait for all the sites 

to successfully execute the changes. However, this can bring inconsistencies within the 

replicated objects (Plattner & Alonso, 2004). 

Referential integrity is one of the semantic integrity constraints which, even though it 

does not need to be designed, still need to be considered.  It refers to the relationships by 

which tables in a schema are linked together. That is, “referential integrity represents the 

cement that keeps relational databases together,” (Ordonez, Garcia, & Chen, 2007, p. 61) 

where the underlying checks are done by the local DBMS in a centralized database system.  

These relationships guarantee the consistency and integrity of the data within the database. 

When considering distributed databases, distributed referential integrity is usually 

complicated to maintain between tables in remote databases. Triggers can be used to check 

these constraints but this will depend on the availability of the remote database and usually 

these are not provided with the DBMS solution. Another solution to this problem is that the 

referenced tables can be replicated to the sites so that the local DBMS is responsible for the 

integrity of the data. For this solution to be valid, three assumptions have to be considered. 

First, the replication cost does not downgrade the performance; secondly all the local 

databases have to possess identical integrity constraints; and third by each row should be 

uniquely identified within all the databases (Dye, 1999).  A valid suggestion that Ordonez, et 

al. (2007) mentions is that “unique identifiers can be generated by concatenating the site 

identifier to avoid primary key duplication” (p.62). 
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2.3.6 Research on Concurrency 

Transactions form the “interface contract” or commands between the application and 

the database itself (Hanssen, 2003). This transaction mechanism provides an efficient way to 

manage the access to the database. In order to have valid transactions the so-called ACID 

properties should all be present.  The acronym ACID stands for: 

•	 Atomicity - transactions execute completely or not at all 

•	 Consistency - transactions are a correct transformation of the state 

•	 Isolation – transaction consistency; i.e. a transaction does not view a partial 

change of another transaction 

•	 Durability – committed transactions survive failure (Felber, Fetzer, Guerraoui, 

& Harris, 2008) 

Transactions occurring at the same time, that is concurrently, are more probable to be 

found in a distributed database. The isolation portion of the ACID properties is fundamental 

in these cases so that there is consistency between the transactions. But how is this managed 

within a DB? 

In a DB, the DBMS executes concurrency control which is the “activity of 

coordinating the actions of transactions that operate in parallel; access[es] shared data, and 

potentially interferes with one another” (Akintola, Aderounmu, Osakwe, & Adigun, 2005, p. 

365) . In order to control concurrency, the system uses serializability which, as the name 

implies, is when transactions are executed serially, and therefore considered correct 

(Hanssen, 2003). Unfortunately in a DDS it is more complex to serialize the transaction when 

compared to a centralized database system. As a matter of fact, the DDBMS, has to “extend 

both the serializability argument and the concurrency control algorithms to the distributed 

environment” (Akintola, et al., 2005, p. 368). 
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There are three main methods which provide serializability and concurrency 

(Vasileva, Milev, & Stoyanov, 2007): 

• Locking 

• Time stamping ordering 

• Optimistic 

The locking mechanism is where transactions “lock everything you access and hold 

all locks until commit” (Hanssen, 2003).  On the other hand, time stamping ordering 

mechanism does not use any locks. In this mechanism the transaction is given a unique 

timestamp by which these transactions are serialized. In cases of conflict during the 

transaction, the lowest timestamp is given priority  (Hanssen, 2003).  Finally, optimistic 

mechanism is when it “synchronize[s] concurrent execution of transactions early in their 

execution life cycle” (Hanssen, 2003). 

2.3.7 DBMS Systems 

Several DBMS solutions from various vendors exist on the market. Three of these 

vendors, which share two thirds of the market in regard to databases systems, are Oracle, 

Microsoft SQL Server and IBM DB2 Universal Database (Stamford, 2007).  In this 

dissertation only the solutions from these three main DBMS vendors were evaluated which 

are Oracle 11g, Microsoft SQL server 2005 and IBM DB2 version 9.5. These three vendors 

offer different versions or editions of their solution which can cater for different businesses’ 

needs. For the present study, the editions chosen are those which meet the needs of a small 

business. In order to carry out this evaluation, the following criteria were used: 
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•	 Fragmentation Transparency – where the application or the user is not aware how 

the data is partitioned or fragmented 

•	 Location Transparency – the application or the user is not aware of the physical 

location of the database 

•	 Distributed Transaction Transparency – ensures that all the transactions follow the 

integrity and consistency of the database by concurrency and failure recovery 

•	 Replication Transparency – the application or the user are not aware of the 

replication of the data 

•	 Support Heterogeneous System –the ability to connect with other databases which 

have different DBMS product 

•	 Support Homogeneous Systems- the ability to connect with other databases which 

have the same DBMS product 

•	 Operating System – the platform upon which the DBMS is capable of operating 

•	 Cost – the cost of the solution 

DBMS Oracle 11g Microsoft SQL IBM DB2 9.5 

Function Server 2005 Universal 

Database 

Fragmentation 

Transparency 

No No No 

Location 

Transparency 

Yes Yes Yes 
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Distributed Yes Yes Yes 

Transaction (MSDTC) (DB2 TM) 

Transparency 

Replication 

Transparency 

Yes 

Oracle Streams 

(Synchronous 

Capture only), 

Materialized 

Yes Yes 

views 

Support Yes Yes Yes 

Heterogeneous (Only by 

federated 

database) 

Support Yes Yes Yes 

Homogeneous (Database Links) (Linked Servers) 

Operating System Windows, Linux, Windows Server Windows, Linux, 

Requirements or 2003, Windows or 

UNIX Vista UNIX 

Product Solution Oracle Database SQL Server 2005 DB2 Version 9 

11g Standard Standard Edition for Linux, UNIX, 

Edition One and Windows 

Cost $180 per user (5 

user minimum) or 

Processor license 

$5,999 or $1,849 

$5,175 

per processor 

$5,800 per 

processor 

for 5 clients. (100 PVU) or 

$175 per user 
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for DB2 9 

Express. 

Table 1: DBMS Comparison 

As one can see from Table 1, fragmentation transparency is not supported by the three 

DBMS solutions. These solutions do not provide the possibility for the DBMS to distribute 

the fragments. Therefore this distribution has to be included in the application logic. On the 

other hand, this does not mean that the data cannot be distributed. As a matter of fact these 

DBMS solutions allow the distribution of the data and also provide location transparency for 

the data. This is achieved by the use of synonyms and views in case of Oracle and SQL 

Server. Meanwhile, for DB2 it uses nicknames, which are similar to synonyms. 

