
Parallelizing Monte-Carlo Tree Search

for Dots and Boxes
Pranay Agrawal and Uta Ziegler, Western Kentucky University

[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener, D.
Perez, S. Samothrakis, and S. Colton, A Survey of Monte Carlo Tree Search Methods in IEEE
Transactions on Computational Intelligence and AI in Games, Vol. 4, No. 1, March 2012.

[2] A. Bourki, G. Chaslot, M. Coulm, V. Danjean, H. Doghmen, et al.. Scalability and
Parallelization of Monte-Carlo Tree Search. The International Conference on Computers and
Games 2010, Kanazawa, Japan. 2010.

[3] B. E. Childs, J. H. Brodeur, and L. Kocsis, Transpositions and move groups in Monte Carlo
tree search, 2008 IEEE Symposium On Computational Intelligence and Games, Perth, WA,
2008, pp. 389-395.

References

Methods
• Use self-play (two players who learn using MCTS playing against each

other) to assess performance

• Measure performance by
𝑜𝑓 𝑤𝑖𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

• Establish a base-line performance of one (non-parallel) player for various
size boards against a MCTS player of 5000 simulations per situation

• Develop algorithm based on [3] to incorporate combined data seamlessly
into each learner’s tree

• Measure performance of parallelized MCTS: vary the number of
simulations for every situation but keep constant all other parameters

• ** Update algorithm to account for symmetry of board positions (current)

• Analyze performance relative to varied resource from base-line

Conclusion/Discussion
• Parallelism is predicated on the idea of consistently increasing performance

with more simulations

• Different learners learn different aspects of the overall task with some
repeated information, and combining it is similar to one learner learning the
different aspects using more simulations

• A decrease in performance with increased simulation indicates that the
selection of the number of simulations for the current situation for each
learner must be made with care

• An analysis of the time requirement for the sharing and combining is needed

• An efficient algorithm to deal with symmetry must be discussed

Acknowledgments
We would like to thank Jared Prince for the development of the base Monte Carlo
Tree Search code and Brian Zhu for the root parallelization allowing us to adapt it
for multi-level parallelization. We also would like to thank Western Kentucky
University for allowing us access to their high performance computing cluster.

Abstract
The Monte-Carlo tree search (MCTS) is a method designed to learn how
to solve problems. MCTS performs random simulations from the current
situation and stores the results in order to distinguish decisions based on
their past. After the simulations, the MCTS algorithm selects the best
decision and then repeats the process until a stopping state. Parallelizing
the MCTS means to divide the learning process among independent
learners. After a fixed number of simulations, some learned data is
shared and combined. Past research has shown that this approach is
faster than non-parallelized approaches. It seems that the time reduction
from dividing the learning outweighs the potential costs from redundant
learning. This project focuses on the effect of the level of various
controlled resources on the learned performance of MCTS. Specifically,
we explored how the performance of the game Dots and Boxes learned
through a parallelized MCTS approach is effected by (i) the number of
simulations for every situation, (ii) the number of independent learners,
(iii) the amount of information shared, and (iv) the frequency of sharing.
A problem with symmetric board positions is presented along with details
of the MCTS algorithm. Non-parallelization results are also discussed.

Results
• In the Base-Line Performance graphs, as the number of simulations

increases, the win-ratio increases for the single non-parallel player

• The MCTS performance does not decrease evenly with increasing board
sizes (3x3 < 4x4 < 2x2 for simulations > 5000)

• The percentage of good first moves for a 2x2 board at first decreases and
then increases between 1000 and 1000 simulations

• Parallelization did not behave as expected (potential symmetry issues):

 Different board positions are symmetric to each other

 The basic implementation of MCTS learns independently of the others

 Combining learned information without accounting for symmetric
states leads to counter-intuitive results (see figures below)

Introduction
• Four steps of MCTS: selection, expansion, simulation, backpropagation [1].

• The rules of the game Dots and Boxes: two players take turns drawing a
line on a square grid of dots. If a player draws the 4th line of a square the
player collects a point and completes another move again. The player
with the most points by the end wins the game.

• Parallelization: sharing learned data involves each learner sending the
tree information from one or more levels to a controller that will
appropriately combine the information and distribute it back [2] (see
figure below).

BAD GOODMOVES

0

50

100

0 10000 20000 30000 40000 50000

Pe
rc

en
ta

ge

Number of Simulations

Base-Line Performance I

2x2 Win-Ratio 3x3 Win-Ratio 4x4 Win-Ratio 2x2 Good First Moves

0

50

100

0 200000 400000 600000 800000 1000000

Pe
rc

en
ta

ge

Number of Simulations

Base-Line Performance II

2x2 Good First Moves 2x2 Win-Ratio 3x3 Win-Ratio 4x4 Win-Ratio

