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Part 1: Introduction 

1.1 Introduction to Community-Based Information and Finder-Review Applications

With the rise of Web 2.0 technologies and social media, consumer applications 

are being created for many industries. One particular type of consumer application that 

has become popular is the user-generated review application, which allows the user to 

submit a review to a community of other users who may then benefit from reading this 

review. The travel and tourism industry, business location services, and the food and 

restaurant industries are just a few examples of areas for which many applications have 

been developed that utilize user-generated reviews. The restaurant industry in particular 

has seen many applications that allow users to submit reviews to a community of users, 

and then allow users to find a restaurant at which to eat based on reading other users’ 

reviews. 1

1.1.1 Dietary need finder-review applications

While finder-review applications may be used for many entertainment-related and 

informational purposes, one important use of finder-review applications in the restaurant 

industry is assisting people with special dietary needs to find appropriate places to go to 

dine, and appropriate menu items to eat. Today, many people are choosing to avoid 

certain types of food, and some people must avoid these types of food altogether. Three 

of the most popular types of dietary need applications are for gluten-free, vegetarian, or 

vegan diets. There are many finder-review applications that have been developed to assist

DEVELOPMENT OF AN API 9
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people with different dietary needs. 2 By focusing on a specific dietary need, users of 

these applications are able to find and share restaurants and dishes for their needs. The 

advantage of using this type of application is that users have a way to find ideas of where 

to go and what types of food they can expect there that will fit their dietary need. 

However, the issue with this type of application is that typically there are many 

competing applications with only very limited and inconsistent data.

One of the biggest challenges that any finder-review application faces is obtaining 

enough data to become useful to end-users. Without a significant amount of data, users 

will find little value in the application. Paradoxically, without being able to attract a large 

base of users, the application cannot obtain enough user data to become useful. 

Furthermore, because each application has its own small set of data, users will often need 

to use multiple dietary need finder-review applications in order to obtain a more complete 

sense of the data that is available.

1.2 Problem Statement: Data Insularity

When multiple competing applications in the same field use only their own sets of 

user-generated review data and do not collaborate with other applications, data is used in 

isolation. This factor, which the author will refer to as “data insularity”, segregates each 

application’s community of users from other applications’ communities, thus creating a 

limited and fragmented set of data, which discourages the creation of new applications in 

the industry, and adversely affects the end user.

10
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1.3 Thesis Statement

This study will propose a prototype API for applications in the restaurant industry 

as a solution to the limited and insular use of data amongst dietary need applications.

1.4: Review of Data Insularity in Dietary Need Finder-Review Applications

In order to better understand the problem of data insularity amongst dietary need 

finder-review applications, a brief observational study will be conducted on several of the 

most popular applications in this area. Characteristics of the application will be examined 

such as its data model, its policies on cross-application data collaboration, its policies on 

data caching, and the existence of some method of data collaboration, such as a public 

API.

1.4.1 Data Models

In this paper, the term “data model” is used to refer to the organization of key data 

entities. This term is borrowed from Peter Rob and Carlos Coronel:

“A data model is a relatively simple representation... o f more complex real-world 

data structures. In general terms, a model is an abstraction o f a more complex 

real-world object or event.” (Rob, 2009)

This concept of a data model must be differentiated from the application’s underlying 

“database model”, which is the term that Rob and Coronel use to refer to the actual 

implementation of a data model to a specific database system. In other words, the author 

does not attempt to understand the database models—how the data is actually stored on 

these applications’ database systems—but rather an abstraction of how the real world 

data structures that the data itself represents is conceptually organized in that application. 

Furthermore, in a data model there exists entities, attributes, and relationships. Entities
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are the things about which data is collected (person, place, thing, or event), an attribute is 

a characteristic of an entity, and a relationship describes the association between entities 

(Rob, 2009).

In most finder-review applications data is structured into two main entities: Place 

and Review. The Place entity represents the establishment that is being reviewed, and the 

Review entity represents a person’s individual review of this establishment. There is a 

one-to-many relationship between the Place (1) and the Reviews (many).

1.4.2 Reviews of Applications

While there are numerous finder-review applications in the restaurant industry for 

special dietary needs, the author has chosen three applications from this genre to explore 

the typical functionality. Both the “Gluten Free Registry” website and application and the 

“Happy Cow” website and application were chosen because of their popularity and 

extensive data compared to other applications in this genre that adhere to the restaurant 

model. The “Dish Freely” iPhone application was chosen because of its unique position 

as the only application in this genre that uses the “menu item model”. What follows is a 

brief analysis of these three applications, based upon certain characteristics, such as: the 

type of application it is; the type of data that is available to users; the type of data 

contributed by users; the method of users submitting data; the types of parameters (if any) 

the application’s search capability is based upon (if any search functionality exists); the 

method through which users register to be able to utilize the application; who owns the 

data that is submitted to the application (the user that submitted it, or the application’s 

proprietor); and its data collaboration policies or API status (if it exists).

12



1.4.2.1: Gluten Free Registry application

The Gluten Free Registry is a popular website and application that helps users 

find restaurants that offer gluten free options and reviews for those restaurants from other 

Gluten Free Registry users. Below is a summarization of a brief observational study on 

this application:

• Type of Application:

o Website and mobile application

• Type of data:

o Gluten-free restaurants

• User-contributed data:

o Users suggest restaurants and review a restaurant experience.

• Method of submitting data:

o In both the Web and mobile application, the user submits an electronic 

form.

• Method of filtering data:

o Users may flag a review as inappropriate. Users may report a restaurant as 

closed.

• Search parameters:

o Users may search by location and proximity. Users may also filter 

searches to “chain” establishments and restaurants that will only 

accommodate gluten-free dishes (not specializing in these dishes)

• Registration:

o None: anyone can suggest a restaurant and submit a review
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• Extras:

o Optional tags for popular items such as pizza, bread and pasta. Optional 

link to restaurant’s menu. Optional link to restaurant’s website.

• Data collaboration or API:

o Data collaboration is not facilitated, and there is no public API.

• Data ownership:

o The Gluten Free Registry asserts ownership over all user-submitted 

content in their Terms and Conditions.

• Restrictions:

o There are strict policies against caching data or reusing data, and crawling 

the website.

1.4.2.1.1 the data model o f the application

The Gluten Free Registry Website falls into the category of the “restaurant- 

review” data model, in which the application consists of restaurant listings and reviews of 

those restaurants. In this model, the data available to users can be separated into a 

restaurant object, and a review object. A restaurant may have many reviews, but each 

review is associated to one restaurant. The following data model represents a conceptual 

collection of objects and properties that can be inferred after an exhaustive summary of 

all available elements and their properties available to end users of the Web application. 

Restaurant (object)

• Restaurant name (property)

• Date added (property)

• Location (property)

14



• phone number (property)

• Restaurant description (property)

• Online menu URL (property)

• Restaurant website URL (property)

• Tags:

o e.g. Pizza, Pasta, Bread

• Overall Rating (0-5) (property)

Review (object)

• Date posted (property)

• Name of reviewer (property)

• Rating (0-5) (property)

• Text review (property)

• Number of likes / dislikes (number of people who found this review useful or not 

useful) (property)

Based on this data model, it can be seen that users learn of gluten-free items through 

reading the reviews on a restaurant.

1.4.2.1.1 data consumption in application

All data must be obtained through the Gluten Free Registry’s website or mobile 

application. There is no public API available, nor is there an option for companies to act 

as partners to use their data. In its Terms and Conditions, the Gluten Free Registry asserts 

ownership of all data provided by users, and explicitly prohibits caching data in any way.

DEVELOPMENT OF AN API 15



1.4.2.2 Happy Cow (Vegetarian)

Happy Cow is a Web and mobile finder-review application for vegetarian and 

vegan restaurants (both exclusively vegan/vegetarian, and vegan/vegetarian-friendly 

restaurants). Similar to the Gluten Free Registry application, Happy Cow allows users to 

submit and update restaurant listings, and submit reviews of these listed restaurants.

• Type of application:

o Website and mobile application

• Type of data:

o Vegetarian and vegan friendly and exclusive restaurants.

• User-contributed data:

o Users suggest restaurants, submit reviews of an experience at a restaurant, 

and respond to other users’ reviews.

• Method of adding data:

o In both the Web and mobile application, the user submits a web form.

• Method of filtering data:

o Users can flag a review as inappropriate, and they may comment on 

reviews.

• Search Parameters:

o Users may search for relevant reviews based on location, keywords, and 

diet type (vegetarian or vegan).

• Registration:

o Registration is necessary in order to submit a restaurant or review

• Data collaboration or API:

16



o Happy Cow does not offer any type of data collaboration or API.

• Data ownership:

o In the Terms and Conditions, Happy Cow asserts ownership of all user- 

submitted data.

• Restrictions:

o In the Terms and Conditions, Happy Cow asserts strict policies against 

caching data, crawling, or reusing data in any way.

1.4.2.2 the data model o f the application

Like the Gluten Free Registry, the Happy Cow data model also falls under the 

category of the restaurant-review data model, since its information is separated into 

restaurants, and reviews associated to that restaurant. The Happy Cow also adds a layer 

of comments that can be made on a review. The data available to users can be broken 

down into a restaurant object and a review object. The following data model represents a 

conceptual collection of objects and properties that can be inferred after an exhaustive 

summary of all available elements and their properties available to end users of the Web 

application.

Restaurant (object)

• Restaurant name (property)

• Location (property)

• Phone number (property)

• Website URL (property)

• Restaurant email (property)

• Category (property) -  options:

DEVELOPMENT OF AN API 17
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o American

o Chinese

o Indian

o International

o Italian

o Japanese

o Thai

o Western

o Vegan Options

o 100% Vegan

o 100% Raw

o Mostly Organic

o Uses Eggs

o Uses Dairy

o Macrobiotic

o Beer/Wine

o Juice Bar

o Salad Bar

o Buffet

o Fast Food

o Take Out

o Delivery

• Has outdoor seating (property)



• Reservations required (property)

• Wheelchair accessible (property)

• Accepts cash only (property)

• Hours open (property)

• Price range (1-3) (property)

• Description of restaurant (property)

Review (object)

• Rating (0-5) (property)

• Date posted (property)

• Review text (property)

• Pros text (property)

• Cons text (property)

1.4.2.2 data consumption in application

All data obtained from the Happy Cow application must be obtained through their 

website or web application. All data must be viewed at the time of requesting the data— 

meaning that data cannot be cached or saved in any way. Like the Gluten Free Registry, 

the Happy Cow application asserts ownership of all user-submitted data, and explicitly 

prohibits the caching or use of their data in other applications. There is no API available.

1.4.2.3 Dish Freely

The Dish Freely application was chosen for this study because it is unique in that 

it falls outside of the parameters of typical finder-review applications in the restaurant 

industry. A relatively new trend is to list menu items and their reviews in the user’s 

vicinity, rather than just listing restaurants and their reviews. This data model (what the
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author will call the “Menu Item” data model) allows for many possibilities for helping 

people with special dietary needs find particular dishes and menu items that they can (and 

want to) eat.

