
Regis University
ePublications at Regis University

All Regis University Theses

Summer 2009

Designing and Implementing a Distributed
Database for a Small Multi-Outlet Business
Joseph Grech
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Grech, Joseph, "Designing and Implementing a Distributed Database for a Small Multi-Outlet Business" (2009). All Regis University
Theses. 5.
https://epublications.regis.edu/theses/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications at Regis University

https://core.ac.uk/display/217364495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/5?utm_source=epublications.regis.edu%2Ftheses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Designing and Implementing a Distributed Database for a Small Multi-Outlet

Business

Joseph Grech

Regis University

School for Professional Studies

Masters of Science in Software and Information Systems

 ii Designing and implementing of

To Isabella Farrugia

iii Designing and implementing of

Acknowledgements

My sincere gratitude goes to my project advisor, Brad Blake, and Don Ina for their professional

guidance, support and supervision throughout this project.

I would also like to thank all those who, in one way or another, were instrumental in the writing

up of this dissertation, amongst whom is my uncle, the Rev. Emanuel Magro, and Kevin Muscat

without whose support this dissertation would not have been possible.

The greatest debt and gratitude are owed to my fiancée; Isabella Farrugia and to my family: my

parents M’ Angela and Anthony who paid for my education, my sisters and my grandmother,

Rita. They have all helped me endlessly.

ure, store, and later on retrieve when

Databases provide the means vely retrieve data.

can help a business improve its service titive, and ultimately increase its profits.

In this paper, the system requirements of abase are researched for a movie rental

 they need to capt

 to store and effecti

s, be more compe

 a distributed dat

iv Designing and implementing of

Abstract

Data is a fundamental and necessary element for businesses. During their operations they

generate a certain amount of data that	 All content in this
Collection is owned
by and subject to therequired. Such a database
exclusive control of
Regis University and
the authors of the
materials. It is
available only for

and sale store that has at least two outlets in different locations besides the main one. This

project investigates the different stages of such a database, namely, the planning, analysis,

decision, implementation and testing.

v Designing and implementing of

Table of Contents

Abstract .. iv

Table of Contents ... v

List of Tables .. viii

Chapter 1 – Introduction .. 1

1.1 Statement of the problem.. 1

1.2 Relevance, significance or need for the project .. 3

1.3 Difficulties and limitations ... 3

1.4 Project scope... 4

1.5 List of definitions .. 5

1.6 Summary of the project.. 5

Chapter 2 – Review of Literature and Research.. 6

2.1 Overview of all literature and research sources on the project.. 6

2.2 Research methods used in investigating the problem and support of thesis statement 6

2.3 Literature and research relevant to the project .. 7

2.3.1 Research on databases ... 7

2.3.2 Research on distributed database systems .. 8

2.3.3 Advantages and Disadvantages of Distributed Databases ... 10

2.3.4 Research on different distributed database architectures and their components 11

2.3.5 Research on Distributed Design considerations ... 14

2.3.6 Research on Concurrency .. 17

2.3.7 DBMS Systems ... 18

2.4 Summary ... 23

Chapter 3 – Methodology .. 23

3.1 Life Cycle Model .. 23

3.2 Specific procedures... 24

3.2.1 Planning Stage .. 24

3.2.2 Analysis Stage ... 25

3.2.3 Design Stage .. 28

3.2.4 Implementation and Loading ... 34

3.2.5 Testing ... 35

3.3 Project Deliverables.. 35

vi Designing and implementing of

3.4 System Resources Requirements ... 35

3.5 Summary ... 36

Chapter 4 – Project History .. 36

4.1 How the project began... 36

4.2 How the project was managed.. 37

4.3 Significant events/ milestones in the project .. 38

4.4 Changes to the project plan ... 38

4.5 Evaluation of whether project met goals .. 38

4.6 Discussion of what went right and wrong with the project ... 39

4.7 Discussion of project variables and their impact on the project .. 40

4.8 Analysis of results... 40

4.9 Summary of results... 41

Chapter 5 – Conclusions ... 41

5.1 Lesson learned .. 41

5.2 What would you have done differently... 42

5.3 Initial project expectations met... 42

5.4 Next stage of evolution .. 43

5.5 Conclusions / recommendations.. 43

5.6 Summary of project .. 44

Appendices.. 45

Appendix A: ERD Diagram ... 45

Appendix B: User privileges ... 46

Appendix C: Views... 47

Appendix D: Procedures ... 49

Sell_TXN_History Procedure ... 49

SELL_PROFIT_HISTORY Procedure .. 49

RENT_TXN_HISTORY Procedure .. 50

RENT_PROFIT_HISTORY .. 50

TXN_EMPLOYEE procedure... 51

STOCK_QNTY procedure ... 51

MOVIE_LOCATEDSITE procedure .. 52

DUE_MOVIES procedure... 52

Designing and implementing of vii

BOOKED_MOVIES procedure .. 53

AVAILABLE_MOVIES procedure .. 53

Annotated Bibliography .. 54

References .. 62

Designing and implementing of viii

List of Tables

Table 1: DBMS Comparison ... 21

 1 Designing and implementing of

Chapter 1 – Introduction

1.1 Statement of the problem

In Malta, there are a number of establishments that provide the rental, booking and

selling of DVDs and movies. In some of these shops, all business operations are performed

through the manual filling of paper forms. This method of managing data is not very

efficient, and sometimes it creates inconsistent data.

To be successful, a business needs to remain competitive. Data is a valuable asset in

any business. When, and if it is used wisely, it can help the business improve its services, be

more competitive, and in the end increase its profits. The use of an information system,

whereby the data is stored in an effective and efficient database, may provide many benefits

to a business. Such a system offers shorter processing time frames than a manual one, and

consequently provides quicker and better services. One can retrieve data quickly and

generate reports, providing the management team with current information regarding the

running of the business. As a result the management and/or directors of a business may

immediately view the reports, and use this valuable information when making important

decisions.

Databases are a collection of organized data, and structured in such a way as to

retrieve the data easily and quickly. Well maintained databases lead to the consistency and

integrity of the stored data. This is of crucial importance for the generation of reliable

reports. These are only some of the advantages that databases have over manual methods for

storing data. Meanwhile, one of the weaknesses of such manual methods is the time spent in

gathering and retrieving the data. Documents or files may be duplicated, or not validated.

This may lead to invalid reports, which ultimately may adversely affect the business itself.

The use of a database reduces the time spent in gathering and retrieving the data, avoids

 2 Designing and implementing of

duplication of documents or files, validates the documents or files, and provides accurate

information to both owners and users of a business.

The introduction and use of a database system in these establishments will expedite

their daily operations. It will provide better services to their clients, and precise and current

information to the owners of these businesses. This in turn will result in better customer

satisfaction, an increased turnover, and thus higher profits. Such a system would be highly

beneficial, especially if these stores wanted to expand into more outlets.

In such a movie rental and sale business, data is important and vital throughout the

different sectors of the business hierarchy. For example, in the rental section of the

establishment, the employee asks for the customer’s information to check out whether the

customer is registered as a regular client, and if so, he also checks whether the client has any

pending movies that still have to be returned.

Another relevant operation which is performed manually, but could easily be

performed by the system is to check whether a particular movie is at the store or rented out.

If an item is not available, the customer may reserve it to be picked up when it becomes

available. The management may also benefit from the data collected, especially when it

comes to the checking of rented and/or sold items, as well as of non-returned items, and the

calculation of the daily amount of profit from rentals and sales.

Similarly, in the sales division of such a rental and selling business, the attendant at

the cash register may require information regarding the item, as well as providing its price or

cost for renting or selling it. When it comes to stock taking, the responsible employee may be

able to view the remaining available quantities of particular items in stock, as well as decide

on the number that should be ordered. Finally, the information which is gathered from the

sales operation can help management to obtain a clearer idea of the preferences of their

clientele with regards to the types of items which are most sought after. Consequently, the

 3 Designing and implementing of

management would be in a better position to administer the stock of items, especially that of

unpopular ones.

The decision to expand into different outlets in various locations brings with it

different requirements besides those described above. The management needs to be able to

view reports that concern all the sites regarding their performance, as well as their stock. The

employees working in different locations need to know and share information regarding the

renting, and selling of the items that are in different sites. These employees need this

information especially when customers request a particular item that is no longer available at

their location. In order to satisfy the customer, these employees need to know in real time

whether the sought item is available at any other location, and to put this item on hold for the

customer to pick it up. Such a system will provide better customer services.

In such a scenario, the database has to be structured in such a way that all data can be

shared by all. A distributed database is the ideal solution for such a situation.

1.2 Relevance, significance or need for the project

The design and implementation of a distributed database is beneficial for such a DVD

and movie rental and sale business. This type of database is to incorporate three services,

namely, the renting, booking and sales of movies by this business. In order to cater for data

within three different outlets, a projected distributed database is considered.

1.3 Difficulties and limitations

This project is undertaken on a theoretical level in the sense that no particular request

from any such business was addressed to the author. The author had to analyze of his own

accord the daily process of a business similar to the one in question. The knowledge of the

 4 Designing and implementing of

business requirements is essential, since these determine which data is to be stored, how it is

stored, and which reports may be created.

The second difficulty was to find information about distributed databases, and the

different types available. This helped the author to compare and contrast various database

solutions, and to choose the best software for this company.

The first limitation of this project is that the database was not actually installed in a

rental/selling DVD and movie business. Hence, the full benefits of this project could not be

evaluated. The evaluation of this project was done mainly by the testing of the database.

Another limitation is that this project deals only with the database design and

implementation. In order to have a fully functional system, a web or software application is

needed in order to help the users to populate, edit the data and also to generate reports from

the database. Furthermore, the actual use of this application could help the author to identify

more issue to fine tune the database design.

1.4 Project scope

Small businesses are becoming more conscious of the fact that proper storage and

quick retrieval of valuable information can help them in their work. These requirements were

identified for a DVD and movie rental/selling business leading to the design of a database to

address these needs. Since such a business may have different outlets in different locations, a

distributed database also needed to be designed. An evaluation of the different database

management software was made in order to select the best software for such a business. The

final goal of the project is to provide the most suitable distributed database for this business.

 5 Designing and implementing of

1.5 List of definitions

Database – “A shared collection of logically related data, and a description of this

data, designed to meet the information needs of an organization”(Connolly & Begg, 2005).

Distributed Database – A distributed database is a logically interrelated collection of

shared data (and a description of the data) physically distributed over a computer network.

Entity – “Is a distinct object (a person, place, thing, concept, or event) in the

organization that is to be represented in the database” (Connolly & Begg, 2005).

Report – In computer systems, it is referred to as the output generated, especially

printed, containing the business information.

Structured Query Language (SQL) – “An industry-standard language for creating,

updating and querying relational database management systems” (Dictionary.com, n.d.)

SQL Script – A document containing the SQL commands to be executed.

1.6 Summary of the project

The project began by the author’s observation that a movie rental business was using

paper files for logging in the data in its daily business. A database was created in order to

solve the problems encountered with the paper system. First, the possible requirements of this

business were deducted by analyzing its daily processes, and later the needed requirements

were determined. Then, different database software solutions were evaluated, to select the

best one for this business. Consequently, the database for this business was designed to cater

for all the data needed in its daily process flow, and the possible reports to be used. During

the design, the distribution of the data was also given special consideration.

The installation of the selected database was set on different computers representing

the computers of the different outlets. Afterwards, the script for the database creation was

developed and executed for the computers of the different outlets. Furthermore, the required

http:Dictionary.com

 6 Designing and implementing of

settings were also configured in order to set up a distributed database among the different

databases.