Another aspect evaluated was distributed transaction transparency. This type of 

transparency is also provided by the three solutions by using the two phase-commit 

mechanism. It is important to note that an extra component has to be installed and configured 

in case of SQL Server and DB2, that is, Microsoft distributed Transaction Coordinator (MS 

DTC) and DB2 Transaction Manager (TM) respectively. 

In regard to replication transparency, these solutions have similar features. As in the 

case of Oracle Standard Edition One, Oracle Streams and materialized views are the features 

concerning replication which are provided. It is important to note that for this edition only 

synchronous capture is provided for Oracle Streams, and single master replication in the case 

of materialized views. SQL Server 2005 standard edition provides three types of replication 

which are Transactional, Merge and Snapshot replication. Meanwhile, for DB2 version 9 

Express, replication is provided by SQL Replication and Q Replication. It is important to 

mention that for heterogeneous, Q replication, which uses WebSphere® MQ message, has to 

be used. Since this is an additional product, this will require an extra cost. 
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All the compared solutions provide connectivity with homogeneous database systems. 

Oracle makes use of database links while SQL Server uses linked server links to connect with 

other databases. On the other hand, DB2 uses IBM Homogeneous Federation Feature. This 

feature makes use of wrappers by which the user is able to access data in other DB2 

databases. 

In case of heterogeneous database connectivity, generic connectivity such as ODBC is 

provided by all the systems. It is important to note that Oracle provides a larger number of 

possible data sources when compared to SQL Server. Also when compared to DB2, it 

supports heterogeneity by the use of WebSphere Federation Server product. This is an 

additional product and thus incurs an extra cost. Regarding software requirements, Oracle and 

DB2 is available for standard operating systems (OS), namely, Windows, UNIX and Linux. 

On the contrary, SQL Server is only available for Windows OS.  

Basically these three solutions provide almost the same functionality with regard to 

data integration and distribution. Also, the cost, which is the most determining factor, is 

approximately the same. Even with these similarities, there exist some differences between 

them. As a matter of fact, SQL Server 2005 and DB2, need an external component in order to 

have distributed transaction transparency. In both cases this external component has to be 

installed and configured. In this case Oracle can be considered as a complete solution because 

the components which ensure that the transactions follow a two-phase commit mechanism are 

part of the database itself. 

Another difference highlighted is that DB2 needs an additional product in order to be 

able to cater for heterogeneity. This will obviously incur an extra license and therefore an 

increase in the total cost. In this project, homogeneous databases are preferred but the 

possibility to connect with heterogeneous systems can be beneficial in the future. Oracle and 
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SQL Server both provide connectivity to heterogeneous systems but Oracle provides a larger 

number of possible connections. Due to this DB2 was discarded. 

Finally, interoperability, the ability to work on different OS, is another deciding 

factor. As seen from the table above, SQL Server solution is only available on Windows OS. 

So far the preferred OS which was to be used and installed on the “outlet” computers was 

basically Windows. A possible scenario is that in the future there may be the need to use 

different OS. In such a case SQL Server will prevent the user from having a homogeneous 

system. SQL Server was discarded, due to its lack of interoperability and due to the extra 

component needed for distributed transaction transparency. Therefore Oracle was chosen as 

the DBMS solution to be used in this project.   

2.4 Summary 

This project provides further knowledge on distributed databases. It also provides a 

solution for a small business which has several outlets and which would like to change from 

the manual gathering of data to a computerized system. It makes use of distributed databases, 

where data is gathered from different outlets, and is shared among all outlets.   

Chapter 3 – Methodology 

3.1 Life Cycle Model 

This project mainly involves the creation of a database for a particular business. Since 

a database is considered part of an information system, the model used in this instance is the 

Database Life Cycle Model. Also known as DBLC, this is similar to the Software 

Development Life Cycle (SDLC) model. This is also referred to as the “Waterfall method”. 

The DBLC is constructed through five main stages, namely planning, analyzing, 

designing, implementing, and maintaining. The present researcher chose DBLC as the model 
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for this project as each stage has first to be completed in order to proceed to the next stage. A 

practical example of this procedure is that the design stage could not start unless the 

requirements in the analysis stage were identified. 

In the course of this project, the five stages were not followed in a strict sequence. 

Since the project had to be amended more than once, stages of the DBLC had to be 

reconsidered, and therefore repeated. Consequently, some of the stages followed an iterative 

process. The following is a detailed description of the process in each and every stage. 

3.2 Specific procedures 

3.2.1 Planning Stage 

The planning stage began with the author identifying the deliverables for this project. 

The following list shows all the deliverables identified. 

A solution which: 

• Stores the gathered data of the various transactions. This solution has to remove data 

redundancy, and inconsistency. Furthermore, this solution has to provide a possibility 

of generating reports. This solution also has to be extended to the three different 

stores, and also provide the possiblity of communication with each other 

• Tracks rent transactions, selling transactions, and booking transactions for the different 

stores 

• Reports (determined in the analysis stage and implementation stage) 

Primarily, the objectives for this business in using this database are to provide the 

customer with better service, easier and better store keeping, stock taking, and retrieval of 

information. These objectives have to be implemented and integrated with the other three 
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outlets. After the objectives have been identified, the step that followed was that of 

observing, and analysing of a movie rental shop already in operation. The following is a 

detailed description of this process. 

3.2.2 Analysis Stage 

The analysis step began by analyzing a movie rental store in operation. The researcher 

noticed that movie rental stores provided three main services, namely sales, rentals, and 

booking of movies. The researcher noticed that the stores under analysis used a very crude 

method to keep records of their transaction done, be it a sale, rental or booking of movies. 

These stores kept records in paper form. 

The author observed that every time a movie sale transaction was perfomed, 

obviously the customer chose the movie he wanted to buy, then the store attendant checked 

the price list of the movie, and requested the money. After the customer paid for the movie, 

the store attendant logged this sale in the sales sheet. Basically, this was a sheet of paper by 

which the store management could keep track of all the sales, and where the movie name and 

the cost were both recorded. Furthermore, this sales sheet was also used by the store keeper to 

see what stock needed to be reordered. 

On the other hand, when a movie rental transaction was done, after the cutomer chose 

the movie, the store attendant checked if the customer was registered or not. This was done 

by retrieving the customer name in the file containing the records of the customers. For each 

customer there was a record, which was basically a sheet of paper containing the customer 

information, and the customer’s rental history. Therefore it was in this sheet where the rental 

details were logged in. This sheet was also used when the customer returned the movie as 

well as recording payment for the rental. 
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In the store under analysis there were customers who requested the service of 

booking DVDs (movies) which were already out on loan on the date of booking. This service 

was available but bookings were recorded manually on paper sheet forms.  