Dish Freely allows users to log in with their Dish Freely or Foursquare account, 

search for previously listed restaurants around them, and add gluten free menu items to 

these listed restaurants. When an a menu item is added to a restaurant, the menu item will 

come up in users’ searches for menu items based on search parameters. When a user adds 

a menu item, the app asks what type of dish it is (eg. appetizer, main entre, etc.), and any 

helpful tags for that item. Also, it allows users to optionally add a review for this menu 

item. Images are not supported for a menu item review (unlike applications with similar 

functionality, such as FoodSpotting or Forkly).

In order for a restaurant to be listed within the application, the restaurant must 

request to be listed via email to the Dish Freely support team. Because users cannot 

suggest or add restaurants, every restaurant that is listed must be aware of the application, 

and must actively pursue a partnership with Dish Freely. This scheme inevitably limits 

the amount of restaurants listed within the application, and thus limits the usefulness of 

the application to the end user. At the time of writing this paper, there were only 24 

restaurants listed in the Denver metro area, and only 12 of these were tagged “gluten 

free” within the app. There were no gluten free dishes listed in the Denver Metro area 

(the author submitted the first).

• Type of application:

o Website and mobile application.

• User-contributed data:

20



o Users contribute menu item data, as well as menu item reviews.

• Method of submitting data:

o Normal users cannot submit restaurant data. Users can submit menu item 

data by first finding a previously listed restaurant, and then submitting a 

form on the mobile application to submit a new menu item. Users may 

also submit a form in the mobile application for submitting a review of a 

menu item.

• Method of filtering data:

o Only restaurants may submit data about that restaurant, through a 

partnership with Dish Freely.

• Search parameters:

o Users may search for restaurants and dishes by location.

• Registration:

o Users must register with the application in order to use it.

• Data collaboration or API:

o The application does not have a public API, nor do they facilitate data 

collaboration in any way.

• Data ownership:

o In the Terms and Conditions, Dish Freely states that users who submit 

data retain ownership of that data, but that it will be shared in any 

multitude of ways.

• Restrictions:
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o In the Terms and Conditions, Dish Freely asserts strict policies against 

caching data and crawling.

1.4.2.3.1 the data model o f the application

As mentioned, Dish Freely uses a “Menu Item” data model. In this model there 

are three objects: Restaurant, Item, and Review. A restaurant may have one or more 

items, and an item may have one or more reviews. The following data model represents 

the conceptual collection of objects and properties that can be inferred after an exhaustive 

summary of all available elements and their properties available to end users of the 

mobile application.

Item (Object)

• Name (property)

• Overall Rating (property)

• Number of Reviews (property)

• Photo (property)

• Tags (property)

• Price range (1-3) (property)

• Restaurant (property)

Restaurant (Object)

• Name (property)

• Address (property)

• Phone number (property)

• Type of establishment (property)

• Number of Items submitted (property)

22



• Tag (property) - options:

o GFRAP participant 

o 100% Gluten Free 

o Has GF Menu 

o Separate equipment 

o Tagged gluten-free 

Review (Object)

• Rating (0 -  5) (property)

• Tip/Comment text (property)

1.4.2.3.2 data consumption in application

Dish Freely does not offer a public API, nor does it facilitate data collaboration in 

any way. Like the other applications reviewed, Dish Freely prohibits caching their data, 

or reusing their data in other applications.

1.4.5 Summary of Current Applications: Data Insularity

While the Dish Freely application is a little different in its functionality and 

organization, all three of these applications share the characteristic of data insularity. 

While each application has its own level of popularity and richness of data, it is inhibited 

by its own limitations. In other words, allowing external developers to use their own 

creative talents to develop new applications that make use of the existing data in these
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applications, as well as contributing to this data, ensures that the end user benefits as 

much as possible from the available data.

1.5 Goals of Project

As stated, the goal of this project is to put forth a solution to the problem of data 

insularity in one particular area: dietary-need finder-review applications.

To solve this problem of data insularity, there must be a way of allowing these 

applications to consume relevant and standardized data as clients. Furthermore, in order 

to ensure that the data available to client applications is as relevant and up-to-date as 

possible, the solution must allow the client to optionally provide data as well. Therefore, 

the solution must act as a central repository from which clients can consume and provide 

data. The challenge of creating such a solution is that the data consumed and provided by 

clients must meet certain criteria in order to ensure that other clients can use the data, and 

that the data is useful to the user.

Therefore, the general goals of this project will be to create a prototype solution that 

implements the following requirements:

1. The solution must act as central repository that will allow clients to consume and 

provide data.

2. The solution must impose a standard model for all data in the repository.

3. The solution must have a data model that will meet the needs of client 

applications as well as end users

1.5.1 Criteria of Solution

Following is a more detailed look at the criteria of the solution stated above. The 

term “client” is used to refer to any application or developer seeking to utilize the
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solution. The term “community” is used to refer to the combined groups of end users of 

the client applications.

1.5.1.1 Solution must act as central repository that will allow clients to consume 

and provide data.

The solution must act as a central repository of data in order to foster a 

community of shared knowledge in this field. As the brief analysis of applications in this 

field shows4, it is common for an application not to allow other applications to use or 

cache their data in any way. There needs to be a solution that will allow clients to get 

their information without having to worry about ownership of the data, and where they 

know that the data has been submitted by users of the target community. Therefore, there 

needs to be a central repository in which data is owned and contributed by the community 

as a whole.

1.5.1.2 Solution must impose a standard model upon all data that is consumed 

or provided from the repository

Because the numerous client applications that will potentially utilize and provide 

the data in this repository will inevitably have various data models themselves, it is 

necessary to impose a standard data model to which all applications must adhere. Clients 

will need to format their requests for data in a specified way. Similarly, the data returned 

in the response will need to be formatted in a specified way too.
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1.5.1.3 Solution must have a data model that will meet the needs o f  client

applications as well as end users

Because client applications may have varied data models that will utilize data 

obtained from the repository differently, it must be assumed that some applications will 

seek restaurant data, and some applications may seek menu item data. Also, to provide as 

much useful data as possible to the end user, the data model of the repository should store 

not only restaurant data, but menu item data as well. The data will need to be factual 

information about the menu items, rather than opinion-based. While the data model 

should support an overall community rating of this product, the primary data should be 

informational in nature, so that consuming clients may use this information as a base on 

which to build their application.

1.6 Value of this Project

Allowing client applications to consume data will make it possible for 

applications in this genre to expand their current data, and to provide an expanded data 

set to the user. It will also allow new applications entering this market to not have to start 

from scratch with their data.

1.7 Ethical and Social Impact of Project

The ultimate goal of this project is to help people with Celiac disease or other 

special dietary needs to eventually have a more complete set of information. With this 

goal, there is hope that with this solution there will be more applications appearing in this 

field, and that these applications (as well as existing applications) will work toward 

establishing one large community of users with special dietary needs. By having a more 

complete data set, and by having applications cooperate to establish a larger community
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of users that use and contribute to this data set, people with these special dietary needs 

will be able to find the data that they need, thus improving their quality of life.
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Part 2: Review of Literature and Research 

2.0.1 Review of Possible Solutions

In order to examine some possible solutions that might meet the requirements 

specified in the previous chapter, it is first necessary to understand what type of solutions 

will not work.

Because the first requirement is that the solution will allow clients to consume 

and provide data, we will first examine methods of consuming and providing data. First, 

there is the possibility of sending files back and forth between a client and the server. 

While this type of “batch” processing is appropriate for some types of data and in some 

scenarios, it is not ideal for a situation in which small client applications are making 

many requests for getting a single item or place. In the batch enroll scenario, the server 

needs to parse the client’s file, process this request for data, then assemble a file as a 

response. Because this scenario is demanding on the system, and because the solution 

will need to impose a rule against the caching of data on the client’s side (due to many 

applications prohibiting caching of their data), this solution is not appropriate.

A second potential implementation is a website that allows visitors to search for 

data and submit data to the repository. While this situation is ideal if the consumers of 

data were the actual end users, it is not ideal for this situation in which a client 

application obtains and submits data on the end user’s behalf. In other words, this 

solution essentially “cuts out the middle man” that this project is intended to help. 

Furthermore, client developers will be wary of submitting their data to just another 

application because it drives end user traffic away from their application. Therefore, a 

website for the data repository is not an appropriate solution. Other methods of “pushing”
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data such as RSS feeds are not appropriate for this solution either because the client also 

needs to submit data.

Because the solution needs to allow client applications to easily make requests to 

get and submit data, the best solution for this situation is a public API. A public API will 

allow client applications (on behalf of end users) to get data from the repository, as well 

as to submit data to the repository by making simple requests through the HTTP protocol. 

Furthermore, an API will allow the data consumed by clients to be utilized in the 

moment, rather than caching the data in any way on the client, thus controlling the way in 

which data is being used by the client.

2.1 Review of API as a Solution

2.1.1 An Introduction to APIs

An API (Application Programming Interface) is a general term for any kind of 

interface that allows one application to use the functionality of another application. In 

other words, it is a way for two applications to communicate with one another. In the 

sense that this paper uses the term, an API is the public interface of a Web service. A 

Web service is just one form of an API: it accesses an API through a Web protocol 

(HTTP).

There has been a recent rise in the number of public APIs being used today. As 

one source estimates, at the time of writing this there were over 7000 published and 

public APIs actively being used on the Internet, a number that has almost doubled over 

2011-2012 alone (DuVander, August 2012). While there may be many reasons why 

companies are choosing to implement APIs into their infrastructure, one of the main 

proponents of this popularity is data collaboration (Jacobson, 2012).
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It is common for companies to have vast amounts of data that while used 

internally, is also useful and desirable to other companies and their applications. In Web 

applications, screen scrapers often crawl through a public-facing website and store its 

data, thus forcing many of these web applications to define strict policies against 

crawling and against the caching of data (Jacobson, 2012). For this reason, it behooves 

any company with this kind of desirable data to consider collaboration policies and a 

medium of data collaboration. An API provides a medium for data collaboration; it 

provides a standard, common interface for a client application to obtain (or provide) data.

2.1.2 Public vs. Private APIs

The numbers and trends in “public” APIs must not be confused with the vastly 

larger number of private APIs that are in existence (Jacobson, 2012). Many companies 

use APIs internally to allow their applications to reuse the same data and functionality. 

Companies with private APIs may also choose to expose their services and data to only 

partner companies. In fact, much of the functionality we see in public APIs is only a 

fraction of the functionality that these same companies offer privately (Jacobson, 2012). 

Private APIs are not examined in this paper as a solution for the obvious reason that they 

are private, and not available to be used.

Public APIs, on the other hand, publish their functionality to the world via the 

Web. Typically, a public API will define in its terms usage rules and limitations, and will 

tell the developer the options for using the API. These options usually come in several 

types of business models for public APIs: tiered, pay as you go, unit-based, and freemium 

(Jacobson, 2012). In the tiered model, there are different levels of usage. For instance a 

lower tier may cost less that a higher tier, but the lower tier will allow a much smaller
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number of API requests in an allotted timeframe. In the Pay as You Go model the API 

provider charges the client application based on the number of requests made to the API. 

