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Methods
• Use self-play (two players who learn using MCTS playing against each 

other) to assess performance

• Measure performance by 
# 𝑜𝑓 𝑤𝑖𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

• Establish a base-line performance of one (non-parallel) player for various 
size boards against a MCTS player of 5000 simulations per situation

• Develop algorithm based on [3] to incorporate combined data seamlessly 
into each learner’s tree

• Measure performance of parallelized MCTS: vary the number of 
simulations for every situation but keep constant all other parameters

• ** Update algorithm to account for symmetry of board positions (current)

• Analyze performance relative to varied resource from base-line

Conclusion/Discussion
• Parallelism is predicated on the idea of consistently increasing performance 

with more simulations

• Different learners learn different aspects of the overall task with some 
repeated information, and combining it is similar to one learner learning the 
different aspects using more simulations

• A decrease in performance with increased simulation indicates that the 
selection of the number of simulations for the current situation for each 
learner must be made with care

• An analysis of the time requirement for the sharing and combining is needed

• An efficient algorithm to deal with symmetry must be discussed
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Abstract
The Monte-Carlo tree search (MCTS) is a method designed to learn how 
to solve problems. MCTS performs random simulations from the current 
situation and stores the results in order to distinguish decisions based on 
their past. After the simulations, the MCTS algorithm selects the best 
decision and then repeats the process until a stopping state. Parallelizing 
the MCTS means to divide the learning process among independent 
learners. After a fixed number of simulations, some learned data is 
shared and combined. Past research has shown that this approach is 
faster than non-parallelized approaches. It seems that the time reduction 
from dividing the learning outweighs the potential costs from redundant 
learning. This project focuses on the effect of the level of various 
controlled resources on the learned performance of MCTS. Specifically, 
we explored how the performance of the game Dots and Boxes learned 
through a parallelized MCTS approach is effected by (i) the number of 
simulations for every situation, (ii) the number of independent learners, 
(iii) the amount of information shared, and (iv) the frequency of sharing. 
A problem with symmetric board positions is presented along with details 
of the MCTS algorithm. Non-parallelization results are also discussed.

Results
• In the Base-Line Performance graphs, as the number of simulations 

increases, the win-ratio increases for the single non-parallel player

• The MCTS performance does not decrease evenly with increasing board 
sizes (3x3 < 4x4 < 2x2 for simulations > 5000) 

• The percentage of good first moves for a 2x2 board at first decreases and 
then increases between 1000 and 1000 simulations

• Parallelization did not behave as expected (potential symmetry issues):

 Different board positions are symmetric to each other

 The basic implementation of MCTS learns independently of the others

 Combining learned information without accounting for symmetric 
states leads to counter-intuitive results (see figures below) 

Introduction
• Four steps of MCTS: selection, expansion, simulation, backpropagation [1].

• The rules of the game Dots and Boxes: two players take turns drawing a 
line on a square grid of dots. If a player draws the 4th line of a square the 
player collects a point and completes another move again. The player 
with the most points by the end wins the game.

• Parallelization: sharing learned data involves each learner sending the 
tree information from one or more levels to a controller that will 
appropriately combine the information and distribute it back [2] (see 
figure below).
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