After observing and analyzing the current methods used by the store in question, it 

was clear that the recording of the transactions which were done manually was very time 

consuming, and was eventually leading to long queues of customers waiting to be served. 

Apart from that, the data logged in manually by the store attendant could be easily duplicated 

by mistake, therefore containing inconsistencies, and so not very reliable. This record 

keeping system also made data retrieval difficult to perform, and it took a considerable 

amount of time. 

After the analysis was conducted, the researcher concluded that the opening (or 

extension) of two new outlets could not afford to work with a manual record keeping system. 

The amount and range of services to be available at the multiple outlets would not make it 

possible for them to communicate, and keep each other updated when there were various 

transactions being done at the same time. Apart from that, more data had to be collected when 

considering the increased number of stores. 

Therefore the main requirement was that of a storage location which held consistent 

data, and also was accessible in a timely manner. This requirement applied also to the 

different outlets. This means that each outlet would have its own data, but at the same time be 

able to connect, and integrate the different data in the other outlets. 

Another requirement, on account of the different locations of the outlets, was that of 

the mobility of the rentable movies and of the employees themselves if required. In other 

words, the employee should be able to log in, and work in any of the outlets. Similarly, the 

customer should have the possibility to return the rented movie to any preferred outlet.   



                                                                                                                  

  

 

 

 

 

    Designing and implementing of  27 

The second stage of the analysis was the identification of the key users involved in 

this store. Three main users were identified, namely the store attendant, the store keeper and 

the manager. For each user, requirements and types of reports were identified. 

The store attendant, as the name implies, is the person who is assigned to serve 

customers. The main duty of this personnel is to input the data regarding the lease and selling 

of movies, that is all the daily transactions. In other words, it is this user who will populate 

the database with the appropriate data. The main requirement of the store attendant was to 

have available consistent data from all the outlets. Also, some report requirements were 

identified, which are as follows: 

• A report which shows the names of the customers who have not yet returned the leased 

movies after the allocated period 

• A report showing a record of all the movies booked by the respective customer 

• A report or a list within the booking application that shows the available movies in that 

particular store 

The second user identified was the store keeper. During the analysis it was considered 

that the store keeper’s main role was to keep track of all the movies in the store. One of his 

responsibilities was to check the stock amounts and then decide accordingly if new stock was 

needed or not. The store keeper was also responsible for notifying other outlets about rentable 

movies which were returned to an outlet other than the one from where the movie was 

originally rented. The main requirement of this user was the facility to get the information 

needed for his duties in a short amount of time. The information needed was to be found in 

the reports identified and listed below: 

• A report which shows the stock quantity in that particular store 
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• A report which shows the movies rented by that particular store but which were returned 

to a different store. With this report the store keeper can notify the other stores to send 

back these movies in order to be inline. 

Finally, the main user who oversees the whole situation is the manager himself. 

Obviously the manager has to safeguard the investment of which he or she is in charge by 

having a clear idea of the finances of the stores so that he or she can take informed decisions. 

This can be done by the provision of correct and consistent reports. These are: 

• A report containing the daily profit from sales transactions in all the outlets 

• A report containing the daily profit from rented movies in all the outlets 

• A report which shows the rented movies history in all the outlets 

• A report which contains all the sold movies in a specified range of time in all the stores 

• A report of the number of transactions done by each employee 

3.2.3 Design Stage 

The first part of the design stage was to gather all the required data elements that the 

system was going to use, and eventually store in the database. Four main groups were 

identified. These contained data elements used during the transaction of the services provided 

by the store, namely selling, renting and booking. One of these groups, which can be 

classified as that of the employee, contains data fields concerning the employee, such as the 

name, surname and address. Another group is that of the customer. As the name implies, it 

holds data related to the customer such as the name and address. Another group is the one 

which holds data about rentable movies. In this group data fields such as the name, actors, 

publishing house and movie category can be found. The final group that was identified which 
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holds information about movies available for sale. The data in this group is similar to that 

found in the rentable movie group. By identifying these groups, the data required was easily 

identified. 

Other data groups were recognized which holding data for the actual transactions 

during the daily services of the stores. These groups obviously have data fields such as the 

date of the transaction as well as the movies which were rented, sold or booked for each 

transaction. 

The next step was to identify the business rules which can help recognize further data 

elements. Business rules are a narrative description of the operations which in this case are 

the renting, booking and selling of movies in these stores. The following list contains some of 

the business rules identified: 

1. A customer can rent several movies at a time 

2. A customer pays for the lease of the movies upon return of the movies 

3. Each movie has a predefined rentable period 

4. A customer has to be registered in order to be able to rent and book movies 

5. A customer can return rentable movies at a different store from the one where he or 

she rents them 

6. An employee can work in different store locations 

7. A customer can book a movie at a particular store where the requested movie 

resides 

8. Each movie has to be uniquely identified 



                                                                                                                  

 

  

 

 

 

   

 

 

 

   

  

 

 

 

 

 

 

 

    Designing and implementing of  30 

The next step in the design stage was the creation of the actual entity relationship 

diagram. Obviously, entities for the employee, customer, rentable and saleable movies were 

created which contains the data fields identified in the previous steps. These entities would be 

the building components of the whole system since these entities would be referenced during 

the daily transactions of the stores. These entities were named employee, customer, movie 

rent, and movie sell respectively. When considering a database, it is beneficial to have a field 

which represents the physical location of the actual entity where the data resides. 

This field provides distinctiveness in the records of all the databases, which will later 

facilitate the retrieval of the data itself. Therefore, each employee, customer, rentable and 

saleable movie are registered to a particular store, and this additional field will contain a 

reference to the location of the store where the registration took place. Additionally, this field 

will have to reference another entity, which was also created, and named site. It will hold the 

data regarding each site or store in the system. The use of this field will be combined with the 

primary key of the entity, in order to provide the unique identification of a movie, employee 

and customers in all the outlets. In the case of both movies for rent and for sale the 

concatenation of the movie ID (Primary key) and the Site ID, will result in a string of 

characters which can be printed as a barcode and attached to each movie. This will facilitate 

the inputting of the movie during the daily transactions just by scanning this barcode. In a 

business like this it is a must to have an identification of the business’s assets. 