Finally, the three databases were loaded with dummy data which represented the data

found in a similar business. This was followed by the testing of the database by querying it

and analyzing the results.

Chapter 2 – Review of Literature and Research

2.1 Overview of all literature and research sources on the project

In this chapter, databases will be defined, as well as distributed databases and the

underlying database management system (DBMS). Also in this section, some of the

advantages and disadvantages of a distributed database will be discussed and compared with

those of a centralized database. Furthermore, a comparison of the different types of

distributed systems and their architectures will be introduced. This chapter will also include

the extra design consideration one has to take when building a distributed database.

Additionally, the various DBMS which are available on the market, in order to construct a

distributed database for a small business, will also be compared.

2.2 Research methods used in investigating the problem and support of thesis statement

The sources of this research paper were obtained mainly from online sources and a

number of publications. These sources include journals and papers which concern databases,

mainly distributed databases, and its advantages/disadvantages, architectures, components,

and also its design considerations.

 7 Designing and implementing of

2.3 Literature and research relevant to the project

2.3.1 Research on databases

As stated by Calero, Piattini, and Ruiz (2003), a known fact is that databases are “the

centre of today’s information,” and are increasing in importance “judging by the huge

business that they generate” (p. 48). Databases are extremely important since they “are the

nucleus” of most systems, especially management systems (Calero, Piattini, & Ruiz, 2003, p.

48). A database is a system which is used as a repository for the user’s data. Apart from

storing the user’s data, it is also responsible for structuring this data in an efficient manner. In

order to achieve this efficient structuring of the data, information about the actual data,

known as metadata, is needed (Rob & Coronel, 2004).

Not only should a system be able to store data in a structured manner, but it should

also be able to maintain the data consistently. For this purpose, the DBMS is used for

“managing and accessing large amount[s] of data consistently and efficiently” (Franklin,

Halvey, & Maier, 2005, p. 27). This helps the system programmers to focus more on specific

tasks regarding their applications, rather than focusing on the actual managing of the user

data. The DBMS is also responsible for providing “rich data manipulation and query

processing with well-understood, strong semantics” while at the same time guaranteeing that

these data manipulations are concurrent and persistent (Franklin, et al., 2005, p. 27). In order

for the DBMS to provide all these functionalities, it requires the data to be “under the control

of a single administrative domain and to conform to a single schema” (Franklin, et al., 2005,

p. 27).

There exist two main forms of database systems (DBS), known as centralized and

decentralized database systems. The main distinction between these two is in reality the

location of the data. Centralized database systems support data located at a single location.

 8 Designing and implementing of

On the other hand, a decentralized or distributed database system (DDS) supports data which

is distributed in different locations (Rob & Coronel, 2004).

2.3.2 Research on distributed database systems

The need to access data from different data sources, a process known as data

integration, has advanced in the industry market, reaching key decision makers within

enterprises. Data integration “provides a competitive advantage to business” due to

“provid[ing] a unified view of the data regardless of differences in data format, data location

and access interfaces” (Mattos, 2003). Due to this increase in demand for data integration,

application vendors have enhanced their applications accordingly. One possibility of data

integration can be by using a DDS (Mattos, 2003).

A DDS is a “logically interrelated collection of shared data (and a description of the

data) physically distributed over a computer network” (Connolly & Begg, 2005, p. 689). This

means that a DDS resides at each site and each one shares its own data with other sites via a

network. Therefore in a distributed database, a user/application is allowed to access data not

found at the local site without actually knowing that the data is physically in another location

(Shanker, Misra, & A.K., 2008). This is called distribution transparency because “any design

complexity” such as the allocation, replication and partitioning of the data is hidden to the

user (Martyn, 2000, p. 48). The software which makes this “distribution transparent to the

users” is called distributed database management system (DDBMS) (Talwadker, 2003, p. 6).

C.J Date (2003), in his book “An Introduction to Database systems”, mentions twelve

rules which a DDBMS must possess. C.J Date states that apart from having distributed

transparency, a distributed database should be locally autonomous, meaning that all

operations of each site should be locally managed. He states that a DDBMS should not rely

on a central site and the system must be failure independent, meaning that it is in continuous

 9 Designing and implementing of

operation. Another important aspect mentioned is that a DDBMS should possess distributed

query processing; that is, a query should be able to reference more than one site. Another

point mentioned is that the database integrity should be maintained during distributed

transactions. The final requirement considered by Date is that a DDBMS should be able to

run on various hardware and operating system platforms using any possible communication

network and also made up of different local DBMS. In a nutshell, according to C.J Date, a

distributed database should be exactly like a centralized database within the user’s

perspective.

One has to be careful not to confuse distributed databases with distributed processing.

The latter is a system by which a centralized database “can be accessed over a computer

network” (Connolly & Begg, 2005, p. 691). A widely-used architecture which uses

distributed processing is the client-server architecture which implies that “multiple user[s]

access to one data server” (Vokorokos, Balaz, Adam, & Petrik, 2005). The data is stored and

processed on one server, located in a single site. However, the data can be accessed and

manipulated from different clients over the network. This architecture was used by database

vendors to indicate distributed capabilities and used to provide a distributed database, but this

architecture “by itself does not constitute a distributed DBMS” (Connolly & Begg, 2005, p.

60).

One also needs to distinguish between a distributed and a parallel DBMS. A parallel

DBMS is “implemented on a tightly coupled multiprocessor” (Talwadker, 2003, p. 6). There

are three main types of parallel DBMS, namely, shared nothing, shared memory, and shared

disk. The shared nothing is where “each processor has its own main memory and disk units”

(Talwadker, 2003, p. 6). The shared memory allows that “every processor has access to any

memory module or disk unit through a high speed interconnection” (Talwadker, 2003, p. 6).

The shared disk architecture derives from the architectures of both shared nothing and shared

 Designing and implementing of 10

memory parallel DBMS where the processors “have their own individual main memory space

but they share a common global disk storage” (Talwadker, 2003, p. 6).

The main difference between distributed and parallel DBMS is “that distributed

DBMSs assume loose interconnection between processors that have their own operating

systems and operate independently” (Talwadker, 2003, p. 6). On its part a parallel DBMS

uses multi-processor architectures. Because of this, the latter is used to build highly available

and highly efficient database servers. Apart from this difference, distributed DBMS and

parallel DBMS do share some common elements.

The first similarity is that in a distributed database, each DBMS connects and operates

in parallel with other DBMSs found on other sites. Similarly, a parallel DBMS connects in

parallel with other processors. The designing techniques for parallel and distributed DBMS

are also similar. While in parallel DBMS, “tables are partitioned (fragmented) and allocated

to different disk devices,” in distributed database data is partitioned on different sites

(Martyn, 2000, p. 49).

2.3.3 Advantages and Disadvantages of Distributed Databases

The main advantage that distributed database systems have over a centralized

database system is the ability to distribute the data among several sites. Organizations tend to

grow and databases became an important “component of everyday life in modern society”

(Shanker, et al., 2008, p. 128). This data distribution allows the organization to segregate the

data among all the sites (Dumitriu & Cretu, 2002).

Another advantage of DDS is performance improvement. This is mainly due to two

factors. The first is that “local queries and transactions accessing data at a single site are

much faster since the local database is smaller”; the second is that “transactions involving

 Designing and implementing of 11

different sites can be processed concurrently, reducing execution and response time”

(Corcoran & Hale, 1994, p. 248).

A third advantage is that a DDS does not have a single point of failure. If a single site

fails it does not result in a complete system failure as is the case with a centralized database

system. Thus, DDS has “improved reliability and availability” (Corcoran & Hale, 1994, p.

248).

On the other hand, a major disadvantage of a DDS is its complexity. Its design includes

deciding on the fragmentation type, replication strategy, integrity, and concurrent transaction

strategies, which are more complex to maintain especially when compared to a centralized

database system. Due to its highly intricate complexity, the costs to maintain a DDS are

higher. Extra hardware is also needed to build up the network and to facilitate communication

between the different sites (Connolly & Begg, 2005).

In addition to its complexity, security is another disadvantage. The DDBMS have to

secure the data in all sites as well in the network by which the sites communicate (Dumitriu

& Cretu, 2002).

2.3.4 Research on different distributed database architectures and their components

It is useful to distinguish at this point the difference between heterogeneous and

homogeneous distributed database systems. A homogenous distributed database system is a

“network of two or more databases that reside on one or more machines that uses, locally, the

same DBMS product” (Dumitriu & Cretu, 2002, p. 425). On the other hand, in a

“heterogeneous system, sites may run different DBMS products, which need not be based on

the same underlying data model” (Dumitriu & Cretu, 2002, p. 425).

There exist several architecture implementations that can be used to build a

homogeneous or heterogeneous distributed database. An architecture can be described in

 Designing and implementing of 12

terms of three different approaches which are based on components, functions and data.

Furthermore, several implementations of DDBMS exist based on autonomy, distribution, and

heterogeneity (Ozsu & Valduriez, 1999).

A possible DDBMS implementation is the client-server system. As mentioned earlier,

the client-server makes use of distributed processing, by which the requests are generated

from the client, while the processing and data manipulation is done at the server side. This

type of system is tightly integrated and the entire “database is available to any user who

wants to share the information” (Ozsu & Valduriez, 1999, p. 83). Different forms of client

server implementation exist. One particular form is called multiple client-multiple server. In

this sophisticated client-server architecture, a client sends a request to a server which

connects to other servers if required.

According to Donald Kossmann (2000), in his paper “The state of the art in

distributed query processing”, a client-server system known as the peer to peer architecture is

also available. In this type of architecture “every site can act as a server that stores parts of

the database and as a client that executes application programs and initiates queries”

(Kossmann, 2000, p. 437). Therefore a peer to peer database system (PDBS) “is conceived as

a collection of autonomous local repositories which interact (e.g., establish correspondences

or exchange queries and updates requests) in a peer to peer style” (Bonifati, P.K., A.M, & K.,

2008, p. 5). Therefore this type of architecture is considered as fully distributed when

compared to client-server architecture (Ozsu & Valduriez, 1999). Meanwhile the client-server

architecture and the PDBS architecture share the same architecture from the data logic

perspective (Ozsu & Valduriez, 1999). They are composed of the local schema which is

“expressed in the local data model schema” and the export schema which contains the

elements which “a peer wants to share with the outside world” (Bonifati, et al., 2008, p. 6).

 Designing and implementing of 13

Another possible architecture is a federated distributed database system (FDBS). It is

made up of logically related “DBSs in which operations can be applied to multiple

component DBSs in a coordinated manner” (Bonifati, et al., 2008, p. 6). This type of

architecture “allows users or global applications to access data stored in multiple local

database systems (LDBSs), each of which is autonomously operated” (Sohn & Moon, 2000,

p. 687). The federate architecture is composed of four layers. At the bottom we find the local

schema. On the local schema there is the component schema “which is possibly a translation

of the data model of the local DBS in a canonical model” (Bonifati, et al., 2008, p. 6). This

schema contains “those elements of the component schema that the local DBS is willing to

share with others” (Bonifati, et al., 2008, p. 6). Then there is also the export schema and the

final topmost layer is known as the federated schema which is the “actual global schema that

contains information on distribution and allocation of internal exports schema” (Bonifati, et

al., 2008, p. 6). A similar but distinct architecture is the multi-database system (MDBS). The

key distinction between FDBS and MDBS is their “method of integrating the component

DBSs and their assumptions about the autonomy of these components. That is to say, a FDBS

“rel[ies] on a single global federated schema” whereas “multiple federated schemas may

coexist in MDBSs between the different cooperating component DBSs, allowing thus partial

and controlled data sharing” (Bonifati, et al., 2008, p. 6).