In the Unit-based model, the client pays according to specific units of computing or 

service. And in the freemium model the client may use the API for free, but must pay for 

various types of additional services. For example, Google Maps uses a freemium model, 

in which they allow up to 10 thousand calls per day for free, and then charge for 

exceeding the terms of the plan (Jacobson, 2012).

2.1.3 An Introduction to RESTful Web services

In RESTful Web services, the client makes an HTTP request to a specific URL, 

along with certain parameters set in either the URL, or in the request header. These 

requests are typically limited to four operations: GET, POST, PUT, and DELETE, as 

opposed to SOAP, which allows the developer to define any number of methods 

(Vaswani, 2010). Responses to the client take the form of a standardized HTTP response, 

returning a response code, as well as the response data to the client, which typically takes 

the form of an XML tree, or a JSON array. While initially most RESTful Web services 

returned only XML, there has been a gradual trend over the past few years toward JSON 

responses. While there are still many scenarios in which XML is still the appropriate 

choice, many new RESTful APIs utilize JSON because of its relative ease and simplicity 

(Jacobson, 2012).

As Jacobson notes, many developers prefer RESTful Web services because they 

simply do not understand the complexity of using WSDL files and constructing complex 

SOAP messages, thus making it much easier to get their client applications 

communicating with an API provider more quickly with REST (Jacobson, 2012). When

DEVELOPMENT OF AN API 31



comparing REST to other interfacing methods such as WSDL, REST makes it easier for 

client services to be created to communicate with the provider service because the 

interface contract is universal for all services (Vinoski, 2007). In other words, the 

interface contract (the way in which the client application communicates with the API 

provider) is universal in RESTful services because all RESTful services utilize the same 

HTTP methods. Developers creating client applications need only to understand how to 

form these HTTP requests to comply with the provider’s interface for invoking its 

resources. Furthermore, the ability of RESTful Web services (like their SOAP 

counterparts) to handle large amounts of concurrent requests makes REST a viable 

alternative to the more traditional SOAP-based Web services (Meng, 2009).

2.1.3.2 REST: pragmatic vs. dogmatic approach

There are various interpretations and forms of REST, which was originally 

developed as part of a PhD dissertation of Roy Fielding (Jacobson, 2012). In this now 

famous paper, Fielding proposed using the HTTP protocol to allow computers to 

communicate by dividing URI namespaces into a set of resources (Fielding, 2000). In this 

model, one can use the standard HTTP verbs (GET, POST, PUT, DELETE) to perform 

operations on each of these defined resources. There are different camps within the 

industry which advocate a certain style and interpretation of Fielding’s definition of 

REST.

One group is the REST “purists”, who advocate that REST should embody the 

concept of “Hypermedia as the Engine of Application State” -HATEOAS (Jacobson, 

2012). Applications that embody HATEOAS principles dictate that instead of the 

provider defining a list of resources and actions that the client can use, the client must
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discover the functionality that the API provides through an initial request to the root URI 

of the API, which will then return a list of additional URIs that the client may use 

(Jacobson, 2012). In this sense, an API that enforces HATEOAS principles reduces the 

chances of clients requesting stale resources by forcing them to call upon resources 

dynamically, thus making them more scalable. However, it is very uncommon to see 

public APIs that adhere to HATEOAS principles. Instead, it is more common to see APIs 

that utilize what Jacobson coins as “Pragmatic REST” (2012).

The vast majority of public APIs follow some REST principles, but not all, thus 

making their adherence to REST more pragmatic than dogmatic (Jacobson, 2012). While 

there may be many reasons why API designers choose to implement a more pragmatic 

interface, Jacobson believes that one of the main reasons for this is because HATEOAS is 

too complex:

“The HATEOAS principle places such a high bar for the client-side 

programmer... A pragmatic RESTful approach uses the best parts o f the RESTful 

concept by recognizing that programmers want to understand what they can do 

with your API as quickly as possible and do it without writing a lot o f extraneous 

code. ”

(Jacobson, 2012, pg. 62).

Jacobson defines a list of pragmatic RESTful characteristics that API designers should 

adhere to:

• Implement a well-designed URI pattern

• Use standard and obvious sets of optional parameters for each API call
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• Make the data format for both requests and responses clear and straightforward to 

client programmers

• Use standard HTTP return codes

• Hide all other details, such as security, in the HTTP headers

• Establish a clear versioning convention 

(Jacobson, 2012)

2.2 Review of Existing Solutions (APIs)

Having established a public RESTful API as a solution for this project, research 

was conducted on several of the most popular and relevant public APIs in the Restaurant 

industry as potential solutions: the Yelp API, the FoodSpotting API, and the Food Genius 

API. Each of these APIs provides restaurant- and/or menu item-related data to consuming 

client applications, and each follows a type of “review” model (data collected from users 

is in the form of a review).

The brief observational study that follows is composed of four parts. First, there is 

a brief explanation and overview of the API, which contextualizes why that particular 

API was chosen, the application with which it is associated (if one exists), and its main 

features. Second, there is an examination of a few critical API characteristics. Third, the 

data model of each API is analyzed, based upon observable patterns of the structure of 

the API’s available data. This examination is important because it assesses how suitable 

this data model is as a solution. It is important to point out that the data model is the 

author’s own interpreted findings based on the data available. And finally, this study 

presents an analysis of these results, and discusses this API as a suitable solution.
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2.2.0.1 Explanation o f  A PI characteristics observed

While there are many important characteristics that should be observed in any 

API, this study presents those that are most relevant for this project. First, this study 

examines the API’s status as public, private, or semi-public: public being available to use 

by anyone that registers, while semi-public being only for those who subscribe to the 

service in some way. Next, the study looks at whether or not the API allows data to be 

consumed or provided by the client. In many public APIs the client is only allowed to 

consume data from the API, rather than provide it. The solution chosen in this paper 

specifies that the API must allow both consumption and provision of the data from the 

client. Then the study examines the most granular level of data (examined more in depth 

during the analysis of the API’s data model). And finally, characteristics such as the 

API’s policies on data caching, ownership of user-submitted data, limitations and quotas, 

and developer policies are examined. These characteristics are also important because 

they show how the APIs specify how the data should be used.

2.2.0.2 Explanation o f  why these APIs were chosen

The three APIs examined in this paper were chosen as representatives for their 

areas. Out of the very few APIs in the restaurant industry for utilizing user-contributed 

finder-review data, each one of these APIs represents a particular niche: the Yelp API is a 

quite popular API used by many applications to get basic business and restaurant reviews 

and information; the FoodSpotting API is unique because of its granularity in its data; 

and the Food Genius API represents a Data as a Service (DaaS) solution that specializes 

in providing data for a fee with its partners.
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2.2.1: Yelp API

Below is a review of the Yelp API, which is based on Yelp’s online 

documentation5 6 7, as well as the author’s experimentation with the API itself. Because it 

is open to the public, and because Yelp allows developers to access the API in order to 

learn more about it, the author was able to review its data model in depth.

• API status:

o The Yelp API is public, with controlled full access. It is based on the 

“freemium” business model—free for a limited amount of requests.

• API type:

o It is a RESTful API that returns JSON response data.

• Client actions:

o Clients may consume data, but not provide data to the API.

• Data granularity:

o Available data at its most granular is for a business / restaurant.

• Client authentication method:

o OAuth authentication is required for all access to the API.

• Limitations:
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o All developers are limited to 100 requests per day, until the application 

has been officially approved by Yelp, at which time the number of 

requests increase, and the developer uses a freemium model.

• Ownership of data:

o Yelp asserts ownership of all data in their Terms and Conditions.

• Caching data policy:

o Storing, caching, or reusing data in any way other than immediately 

displaying it to the end user is not permitted.

2.2.1.1 Overview o f  API

The main functionality of the Yelp API is to allow a client to search for local 

businesses, passing in a number of required and optional parameters, returning a list of 

businesses within certain geographic information along with basic information about the 

businesses. The API has two main actions: “search” (a general search for a list of 

businesses) and “business” (a focused search for a specific business). The Yelp API 

model only supports the “GET” HTTP method, and does not allow clients to be providers 

of data.

2.2.1.2 Data Model o f  API

The “search” action of the Yelp API returns a list of businesses relevant to the 

client’s search parameters, while the “business” action of the API lists all of the details
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about a single business. The API’s data model can be broken down into two objects: 

business, and review. 8

While the “search” action of the Yelp API gives the client a high level description 

of each business returned in the list of results, by using the “business” action of the Yelp 

API the client is able to narrow the focus onto an individual business and obtain more 

specific data.

Business (Object)

• restaurant id (property)

• restaurant name (property)

• restaurant categories (additional object)

• phone number (property)

• is_claimed (property)

• is_closed (property)

• image url (property)

• location (additional object)

• mobile url (property)

• review count (property)

• snippet text (property)

• business URL (property)

38

8 When describing the data models of these APIs, the author is making an interpretation 

based on the structure of the response data returned from these APIs. This means that the 

data models described here are syntheses of the results found.



• deals (additional object)

• rating (property)

• reviews (additional object)

Review (object)

• review id (property)

• excerpt (property)

• text review (property)

• number rating (property)

• time created (property)

• user created (property)

2.2.1.3 Assessment o f  use o f  A P Ifor dietary need applications 

Users can include certain keywords in the optional “category_filter” parameter of 

the GET request, which filters the results based on these parameters. These category 

keywords are pre-defined by Yelp. In this list, there are the following keywords that are 

associated to special dietary needs:

• Gluten Free (gluten_free)

• Vegan (vegan)

• V egetari an (vegetari an)

(Category List, n.d.)

By allowing the client to filter search results by the category filter, it is possible to 

separate restaurants that are known to cater to those with one of the three major dietary 

needs (gluten free, vegetarian, vegan) from restaurants that do not. When used properly
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by users, the category filter is a powerful tool to find restaurants, but not specific menu 

items. In other words, the client/user is able to determine that the restaurant has a “gluten- 

free” tag, but not which items are gluten-free. Furthermore, because the Yelp community 

of users is not primarily focused on special dietary needs like the special dietary need 

“finder-review” applications, many restaurants listed in Yelp that should have a “gluten 

free”, “vegetarian”, or “vegan” category do not have it listed.

Similarly, including these dietary need keywords in the “term” parameter return a 

list of restaurants that have this word mentioned in a review of the restaurant, or that have 

a category like the search term. This causes the problem of “review pollution”. 9 This 

means that any time a word such as “gluten-free” is mentioned in a review, that restaurant 

will be returned in the search results. This poses a problem if a user mentioned that a 

restaurant was “not gluten-free” in a review, and demands the need for the data model to 

be at the menu item level, which the Yelp model does not support.

2.2.2: FoodSpotting API

Below is a review of the FoodSpotting API, which is based on its online

documentation10 11.

• API status:

o The FoodSpotting API is in a “semi-public-beta” state, and is offered to 

interested partners.
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• API type:

o RESTful API that returns JSON data only.