In regard to the daily transactions, two entities were added for each type of 

transaction, that is, sales, renting and booking. One entity holds the information of the actual 

transaction and the other one holds the items for each transaction. The entities which hold the 

transaction data were named sell_transaction, rent_transaction, and book_movie respectively, 

while in the case of the entity which hold the items these were named sell_item, rent_item 

and book_item respectively. An important point to mention is that all these entities were 
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referenced to the Site ID. As already stated this would differentiate between various 

transactions conducted in all three stores. 

The next step was to normalize the entity diagram constructed so far. During the third 

stage of normalization further entities and transitive dependencies were discovered and 

created. One of the entities was the grade entity which contains the different grades in the 

store. The possible grades identified so far were, the manager, store keeper and store 

attendant. One could also find the salary according to the grade in this entity. Later on, each 

employee record was referenced to a record in this grade entity by adding the grade entity 

primary key. The other entity discovered was the stock entity which contains the stock types 

available in the store. This entity corresponds to attributes such as the selling price. 

Subsequently for each user the privileges were identified for each table. At this point 

one should mention that in a database system, the possibilities of a user are that of selecting, 

inserting, updating and deleting records in the tables. According to the grade, these 

possibilities were identified. 

After that, some of the constraints were identified in the creation of the actual 

databases scripts. An example of these constraints is the employment status for an employee, 

which can be only active or terminated. The movie type is another constraint. There are only 

three possibilities which are DVD, BLU-RAY and VCR. These types of constraints are 

important and will help to have consistent data. 

Due to the requirements that each employee can work in all the stores and that the 

customer is free to return a movie in whichever store he/she likes brought up a critical 

decision during this stage of the design phase. The decision that had to be taken, regarded 

referential integrity. It was arguable whether to handle referential integrity by the application 

or by the database itself. Referential integrity is when a key in an entity is used to reference 

another entity. In a non-distributed database, the data have to be present in the actual 
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database in order to be referenced. On the other hand, for a distributed database, the data does 

not need to be exclusively in that store’s database but can be found in another database, in 

another store. If this has to be handled by the application, it has to check whether the key is 

referenced in another database located in one of the stores. In this case the application has to 

use distributed SQL queries, where it checks the other databases at the other store. 

Unfortunately this type of checking will bring with it complex logic in the application. 

Furthermore, the application also has to be able to detect cases where the entity is being 

changed or deleted by another user in order to have consistent data. Unfortunately, with the 

current DBMS solutions, the database itself does not handle distributed referential integrity. 

Fortunately, there is another solution provided by the DBMS vendors, that of replication. 

Replication, as the name implies, copies the data or entities to the other stores’ database. 

Therefore the DBMS of the local store can reference to the data from the other stores more 

easily since it is found in the actual database. An additional advantage which replication 

brings is that of having a backup of the replicated entities in the other databases. Therefore, in 

case of one of the databases’ failure, the system can still continue running. For these reasons 

replication was chosen for this business solution. For the requirements identified there was no 

need to replicate the whole schema but only a few numbers of entities. 

Returning to the requirements, as regards the possibility of employees working in 

different stores, the employee entity was chosen to be replicated between the database sites. 

Therefore, the attributes found in the employee entity were found in all the databases. On the 

other hand, for the other requirement which allows the customer to return a movie to any 

store, four entities were chosen to be replicated. Obviously the customer entity was replicated 

since customer data was registered in the other outlets. Also, the rent_transaction and the 

rent_item entities were replicated, because these contain the information about the 
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transaction. Finally the movie_rent table which contains the rentable movies was replicated 

due to its referral to the transactions. 

The next decision to be taken was how the application was to achieve data retrieval. 

In other words, whether the application was going to query the database by a SQL query or 

just by calling a procedure. In the case where the application queried the database itself, the 

SQL query had to be hard-coded in the application software. This could bring problems if 

there were to be some changes to the database schema. Therefore these changes also had to 

take effect within the application code. On the other hand, if procedures were used, it would 

be more secure since the database checks for the user’s rights. In this case only the required 

data is sent to the network and changes to the database have to affect only the procedures, and 

not the application as well. This makes the system more standardized. As one can see, the 

benefits of using procedures are many so it was decided to use procedures in this system. 

For the procedure to be able to retrieve the data, two views were designed. One view, 

named sell_transaction_view, is used to gather all the information of the sales transactions 

from all the stores. The other view was named rent_transaction_view which, as the name 

implies, gathers all the data relevant to rent transactions. Afterwards, the procedures were 

designed to cater for the input parameters and the output data was identified. 

This completed the conceptual design of the database. The next step was to choose the 

DBMS vendor. The researcher decided to use Oracle. Apart from the fact that Oracle is one 

of the most used DBMS and considered as market leader, it also provides replication 

functionality with the Standard One Edition. This functionality is called Oracle Streams. 

The final stage of the design phase was the physical design of the actual database. 

This stage determines the physical storage location of the database. It was decided that the 

whole schema, that is, all the entities or tables mentioned above were allocated to a single 
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tablespace which was named after the movie store. On the other hand, the procedures related 

to the replication functionality were to be allocated to a different tablespace. 

3.2.4 Implementation and Loading 

The first stage of the implementation was to install the DBMS, namely Oracle, on 

three computers which were to represent the three “outlet” computers. These were connected 

to each other by a network connection through a router. Also each computer was assigned a 

static IP. 

The second stage was to build the actual scripts which created the database schema 

containing all the tables with their respective fields. All these entities were then attributed to 

the same tablespace. Furthermore, the links between the databases, which in the case of 

Oracle are called database links, were also included in this script so that the database itself 

could connect to the other databases. 

The users mentioned in the design were created and granted the privileges for the 

entities. Also, synonyms were created to refer to a specific entity in a particular schema. This 

was beneficial in querying the data from the database since the specifying of the schema 

owner and the entity would not be required. 

As regards to the replication functionality, the corresponding script was also created. 

This script created a capture queue which captured changes on the replicated tables found on 

the other two databases. It also created two apply queues which enabled the transfer of 

changes on a table of a particular database to the other databases. 

The next stage was to execute the scripts on all the three computers and to load the 

databases with dummy data in the appropriate entity fields. The last stage was to create all the 

procedures mentioned in the analysis phase. 
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3.2.5 Testing 

The testing of the system was performed by executing the procedures and verifying 

that the data retrieved was correct. Also consideration was taken for the time required for the 

data retrieval. In cases where the period of time was long, the SQL query was edited and 

sometimes the database was fine tuned. This was done to improve the performance of the 

system. 