As previously stated, architectures can also be described by the components they use.

In a distributed database one can find some general components, such as the DDBMS, local

DBMS (LDBMS), data communication (DC) component, and global system catalog (GSC)

(Connolly & Begg, 2005). The LDBMS is basically the local DBMS which is used to control

the local data in a particular site. The DC is the software that enables all the sites to

communicate with one another. This usually comes with the DBMS software (Connolly &

Begg, 2005). Meanwhile the GSC consists of the global, fragmented and allocation schemas.

 Designing and implementing of 14

Meghini and Thanos (1991), in their paper “The complexity of operations on fragmented

relation,” define the global schema as “the definition of the relations constituting the

database, as if there were no data distribution” (p.59). Subsequently the fragmentation

schema contains the relationships between the fragments, and the allocation schema “gives

the allocation of copies of fragments to the sites of the computer network supporting the

distributed database“(Meghini & Thanos, 1991, p. 59).

Having the correct architecture for the distributed database is not enough, the design

of the actual database is important as well. When developing a centralized system, the

designer has to ensure that all the entities are normalized and the correct relationships are

setup between the entities. When considering a DDS, the designer not only has to cater for

normalization and relationships but also has to consider other aspects.

2.3.5 Research on Distributed Design considerations

The distributed database design takes into consideration three main factors, namely,

fragmentation, allocation and replication. These three factors are important not just to make

the database transparent to the user but also to augment the performance of the overall

system.

Basically, fragmentation is the “division of the database data structures into smaller

portions, called fragments” (Meghini & Thanos, 1991, p. 59), where each fragment can be

distributed to several distinct sites (Getahun, Tekli, Atnafu, & Chbeir, 2007). The end result

is that it enhances the performance of the DDS because fragmentation minimizes the “data

transferred and accessed during the execution time,” and above all it “reduc[es] the storage

overheads” (Hababech, Ramachandran, & Bowring, 2007, p. 4). Tim Martyn (2000) states

that there is “no ideal distributed database” and most DBMS do not provide distributed

 Designing and implementing of 15

fragmentation. The database administrator can distribute the data manually, but then the

application should be aware how the data is fragmented (Connolly & Begg, 2005) .

There are three fundamental fragmentation strategies possible in a DDS. These are

horizontal fragmentation, vertical fragmentation and mixed fragmentation. Horizontal

fragmentation “divides data tuples into groups”; vertical fragmentation “decomposes data

attributes into groups that are composed of some attributes with high affinity”; and mixed

fragmentation is a hybrid fragmentation technique that “mixes the two partitioning methods,

i.e., vertical partitioning followed by horizontal partitioning or vice versa” (Son & Kim,

2004, p. 551) .

Allocation is another aspect which concerns the designer when building a distributed

database. It refers to “the decisions concerning where to store [the] tables” (Roosta, 2005, p.

1447) . It is important to highlight that data allocation is done after fragmenting the data in

different sites (Son & Kim, 2004). It is important that the designer designs the database tables

to be located at the sites where it would be mostly used so that it will not have a negative

impact on performance.

Another aspect to be considered is replication. As the name implies, replication is the

“process in maintaining multiple copies of data items on different locations called replicas”

(Plattner & Alonso, 2004). Replication is the “most widely used method for providing high

availability, fault-tolerance and good performance in distributed system” (Deris, Abawajy, &

Mamat, 2008, p. 1). This is achieved because when changes occur, these are captured by the

local database, and sent to the other databases. Therefore this provides the users with fast

access to shared data. Since several copies exist, if a site becomes unavailable, the other sites

can still continue thus making the system fault tolerant (Deris, et al., 2008). This conforms

with Date’s rules. Two types of replication methods exist, namely, synchronous and

asynchronous. The difference between these two is that synchronous replication “keep[s] the

 Designing and implementing of 16

replicas synchronized within transactional boundaries” whereas for asynchronous replication

“replicas can be updated outside the transaction boundaries” (Plattner & Alonso, 2004). In

other words, the synchronous method has to wait until the update is successfully executed at

all the sites. This brings a communication overhead and has to be limited to a small number

of replicas. On the other hand the asynchronous method does not need to wait for all the sites

to successfully execute the changes. However, this can bring inconsistencies within the

replicated objects (Plattner & Alonso, 2004).

Referential integrity is one of the semantic integrity constraints which, even though it

does not need to be designed, still need to be considered. It refers to the relationships by

which tables in a schema are linked together. That is, “referential integrity represents the

cement that keeps relational databases together,” (Ordonez, Garcia, & Chen, 2007, p. 61)

where the underlying checks are done by the local DBMS in a centralized database system.

These relationships guarantee the consistency and integrity of the data within the database.

When considering distributed databases, distributed referential integrity is usually

complicated to maintain between tables in remote databases. Triggers can be used to check

these constraints but this will depend on the availability of the remote database and usually

these are not provided with the DBMS solution. Another solution to this problem is that the

referenced tables can be replicated to the sites so that the local DBMS is responsible for the

integrity of the data. For this solution to be valid, three assumptions have to be considered.

First, the replication cost does not downgrade the performance; secondly all the local

databases have to possess identical integrity constraints; and third by each row should be

uniquely identified within all the databases (Dye, 1999). A valid suggestion that Ordonez, et

al. (2007) mentions is that “unique identifiers can be generated by concatenating the site

identifier to avoid primary key duplication” (p.62).

 Designing and implementing of 17

2.3.6 Research on Concurrency

Transactions form the “interface contract” or commands between the application and

the database itself (Hanssen, 2003). This transaction mechanism provides an efficient way to

manage the access to the database. In order to have valid transactions the so-called ACID

properties should all be present. The acronym ACID stands for:

•	 Atomicity - transactions execute completely or not at all

•	 Consistency - transactions are a correct transformation of the state

•	 Isolation – transaction consistency; i.e. a transaction does not view a partial

change of another transaction

•	 Durability – committed transactions survive failure (Felber, Fetzer, Guerraoui,

& Harris, 2008)

Transactions occurring at the same time, that is concurrently, are more probable to be

found in a distributed database. The isolation portion of the ACID properties is fundamental

in these cases so that there is consistency between the transactions. But how is this managed

within a DB?

In a DB, the DBMS executes concurrency control which is the “activity of

coordinating the actions of transactions that operate in parallel; access[es] shared data, and

potentially interferes with one another” (Akintola, Aderounmu, Osakwe, & Adigun, 2005, p.

365) . In order to control concurrency, the system uses serializability which, as the name

implies, is when transactions are executed serially, and therefore considered correct

(Hanssen, 2003). Unfortunately in a DDS it is more complex to serialize the transaction when

compared to a centralized database system. As a matter of fact, the DDBMS, has to “extend

both the serializability argument and the concurrency control algorithms to the distributed

environment” (Akintola, et al., 2005, p. 368).

 Designing and implementing of 18

There are three main methods which provide serializability and concurrency

(Vasileva, Milev, & Stoyanov, 2007):

• Locking

• Time stamping ordering

• Optimistic

The locking mechanism is where transactions “lock everything you access and hold

all locks until commit” (Hanssen, 2003). On the other hand, time stamping ordering

mechanism does not use any locks. In this mechanism the transaction is given a unique

timestamp by which these transactions are serialized. In cases of conflict during the

transaction, the lowest timestamp is given priority (Hanssen, 2003). Finally, optimistic

mechanism is when it “synchronize[s] concurrent execution of transactions early in their

execution life cycle” (Hanssen, 2003).

2.3.7 DBMS Systems

Several DBMS solutions from various vendors exist on the market. Three of these

vendors, which share two thirds of the market in regard to databases systems, are Oracle,

Microsoft SQL Server and IBM DB2 Universal Database (Stamford, 2007). In this

dissertation only the solutions from these three main DBMS vendors were evaluated which

are Oracle 11g, Microsoft SQL server 2005 and IBM DB2 version 9.5. These three vendors

offer different versions or editions of their solution which can cater for different businesses’

needs. For the present study, the editions chosen are those which meet the needs of a small

business. In order to carry out this evaluation, the following criteria were used:

 Designing and implementing of 19

•	 Fragmentation Transparency – where the application or the user is not aware how

the data is partitioned or fragmented

•	 Location Transparency – the application or the user is not aware of the physical

location of the database

•	 Distributed Transaction Transparency – ensures that all the transactions follow the

integrity and consistency of the database by concurrency and failure recovery

•	 Replication Transparency – the application or the user are not aware of the

replication of the data

•	 Support Heterogeneous System –the ability to connect with other databases which

have different DBMS product

•	 Support Homogeneous Systems- the ability to connect with other databases which

have the same DBMS product

•	 Operating System – the platform upon which the DBMS is capable of operating

•	 Cost – the cost of the solution

DBMS Oracle 11g Microsoft SQL IBM DB2 9.5

Function Server 2005 Universal

Database

Fragmentation

Transparency

No No No

Location

Transparency

Yes Yes Yes

 Designing and implementing of 20

Distributed Yes Yes Yes

Transaction (MSDTC) (DB2 TM)

Transparency

Replication

Transparency

Yes

Oracle Streams

(Synchronous

Capture only),

Materialized

Yes Yes

views

Support Yes Yes Yes

Heterogeneous (Only by

federated

database)

Support Yes Yes Yes

Homogeneous (Database Links) (Linked Servers)

Operating System Windows, Linux, Windows Server Windows, Linux,

Requirements or 2003, Windows or

UNIX Vista UNIX

Product Solution Oracle Database SQL Server 2005 DB2 Version 9

11g Standard Standard Edition for Linux, UNIX,

Edition One and Windows

Cost $180 per user (5

user minimum) or

Processor license

$5,999 or $1,849

$5,175

per processor

$5,800 per

processor

for 5 clients. (100 PVU) or

$175 per user

 Designing and implementing of 21

for DB2 9

Express.

Table 1: DBMS Comparison

As one can see from Table 1, fragmentation transparency is not supported by the three

DBMS solutions. These solutions do not provide the possibility for the DBMS to distribute

the fragments. Therefore this distribution has to be included in the application logic. On the

other hand, this does not mean that the data cannot be distributed. As a matter of fact these

DBMS solutions allow the distribution of the data and also provide location transparency for

the data. This is achieved by the use of synonyms and views in case of Oracle and SQL

Server. Meanwhile, for DB2 it uses nicknames, which are similar to synonyms.

Another aspect evaluated was distributed transaction transparency. This type of

transparency is also provided by the three solutions by using the two phase-commit

mechanism. It is important to note that an extra component has to be installed and configured

in case of SQL Server and DB2, that is, Microsoft distributed Transaction Coordinator (MS

DTC) and DB2 Transaction Manager (TM) respectively.

In regard to replication transparency, these solutions have similar features. As in the

case of Oracle Standard Edition One, Oracle Streams and materialized views are the features

concerning replication which are provided. It is important to note that for this edition only

synchronous capture is provided for Oracle Streams, and single master replication in the case

of materialized views. SQL Server 2005 standard edition provides three types of replication

which are Transactional, Merge and Snapshot replication. Meanwhile, for DB2 version 9

Express, replication is provided by SQL Replication and Q Replication. It is important to

mention that for heterogeneous, Q replication, which uses WebSphere® MQ message, has to

be used. Since this is an additional product, this will require an extra cost.

 Designing and implementing of 22

All the compared solutions provide connectivity with homogeneous database systems.

Oracle makes use of database links while SQL Server uses linked server links to connect with

other databases. On the other hand, DB2 uses IBM Homogeneous Federation Feature. This

feature makes use of wrappers by which the user is able to access data in other DB2

databases.