• Client actions:

o Clients may consume and provide data.

• Data granularity:

o Available data at its most granular is for “sightings” of menu items, and 

reviews of those sightings.

• Client authentication method:

o The API uses OAuth for requests that attempt to act upon a FoodSpotting 

user’s behalf. Otherwise all other requests use an API key to authenticate 

the application.

• Limitations:

o Limitations are not specified, and the author was unable to get information 

from a representative.

• Ownership of data:

o FoodSpotting specifies in its Terms and Conditions that users maintain 

ownership of their data.

• Caching data policy:

o In its Terms and Conditions, FoodSpotting explicitly prohibits storing, 

caching, or reusing their data in any way.
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2.2.2.1 Overview o f  the API

FoodSpotting is a Web and iPhone application that allows users to share 

experiences and images of items that they have had at restaurants. When a user submits 

an entry for a menu item, the application allows the user to check in at a location (on the 

mobile version), submit a photo that they have taken of the menu item, and enter a 

description/review of the item. Other users are then able to view this entry based on their 

location and other search parameters. These user-submitted entries are referred to as 

“spottings” by FoodSpotting.

Of particular importance, the data model of the FoodSpotting API allows for 

items to be associated with a restaurant, and reviews to be associated to items. This 

contrasts with the traditional “restaurant model”, which associates a review with a 

restaurant (rather than menu item). This not only creates a granularity in the data that is 

available to users, but it also avoids replication in items submitted by users.

Authentication (via a three-way handshake with FoodSpotting and the end user 

through OAuth) is required for access to protected resources in the FoodSpotting API 

(items that contain user-related data). However, authentication is optional for access to 

certain non-protected resources, such as sightings. Access to the API is controlled by 

FoodSpotting, and a developer must request access to it.12 For this reason, this type of 

API can be considered what many call a “semi-public API” 13. Even though FoodSpotting
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has released the documentation for their API publicly, access to this API is limited to 

partners (DuVander, A. (2011, September 12)).

This API allows the client to access data from six different resources: items, 

places, sightings, reviews, comments, guides, and people. The client specifies a resource, 

and then specifies the name of the resource. FoodSpotting organizes its “spotting” data 

into two separate objects: “sightings” and “reviews”. A sighting is a container that 

associates an item with a place (restaurant, bar, etc.). A review is simply a user-submitted 

review (with a photo and optional note) of an item. When a user submits a review of an 

item, if a sighting has already been submitted for that item, then that review will be 

associated to an existing sighting; if there has not been a sighting for that item, then a 

sighting will automatically be created, along with its first review. When searching for 

data through the API, the client will typically first search for sightings, and then go 

deeper into the data by searching for reviews for that item (sighting).

2.2.2.2 Data M odel o f  API

In order to better understand the specificity of the data available on menu items, it 

is first necessary to observe what constitutes the data model for a “sighting”, “review” 

and “item”.

Sighting (object)

• sighting id (property)

• place (the restaurant associated with this sighting) (property)

• count of reviews (property)

• date created and date last updated (property)

• latitude and longitude coordinates of sighting (property)
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• item (associated with sighting) (property)

• wanted (a tag if someone likes this sighting) (property)

• creator id (identifies the user who made this sighting) (property)

• current review (property)

• distance (property)

• nommed (a flag for the application) (property)

• last reviewed date (property)

• wants count (the amount of times someone has liked this sighting) (property)

• ribbons count (a social media counter for the FoodSpotting app specifically)

(property)

Item (object)

• id (identification of the specific item) (property)

• name (property)

Review (object)

• Place (property)

• comments_count (number of comments made on this review) (property)

• nommed (a flag for the application) (property)

• person id (user who made the review) (property)

• date created and date updated (property)

• great fiinds count (count of times this review has been flagged by a user as a great 

find) (property)



• note (the optional text that a user can submit with the review) (property)

• item (property)

• great shots count (number of times a user has tagged the image associated with 

this review as a “great shot” (property)

• person (additional information about the person who made the review) (property)

• image (property)

• wanted (a tag if someone likes this sighting) (property)

• sighting id (an identifier tying back to the sighting to which this review is 

associated) (property)

• shared to (whether or not this review has been shared to Facebook, Twitter, Flikr, 

or Foursquare) (property)

2.2.2.3 Assessment o f  Use o f  A PI For Dietary Need Applications.

By looking at the data model, and by understanding how data is consumed by the 

client, it is evident that the FoodSpotting API does not allow the client to search for menu 

items based on dietary needs, and does not provide data specific enough to be useful to a 

client application for providing dietary need data to users. In other words, the 

FoodSpotting API is only a viable solution if it tracked whether or not the menu item fits 

special dietary needs, and if the API allowed the client specify this in the search 

parameters. As it is, the FoodSpotting API does not meet the specified requirements of 

this project as a solution.

2.2.3: Food Genius API

Food Genius is a Data as a Service (DaaS) company that specializes in providing 

restaurant and menu item information to client applications for a fee. It currently does not
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have an application associated to it, but it encourages the developer community to use its 

API in a trial state to build applications.

• API status:

o The Food Genius API is semi-public, and is based on the tiered business 

model, in which developers may get more access to the API and more 

requests for a bigger fee.

• API type:

o RESTful API that returns JSON or XML data.

• Client actions:

o Clients may consume and provide data.

• Data granularity:

o Available data at its most granular is for menu items.

• Client authentication method:

o The client is authenticated through the use of an OAuth key obtained from 

Food Genius.

• Limitations:

o After initial approval into the trial stage, the client application is subject to 

a small number of queries for development purposes. Production access is 

based on differing pricing options.

• Ownership of data:

o Food Genius asserts ownership of all its data in its Terms and Conditions.

• Caching data policy:
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o Food Genius specifies in its Terms and Conditions that caching data is 

strictly prohibited.

2.2.3.1 Overview o f the API

Unlike the other companies and applications observed in this paper, Food Genius 

is primarily focused on its API. In its mission statement, Food Genius states that the 

purpose of its API is to provide data to applications in the food and restaurant industries 

(source 3).

2.2.3.2 Data Model o f the API

The data model of the Food Genius API is similar to that of FoodSpotting: data is 

organized into several distinct objects that are accessed along with certain search 

parameters. The Food Genius API organizes its data into five main objects: restaurant, 

place, location, menu item, and interaction. The ability for a client to provide data is 

limited only to reviews of a location or menu item on a numbered scale.

Menu item (object)

• distance (property)

• description (property)

• location (property)

• id (property)

• item name (property)

• price (property)

Interactions (reviews) (object)

• Rating (a number scale review) (property)
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• Created date (property)

• Reviewed (the URL / Food Genius ID of the menu item or restaurant that was 

reviewed) (property)

• Range (number of the range for the rating -  eg. 10.0) (property)

• Units (property)

• Identity (user that created the review) (property)

2.2.3.3 Assessment o f Use o f APIfor Dietary Need Applications 

Like FoodSpotting, the Food Genius API allows the client to include a query 

string for the name of a menu item in an HTTP request. In other words, the client may 

query “vegetarian”, but the word “vegetarian” must then be in the name of the item 

(“vegetarian burrito”). Because in this model a menu item does not include any kind of 

keyword or category, data cannot be accessed at a granular enough level to determine if 

an item suits a specific dietary need.

2.3 Why None of These Solutions Fit the Requirements

To summarize the suitability of the above APIs as a solution for this project, it is 

first necessary to reiterate the three main requirements.

1. The solution must act as central repository that will allow clients to consume and 

provide data.

2. The solution must impose a standard model upon all data that is consumed or 

provided from the repository

3. The solution must have a data model that will meet the needs of client 

applications as well as end users
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The table below summarizes how each of the solutions examined in this chapter meet 

these needs for a solution.

Name Yelp API FoodSpotting API Food Genius API

Data Model Type Restaurant-level

Review

Dish-level review Restaurant-level and 

Dish-level

Solution Stores Data Yes Yes Yes

Non-Trial Public 

API Open to All 

Client Developers

Yes No No

Allows Clients to 

Consume Data

Yes Yes Yes

Allows Clients to 

Provide Data

No Yes No

Enforces Standard 

Data Model on 

Submitted Data

N/A Yes N/A

Data Model at Both 

Restaurant and Dish 

Level

No No Yes

Figure 1: Table Comparing Possible Solution APIs

While the above APIs meet the first two requirements for a solution (acting as a 

central repository for clients to consume and provide data, and imposing a standard 

model on data that is provided and consumed from the repository) they do not satisfy the



third requirement: having a data model that will support the needs of client applications 

and end users. This third requirement is vitally important in solving this problem of data 

insularity amongst dietary need applications because without being at a granular enough 

level the data loses its significance and usefulness to the end user.

In the Yelp API, we see dietary need data being stored as optional tags associated 

to a restaurant. This is helpful only if  users actively include this optional data, and it is 

only helpful if  the end user wishes to know if a restaurant is known to have some sort of 

menu item that meets that dietary need. However, this data cannot be associated directly 

to menu items, therefore limiting the usefulness of this feature for end users.

On the other hand, in the FoodSpotting API, we see data stored at a granular 

level: listing data about menu items. This API has the granularity that the Yelp API lacks, 

but it still lacks any kind of way to associate dietary need data with menu items. This is 

because the FoodSpotting data model allows users to enter data about an item only 

through the item’s name, and in a text review of the item. In other words, FoodSpotting’s 

data model does not support tagging a menu item by a specific dietary need type. Thus, 

using an item’s name, or using a text review associated to an item to associate a dietary 

need with an item opens up the problem of what the author will call “review pollution”.

Review Pollution is the result of data at its most granular state being in the 

“Review” entity. A single review typically contains a rating of the restaurant (or item) 

and a block of text that constitutes the user’s review. This means that user-initiated 

searches for a particular keyword must look at the entire block of text for the search term. 

This causes issues if a user specifies in a review that an item is “not gluten free”, or when
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they say that “I wish this were gluten free”, etc. In other words, the text review pollutes 

the accuracy of searching for a specific term.

Similar to FoodSpotting, the Food Genius API also does not have a data model 

that will support the needs of end users. Because data at its most granular is in a text 

review, this poses the same problem of review pollution we see in the Food Spotting API.

2.3.1 The need for a new solution

Because the APIs examined above do not satisfy the core requirements for a 

solution to this problem of data insularity, there is a need for a solution to be developed 

that will satisfy all of these core requirements.
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Part 3: Project Methodology

3.1 Research Method Chosen: Constructivist Epistemology

As stated, the goal of this project is to put forth a solution to the problem of data 

insularity amongst dietary need applications in the restaurant industry. Because an 

existing solution to this problem does not yet exist14, the author will adhere to a 

constructivist epistemology, seeking to solve the problem of data insularity in the field of 

dietary need applications through the creation of a prototype solution. This prototype 

solution will implement a central repository of standardized data that can be accessed and 

added to by client applications through a public RESTful API.

3.1.1 A RESTful API as the Appropriate Solution

A public RESTful API is the appropriate solution to this problem for several 

reasons. First, a public RESTful API is accessible to developers of client applications. 