Although the DBLC’s last stage regarded the maintenance of this database, 

discussions could not be held at that time due to the fact that the database was not 

implemented in a movie rental store yet. However, upon implementation this study will 

dedicate a discussion on how to maintain upcoming events.  

3.3 Project Deliverables 

The two main deliverables were the Oracle distributed database solution for the three 

“outlets”, including the replication solution, and the database procedures which retrieve the 

data requested in the reports. 

3.4 System Resources Requirements 

The system requirements for Oracle Standard One edition are: 1GB physical memory 

(RAM), 5GB disk space, 256 video adapter, 550MHz processor and (on Windows Vista) 

800Mhz processor minimum. The platform was decided to be Windows and this software 

edition requires that the operating system should be Windows 2000 or later. 

The computers used all met the above requirements; two of the computers had 1 GB 

of RAM and ran on Windows XP Professional. The other computer had 2GB RAM and ran 

on Windows Vista Home Premium Edition. 
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3.5 Summary 

The database life cycle worked well for this project. All stages of this method were 

closely followed. At the implementation stage, some changes and updates were implemented 

by the author himself. Therefore this stage turned to be a more of an iterative approach. If the 

application for this project had been created and implemented in a real store, new 

requirements would have been requested from the users. This would result in a continuation 

of the iterative approach bringing changes to the database solution. 

Chapter 4 – Project History 

4.1 How the project began. 

The project began when the author noticed that some establishments which rent 

movies in Malta still use a paper logging system for their daily operations. These stores lack a 

computerized system, and could widely benefit especially from the use of a distributed 

database due to the fact that it stores the data more efficiently. The author decided to develop 

a database solution which could be used in such stores, and also manages the distribution of 

the data in multiple outlets. 

A database system not only provides an efficient way of storing the data used in the 

daily operation of the store, but it also addresses other concerns. One of these concerns is the 

time factor. More specifically, this refers to the time required to gather the data. When using 

a manual system the time taken is enormous when compared to the time taken to retrieve data 

using a database solution. Another concern is the consistency of the data, since by correct 

design this can be guaranteed by the database itself. 

In addition, a distributed database addresses the functionality of sharing the data 

found in multiple outlets. The traceability of the daily operation within the different outlets is 
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achieved by this capability. Furthermore, several reports are needed by the different users so 

as to ease their daily working routine. In such case, distributed databases helps to gather all 

the data needed by the reports from all the outlets. Also, from the management perspective, a 

clearer indication of the profits and the sales trends are visible in such reports. Most 

importantly, the services provided are much faster and accurate, thus increasing customer 

satisfaction.  

4.2 How the project was managed. 

The project followed the different stages from planning to the implementation of the 

database. Unfortunately, the deployment and the maintenance stages of this project were not 

completed in a real movie rental store. Due to this the author was not tied down by any 

deadlines or changes in the requirements. If these stages had been completed, the author 

could have easily faced “scope creep”. Scope creep is when further requirements are added 

after the system specifications are completed (Russell, p. 1). This latent development could 

be attributed mainly to the method used to gather requirements. The author used the 

observation method, which involves the observation of the normal daily operation within 

some rental stores. The main drawback of this method is that only a partial picture of the 

complete behavior is seen. That is, certain anomalies or special events could not be observed 

and therefore these requirements were neglected. For this reason, additional requirements 

which were unforeseen by the author would have had to be added at a later stage. 

Furthermore, at the design stage, the timeline was not met due to the lack of 

knowledge of Oracle Streams. Several documents had to be reviewed in order to construct 

scripts which involve the replication between the outlets. 
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4.3 Significant events/ milestones in the project 

The main milestone of this project was to develop a database solution by the 

completion of various stages of the project life cycle. All the stages were completed, but not 

according to the time schedule. This can mainly be attributed due to the time required for the 

creation of the replication scripts was underestimated, therefore the design and 

implementation stages took a little bit longer to complete. Unfortunately, the stages of the 

implementation, and maintenance of the system in an existing movie rental store have been 

discarded due the fact that no rental store requested this solution. 

4.4 Changes to the project plan 

The overall project plan was not altered except for some changes in the design. Extra 

elements were added in some entities as the author realized that such fields would be 

beneficial if collected. Also, the introduction of the timestamp for the replicated entities was 

added as a requirement of the replication mechanism. Other than the minor modifications, the 

project plan remained the same.  

4.5 Evaluation of whether project met goals 

The main goal of this project was to build a distributed database system which serves 

as a data repository for a movie rental outlet, and also to share the data among the other two 

outlets. This particular goal of the project was met. Another goal, which was achieved, was 

the creation of several reports used by the different users within a rental store. The goal to 

populate the system with dummy data, and test both the complete database solution, and the 

reports was also achieved. However, the goal of improving the customer services could not 

be evaluated since this project was not deployed in an existing establishment. 
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4.6 Discussion of what went right and wrong with the project 

Several things went well for the project. First of all, a movie rental store can have a 

useable database solution which stores the data used within its outlets efficiently. Reports 

based upon the data gathered were constructed. These reports contain information about the 

transactions performed in the outlet. Furthermore, this system is able to communicate, and 

share data found in the database systems at the other outlets. The information collected from 

these outlets can be shown in reports, and thus a better perspective of the situation in these 

stores is presented. Additionally, the tracking of the movies is recorded more easily. This 

type of system obviously is more convenient than using the manual logging system. 

One problem encountered in this project is that the implementation stage took longer 

than planned. This was mainly due to the extra time taken in creating the replication scripts. 

This can be attributed to the lack of knowledge regarding Oracle Streams, and therefore 

several documents had to be reviewed. Also, the introduction of replication brought some 

changes to the schema by introducing new fields within the replicated entities. These schema 

changes resulted also in changes in the data loading scripts as the data of the extra fields had 

to be added manually.  

Another problem encountered by the author was the method used to gather the store’s 

requirements. The observation method only shows a snapshot of the daily operation of such 

stores. Therefore, some exceptions in daily routine can be missed which would necessitate 

changes of the project at a later stage. Unfortunately, the deployment of this project in a real 

working environment was not implemented, and therefore any such exceptions are still 

hidden. 
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4.7 Discussion of project variables and their impact on the project 

This project was not affected by any external variables, and the development of the 

project itself continued smoothly. This can be mainly attributed to the fact that the 

deployment of this project in a real rental store had not yet taken place.  Upon deployment, a 

discussion about the variables encountered can be done. 