In case of heterogeneous database connectivity, generic connectivity such as ODBC is

provided by all the systems. It is important to note that Oracle provides a larger number of

possible data sources when compared to SQL Server. Also when compared to DB2, it

supports heterogeneity by the use of WebSphere Federation Server product. This is an

additional product and thus incurs an extra cost. Regarding software requirements, Oracle and

DB2 is available for standard operating systems (OS), namely, Windows, UNIX and Linux.

On the contrary, SQL Server is only available for Windows OS.

Basically these three solutions provide almost the same functionality with regard to

data integration and distribution. Also, the cost, which is the most determining factor, is

approximately the same. Even with these similarities, there exist some differences between

them. As a matter of fact, SQL Server 2005 and DB2, need an external component in order to

have distributed transaction transparency. In both cases this external component has to be

installed and configured. In this case Oracle can be considered as a complete solution because

the components which ensure that the transactions follow a two-phase commit mechanism are

part of the database itself.

Another difference highlighted is that DB2 needs an additional product in order to be

able to cater for heterogeneity. This will obviously incur an extra license and therefore an

increase in the total cost. In this project, homogeneous databases are preferred but the

possibility to connect with heterogeneous systems can be beneficial in the future. Oracle and

 Designing and implementing of 23

SQL Server both provide connectivity to heterogeneous systems but Oracle provides a larger

number of possible connections. Due to this DB2 was discarded.

Finally, interoperability, the ability to work on different OS, is another deciding

factor. As seen from the table above, SQL Server solution is only available on Windows OS.

So far the preferred OS which was to be used and installed on the “outlet” computers was

basically Windows. A possible scenario is that in the future there may be the need to use

different OS. In such a case SQL Server will prevent the user from having a homogeneous

system. SQL Server was discarded, due to its lack of interoperability and due to the extra

component needed for distributed transaction transparency. Therefore Oracle was chosen as

the DBMS solution to be used in this project.

2.4 Summary

This project provides further knowledge on distributed databases. It also provides a

solution for a small business which has several outlets and which would like to change from

the manual gathering of data to a computerized system. It makes use of distributed databases,

where data is gathered from different outlets, and is shared among all outlets.

Chapter 3 – Methodology

3.1 Life Cycle Model

This project mainly involves the creation of a database for a particular business. Since

a database is considered part of an information system, the model used in this instance is the

Database Life Cycle Model. Also known as DBLC, this is similar to the Software

Development Life Cycle (SDLC) model. This is also referred to as the “Waterfall method”.

The DBLC is constructed through five main stages, namely planning, analyzing,

designing, implementing, and maintaining. The present researcher chose DBLC as the model

 Designing and implementing of 24

for this project as each stage has first to be completed in order to proceed to the next stage. A

practical example of this procedure is that the design stage could not start unless the

requirements in the analysis stage were identified.

In the course of this project, the five stages were not followed in a strict sequence.

Since the project had to be amended more than once, stages of the DBLC had to be

reconsidered, and therefore repeated. Consequently, some of the stages followed an iterative

process. The following is a detailed description of the process in each and every stage.

3.2 Specific procedures

3.2.1 Planning Stage

The planning stage began with the author identifying the deliverables for this project.

The following list shows all the deliverables identified.

A solution which:

• Stores the gathered data of the various transactions. This solution has to remove data

redundancy, and inconsistency. Furthermore, this solution has to provide a possibility

of generating reports. This solution also has to be extended to the three different

stores, and also provide the possiblity of communication with each other

• Tracks rent transactions, selling transactions, and booking transactions for the different

stores

• Reports (determined in the analysis stage and implementation stage)

Primarily, the objectives for this business in using this database are to provide the

customer with better service, easier and better store keeping, stock taking, and retrieval of

information. These objectives have to be implemented and integrated with the other three

 Designing and implementing of 25

outlets. After the objectives have been identified, the step that followed was that of

observing, and analysing of a movie rental shop already in operation. The following is a

detailed description of this process.

3.2.2 Analysis Stage

The analysis step began by analyzing a movie rental store in operation. The researcher

noticed that movie rental stores provided three main services, namely sales, rentals, and

booking of movies. The researcher noticed that the stores under analysis used a very crude

method to keep records of their transaction done, be it a sale, rental or booking of movies.

These stores kept records in paper form.

The author observed that every time a movie sale transaction was perfomed,

obviously the customer chose the movie he wanted to buy, then the store attendant checked

the price list of the movie, and requested the money. After the customer paid for the movie,

the store attendant logged this sale in the sales sheet. Basically, this was a sheet of paper by

which the store management could keep track of all the sales, and where the movie name and

the cost were both recorded. Furthermore, this sales sheet was also used by the store keeper to

see what stock needed to be reordered.

On the other hand, when a movie rental transaction was done, after the cutomer chose

the movie, the store attendant checked if the customer was registered or not. This was done

by retrieving the customer name in the file containing the records of the customers. For each

customer there was a record, which was basically a sheet of paper containing the customer

information, and the customer’s rental history. Therefore it was in this sheet where the rental

details were logged in. This sheet was also used when the customer returned the movie as

well as recording payment for the rental.

 Designing and implementing of 26

In the store under analysis there were customers who requested the service of

booking DVDs (movies) which were already out on loan on the date of booking. This service

was available but bookings were recorded manually on paper sheet forms.

After observing and analyzing the current methods used by the store in question, it

was clear that the recording of the transactions which were done manually was very time

consuming, and was eventually leading to long queues of customers waiting to be served.

Apart from that, the data logged in manually by the store attendant could be easily duplicated

by mistake, therefore containing inconsistencies, and so not very reliable. This record

keeping system also made data retrieval difficult to perform, and it took a considerable

amount of time.

After the analysis was conducted, the researcher concluded that the opening (or

extension) of two new outlets could not afford to work with a manual record keeping system.

The amount and range of services to be available at the multiple outlets would not make it

possible for them to communicate, and keep each other updated when there were various

transactions being done at the same time. Apart from that, more data had to be collected when

considering the increased number of stores.

Therefore the main requirement was that of a storage location which held consistent

data, and also was accessible in a timely manner. This requirement applied also to the

different outlets. This means that each outlet would have its own data, but at the same time be

able to connect, and integrate the different data in the other outlets.

Another requirement, on account of the different locations of the outlets, was that of

the mobility of the rentable movies and of the employees themselves if required. In other

words, the employee should be able to log in, and work in any of the outlets. Similarly, the

customer should have the possibility to return the rented movie to any preferred outlet.

 Designing and implementing of 27

The second stage of the analysis was the identification of the key users involved in

this store. Three main users were identified, namely the store attendant, the store keeper and

the manager. For each user, requirements and types of reports were identified.

The store attendant, as the name implies, is the person who is assigned to serve

customers. The main duty of this personnel is to input the data regarding the lease and selling

of movies, that is all the daily transactions. In other words, it is this user who will populate

the database with the appropriate data. The main requirement of the store attendant was to

have available consistent data from all the outlets. Also, some report requirements were

identified, which are as follows:

• A report which shows the names of the customers who have not yet returned the leased

movies after the allocated period

• A report showing a record of all the movies booked by the respective customer

• A report or a list within the booking application that shows the available movies in that

particular store

The second user identified was the store keeper. During the analysis it was considered

that the store keeper’s main role was to keep track of all the movies in the store. One of his

responsibilities was to check the stock amounts and then decide accordingly if new stock was

needed or not. The store keeper was also responsible for notifying other outlets about rentable

movies which were returned to an outlet other than the one from where the movie was

originally rented. The main requirement of this user was the facility to get the information

needed for his duties in a short amount of time. The information needed was to be found in

the reports identified and listed below:

• A report which shows the stock quantity in that particular store

 Designing and implementing of 28

• A report which shows the movies rented by that particular store but which were returned

to a different store. With this report the store keeper can notify the other stores to send

back these movies in order to be inline.

Finally, the main user who oversees the whole situation is the manager himself.

Obviously the manager has to safeguard the investment of which he or she is in charge by

having a clear idea of the finances of the stores so that he or she can take informed decisions.

This can be done by the provision of correct and consistent reports. These are:

• A report containing the daily profit from sales transactions in all the outlets

• A report containing the daily profit from rented movies in all the outlets

• A report which shows the rented movies history in all the outlets

• A report which contains all the sold movies in a specified range of time in all the stores

• A report of the number of transactions done by each employee

3.2.3 Design Stage

The first part of the design stage was to gather all the required data elements that the

system was going to use, and eventually store in the database. Four main groups were

identified. These contained data elements used during the transaction of the services provided

by the store, namely selling, renting and booking. One of these groups, which can be

classified as that of the employee, contains data fields concerning the employee, such as the

name, surname and address. Another group is that of the customer. As the name implies, it

holds data related to the customer such as the name and address. Another group is the one

which holds data about rentable movies. In this group data fields such as the name, actors,

publishing house and movie category can be found. The final group that was identified which

 Designing and implementing of 29

holds information about movies available for sale. The data in this group is similar to that

found in the rentable movie group. By identifying these groups, the data required was easily

identified.

Other data groups were recognized which holding data for the actual transactions

during the daily services of the stores. These groups obviously have data fields such as the

date of the transaction as well as the movies which were rented, sold or booked for each

transaction.

The next step was to identify the business rules which can help recognize further data

elements. Business rules are a narrative description of the operations which in this case are

the renting, booking and selling of movies in these stores. The following list contains some of

the business rules identified:

1. A customer can rent several movies at a time

2. A customer pays for the lease of the movies upon return of the movies

3. Each movie has a predefined rentable period

4. A customer has to be registered in order to be able to rent and book movies

5. A customer can return rentable movies at a different store from the one where he or

she rents them

6. An employee can work in different store locations

7. A customer can book a movie at a particular store where the requested movie

resides

8. Each movie has to be uniquely identified

 Designing and implementing of 30

The next step in the design stage was the creation of the actual entity relationship

diagram. Obviously, entities for the employee, customer, rentable and saleable movies were

created which contains the data fields identified in the previous steps. These entities would be

the building components of the whole system since these entities would be referenced during

the daily transactions of the stores. These entities were named employee, customer, movie

rent, and movie sell respectively. When considering a database, it is beneficial to have a field

which represents the physical location of the actual entity where the data resides.

This field provides distinctiveness in the records of all the databases, which will later

facilitate the retrieval of the data itself. Therefore, each employee, customer, rentable and

saleable movie are registered to a particular store, and this additional field will contain a

reference to the location of the store where the registration took place. Additionally, this field

will have to reference another entity, which was also created, and named site. It will hold the

data regarding each site or store in the system. The use of this field will be combined with the

primary key of the entity, in order to provide the unique identification of a movie, employee

and customers in all the outlets. In the case of both movies for rent and for sale the

concatenation of the movie ID (Primary key) and the Site ID, will result in a string of

characters which can be printed as a barcode and attached to each movie. This will facilitate

the inputting of the movie during the daily transactions just by scanning this barcode. In a

business like this it is a must to have an identification of the business’s assets.

In regard to the daily transactions, two entities were added for each type of

transaction, that is, sales, renting and booking. One entity holds the information of the actual

transaction and the other one holds the items for each transaction. The entities which hold the

transaction data were named sell_transaction, rent_transaction, and book_movie respectively,

while in the case of the entity which hold the items these were named sell_item, rent_item

and book_item respectively. An important point to mention is that all these entities were

 Designing and implementing of 31

referenced to the Site ID. As already stated this would differentiate between various

transactions conducted in all three stores.

The next step was to normalize the entity diagram constructed so far. During the third

stage of normalization further entities and transitive dependencies were discovered and

created. One of the entities was the grade entity which contains the different grades in the

store. The possible grades identified so far were, the manager, store keeper and store

attendant. One could also find the salary according to the grade in this entity. Later on, each

employee record was referenced to a record in this grade entity by adding the grade entity

primary key. The other entity discovered was the stock entity which contains the stock types

available in the store. This entity corresponds to attributes such as the selling price.