This accessibility comes partially from the fact that RESTful APIs are quickly becoming 

ubiquitous, thus meaning that more and more developers are readily familiar and 

comfortable with the idea of using an API (Jacobson, 2012). In addition to their 

popularity, RESTful APIs are accessible because they use a standard set of HTTP 

methods to request resources.15 Accessibility is important in getting the developers of 

these applications to easily adopt this standard model into their own application flow.

The second factor that makes an API the right fit for this solution is that it 

imposes and enforces a standard data model for the elements that are consumed and
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provided. The API is the gateway through which developers submit and request the data 

of the central data repository. Thus, the central repository acts as the standard data model 

to which client applications adhere, and the API enforces this data model by forcing 

submissions to adhere to this model, and formatting response data in this model as well.

And finally, by creating an API that enforces a focused and orderly data model, 

the needs of both client applications and end users will be met because it will allow a 

flexibility and granularity in the data available to both applications and users. 

Applications will benefit from an API that allows them to access data on several different 

levels, such as both the “restaurant” level and the “item” level, because each application 

has its own unique data model and needs. It is likely that some applications may seek to 

provide users with information about restaurants and not dishes, or vice versa. This 

flexibility will benefit users because they can obtain information on a restaurant, and then 

view other data resources associated to that restaurant, such as items and item reviews.

3.2 Project Requirements

With an API established as an appropriate solution to the problem at hand, it is 

necessary to define general requirements for this solution in terms of the needs of an API.

3.2.1 API Solution Requirements

Following is a list of the general requirements of the solution:

• The solution must allow clients to consume and provide data

• The solution must scale to current and future dietary needs

• The solution must allow for two different data models: restaurant-review model 

and menu item-review model

DEVELOPMENT OF AN API 53



In addition to these core requirements, the solution as an API must consider the 

following key API needs and characteristics:

• The API must enforce appropriate security policies

• The API must enforce appropriate data usage policies

• The API must enforce appropriate developer policies

• The API must provide support to developers seeking to utilize its service

3.3 Requirements in Depth

In order to better understand these requirements, they will be explored more in 

depth below.

3.3.1 Requirement: Allow Clients to Consume and Provide Data

Clients will be able to consume and provide data by adhering to the policies and 

requirements of the API. Through consuming data, developers will be able to integrate 

the API’s data into their own applications. Similarly, developers will be able to share 

their application’s data with the API community (and hence, other applications). Through 

the ability to provide data to the API, the goal is that the API’s data continue to grow, 

providing an increasing set of data to consuming applications.

3.3.2 Requirement: Scale to current and future dietary needs

The API will initially support the three major categories of dietary needs 

commonly found in applications: gluten-free, vegetarian, and vegan entries. However, to 

be scalable for future expansion, and to allow the possibility of other dietary needs to be 

included, the API will also be scalable to include other future categories of dietary needs.
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3.3.3 Requirement: Allow for the Two Levels of Data (“Restaurant” and 

“Menu Item”)

The API will support data on two different levels: the restaurant data model, and 

the menu item data model. In the restaurant data model, data will be organized by 

restaurant, and a client will be able to consume and provide data regarding a restaurant.

In the menu item model, a client will be able to consume and provide data regarding 

specific menu items, and a user’s experience with items. Clients will be able to request 

data at either of these levels, or will be able to request all menu items per restaurant.

3.3.4 Developer Support

The API will have adequate support documentation to assist developers in using 

the API. Good support documentation will also encourage developers to use the API.

This documentation will also include a sample client application that uses some of the 

features of the API to demonstrate one way that it may be used.

3.3.5 API Policies of Usage

In addition to the main API requirements listed above, the API must also take into 

consideration certain policies that pertain to the usage of an API. Even though the API 

will be open to the public, certain policies must be established in order to protect the API 

against malicious and improper use, and to ensure that the API is used to its fullest 

potential.

Data Usage Policies:

The API will implement and enforce data policies in order to protect itself against 

abuse and improper usage. The three most important policies are for caching data, rate 

limiting, and upload policies.
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Security Policies:

The API will enforce an authentication and authorization scheme in order to 

control access to the data. Even though this will be a public API available to all external 

developers, it will implement security measures to enforce the data and other policies by 

restricting access to those who violate these policies.

Quotas and Limitations:

The API will implement a limitation quota on the amount of data and/or the 

frequency of requests for data in order to ensure that the API continues to function 

properly.

User-Submitted Data:

Users of the API must agree to set of Terms and Conditions, and must agree upon 

a schema of data ownership and privacy policies. This is to ensure that data being 

provided to the API is either the property of that application, or if  it is user-owned 

content, that the users of their application have agreed that their data can be provided to a 

third-party Application.

3.4 Methodology: Implementation of Project

3.4.1 Process Model Chosen

When this project began, it was determined that an incremental and iterative 

development process model was most appropriate to guide the software development 

lifecycle, due to the possibility of unknown requirements being introduced at a later time. 

The goal was that each iteration produce a working prototype that is closer to the desired 

end product. However, because the author was the only person working on the project, as 

well as the product owner, a strict adherence to agile team processes such as Scrum or XP
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was not appropriate. Therefore, a modified rapid evolutionary prototyping process model 

was chosen for this project.

At the beginning of this process an initial list of requirements was created based 

on the stated goals of this project16. Having these requirements, an initial increment plan 

was developed that will attempt to plan evolutionary prototypes into two week 

increments. This initial increment plan will serve as an initial map to get the project 

started, and then will inevitably evolve with each iteration. At the beginning of each 

iteration the goals of that iteration’s prototype will be stated, which will then be assessed 

at the end of that increment. The assessment of how these goals have been met, as well as 

an assessment of how the overall requirements have been met will guide the planning of 

the next increment and set of goals for that iteration.
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Figure 2: Flowchart of Spiral Prototyping Software Development Lifecycle Used

3.5 API Component Design and Implementation

The design of the solution and its components are discussed in this section. This 

begins with a discussion of the intended overall flow of the solution, then discusses the 

data model of the repository and API, how access to the API is controlled, and how 

developers are informed about the API.

3.5.1 Documentation Website

The documentation website allows client developers to gather information about 

the API, see an example of how the API can be used in a client application, and request 

access to the API. The primary purpose of the documentation website is to be 

informational, describing in detail the data model used, how requests are to be formatted, 

how responses from the API are formatted, and how to obtain access to the API. 

Developers can read the terms and conditions of using the API and fill out a form to



request access to the API. All requests for access must contain the developer’s name and 

email address, the name and URL of the application, how many requests per day are 

expected, and a short description of the intended use of the API. This information is 

gathered to understand how the API is being used by client applications, as well as to 

control access to the API. For example, a client application that intends to use the data 

improperly, or a client application that expects to have hundreds of thousands of requests 

per day may be denied access for this version of the API. All requests for access are 

examined by the administrator of the API (the author) in order to ensure proper usage.

Because the needs of the website were relatively simple and not the primary focus 

of the project, the documentation website was implemented in PHP and MySQL, utilizing 

the WordPress CMS framework.

3.5.2 Sample Client Application

As a supplemental part of the API's documentation, and in order to help client 

application developers visualize some potential ways in which the API can be used, a 

simple client application was developed in order to demonstrate some of the API's main 

functionality, such as viewing and posting items, places, and item-reviews. The scope of 

this application was to give a simple demonstration of the main functionality of the API 

in the setting of just one potential client application scenario, and not to be an exhaustive 

embodiment of all of the API's functionality. To benefit client application developers, a 

link to this sample application, as well as its documentation, is included in the API's 

documentation website.

The sample client application was implemented in PHP and the jQuery Mobile 

framework. The JavaScript framework “jQuery Mobile” that was used to create a
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standard user interface that can easily be accessed by most of the major current browsers 

on standard computers and mobile devices. This application does not access the data 

repository directly, but instead makes REST requests to the API to access the data, as is 

intended in all client applications that utilize the API.

3.5.3 Data Model and Central Data Repository

A standard data model was designed in order to ensure that data can be used by 

client applications and end users. The data model of the API was designed with 

granularity and extensibility in mind in order to be useful to the end user, while still 

usable and standardized for a multitude of client applications. To accomplish this, a 

resource-based data model was created that separates key concepts into a Place resource, 

an Item resource, a Sighting resource, and a Report resource. In this data model a user 

shares an experience with an item that he or she had at a place. This is called a “sighting.”

Place Resource

The Place resource constitutes a “place” that a user can visit. This can equate to a 

restaurant, coffee shop, bar, pub, taco stand, or any “place” where someone can purchase 

food or beverage items that are ready to consume there. In most cases a place equates to a 

restaurant. The Place resource contains useful information about a place, such as:17

• The place’s name

• Whether or not that place is a chain

• The place’s address and geo coordinates

• An image URL associated to that place
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• The place’s phone number 

In its implementation, the Place resource takes the form of a “place” table in an 

RDBMS. 18

Item Resource

The Item resource equates to a food or beverage “item” that a person can consume 

at a place. An “item” typically constitutes a dish or special beverage at a restaurant. The 

Item resource contains all useful information about an item, such as: 19

• The item’s name

• A description of the item

• Dietary “tags” such as “gluten free”, “vegetarian”, or “vegan”

• Ingredient list (when utilized by a user that has the ingredients)

• Category tags that pertain to this item

• Other metadata

The Item resource is dependent upon the Place resource: there can be one or 

many items for each place, but each item must be associated to one place. In other words, 

a dish cannot exist without a restaurant. In its implementation, the Item resource takes the 

form of the “item” table in the RDBMS, with a foreign key dependency on the place 

table. 20
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Sighting Resource

The Sighting resource was designed to allow users to share their experience with 

a particular item they had at a place. This resource contains information related to a 

user’s experience with a place or item, such as:

• A review of the place or item, in the user’s words

• A rating of the place or item on a scale from 1 to 10

While a sighting is also considered to be a review, the resource itself is designed to be 

scalable to become a larger concept. For instance, if  it is decided in a future version of the 

API to allow the upload of images associated with a sighting, then this may be added as 

well without compromising the granularity or regularity of the data.

Report Resource

The Report resource represents an issue that is reported regarding one of the other 

resources (Place, Item, Sighting). Because the API is designed to consume user-submitted 

data, this leaves open the possibility of inappropriate or inaccurate data being submitted. 

While the API administrator will take preventative methods to weed out inappropriate 

data, it is still possible that inappropriate data and especially inaccurate data will find its 

way into the API data. A client application can use the Report resource to “flag” a 

resource, notifying the API administrator that something is not right about that resource’s 

information. Data that belongs to the Report resource includes:

• The entity (resource) type, such as place, item or sighting

• The entity’s number to identify it

• Flag inappropriate

• Flag inaccurate
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• The user’s note about this resource (why it is inappropriate or inaccurate)

• Other metadata

The Report resource must have both a resource type and the entity identification number 

to be created.