Another variable which may impact the project is the lack of an application. If an 

application was built to facilitate the population of the database, and the generation of the 

reports, several issues could be encountered such as missing attributes, and different data in 

the reports. Most importantly, the performance of the database could be evaluated more 

rigorously. The introduction of indexes and de-normalization of the database could be done in 

order to achieve a better performance. 

4.8 Analysis of results 

In the planning phase, three deliverables were mentioned. The first deliverable was a 

solution that saves gathered data from different outlets. This deliverable was met by the 

creation, and use of a database system. Apart from that, the database is also responsible for 

reducing data inconsistency, and redundancy. 

The second deliverable was to track the daily transactions, namely renting, booking 

and selling from all the outlets. This deliverable was also met. All the transactions are 

captured, and stored in the respective outlet database. In the case of booking, and selling 

transactions, these are replicated throughout the three stores in order to cater for movie 

mobility. 

The last deliverable is the creation of reports used by the different users in the movie 

rental store. This deliverable was tested by correlating the data found in the report with the 

actual data in the database. These tests were successful, and therefore this deliverable was 
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considered met. An important point to note is that the generation of the reports lies in the 

database solution itself. This is due to the fact that for each report a procedure is used which 

queries the database and gathers the required data. An important advantage of using this 

procedure is that when changes need to be done to the reports only the procedures need to be 

changed. The time to generate such reports was also considered but it was only evaluated on 

the data loaded. This constituted only a small number of records when compared to the 

number of records which can be found in a real establishment. 

All these three deliverables can be summed up in better service to the customers, as 

well as easier, and better data logging for the employees. Unfortunately, these cannot be 

assessed due to the fact that this solution is not yet implemented in an existing store. 

Following the implementation, a discussion of the outcomes, and the evaluation of the results 

are to be compiled. 

4.9 Summary of results 

The solution that was built satisfies the needs of a movie rental store with different 

outlets. Apart from storing the data concerning the daily operation, it can also be used for 

tracking movies among the stores. The design and creation of such a database system was 

successful, but unfortunately it could not be evaluated on a real store. 

Chapter 5 – Conclusions 

5.1 Lesson learned 

The lessons learned from this project include: 

• The importance of: 

o Obtaining clear requirements from the users 
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o The benefits gained from the evaluation of the project when deployed in 

a real establishment. 

• Development of skills in the area of: 

o Database development 

o Sharing and replicating data between databases 

o Processing of the data to build valuable reports 

• Increased knowledge in: 

o SQL coding 

o Oracle DBMS 

o Oracle Distributed Capabilities 

o Oracle Streams 

5.2 What would you have done differently 

An aspect which the author would have done differently is the observation method 

used to gather the requirements. Interviewing could be another valid method which could be 

used to gather requirements from the different users. By interviewing, one gets a better 

understanding of what the user wants or would need. Nevertheless, the observation method 

can be used in conjunction with interviews, so that the designer gets a better perspective of 

the daily routine. Clear requirements are important and sometimes they determine the success 

or failure of a project. 

5.3 Initial project expectations met 

The initial project expectations were met. The store outlets can efficiently and 

consistently store the data gathered in its daily operations. This is achieved through the 
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creation and use of a database, which contains different entities, and also holds the gathered 

data. Apart from that, valuable reports which can ease the work of the employees and the 

management can be generated from such a system in a short period of time. The solution also 

comprises the ability to connect and share the data found in different outlets’ databases. 

Thanks to this capability, the tracking of the renting, booking and selling transactions for the 

different outlets as well as the location tracking of the rentable movies is possible. 

5.4 Next stage of evolution 

This project, however, is not a complete solution, and therefore several follow up 

stages are required. The first stage would be to build an application which works on top of 

the database systems. This application will help the users to insert, delete, and modify the 

data which resides in the database more easily, as well as, it enforces the business rules. Such 

an application can also be web based, which could benefit the customers by providing the 

possibility of online booking and buying of movies from these outlets. 

The deployment of the database solution and the application in a real movie store is 

the next step. In conjunction with the deployment, a mechanism to populate the database has 

to be chosen. A migration strategy has to be decided on how the users are going to change 

from the old system to this new database system created in this project. 

Afterwards, a tough evaluation of the database solution can take place based on 

criteria such as performance, report generation, data storage and, most importantly, customer 

service. 

5.5 Conclusions / recommendations 

This distributed database solution provides a movie rental establishment with the 

required data storage facility for the information gathered in its daily operation. Reports 
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based on the stored data are generated, and different users working in such store can benefit 

from its contents. All this was achieved by using a commercial DBMS, namely, Oracle 

DBMS. Though the edition of the DBMS used was designed for small businesses, it still 

incurred a cost. If the business has a limited budget, the author recommends that other 

DBMSs which do not sustain any license fees should be used instead. The schema developed 

in this project can still be used, but the scripts which create the database have to be adapted to 

the new DBMS. 

5.6 Summary of project 

This project consisted of building and implementing a database system using Oracle 

DBMS to meet the needs of movie store. It also takes care of the different outlets of the store 

in question. Such stores can benefit from efficient and consistent storage of the data from 

their different outlets. This project also met the need of correct reports for the different users 

within the different outlets. The tracking of the daily transactions and the location of the 

movies is visible through these reports. 

The project gives such stores the benefits of storing and manipulating the data in an 

efficient and consistent manner and also to extend these functions by sharing and accessing 

data located in different outlets. 
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Appendices 

Appendix A: ERD Diagram 
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Appendix B:  User privileges 

Table User Manager Store Keeper Attendant 
MOV_RENTCOST SELECT, 

UPDATE, INSERT, 
DELETE 

NONE SELECT 

SELL_ITEM SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT 

RENT_ITEM SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT 

RENT_TRANSACTION 
SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT 

SELL_TRANSACTION 
SELECT, 
UPDATE, INSERT, 
DELETE 

SELCET SELECT, 
UPDATE, INSERT 

BOOK_ITEM SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT 

BOOK_MOVIE SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT 

MOVIE_SELL SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT 

MOVIE_RENT SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT 

EMPLOYEE SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT SELECT 

CUSTOMER SELECT, 
UPDATE, INSERT, 
DELETE 

NONE SELECT, 
UPDATE, INSERT, 
DELETE 

GRADE SELECT, 
UPDATE, INSERT, 
DELETE 

NONE NONE 

STOCK SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT, 
UPDATE, INSERT, 
DELETE 

SITE SELECT, 
UPDATE, INSERT, 
DELETE 

SELECT SELECT 
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Appendix C: Views 