Subsequently for each user the privileges were identified for each table. At this point

one should mention that in a database system, the possibilities of a user are that of selecting,

inserting, updating and deleting records in the tables. According to the grade, these

possibilities were identified.

After that, some of the constraints were identified in the creation of the actual

databases scripts. An example of these constraints is the employment status for an employee,

which can be only active or terminated. The movie type is another constraint. There are only

three possibilities which are DVD, BLU-RAY and VCR. These types of constraints are

important and will help to have consistent data.

Due to the requirements that each employee can work in all the stores and that the

customer is free to return a movie in whichever store he/she likes brought up a critical

decision during this stage of the design phase. The decision that had to be taken, regarded

referential integrity. It was arguable whether to handle referential integrity by the application

or by the database itself. Referential integrity is when a key in an entity is used to reference

another entity. In a non-distributed database, the data have to be present in the actual

 Designing and implementing of 32

database in order to be referenced. On the other hand, for a distributed database, the data does

not need to be exclusively in that store’s database but can be found in another database, in

another store. If this has to be handled by the application, it has to check whether the key is

referenced in another database located in one of the stores. In this case the application has to

use distributed SQL queries, where it checks the other databases at the other store.

Unfortunately this type of checking will bring with it complex logic in the application.

Furthermore, the application also has to be able to detect cases where the entity is being

changed or deleted by another user in order to have consistent data. Unfortunately, with the

current DBMS solutions, the database itself does not handle distributed referential integrity.

Fortunately, there is another solution provided by the DBMS vendors, that of replication.

Replication, as the name implies, copies the data or entities to the other stores’ database.

Therefore the DBMS of the local store can reference to the data from the other stores more

easily since it is found in the actual database. An additional advantage which replication

brings is that of having a backup of the replicated entities in the other databases. Therefore, in

case of one of the databases’ failure, the system can still continue running. For these reasons

replication was chosen for this business solution. For the requirements identified there was no

need to replicate the whole schema but only a few numbers of entities.

Returning to the requirements, as regards the possibility of employees working in

different stores, the employee entity was chosen to be replicated between the database sites.

Therefore, the attributes found in the employee entity were found in all the databases. On the

other hand, for the other requirement which allows the customer to return a movie to any

store, four entities were chosen to be replicated. Obviously the customer entity was replicated

since customer data was registered in the other outlets. Also, the rent_transaction and the

rent_item entities were replicated, because these contain the information about the

 Designing and implementing of 33

transaction. Finally the movie_rent table which contains the rentable movies was replicated

due to its referral to the transactions.

The next decision to be taken was how the application was to achieve data retrieval.

In other words, whether the application was going to query the database by a SQL query or

just by calling a procedure. In the case where the application queried the database itself, the

SQL query had to be hard-coded in the application software. This could bring problems if

there were to be some changes to the database schema. Therefore these changes also had to

take effect within the application code. On the other hand, if procedures were used, it would

be more secure since the database checks for the user’s rights. In this case only the required

data is sent to the network and changes to the database have to affect only the procedures, and

not the application as well. This makes the system more standardized. As one can see, the

benefits of using procedures are many so it was decided to use procedures in this system.

For the procedure to be able to retrieve the data, two views were designed. One view,

named sell_transaction_view, is used to gather all the information of the sales transactions

from all the stores. The other view was named rent_transaction_view which, as the name

implies, gathers all the data relevant to rent transactions. Afterwards, the procedures were

designed to cater for the input parameters and the output data was identified.

This completed the conceptual design of the database. The next step was to choose the

DBMS vendor. The researcher decided to use Oracle. Apart from the fact that Oracle is one

of the most used DBMS and considered as market leader, it also provides replication

functionality with the Standard One Edition. This functionality is called Oracle Streams.

The final stage of the design phase was the physical design of the actual database.

This stage determines the physical storage location of the database. It was decided that the

whole schema, that is, all the entities or tables mentioned above were allocated to a single

 Designing and implementing of 34

tablespace which was named after the movie store. On the other hand, the procedures related

to the replication functionality were to be allocated to a different tablespace.

3.2.4 Implementation and Loading

The first stage of the implementation was to install the DBMS, namely Oracle, on

three computers which were to represent the three “outlet” computers. These were connected

to each other by a network connection through a router. Also each computer was assigned a

static IP.

The second stage was to build the actual scripts which created the database schema

containing all the tables with their respective fields. All these entities were then attributed to

the same tablespace. Furthermore, the links between the databases, which in the case of

Oracle are called database links, were also included in this script so that the database itself

could connect to the other databases.

The users mentioned in the design were created and granted the privileges for the

entities. Also, synonyms were created to refer to a specific entity in a particular schema. This

was beneficial in querying the data from the database since the specifying of the schema

owner and the entity would not be required.

As regards to the replication functionality, the corresponding script was also created.

This script created a capture queue which captured changes on the replicated tables found on

the other two databases. It also created two apply queues which enabled the transfer of

changes on a table of a particular database to the other databases.

The next stage was to execute the scripts on all the three computers and to load the

databases with dummy data in the appropriate entity fields. The last stage was to create all the

procedures mentioned in the analysis phase.

 Designing and implementing of 35

3.2.5 Testing

The testing of the system was performed by executing the procedures and verifying

that the data retrieved was correct. Also consideration was taken for the time required for the

data retrieval. In cases where the period of time was long, the SQL query was edited and

sometimes the database was fine tuned. This was done to improve the performance of the

system.

Although the DBLC’s last stage regarded the maintenance of this database,

discussions could not be held at that time due to the fact that the database was not

implemented in a movie rental store yet. However, upon implementation this study will

dedicate a discussion on how to maintain upcoming events.

3.3 Project Deliverables

The two main deliverables were the Oracle distributed database solution for the three

“outlets”, including the replication solution, and the database procedures which retrieve the

data requested in the reports.

3.4 System Resources Requirements

The system requirements for Oracle Standard One edition are: 1GB physical memory

(RAM), 5GB disk space, 256 video adapter, 550MHz processor and (on Windows Vista)

800Mhz processor minimum. The platform was decided to be Windows and this software

edition requires that the operating system should be Windows 2000 or later.

The computers used all met the above requirements; two of the computers had 1 GB

of RAM and ran on Windows XP Professional. The other computer had 2GB RAM and ran

on Windows Vista Home Premium Edition.

 Designing and implementing of 36

3.5 Summary

The database life cycle worked well for this project. All stages of this method were

closely followed. At the implementation stage, some changes and updates were implemented

by the author himself. Therefore this stage turned to be a more of an iterative approach. If the

application for this project had been created and implemented in a real store, new

requirements would have been requested from the users. This would result in a continuation

of the iterative approach bringing changes to the database solution.

Chapter 4 – Project History

4.1 How the project began.

The project began when the author noticed that some establishments which rent

movies in Malta still use a paper logging system for their daily operations. These stores lack a

computerized system, and could widely benefit especially from the use of a distributed

database due to the fact that it stores the data more efficiently. The author decided to develop

a database solution which could be used in such stores, and also manages the distribution of

the data in multiple outlets.

A database system not only provides an efficient way of storing the data used in the

daily operation of the store, but it also addresses other concerns. One of these concerns is the

time factor. More specifically, this refers to the time required to gather the data. When using

a manual system the time taken is enormous when compared to the time taken to retrieve data

using a database solution. Another concern is the consistency of the data, since by correct

design this can be guaranteed by the database itself.

In addition, a distributed database addresses the functionality of sharing the data

found in multiple outlets. The traceability of the daily operation within the different outlets is

 Designing and implementing of 37

achieved by this capability. Furthermore, several reports are needed by the different users so

as to ease their daily working routine. In such case, distributed databases helps to gather all

the data needed by the reports from all the outlets. Also, from the management perspective, a

clearer indication of the profits and the sales trends are visible in such reports. Most

importantly, the services provided are much faster and accurate, thus increasing customer

satisfaction.

4.2 How the project was managed.

The project followed the different stages from planning to the implementation of the

database. Unfortunately, the deployment and the maintenance stages of this project were not

completed in a real movie rental store. Due to this the author was not tied down by any

deadlines or changes in the requirements. If these stages had been completed, the author

could have easily faced “scope creep”. Scope creep is when further requirements are added

after the system specifications are completed (Russell, p. 1). This latent development could

be attributed mainly to the method used to gather requirements. The author used the

observation method, which involves the observation of the normal daily operation within

some rental stores. The main drawback of this method is that only a partial picture of the

complete behavior is seen. That is, certain anomalies or special events could not be observed

and therefore these requirements were neglected. For this reason, additional requirements

which were unforeseen by the author would have had to be added at a later stage.

Furthermore, at the design stage, the timeline was not met due to the lack of

knowledge of Oracle Streams. Several documents had to be reviewed in order to construct

scripts which involve the replication between the outlets.

 Designing and implementing of 38

4.3 Significant events/ milestones in the project

The main milestone of this project was to develop a database solution by the

completion of various stages of the project life cycle. All the stages were completed, but not

according to the time schedule. This can mainly be attributed due to the time required for the

creation of the replication scripts was underestimated, therefore the design and

implementation stages took a little bit longer to complete. Unfortunately, the stages of the

implementation, and maintenance of the system in an existing movie rental store have been

discarded due the fact that no rental store requested this solution.

4.4 Changes to the project plan

The overall project plan was not altered except for some changes in the design. Extra

elements were added in some entities as the author realized that such fields would be

beneficial if collected. Also, the introduction of the timestamp for the replicated entities was

added as a requirement of the replication mechanism. Other than the minor modifications, the

project plan remained the same.

4.5 Evaluation of whether project met goals

The main goal of this project was to build a distributed database system which serves

as a data repository for a movie rental outlet, and also to share the data among the other two

outlets. This particular goal of the project was met. Another goal, which was achieved, was

the creation of several reports used by the different users within a rental store. The goal to

populate the system with dummy data, and test both the complete database solution, and the

reports was also achieved. However, the goal of improving the customer services could not

be evaluated since this project was not deployed in an existing establishment.

 Designing and implementing of 39

4.6 Discussion of what went right and wrong with the project

Several things went well for the project. First of all, a movie rental store can have a

useable database solution which stores the data used within its outlets efficiently. Reports

based upon the data gathered were constructed. These reports contain information about the

transactions performed in the outlet. Furthermore, this system is able to communicate, and

share data found in the database systems at the other outlets. The information collected from

these outlets can be shown in reports, and thus a better perspective of the situation in these

stores is presented. Additionally, the tracking of the movies is recorded more easily. This

type of system obviously is more convenient than using the manual logging system.

One problem encountered in this project is that the implementation stage took longer

than planned. This was mainly due to the extra time taken in creating the replication scripts.

This can be attributed to the lack of knowledge regarding Oracle Streams, and therefore

several documents had to be reviewed. Also, the introduction of replication brought some

changes to the schema by introducing new fields within the replicated entities. These schema

changes resulted also in changes in the data loading scripts as the data of the extra fields had

to be added manually.

Another problem encountered by the author was the method used to gather the store’s

requirements. The observation method only shows a snapshot of the daily operation of such

stores. Therefore, some exceptions in daily routine can be missed which would necessitate

changes of the project at a later stage. Unfortunately, the deployment of this project in a real

working environment was not implemented, and therefore any such exceptions are still

hidden.