Explanation o f Data Model

As mentioned previously, in the context of this data model a user has an 

experience with an item, rather than with the place as a whole. While many restaurant 

finder applications associate a review to a restaurant, the aim of this API’s data model is 

to provide data at a more granular level in order to more adequately assist the end user. In 

order to be more useful to the end user who is looking for items that they may eat, the 

data model associates experiences to items rather than places. It is possible that a user 

may have a good experience with one dish, and a bad experience with another dish at the 

same restaurant. In this case, a generic review of the restaurant would not provide the 

user with data that is granular to the item level. Therefore, one or more sightings may be 

submitted for an item. Similarly, there may be one or many items for a place. A place 

must exist for an item to exist, and an item must exist for a sighting to exist.

Implementation o f Data Model

The data model was implemented as a MySQL relational database. In the 

database, each of the data model’s resources was implemented as a table. A visual 

representation of these resources as RDBMS entities can be seen in the following ERD:
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31 place

id INT( 11)

> name VARCHAR(200)

O is_chain TINYI NT( 1)

> cha in jd  INT(11) 

is_open TINYINT(1)

O image_url VARCHAH(250)

> phone VARCHAR(20) 

restaurant_ur1 VARCHAR(250)

> menu_url VARCHAR(250)

> gluten_friendly T1NYINT(1)

: vegetarian friendly TINYINT(1) 

vegan friendly TINYINT(1) 

gluten_menu_url VARCHAR(250) 

vegetarian menu_url VARCHAR(250) 

vegan menu_url VARCHAR(250)

O la t DECIMALS 1,7)

O lng DECIMAL(11,7)

> state VARCHAR(45) 

country VARCHAR(45)

0  postal VARCHAR(45) 

formatted_address VARCHAR(300)

O city VARCHAR{45) 

neighborhood TEXT

> date_created DATETIME 

date last updated DATETIME 

id_ created I NT (11)

> id_last_updated INT( 11) 

google api success T1NYINT(1)

-H-----K

__| item

id INT(11)

O name VARCHAR(250)

♦  p lace jd  INT(11)

O  description TEXT 

O  gl uten_tree Tl N YINT( 1) 

vegetarian TINYINT(1)

O  vegan TINYINT(1)

O  exclusive gluten free TINYINT(1) 

Oexclusive_ vegetarian TINYINT(1) 

Oexclusive_vegan TINYINT(1)

O  ingredient J is t TEXT 

Otag_healthy TINYINT(1)

meal _category VARCHAR(IOO) 

Odate added DATETIME 

O  date_ last_modified DATETI ME 

O id  added INT(11) 

id_last_modified INT(11)

O  verified TINYINT(1)

O  id_verified INT(11)

— -

id INT(11)

> entity_type VARCHAR(45) 

entity_id INT(11) 

flag_inappropriate TINYINT(1) 

flagjncorrect TINYINT(1) 

user note TEXT 

/id  created INT(11) 

date_created DATETIME 

viewed TINYINT(1) 

closed TINYINT(1)

id INT( 11) 

place_id INT(11)

♦  item_id INT(11)

O  review TEXT 

O  image BLOB 

rating INT(2)

date_created DATETIME 

O  date_ last_updated DATETIME 

O id  created I NT (11)

O  id_last_updated VARCHAR(45) 

tagged_inappropriate TINYINT(4) 

O  idjaggedjnappropriate INT( 11) 

O  is_primary TINYINT(1)

Figure 3: ERD of Solution Data Model

As can be seen in figure 3, there is a one to many relationship between an item and

sightings, and there is a one to many relationship between a place and items.

Important Additional Entities

In addition to the main entities that represent the resources previously described, 

several additional entities were included in this representation because of their 

importance.
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Categories

In order to allow one or many categories to exist for an item or place, there exists 

a “place_tagmap” and a “place_tag” table for places, and an “item_tagmap” and 

“item_tag” table. The administrator of the API creates categories in the tag table, which 

are later mapped to an item or place when they are added.

item

id INT( 11)

O name VARCHAR(250)

0 place id INT(11) 

description TEXT 

gluten free TINVINT(1 > 

vegetarian TINYI NT(1) 

vegan TINYINT(1) 

exclusive gluten free TINYINT( 1) 

exclusive vegetarian TINYINT(1) 

exclusive vegan TINYINT(1) 

ingredient list TEXT 

tag healthy TINYINT(1) 

meal category VARCHARf 100) 

date added DATET1ME 

date last modified DATETIME 

id added INT(11) 

id last modified INT(11) 

verified TINYINT(1) 

id verified INT(11)

J  item tag

tag id INT(11)

tag name VARCHAR(45)

A
item tagmap

-h -------K

id INT( 11)

♦  item id INT( 11) 

^  tag id INT(11)

Figure 4: ERD of Item Category Implementation
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J  place ▼

id INT( 11)

name VARCHAR(200) 

is chain TINYINT(1) 

chain id INT(11)

- is open T1NYINT(1) 

image url VARCHAR(250) 

phone VARCHAR(20) 

restaurant url VARCHAR(250) 

menu url VARCHAR(250) 

gluten friendly T1NYINT(1) 

vegetarian friendly TINYINT(1) 

vegan friendly T1NYINT(1) 

gluten menu url VARCHAR(250) 

vegetarian menu url VARCHAR(250) 

vegan menu url VARCHAR(250) 

lat DECIMAL(11,7)

Ing DECIMAL(11,7) 

state VARCHAR(45) 

country VARCHAR(45) 

postal VARCHAR(45) 

formatted address VARCHAR(300) 

city VARCHAR(45) 

neighborhood TEXT 

date created DATE TIME 

date last updated DATETIME 

id created INT(11) 

id last updated INT( 11) 

google api success TlNYINT(1)

place tag

tag id INT(11) 

tag_name VARCHAR(45)

I

I

- K

^  place tagmap

id INT( 11)

♦  place id INT(11)

♦  tag id INT(11)

Figure 5: ERD of Place Category Implementation

In this model, the place_tag table has a one to many relationship with the place_tagmap 

table, which has a many to one relationship with the place table. In other words, there can 

be many tagmaps that exist for a single place, which maps to a single place_tag. The 

same can be said for the item, item_tagmap, and item_tag tables. Having a separate table



to associate categories to an item or place allows the possibility of these entities to have 

zero or many categories, without crowding the place and item tables.

Permissions

The permissions entity maps an application to a set of permissions for accessing 

each of the resources. As the API scales in the future, it is anticipated that access (and 

types of access) to each resource will need to be controlled on an application level. For 

instance, if a particular application repeatedly posts incorrect data to the Place resource, 

the administrator can choose to ban this application from using the POST method on the 

Place resource through the permissions entity.

<> postj>lace TINYINT(1) 

v post itemTINYINT(1) 

post sighting TINYINT(1) 

post report T1NYINT(1)

<; get item TINYINT(1)

<, get place T1NYINT(1)

<>get sighting TINYINT(1)

O get report TINYINT(1) 

put j j la c e  T1NYINT(1)

O put item TINYINT(1)

Figure 6: ERD of Permissions Resource

As of this version of the API, upon a client application’s approval for access to the API, 

the administrator creates a row in the permissions table for the application, assigning it 

POST and GET access to each of the resources.
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Application, User, and API Access Log

The Application, User, and API Access Log entities are all inter-related and used 

to control access to the API. In this model, a user may be assigned to one or more 

applications, but an application has only one primary user associated to it. This model 

was chosen to allow a client developer to have several applications that use the API. For 

instance, a user may have a development and production version of a client application, 

each using the API at different levels. In addition, each time an application accesses the 

API in any way, that particular session is recorded in the API Access Log entity. Through 

this entity, access to the API can be monitored and controlled. For instance, if  a client 

application uses the API excessively or abusively, the API administrator can set a limit to 

how many requests may come from that particular application within a given timeframe. 

While in this version of the API there are not any limitations enforced, as the API is used 

more in the future it will become necessary to impose limitations. The Application, User, 

and API Access Log entities were implemented as tables in the RDBMS.
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^  api access log

id INT( 11)

♦  application id INT(11) 

date requested DATETIME 

request resource VARCHAR(45) 

request method VARCHAR(45) 

response code INT(11)

I■
application

id INT( 11)

O  user id INT(11) 

application name VARCHAR(250) 

access approval TINYINT(1) 

date access last updated DATETIME 

permissions level INT(11)

<> temp block TINYINT(1)

Omax daily requests INT(11) 

api key TEXT

r  — CM

3H------

user

id INT( 11)

first name VARCHAR(45) 

last name VARCHAR(45) 

username VARCHAR(45) 
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Figure 7: ERD of User and Application Authentication

In this model, the user table has a one to many relationship with the application table, 

which has a one to many relationship with the api_access_log table.

3.5.4 RESTful API

As mentioned, the API acts as an intermediary between the client application and 

the central data repository. The goal of the API is to facilitate easy access for client 

applications to the data in the repository, while also enforcing a standard data model that 

maintains the usability of the data for client applications and the usefulness for end users 

of these client applications. The API was designed to accomplish these goals through a 

simple and standard mode of access to the API, and standard request and response 

formats.



In order to access the API, an application must first obtain an API key.21 This API 

key must be included in the HTTP “Authorization” header of all requests. The API 

analyzes the HTTP request for this header, checks to make sure this API key is valid and 

associates the API key to a registered application, then checks if this application has 

access to this particular method on this particular resource. For example, a client 

application that has previously obtained an API key from the API makes a GET request 

on the Item resource in order to obtain a list of items, including the API key in the 

Authorization portion of the HTTP header. The API then validates the API key and 

checks to see if this application has been granted “GET” access to the Item resource. It 

sees that the application has access, and then performs the action of getting and returning 

the requested list of items. If the application does not submit a valid API key, the API 

returns an error response with the reason of “failed authentication”. If the application 

submits a valid API key yet does not have access granted to that method upon that 

resource, the API then returns an error response with the reason of “access to resource 

denied”.
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Figure 8: Flowchart of Application Authentication

This process of authentication and authorization of the request acts as a security

measure to protect the API from malicious use, allow granular control over access to 

resources, and allows clients to access the API in a standard, simple and safe way.

Requests to the API

Clients request resources through the GET HTTP method, and submit resources 

through the POST HTTP method. As of this version of the API, other HTTP requests, 

such as PUT and DELETE are not accepted, and the updating or deletion of existing 

resources is not supported through the API.

GET requests are formatted inside of the URL. The structure of the URL for a 

standard GET request is as follows: <API URL>/<resource>/<parameters>. In the 

following documentation of HTTP requests “API URL” will equate to the base URL of 

the API (which will be included in all API requests), the “resource” will represent the 

resource being requested, and the “parameters” equate to the values submitted for this 

resource request. POST requests are different from GET requests in that they are 

formatted with a combination of the URL and the POST header of the HTTP request. The



resource is specified in the URL, but all other parameters are contained in the POST key- 

value array. 22

Responses from the API

For every HTTP request to the API, an HTTP response is returned. The response 

contains all of the standard HTTP response headers, as well as a formatted string in the 

response body. This string is a JSON object that contains an array of other objects which 

contain information about the response, the data requested (if it exists), pagination details 

and error details where appropriate. Below is a brief explanation of each of the objects 

returned in a JSON response.