/*********************************Sell Transaction View*************************************/
 

create or replace view sell_transaction_view  as
 

/**********************************Query data from Site 1************************************/
 

select * from (
 

(select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME,   

 a.selltxn_site_id,d.stk_sellingprice,d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid, 

      e.emp_working_site 

from  sell_transaction@site1.site1 a, sell_item@site1.site1 b, movie_sell@site1.site1 c,   
stock@site1.site1d, employee@site1.site1 e

     where b.selltxn_id = a.selltxn_id and   b.movs_id = c.movs_id 

and  c.movs_reg_siteid = b.movs_reg_siteid

     and  c.stk_id = d.stk_id 

and  a.emp_id = e.emp_id 

and  a.emp_siteid = e.emp_siteid 

) 

/**********************************Query data from Site 2************************************/

     union 

( select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME, 

a.selltxn_site_id,d.stk_sellingprice, d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid, 
e.emp_working_site 

from sell_transaction@site2.site2 a, sell_item@site2.site2 b, movie_sell@site2.site2 c, 
stock@site2.site2 d, employee@site2.site2 e 

where b.selltxn_id = a.selltxn_id

     and   b.movs_id = c.movs_id

     and  c.movs_reg_siteid = b.movs_reg_siteid 

and  c.stk_id = d.stk_id

     and  a.emp_id = e.emp_id

     and  a.emp_siteid = e.emp_siteid 

) 

/**********************************Query data from Site 3************************************/ 

mailto:employee@site2.site2
mailto:stock@site2.site2
mailto:movie_sell@site2.site2
mailto:sell_item@site2.site2
mailto:sell_transaction@site2.site2
mailto:employee@site1.site1
mailto:stock@site1.site1d
mailto:movie_sell@site1.site1
mailto:sell_item@site1.site1
mailto:sell_transaction@site1.site1
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     union 

( select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME, 

a.selltxn_site_id,d.stk_sellingprice, d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid, 
e.emp_working_site 

from sell_transaction@site3.site3 a, sell_item@site3.site3 b, movie_sell@site3.site3 c, 
stock@site3.site3 d, employee@site3.site3 e 

where b.selltxn_id = a.selltxn_id

      and  b.movs_id = c.movs_id
 

and  c.movs_reg_siteid = b.movs_reg_siteid
 

and  c.stk_id = d.stk_id
 

and  a.emp_id = e.emp_id
 

and  a.emp_siteid = e.emp_siteid
 

) 

) h  order by h.selltxn_date; 

/*************************************Rent Transaction View*********************************/ 

create or replace view rent_transaction_view as 

select h.renttxn_id,h.rent_date,h.rent_returndate,  h.movr_id, h.movr_reg_siteid, h.MOVR_NAME , 

 h.renttxn_site_id, h.emp_id,h.emp_name,h.emp_siteid,h.cost 

from ( 

/******************************Query only Site 1 due that it is replicated**************************/ 

( select a.renttxn_id, a.rent_date, a.rent_returndate, b.movr_id,b.movr_reg_siteid, c.MOVR_NAME, 

 a.renttxn_site_id, d.emp_id, d.emp_name,d.emp_siteid, e.cost 

from rent_transaction@site1.site1 a, rent_item@site1.site1 b, movie_rent@site1.site1 c,  

employee@site1.site1 d, MOV_RENTCOST@site1.site1 e 

where a.renttxn_id = b.renttxn_id 

and a.renttxn_site_id = b.renttxn_site_id
 

and b.movr_id = c.movr_id


     and b.movr_reg_siteid = c.movr_reg_siteid
 

and c.movr_type = e.movr_type


     and a.emp_id = d.emp_id
 

and a.emp_siteid = d.emp_siteid) )h;
 

mailto:MOV_RENTCOST@site1.site1
mailto:employee@site1.site1
mailto:movie_rent@site1.site1
mailto:rent_item@site1.site1
mailto:rent_transaction@site1.site1
mailto:employee@site3.site3
mailto:stock@site3.site3
mailto:movie_sell@site3.site3
mailto:sell_item@site3.site3
mailto:sell_transaction@site3.site3
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Appendix D: Procedures 

Sell_TXN_History Procedure 

create or replace procedure SELL_TXN_HISTORY 
(startDate in date, endDate in date,refCursor1 out SYS_REFCURSOR) as 
Begin 

open refCursor1 for 
select h.selltxn_id as "Sell TXN",h.selltxn_date as "Sell Date",  h.movs_id as "Movie 

     ID",h.movs_reg_siteid as "Movie Registered Site", h.MOVS_NAME as "Movie 
Name",

     h.selltxn_site_id as "TXN Site ID", h.stk_sellingprice as "Selling Price" 
from sell_transaction_view h 
where h.selltxn_date >= startDate and h.selltxn_date <= endDate 
order by h.selltxn_date, h.selltxn_id; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 

SELL_PROFIT_HISTORY Procedure 

Create or replace procedure SELL_PROFIT_HISTORY 

(startDate in date, endDate in date, refCursor1 out SYS_REFCURSOR, vTotalProfit out number, 
vTotalSales out NUMBER) as 

Begin 
open refCursor1 for 
select h.selltxn_id as "Sell TXN", h.selltxn_date as "Sell Date", h.movs_id as "MOVIE ID",     

h.MOVS_NAME as "MOVIE Name" , h.selltxn_site_id as "SITE ID", h.emp_id as 
"EMPLOYEE ID", (h.stk_sellingprice - h.stk_itemcost) as "Profit"
 

from sell_transaction_view h
 
where h.selltxn_date >= startdate and h.selltxn_date <= enddate
 
order by h.selltxn_date, h.selltxn_id;
 

/*Calculates Total Profit*/
 
select sum(h.stk_sellingprice - h.stk_itemcost) into vTotalProfit
 
from sell_transaction_view h
 
where h.selltxn_date >= startDate and h.selltxn_date <= endDate; 

/*Calculates Total Sales*/   

select count (*) into vTotalSales from sell_transaction_view h
 
where h.selltxn_date >= startDate and h.selltxn_date <= endDate;
 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 
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RENT_TXN_HISTORY Procedure 

create or replace procedure RENT_TXN_HISTORY 
(startDate in date, endDate in date, refCursor2 out SYS_REFCURSOR) as 

Begin 
open refCursor2 for 
select h.renttxn_id as "Rent ID",h.rent_date as "Rent Date",h.rent_returndate as "Return 