 Designing and implementing of 40

4.7 Discussion of project variables and their impact on the project

This project was not affected by any external variables, and the development of the

project itself continued smoothly. This can be mainly attributed to the fact that the

deployment of this project in a real rental store had not yet taken place. Upon deployment, a

discussion about the variables encountered can be done.

Another variable which may impact the project is the lack of an application. If an

application was built to facilitate the population of the database, and the generation of the

reports, several issues could be encountered such as missing attributes, and different data in

the reports. Most importantly, the performance of the database could be evaluated more

rigorously. The introduction of indexes and de-normalization of the database could be done in

order to achieve a better performance.

4.8 Analysis of results

In the planning phase, three deliverables were mentioned. The first deliverable was a

solution that saves gathered data from different outlets. This deliverable was met by the

creation, and use of a database system. Apart from that, the database is also responsible for

reducing data inconsistency, and redundancy.

The second deliverable was to track the daily transactions, namely renting, booking

and selling from all the outlets. This deliverable was also met. All the transactions are

captured, and stored in the respective outlet database. In the case of booking, and selling

transactions, these are replicated throughout the three stores in order to cater for movie

mobility.

The last deliverable is the creation of reports used by the different users in the movie

rental store. This deliverable was tested by correlating the data found in the report with the

actual data in the database. These tests were successful, and therefore this deliverable was

 Designing and implementing of 41

considered met. An important point to note is that the generation of the reports lies in the

database solution itself. This is due to the fact that for each report a procedure is used which

queries the database and gathers the required data. An important advantage of using this

procedure is that when changes need to be done to the reports only the procedures need to be

changed. The time to generate such reports was also considered but it was only evaluated on

the data loaded. This constituted only a small number of records when compared to the

number of records which can be found in a real establishment.

All these three deliverables can be summed up in better service to the customers, as

well as easier, and better data logging for the employees. Unfortunately, these cannot be

assessed due to the fact that this solution is not yet implemented in an existing store.

Following the implementation, a discussion of the outcomes, and the evaluation of the results

are to be compiled.

4.9 Summary of results

The solution that was built satisfies the needs of a movie rental store with different

outlets. Apart from storing the data concerning the daily operation, it can also be used for

tracking movies among the stores. The design and creation of such a database system was

successful, but unfortunately it could not be evaluated on a real store.

Chapter 5 – Conclusions

5.1 Lesson learned

The lessons learned from this project include:

• The importance of:

o Obtaining clear requirements from the users

 Designing and implementing of 42

o The benefits gained from the evaluation of the project when deployed in

a real establishment.

• Development of skills in the area of:

o Database development

o Sharing and replicating data between databases

o Processing of the data to build valuable reports

• Increased knowledge in:

o SQL coding

o Oracle DBMS

o Oracle Distributed Capabilities

o Oracle Streams

5.2 What would you have done differently

An aspect which the author would have done differently is the observation method

used to gather the requirements. Interviewing could be another valid method which could be

used to gather requirements from the different users. By interviewing, one gets a better

understanding of what the user wants or would need. Nevertheless, the observation method

can be used in conjunction with interviews, so that the designer gets a better perspective of

the daily routine. Clear requirements are important and sometimes they determine the success

or failure of a project.

5.3 Initial project expectations met

The initial project expectations were met. The store outlets can efficiently and

consistently store the data gathered in its daily operations. This is achieved through the

 Designing and implementing of 43

creation and use of a database, which contains different entities, and also holds the gathered

data. Apart from that, valuable reports which can ease the work of the employees and the

management can be generated from such a system in a short period of time. The solution also

comprises the ability to connect and share the data found in different outlets’ databases.

Thanks to this capability, the tracking of the renting, booking and selling transactions for the

different outlets as well as the location tracking of the rentable movies is possible.

5.4 Next stage of evolution

This project, however, is not a complete solution, and therefore several follow up

stages are required. The first stage would be to build an application which works on top of

the database systems. This application will help the users to insert, delete, and modify the

data which resides in the database more easily, as well as, it enforces the business rules. Such

an application can also be web based, which could benefit the customers by providing the

possibility of online booking and buying of movies from these outlets.

The deployment of the database solution and the application in a real movie store is

the next step. In conjunction with the deployment, a mechanism to populate the database has

to be chosen. A migration strategy has to be decided on how the users are going to change

from the old system to this new database system created in this project.

Afterwards, a tough evaluation of the database solution can take place based on

criteria such as performance, report generation, data storage and, most importantly, customer

service.

5.5 Conclusions / recommendations

This distributed database solution provides a movie rental establishment with the

required data storage facility for the information gathered in its daily operation. Reports

 Designing and implementing of 44

based on the stored data are generated, and different users working in such store can benefit

from its contents. All this was achieved by using a commercial DBMS, namely, Oracle

DBMS. Though the edition of the DBMS used was designed for small businesses, it still

incurred a cost. If the business has a limited budget, the author recommends that other

DBMSs which do not sustain any license fees should be used instead. The schema developed

in this project can still be used, but the scripts which create the database have to be adapted to

the new DBMS.

5.6 Summary of project

This project consisted of building and implementing a database system using Oracle

DBMS to meet the needs of movie store. It also takes care of the different outlets of the store

in question. Such stores can benefit from efficient and consistent storage of the data from

their different outlets. This project also met the need of correct reports for the different users

within the different outlets. The tracking of the daily transactions and the location of the

movies is visible through these reports.

The project gives such stores the benefits of storing and manipulating the data in an

efficient and consistent manner and also to extend these functions by sharing and accessing

data located in different outlets.

 Designing and implementing of 45

Appendices

Appendix A: ERD Diagram

 Designing and implementing of 46

Appendix B: User privileges

Table User Manager Store Keeper Attendant
MOV_RENTCOST SELECT,

UPDATE, INSERT,
DELETE

NONE SELECT

SELL_ITEM SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT

RENT_ITEM SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT

RENT_TRANSACTION
SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT

SELL_TRANSACTION
SELECT,
UPDATE, INSERT,
DELETE

SELCET SELECT,
UPDATE, INSERT

BOOK_ITEM SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT

BOOK_MOVIE SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT

MOVIE_SELL SELECT,
UPDATE, INSERT,
DELETE

SELECT,
UPDATE, INSERT,
DELETE

SELECT

MOVIE_RENT SELECT,
UPDATE, INSERT,
DELETE

SELECT,
UPDATE, INSERT,
DELETE

SELECT

EMPLOYEE SELECT,
UPDATE, INSERT,
DELETE

SELECT SELECT

CUSTOMER SELECT,
UPDATE, INSERT,
DELETE

NONE SELECT,
UPDATE, INSERT,
DELETE

GRADE SELECT,
UPDATE, INSERT,
DELETE

NONE NONE

STOCK SELECT,
UPDATE, INSERT,
DELETE

SELECT,
UPDATE, INSERT,
DELETE

SELECT,
UPDATE, INSERT,
DELETE

SITE SELECT,
UPDATE, INSERT,
DELETE

SELECT SELECT

 Designing and implementing of 47

Appendix C: Views

/*********************************Sell Transaction View*************************************/

create or replace view sell_transaction_view as

/**********************************Query data from Site 1************************************/

select * from (

(select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME,

 a.selltxn_site_id,d.stk_sellingprice,d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid,

 e.emp_working_site

from sell_transaction@site1.site1 a, sell_item@site1.site1 b, movie_sell@site1.site1 c,
stock@site1.site1d, employee@site1.site1 e

 where b.selltxn_id = a.selltxn_id and b.movs_id = c.movs_id

and c.movs_reg_siteid = b.movs_reg_siteid

 and c.stk_id = d.stk_id

and a.emp_id = e.emp_id

and a.emp_siteid = e.emp_siteid

)

/**********************************Query data from Site 2************************************/

 union

(select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME,

a.selltxn_site_id,d.stk_sellingprice, d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid,
e.emp_working_site

from sell_transaction@site2.site2 a, sell_item@site2.site2 b, movie_sell@site2.site2 c,
stock@site2.site2 d, employee@site2.site2 e

where b.selltxn_id = a.selltxn_id

 and b.movs_id = c.movs_id

 and c.movs_reg_siteid = b.movs_reg_siteid

and c.stk_id = d.stk_id

 and a.emp_id = e.emp_id

 and a.emp_siteid = e.emp_siteid

)

/**********************************Query data from Site 3************************************/

mailto:employee@site2.site2
mailto:stock@site2.site2
mailto:movie_sell@site2.site2
mailto:sell_item@site2.site2
mailto:sell_transaction@site2.site2
mailto:employee@site1.site1
mailto:stock@site1.site1d
mailto:movie_sell@site1.site1
mailto:sell_item@site1.site1
mailto:sell_transaction@site1.site1

 Designing and implementing of 48

 union

(select a.selltxn_id, a.selltxn_date, b.movs_id,b.movs_reg_siteid, c.MOVS_NAME,

a.selltxn_site_id,d.stk_sellingprice, d.stk_itemcost, e.emp_id, e.emp_name,e.emp_siteid,
e.emp_working_site

from sell_transaction@site3.site3 a, sell_item@site3.site3 b, movie_sell@site3.site3 c,
stock@site3.site3 d, employee@site3.site3 e

where b.selltxn_id = a.selltxn_id

 and b.movs_id = c.movs_id

and c.movs_reg_siteid = b.movs_reg_siteid

and c.stk_id = d.stk_id

and a.emp_id = e.emp_id

and a.emp_siteid = e.emp_siteid

)

) h order by h.selltxn_date;

/*************************************Rent Transaction View*********************************/

create or replace view rent_transaction_view as

select h.renttxn_id,h.rent_date,h.rent_returndate, h.movr_id, h.movr_reg_siteid, h.MOVR_NAME ,

 h.renttxn_site_id, h.emp_id,h.emp_name,h.emp_siteid,h.cost

from (

/******************************Query only Site 1 due that it is replicated**************************/

(select a.renttxn_id, a.rent_date, a.rent_returndate, b.movr_id,b.movr_reg_siteid, c.MOVR_NAME,

 a.renttxn_site_id, d.emp_id, d.emp_name,d.emp_siteid, e.cost

from rent_transaction@site1.site1 a, rent_item@site1.site1 b, movie_rent@site1.site1 c,

employee@site1.site1 d, MOV_RENTCOST@site1.site1 e

where a.renttxn_id = b.renttxn_id

and a.renttxn_site_id = b.renttxn_site_id

and b.movr_id = c.movr_id

 and b.movr_reg_siteid = c.movr_reg_siteid

and c.movr_type = e.movr_type

 and a.emp_id = d.emp_id

and a.emp_siteid = d.emp_siteid))h;

mailto:MOV_RENTCOST@site1.site1
mailto:employee@site1.site1
mailto:movie_rent@site1.site1
mailto:rent_item@site1.site1
mailto:rent_transaction@site1.site1
mailto:employee@site3.site3
mailto:stock@site3.site3
mailto:movie_sell@site3.site3
mailto:sell_item@site3.site3
mailto:sell_transaction@site3.site3

 Designing and implementing of 49

Appendix D: Procedures

Sell_TXN_History Procedure

create or replace procedure SELL_TXN_HISTORY
(startDate in date, endDate in date,refCursor1 out SYS_REFCURSOR) as
Begin

open refCursor1 for
select h.selltxn_id as "Sell TXN",h.selltxn_date as "Sell Date", h.movs_id as "Movie

 ID",h.movs_reg_siteid as "Movie Registered Site", h.MOVS_NAME as "Movie
Name",

 h.selltxn_site_id as "TXN Site ID", h.stk_sellingprice as "Selling Price"
from sell_transaction_view h
where h.selltxn_date >= startDate and h.selltxn_date <= endDate
order by h.selltxn_date, h.selltxn_id;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