Metadata

All responses include the “meta” object in them. The meta object represents

information about the data returned from the API. This includes the HTTP response code

in plain format, a response message to help understand the response, and the

authentication status. The authentication status specifies whether or not the client

application was authenticated using the API key and HTTP Authentication header. All

requests return the meta object, even those that return errors.

Example:

“meta”: {
“response code ” : 200,
“response message ”: “Request OK”,
“authenticated” : “success

}
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Error Message

The “error_message” object is returned in any request that results in an error,

along with the meta object. The meta object’s properties should give a clue as to why

there was an error, but the error_message object will explicitly state what the error was.

Example:

“meta”: {
“responsecode ” : 400,
“responsemessage ”: “Bad Request ”,
“authenticated” : “success

}
“errormessage ”: “The request was improperly formatted: item id  required” 

Pagination

All successful GET requests return the “pagination” object. The pagination object

provides information about the number of results returned, as well as pagination details

such as the results per page and the current page—which are useful to client applications

utilizing requests with the pagination parameters. The pagination object will not be

returned in GET requests that result in an error.

Example:

“pagination” : {
“currentresultscount” : 10,
“total_results_count” : 50,
“results_per_page ” : 10,
“current_page ” : 3

}

In the above example, the pagination object tells the client that there were 50 total results 

found based on the search, and that it is returning the third set of 10 results, being results

21 -  30. Utilizing pagination is an optional feature for the client, and if it is not used, the



API will simply return all of the results (up to 1000), along with the pagination object to 

explain the data set.

ID

The “id” object is returned in all successful POST requests, which represents the 

identification number of the newly created resource. Returning this identification number 

is useful to the client because it allows the client to use this number in subsequent 

requests that will use the newly created resource. For instance, if the client wants to 

submit a sighting for an item that does not yet exist, the client first creates the item using 

a POST Item request, then uses the returned Item identification number in the subsequent 

request to create a sighting for that particular item.

Data

The “data” object is returned on all successful GET requests that find at least one 

result for the client’s search request. The data object represents an entire resource object, 

and contains information pertaining to that resource. Because each resource is different, 

each request for a type of resource (Place, Item, Sighting, Category) will return a data 

response formatted to that resource type.

Example: Place:

"data":[
{"id":"281",
"name":"Rosati's Pizza",
"is_chain":1,
"chain_id":157,
"is_open":"1",
"neighborhood":"West Westminster",
"image_url":null,
"phone":"3034647477",
"restaurant_url":"http://www.myrosatis.com/home",
"menu_url":"http://www.myrosatis.com/menu/store/default.asp?locationId=29",
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"gluten_friendly":" 1",
"vegetarian_friendly" :"1",
"vegan_friendly" :"0",
"gluten_menu_url" :null,
"vegetarian_menu_url":null,
"vegan_menu_url":null,
"lat":"39.8775880",
"lng":"-105.0934990",
"street_address":"9960 Wadsworth Pkwy",
"city":"Westminster",
"state":"CO",
"country":"US",
"postal":"80021",
"formatted_address":"9960 Wadsworth Pkwy, Westminster, CO 80021, USA", 
"distance":"0.304785156818786"}

]

Example Item:

"data":[
{"id": "4",
"name":"Orange Almond Muffins", 
"description":"Warm, doughy, goodness", 
"place_id":"7",
"gluten_free":null,
"vegetarian" :null,
"vegan":null,
"exclusive_gluten_free":"0", 
"exclusive_vegetarian":" 1",
" exclusive_vegan" :"0", 
"ingredient_list":null,
"tag_healthy":"0",
"meal_category":"breakfast",
"verified":"0",
"place_name": "Crumbles Bakery", 
"formatted_address":"Denver, CO, USA", 
"neighborhood":"",
"g_lat": "39.7375670", 
"g_lng":"-104.9847179",
"g_state":"CO",
"g_postal":"80222",
"g_city":"Denver",
"distance":"11.2973433876467",
"tm_id":"13",
"tag_id":"6",
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"tag_name": "pastry"}
]

Example Sighting:

"data":[
{"id":" 1",
"place_id":"150",
"item_id":"8",
"review":"Pretty good, but not the best French Onion soup around.", 
"image":null,
"rating":"6",
" date_created": "2012-11-15 16:32:29",
"date_last_updated":null,
"is_primary":"1",
"place_name":"Jason's Deli",
"item_name":"French Onion Soup"}

]

Example Categories:

"data":[
{"tag_id":" 1","tag_name": "pizza"}, 
{"tag_id": "2","tag_name": "italian"}, 
etc...

]

The above examples (except for the Categories response) show a single result in 

the data object. While returning a single result is one type of scenario, the client will 

more often see a list of results within the data object. In this case, the data object will 

contain an array of results, each of which is it’s own array of objects as seen above.

3.5.5 Implementation of API

The API was implemented as an MVC (Model, View, Controller) PHP 

application that accepts HTTP requests and renders a JSON document as the body of the 

HTTP response. The model layer consists of several main database classes, each



representing one of the API’s resources (Place, Item, Sighting, Category, Report, 

Application). Each of these database classes acts as an interface that the controller layer 

of the application uses to access the database. The controller layer consists of a PHP 

script that acts as a request dispatcher that routes requests to the appropriate sub

controller, which then performs the main business logic of the application. In the business 

logic, authorization to the resource is performed, and then the appropriate model class 

and methods are utilized in order to access the database and generate data. The controller 

then renders this data to the view layer, which renders the response in a JSON format.

3.6 Process Flow

While the process of using the API consists of simple HTTP requests and 

responses, the API cannot be used without the client developer going through the 

prerequisite steps of viewing the documentation website and registering for access. The 

different components of the API, therefore, were designed to be utilized in an overall 

flow. The process flow below is the anticipated interaction of the client developer and 

client application with the API components.

First, the client developer must visit the API documentation website in order to 

learn about the API and request access to the API via the web form. The API 

administrator will grant access to the client developer where appropriate. After the client 

has access to the API, it is expected that the client developer will consult the API 

documentation website for information on how to use the API, and likely visit the sample 

client application in the documentation. After the developer has made the necessary 

updates, their application will call into the API to get or submit data. At this point the 

API acts as an intermediary between the client application and the central data repository
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that stores the data. As an intermediary, the API enforces the necessary authentication of 

the client, validation of the request, accessing the data repository, and returning a 

formatted response to the client.
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Figure 9: Flowchart of API Access 

3.7 Summary

The development of the solution described in this chapter was the result of an 

analysis of the requirements for a solution, the design of the several major components 

that composed this solution, and the implementation of these designed components. An 

analysis of the needs of the proposed solution for this project resulted in a list of 

requirements, which then made it possible to design and implement components that 

would fulfill these requirements. While this chapter discussed the requirements, analysis, 

design and implementation of the solution, the following chapter will analyze how this 

implementation meets the needs discussed in the requirements, and how this acts as a 

solution to the problems discussed.



Part 4: Analysis of Results

This section analyzes how the implementation of the API outlined in the previous 

section acts as a solution to the problem outlined in the thesis of this paper.

4.1 How the API meets the requirements for a solution

To assess how the API meets the needs for a solution, this section will examine 

how each of the requirements for a solution have been fulfilled.23

4.1.1 Data at Two Levels

In order to be useful to a wide array of end-users and different types of client 

applications it was necessary to make the data model of the solution be as flexible and 

scalable as possible, while still maintaining a useful amount of specificity. Because of 

this, a requirement was made that the API will support data on two levels: the restaurant 

data model, and the menu item data model.24 As detailed in section 3.5.3, the solution’s 

data model was designed and implemented to accommodate the restaurant data model 

(which is used by many of the current dietary-need applications) as well as the menu item 

data model (which is in several recent applications in this genre).25 This implementation 

includes separate entities for restaurants (the place entity), dishes (the item entity), 

experiences with items (the sighting entity), and problems with other entities (the report 

entity). Through this implementation, users are able to get data more specific and thus 

useful to them than solely restaurant reviews, and are able to see other users’ experiences
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with the actual dishes that restaurants offer. Users and restaurant applications can 

consume and provide data relevant to a restaurant, and also consume and provide data 

relevant to dishes served at that restaurant.

4.1.2 Allow Clients to Consume and Provide Data

Through the RESTful API created in this project, client applications are able to 

consume and provide data to the central data repository through simple HTTP requests. A 

client may choose to only consume data and not provide it, or vice versa. All clients 

consuming and providing data must adhere to the policies of the API, and through the 

API, client applications are able to form an API community with a set of data that will 

continue to grow, thus providing an increasing set of data to consuming applications and 

end-users. Through the implementation of the RESTful interface that accepts simple 

HTTP requests to provide and consume data, the API fulfills the requirement as a 

solution to allow clients to consume and provide data.

4.1.3 Client Support and Documentation

The documentation website implemented as part of this project fulfills the 

requirement to inform and assist developers in using the API.26 Through reading the 

documentation, client developers will be able to learn what the API does, why it exists, 

and all of the technical details of getting access and integrating their applications with the 

API. The documentation website will also serve as a place to inform developers of the 

API’s terms and conditions of use, what kind of data the API expects, and what kind of 

data to expect in return from the API. Through the access request form, developers will
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enter an agreement of understanding of what to expect from the API and the appropriate 

ways to interact with the API. As part of the documentation website, developers will also 

be able to use an example client application that utilizes the API.27 This application 

provides developers with just one small example of how the API can be integrated into 

their own projects.

Informing the intended audience on how to use the API is a vital part of its 

success. The documentation website fulfills the need for an informational gateway that 

will educate and assist developers, and demonstrate some of its functionality to those 

interested in utilizing it.

4.1.4 Scale to Current and Future Dietary Needs

While the current version of the API uses only the gluten-free, vegetarian and 

vegan dietary types, the data model was implemented in such a way as to allow the future 

addition of other dietary types as well. When the time comes to add another dietary type 

to the API, a field will be added to the item entity to represent this new property, and the 

client documentation will be updated to reflect this addition. In this way, the API fulfills 

the requirement to be easily scalable for future dietary types.28 This method of adding 

new dietary types is both simple for the administrator and also allows the addition to be 

controlled solely by the API administrator.
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4.1.5 API: Equipped to Enforce Policies of Usage

As an intermediary between the client and data, the API is equipped to enforce 

policies of usage. The following security and usage policies act as a means to protect the 

API and the central data repository.

4.1.5.1 Security

Security is enforced on two levels: access, and data integrity. On the access layer, 

the client application must be authorized to access the API, and then authorized to have 

access to resources. On the data layer, all submitted data is cleaned and validated before 

accessing the data repository.

Authentication

In order to ensure the controlled and safe usage of the API, all requests made by 

client applications are authenticated upon reaching the API. By assigning a unique key to 

each individual client application, the API is able to authenticate the application, thus 

allowing the application’s usage of the API to be monitored and controlled. Client 

developers are expected to keep their application’s API key hidden from the user in their 

application’s interactions with the API. If it is determined that an application is misusing 

the API, the API administrator can revoke this API key’s privileges.