Date",  
      h.movr_id as "Movie ID", h.movr_reg_siteid as "Movie Reg Site", h.MOVR_NAME 

as 
"Movie Name", h.renttxn_site_id as "TXN Site ID"
 

from rent_transaction_view h
 
where h.rent_date >= startdate and h.rent_date <= enddate
 
and h.rent_returndate is not null
 
order by h.rent_date, h.renttxn_id;
 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 

RENT_PROFIT_HISTORY 

create or replace procedure RENT_PROFIT_HISTORY 
(startDate in date, endDate in date, refCursor2 out SYS_REFCURSOR, vTotalProfit out number, 
vTotalTXN out number) as 

Begin 
open refCursor2 for 
select h.renttxn_id as "Rent ID",h.rent_date as "Rent Date",h.rent_returndate as "Return 

Date",
      h.movr_id as "Movie ID", h.MOVR_NAME as "Movie Name", h.renttxn_site_id as 

"Site 
      ID", h.cost as "Payment"
 

from rent_transaction_view h
 
where h.rent_date >= startdate and h.rent_date <= enddate
 
and h.rent_returndate is not null
 
order by h.rent_date, h.renttxn_id;
 

select sum (h.cost) into vtotalprofit from rent_transaction_view h
 
where h.rent_date >= startdate and h.rent_date <= enddate
 
and h.rent_returndate is not null;
 

select count(*) into vtotaltxn from rent_transaction_view h
 
where h.rent_date >= startdate and h.rent_date <= enddate
 
and h.rent_returndate is not null;
 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 
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TXN_EMPLOYEE procedure 

create or replace procedure TXN_EMPLOYEE 
(startDate in date, endDate in date, rentCursor out SYS_REFCURSOR, sellCursor out 
SYS_REFCURSOR) as 

Begin 
open rentCursor for 

select count (a.renttxn_id) as "RentTXN", a.emp_id as "EMPLOYEE ID", a.emp_siteid as 
"REGISTERED SITE ID", a.emp_name as "Name" 

from rent_transaction_view a 
where (a.emp_id ,a.emp_siteid) in (select b.emp_id, b.emp_siteid from employee b) 
and a.rent_date >=  startDate and a.rent_date <=  endDate and a.rent_returndate is not null 
group by a.emp_id, a.emp_siteid, a.emp_name; 

open sellCursor for 
select count (a.selltxn_id) as "SellTXN", a.emp_id as "EMPLOYEE ID", a.emp_siteid as 

"REGISTERED SITE ID", a.emp_name as "Name" 
from sell_transaction_view a 
where (a.emp_id ,a.emp_siteid) in (select b.emp_id, b.emp_siteid from employee b) 
and a.selltxn_date >=  startDate and a.selltxn_date <=  endDate 
group by a.emp_id, a.emp_siteid, a.emp_name; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 

STOCK_QNTY procedure 

create or replace procedure STOCK_QNTY 
(stockCursor out SYS_REFCURSOR) as 

Begin 
open stockCursor for 

select count(*), a.stk_id from movie_sell a, stock b 
where a.stk_id = b.stk_id 
and (a.movs_id, a.movs_reg_siteid) not in (select d.movs_id, d.movs_reg_siteid from 

sell_item d) 
group by a.stk_id 
order by a.stk_id; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 
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MOVIE_LOCATEDSITE procedure 

create or replace procedure MOVIE_LOCATEDSITE 
(movieCursor out SYS_REFCURSOR) as 

Begin 
open movieCursor for 
select a.movr_id, a.movr_name, a.movr_type, a.movr_locatedsite 
from movie_rent a 
where a.movr_reg_siteid = (select b.site_id from site b where b.site_local = 'T') 
and a.movr_locatedsite != a.movr_reg_siteid 
and a.movr_id not in 

(select c.movr_id from rent_transaction_view c where c.rent_returndate is NULL) 
group by a.movr_id,a.movr_name, a.movr_type, a.movr_locatedsite; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 

DUE_MOVIES procedure 

create or replace procedure DUE_MOVIES 
(movieCursor out SYS_REFCURSOR) as 

Begin 
open movieCursor for 
select e.cust_id, e.cust_name, e.cust_surname, e.cust_cellno, d.movr_id, d.movr_name, 

a.rent_date, a.renttxn_site_id 
from rent_transaction a, mov_rentcost f, rent_item c, movie_rent d, customer e 
where a.rent_returndate is NULL 
and a.renttxn_site_id = (select b.site_id from site b where b.site_local = 'T') 
and a.renttxn_id = c.renttxn_id 
and a.renttxn_site_id = c.renttxn_site_id 
and c.movr_id = d.movr_id 
and c.movr_reg_siteid = d.movr_reg_siteid 
and d.movr_type = f.movr_type 
and SYSDATE > (a.rent_date + f.rent_period) 
and a.cust_id = e.cust_id 
and a.cust_siteid = e.cust_siteid 
order by a.cust_id; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 
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BOOKED_MOVIES procedure 

create or replace procedure BOOKED_MOVIES 
(bkmovieCursor out SYS_REFCURSOR) as 

Begin 
open bkmovieCursor for 

select a.bkmov_id, b.movr_id, c.movr_name, e.cust_id, e.cust_name, e.cust_surname, 
     a.booking_date 


from book_movie a, book_item b, movie_rent c, customer e
 
where a.bkmov_id = b.bkmov_id
 
and b.movr_id = c.movr_id
 
and b.movr_reg_siteid = c.movr_reg_siteid
 
and a.cust_id = e.cust_id
 
and a.cust_siteid = e.cust_siteid
 
order by a.bkmov_id, a.booking_date;
 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 

AVAILABLE_MOVIES procedure 

create or replace procedure AVAILABLE_MOVIES 
(avmovieCursor out SYS_REFCURSOR) as 

Begin 
open avmovieCursor for 
select a.movr_id, a.movr_name, a.movr_type, a.movr_reg_siteid from movie_rent a 
where a.movr_id not in (select c.movr_id from rent_transaction b, rent_item c

      where b.renttxn_id = c.renttxn_id
      and b.renttxn_site_id = c.renttxn_site_id
      and b.rent_returndate is null) 

and (a.movr_id,a.movr_reg_siteid) not in (select e.movr_id,e.movr_reg_siteid 
from book_movie d, book_item e 
where d.bkmov_id = e.bkmov_id) 

and a.movr_locatedsite = (select f.site_id from site f where f.site_local = 'T') 
order by a.movr_id; 

EXCEPTION WHEN OTHERS THEN 
RAISE; 

END; 
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