SELL_PROFIT_HISTORY Procedure

Create or replace procedure SELL_PROFIT_HISTORY

(startDate in date, endDate in date, refCursor1 out SYS_REFCURSOR, vTotalProfit out number,
vTotalSales out NUMBER) as

Begin
open refCursor1 for
select h.selltxn_id as "Sell TXN", h.selltxn_date as "Sell Date", h.movs_id as "MOVIE ID",

h.MOVS_NAME as "MOVIE Name" , h.selltxn_site_id as "SITE ID", h.emp_id as
"EMPLOYEE ID", (h.stk_sellingprice - h.stk_itemcost) as "Profit"

from sell_transaction_view h

where h.selltxn_date >= startdate and h.selltxn_date <= enddate

order by h.selltxn_date, h.selltxn_id;

/*Calculates Total Profit*/

select sum(h.stk_sellingprice - h.stk_itemcost) into vTotalProfit

from sell_transaction_view h

where h.selltxn_date >= startDate and h.selltxn_date <= endDate;

/*Calculates Total Sales*/

select count (*) into vTotalSales from sell_transaction_view h

where h.selltxn_date >= startDate and h.selltxn_date <= endDate;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

 Designing and implementing of 50

RENT_TXN_HISTORY Procedure

create or replace procedure RENT_TXN_HISTORY
(startDate in date, endDate in date, refCursor2 out SYS_REFCURSOR) as

Begin
open refCursor2 for
select h.renttxn_id as "Rent ID",h.rent_date as "Rent Date",h.rent_returndate as "Return

Date",
 h.movr_id as "Movie ID", h.movr_reg_siteid as "Movie Reg Site", h.MOVR_NAME

as
"Movie Name", h.renttxn_site_id as "TXN Site ID"

from rent_transaction_view h

where h.rent_date >= startdate and h.rent_date <= enddate

and h.rent_returndate is not null

order by h.rent_date, h.renttxn_id;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

RENT_PROFIT_HISTORY

create or replace procedure RENT_PROFIT_HISTORY
(startDate in date, endDate in date, refCursor2 out SYS_REFCURSOR, vTotalProfit out number,
vTotalTXN out number) as

Begin
open refCursor2 for
select h.renttxn_id as "Rent ID",h.rent_date as "Rent Date",h.rent_returndate as "Return

Date",
 h.movr_id as "Movie ID", h.MOVR_NAME as "Movie Name", h.renttxn_site_id as

"Site
 ID", h.cost as "Payment"

from rent_transaction_view h

where h.rent_date >= startdate and h.rent_date <= enddate

and h.rent_returndate is not null

order by h.rent_date, h.renttxn_id;

select sum (h.cost) into vtotalprofit from rent_transaction_view h

where h.rent_date >= startdate and h.rent_date <= enddate

and h.rent_returndate is not null;

select count(*) into vtotaltxn from rent_transaction_view h

where h.rent_date >= startdate and h.rent_date <= enddate

and h.rent_returndate is not null;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

 Designing and implementing of 51

TXN_EMPLOYEE procedure

create or replace procedure TXN_EMPLOYEE
(startDate in date, endDate in date, rentCursor out SYS_REFCURSOR, sellCursor out
SYS_REFCURSOR) as

Begin
open rentCursor for

select count (a.renttxn_id) as "RentTXN", a.emp_id as "EMPLOYEE ID", a.emp_siteid as
"REGISTERED SITE ID", a.emp_name as "Name"

from rent_transaction_view a
where (a.emp_id ,a.emp_siteid) in (select b.emp_id, b.emp_siteid from employee b)
and a.rent_date >= startDate and a.rent_date <= endDate and a.rent_returndate is not null
group by a.emp_id, a.emp_siteid, a.emp_name;

open sellCursor for
select count (a.selltxn_id) as "SellTXN", a.emp_id as "EMPLOYEE ID", a.emp_siteid as

"REGISTERED SITE ID", a.emp_name as "Name"
from sell_transaction_view a
where (a.emp_id ,a.emp_siteid) in (select b.emp_id, b.emp_siteid from employee b)
and a.selltxn_date >= startDate and a.selltxn_date <= endDate
group by a.emp_id, a.emp_siteid, a.emp_name;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

STOCK_QNTY procedure

create or replace procedure STOCK_QNTY
(stockCursor out SYS_REFCURSOR) as

Begin
open stockCursor for

select count(*), a.stk_id from movie_sell a, stock b
where a.stk_id = b.stk_id
and (a.movs_id, a.movs_reg_siteid) not in (select d.movs_id, d.movs_reg_siteid from

sell_item d)
group by a.stk_id
order by a.stk_id;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

 Designing and implementing of 52

MOVIE_LOCATEDSITE procedure

create or replace procedure MOVIE_LOCATEDSITE
(movieCursor out SYS_REFCURSOR) as

Begin
open movieCursor for
select a.movr_id, a.movr_name, a.movr_type, a.movr_locatedsite
from movie_rent a
where a.movr_reg_siteid = (select b.site_id from site b where b.site_local = 'T')
and a.movr_locatedsite != a.movr_reg_siteid
and a.movr_id not in

(select c.movr_id from rent_transaction_view c where c.rent_returndate is NULL)
group by a.movr_id,a.movr_name, a.movr_type, a.movr_locatedsite;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

DUE_MOVIES procedure

create or replace procedure DUE_MOVIES
(movieCursor out SYS_REFCURSOR) as

Begin
open movieCursor for
select e.cust_id, e.cust_name, e.cust_surname, e.cust_cellno, d.movr_id, d.movr_name,

a.rent_date, a.renttxn_site_id
from rent_transaction a, mov_rentcost f, rent_item c, movie_rent d, customer e
where a.rent_returndate is NULL
and a.renttxn_site_id = (select b.site_id from site b where b.site_local = 'T')
and a.renttxn_id = c.renttxn_id
and a.renttxn_site_id = c.renttxn_site_id
and c.movr_id = d.movr_id
and c.movr_reg_siteid = d.movr_reg_siteid
and d.movr_type = f.movr_type
and SYSDATE > (a.rent_date + f.rent_period)
and a.cust_id = e.cust_id
and a.cust_siteid = e.cust_siteid
order by a.cust_id;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

 Designing and implementing of 53

BOOKED_MOVIES procedure

create or replace procedure BOOKED_MOVIES
(bkmovieCursor out SYS_REFCURSOR) as

Begin
open bkmovieCursor for

select a.bkmov_id, b.movr_id, c.movr_name, e.cust_id, e.cust_name, e.cust_surname,
 a.booking_date

from book_movie a, book_item b, movie_rent c, customer e

where a.bkmov_id = b.bkmov_id

and b.movr_id = c.movr_id

and b.movr_reg_siteid = c.movr_reg_siteid

and a.cust_id = e.cust_id

and a.cust_siteid = e.cust_siteid

order by a.bkmov_id, a.booking_date;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

AVAILABLE_MOVIES procedure

create or replace procedure AVAILABLE_MOVIES
(avmovieCursor out SYS_REFCURSOR) as

Begin
open avmovieCursor for
select a.movr_id, a.movr_name, a.movr_type, a.movr_reg_siteid from movie_rent a
where a.movr_id not in (select c.movr_id from rent_transaction b, rent_item c

 where b.renttxn_id = c.renttxn_id
 and b.renttxn_site_id = c.renttxn_site_id
 and b.rent_returndate is null)

and (a.movr_id,a.movr_reg_siteid) not in (select e.movr_id,e.movr_reg_siteid
from book_movie d, book_item e
where d.bkmov_id = e.bkmov_id)

and a.movr_locatedsite = (select f.site_id from site f where f.site_local = 'T')
order by a.movr_id;

EXCEPTION WHEN OTHERS THEN
RAISE;

END;

 Designing and implementing of 54

Annotated Bibliography

Akintola, A. A., Aderounmu, G. A., Osakwe, A. U., & Adigun, M. O. (2005). Performance

modeling of an enhanced optimistic locking architecture for concurrency control in a

Distributed Database systems. Journal of Research and Practice in Information Technology,

37(4), 365-380.

In this journal, an overview of the importance, and as well as the complexity of
concurrency within distributed databases, are highlighted. The authors contiunued this
research by analyzing a technique, called optimistic locking architecture, which can be
used in such systems.

Bonifati, A., P.K., C., A.M, O., & K., S. (2008). Distributed Databases and peer-to-peer

databases: past and present. ACM SIGMOD Record, 37(1), 5-11.

The authors of this paper gave a defention of P2P database systems, and a comparison
with other types of distributed database, such as multi-database systems and federated
database systems. Within this comparison, the different architectures of these system, is
also highlighted. Furthermore several features of P2P systems are also distinguished, and
a taxonomy of the existing P2P database systems is given.

Calero, C., Piattini, M., & Ruiz, F. (2003). Towards a database body of knowledge: a study

from Spain. ACM SIGMOD Record, 32(2), 48-53.

In this paper, the authors mentioned the increase in importance of databases systems and
the huge business that they generate. This was demonstrated by the huge increase in
annual growth of the database market, and databases are included in all international
curricula. The authors continued their paper by proposing a first draft of a systemized
database of knowledge called DBBOK.

Connolly, T., & Begg, C. (2005). Database Systems: A Practical Approach to Design,

Implementation, and Management (4 ed.): Addison-Wesley.

Both Thomas Connolly and Carolyn Begg share experience on database design with in
the industry. At the moment they are teaching at the university of Paisley in Scotland.

 Designing and implementing of 55

This book foucuses on databases and discusses several aspects in databases design. There
are also some chapters which are specifially dedicated to distribted databases. In these
chapters the concepts, design considerations, distributed concurrency and replication are
some of the topics considered.

Corcoran, A. L., & Hale, J. (1994). A genetic algorithm for fragment allocation in a

distributed database system. Proceedings of the 1994 ACM symposium on Applied

computing, 247-250.

This article gives an overview of distributed databases and a description of the advantages
and disadvantages of such databases.

Date, C. J. (2003). An Introduction to Database systems (8th ed.): Addison Wesley.

This book by C.J. Date, gives an introduction and explanation of the different aspects of a
databases. Furthermore, the author gives a good explanation of distributed databases. The
twelve rules which distinguish a distributed database are also discussed.

Deris, M. M., Abawajy, J. H., & Mamat, A. (2008). An efficient replicated data acess

approach for large-scal distributed systems. Future Generation Computer Systems, 24(1), 1-9.

The importance of replication in data intensive distributed database is highlighted in this
journal. It mentions, specifically that replication is used to have high data availablilty and
fault tolerant system. In this work the authors also proposes a protocol to maintain
consistency between the replicas, and at the same time provids high avalabilty and fault
toerance.

Dumitriu, F., & Cretu, L. G. (2002). Distributed Database Technology: A Management

Perspective. Proceedings of Economics and Management of Transformation International

Symposium.

This paper discuss in depth distributed databases and its advantages and disadvantages
with respect to management issues.

 Designing and implementing of 56

Dye, C. (1999). Oracle Distributed Systems (1 ed.): O'Reilly.

This book describe in detail the distibuted capabilites of Oracle database systems. The
author explains in detail, especially the configuration needed to use these distributed
capabilites. Its worth mentioning that one of these capabilites explained is actaully the
replication possiblites within Oracle DBMS.

Felber, P., Fetzer, C., Guerraoui, R., & Harris, T. (2008). Transactions are back -- but are

they the same? ACM SIGACT News, 39(1), 48-58.

A brief overview of concurrency control within database is given by the authors. They
continued this paper by proposing the same concurrency control mechanism for mutli
threaded application to access shared memory.