Authorization

After an application is authenticated to use the API, the API then enforces an 

authorization scheme for access to all resources. The total number of requests, the types 

of requests, and the resources that may be requested are all controlled through the API’s 

authorization measures. The default maximum number of requests for a 24-hour period is 

1000 requests. Client developers needing a higher maximum number of requests can
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arrange this with the API administrator. The default is to also allow all new client 

applications to have GET and POST requests for all of the API’s resources. However, 

these accesses may be modified for individual applications where appropriate.

Validation

It is expected that the client developer will enforce a validation scheme at the 

application level in order to ensure harmful data is not submitted to the API. However, 

because this cannot be ensured, the API performs validation upon all data. The client 

developer, however, should seek to validate data before making a request to the API, in 

order to not waste API requests and resources, and in order to be more user-friendly.

The API validates all submitted data before inserting it into the database. This 

means that numerical and string fields are enforced, and fields such as URL or phone 

number are validated to be a properly formatted URL or phone number. Required fields 

are also enforced. If a submission is made without the required fields populated properly, 

the API will not insert the data, and will return an error response. If optional fields are 

left blank or are improperly formatted (not passing validation) they are simply not 

inserted into the database, and the API continues to process the other fields. Required 

fields and the expected and appropriate data types are specified in the client 

documentation.

Character Escaping

It is possible that some users of the API may attempt to submit malicious data to 

the API. In order to protect the data repository and combat security issues such as SQL 

injection, the API escapes and reformats all data before performing any interactions with 

the database. This step of data sanitation prevents malicious attacks upon the API’s data.
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Through the authentication and authorization of client applications, and through 

the cleansing and validation of all incoming data, the solution fulfills the security 

requirements needed to protect the API and its data.29

4.1.5.2 Usage Limitations and User-submitted Data

As mentioned before, client developers must agree to the terms and conditions of 

the API before submitting a request for access to the API on the documentation website. 

In this documentation, developers agree to the understanding that usage will be limited to 

1000 requests per day unless arranged otherwise. Developers must also agree that the 

data consumed from the API must not be cached or stored in their servers for increments 

longer than four hours, and that data submitted to the API must not contain inappropriate, 

vulgar, or harassing language. Failure to abide by these rules results in the suspension or 

termination of that developer’s account.

As part of the goal for many applications to use the API, it is also the goal that 

this community of applications and end-users will actively participate in enforcing the 

overall integrity of the data. To facilitate this participation, and to enforce these policies, 

the API was designed to allow each resource to be “flagged” as either inappropriate or 

inaccurate. If a resource is flagged as inappropriate or inaccurate, the API administrator 

will review the validity of this claim and potentially delete the data and take measures 

with the application in order to prevent this from happening again.
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These measures that were taken to control the usage of data and to allow the 

community to take an active part in the monitoring and control of user-submitted data 

fulfill the requirement to establish data-usage policies.30

4.2 How the API Is A Solution to the Problem of Data Insularity in This Field of 

Applications

The API and the central data repository created in this project are a proposed 

constructivist solution to the problem of data insularity in the field of dietary need 

restaurant applications. Requirements were introduced earlier in this paper in order to 

define certain tangible properties that the proposed solution must possess. As discussed in 

this section, the project that was designed and implemented in this paper fulfills each of 

the requirements for a solution.

The data model and central data repository function as the base of the solution, 

defining how data will be used amongst applications in the industry, and allowing the 

future scalability of the data as well. The API functions as the gateway to the data, 

supplying client applications with a secure and simple RESTful interface with which to 

interact with the data. The client documentation website and sample client application 

inform the developer of the API, establish a contract of understanding of what the API is 

and how it is to be used, and encourages the use of the API through the sample client 

application. Together, these different components form a cohesive solution to the
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problem of data insularity by allowing client developers to easily create or integrate their 

applications to utilize community-driven and useful data.

4.3 Project History

4.3.1 How the Project Began

The concept for this project began two years ago when the author initially realized 

how fragmented the data of dietary-need restaurant applications was. A friend of the 

author with Celiac disease was using three different applications to find a place to eat 

dinner with her family. This person used two different gluten-free restaurant-finder 

applications in order to find restaurants that were listed as gluten-friendly. Two 

applications were needed because each had their own sets of data with different 

restaurants in them. After a restaurant that was gluten-free-friendly was chosen, the 

person then used a third application (not dietary-specific) to cross-reference this 

restaurant with reviews of dishes available because the all of the finder applications did 

not have data at the dish level. This showed the author that the entire data set available to 

the end-user was fragmented, and that this fragmentation negatively affected the end user.

4.3.2 How the Project Was Managed

The author was the sole developer for this project, and a rapid evolutionary 

prototyping development process was used.31 Larger goals were set for each iteration of 

the project in order to drive development at a steady pace. For the most part, these goals 

were adhered to for the entire process.
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4.3.3 Project Milestones

While each iteration was its own milestone, there were several major milestones 

of the project. The first major milestone was the completion of the requirements phase, 

during which requirements were defined for the solution. The second milestone was the 

completion of the design of the data model and API. The third milestone was the 

implementation of the data model, API, and client documentation website.

4.3.4 Changes to the Project Plan

There were not any major changes to the project plan. The biggest delay in the 

project was the result of the sample client application taking longer to develop than 

originally planned.

4.3.5 Project Timeline

The project was completed along with this paper in certain general phases.

Phase 1: December 2011 — April 2012

The author initially conceived this project and conducted initial research in the 

areas of restaurant and meal review applications, dietary-need applications, as well as 

public RESTful APIs. This phase concluded with the refinement of the project’s thesis.

Phase 2: May 2012 — August 2012

During this phase, the author conducted detailed research on the field of dietary- 

need applications, as well as APIs in the food and restaurant industry. Chapters 1 and 2 of 

the thesis were developed during this phase, which culminated in a project plan.

Phase 3: September 2012 — January 2013

During this phase of the project, the author adhered to a project life cycle, 

developing the project’s solution in increments.

DEVELOPMENT OF AN API 87



Phase 4: February 2013 -  April 2013

The author finished writing this paper and made refinements to the components 

developed as part of this project.

4.3.6 Ethical and Social Impact of the Project

While the solution introduced in this paper is in its infancy in terms of its 

adoption by other developers and its evolution as a product, as stated in section 1.7, it is 

the hope of the author that the API will eventually be adopted by outside developers, and 

that this project will eventually assist end users with special dietary needs.
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Part 5: Conclusions and Lessons Learned 

5.1 Conclusions

This project has been a constructivist prototype solution for a problem in a 

particular field of applications. In this paper, the author has made the following overall 

inferences.

5.1.1 The Problem of Data Insularity

The paper introduced the problem of data insularity amongst dietary need 

applications in the restaurant industry. The problem was discussed in the context of the 

intended functionality of this genre of applications. Data insularity is a trait that occurs 

when the available applications in an area of user-generated content do not make their 

data available to other applications.

5.1.2 Data Insularity Causes Incomplete and Fragmented Data

The paper discusses the implications of the problem of data insularity. In the case 

of user-review dietary applications in the restaurant industry, data insularity is 

problematic because it presents the end user with a fragmented set of data; a user must 

check multiple applications in order to get a complete set of all of the available data.

5.1.3 A Prototype Solution Is Needed

The paper proposed that a prototype solution to the problem of data insularity 

amongst this group of applications was needed, and that a solution will benefit the end 

users by making it possible for applications to provide a more complete set of data. In 

other words, the solution to the problem will allow these isolated sets of data to be used 

amongst other communities of users.
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5.1.4 Prototype RESTful API as a Solution

The author proposed a prototype RESTful API as the solution to the problem of 

data insularity. After a brief introduction to RESTful APIs, the paper examined several 

related APIs in the restaurant industry, and culminated the knowledge gained to define a 

set of core requirements for the API to be a successful solution.

5.1.5 The Project Successfully Satisfies These Requirements

The paper then examined how the design and implementation of the project 

fulfilled the requirements defined for a successful solution. Each requirement was looked 

at in order to determine that the project’s goal was a success: to create a prototype 

solution to the problem of data insularity in this field of applications.

5.2 Summary of Contributions

5.2.1 The Documentation of a Prototype Solution to Data Insularity

This paper documents in detail the process of creating a prototype solution to the 

problem of data insularity amongst this group of applications. The author uses knowledge 

gained from the investigation of data insularity in this field of applications and potential 

solutions to explicitly define several core requirements for a solution to the problem.

With these requirements, the paper then documents in detail the design of the solution, 

and discusses the implementation of these designs.

5.2.2 An Analysis of Potential Solutions to the Problem of Data Insularity

The project offers an analysis of several existing solutions to the problem of data

insularity amongst dietary need applications in the restaurant industry. A detailed analysis 

of several industry APIs reveals that there is not currently an existing solution appropriate 

for this problem.
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5.2.3 A Brief Review of Applications in the Field that Represent the Problem 

of Data Insularity

To introduce the problem of data insularity the paper initially examines several 

popular dietary need applications in the restaurant industry. While there are many 

applications in this genre, three popular applications were chosen as representatives in the 

areas of gluten-free, vegan, and vegetarian dietary needs, as well as a gluten-free 

application that attempts to provide data at the dish, rather than restaurant, level. Through 

this review, the problem of data insularity amongst these applications is revealed.

5.3 Lessons Learned

While there were not any serious problems while working on this project, the 

most notable difficulty was that some goals took longer to accomplish than originally 

planned.

The first setback occurred when the author chose to change the language and 

framework in which the API was to be developed. The author originally developed part 

of the API in PHP without a framework, and later discovered an appropriate framework 

that would aid development (called the Slim PHP Framework). While this initially 

sacrificed about a month’s worth of development, the amount of effort saved in the long

term made up for this lost time.

The second setback occurred while developing the sample client application. The 

author began developing the sample client application without adequately defining the 

scope. Because the scope of the client application was not adequately defined, the focus 

changed several times during its development of this development, thus causing it to take 

more time to finish than originally expected.
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In order to ensure that these lessons will be implemented, the author has resolved 

to spend more initial time researching existing technologies that can aid development, 

and to always firmly define the scope of every facet of a project.

5.4 Recommendations / Future Research

While this project acts as a prototype solution to the problem of data insularity in 

the field of dietary-need applications in the restaurant industry, there are additions to this 

solution that can be made by future researchers.

Detailed food allergy and dish ingredients can be included in order to supply the 

end-user with more specific data for dishes. This can benefit users that have severe food 

allergies, such as peanut, soy or other allergies. The challenge of including food allergies 

is that only the restaurant proprietor can be trusted to have that detailed information, 

rather than an end-user casually enjoying the dish. Therefore, in order for food allergies 

to be included, the API must first allow restaurant-guaranteed items.

Restaurant-guaranteed items (items that are added by the proprietors of 

restaurants) can provide the data with a level of detail and trustworthiness that the user 

community cannot. While the user community will ideally strive for accuracy and detail, 

only the restaurant will know of the exact ingredients of a dish, and thus only items added 

by the restaurant can be guaranteed to be completely accurate.
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