Franklin, M., Halvey, A., & Maier, D. (2005). From databases to dataspaces: a new

abstraction for information management ACM SIGMOD Record, 34(4), 27-33.

The authors of this paper gave an overview of data management systems, where database
management systems were also discussed. Furthermore, the authors introduced the use of
data spaces as a new form of data management system where they also proposed the
design and development of a DataSpace support platforms.

Getahun, F., Tekli, J., Atnafu, S., & Chbeir, R. (2007). The use of semantic-based predicates

implication to improve horizontal multimedia database fragmentation. Workshop on

multiledia information retrieval on The many faces of multimedia semantics, 29-38.

The different forms of fragmentation techqniques used within distributed databases, more
specifically in multimedia databases, are discussed in this paper.

Hababech, I. O., Ramachandran, M., & Bowring, N. (2007). A high-performance computing

method for data in distributed database systems. The Journal of Supercomputing, 39(1), 3-18.

The performance of a distributed database can be enchanced by efficient use of clusters
and data allocation. An approach that computes the descision values for allocating data
fragments and a logical way to group sites in clusters is presented in this paper.

 Designing and implementing of 57

Hanssen, G. (2003). Concurrency control in distributed geographical database systems.

Gjermund Hanssen discussed the transaction mechanisms and concurrency control in
distributed database systems. Also, the different concurrency control mechanisms used,
are also mentioned with in this paper.

Kossmann, D. (2000). The state of the art in distributed query processing. ACM Computing

Surveys (CSUR), 32(4), 422-469.

Donald Kossmann, explains in detail distributed query processing and presents some
techniques useful for distributed databases systems. Some of the architectures used in
distributed databases such as client-server architeure is also discussed and explains how
distributed query processing is used in such systems.

Martyn, T. (2000). Implementing Design for Databases: The 'Forgotten' Step. IT

Professional, 42-49.

Tim Martyn is a faculty member at the Rensselaer University at Hartford, where in this
paper he gives a description of the design and implementation of databases. He also
provides a description of the different types of databases including distributed and parallel
databases. In this paper Tim proposes to extend the three step methodology when
designing databases to a four step in order to include the implementation design.

Mattos, N. M. (2003). Integrating information for on demand computing. Proceedings of the

29th international conference on Very large data base, 29, 8-14.

The importance of information integration was highlighted by Nelson Mattos. In this
paper the author describes the motivation and the requirements of information integration.
Consequently some scenarios of information integration are given.

Meghini, C., & Thanos, C. (1991). The complexity of operations on a fragmented relation.

ACM Transactions on Database Systems (TODS), 16(1), 56-87.

The authors of this paper discuss, that an aspect in designing a distributed databases, is
data fragmentation. Different types of schemas that can be found in a distributed
architecture are explained.

 Designing and implementing of 58

Ordonez, C., Garcia, J. G., & Chen, Z. (2007). Measuring referential integrity in distributed

databases. Proceedings of the ACM first workshop on CyberInfrastructure: information

management in eScience, Lisbon, Portugal, 61-66.

The metrics, involved in measuring the referential integrity in distributed databases, are
proposed within this article. The authors also explain several query optimization issues.
Consecutively, an overview of a prototype application which computes referential
completeness, and consistency metrics is given. These application is used in distributed
scentific databases.

Ozsu, M. T., & Valduriez, P. (1999). Principles of Distributed Databases (2 ed.). New Jersey:

Prentice-Hall.

Distributed databases are the main focus of this book by M.T. Ozsu and P. Valduriez.
Different topics related to specifically distributed databases, and the types of
architecuteres, with their respective components used to build such databases are
explained in some detail.

Plattner, C., & Alonso, G. (2004). Ganymed: Scalable replication for transactional web

apllications. Proceedings of the 5th ACM/IFIP/USENIX international conference on

Middleware, Toronto Canada, 155-174.

In this paper, the authors give a defention of replication and an overview of the different
types of replcation systems used in database systems.

Rob, P., & Coronel, C. (2004). Database Systems: Design, Implementation, & Management

(6 ed.): Thomson Course Technology.

As the name implies, this book provides a good description of the design,
implementation and the management of databases system. The authors cover in some
detail the design aspects and procedures in desiging the actual databases. Distributed
databases are also discussed in this book.

 Designing and implementing of 59

Roosta, S. H. (2005). A new model for distributed database systems. International Journal of

computer Mathematics, 82(12), 1447-1454.

Seyed Roosta mentions the decsicions and consideration when designing a distributed
database. A special consideration is given to fragmentation and allocation of the data.
Also a model for allocating tables in distributed databases is developed in this paper.

Russell, L. Dealing with "Scope Creep" in Software Development Projects Retrieved 10th

February, 2009, from http://www.projectsmart.co.uk/dealing-with-scope-creep-in-software­

development-projects.html

Linda Russll, gives a description of scope creep and some suggestions how to deal with it.

Shanker, U., Misra, M., & A.K., S. (2008). Distributed real time database systems:

background and literature review. Distributed and Parallel Databases, 23(2), 127-149.

The authors give a description of a real time database focusing mainly on the performance
of such systems. Moreover a research about the issues encountered in transaction
processing of a distributed real time database systems is also mentioned.

Sohn, K., & Moon, S. (2000). Achieving high degree of concurrency in multidatabase

transaction scheduling: MTOS. Journal of Systems Architecture, 46(8), 687-698.

This paper is focused on multi-database systems, where a defention of this database
system is given. The authors focuses mainly on the concurrency of these systems, where
they also proposed a ticket based system which can be used inorder to obtain
concurrency control.

Son, J. H., & Kim, M. H. (2004). An adaptable vertical partitioning method in distributed

systems. Journal of Systems and Software, 73(3), 551-561.

The authors describe the types of partioning, that is, vertical, horizontal and hybrid in a
distributed systesm. Apart from a proposal of an adpative vertical partionining method is
given with this paper.

http://www.projectsmart.co.uk/dealing-with-scope-creep-in-software

 Designing and implementing of 60

Stamford, C. (2007). Gartner Says Worldwide Relational Database Market Increased 14

Percent in 2006 Granter Press Release Retrieved 24th January, 2009, from

http://www.gartner.com/it/page.jsp?id=507466

In this web article, the author gives an overview of the market as regards relational
database. a comparison of the popularity and growth of some database vendors is also
given.

structured query language. (n.d.). Dictionary.com Unabridged (v 1.1). Retrieved April 23,

2008, from Dictionary.com website:http://dictionary.reference.com/browse/SQL

Dictionary.com was used as a resource to clearly define the term structured query
language (SQL).

Talwadker, A. S. (2003). Survey of Computing Sciences in Colleges. Journal of Computing

Sciences in Colleges, 18(6), 5-9.

The author gives a description of parallel database systems and also includes the different
architectures for parallel databases. He continues this paper by considering the data
placement and the query optimization in these database systems.

Vasileva, S., Milev, P., & Stoyanov, B. (2007). Some Models of a Distributed Database

Management Systems with Data Replication. International Conference on Computer Systems

and Technologies - CompSysTech'07.

In this paper, mentiones the three different methods for transaction concurrency control
focusing mainly 2PL method. The author also explains the different forms of the 2PL
method in distributed databases.

http:Dictionary.com
http:Dictionary.com
http:Dictionary.com
http://www.gartner.com/it/page.jsp?id=507466

 Designing and implementing of 61

Vokorokos, L., Balaz, A., Adam, N., & Petrik, S. (2005). Dataflow distributed database

systems. (Technical report). [Magazine/Journal]. Annals of DAAAM & Proceedings (373).

In this article, the authors describe the forms of distribution and the different DDBMS
architectures. It also explains the client-server architecture and peer to peer distributed
database architectures.

 Designing and implementing of 62

References

1.	 Ault, M. Distributed Database Management Retrieved 20th January 2008, 2008, from

http://www.praetoriate.com/t_grid_rac_distributed_db.htm

2.	 DB2 servers and IBM data server clients. DB2 Version 9.5 for Linux, UNIX, and Windows

Retrieved 30th July 2008, from

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.l

uw.qb.server.doc/doc/r0006867.html

3. Distributed Database Concepts. Oracle® Database Administrator's Guide 10g Release 2

(10.2) Retrieved 28th July 2008, 2008, from

http://download.oracle.com/docs/cd/B19306_01/server.102/b14231/ds_concepts.htm

4.	 Ensor, D., & Stevenson, I. (2003). Introduction to Oracle design. ORACLE DATABASE

ADMINISTRATOR, from

http://searchoracle.techtarget.com/tip/1,289483,sid41_gci904246,00.html

5.	 Fogel, S. (2008). Oracle Database Administration Guide11g Release Retrieved 12th August,

2008, from http://www.oracle.com/pls/db111/to_pdf?pathname=server.111/b28310.pdf

6.	 Greenwald, R., Stackowiak, R., & Stern, J. (2004). Oracle essentials: Oracle Database 10g

(Third ed.): O'Reilly.

7.	 Moore, S. (2008). Oracle Database Advanced Application Developer's Guide 11g Release

Retrieved 26th September, 2008, from

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28424.pdf

8.	 Morales, T. (2008). Oracle Database Reference 11g Release Retrieved 1st October, 2008,

from http://download.oracle.com/docs/cd/B28359_01/server.111/b28320.pdf

9.	 Morris-Murphy, L. L. (2003). Oracle 9i: SQL with an Introduction to PL/SQL. Canada:

Thomson.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28320.pdf
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28424.pdf
http://www.oracle.com/pls/db111/to_pdf?pathname=server.111/b28310.pdf
http://searchoracle.techtarget.com/tip/1,289483,sid41_gci904246,00.html
http://download.oracle.com/docs/cd/B19306_01/server.102/b14231/ds_concepts.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.l
http://www.praetoriate.com/t_grid_rac_distributed_db.htm

 Designing and implementing of 63

10. Oracle Database 11g. Retrieved 28th July 2008, 2008, from

http://www.oracle.com/technology/products/database/oracle11g/index.html

11. Powell, G., & McCullough-Dieter, C. (2007). Oracle 10g Database Administration:

Implementation & Administration: Thomson.

12. SQL Server 2008. Retrieved 30th July 2008, 2008, from http://technet.microsoft.com/en­

us/library/bb418491.aspx

13. Strohm, R. (2007). Oracle Database Concepts 11g Release Retrieved 12th August, 2008, from

http://download.oracle.com/docs/cd/B28359_01/server.111/b28318.pdf

14. Urbano, R. (2008a). Oracle Database 2 Day + Data Replication and Integration Guide

Retrieved 1st October 2008, from

http://download.oracle.com/docs/cd/B28359_01/server.111/b28324.pdf

15. Urbano, R. (2008b). Oracle Database Advanced Replication 11g Release Retrieved 26th

September 2008, from

http://download.oracle.com/docs/cd/B28359_01/server.111/b28326.pdf

16. Urbano, R. (2008c). Oracle Streams Concepts and Administration 11g Release Retrieved 10th

October 2008, from

http://download.oracle.com/docs/cd/B28359_01/server.111/b28321.pdf

17. Urbano, R. (2008d). Oracle Streams Replication Administration's Guide 11g Release

Retrieved 2nd October, 2008, from

http://download.oracle.com/docs/cd/B28359_01/server.111/b28322.pdf

http://download.oracle.com/docs/cd/B28359_01/server.111/b28322.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28321.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28326.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28324.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318.pdf
http://technet.microsoft.com/en
http://www.oracle.com/technology/products/database/oracle11g/index.html

	Regis University
	ePublications at Regis University
	Summer 2009

	Designing and Implementing a Distributed Database for a Small Multi-Outlet Business
	Joseph Grech
	Recommended Citation

	JGrech2009.pdf

